WorldWideScience

Sample records for blazar gamma-ray spectra

  1. The Gamma-ray Blazar Quest: new optical spectra, state of art and future perspectives

    CERN Document Server

    Massaro, F; D'Abrusco, R; Landoni, M; Masetti, N; Ricci, F; Milisavljevic, D; Paggi, A; Chavushyan, V; Jiménez-Bailón, E; Patiño-Álvarez, V; Strader, J; Chomiuk, L; La Franca, F; Smith, Howard A; Tosti, G

    2016-01-01

    We recently developed a procedure to recognize gamma-ray blazar candidates within the positional uncertainty regions of the unidentified/unassociated gamma-ray sources (UGSs). Such procedure was based on the discovery that Fermi blazars show peculiar infrared colors. However, to confirm the real nature of the selected candidates, optical spectroscopic data are necessary. Thus, we performed an extensive archival search for spectra available in the literature in parallel with an optical spectroscopic campaign aimed to reveal and confirm the nature of the selected gamma-ray blazar candidates. Here, we first search for optical spectra of a selected sample of gamma-ray blazar candidates that can be potential counterparts of UGSs using the Sloan Digital Sky Survey (SDSS DR12). This search enables us to update the archival search carried out to date. We also describe the state-of-art and the future perspectives of our campaign to discover previously unknown gamma-ray blazars.

  2. The Imprint of The Extragalactic Background Light in the Gamma-Ray Spectra of Blazars

    CERN Document Server

    ,

    2012-01-01

    The light emitted by stars and accreting compact objects through the history of the Universe is encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is important to understand the nature of star formation and galaxy evolution, but direct measurements of the EBL are lim- ited by Galactic and other foreground emissions. Here we report an absorption feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of z$\\sim$1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to UV frequencies, and allowed us to measure the EBL flux density in this frequency band.

  3. Breaks in gamma-ray spectra of distant blazars and transparency of the Universe

    Science.gov (United States)

    Rubtsov, G. I.; Troitsky, S. V.

    2014-11-01

    Energetic gamma rays scatter on soft background radiation when propagating through the Universe, producing electron-positron pairs (A.I. Nikishov, Sov. Phys. JETP 14, 393 (1962)). Gamma rays with energies between 100 GeV and a few TeV interact mostly with infrared background photons whose amount is poorly known experimentally but safely constrained from below by account of the contribution of observed light from known galaxies (R.C. Keenan, A.J. Barger, L.L. Cowie, and W.-H. Wang, Astrophys. J. 723, 40 (2010); arXiv: 1102.2428). The expected opacity of the intergalactic space limits the mean free path of TeV gamma rays to dozens of Megaparsecs. However, TeV photons from numerous more distant sources have been detected (S.P. Wakely and D. Horan, http://tevcat.uchicago.edu/). This might be interpreted, in each particular case, in terms of hardening of the emitted spectrum caused by presently unknown mechanisms at work in the sources (S. Archambault et al. (VERITAS and Fermi LAT Collaborations), Astrophys. J. 785, L16 (2014); arXiv: 1403.4308). Here we show that this interpretation is not supported by the analysis of the ensemble of all observed sources. In the frameworks of an infrared-background model with the lowest opacity (R.C. Gilmore, R.S. Somerville, J.R. Primack, and A. Dominguez, Mon. Not. Roy. Astron. Soc. 422, 3189 (2012); arXiv: 1104.0671), we reconstruct the emitted spectra of distant blazars and find that upward spectral breaks appear precisely at those energies where absorption effects are essential. Since these energies are very different for similar sources located at various distances, we conclude that the breaks are artefacts of the incorrect account of absorption and, therefore, the opacity of the Universe for gamma rays is overestimated even in the most conservative model. This implies that some novel physical or astrophysical phenomena should affect long-distance propagation of gamma rays. A scenario in which a part of energetic photons is

  4. Gamma Rays From Blazars

    CERN Document Server

    Tavecchio, F

    2016-01-01

    Blazars are high-energy engines providing us natural laboratories to study particle acceleration, relativistic plasma processes, magnetic field dynamics, black hole physics. Key informations are provided by observations at high-energy (in particular by Fermi/LAT) and very-high energy (by Cherenkov telescopes). I give a short account of the current status of the field, with particular emphasis on the theoretical challenges connected to the observed ultra-fast variability events and to the emission of flat spectrum radio quasars in the very high energy band.

  5. Derivation of a Relation for the Steepening of TeV Selected Blazar Gamma-Ray Spectra with Energy and Redshift

    Science.gov (United States)

    Stecker, F.

    2010-01-01

    We derive a relation for the steepening of blazar gamma-ray spectra between the multi-GeV Fermi energy range and the TeV energy range observed by atmospheric Cerenkov telescopes. The change in spectral index is produced by two effects: (1) an intrinsic steepening, independent of redshift, owing to the properties of emission and absorption in the source, and (2) a redshift-dependent steepening produced by intergalactic pair production interactions of blazar gamma-rays with low energy photons of the "intergalactic background light" (IBL). Given this relation, with good enough data on the mean gamma-ray SED of TeV Selected BL Lacs, the redshift evolution of the IBL can, in principle, be determined independently of stellar evolution models. We apply our relation to the results of new Fermi observations of TeV selected blazars.

  6. Gravitational microlensing of gamma-ray blazars

    DEFF Research Database (Denmark)

    F. Torres, Diego; E. Romero, Gustavo; F. Eiroa, Ernesto

    2003-01-01

    We present a detailed study of the effects of gravitational microlensing on compact and distant $\\gamma$-ray blazars. These objects have $\\gamma$-ray emitting regions which are small enough as to be affected by microlensing effects produced by stars lying in intermediate galaxies. We analyze...... the temporal evolution of the gamma-ray magnification for sources moving in a caustic pattern field, where the combined effects of thousands of stars are taken into account using a numerical technique. We propose that some of the unidentified $\\gamma$-ray sources (particularly some of those lying at high...... galactic latitude whose gamma-ray statistical properties are very similar to detected $\\gamma$-ray blazars) are indeed the result of gravitational lensing magnification of background undetected Active Galactic Nuclei (AGNs)....

  7. Photon propagation and the VHE gamma-ray spectra of blazars: how transparent is really the Universe?

    CERN Document Server

    De Angelis, A; Persic, M; Roncadelli, M

    2008-01-01

    Recent findings by Imaging Atmospheric Cherenkov Telescopes (IACTs) suggest a transparency of the Universe to Very-High-Energy (VHE) photons beyond expectations based on realistic models of the Extragalactic Background Light. It has recently been shown that such transparency can be naturally explained by the mixing between the photon and a new very light Axion-Like Particle (ALP) predicted by many extensions of the Standard Model of elementary particles (DARMA scenario). We discuss the implications of the DARMA scenario for the observed spectra of blazars detected in the VHE band. In fact, contemplating all such blazars at once allows us to correlate the emitted and observed spectral indexes. Besides confirming the DARMA scenario in more general terms, we show that this picture automatically explains why - even starting from the same nominal value of 2.4 for the spectral index of all VHE blazars at emission - the observed spectral index predicted by the DARMA scenario reproduces the observations, becoming asy...

  8. Systematic Study of Gamma-ray bright Blazars with Optical Polarization and Gamma-ray Variability

    CERN Document Server

    Itoh, Ryosuke; Fukazawa, Yasushi; Uemura, Makoto; Tanaka, Yasuyuki T; Kawabata, Koji S; Madejski, Grzegorz M; Schinzel, Frank K; Kanda, Yuka; Shiki, Kensei; Akitaya, Hiroshi; Kawabata, Miho; Moritani, Yuki; Nakaoka, Tatsuya; Ohsugi, Takashi; Sasada, Mahito; Takaki, Katsutoshi; Takata, Koji; Ui, Takahiro; Yamanaka, Masayuki; Yoshida, Michitoshi

    2016-01-01

    Blazars are highly variable active galactic nuclei which emit radiation at all wavelengths from radio to gamma-rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between Jul. 2008 and Dec. 2014 to investigate the mechanisms of variability and search for a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), thi...

  9. Gamma-ray burst spectra

    Science.gov (United States)

    Teegarden, B. J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events.

  10. GAMMA-RAY AND X-RAY EMISSION FROM GAMMA-RAY-LOUD BLAZARS

    Institute of Scientific and Technical Information of China (English)

    ZHANG XIONG; ZHAO GANG; XIE GUANG-ZHONG; ZHENG GUANG-SHENG; ZHANG LI

    2001-01-01

    We present a strong correlation of the gamma-ray (above 100 MeV) mean spectral indices aγ and X-ray (1 keV)mean spectral indices cX for 34 gamma-ray-loud blazars (16 BL Lac objects and 18 flat spectrum radio quasars). Astrong correlation is also found between the gamma-ray flux densities F-γ and X-ray flux densities Fx in the low state for 47 blazars (17 BL Lac and 30 flat spectrum radio quasars). Possible correlation on the gamma-ray emission mechanism is discussed. We suggest that the main gamma-ray radiation mechanism is probably the synchrotron process. The gamma-ray emission may be somewhat different from that of BL Lac objects and flat spectrum radio quasars.

  11. Gamma-Ray and Multiwavelength Emission from Blazars

    Indian Academy of Sciences (India)

    Meg Urry

    2011-03-01

    Blazars are now well understood as approaching relativistic jets aligned with the line of sight. The long-time uncertainty about the demographics of blazars is starting to become clearer: since the Fermi blazar sample includes a larger fraction of high-frequency peaked blazars (like the typical X-ray-selected blazars in, say, the Einstein Slew Survey sample) than did the higher-flux-limit EGRET blazar sample, these low-luminosity sources must be more common than their higher luminosity, low-frequency-peaked cousins. Blazar spectral energy distributions have a characteristic two-component form, with synchrotron radiation at radio through optical (UV, X-ray) frequencies and gamma-rays from X-ray through GeV (TeV) energies.Multiwavelength monitoring has suggested that gamma-ray flares can result from acceleration of electrons at shocks in the jet, and there appears to be an association between the creation of outflowing superluminal radio components in VLBI maps and the gamma-ray flares. In many cases, the gamma-ray emission is produced by inverse Compton upscattering of ambient optical-UV photons, although the contribution from energetic hadrons cannot be ruled out. The next few years of coordinated gamma-ray, X-ray, UV, optical, infrared and radio monitoring of blazars will be important for characterizing jet content, structure, and total power.

  12. Searching for Gamma-Ray Blazar Candidates Among the Unidentified INTEGRAL Sources

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; /SLAC; Paggi, A.; D' Abrusco, R.; /Harvard-Smithsonian Ctr. Astrophys.; Tosti, G.; /Perugia U.

    2012-04-02

    The identification of low-energy counterparts for {gamma}-ray sources is one of the biggest challenge in modern {gamma}-ray astronomy. Recently, we developed and successfully applied a new association method to recognize {gamma}-ray blazar candidates that could be possible counterparts for the unidentified {gamma}-ray sources above 100 MeV in the second Fermi Large Area Telescope (LAT) catalog (2FGL). This method is based on the Infrared (IR) colors of the recent Wide-Field Infrared Survey Explorer (WISE) all-sky survey. In this letter we applied our new association method to the case of unidentified INTEGRAL sources (UISs) listed in the fourth soft gamma-ray source catalog (4IC). Only 86 UISs out of the 113 can be analyzed, due to the sky coverage of the WISE Preliminary data release. Among these 86 UISs, we found that 18 appear to have a {gamma}-ray blazar candidate within their positional error region. Finally, we analyzed the Swift archival data available for 10 out these 18 {gamma}-ray blazar candidates, and we found that 7 out of 10 are clearly detected in soft X-rays and/or in the optical-ultraviolet band. We cannot confirm the associations between the UISs and the selected {gamma}-ray blazar candidates due to the discrepancies between the INTEGRAL and the soft X-ray spectra. However, the discovery of the soft X-ray counterparts for the selected {gamma}-ray blazar candidates adds an important clue to help understand their origin and to confirm their blazar nature.

  13. APEX sub-mm monitoring of gamma-ray blazars

    CERN Document Server

    Larsson, S; Weiss, A; Angelakis, E; Krichbaum, T P; Nestoras, I; Zensus, J A; Axelsson, M; Nilsson, D; Ryde, F; Hjalmarsdotter, L; Larsson, J; Lundgren, A; Mac-Auliffe, F; Parra, R; Siringo, G

    2012-01-01

    So far, no systematic long-term blazar monitoring programs and detailed variability studies exist at sub-mm wavelengths. Here, we present a new sub-mm blazar monitoring program using the APEX 12-m telescope. A sample of about 40 gamma-ray blazars has been monitored since 2007/2008 with the LABOCA bolometer camera at 345 GHz. First light curves, preliminary variability results and a first comparison with the longer cm/mm bands (F-GAMMA program) are presented, demonstrating the extreme variability characteristics of blazars at such short wavelengths.

  14. Two new high energy gamma-ray blazar candidates

    CERN Document Server

    Campana, R; Bernieri, E; Massaro, E

    2016-01-01

    We report the detection of two new gamma-ray sources in the Fermi-LAT sky (Pass 8) at energies higher than 20 GeV, and confirmed at lower energies, using a source detection tool based on the Minimum Spanning Tree algorithm. One of these sources, at a Galactic latitude of about -4{\\deg}, is a new discovery, while the other was previously reported above 50 GeV in the 2FHL catalogue. We searched for archival multi-wavelength data of possible counterparts and found interesting candidates. Both objects are radio sources and their WISE infrared colours are typical of blazars. While for the former source no optical spectra are available, for the latter a puzzling optical spectrum corresponding to a white dwarf star is found in the 6dF database. We discuss the spectral energy distributions of both sources and possible interpretations.

  15. Unveiling the nature of the unidentified gamma-ray sources VI: gamma-ray blazar candidates in the WISH survey and their radio properties

    CERN Document Server

    Nori, M; Massaro, F; D'Abrusco, R; Paggi, A; Tosti, G; Funk, S

    2015-01-01

    According to the second Fermi LAT Catalog (2FGL), about one third of the gamma-ray sources listed have no assigned counterparts at lower energies. Many statistical methods have been developed to find proper counterparts for these sources. We explore the sky area covered at low radio frequency by Westerbork in the Southern Hemisphere (WISH) survey to search for blazar-like associations among the unidentified gamma-ray sources listed in the 2FGL (UGSs). Searching the WISH and NRAO VLA Sky Survey (NVSS) radio surveys within the positional uncertainty regions of the 2FGL UGSs, we select as gamma-ray blazar candidates the radio sources characterized by flat radio spectra between 352 MHz and 1400 MHz. We propose new gamma-ray blazar associations for eight UGSs and we also discuss their spectral properties at low radio frequencies. We compare the radio flux density distribution of the low radio frequency gamma-ray blazar candidates with that of gamma-ray blazars associated with other methods. We find significant dif...

  16. Gamma-ray blazars within the first two billion years

    Science.gov (United States)

    Ajello, Marco; Paliya, Vaidehi; Gasparrini, Dario; Ojha, Roopesh; Fermi-LAT Collaboration

    2017-01-01

    MeV blazars, with a high-energy peak in the MeV band, are the most powerful persistent sources in the Universe, exhibiting larger-than-average jet powers, accretion luminosities, and black hole masses. Their detection above redshift 3 has the power to constrain the formation mechanism of heavy black holes. Here we report the first detection with the Fermi Large Area Telescope of gamma-ray emitting blazars beyond redshift 3. The newly detected objects have black-hole masses in excess of 1 billion solar masses and very prominent disk and gamma-ray emission. We will discuss the new finding within the context of blazar evolution and the disk-jet connection in powerful jetted AGN.

  17. Location and origin of gamma-rays in blazars

    CERN Document Server

    Rani, B; Hodgson, J A; Zensus, J A

    2016-01-01

    One of the most intriguing and challenging quests of current astrophysics is to understand the physical conditions and processes responsible for production of high-energy particles, and emission of \\gamma-rays. A combination of high-resolution Very Long Baseline Interferometry (VLBI) images with broadband flux variability measurements is a unique way to probe the emission mechanisms at the bases of jets. Our analysis of \\gamma-ray flux variability observed by the Fermi-LAT (Large Area Telescope) along with the parsec-scale jet kinematics suggests that the $\\gamma$-ray emission in blazar S5 0716+714 has a significant correlation with the mm-VLBI core flux and the orientation of jet outflow on parsec scales. These results indicate that the inner jet morphology has a tight connection with the observed $\\gamma$-ray flares. An overview of our current understanding on high-energy radiation processes, their origin, and location is presented here.

  18. Constraints on the Extragalactic Background Light from Very High Energy Gamma-Ray Observations of Blazars

    OpenAIRE

    Finke, Justin D.; Razzaque, Soebur

    2009-01-01

    The extragalactic background light (EBL) from the infrared to the ultraviolet is difficult to measure directly, but can be constrained with a variety of methods. EBL photons absorb gamma-rays from distant blazars, allowing one to use blazar spectra from atmospheric Cherenkov telescopes (ACTs) to put upper limits on the EBL by assuming a blazar source spectrum. Here we apply a simple technique, similar to the one developed by Schroedter (2005), to the most recent very-high energy (VHE) gamma-r...

  19. Study of the variability of Blazars gamma-ray emission

    CERN Document Server

    Sbarrato, T; Ghisellini, G; Tavecchio, F

    2011-01-01

    The gamma-ray emission of blazar jets shows a pronounced variability and this feature provides limits to the size and to the speed of the emitting region. We study the gamma-ray variability of bright blazars using data from the first 18 months of activity of the Large Area Telescope on the Fermi Gamma-Ray Space Telescope. From the daily light-curves of the blazars characterized by a remarkable activity, we firstly determine the minimum variability time-scale, giving an upper limit for the size of the emitting region of the sources, assumed to be spheroidal blobs in relativistic motion. These regions must be smaller than ~10^-3 parsec. Another interesting time-scale is the duration of the outbursts. We conclude that they cannot correspond to radiation produced by a single blob moving relativistically along the jet, but they are either the signature of emission from a standing shock extracting energy from a modulated jet, or the superposition of a number of flares occurring on a shorter time-scale. We also deri...

  20. Relation between $\\gamma$-rays and emission lines for the $\\gamma$-ray loud blazars

    CERN Document Server

    Fan, J H

    2000-01-01

    The relation between the $\\gamma$-ray and the emission line luminosities for a sample of 36 $\\gamma$-ray loud blazars is investigated; an apparent correlation between them, $L_{\\gamma} \\propto L_{Line}^{0.69\\pm0.11}$, with a correlation coefficient $r=0.741$ and a chance probability of $p = 1.9\\times10^{-6}$, is found. It is found, however, that there is no intrinsic correlation between them: the apparent correlation is due to the redshift dependence in a flux-limited sample. Thus no evidence is found to support the argument that the up-scattered soft photons are from the broad emission lines. Our analysis does not conflict with the SSC model. The disk-jet symbiosis and radio/$\\gamma$-ray correlation found in the literature are also discussed. The radio/$\\gamma$-ray correlation may be an apparent correlation caused by the boosting effect since both bands are strongly beamed.

  1. Localizing the $\\gamma$ rays from blazar PKS 1502+106

    CERN Document Server

    Karamanavis, Vassilis; Krichbaum, T P; Angelakis, E; Hodgson, J; Myserlis, I; Nestoras, I; Zensus, J A; Ungerechts, H; Sievers, A

    2015-01-01

    Blazars are among the most variable objects in the universe. They feature energetic jets of plasma that launch from the cores of these active galactic nuclei (AGN), triggering activity from radio up to gamma-ray energies. Spatial localization of the region of their MeV/GeV emission is a key question in understanding the blazar phenomenon. The flat spectrum radio quasar (FSRQ) PKS 1502+106 has exhibited extreme and correlated, radio and high-energy activity that triggered intense monitoring by the Fermi-GST AGN Multi-frequency Monitoring Alliance (F-GAMMA) program and the Global Millimeter VLBI Array (GMVA) down to $\\lambda$3 mm (or 86 GHz), enabling the sharpest view to date towards this extreme object. Here, we report on preliminary results of our study of the gamma-ray loud blazar PKS 1502+106, combining VLBI and single dish data. We deduce the critical aspect angle towards the source to be $\\theta_{\\rm c} = 2.6^{\\circ}$, calculate the apparent and intrinsic opening angles and constrain the distance of the ...

  2. The Extragalactic Background Light and Absorption in Gamma Ray Spectra

    Science.gov (United States)

    Gilmore, Rudy C.

    2008-03-01

    Recent state-of-the-art semi-analytic models (SAMs) can now accurately model the history of galaxy formation and evolution. These SAMs utilize a 'forward evolution' approach and include all of the important processes for determining photon emission from galaxies, such as cooling and shock heating of gas, galaxy mergers, star formation and aging, supernova and AGN feedback, and the reprocessing of light by dust. I will be presenting our group's latest prediction of the extra-galactic background light based on this work and will discuss the implications for the attenuation of VHE gamma rays from distant sources due to pair-production. These results will be compared to recent limits placed on the EBL by observations of GeV and TeV blazar spectra by experiments such as H.E.S.S., MAGIC and VERITAS. The implications for reconstructing the intrinsic spectra of distant blazars will be addressed.

  3. Fast Variations of Gamma-Ray Emission in Blazars

    CERN Document Server

    Wagner, S J; Herter, M; Wagner, Stefan J.; Montigny, Corinna von; Herter, Martin

    1997-01-01

    The largest group of sources identified by EGRET are Blazars. This sub-class of AGN is well known to vary in flux in all energy bands on time-scales ranging from a few minutes (in the optical and X-ray bands) up to decades (radio and optical regimes). In addition to variations of the gamma-ray flux between different viewing periods, the brightest of these sources showed a few remarkable gamma-ray flares on time-scales of about one day, confirming the extension of the ``Intraday-Variability (IDV)'' phenomenon into the GeV range. We present first results of a systematic approach to study fast variability with EGRET data. This statistical approach confirms the existence of IDV even during epochs when no strong flares are detected. This provides additional constraints on the site of the gamma-ray emission and allows cross-correlation analyses with light curves obtained at other frequencies even during periods of low flux. We also find that some stronger sources have fluxes systematically above threshold even duri...

  4. Gamma-Rays from Non-Blazar AGN

    CERN Document Server

    Rieger, Frank M

    2016-01-01

    Non-blazar Active Galactic Nuclei (AGN) have emerged as a new gamma-ray emitting source class on the extragalactic sky and started to deepen our understanding of the physical processes and the nature of AGN in general. The detection of Narrow Line Seyfert 1 galaxies in the Fermi-LAT energy regime, for example, offers important information for our understanding of jet formation and radio-loudness. Radio galaxies, on the other hand, have become particularly interesting at high (HE) and very high (VHE) gamma-ray energies. With their jets not directly pointing towards us (i.e. misaligned), they offer a unique tool to probe into the nature of the fundamental (and often hidden) physical processes in AGN. This review highlights and discusses some of the observational and theoretical progress achieved in the gamma-ray regime during recent years, including the evidence for unexpected spectral hardening in Centaurus A and extreme short-term variability as seen in IC 310 and M87.

  5. Gamma-ray blazar spectra with H.E.S.S. II mono analysis: The case of PKS 2155-304 and PG 1553+113

    Science.gov (United States)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dubus, G.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; LAT Collaboration; Ackermann, M.; Ajello, M.; Baldini, L.; Barbiellini, G.; Bellazzini, R.; Blandford, R. D.; Bonino, R.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Costanza, F.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desiante, R.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Donaggio, B.; Favuzzi, C.; Focke, W. B.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Guillemot, L.; Guiriec, S.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei, S.; Kocevski, D.; Larsson, S.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Negro, M.; Nuss, E.; Orienti, M.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Principe, G.; Rainò, S.; Razzano, M.; Simone, D.; Siskind, E. J.; Spada, F.; Spinelli, P.; Thayer, J. B.; Torres, D. F.; Torresi, E.; Troja, E.; Vianello, G.; Wood, K. S.

    2017-04-01

    Context. The addition of a 28 m Cherenkov telescope (CT5) to the H.E.S.S. array extended the experiment's sensitivityto lower energies. The lowest energy threshold is obtained using monoscopic analysis of data taken with CT5, providing access to gamma-ray energies below 100 GeV for small zenith angle observations. Such an extension of the instrument's energy range is particularly beneficial for studies of active galactic nuclei with soft spectra, as expected for those at a redshift ≥0.5. The high-frequency peaked BL Lac objects PKS 2155-304 (z = 0.116) and PG 1553+113 (0.43 100 GeV interpreted as being due to interactions with the extragalactic background light (EBL). Aims: The aims of this work are twofold: to demonstrate the monoscopic analysis of CT5 data with a low energy threshold, and to obtain accurate measurements of the spectral energy distributions (SED) of PKS 2155-304 and PG 1553+113 near their SED peaks at energies ≈100 GeV. Methods: Multiple observational campaigns of PKS 2155-304 and PG 1553+113 were conducted during 2013 and 2014 using the full H.E.S.S. II instrument (CT1-5). A monoscopic analysis of the data taken with the new CT5 telescope was developed along with an investigation into the systematic uncertainties on the spectral parameters which are derived from this analysis. Results: Using the data from CT5, the energy spectra of PKS 2155-304 and PG 1553+113 were reconstructed down to conservative threshold energies of 80 GeV for PKS 2155-304, which transits near zenith, and 110 GeV for the more northern PG 1553+113. The measured spectra, well fitted in both cases by a log-parabola spectral model (with a 5.0σ statistical preference for non-zero curvature for PKS 2155-304 and 4.5σ for PG 1553+113), were found consistent with spectra derived from contemporaneous Fermi-LAT data, indicating a sharp break in the observed spectra of both sources at E ≈ 100 GeV. When corrected for EBL absorption, the intrinsic H.E.S.S. II mono and Fermi

  6. RoboPol: The optical polarization of gamma-ray--loud and gamma-ray--quiet blazars

    CERN Document Server

    Angelakis, E; Blinov, D; Pavlidou, V; Kiehlmann, S; Myserlis, I; Boettcher, M; Mao, P; Panopoulou, G V; Liodakis, I; King, O G; Balokovic, M; Kus, A; Kylafis, N; Mahabal, A; Marecki, A; Paleologou, E; Papadakis, I; Papamastorakis, I; Pazderski, E; Pearson, T J; Prabhudesai, S; Ramaprakash, A N; Readhead, A C S; Reig, P; Tassis, K; Urry, M; Zensus, J A

    2016-01-01

    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma- ray--loud and gamma-ray--quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray--loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray--quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3{\\sigma} level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band lu- minosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high synchrotron- peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray--quiet sources show similar median polarization fr...

  7. Gamma-Ray Blazars within the First 2 Billion Years

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Cheung, C. C.; Chiang, J.; Chiaro, G.; Ciprini, S.; Conrad, J.; Costantin, D.; Costanza, F.; Cutini, S.; D’Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Finke, J.; Focke, W. B.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Giroletti, M.; Green, D.; Grenier, I. A.; Guillemot, L.; Guiriec, S.; Hartmann, D. H.; Hays, E.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Marcotulli, L.; Mazziotta, M. N.; Michelson, P. F.; Mirabal, N.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Ojha, R.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paliya, V. S.; Paneque, D.; Perkins, J. S.; Persic, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Rani, B.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Romani, R. W.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stalin, C. S.; Stawarz, L.; Suson, D. J.; Takahashi, M.; Tanaka, K.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Torresi, E.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.

    2017-03-01

    The detection of high-redshift (z > 3) blazars enables the study of the evolution of the most luminous relativistic jets over cosmic time. More importantly, high-redshift blazars tend to host massive black holes and can be used to constrain the space density of heavy black holes in the early universe. Here, we report the first detection with the Fermi-Large Area Telescope of five γ-ray-emitting blazars beyond z = 3.1, more distant than any blazars previously detected in γ-rays. Among these five objects, NVSS J151002+570243 is now the most distant known γ-ray-emitting blazar at z = 4.31. These objects have steeply falling γ-ray spectral energy distributions (SEDs), and those that have been observed in X-rays have a very hard X-ray spectrum, both typical of powerful blazars. Their Compton dominance (ratio of the inverse Compton to synchrotron peak luminosities) is also very large (> 20). All of these properties place these objects among the most extreme members of the blazar population. Their optical spectra and the modeling of their optical-UV SEDs confirm that these objects harbor massive black holes ({M}{BH}∼ {10}8-10 {M}ȯ ). We find that, at z≈ 4, the space density of > {10}9 {M}ȯ black holes hosted in radio-loud and radio-quiet active galactic nuclei are similar, implying that radio-loudness may play a key role in rapid black hole growth in the early universe.

  8. Renewed Gamma-Ray Emission from the blazar PKS 1510-089 Detected by AGILE

    Science.gov (United States)

    Munar-Adrover, P.; Pittori, C.; Bulgarelli, A.; Lucarelli, F.; Verrecchia, F.; Piano, G.; Fioretti, V.; Zoli, A.; Tavani, M.; Vercellone, S.; Minervini, G.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Donnarumma, I.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-09-01

    AGILE is currently detecting enhanced gamma-ray emission above 100 MeV from a source which position is consistent with the blazar PKS 1510-089. (the last activity of this source was reported in ATel #9350).

  9. 2WHSP: A catalog of HE and VHE gamma-ray blazars and blazar candidates

    CERN Document Server

    Chang, Yu-Ling; Giommi, Paolo; Padovani, Paolo

    2016-01-01

    Aims. High Synchrotron Peaked blazars (HSPs) dominate the -ray sky at energies larger than a few GeV; however, only a few hundred blazars of this type have been catalogued so far. In this paper we present the 2WHSP sample, the largest and most complete list of HSP blazars available to date, which is an expansion of the 1WHSP catalog of gamma-ray source candidates off the Galactic plane. Methods. We cross-matched a number of multi-wavelength surveys (in the radio, infrared and X-ray bands) and applied selection criteria based on the radio to IR and IR to X-ray spectral slopes. To ensure the selection of genuine HSPs we examined the SED of each candidate and estimated the peak frequency of its synchrotron emission ($\

  10. Spectra of {gamma} rays feeding superdeformed bands

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Khoo, T.L.; Henry, R.G. [and others

    1995-08-01

    The spectrum of {gamma}rays coincident with SD transitions contains the transitions which populate the SD band. This spectrum can provide information on the feeding mechanism and on the properties (moment of inertia, collectivity) of excited SD states. We used a model we developed to explain the feeding of SD bands, to calculate the spectrum of feeding {gamma}rays. The Monte Carlo simulations take into account the trigger conditions present in our Eurogam experiment. Both experimental and theoretical spectra contain a statistical component and a broad E2 peak (from transitions occurring between excited states in the SD well). There is good resemblance between the measured and calculated spectra although the calculated multiplicity of an E2 bump is low by {approximately}30%. Work is continuing to improve the quality of the fits, which will result in a better understanding of excited SD states. In addition, a model for the last steps, which cool the {gamma} cascade into the SD yrast line, needs to be developed. A strong M1/E2 low-energy component, which we believe is responsible for this cooling, was observed.

  11. Gamma-ray Output Spectra from 239Pu Fission

    Directory of Open Access Journals (Sweden)

    Ullmann John

    2015-01-01

    Full Text Available Gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. A dependence of the gamma-ray spectrum on the gamma-ray multplicity was also observed. Global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.

  12. Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars

    Science.gov (United States)

    Abolmasov, Pavel; Poutanen, Juri

    2016-09-01

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Lyα and He II Lyα. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher-order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of the gamma-ray source. We show that when the gamma-ray source moves further from the central source, all the absorption details move to higher energies and the overall level of absorption drops because of decreasing incidence angles between the gamma-rays and BLR photons. The observed positions of the spectral breaks can be used to measure the geometry and the location of the gamma-ray emitting region relative to the BLR. Strong dependence on geometry means that the soft photons dominating the pair-production opacity may be actually produced by a different population of BLR clouds than the bulk of the observed broad line emission.

  13. Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars

    Science.gov (United States)

    Abolmasov, Pavel; Poutanen, Juri

    2017-01-01

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Ly α and He II Ly α. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of the gamma-ray source. We show that when the gamma-ray source moves further from the central source, all the absorption details move to higher energies and the overall level of absorption drops because of decreasing incidence angles between the gamma-rays and BLR photons. The observed positions of the spectral breaks can be used to measure the geometry and the location of the gamma-ray emitting region relative to the BLR. Strong dependence on geometry means that the soft photons dominating the pair-production opacity may be actually produced by a different population of BLR clouds than the bulk of the observed broad line emission.

  14. The contribution of blazars to the extragalactic diffuse gamma-ray background

    DEFF Research Database (Denmark)

    Mücke, A.; Pohl, M.; Dermer, C.D.

    1997-01-01

    We present results of a calculation of the blazar contribution to the extragalactic diffuse gamma-ray background (EGRB) in the EGRET-energy range. Our model is based on the non-thermal emission processes known to be important in blazar jets, and on the unification scheme of radio-loud AGN...

  15. Optical spectroscopic observations of gamma-ray blazar candidates III. The 2013/2014 campaign in the Southern Hemisphere

    CERN Document Server

    Landoni, M; Paggi, A; D'Abrusco, R; Milisavljevic, D; Masetti, N; Smith, Howard A; Tosti, G; Chomiuk, L; Strader, J; Cheung, C C

    2015-01-01

    We report the results of our exploratory program carried out with the Southern Astrophysical Research (SOAR) telescope aimed at associating counterparts and establishing the nature of the Fermi Unidentified gamma-ray Sources (UGS). We selected the optical counterparts of 6 UGSs from the Fermi catalog on the basis of our recently discovered tight connection between infrared and gamma-ray emission found for the gamma-ray blazars detected by the Wide-Field Infrared Survey Explorer (WISE) in its the all-sky survey. We perform for the first time a spectroscopic study of the low-energy counterparts of Fermi UGS, in the optical band, confirming the blazar-like nature for the whole sample. We also present new spectroscopic observations of 6 Active Galaxies of Uncertain type associated with Fermi sources (AGUs) that appear to be BL Lac objects. Finally, we report the spectra collected for 6 known gamma-ray blazars belonging to the Roma BZCAT that were obtained to establish their nature or better estimate their redshif...

  16. Implications for High Energy Blazar Spectra from Intergalactic Absorption Calculations

    Science.gov (United States)

    Stecker, F

    2008-01-01

    Given a knowledge of the density spectra intergalactic low energy photons as a function of redshift, one can derive the intrinsic gamma-ray spectra and luminosities of blazars over a range of redshifts and look for possible trends in blazar evolution. Stecker, Baring & Summerlin have found some evidence hinting that TeV blazars with harder spectra have higher intrinsic TeV gamma-ray luminosities and indicating that there may be a correlation of spectral hardness and luminosity with redshift. Further work along these lines, treating recent observations of the blazers lES02291+200 and 3C279 in the TeV and sub-TeV energy ranges, has recently been explored by Stecker & Scully. GLAST will observe and investigate many blazars in the GeV energy range and will be sensitive to blazers at higher redshifts. I examine the implications high redshift gamma-ray absorption for both theoretical and observational blazer studies.

  17. UNVEILING THE NATURE OF UNIDENTIFIED GAMMA-RAY SOURCES. I. A NEW METHOD FOR THE ASSOCIATION OF GAMMA-RAY BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    D' Abrusco, R.; Paggi, A.; Smith, H. A. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Massaro, F. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Masetti, N. [INAF/IASF di Bologna, via Gobetti 101, I-4019 Bologna (Italy); Tosti, G. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy); Giroletti, M. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy)

    2013-06-01

    We present a new method for identifying blazar candidates by examining the locus, i.e., the region occupied by the Fermi {gamma}-ray blazars in the three-dimensional color space defined by the WISE infrared colors. This method is a refinement of our previous approach that made use of the two-dimensional projection of the distribution of WISE {gamma}-ray-emitting blazars (the Strip) in the three WISE color-color planes. In this paper, we define the three-dimensional locus by means of a principal component analysis of the color distribution of a large sample of blazars composed of all the ROMA-BZCAT sources with counterparts in the WISE All-Sky Catalog associated with {gamma}-ray sources in the second Fermi-LAT catalog (2FGL; the WISE Fermi blazars sample, WFB). Our new procedure yields a total completeness of c {sub tot} {approx} 81% and a total efficiency of e {sub tot} {approx} 97%. We also obtain local estimates of the efficiency and completeness as functions of the WISE colors and galactic coordinates of the candidate blazars. The catalog of all WISE candidate blazars associated with the WFB sample is also presented, complemented by archival multi-frequency information for the alternative associations. Finally, we apply the new association procedure to all {gamma}-ray blazars in the 2FGL and provide a catalog containing all the {gamma}-ray candidate blazars selected according to our procedure.

  18. The Connection between Radio and Gamma Ray Emission in Fermi/LAT Blazars

    CERN Document Server

    Xu-Liang, Fan; Hong-Tao, Liu; Liang, Chen; Neng-Hui, Liao

    2012-01-01

    We collect the 2LAC and MOJAVE quasi-simultaneous data to investigate the radio-gamma connection of blazars. The cross sample contains 166 sources. The statistic analysis based on this sample confirms positive correlations between these two bands, but the correlations become weaker as the gamma-ray energy increases. The statistic results between various parameters show negative correlations of gamma-ray photon spectral index with gamma-ray loudness for both FSRQs and BL Lacertae objects, positive correlations of gamma-ray variability index with the gamma-ray loudness for FSRQs, a negative correlation of the gamma-ray variability index with the gamma-ray photon spectral index for FSRQs, and negative correlations of gamma-ray photon spectral index with gamma-ray luminosity for FSRQs. These results suggest that the gamma-ray variability may be due to changes inside the gamma-ray emission region like the injected power, rather than changes in the photon density of the external radiation fields, and the variabilit...

  19. Parsec-Scale Behavior of Blazars during High Gamma-Ray States

    CERN Document Server

    Jorstad, S; Agudo, I; Harrison, B

    2011-01-01

    We compare the \\gamma-ray light curves of the blazars, constructed with data provided by the Fermi Large Area Telescope, with flux and polarization variations in the VLBI core and bright superluminal knots obtained via monthly monitoring with the Very Long Baseline Array at 43 GHz. For all blazars in the sample that exhibit a high \\gamma-ray state on time scales from several weeks to several months, an increase of the total flux in the mm-wave core is contemporaneous with the \\gamma-ray activity (more than a third of the sample). Here we present the results for quasars with the most extreme \\gamma-ray behavior (3C 454.3, 3C 273, 3C 279, 1222+216, and 1633+382). The sources show that in addition to the total flux intensity behavior, a maximum in the degree of polarization in the core or bright superluminal knot nearest to the core coincides with the time of a \\gamma-ray peak to within the accuracy of the sampling of the radio data. These argue in favor of location of many of \\gamma-ray outbursts in blazars out...

  20. The RoboPol optical polarization survey of gamma-ray - loud blazars

    CERN Document Server

    Pavlidou, V; Myserlis, I; Blinov, D; King, O G; Papadakis, I; Tassis, K; Hovatta, T; Pazderska, B; Paleologou, E; Baloković, M; Feiler, R; Fuhrmann, L; Khodade, P; Kus, A; Kylafis, N; Modi, D; Panopoulou, G; Papamastorakis, I; Pazderski, E; Pearson, T J; Rajarshi, C; Ramaprakash, A; Reig, P; Readhead, A C S; Steiakaki, A; Zensus, J A

    2013-01-01

    We present first results from RoboPol, a novel-design optical polarimeter operating at the Skinakas Observatory in Crete. The data, taken during the May - June 2013 commissioning of the instrument, constitute a single-epoch linear polarization survey of a sample of gamma-ray - loud blazars, defined according to unbiased and objective selection criteria, easily reproducible in simulations, as well as a comparison sample of, otherwise similar, gamma-ray - quiet blazars. As such, the results of this survey are appropriate for both phenomenological population studies and for tests of theoretical population models. We have measured polarization fractions as low as $0.015$ down to $R$ magnitude of 17 and as low as $0.035$ down to 18 magnitude. The hypothesis that the polarization fractions of gamma-ray - loud and gamma-ray - quiet blazars are drawn from the same distribution is rejected at the $10^{-3}$ level. We therefore conclude that gamma-ray - loud and gamma-ray - quiet sources have different optical polarizat...

  1. The hadronic origin of hard gamma-ray spectrum from blazar 1ES 1101-232

    CERN Document Server

    Cao, Gang

    2014-01-01

    The very hard $\\gamma$-ray spectrum from distant blazars challenges the traditional synchrotron self-Compton (SSC) model, which may indicate that there is the contribution of an additional high-energy component beyond the SSC emission. In this paper, we study the possible origin of the hard $\\gamma$-ray spectrum from distant blazars. We develop a model to explain the hard $\\gamma$-ray spectrum from blazar 1ES 1101-232. In the model, the optical and X-ray radiation would come from the synchrotron radiation of primary electrons and secondary pairs, the GeV emission would be produced by the SSC process, however, the hard $\\gamma$-ray spectrum would originate from the decay of neutral pion produced through proton-photon interactions with the synchrotron radiation photons within the jet. Our model can explain the observed SED of 1ES 1101-232 well, especially the very hard $\\gamma$-ray spectrum. However, our model requires the very large proton power to efficiently produce the $\\gamma$-ray through proton-photon int...

  2. Gamma ray energy spectra to test the peak analysis

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Jong In; Song, Myeong Han; Yun, Ju Yong [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Jee Yon; Row, Jung Whan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-09-15

    Gamma ray energy spectra for testing of the spectrum analysis method were produced by using a HPGe detector system. Standard mixed sources emitting gamma ray were used for the purpose. The Monte Carlo Simulation method was utilized for the optimization of measurement condition for radioisotopes in the sources with cascade coincidence summing effects. Calibration spectrum and test spectrum including gamma ray energy peaks with various characteristics were created. The set of test spectra was independently analyzed by 28 spectrometrists in different analysis centers. The reasonability of the spectra was estimated by standard deviations of the intercomparison results of the radioactivity analysis of radioisotopes in the test spectrum.

  3. Implications of plasma beam instabilities for the statistics of the Fermi hard gamma-ray blazars and the origin of the extragalactic gamma-ray background

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Pfrommer, Christoph; Puchwein, Ewald [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States)

    2014-08-01

    Fermi has been instrumental in constraining the luminosity function and redshift evolution of gamma-ray bright BL Lac objects, a subpopulation of blazars with almost featureless optical spectra. This includes limits on the spectrum and anisotropy of the extragalactic gamma-ray background (EGRB), redshift distribution of nearby Fermi active galactic nuclei (AGNs), and the construction of a logN-log S relation. Based on these, it has been argued that the evolution of the gamma-ray bright BL Lac population must be much less dramatic than that of other AGNs. However, critical to such claims is the assumption that inverse Compton cascades reprocess emission above a TeV into the Fermi energy range, substantially enhancing the strength of the observed limits. Here we demonstrate that in the absence of such a process, due, e.g., to the presence of virulent plasma beam instabilities that preempt the cascade, a population of TeV-bright BL Lac objects that evolve similarly to quasars is consistent with the population of hard gamma-ray BL Lac objects observed by Fermi. Specifically, we show that a simple model for the properties and luminosity function is simultaneously able to reproduce their logN-log S relation, local redshift distribution, and contribution to the EGRB and its anisotropy without any free parameters. Insofar as the naturalness of a picture in which the hard gamma-ray BL Lac population exhibits the strong redshift evolution observed in other tracers of the cosmological history of accretion onto halos is desirable, this lends support for the absence of the inverse Compton cascades and the existence of the beam plasma instabilities.

  4. Optical Spectroscopic Observations of Gamma-ray Blazar Candidates. V. TNG, KPNO, and OAN Observations of Blazar Candidates of Uncertain Type in the Northern Hemisphere

    CERN Document Server

    Crespo, N Álvarez; Ricci, F; Landoni, M; Patiño-Álvarez, V; Massaro, F; D'Abrusco, R; Paggi, A; Chavushyan, V; Jiménez-Bailón, E; Torrealba, J; Latronico, L; La Franca, F; Smith, Howard A; Tosti, G

    2016-01-01

    The extragalactic $\\gamma$-ray sky is dominated by emission from blazars, a peculiar class of active galactic nuclei (AGNs). Many of the $\\gamma$-ray sources included in Fermi -Large Area Telescope Third Source catalog (3FGL) are classified as a blazar candidate of uncertain type (BCU) because there is no optical spectra available in the literature to confirm their nature. In 2013 we started a spectroscopic campaign to look for the optical counterparts of the BCUs and of the Unidentified $\\gamma$-ray Sources. The main goal of our investigation is to confirm the blazar nature of these sources having peculiar properties as compact radio emission and/or selected on the basis of their infrared (IR) colors. Whenever possible we also determine their redshifts. Here we present the results of the observations carried out in the Northern hemisphere in 2013 and 2014 at Telescopio Nazionale Galilleo (TNG), Kitt Peak National Observatory (KPNO) and Observatorio Astron\\'omico Nacional (OAN) in San Pedro M\\'artir. In this ...

  5. "Orphan" $\\gamma$-ray Flares and Stationary Sheaths of Blazar Jets

    CERN Document Server

    MacDonald, Nicholas R; Marscher, Alan P

    2016-01-01

    Blazars exhibit flares across the entire electromagnetic spectrum. Many $\\gamma$-ray flares are highly correlated with flares detected at longer wavelengths; however, a small subset appears to occur in isolation, with little or no correlated variability at longer wavelengths. These "orphan" $\\gamma$-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. Macdonald et al. have developed the Ring of Fire model to explain the origin of orphan $\\gamma$-ray flares from within blazar jets. In this model, electrons contained within a blob of plasma moving relativistically along the spine of the jet inverse-Compton scatter synchrotron photons emanating off of a ring of shocked sheath plasma that enshrouds the jet spine. As the blob propagates through the ring, the scattering of the ring photons by the blob electrons creates an orphan $\\gamma$-ray flare. This model was successfully applied to modeling a prominent orphan $\\gamma$-ray flare observed in the ...

  6. Optical flare observed in the flaring gamma-ray blazar S5 1044+71

    Science.gov (United States)

    Pursimo, Tapio; Blay, Pere; Telting, John; Ojha, Roopesh

    2017-01-01

    We report optical photometry of the blazar S5 1044+71, obtained with the 2.56m Nordic Optical Telescope in La Palma, to look for any enhanced optical activity associated with a recent flare in the daily averaged gamma-ray flux (ATel#9928).

  7. AGILE confirmation of enhanced gamma-ray activity from the Blazar 1ES 1959+650

    Science.gov (United States)

    Lucarelli, F.; Pittori, C.; Verrecchia, F.; Bulgarelli, A.; Fioretti, V.; Zoli, A.; Piano, G.; Munar-Adrover, P.; Tavani, M.; Donnarumma, I.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-06-01

    Following ATel #9148, reporting multi-wavelength activity from the BL Lac type blazar 1ES 1959+650, AGILE also detects increased gamma-ray emission above 100 MeV from a position compatible with this BL Lac source.

  8. Multiwavelength Doppler factors for Fermi-detected gamma-ray loud blazars

    Institute of Scientific and Technical Information of China (English)

    Hou-Dun Zeng; Li Zhang

    2011-01-01

    We collect a sample of 51 Fermi-detected gamma-ray loud blazars with known radio Doppler factors and study properties of the Doppler factors of blazars at optical, X-ray and gamma-ray bands. A basic assumption is that the emission from the radio to gamma-ray bands of the blazars are produced by the nonthermal radiation of accelerated particles in a jet. Our results show that (1) the Doppler factors of blazars are a function of frequency, with the Doppler factor decreasing with frequency from the radio to X-ray regions, and then increasing from the X-ray to y-ray regions which are similar to results given by Zhang et al., and (2) there are marginal correlations between the Doppler factors at radio and X-ray bands and the synchrotron peak frequency, and a strong correlation between the Doppler factor in the gamma-ray band and the synchrotron peak frequency, but no correlation in the optical band.

  9. Is There an Imprint of Primordial Stars in the Tev Gamma-Ray Spectrum of Blazars?

    CERN Document Server

    Dwek, E; Arendt, R G; Dwek, Eli; Krennrich, Frank; Arendt, Richard G.

    2005-01-01

    The 1 - 5 micron diffuse sky emission from which local foreground emission from the solar system and the Galaxy have been subtracted exceeds the brightness that can be attributed to normal star forming galaxies. The nature of this excess near-infrared background light (NIRBL) is still controversial. On one hand, it has been interpreted as a distinct spectral feature created by the redshifted emission from primordial (Population III) stars that have formed at redshifts > 8. On the other hand, the NIRBL spectrum is almost identical to that of the zodiacal cloud, raising the possibility that it is of local origin. Blazars can, in principle, offer a simple test for the nature and origin of the NIRBL. Very high energy gamma-ray photons emitted by these objects are attenuated on route to earth by photon-photon interactions with the extragalactic background light (EBL). This paper examines whether the extragalactic nature of the NIRBL can be determined from the analysis of the TeV spectra of blazars. (Abridged)

  10. The role of plasma instabilities in the propagation of gamma-rays from distant Blazars

    Energy Technology Data Exchange (ETDEWEB)

    Saveliev, A.; Evoli, C.; Sigl, G. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2013-11-15

    The observation in the GeV band of distant blazars has been recently used to put constraints on the Extragalactic Background Light (EBL) and Extragalactic Magnetic Fields (EGMF). To support such claims one has to assume that the leptonic component of the electromagnetic cascade initiated by blazar gamma-rays is deflected away by strong enough EGMF, suppressing the signal in the Fermi window. Apart from magnetic fields, the development of such a cascade might be affected by plasma instabilities due to interactions with the ionized component of the Intergalactic Medium (IGM). In this paper we model the electromagnetic cascade through a Monte Carlo simulation in which both effects are taken into account separately, and we derive constraints on these scenarios from the combined Fermi-HESS data set. In the specific case of 1ES 0229+200 observations, we show that both explanations of the GeV flux suppression are compatible with the available data, specifically by assuming a magnetic field of B >or similar 10{sup -16} G or an IGM temperature of T spectra of high redshift (z

  11. B-FlaP: Classifying Gamma-ray Blazars Using Machine Learning

    Science.gov (United States)

    Thompson, David John; Chiaro, Graziano; Giroletti, Marcello; Salvetti, David; La Mura, Giovanni; Bastieri, Denis

    2017-01-01

    In the Third Fermi Large Area Telescope Catalog of high-energy gamma-ray sources, 573 are listed as Blazar Candidates of Uncertain type (BCU), or sources without a conclusive classification. Blazar Flaring Patterns (B-FlaP) uses Empirical Cumulative Distribution Function and Artificial Neural Network machine-learning techniques for a fast method of screening and classification of BCUs based on gamma-ray data only, when rigorous multiwavelength analysis is not available. In this study radio analysis and direct observations by ground-based optical observatories are used to validate the B-FlaP method. Tests indicate that the method is effective, suggesting that 342 sources are likely BL Lac objects, 154 are likely Flat Spectrum Radio Quasars, with only 77 remaining uncertain. 53 of the BCUs appear to be High Synchrotron Peaked blazars, a class of particular interest to ground-based imaging atmospheric Cherenkov telescopes.

  12. Constraining the Location of Gamma-Ray Flares in Luminous Blazars

    Science.gov (United States)

    Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek

    2014-07-01

    Locating the gamma-ray emission sites in blazar jets is a long standing and highly controversial issue. We jointly investigate several constraints on the distance scale r and Lorentz factor Γ of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars). Working in the framework of one-zone external radiation Comptonization models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Γθ self-Compton (SSC) luminosity L SSC low accretion disk luminosity L d. The commonly used intrinsic pair-production opacity constraint on Γ is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter Γθ >~ 0.1-0.7. Typical values of r corresponding to moderate values of Γ ~ 20 are in the range 0.1-1 pc, and are determined primarily by the observed variability timescale t var, obs. Alternative scenarios motivated by the observed gamma-ray/millimeter connection, in which gamma-ray flares of t var, obs ~ a few days are located at r ~ 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/millimeter connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances; however, an extended broad-line region is an idea worth exploring. We propose that the most definite additional constraint could be provided by determination of the synchrotron self-absorption frequency for correlated synchrotron and gamma-ray flares.

  13. Multi-Frequency Observations of Gamma-Ray Blazar 1633 plus 382

    Science.gov (United States)

    Jorstad, S. G.; Marscher, A. P.; Agudo, I.; Smith, P. S.; Larionov, V. M.; Laehteenmaeki, A.

    2011-01-01

    We perform monthly monitoring of the quasar 1633+382 (4C+38.41) within a sample of gamma-ray blazars with the VLBA at 43 GHz along with optical photometric and polarimetric observations. We construct the gamma-ray light curve of 1633+382 using data obtained by the Fermi LAT. We find that a high gamma-ray state of the quasar starting in 2009 September is simultaneous with an increase of the flux in the mm-wave VLBI core. We resolve a superluminal feature on the VLBA images that appears to be responsible for the mm-wave flux increase. We find a strong correlation between optical and gamma-ray light curves with a delay of gamma-ray variations of 5+/-3 days, as well as a strong correlation between optical flux and degree of polarization during the high gamma-ray state. Comparison between the optical polarization position angle and that in the VLBI core supports the idea that in the quasar 1633+382 a high gamma-ray state is connected with processes originating near the mm-VLBI core.

  14. Characteristics of Gamma-Ray Loud Blazars in the VLBA Imaging and Polarimetry Survey

    Science.gov (United States)

    Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C.; Reeves, R.; Richards, J. L.; Cotter, G.

    2010-01-01

    The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong gamma-ray emission. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the gamma-ray loud and quiet FSRQS can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the gamma-ray loud FSRQs are fundamentally different from the gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for gamma-ray loud AGNs.

  15. Characteristics of Gamma-Ray Loud Blazars in the VLBA Imaging and Polarimetry Survey

    Science.gov (United States)

    Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C.; Reeves, R.; Richards, J. L.; Cotter, G.

    2010-01-01

    The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong gamma-ray emission. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the gamma-ray loud and quiet FSRQS can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the gamma-ray loud FSRQs are fundamentally different from the gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for gamma-ray loud AGNs.

  16. Search for High Energy Gamma Rays from an X-ray Selected Blazar Sample

    CERN Document Server

    La Perez, I C; Boyle, P J; Bradbury, S M; Buckley, J H; Carter-Lewis, D A; Celik, O; Cui, W; Dowdall, C; Duke, C; Falcone, A; Fegan, D J; Fegan, S J; Finley, J P; Fortson, L F; Gaidos, J A; Gibbs, K; Gammell, S; Hall, J; Hall, T A; Hillas, A M; Holder, J; Horan, D; Jordan, M; Kertzman, M; Kieda, D; Kildea, J; Knapp, J; Kosack, K; Krawczynski, H; Krennrich, F; Le Bohec, S; Linton, E T; Lloyd-Evans, J; Moriarty, P; Müller, D; Nagai, T N; Ong, R A; Page, M; Pallassini, R; Petry, D; Power-Mooney, B; Quinn, J; Rebillot, P; Reynolds, P T; Rose, H J; Schroedter, M; Sembroski, G H; Swordy, S P; Vasilev, V V; Wakely, S P; Walker, G; Weekes, T C

    2003-01-01

    Our understanding of blazars has been greatly increased in recent years by extensive multi-wavelength observations, particularly in the radio, X-ray and gamma-ray regions. Over the past decade the Whipple 10m telescope has contributed to this with the detection of 5 BL Lacertae objects at very high gamma-ray energies. The combination of multi-wavelength data has shown that blazars follow a well-defined sequence in terms of their broadband spectral properties. Together with providing constraints on emission models, this information has yielded a means by which potential sources of TeV emission may be identified and predictions made as to their possible gamma-ray flux. We have used the Whipple telescope to search for TeV gamma-ray emission from eight objects selected from a list of such candidates. No evidence has been found for VHE emission from the objects in our sample, and upper limits have been derived for the mean gamma-ray flux above 390GeV. These flux upper limits are compared with the model predictions...

  17. Constraining the Location of Gamma-Ray Flares in Luminous Blazars

    CERN Document Server

    Nalewajko, Krzysztof; Sikora, Marek

    2014-01-01

    Locating the gamma-ray emission sites in blazar jets is a long-standing and highly controversial issue. We investigate jointly several constraints on the distance scale r and Lorentz factor Gamma of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars, FSRQs). Working in the framework of one-zone external radiation Comptonization (ERC) models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Gamma*theta ~ 0.1 - 0.7. Typical values of r corresponding to moderate values of Gamma ~ 20 are in the range 0.1 - 1 pc, and are determined primarily by the observed variability time scale t_var,obs. Alternative scenarios motivated by the observed gamma-ray/mm connection, in which gamma-ray flares of t_var,obs ~ a few days are located at r ~ 10 pc, are in conflict with both the SSC and cooling co...

  18. AGILE detection of extreme gamma-ray activity from the blazar PKS 1510-089 during March 2009. Multifrequency analysis

    CERN Document Server

    D'Ammando, F; Villata, M; Romano, P; Pucella, G; Krimm, H A; Covino, S; Orienti, M; Giovannini, G; Vercellone, S; Pian, E; Donnarumma, I; Vittorini, V; Tavani, M; Argan, A; Barbiellini, G; Boffelli, F; Bulgarelli, A; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Costa, E; Del Monte, E; De Paris, G; Di Cocco, G; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Froysland, T; Frutti, M; Fuschino, F; Galli, M; Gianotti, F; Giuliani, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mereghetti, S; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Piano, G; Picozza, P; Pilia, M; Porrovecchio, G; Prest, M; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Striani, E; Trifoglio, M; Trois, A; Vallazza, E; Zambra, A; Zanello, D; Agudo, I; Aller, H D; Aller, M F; Arkharov, A A; Bach, U; Benitez, E; Berdyugin, A; Blinov, D A; Buemi, C S; Chen, W P; Di Paola, A; Dolci, M; Forne, E; Fuhrmann, L; Gomez, J L; Gurwell, M A; Jordan, B; Jorstad, S G; Heidt, J; Hiriart, D; Hovatta, T; Hsiao, H Y; Kimeridze, G; Konstantinova, T S; Kopatskaya, E N; Koptelova, E; Kurtanidze, O M; Kurtanidze, S O; Larionov, V M; Lahteenmaki, A; Leto, P; Lindfors, E; Marscher, A P; McBreen, B; McHardy, I M; Morozova, D A; Nilsson, K; Pasanen, M; Roca-Sogorb, M; Sillanpaa, A; Takalo, L O; Tornikoski, M; Trigilio, C; Troitsky, I S; Umana, G; Antonelli, L A; Colafrancesco, S; Pittori, C; Santolamazza, P; Verrecchia, F; Giommi, P; Salotti, L

    2011-01-01

    We report on the extreme gamma-ray activity from the FSRQ PKS 1510-089 observed by AGILE in March 2009. In the same period a radio-to-optical monitoring of the source was provided by the GASP-WEBT and REM. Moreover, several Swift ToO observations were triggered, adding important information on the source behaviour from optical/UV to hard X-rays. We paid particular attention to the calibration of the Swift/UVOT data to make it suitable to the blazars spectra. Simultaneous observations from radio to gamma rays allowed us to study in detail the correlation among the emission variability at different frequencies and to investigate the mechanisms at work. In the period 9-30 March 2009, AGILE detected an average gamma-ray flux of (311+/-21)x10^-8 ph cm^-2 s^-1 for E>100 MeV, and a peak level of (702+/-131)x10^-8 ph cm^-2 s^-1 on daily integration. The gamma-ray activity occurred during a period of increasing activity from near-IR to UV, with a flaring episode detected on 26-27 March 2009, suggesting that a single m...

  19. Results from the Blazar Monitoring Campaign at the Whipple 10m Gamma-ray Telescope

    CERN Document Server

    Steele, David; Charlot, P; Kurtanidze, O; Lahteenmaki, A; Montaruli, T; Sadun, A C; Villata, M

    2007-01-01

    In September 2005, the observing program of the Whipple 10 m gamma-ray telescope was redefined to be dedicated almost exclusively to AGN monitoring. Since then the five Northern Hemisphere blazars that had already been detected at Whipple are monitored routinely each night that they are visible. Thanks to the efforts of a large number of multiwavelength collaborators, the first year of this program has been very successful. We report here on the analysis of Markarian 421 observations taken from November, 2005 to May, 2006 in the gamma-ray, X-ray, optical and radio bands.

  20. A Comprehensive Statistical Description of Radio-Through-$\\gamma$-Ray Spectral Energy Distributions of All Known Blazars

    CERN Document Server

    Mao, Peiyuan; Massaro, Francesco; Paggi, Alessandro; Cauteruccio, Joe; Künzel, Soren R

    2016-01-01

    We combined multi-wavelength data for blazars from the Roma-BZCAT catalog and analyzed hundreds of X-ray spectra. We present the fluxes and Spectral Energy Distributions (SEDs), in 12 frequency bands from radio to $\\gamma$-rays, for a final sample of 2214 blazars. Using a model-independent statistical approach, we looked for systematic trends in the SEDs; the most significant trends involved the radio luminosities and X-ray spectral indices of the blazars. We used a Principal Component Analysis (PCA), to determine the basis vectors of the blazar SEDs and, in order to maximize the size of the sample, imputed missing fluxes using the K-nearest neighbors method. Using more than an order of magnitude more data than was available when Fossati et al. (1997, 1998) first reported trends of SED shape with blazar luminosity, we confirmed the anti-correlation between radio luminosity and synchrotron peak frequency, although with greater scatter than was seen in the smaller sample. The same trend can be seen between bolo...

  1. UNVEILING THE NATURE OF UNIDENTIFIED GAMMA-RAY SOURCES. II. RADIO, INFRARED, AND OPTICAL COUNTERPARTS OF THE GAMMA-RAY BLAZAR CANDIDATES

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); D' Abrusco, R.; Paggi, A.; Smith, Howard A. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Masetti, N. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129 Bologna (Italy); Giroletti, M. [INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Tosti, G. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy)

    2013-06-01

    A significant fraction ({approx}30%) of the high-energy gamma-ray sources listed in the second Fermi Large Area Telescope catalog (2FGL) are still of unknown origin, being not yet associated with counterparts at low energies. We recently developed a new association method to identify if there is a {gamma}-ray blazar candidate within the positional uncertainty region of a generic 2FGL source. This method is entirely based on the discovery that blazars have distinct infrared colors with respect to other extragalactic sources found, thanks to the Wide-field Infrared Survey Explorer (WISE) all-sky observations. Several improvements have also been performed to increase the efficiency of our method in recognizing {gamma}-ray blazar candidates. In this paper we applied our method to two different samples, the first constituted by unidentified {gamma}-ray sources (UGSs), and the second by active galaxies of uncertain type, both listed in the 2FGL. We present a catalog of IR counterparts for {approx}20% of the UGSs investigated. Then, we also compare our results for the associated sources with those present in the literature. In addition, we illustrate the extensive archival research carried out to identify the radio, infrared, optical, and X-ray counterparts of the WISE-selected, {gamma}-ray blazar candidates. Finally, we discuss the future developments of our method based on ground-based follow-up observations.

  2. UNVEILING THE NATURE OF THE UNIDENTIFIED GAMMA-RAY SOURCES. III. GAMMA-RAY BLAZAR-LIKE COUNTERPARTS AT LOW RADIO FREQUENCIES

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Funk, S. [SLAC National Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); D' Abrusco, R.; Paggi, A. [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Giroletti, M. [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Masetti, N. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129 Bologna (Italy); Tosti, G. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy); Nori, M. [Department of Physics and Astronomy, University of Bologna, viale Berti Pichat 6/2, I-40127 Bologna (Italy)

    2013-07-01

    About one-third of the {gamma}-ray sources listed in the second Fermi Large Area Telescope catalog (2FGL) have no firmly established counterpart at lower energies and so are classified as unidentified gamma-ray sources (UGSs). Here, we propose a new approach to find candidate counterparts for the UGSs based on the 325 MHz radio survey performed with the Westerbork Synthesis Radio Telescope in the northern hemisphere. First, we investigate the low-frequency radio properties of blazars, the largest known population of {gamma}-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO Very Large Array Sky Survey. We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in the literature to look for infrared and optical counterparts of the {gamma}-ray blazar candidates selected using the low-frequency radio observations to confirm their nature. On the basis of our multifrequency research, we identify 23 new {gamma}-ray blazar candidates out of the 32 UGSs investigated. Comparison with previous results on the UGSs is also presented. Finally, we speculate on the advantages of using low-frequency radio observations to associate UGSs and to search for {gamma}-ray pulsar candidates.

  3. Comprehensive Monitoring of Gamma-ray Bright Blazars. I. Statistical Study of Optical, X-ray, and Gamma-ray Spectral Slopes

    CERN Document Server

    Williamson, Karen E; Marscher, Alan P; Larionov, Valeri M; Smith, Paul S; Agudo, Iván; Arkharov, Arkady A; Blinov, Dmitry A; Casadio, Carolina; Efimova, Natalia V; Gómez, José L; Hagen-Thorn, Vladimir A; Joshi, Manasvita; Konstantinova, Tatiana S; Kopatskaya, Evgenia N; Larionova, Elena G; Larionova, Liudmilla V; Malmrose, Michael P; McHardy, Ian M; Molina, Sol N; Morozova, Daria A; Schmidt, Gary D; Taylor, Brian W; Troitsky, Ivan S

    2014-01-01

    We present $\\gamma$-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 $\\gamma$-ray bright blazars over four years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite, and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their $\\gamma$-ray behavior. We derive $\\gamma$-ray, X-ray, and optical spectral indices, $\\alpha_\\gamma$, $\\alpha_X$, and $\\alpha_o$, respectively ($F_\

  4. Observations of variability of TeV gamma-ray blazars

    Science.gov (United States)

    Feng, Qi

    The boom in ground-based gamma-ray astronomy since the beginning of the 21st century has enabled a new probe of the universe using very-high-energy photons. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four 12-m imaging Cherenkov telescopes that is sensitive to gamma rays in the energy range between ~100 GeV and ~30 TeV. Among all known TeV sources, blazars, a particular type of active galactic nuclei, have shown exceptional variabilities over a wide range of timescales and energies. The observations of such variabilities have been previously limited at lower energies, ranging from radio to X-ray. However, the superior sensitivity of VERITAS has made the detection of fast TeV gamma-ray variability of blazars possible. The studies of their gamma-ray variability can, in a relatively model-independent way, shed significant light on the emitting regions and production mechanisms in blazars. This thesis describes my work on blazar variability, based primarily on the VERITAS observations but are interpreted in a multi-wavelength context. One of the most exceptional phenomena observed in blazars with VERITAS is the fast variability of the TeV gamma rays. The short duration of these flares strongly constrains the size of the emitting region, and provides insights to the kinetics and location of the emitting region. We describe the fast TeV flare of BL Lacertae as an example, and discuss the connection between TeV flares and multi-wavelength observations that may help localize the TeV emitting region. To study the persistent variability of TeV blazars, we examine a variety of statistical properties in the time and frequency domains. We study both local properties of time series, e.g. time lags between different energy bands and spectral hysteresis during flares, and global properties, e.g. variability amplitude and power spectrum. These properties are connected to the physical processes in blazars, although they are also limited by

  5. Electromagnetic cascade masquerade: a way to mimic $\\gamma$--ALP mixing effects in blazar spectra

    CERN Document Server

    Dzhatdoev, T A; Kircheva, A P; Lyukshin, A A

    2016-01-01

    Most of the studies on extragalactic {\\gamma}-ray propagation performed up to now only accounted for primary gamma-ray absorption and adiabatic losses (absorption-only model). However, there is growing evidence that this model is oversimplified and must be modified in some way. (...) There are many hints that a secondary component from electromagnetic cascades initiated by primary $\\gamma$-rays or nuclei may be observed in the spectra of some blazars. We study the impact of electromagnetic cascades from primary $\\gamma$-rays or protons on the physical interpretation of blazar spectra obtained with imaging Cherenkov telescopes. We use the publicly-available code ELMAG to compute observable spectra of electromagnetic cascades from primary $\\gamma$-rays. For the case of primary proton, we develop a simple, fast, and reasonably accurate hybrid method to calculate the observable spectrum. (...) Electromagnetic cascades show at least two very distinct regimes labeled by the energy of the primary $\\gamma$-ray ($E_{0...

  6. A COMPARISON OF GADRAS SIMULATED AND MEASURED GAMMA RAY SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Jeffcoat, R.; Salaymeh, S.

    2010-06-28

    Gamma-ray radiation detection systems are continuously being developed and improved for detecting the presence of radioactive material and for identifying isotopes present. Gamma-ray spectra, from many different isotopes and in different types and thicknesses of attenuation material and matrixes, are needed to evaluate the performance of these devices. Recently, a test and evaluation exercise was performed by the Savannah River National Laboratory that required a large number of gamma-ray spectra. Simulated spectra were used for a major portion of the testing in order to provide a pool of data large enough for the results to be statistically significant. The test data set was comprised of two types of data, measured and simulated. The measured data were acquired with a hand-held Radioisotope Identification Device (RIID) and simulated spectra were created using Gamma Detector Response and Analysis Software (GADRAS, Mitchell and Mattingly, Sandia National Laboratory). GADRAS uses a one-dimensional discrete ordinate calculation to simulate gamma-ray spectra. The measured and simulated spectra have been analyzed and compared. This paper will discuss the results of the comparison and offer explanations for spectral differences.

  7. An Emerging Class of Gamma-ray Flares from Blazars: Beyond One-zone Models

    Science.gov (United States)

    Tavani, M.; Vittorini, V.; Cavaliere, A.

    2015-11-01

    Blazars radiate from relativistic plasma jets with bulk Lorentz factors {{Γ }}∼ 10, closely aligned along our line of sight. In a number of blazars of the flat-spectrum radio quasar type, such as 3C 454.3 and 3C 279, gamma-ray flares have recently been detected with very high luminosity and few or no counterparts in the optical and soft X-ray bands. They challenge the current one-zone leptonic models of emissions from within the broad-line region (BLR). The latter envisage the optical/X-ray emissions to be produced as synchrotron radiation by the same population of highly relativistic electrons in the jet that would also yield the gamma rays by inverse Compton upscattering of surrounding soft photons. To meet the challenge, we present here a model based on primary synchrotron photons emitted in the BLR by a plasmoid moving out with the jet and scattered back toward the incoming plasmoid by an outer plasma clump acting as a mirror. We consider both a scenario based on a static mirror located outside the BLR and an alternative provided by a moving mirror geometry. We show that mirroring phenomena can locally enhance the density and anisotropy with associated relativistic boosting of soft photons within the jet, so as to trigger bright inverse Compton gamma-ray transients from nearly steady optical/X-ray synchrotron emissions. In this picture we interpret the peculiarly asymmetric light curves of the recently detected gamma-ray flares from 3C 279. Our scenario provides a promising start to understanding the widening class of bright and transient gamma-ray activities in blazars.

  8. Possible Quasi-Periodic Gamma-ray Emission from Blazar PG 1553+113

    Science.gov (United States)

    Thompson, David; Cutini, Sara; Ciprini, Stefano; Larsson, Stefan; Stamerra, Antonio; Fermi Large Area Telescope Collaboration

    2017-01-01

    We report an update on a possible gamma-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Data from the Fermi Large Area Telescope exhibit an apparent quasi-periodicity in the gamma-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The indication of a 2.18 +/- 0.08 year period gamma-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.

  9. Evidence for Quasi-periodic Modulation in the Gamma-ray Blazar PG 1553+113

    CERN Document Server

    Ackermann, M; Albert, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Gonzalez, J Becerra; Bellazzini, R; Bissaldi, E; Blandford, R D; Bloom, E D; Bonino, R; Bottacini, E; Bregeon, J; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caputo, R; Caragiulo, M; Caraveo, P A; Cavazzuti, E; Cecchi, C; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; De Angelis, A; De Palma, F; Desiante, R; Di Venere, L; Dominguez, A; Drell, P S; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fuhrmann, L; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Godfrey, G; Green, D; Grenier, I A; Grove, J E; Guiriec, S; Harding, A K; Hays, E; Hewitt, J W; Hill, A B; Horan, D; Jogler, T; Johannesson, G; Johnson, A S; Kamae, T; Kuss, M; Larsson, S; Latronico, L; Li, J; Li, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Magill, J; Maldera, S; Manfreda, A; Max-Moerbeck, W; Mayer, M; Mazziotta, M N; Mcenery, J E; Michelson, P F; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nuss, E; Ohno, M; Ohsugi, T; Ojha, R; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Pearson, T J; Perkins, J S; Perri, M; Pesce-Rollins, M; Petrosian, V; Piron, F; Pivato, G; Porter, T A; Raino', S; Rando, R; Razzano, M; Readhead, A; Reimer, A; Reimer, O; Schulz, A; Sgro', C; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Troja, E; Uchiyama, Y; Vianello, G; Wood, K S; Wood, M; Zimmer, S; Berdyugin, A; Corbet, R H D; Hovatta, T; Lindfors, E; Nilsson, K; Reinthal, R; Sillanpaa, A; Stamerra, A; Takalo, L O; Valtonen, M J

    2015-01-01

    We report for the first time a gamma-ray and multiwavelength nearly-periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope (LAT) we have discovered an apparent quasi-periodicity in the gamma-ray flux (E>100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 +/- 0.08 year-period gamma-ray cycle, seen in 3.5 oscillation maxima observed, is corroborated by correlated oscillations observed in radio and optical fluxes, through data collected in the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT. The optical cycle appearing in sim 10 years of data has a similar period, while the 15 GHz oscillation is less regular. Further long-term multi-wavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.

  10. Renewed gamma-ray activity from the blazar PKS 1510-089 detected by AGILE

    Science.gov (United States)

    Pittori, C.; Tavani, M.; Lucarelli, F.; Verrecchia, F.; Piano, G.; Munar-Adrover, P.; Bulgarelli, A.; Fioretti, V.; Zoli, A.; Vercellone, S.; Minervini, G.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-08-01

    AGILE is now detecting transient gamma-ray emission above 100 MeV from a source positionally consistent with the blazar PKS 1510-089. Integrating from 2016-08-07 09:00 UT to 2016-08-09 09:00 UT, a preliminary maximum likelihood analysis yields a detection above 100 MeV positioned at Galactic coordinates (l,b) = (350.64,40.32) +/- 0.7 (stat.) +/- 0.1 (syst.).

  11. Similarity of Optical-IR and Gamma-Ray Variability Properties of Fermi Blazars

    Science.gov (United States)

    Chatterjee, Ritaban; Bailyn, C.; Bonning, E.; Buxton, M.; Coppi, P.; Isler, J.; Urry, C. M.

    2011-05-01

    We present the time variability properties of a sample of six blazars, AO 0235+164, 3C 273, 3C 279, PKS 1510-089, PKS 2155-304, and 3C 454.3, at optical-near IR frequencies observed as a part of the Yale/SMARTS program during 2008-2010. We find the optical/IR time variability properties of these blazars to be remarkably similar to those at the gamma-ray energies as observed through Fermi. The power spectral density (PSD) of the R-band variability of all six blazars are fit well by simple power-law functions with negative slope and no significant break. The negative slope implies there is higher amplitude variability on longer than on shorter timescales. Average slope and amplitude of these PSDs are similar to those of the gamma-ray variability of a larger sample of blazars as found by the Fermi team. This is consistent with the general picture of the leptonic model where the optical-IR and gamma-ray emission is generated by the same population of electrons through synchrotron and inverse-Compton processes, respectively. The prominent flares present in the optical-IR as well as the gamma-ray light curves of these blazars are predominantly symmetric, i.e., have similar rise and decay timescales. This indicates that the long-term variability is dominated by the crossing time of radiation or a disturbance through the emission region and not by the energy-loss timescales of the emitting electrons due to radiation. The total energy output, and the gamma-ray vs. optical flux relation of six individual flares of the blazar 3C 454.3 during 2009 August to December vary significantly from one event to the other. This indicates that the location and/or mechanism of their generation are different. This work was supported by Fermi GI grant NNX09AR92G and NSF grant AST-0707627.

  12. Gamma-ray opacity of the anisotropic stratified broad-line regions in blazars

    CERN Document Server

    Abolmasov, Pavel

    2016-01-01

    The GeV-range spectra of blazars are shaped not only by non-thermal emission processes internal to the relativistic jet but also by external pair-production absorption on the thermal emission of the accretion disc and the broad-line region (BLR). For the first time, we compute here the pair-production opacities in the GeV range produced by a realistic BLR accounting for the radial stratification and radiation anisotropy. Using photoionization modelling with the CLOUDY code, we calculate a series of BLR models of different sizes, geometries, cloud densities, column densities and metallicities. The strongest emission features in the model BLR are Ly$\\alpha$ and HeII Ly$\\alpha$. Contribution of recombination continua is smaller, especially for hydrogen, because Ly continuum is efficiently trapped inside the large optical depth BLR clouds and converted to Lyman emission lines and higher-order recombination continua. The largest effects on the gamma-ray opacity are produced by the BLR geometry and localization of ...

  13. Energy spectra of secondary gamma rays at different atmospheric depths

    CERN Document Server

    Bhattacharya, D P

    1979-01-01

    The CERN Intersecting Storage Ring (ISR) data for p+p to pi /sup 0/+X inclusive reaction have been used to derive the spectrum of secondary gamma rays at the top of the atmosphere. The measured primary nucleon spectrum of the Goddard Space Flight Group has been taken as a nucleon source spectrum. Using the cascade theory, the gamma ray spectra at the atmospheric depths 540, 650, and 735 g cm/sup -2/ have been calculated. The results are approximately in accord with the emulsion chamber data at Mt Chacaltaya, Mt. Norikura, and Mt. Fuji in the spectral range 0.2-4 TeV. (10 refs).

  14. Axion-like particles explain the unphysical redshift-dependence of AGN gamma-ray spectra

    CERN Document Server

    Galanti, Giorgio; De Angelis, Alessandro; Bignami, Giovanni F

    2015-01-01

    Blazars are a class of AGN known to be powerful very-high-energy (VHE, 100 GeV - 100 TeV) celestial gamma-ray emitters. At the time of writing, 41 blazars, spread all over the sky and with known redshift in the range $0.0215 \\leq z \\leq 0.635$ have been observed in the VHE band by the Imaging Atmospheric Cherenkov Telescopes H.E.S.S., MAGIC and VERITAS. Thus, they represent an isotropic and relatively local extragalactic sample, unaffected by significant cosmological evolution. The blazar emitted spectra are well fitted by a power law with index $\\Gamma_{\\rm em}$. We show that the $\\Gamma_{\\rm em}$ distribution exhibits an unexpected and previously unnoticed unphysical redshift-dependence. We demonstrate that this result is not due to any selection effect. It is difficult to imagine an intrinsic mechanism which could lead to such a spectral variation, and so this result seriously challenges the conventional view. We propose that such a behaviour is explained by oscillations between the VHE gamma-rays and Axio...

  15. Stochastic Modeling of the Fermi/LAT Gamma-ray Blazar Variability

    CERN Document Server

    Sobolewska, Malgorzata A; Kelly, Brandon C; Nalewajko, Krzysztof

    2014-01-01

    We study the gamma-ray variability of 13 blazars observed with the Fermi Large Area Telescope (LAT). These blazars have the most complete light curves collected during the first 4 years of the Fermi sky survey. We model them with the Ornstein-Uhlenbeck (OU) process or a mixture of the OU processes. The OU process has power spectral density (PSD) proportional to 1/f^alpha with alpha changing at a characteristic time scale, tau_0, from 0 (tau>>tau_0) to 2 (tau<blazars in our sample. For the first time we constrain a characteristic gamma-ray time scale of variability in two BL Lac sources, 3C 66A and PKS 2155-304 (tau_0=25 day and tau_0=43 day, respectively, in the observer's frame), which are longer than the soft X-ray time scales detected in blazars and Seyfert galaxies. We find ...

  16. 15 GHz Monitoring of Gamma-ray Blazars with the OVRO 40 Meter Telescope in Support of Fermi

    CERN Document Server

    Richards, J L; Pavlidou, V; Pearson, T J; Readhead, A C S; Stevenson, M A; Healey, S E; Romani, R W; Shaw, M S; Fuhrmann, L; Angelakis, E; Zensus, J A; Grainge, K; Taylor, G B

    2009-01-01

    We present results from the first two years of our fast-cadence 15 GHz gamma-ray blazar monitoring program, part of the F-GAMMA radio monitoring project. Our sample includes the 1158 blazars north of -20 degrees declination from the Candidate Gamma-Ray Blazar Survey (CGRaBS), which encompasses a significant fraction of the extragalactic sources detected by the Fermi Gamma-ray Space Telescope. We introduce a novel likelihood analysis for computing a time series variability amplitude statistic that separates intrinsic variability from measurement noise and produces a quantitative error estimate. We use this method to characterize our radio light curves. We also present results indicating a statistically significant correlation between simultaneous average 15 GHz radio flux density and gamma-ray photon flux.

  17. Constraining the location of gamma-ray flares in luminous blazars

    Energy Technology Data Exchange (ETDEWEB)

    Nalewajko, Krzysztof; Begelman, Mitchell C. [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States); Sikora, Marek, E-mail: knalew@jila.colorado.edu [Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland)

    2014-07-10

    Locating the gamma-ray emission sites in blazar jets is a long standing and highly controversial issue. We jointly investigate several constraints on the distance scale r and Lorentz factor Γ of the gamma-ray emitting regions in luminous blazars (primarily flat spectrum radio quasars). Working in the framework of one-zone external radiation Comptonization models, we perform a parameter space study for several representative cases of actual gamma-ray flares in their multiwavelength context. We find a particularly useful combination of three constraints: from an upper limit on the collimation parameter Γθ ≲ 1, from an upper limit on the synchrotron self-Compton (SSC) luminosity L{sub SSC} ≲ L{sub X}, and from an upper limit on the efficient cooling photon energy E{sub cool,obs} ≲ 100 MeV. These three constraints are particularly strong for sources with low accretion disk luminosity L{sub d}. The commonly used intrinsic pair-production opacity constraint on Γ is usually much weaker than the SSC constraint. The SSC and cooling constraints provide a robust lower limit on the collimation parameter Γθ ≳ 0.1-0.7. Typical values of r corresponding to moderate values of Γ ∼ 20 are in the range 0.1-1 pc, and are determined primarily by the observed variability timescale t{sub var,obs}. Alternative scenarios motivated by the observed gamma-ray/millimeter connection, in which gamma-ray flares of t{sub var,obs} ∼ a few days are located at r ∼ 10 pc, are in conflict with both the SSC and cooling constraints. Moreover, we use a simple light travel time argument to point out that the gamma-ray/millimeter connection does not provide a significant constraint on the location of gamma-ray flares. We argue that spine-sheath models of the jet structure do not offer a plausible alternative to external radiation fields at large distances; however, an extended broad-line region is an idea worth exploring. We propose that the most definite additional constraint could be

  18. Comprehensive monitoring of gamma-ray bright blazars. I. Statistical study of optical, X-ray, and gamma-ray spectral slopes

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Karen E.; Jorstad, Svetlana G.; Marscher, Alan P.; Agudo, Iván; Joshi, Manasvita; Malmrose, Michael P. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Larionov, Valeri M.; Blinov, Dmitry A.; Efimova, Natalia V.; Hagen-Thorn, Vladimir A.; Konstantinova, Tatiana S.; Kopatskaya, Evgenia N.; Larionova, Elena G.; Larionova, Liudmilla V. [Astronomical Institute, St. Petersburg State University, Universitetskij Pr. 28, Petrodvorets, 198504 St. Petersburg (Russian Federation); Smith, Paul S. [Steward Observatory, University of Arizona, Tucson, AZ 85721-0065 (United States); Arkharov, Arkady A. [Main (Pulkovo) Astronomical Observatory of RAS, Pulkovskoye shosse 60, 196140 St. Petersburg (Russian Federation); Casadio, Carolina; Gómez, José L.; Molina, Sol N. [Instituto de Astrofísica de Andalucía, CSIC, Apartado 3004, E-18080 Granada (Spain); McHardy, Ian M., E-mail: kwilliam@bu.edu [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); and others

    2014-07-10

    We present γ-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 γ-ray bright blazars over 4 years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite, and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their γ-ray behavior. We derive γ-ray, X-ray, and optical spectral indices, α{sub γ}, α{sub X}, and α{sub o}, respectively (F{sub ν}∝ν{sup α}), and construct spectral energy distributions during quiescent and active states. We analyze the relationships between different spectral indices, blazar classes, and activity states. We find (1) significantly steeper γ-ray spectra of FSRQs than for BL Lacs during quiescent states, but a flattening of the spectra for FSRQs during active states while the BL Lacs show no significant change; (2) a small difference of α{sub X} within each class between states, with BL Lac X-ray spectra significantly steeper than in FSRQs; (3) a highly peaked distribution of X-ray spectral slopes of FSRQs at ∼ –0.60, but a very broad distribution of α{sub X} of BL Lacs during active states; (4) flattening of the optical spectra of FSRQs during quiescent states, but no statistically significant change of α{sub o} of BL Lacs between states; and (5) a positive correlation between optical and γ-ray spectral slopes of BL Lacs, with similar values of the slopes. We discuss the findings with respect to the relative prominence of different components of high-energy and optical emission as the flux state changes.

  19. Time-resolved multiwavelength observations of the blazar VER J0521+211 from radio to gamma-ray energies

    CERN Document Server

    Prokoph, Heike; Schultz, Cornelia

    2015-01-01

    VER J0521+211 (RGB J0521.8+2112) is one of the brightest and most powerful blazars detected in the TeV gamma-ray regime. It is located at a redshift of z=0.108 and since its discovery in 2009, VER J0521+211 has exhibited an average TeV flux exceeding 0.1 times that of the Crab Nebula, corresponding to an isotropic luminosity of $3\\times10^{44}$ erg s$^{-1}$. We present data from a comprehensive multiwavelength campaign on this object extending between November 2012 and February 2014, including single-dish radio observations, optical photometry and polarimetry, UV, X-ray, GeV and TeV gamma-ray data (VERITAS, MAGIC). Significant flux variability was observed at all wavelengths, including a long-lasting high state at gamma-ray energies in Fall 2013. Nightly-resolved spectra at X-ray and TeV energies are be presented, and emission mechanisms explaining the observed flux and spectral variability are discussed.

  20. Multiwavelength behaviour of the blazar OJ 248 from radio to {\\gamma}-rays

    CERN Document Server

    Carnerero, M I; Villata, M; Acosta-Pulido, J A; D'Ammando, F; Smith, P S; Larionov, V M

    2015-01-01

    We present an analysis of the multiwavelength behaviour of the blazar OJ 248 at z = 0.939 in the period 2006-2013. We use low-energy data (optical, near-infrared, and radio) obtained by 21 observatories participating in the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT), as well as data from the Swift (optical-UV and X-rays) and Fermi (gamma-rays) satellites, to study flux and spectral variability and correlations among emissions in different bands. We take into account the effect of absorption by the Damped Lyman Alpha intervening system at z = 0.525. Two major outbursts were observed in 2006-2007 and in 2012-2013 at optical and near-IR wavelengths, while in the high-frequency radio light curves prominent radio outbursts are visible peaking at the end of 2010 and beginning of 2013, revealing a complex radio-optical correlation. Cross-correlation analysis suggests a delay of the optical variations after the gamma-ray ones of about a month, which is a peculiar behaviour in blazar...

  1. 5 year Global 3-mm VLBI survey of Gamma-ray active blazars

    CERN Document Server

    Hodgson, J A; Marscher, A P; Jorstad, S G; Marti-Vidal, I; Lindqvist, M; Bremer, M; Sanchez, S; de Vicente, P; Zensus, J A

    2015-01-01

    The Global mm-VLBI Array (GMVA) is a network of 14 3\\,mm and 7\\,mm capable telescopes spanning Europe and the United States, with planned extensions to Asia. The array is capable of sensitive maps with angular resolution often exceeding 50\\,$\\mu$as. Using the GMVA, a large sample of prominent $\\gamma$-ray blazars have been observed approximately 6 monthly from later 2008 until now. Combining 3\\,mm maps from the GMVA with near-in-time 7\\,mm maps from the VLBA-BU-BLAZAR program and 2\\,cm maps from the MOJAVE program, we determine the sub-pc morphology and high frequency spectral structure of $\\gamma$-ray blazars. The magnetic field strength can be estimated at different locations along the jet under the assumption of equipartition between magnetic field and relativistic particle energies. Making assumptions on the jet magnetic field configuration (e.g. poloidal or toroidal), we can estimate the separation of the mm-wave "core" and the jet base, and estimate the strength of the magnetic field there. The results ...

  2. The connection between the 15 GHz radio and gamma-ray emission in blazars

    CERN Document Server

    Max-Moerbeck, W; Hovatta, T; Pavlidou, V; Pearson, T J; Readhead, A C S; King, O G; Reeves, R

    2014-01-01

    Since mid-2007 we have carried out a dedicated long-term monitoring programme at 15 GHz using the Owens Valley Radio Observatory 40 meter telescope. One of the main goals of this programme is to study the relation between the radio and gamma-ray emission in blazars and to use it as a tool to locate the site of high energy emission. Using this large sample of objects we are able to characterize the radio variability, and study the significance of correlations between the radio and gamma-ray bands. We find that the radio variability of many sources can be described using a simple power law power spectral density, and that when taking into account the red-noise characteristics of the light curves, cases with significant correlation are rare. We note that while significant correlations are found in few individual objects, radio variations are most often delayed with respect to the gamma-ray variations. This suggests that the gamma-ray emission originates upstream of the radio emission. Because strong flares in mo...

  3. Fermi-LAT View of Bright Flaring Gamma-Ray Blazars

    Indian Academy of Sciences (India)

    D. Bastieri; S. Ciprini; D. Gasparrini

    2011-03-01

    The Fermi LAT provides a continuous and uniform monitoring of the Universe in the gamma-ray band. During the first year many gamma-ray blazar flares, some unidentified transients and emission by the Sun while in a quiet state were promptly detected. This is mainly due to the design of the mission, featuring a detector, the LAT with a wide field of view, and to the operation of the spacecraft itself, that can cover every region of the sky every 3 hours. Nevertheless, the scientific exploitation of this monitoring is more fruitful when early information about transients reaches a broader community. In this respect, the indefatigable activity of flare advocates, who worked on weekly shifts to validate the results and quickly broadcast information about flares and new detections, was the key to most scientific results.

  4. The nature of gamma ray blazar candidate PMN J1326-5256

    CERN Document Server

    Bignall, H; Jauncey, D; Senkbeil, C; Lovell, J; Ellingsen, S

    2007-01-01

    A comparison of AGN detected at gamma ray energies by EGRET with flat-spectrum radio sources observed in surveys for intraday variability reveals that a remarkably high fraction of EGRET blazars show significant interstellar scintillation at centimetre wavelengths. Scintillating AGN will therefore be targets of interest for GLAST, scheduled for launch in early 2008. We suggest that the variable, scintillating flat-spectrum radio source PMN J1326-5256 is associated with the unidentified EGRET source 3EG J1316-5244. We describe the properties of PMN J1326-5256 and present recent results of monitoring with the ATCA and Ceduna radio telescopes.

  5. Broad Band Observations of Gravitationally Lensed Blazar during a Gamma-Ray Outburst

    Directory of Open Access Journals (Sweden)

    Julian Sitarek

    2016-09-01

    Full Text Available QSO B0218+357 is a gravitationally lensed blazar located at a cosmological redshift of 0.944. In July 2014 a GeV flare was observed by Fermi-LAT, triggering follow-up observations with the MAGIC telescopes at energies above 100 GeV. The MAGIC observations at the expected time of arrival of the trailing component resulted in the first detection of QSO B0218+357 in Very-High-Energy (VHE, >100 GeV gamma rays. We report here the observed multiwavelength emission during the 2014 flare.

  6. Optical spectroscopic observations of gamma-ray blazar candidates IV. Results of the 2014 follow-up campaign

    CERN Document Server

    Ricci, F; Landoni, M; D'Abrusco, R; Milisavljevic, D; Stern, D; Masetti, N; Paggi, A; Smith, Howard A; Tosti, G

    2015-01-01

    The extragalactic gamma-ray sky is dominated by the emission arising from blazars, one of the most peculiar classes of radio-loud active galaxies. Since the launch of Fermi several methods were developed to search for blazars as potential counterparts of unidentified gamma-ray sources (UGSs). To confirm the nature of the selected candidates, optical spectroscopic observations are necessary. In 2013 we started a spectroscopic campaign to investigate gamma-ray blazar candidates selected according to different procedures. The main goals of our campaign are: 1) to confirm the nature of these candidates, and 2) whenever possible determine their redshifts. Optical spectroscopic observations will also permit us to verify the robustness of the proposed associations and check for the presence of possible source class contaminants to our counterpart selection. This paper reports the results of observations carried out in 2014 in the Northern hemisphere with Kitt Peak National Observatory (KPNO) and in the Southern hemi...

  7. Unveiling the nature of the unidentified gamma-ray sources III: gamma-ray blazar-like counterparts at low radio frequencies

    CERN Document Server

    Massaro, F; Giroletti, M; Paggi, A; Masetti, N; Tosti, G; Nori, M; Funk, S

    2013-01-01

    About one third of the gamma-ray sources listed in the second Fermi LAT catalog (2FGL) have no firmly established counterpart at lower energies so being classified as unidentified gamma-ray sources (UGSs). Here we propose a new approach to find candidate counterparts for the UGSs based on the 325 MHz radio survey performed with Westerbork Synthesis Radio Telescope (WSRT) in the northern hemisphere. First we investigate the low-frequency radio properties of blazars, the largest known population of gamma-ray sources; then we search for sources with similar radio properties combining the information derived from the Westerbork Northern Sky Survey (WENSS) with those of the NRAO VLA Sky survey (NVSS). We present a list of candidate counterparts for 32 UGSs with at least one counterpart in the WENSS. We also performed an extensive research in literature to look for infrared and optical counterparts of the gamma-ray blazar candidates selected with the low-frequency radio observations to confirm their nature. On the ...

  8. The extension of variability properties in gamma-ray bursts to blazars

    CERN Document Server

    Wu, Qingwen; Lei, Wei-Hua; Zou, Yuan-Chuan; Liang, Enwen; Cao, Xinwu

    2015-01-01

    Both gamma-ray bursts (GRBs) and blazars have relativistic jets pointing at a small angle from our line of sight. Several recent studies suggested that these two kinds of sources may share similar jet physics. In this work, we explore the variability properties for GRBs and blazars as a whole. We find that the correlation between minimum variability timescale (MTS) and Lorentz factor, $\\Gamma$, as found only in GRBs by Sonbas et al. can be extended to blazars with a joint correlation of $\\rm MTS\\propto\\Gamma^{-4.7\\pm0.3}$. The same applies to the $\\rm MTS\\propto \\it L_{\\gamma}^{\\rm -1.0\\pm0.1}$ correlation as found in GRBs, which can be well extended into blazars as well. These results provide further evidence that the jets in these two kinds of sources are similar despite of the very different mass scale of their central engines. Further investigations of the physical origin of these correlations are needed, which can shed light on the nature of the jet physics.

  9. The connection between the parsec-scale radio jet and gamma-ray flares in the blazar 1156+295

    CERN Document Server

    Ramakrishnan, Venkatessh; Rastorgueva-Foi, Elizaveta A; Wiik, Kaj; Jorstad, Svetlana G; Marscher, Alan P; Tornikoski, Merja; Agudo, Iván; Lähteenmäki, Anne; Valtaoja, Esko; Aller, Margo F; Blinov, Dmitry A; Casadio, Carolina; Efimova, Natalia V; Gurwell, Mark A; Gómez, José L; Hagen-Thorn, Vladimir A; Joshi, Manasvita; Järvelä, Emilia; Konstantinova, Tatiana S; Kopatskaya, Evgenia N; Larionov, Valeri M; Larionova, Elena G; Larionova, Liudmilla V; Lavonen, Niko; MacDonald, Nicholas R; McHardy, Ian M; Molina, Sol N; Morozova, Daria A; Nieppola, Elina; Tammi, Joni; Taylor, Brian W; Troitsky, Ivan S

    2014-01-01

    The blazar 1156+295 was active at gamma-ray energies, exhibiting three prominent flares during the year 2010. Here, we present results using the combination of broadband (X-ray through mm single dish) monitoring data and radio band imaging data at 43 GHz on the connection of gamma-ray events to the ejections of superluminal components and other changes in the jet of 1156+295. The kinematics of the jet over the interval 2007.0-2012.5 using 43 GHz Very Long Baseline Array observations, reveal the presence of four moving and one stationary component in the inner region of the blazar jet. The propagation of the third and fourth components in the jet corresponds closely in time to the active phase of the source in gamma rays. We briefly discuss the implications of the structural changes in the jet for the mechanism of gamma-ray production during bright flares. To localise the gamma-ray emission site in the blazar, we performed the correlation analysis between the 43 GHz radio core and the gamma-ray light curve. Th...

  10. The BL-Lac gamma-ray blazar PKS 0447-439 as a probable member of a group of galaxies at z=0.343

    CERN Document Server

    Muriel, H; Rovero, A C; Pichel, A

    2014-01-01

    The BL-Lac blazar PKS 0447-439 is one of the brightest HE gamma-ray sources that were first detected by Fermi-LAT. It was also detected by H.E.S.S. at VHE gamma-rays, which allowed constraining the redshift of PKS 0447-439 by considering the attenuation caused by gamma-ray interactions with ambient photons in the extragalactic background light (EBL). This constraint agreed with color-magnitude and spectroscopic redshift constraints (0.179 1.2). This value was debated because if true, it would imply either that the relevant absorption processes of gamma-rays are not well understood or that the EBL is dramatically different from what is believed today. This high redshift was not confirmed by three independent new spectroscopic observations at high signal-to-noise ratios. Given that BL-Lac are typically hosted by elliptical galaxies, which in turn are associated with groups, we aim to find the host group of galaxies of PKS 0447-439. The ultimate goal is to estimate a redshift for this blazar. Spectra of twenty-...

  11. Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, N.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-08-01

    The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a factor of two with respect to a standard time-integrated point source search. First results on the search for neutrinos associated with ten bright and variable Fermi sources are presented.

  12. Search for Neutrino Emission from Gamma-Ray Flaring Blazars with the ANTARES Telescope

    CERN Document Server

    Adrián-Martínez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, N; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Vallée, C; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2011-01-01

    The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a facto...

  13. X-ray spectral studies of TeV gamma-ray emitting blazars

    CERN Document Server

    Wierzcholska, Alicja

    2016-01-01

    This work is a summary of the X-ray spectral studies of 29 TeV $\\gamma$-ray emitting blazars observed with Swift/XRT, especially focusing on sources for which X-ray regime allows to study the low and the high energy ends of the particle distributions function. Variability studies require simultaneous coverage, ideally sampling different flux states of each source. This is achieved using X-ray observations by disentangling the high-energy end of the synchrotron emission and the low-energy end of the Compton emission, which are produced by the same electron population. We focused on a sample of 29 TeV gamma-ray emitting blazars with the best signal-to-noise X-ray observations collected with Swift/XRT in the energy range of 0.3-10 keV during 10 years of Swift/XRT operations. We investigate the X-ray spectral shapes and the effects of different corrections for neutral hydrogen absorption and decompose the synchrotron and inverse Compton components. In the case of 5 sources (3C 66A, S5 0716+714, W Comae, 4C +21.35...

  14. An Emerging Class of Gamma-Ray Flares from Blazars: Beyond One-Zone Models

    CERN Document Server

    Tavani, Marco; Cavaliere, Alfonso

    2015-01-01

    Blazars radiate from relativistic plasma jets with bulk Lorentz factors {\\Gamma} ~ 10, closely aligned along our line of sight. In a number of blazars of the Flat Spectrum Radio Quasar type such as 3C 454.3 and 3C 279 gamma-ray flares have recently been detected with very high luminosity and little or no counterparts in the optical and soft X-ray bands. They challenge the current one-zone leptonic models of emissions from within the broad line region. The latter envisage the optical/X-ray emissions to be produced as synchrotron radiation by the same population of highly relativistic electrons in the jet that would also yield the gamma rays by inverse Compton up-scattering of surrounding soft photons. To meet the challenge we present here a model based on primary synchrotron photons emitted in the broad line region by a plasmoid moving out with the jet and scattered back toward the incoming plasmoid by an outer plasma clump acting as a mirror. We consider both a scenario based on a static mirror located outsid...

  15. Radio monitoring of a sample of X- and gamma-ray loud blazars

    CERN Document Server

    Venturi, T; Orfei, A; Bondi, M; Fanti, R; Gregorini, L; Mantovani, F; Stanghellini, C; Trigilio, C; Umana, G

    2001-01-01

    In this paper we present the results of a 4-year (1996 - 1999) radio flux density monitoring program for a sample of X- and $\\gamma$-ray loud blazars. Our program started in January 1996 and was carried out on monthly basis at the frequencies of 5 GHz and 8.4 GHz with the 32-m antennas located in Medicina (Bologna, Italy) and Noto (Siracusa, Italy). 22 GHz data collected in Medicina from January 1996 to June 1997 will also be presented. The sample of selected sources comprises most radio loud blazars with $\\delta \\ge -10^{\\circ}$ characterised by emission in the X- and $\\gamma$-ray regimes, and target sources for the BeppoSAX X-ray mission. All sources in the sample, except J1653+397 (MKN 501), are variable during the four years of our monitoring program. We classified the type of variability in each source by means of a structure function analysis. We also computed th$\\alpha_{5}^{8.4}$ for all epochs with nearly simultaneous observations ate spectral index and found that $\\alpha_{5}^{8.4}$ starts flattening ...

  16. SEARCHING FOR NEW {gamma}-RAY BLAZAR CANDIDATES IN THE THIRD PALERMO BAT HARD X-RAY CATALOG WITH WISE

    Energy Technology Data Exchange (ETDEWEB)

    Maselli, A.; Cusumano, G.; La Parola, V.; Segreto, A. [INAF-IASF Palermo, via U. La Malfa 153, I-90146 Palermo (Italy); Massaro, F. [SLAC National Accelerator Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); D' Abrusco, R.; Paggi, A.; Smith, Howard A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Tosti, G. [Dipartimento di Fisica, Universita degli Studi di Perugia, I-06123 Perugia (Italy)

    2013-06-01

    We searched for {gamma}-ray blazar candidates among the 382 unidentified hard X-ray sources of the third Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of Swift Burst Alert Telescope (BAT) survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors that characterize the {gamma}-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. We used this method exploiting the data of the all-sky survey performed by the Wide-field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources and WISE {gamma}-ray blazar candidates located within the BAT positional uncertainty region at a 99% confidence level. We obtained a preliminary list of candidates for which we analyzed all the available data in the Swift archive to complement the information in the literature and in the radio, infrared, and optical catalogs with the information on their optical-UV and soft X-ray emission. Requiring the presence of radio and soft X-ray counterparts consistent with the infrared positions of the selected WISE sources, as well as a blazar-like radio morphology, we finally obtained a list of 24 {gamma}-ray blazar candidates.

  17. Search for neutrino emission in gamma-ray flaring blazars with the ANTARES telescope

    CERN Document Server

    Sánchez-Losa, Agustín

    2012-01-01

    The ANTARES telescope observes a full hemisphere of the sky all the time with a duty cycle close to 100%. This makes it well suited for an extensive observation of neutrinos produced in astrophysical transient sources. In the surrounding medium of blazars, i.e. active galactic nuclei with their jets pointing almost directly towards the observer, neutrinos may be produced together with gamma-rays by hadronic interactions, so a strong correlation between neutrinos and gamma-rays emissions is expected. The time variability information of the studied source can be obtained by the gamma-ray light curves measured by the LAT instrument on-board the Fermi satellite. If the expected neutrino flux observation is reduced to a narrow window around the assumed neutrino production period, the point-source sensitivity can be drastically improved. The ANTARES data collected in 2008 has been analysed looking for neutrinos detected in the high state period of ten bright and variable Fermi sources assuming that the neutrino emi...

  18. Locating the gamma-ray emission site in Fermi/LAT blazars from correlation analysis between 37 GHz radio and gamma-ray light curves

    CERN Document Server

    Ramakrishnan, V; Nieppola, E; Tornikoski, M; Lähteenmäki, A; Valtaoja, E

    2015-01-01

    We address the highly debated issue of constraining the gamma-ray emission region in blazars from cross-correlation analysis using discrete correlation function between radio and gamma-ray light curves. The significance of the correlations is evaluated using two different approaches: simulating light curves and mixed source correlations. The cross-correlation analysis yielded 26 sources with significant correlations. In most of the sources, the gamma-ray peaks lead the radio with time lags in the range +20 and +690 days, whereas in sources 1633+382 and 3C 345 we find the radio emission to lead the gamma rays by -15 and -40 days, respectively. Apart from the individual source study, we stacked the correlations of all sources and also those based on sub-samples. The time lag from the stacked correlation is +80 days for the whole sample and the distance travelled by the emission region corresponds to 7 pc. We also compared the start times of activity in radio and gamma rays of the correlated flares using Bayesia...

  19. Intergalactic Magnetic Fields and Gamma Ray Observations of Extreme TeV Blazars

    CERN Document Server

    Arlen, Timothy C; Weisgarber, Thomas; Wakely, Scott P; Shafi, S Yusef

    2012-01-01

    The intergalactic magnetic field (IGMF) can be indirectly probed through its effect on electromagnetic cascades initiated by a source of TeV gamma-rays, such as active galactic nuclei (AGN). AGN that are sufficiently luminous at TeV energies, extreme TeV blazars, can produce detectable levels of secondary radiation from Inverse Compton (IC) scattering of the electrons in the cascade, provided that the IGMF is not too large. We review recent work in the literature which utilizes this idea to derive constraints on the IGMF for three TeV-detected blazars-1ES 0229+200, 1ES 1218+304, and RGB J0710+591, and we also investigate four other hard-spectrum TeV blazars in the same context. Through a recently developed detailed Monte Carlo code, incorporating all major effects of QED and cosmological expansion, we research effects of major uncertainties such as the spectral properties of the source, uncertainty in the UV - far IR extragalactic background light (EBL), undersampled Very High Energy (VHE; energy > 100 GeV) c...

  20. Time-correlation between the radio and gamma-ray activity in blazars and the production site of the gamma-ray emission

    CERN Document Server

    Max-Moerbeck, W; Richards, J L; King, O G; Pearson, T J; Readhead, A C S; Reeves, R; Shepherd, M C; Stevenson, M A; Angelakis, E; Fuhrmann, L; Grainge, K J B; Pavlidou, V; Romani, R W; Zensus, J A

    2014-01-01

    In order to determine the location of the gamma-ray emission site in blazars, we investigate the time-domain relationship between their radio and gamma-ray emission. Light-curves for the brightest detected blazars from the first 3 years of the mission of the Fermi Gamma-ray Space Telescope are cross-correlated with 4 years of 15GHz observations from the OVRO 40-m monitoring program. The large sample and long light-curve duration enable us to carry out a statistically robust analysis of the significance of the cross-correlations, which is investigated using Monte Carlo simulations including the uneven sampling and noise properties of the light-curves. Modeling the light-curves as red noise processes with power-law power spectral densities, we find that only one of 41 sources with high quality data in both bands shows correlations with significance larger than 3-sigma (AO 0235+164), with only two more larger than even 2.25-sigma (PKS 1502+106 and B2 2308+34). Additionally, we find correlated variability in Mrk ...

  1. Exploring the multiband emission of TXS 0536+145: the most distant gamma-ray flaring blazar

    CERN Document Server

    Orienti, M; Giroletti, M; Finke, J; Ajello, M; Dallacasa, D; Venturi, T

    2014-01-01

    We report results of a multiband monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high gamma-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becoming the gamma-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic gamma-ray luminosity of 6.6 x 10^49 erg/s which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicina single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the gamma-ray source with TXS 0536+145. Both the radio and gamma-ray light curves show a similar behaviour, with the gamma-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spect...

  2. Gamma-Ray and Parsec-Scale Jet Properties of a Complete Sample of Blazars From the MOJAVE Program

    CERN Document Server

    Lister, M L; Aller, H; Hovatta, T; Kellermann, K I; Kovalev, Y Y; Meyer, E T; Pushkarev, A B; Ros, E; Ackermann, M; Antolini, E; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Boeck, M; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Chang, C S; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; de Palma, F; Dermer, C D; Silva, E do Couto e; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Guiriec, S; Hadasch, D; Hayashida, M; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Kadler, M; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; McConville, W; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nishino, S; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ozaki, M; Paneque, D; Parent, D; Pesce-Rollins, M; Pierbattista, M; Piron, F; Pivato, G; Rainò, S; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Ritz, S; Sadrozinski, H F -W; Sgrò, C; Shaw, M S; Siskind, E J; Spandre, G; Spinelli, P; Takahashi, H; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tosti, G; Tramacere, A; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Zimmer, S

    2011-01-01

    We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 deg. during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any...

  3. Exploring Blazar Jet Dynamics with Optical and Gamma Ray Cross-Correlations Using the Fermi Gamma Ray Space Telescope Public Data

    Science.gov (United States)

    Cook, Kyle; Carini, M. T.

    2010-01-01

    For the past 9 years Western Kentucky University has been monitoring approximately 50 Blazar sources at the R-band optical wavelengths. The Fermi Gamma Ray Space Telescope provides a source of gamma-ray data publicly available for cross correlation analysis, and the recent release of the data has made this possible. Such an analysis will prove useful in understanding the processes present in the jets producing the observed emission in these AGN. This type of analysis is being conducted at Western Kentucky University, pulling together the optical data from the WKU telescope network as well as other public databases and comparing them to the released FGST data. Here we present the initial results from the cross-correlation analysis and apply it to sources of interest. This research is funded by the NASA Kentucky Space Grant Consortium.

  4. DEEP BROADBAND OBSERVATIONS OF THE DISTANT GAMMA-RAY BLAZAR PKS 1424+240

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Aune, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Behera, B.; Chen, X.; Federici, S. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Beilicke, M.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W.; Cerruti, M. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Berger, K. [Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Bird, R. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Biteau, J. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Byrum, K. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Cardenzana, J. V [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Cui, W. [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Dumm, J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Errando, M. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Falcone, A., E-mail: amy.furniss@gmail.com [Department of Astronomy and Astrophysics, 525 Davey Lab, Pennsylvania State University, University Park, PA 16802 (United States); Collaboration: VERITAS Collaboration; Fermi LAT Collaboration; and others

    2014-04-10

    We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope, and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of z ≥ 0.6035, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hr of VERITAS observations over three years, a multiwavelength light curve, and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1 ± 0.3) × 10{sup –7} photons m{sup –2} s{sup –1} above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02 ± 0.08) × 10{sup –7} photons m{sup –2} s{sup –1} above 120 GeV. The measured differential very high energy (VHE; E ≥ 100 GeV) spectral indices are Γ = 3.8 ± 0.3, 4.3 ± 0.6 and 4.5 ± 0.2 in 2009, 2011, and 2013, respectively. No significant spectral change across the observation epochs is detected. We find no evidence for variability at gamma-ray opacities of greater than τ = 2, where it is postulated that any variability would be small and occur on timescales longer than a year if hadronic cosmic-ray interactions with extragalactic photon fields provide a secondary VHE photon flux. The data cannot rule out such variability due to low statistics.

  5. The challenge of rapid gamma-ray variability of blazar 3C 279

    Science.gov (United States)

    Nalewajko, Krzysztof; Hayashida, Masaaki; Madejski, Greg; Petropoulou, Maria

    2017-08-01

    Detections of gamma-ray variability of active galaxies on time scales of a few minutes revealed the most extreme regimes of dissipation and particle acceleration in relativistic plasmas. Observations of blazar 3C 279 by the Fermi Large Area Telescope during a successful Target-of-Opportunity pointing campaign in June 2015 detected very clearly and for the first time variability in the GeV band on time scales 5 minutes and possibly shorter. This result presents a unique challenge for the theory of relativistic jets, since 3C 279 is also a quasar with dense radiative environment that can readily absorb gamma rays produced at sub-pc distance scales. The parameters required to explain such variability are extreme, regardless of the assumption of the radiation mechanism (inverse Compton, synchrotron, lepto-hadronic). Very high bulk Lorentz factors, Gamma ~ 100, and kinetic beaming effect of relativistic magnetic reconnection are proposed as ingredients of a complete solution to this problem that remains elusive.

  6. External Compton Scattering in Blazar Jets and the Location of the Gamma-Ray Emitting Region

    CERN Document Server

    Finke, Justin D

    2016-01-01

    I study the location of the $\\gamma$-ray emission in blazar jets by creating a Compton-scattering approximation valid for all anisotropic radiation fields in the Thomson through Klein-Nishina regimes, which is highly accurate and can speed up numerical calculations by up to a factor $\\sim10$. I apply this approximation to synchrotron self-Compton, and external Compton-scattering of photons from the accretion disk, broad-line region (BLR), and dust torus. I use a stratified BLR model and include detailed Compton-scattering calculations of a spherical and flattened BLR. I create two dust torus models, one where the torus is an annulus, and one where it is an extended disk. I present detailed calculations of the photoabsorption optical depth using my detailed BLR and dust torus models, including the full angle dependence. I apply these calculations to the emission from a relativistically moving blob traveling through these radiation fields. The ratio of $\\gamma$-ray to optical flux produces a predictable pattern...

  7. Discerning the location of the gamma-ray emission region in blazars from multi-messenger observations

    CERN Document Server

    Agudo, Ivan; Jorstad, Svetlana G; Gomez, Jose L

    2012-01-01

    Relativistic jets in AGN in general, and in blazars in particular, are the most energetic and among the most powerful astrophysical objects known so far. Their relativistic nature provides them with the ability to emit profusely at all spectral ranges from radio wavelengths to gamma-rays, as well as to vary extremely at time scales from hours to years. Since the birth of gamma-ray astronomy, locating the origin of gamma-ray emission has been a fundamental problem for the knowledge of the emission processes involved. Deep and densely time sampled monitoring programs with the Fermi Gamma-ray Space Telescope and other facilities at most of the available spectral ranges (including millimeter interferometric imaging and polarization measurements wherever possible) are starting to shed light for the case of blazars. After a short review of the status of the problem, we summarize two of our latest results -obtained from the comprehensive monitoring data compiled by the Boston University Blazar monitoring program - t...

  8. Optical counterparts of undetermined type $\\gamma$-ray Active Galactic Nuclei with blazar-like Spectral Energy Distributions

    CERN Document Server

    La Mura, G; Ciroi, S; Rafanelli, P; Salvetti, D; Berton, M; Cracco, V

    2015-01-01

    During its first four years of scientific observations, the Fermi Large Area Telescope (Fermi-LAT) detected 3033 $\\gamma$-ray sources above a 4$\\sigma$ significance level. Although most of the extra-Galactic sources are active galactic nuclei (AGN) of the blazar class, other families of AGNs are observed too, while a still high fraction of detections ($\\sim 30\\%$) remains with uncertain association or classification. According to the currently accepted interpretation, the AGN $\\gamma$-ray emission arises from inverse Compton (IC) scattering of low energy photons by relativistic particles confined in a jet that, in the case of blazars, is oriented very close to our line of sight. Taking advantage of data from radio and X-ray wavelengths, which we expect to be produced together with $\\gamma$-rays, providing a much better source localization potential, we focused our attention on a sample of $\\gamma$-ray Blazar Candidates of Undetermined Type (BCUs), starting a campaign of optical spectroscopic observations. The...

  9. Time structure of gamma-ray signals generated in line-of-sight interactions of cosmic rays from distant blazars

    CERN Document Server

    Prosekin, Anton; Kusenko, Alexander; Aharonian, Felix

    2012-01-01

    Blazars are expected to produce both gamma rays and cosmic rays. Therefore, observed high-energy gamma rays from distant blazars may contain a significant contribution from secondary gamma rays produced along the line of sight by the interactions of cosmic-ray protons with background photons. Unlike the standard models of blazars that consider only the primary photons emitted at the source, models which include the cosmic-ray contribution predict that even ~10 TeV photons should be detectable from distant objects with redshifts as high as z> 0.1. Secondary photons contribute to signals of point sources only if the intergalactic magnetic fields are very small, below ~10 femtogauss, and their detection can be used to set upper bounds on magnetic fields along the line of sight. Secondary gamma rays have distinct spectral and temporal features. We explore the temporal properties of such signals using a semi-analytical formalism and detailed numerical simulations, which account for all the relevant processes, incl...

  10. The “Far Site” Scenario for Gamma-ray Emission in Blazars

    Directory of Open Access Journals (Sweden)

    Agudo Iván

    2013-12-01

    Full Text Available Since the birth of γ-ray astronomy, locating the origin of γ-ray emission has been a fundamental problem for the knowledge of the emission processes involved. Densely time sampled monitoring programs with very long baseline interferometry and the Fermi Gamma-ray Space Telescope, together with several other facilities at most of the available spectral ranges (including polarization measurements if possible are starting to shed new light for the case of blazars. A successful observing technique consists on analyzing the timing of multi-waveband variations in the flux and linear polarization, as well as changes in ultra-high resolution VLBI images to associate the particularly bright events at different wavebands. Such association can be robustly demonstrated by probing the statistical significance of the correlation among spectral ranges through Monte Carlo simulations. The location of the high energy emission region is inferred through its relative location with regard to the associated low energy event observed in the VLBI images. In this paper, I present some of the latest results using this method that locate the GeV emission within the jets of blazars AO 0235+164 and OJ287 at > 12 pc from the central AGN engine, hence supporting the “far site” scenario.

  11. Deep Broadband Observations of the Distant Gamma-ray Blazar PKS 1424+240

    CERN Document Server

    Archambault, S; Behera, B; Beilicke, M; Benbow, W; Berger, K; Bird, R; Biteau, J; Bugaev, V; Byrum, K; Cardenzana, J V; Cerruti, M; Chen, X; Ciupik, L; Connolly, M P; Cui, W; Dumm, J; Errando, M; Falcone, A; Federici, S; Feng, Q; Finley, J P; Fleischhack, H; Fortson, L; Furniss, A; Galante, N; Gillanders, G H; Griffin, S; Griffiths, S T; Grube, J; Gyuk, G; Hanna, D; Holder, J; Hughes, G; Humensky, T B; Johnson, C A; Kaaret, P; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Kumar, S; Lang, M J; Madhavan, A S; Maier, G; McCann, A; Meagher, K; Moriarty, P; Mukherjee, R; Nieto, D; de Bhroithe, A O'Faolain; Ong, R A; Otte, A N; Park, N; Pohl, M; Popkow, A; Prokoph, H; Quinn, J; Ragan, K; Rajotte, J; Reyes, L C; Reynolds, P T; Richards, G T; Roache, E; Sembroski, G H; Shahinyan, K; Staszak, D; Telezhinsky, I; Tucci, J V; Tyler, J; Varlotta, A; Vassiliev, V V; Vincent, S; Wakely, S P; Weinstein, A; Welsing, R; Wilhelm, A; Williams, D A; Ackermann, M; Ajello, M; Albert, A; Baldini, L; Bastieri, D; Bellazzini, R; Bissaldi, E; Bregeon, J; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Charles, E; Chiang, J; Ciprini, S; Claus, R; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Di Venere, L; Drell, P S; Favuzzi, C; Franckowiak, A; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Grenier, I A; Guiriec, S; Jogler, T; Kuss, M; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Mayer, M; Mazziotta, M N; Michelson, P F; Mizuno, T; Monzani, M E; Morselli, A; Murgia, S; Nuss, E; Ohsugi, T; Ormes, J F; Perkins, J S; Piron, F; Pivato, G; Raino, S; Razzano, M; Reimer, A; Reimer, O; Ritz, S; Schaal, M; Sgro, C; Siskind, E J; Spinelli, P; Takahashi, H; Tibaldo, L; Tinivella, M; Troja, E; Vianello, G; Werner, M; Wood, M

    2014-01-01

    We present deep VERITAS observations of the blazar PKS 1424+240, along with contemporaneous Fermi Large Area Telescope, Swift X-ray Telescope and Swift UV Optical Telescope data between 2009 February 19 and 2013 June 8. This blazar resides at a redshift of $z\\ge0.6035$, displaying a significantly attenuated gamma-ray flux above 100 GeV due to photon absorption via pair-production with the extragalactic background light. We present more than 100 hours of VERITAS observations from three years, a multiwavelength light curve and the contemporaneous spectral energy distributions. The source shows a higher flux of (2.1$\\pm0.3$)$\\times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV in 2009 and 2011 as compared to the flux measured in 2013, corresponding to (1.02$\\pm0.08$)$\\times10^{-7}$ ph m$^{-2}$s$^{-1}$ above 120 GeV. The measured differential very high energy (VHE; $E\\ge100$ GeV) spectral indices are $\\Gamma=$3.8$\\pm$0.3, 4.3$\\pm$0.6 and 4.5$\\pm$0.2 in 2009, 2011 and 2013, respectively. No significant spectral change...

  12. Energetic solar electron spectra and gamma-ray observations

    Science.gov (United States)

    Dröge, Wolfgang

    1996-06-01

    We analyze solar energetic electron events measured with particle detectors on board of the ISEE-3 (ICE) and Helios 1 and 2 spacecraft. Energy spectra in the range 0.1 to tens of MeV are generated applying the results of a careful re-examination of the electron response function of the instruments. The spectral shapes of events observed simultaneously, among them five on all three s/c, are in very good agreement inspite of the sometimes considerable difference in azimuthal and radial distances of the s/c with respect to the flare. These findings suggest that transport processes at the Sun and in the interplanetary medium depend only weakly on the electron energy and that the observed spectra are representative of the accelerated electron spectra at the Sun. A comparison of the electron spectra with SMM gamma-ray spectra gives evidence for the existence of different acceleration and emission mechanism in flares with long (LDEs) and short duration (SDEs) soft X-ray emission.

  13. BLAZARS AS ULTRA-HIGH-ENERGY COSMIC-RAY SOURCES: IMPLICATIONS FOR TeV GAMMA-RAY OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Murase, Kohta [Department of Physics, Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Dermer, Charles D. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Takami, Hajime [Max Planck Institute for Physics, Foehringer Ring 6, 80805 Munich (Germany); Migliori, Giulia [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-10

    The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the comoving magnetic field strength, the bulk outflow Lorentz factor, and the emission region size. Assuming the validity of the SSC model, the Hillas condition shows that only in rare cases such sources accelerate protons to much above 10{sup 19} eV, so {approx}> 10{sup 20} eV ultra-high-energy cosmic rays (UHECRs) are likely to be heavy ions if powered by this type of radio-loud active galactic nuclei (AGNs). Survival of nuclei is shown to be possible in TeV BL Lacs and misaligned counterparts with weak photohadronic emissions. Another signature of hadronic production is intergalactic UHECR-induced cascade emission, which is an alternative explanation of the TeV spectra of some extreme non-variable blazars such as 1ES 0229+200 or 1ES 1101-232. We study this kind of cascade signal, taking into account effects of the structured extragalactic magnetic fields in which the sources should be embedded. We demonstrate the importance of cosmic-ray deflections on the {gamma}-ray flux, and show that required absolute cosmic-ray luminosities are larger than the average UHECR luminosity inferred from UHECR observations and can even be comparable to the Eddington luminosity of supermassive black holes. Future TeV {gamma}-ray observations using the Cerenkov Telescope Array and the High Altitude Water Cerenkov detector array can test for UHECR acceleration by observing >25 TeV photons from relatively low redshift sources such as 1ES 0229+200, and {approx}>TeV photons from more distant radio-loud AGNs.

  14. Detection of significant cm to sub-mm band radio and gamma-ray correlated variability in Fermi bright blazars

    CERN Document Server

    Fuhrmann, L; Chiang, J; Angelakis, E; Zensus, J A; Nestoras, I; Krichbaum, T P; Ungerechts, H; Sievers, A; Pavlidou, V; Readhead, A C S; Max-Moerbeck, W; Pearson, T J

    2014-01-01

    The exact location of the gamma-ray emitting region in blazars is still controversial. In order to attack this problem we present first results of a cross-correlation analysis between radio (11 cm to 0.8 mm wavelength, F-GAMMA program) and gamma-ray (0.1-300 GeV) ~ 3.5 year light curves of 54 Fermi-bright blazars. We perform a source stacking analysis and estimate significances and chance correlations using mixed source correlations. Our results reveal: (i) the first highly significant multi-band radio and gamma-ray correlations (radio lagging gamma rays) when averaging over the whole sample, (ii) average time delays (source frame: 76+/-23 to 7+/-9 days), systematically decreasing from cm to mm/sub-mm bands with a frequency dependence tau_r,gamma (nu) ~ nu^-1, in good agreement with jet opacity dominated by synchrotron self-absorption, (iii) a bulk gamma-ray production region typically located within/upstream of the 3 mm core region (tau_3mm,gamma=12+/-8 days), (iv) mean distances between the region of gamma-...

  15. Optical spectroscopic observations of $\\gamma$-ray blazar candidates VI. Further observations from TNG, WHT, OAN, SOAR and Magellan telescopes

    CERN Document Server

    Crespo, N Álvarez; Milisavljevic, D; Landoni, M; Chavushyan, V; Patiño-Álvarez, V; Masetti, N; Jiménez-Bailón, E; Strader, J; Chomiuk, L; Katagiri, H; Kagaya, M; Cheung, C C; Paggi, A; D'Abrusco, R; Ricci, F; La Franca, F; Smith, Howard A; Tosti, G

    2016-01-01

    Blazars, one of the most extreme class of active galaxies, constitute so far the largest known population of $\\gamma$-ray sources and their number is continuously growing in the Fermi catalogs. However in the latest release of the Fermi catalog there is still a large fraction of sources that are classified as blazar candidate of uncertain type (BCUs) for which optical spectroscopic observations are necessary to confirm their nature and their associations. In addition about 1/3 of the $\\gamma$-ray point sources listed in the Third Fermi-LAT Source Catalog (3FGL) are still unassociated and lacking an assigned lower energy counterpart. Since 2012 we have been carrying out an optical spectroscopic campaign to observe blazar candidates to confirm their nature. In this paper, the sixth of the series, we present optical spectroscopic observations for 30 $\\gamma$-ray blazar candidates from different observing programs we carried out with the TNG, WHT, OAN, SOAR and Magellan telescopes. We found that 21 out of 30 sour...

  16. Pulse Summing in the gamma-Ray Spectra

    CERN Document Server

    Gromov, K Ya; Samatov, Zh K; Chumin, V G

    2004-01-01

    It was shown that the peaks formed at the summing of the cascade gamma-rays pulses can be used for the determination of gamma-ray source activity and gamma-ray registration efficency. Possible sources of the determined quantities errors have been investigated. Such a method can be useful at the nuclear reaction cross section measurements, at background analysis in looking for rare decays and so on.

  17. The holistic analysis of gamma-ray spectra in instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Blaauw, M.

    1993-11-15

    The subject is the computerized analysis of the gamma-ray spectra in INAA. This analysis can be separated in three parts: The conversion of the spectra to information on {gamma}-ray energies and their relative intensities (spectrum reduction), the determination of the relation between the intensity of a {gamma}-ray and the amount of the corresponding element present in the sample (standardization) and the attribution of the {gamma}-ray energies to the elements, including the subsequent computation of the amounts of the elements (interpretation). A {gamma}-ray spectrum can be considered to be the linear sum of the {gamma}-ray spectra of the individual radionuclides present in the sample. Knowing the relative activities of the different radionuclides that may be produced by activation of a single element, a {gamma}-ray spectrum in INAA can also be considered to be the linear sum of the spectra of the elements. This principle has hitherto not been used in INAA to analyze the spectra by linear least squares methods, using all {gamma}-ray energies observed in the spectrum. The implementation of this `holistic` approach required that attention be paid to both spectrum reduction, standardization and interpretation. The thesis describes the methods developed for the holistic analysis of {gamma}-ray spectra in INAA, and present results of experimental comparisons between the holistic and other approaches. (orig./HP).

  18. Multifrequency Observations of the Gamma-Ray Blazar 3C 279 in Low-State during Integral AO-1

    CERN Document Server

    Collmar, W; Burwitz, V; Courvoisier, Thierry J L; Komossa, S; Kretschmar, P; Nieppola, E; Nilsson, K; Ojala, T; Pottschmidt, K; Pasanen, M; Pursimo, T; Sillanpää, A; Takalo, L; Tornikoski, M; Ungerechts, H; Valtaoja, E; Walter, R; Webster, R; Whiting, M; Wiik, K; Wong, I

    2004-01-01

    We report first results of a multifrequency campaign from radio to hard X-ray energies of the prominent gamma-ray blazar 3C 279 during the first year of the INTEGRAL mission. The variable blazar was found at a low activity level, but was detected by all participating instruments. Subsequently a multifrequency spectrum could be compiled. The individual measurements as well as the compiled multifrequency spectrum are presented. In addition, this 2003 broadband spectrum is compared to one measured in 1999 during a high activity period of 3C 279.

  19. Analysis of remotely accrued complex gamma ray spectra - proficiency test

    Energy Technology Data Exchange (ETDEWEB)

    Dowdall, M. (Norwegian Radiation Protection Authority (Norway))

    2009-03-15

    This report presents details pertaining to an exercise conducted as part of the NKS-B programme using synthetic gamma ray spectra to simulate the type of data that may be encountered in the early phase of a nuclear accident. The aim of the exercise was to provide participants with an opportunity to exercise in the type of situation and with the type of data that may result after a nuclear accident. Attempting to conduct such exercise internationally using actual samples presents practical and logistical difficulties and a synthetic spectrum was employed to negate some of these problems. A HPGe spectrum was synthesized containing a range of typical fallout isotopes and distributed, along with calibration information, to the participant laboratories. The participants were required to submit results within three hours of receipt and with the option of submitting further results within one week. The results provided by the laboratories indicate that all laboratories were able to identify and quantify some of the isotopes but only some labs were in a position to identify and quantify virtually all the constituents of the spectrum. Results indicate that there remain some problems with aspects such as true coincidence summation and using file formats with which labs may not be familiar with. The exercise provided a useful opportunity in exploring the possibilities of using synthetic spectra for exercise purposes and offered participants the chance to practice with the sort of scenario that may result after an accident. (au)

  20. Broadband turbulent spectra in gamma-ray burst light curves

    Energy Technology Data Exchange (ETDEWEB)

    Van Putten, Maurice H. P. M. [Astronomy and Space Science, Sejong University, 98 Gunja-Dong Gwangin-gu, Seoul 143-747 (Korea, Republic of); Guidorzi, Cristiano; Frontera, Filippo, E-mail: mvp@sejong.ac.kr [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)

    2014-05-10

    Broadband power density spectra offer a window to understanding turbulent behavior in the emission mechanism and, at the highest frequencies, in the putative inner engines powering long gamma-ray bursts (GRBs). We describe a chirp search method alongside Fourier analysis for signal detection in the Poisson noise-dominated, 2 kHz sampled, BeppoSAX light curves. An efficient numerical implementation is described in O(Nnlog n) operations, where N is the number of chirp templates and n is the length of the light-curve time series, suited for embarrassingly parallel processing. For the detection of individual chirps over a 1 s duration, the method is one order of magnitude more sensitive in signal-to-noise ratio than Fourier analysis. The Fourier-chirp spectra of GRB 010408 and GRB 970816 show a continuation of the spectral slope with up to 1 kHz of turbulence identified in low-frequency Fourier analysis. The same continuation is observed in an average spectrum of 42 bright, long GRBs. An outlook on a similar analysis of upcoming gravitational wave data is included.

  1. The observed radio/gamma-ray emission correlation for blazars with the Fermi-LAT and the RATAN-600 data

    CERN Document Server

    Mufakharov, T; Sotnikova, Yu; Naiden, Ya; Erkenov, A

    2015-01-01

    We study the correlation between gamma-ray and radio band radiation for 123 blazars, using the Fermi-LAT first source catalog (1FGL) and the RATAN-600 data obtained at the same period of time (within a few months). We found an apparent positive correlation for BL Lac and flat-spectrum radio quasar (FSRQ) sources from our sample through testing the value of the Pearson product-moment correlation coefficient. The BL Lac objects show higher values of the correlation coefficient than FSRQs at all frequencies, except 21.7 GHz, and at all bands, except $10-100$ GeV, typically at high confidence level (> 99%). At higher gamma-ray energies the correlation weakens and even becomes negative for BL Lacs and FSRQs. For BL Lac blazars, the correlation of the fluxes appeared to be more sensitive to the considered gamma-ray energy band, than to the frequency, while for FSRQ sources the correlation changed notably both with the considered radio frequency and gamma-ray energy band. We used a data randomization method to quant...

  2. Evidence for the Secondary Emission as the Origin of Hard Spectra in TeV Blazars

    CERN Document Server

    Zheng, Y G

    2016-01-01

    We develop a model for a possible origin of hard very high energy spectra from a distant blazar. In the model, both the primary photons produced in the source and secondary photons produced outside the source contribute to the observed high energy $\\gamma$-rays emission. That is, the primary photons are produced in the source through the synchrotron self-Compton (SSC) process, and the secondary photons are produced outside the source through high energy protons interaction with the background photons along the line of sight. We apply the model to a characteristic case was the very high energy (VHE) $\\gamma$-ray emissions in distant blazar 1ES 1101-232. Assuming a suitable electron and proton spectra, we obtain excellent fits to observed spectra of distant blazar 1ES 1101-232. This indicated that the surprisingly low attenuation of high energy $\\gamma$-rays, especially for the shape of the very high energy $\\gamma$-rays tail of the observed spectra, can be explained by secondary $\\gamma$-rays produced in inter...

  3. Searching for Hard X-Ray Emission from Radio-Loud Gamma-Ray Quiet Blazars

    Science.gov (United States)

    Wada, Katelyn R.; Macomb, Daryl J.

    2017-01-01

    While the Swift BAT AGN source catalog is dominated by radio-quiet Seyfert AGN, around 15% of the sample are radio galaxies or blazars (Ajello et al., 2009). There is an overlap of about 40 sources between the Fermi LAT and Swift BAT detected AGN populations, only a few percent of the Fermi total. These small numbers are presumably a result of selection bias as the SSC peak often falls squarely within the Fermi LAT bandpass while the Swift BAT sensitivity is highest in the spectral region straddling the synchrotron and SSC components.Recently however, a significant sample of bright (F 15GHz >1.5 Jy), radio selected AGN was found, surprisingly, to overlap with Fermi at only the ~80% level (Lister et. al., 2015). This could be a result of selection bias as well as the gamma-ray quiet objects of that survey having synchrotron peak frequencies of 10^13.4 Hz or less. On the other hand it could be due to deficient Doppler boosting among that ~20%. One can, in principle, test the former possibility by assessing emission from the low-energy wings of putative sub-GeV peaked SSC components. We describe our ongoing joint Swift BAT analysis project that attempts to address this possibility. Initial results, comparisons with INTEGRAL observations, and conclusions are presented.

  4. On the direct correlation between gamma-rays and PeV neutrinos from blazars

    CERN Document Server

    Gao, Shan; Winter, Walter

    2016-01-01

    We study the frequently used assumption in multi-messenger astrophysics that the gamma-ray and neutrino fluxes are directly connected because they are assumed to be produced by the same photohadronic production chain. An interesting candidate source for this test is the flat-spectrum radio quasar PKS B1424-418, which recently called attention of a potential correlation between an IceCube PeV-neutrino event and its burst phase. We simulate both the multi-waveband photon and the neutrino emission from this source using a self-consistent radiation model. We demonstrate that a simple hadronic model cannot adequately describe the spectral energy distribution for this source, but a lepto-hadronic model with sub-dominant hadronic component can reproduce the multi-waveband photon spectrum observed during various activity phases of the blazar. As a conclusion, up to about 0.3 neutrino events may coincide with the burst, which implies that the leptonic contribution dominates in the relevant energy band. We also demonst...

  5. VizieR Online Data Catalog: Gamma-ray bright blazars spectrophotometry (Williamson+, 2014)

    Science.gov (United States)

    Williamson, K. E.; Jorstad, S. G.; Marscher, A. P.; Larionov, V. M.; Smith, P. S.; Agudo, I.; Arkharov, A. A.; Blinov, D. A.; Casadio, C.; Efimova, N. V.; Gomez, J. L.; Hagen-Thorn, V. A.; Joshi, M.; Konstantinova, T. S.; Kopatskaya, E. N.; Larionova, E. G.; Larionova, L. V.; Malmrose, M. P.; McHardy, I. M.; Molina, S. N.; Morozova, D. A.; Schmidt, G. D.; Taylor, B. W.; Troitsky, I. S.

    2017-03-01

    Since 2007, we have been collecting multi-waveband fluxes, polarization measurements, and radio images of blazars to provide the data for understanding the physics of the jets (see, e.g., Marscher 2012, arXiv:1201.5402). This study includes 28 of the original 30 objects selected for the monitoring campaign, confirmed as γ-ray sources by EGRET (Energetic γ-Ray Experiment Telescope) on the Compton Gamma Ray Observatory, have an R-band brightness exceeding 18 mag (bright enough for optical polarization measurements at a 1-2 m class optical telescope without needing excessive amounts of telescope time), exceed 0.5 Jy at 43 GHz, and have a declination accessible to the collaboration's observatories (> - 30°). Three additional BL Lacs (1055+018, 1308+326, and 1749+096) and two FSRQs (3C345 and 3C446) included in this analysis were among those added when they were detected as γ-ray sources by the Fermi LAT (Abdo et al. 2009, J/ApJ/700/597). (4 data files).

  6. Gamma-ray Flaring Emission in Blazar OJ287 Located in the Jet >14 pc from the Black Hole

    CERN Document Server

    Agudo, I; Marscher, A P; Larionov, V M; Gomez, J L; Lahteenmaki, A; Gurwell, M A; Smith, P S; Wiesemeyer, H; Thum, C; Heidt, J

    2011-01-01

    We combine the Fermi-LAT light curve of the BL Lacertae type blazar OJ287 with time-dependent multi-waveband flux and linear polarization observations and submilliarcsecond-scale polarimetric images at lambda=7mm to locate the gamma-ray emission in prominent flares in the jet of the source >14pc from the central engine. We demonstrate a highly significant correlation between the strongest gamma-ray and millimeter-wave flares through Monte Carlo simulations. The two reported gamma-ray peaks occurred near the beginning of two major millimeter-wave outbursts, each of which is associated with a linear polarization maximum at millimeter wavelengths. Our very long baseline array observations indicate that the two millimeter-wave flares originated in the second of two features in the jet that are separated by >14pc. The simultaneity of the peak of the higher-amplitude gamma-ray flare and the maximum in polarization of the second jet feature implies that the gamma-ray and millimeter-wave flares are cospatial and occu...

  7. Fermi-LAT Detection of Gravitational Lens Delayed Gamma-Ray Flares from Blazar B0218+357

    Science.gov (United States)

    Cheung, C. C.; Larsson, S.; Scargle, J. D.; Amin, M. A.; Blandford, R. D.; Bulmash, D.; Chiang, J.; Ciprini, S.; Corbet, R. D. H.; Falco, E. E.; Marshall, P. J.; Wood, D. L.; Ajello, M.; Bastieri, D.; Chekhtman, A.; D'Ammando, F.; Giroletti, M.; Grove, J. E.; Lott, B.; Ohja, R.; Orienti, M.; Perkins, J. S.; Razzano, M.; Smith, A. W.; Thompson, D. J.; Wood, K. S.

    2014-01-01

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach greater than 20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 plus or minus 0.16 days (1 sigma) that is approximately 1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such approximately 8-10 day-long sequences within an approximately 4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with approximately 1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of approximately 3-6 hours implying as well extremely compact gamma-ray emitting regions.

  8. Augmentation of ENDF/B fission product gamma-ray spectra by calculated spectra

    Energy Technology Data Exchange (ETDEWEB)

    Katakura, J. (Japan Atomic Energy Research Inst., Tokai-mura, Naka-gun, Ibaraki-ken (Japan)); England, T.R. (Los Alamos National Lab., NM (United States))

    1991-11-01

    Gamma-ray spectral data of the ENDF/B-V fission product decay data file have been augmented by calculated spectra. The calculations were performed with a model using beta strength functions and cascade gamma-ray transitions. The calculated spectra were applied to individual fission product nuclides. Comparisons with several hundred measured aggregate gamma spectra after fission were performed to confirm the applicability of the calculated spectra. The augmentation was extended to a preliminary ENDF/B-VI file, and to beta spectra. Appendix C provides information on the total decay energies for individual products and some comparisons of measured and aggregate values based on the preliminary ENDF/B-VI files. 15 refs., 411 figs.

  9. MCNP modelling of scintillation-detector gamma-ray spectra from natural radionuclides

    NARCIS (Netherlands)

    Hendriks, Peter; Maucec, M; de Meijer, RJ

    2002-01-01

    gamma-ray spectra of natural radionuclides are simulated for a BGO detector in a borehole geometry using the Monte Carlo code MCNP. All gamma-ray emissions of the decay of K-40 and the series of Th-232 and U-238 are used to describe the source. A procedure is proposed which excludes the time-consumi

  10. Equipartition gamma-ray blazars and the location of the gamma-ray emission site in 3C 279

    Energy Technology Data Exchange (ETDEWEB)

    Dermer, Charles D. [Code 7653, Space Science Division, U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Cerruti, Matteo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Lott, Benoit [Centre d' Études Nucléaires Bordeaux Gradignan, Université de Bordeaux, CNRS/IN2P3, UMR 5797, F-33175 Gradignan (France); Boisson, Catherine; Zech, Andreas, E-mail: charles.dermer@nrl.navy.mil, E-mail: matteo.cerruti@cfa.harvard.edu [Laboratoire Univers et THeories (LUTH), Observatoire de Paris-Meudon, 5 Place Jules Janssen, F-92195 Meudon Cedex (France)

    2014-02-20

    Blazar spectral models generally have numerous unconstrained parameters, leading to ambiguous values for physical properties like Doppler factor δ{sub D} or fluid magnetic field B'. To help remedy this problem, a few modifications of the standard leptonic blazar jet scenario are considered. First, a log-parabola function for the electron distribution is used. Second, analytic expressions relating energy loss and kinematics to blazar luminosity and variability, written in terms of equipartition parameters, imply δ{sub D}, B', and the peak electron Lorentz factor γ{sub pk}{sup ′}. The external radiation field in a blazar is approximated by Lyα radiation from the broad-line region (BLR) and ≈0.1 eV infrared radiation from a dusty torus. When used to model 3C 279 spectral energy distributions from 2008 and 2009 reported by Hayashida et al., we derive δ{sub D} ∼ 20-30, B' ∼ few G, and total (IR + BLR) external radiation field energy densities u ∼ 10{sup –2}-10{sup –3} erg cm{sup –3}, implying an origin of the γ-ray emission site in 3C 279 at the outer edges of the BLR. This is consistent with the γ-ray emission site being located at a distance R ≲ Γ{sup 2} ct {sub var} ∼ 0.1(Γ/30){sup 2}(t {sub var}/10{sup 4} s) pc from the black hole powering 3C 279's jets, where t {sub var} is the variability timescale of the radiation in the source frame, and at farther distances for narrow-jet and magnetic-reconnection models. Excess ≳ 5 GeV γ-ray emission observed with Fermi LAT from 3C 279 challenges the model, opening the possibility of a second leptonic component or a hadronic origin of the emission. For low hadronic content, absolute jet powers of ≈10% of the Eddington luminosity are calculated.

  11. Optical Outburst of the Gamma-Ray Blazar S4 0954+658 in March-April 2011

    CERN Document Server

    Larionov, V M; Marscher, A P; Morozova, D A; Troitsky, I S; Blinov, D A; Kopatskaya, E N; Larionova, E G

    2011-01-01

    We present optical photopolarimetric observations of the BL Lac object S4 0954+658 obtained with the 70-cm telescope in Crimea, 40-cm telescope in St.Petersburg, and 1.8-m Perkins telescope at Lowell Observatory (Flagstaff, Az). After a faint state with a brightness level R ~17.6 mag registered in the first half of January 2011, the optical brightness of the source started to rise and reached ~14.8 mag during the middle of March, showing flare-like behavior. The most spectacular case of intranight variability was observed during the night of 2011 March 9, when the blazar brightened by ~0.7 mag within ~7 hours. During the rise of the flux the position angle of optical polarization rotated smoothly over more than 200 degrees. S4 0954+658 is a gamma-ray blazar with gamma-ray flux of (5{\\pm}3)x10^{-10} phot/cm^2/s according to the Fermi 11-month Catalog Extragalactic Sources. Our analysis of contemporaneous Fermi LAT data does not show any sign of increased gamma-ray activity above the detection threshold except ...

  12. Broad-band continuum and line emission of the gamma-ray blazar PKS 0537-441

    CERN Document Server

    Pian, E; Hartman, R C; Maraschi, L; Tavecchio, F; Tornikoski, M; Treves, A; Urry, C M; Ballo, L; Mukherjee, R; Scarpa, R; Thompson, D J; Pesce, J E

    2002-01-01

    PKS 0537-441, a bright gamma-ray emitting blazar, was observed at radio, optical, UV and X-ray frequencies during various EGRET pointings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazar component, which we attribute to inverse Compton scattering. The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the bolometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by IUE in...

  13. MCRaT Simulations of Long Gamma Ray Burst Spectra and Light Curves

    Science.gov (United States)

    Parsotan, T.; Lazzati, D.

    2016-10-01

    We present the results of the Monte Carlo Radiation Transfer, MCRaT, simulations of long gamma ray bursts from a variety of stellar progenitors and jet properties, including variable engines. We also compare the resulting spectra to observed data.

  14. Gamma-ray flaring activity from the gravitationally lensed blazar PKS 1830-211 observed by Fermi LAT

    CERN Document Server

    Abdo, A A; Ajello, M; Allafort, A; Amin, M A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bonamente, E; Borgland, A W; Bregeon, J; Brigida, M; Buehler, R; Bulmash, D; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cavazzuti, E; Cecchi, C; Charles, E; Cheung, C C; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Corbet, R H D; Cutini, S; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Finke, J; Focke, W B; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Grenier, I A; Grove, J E; Guiriec, S; Hadasch, D; Hayashida, M; Hays, E; Hughes, R E; Inoue, Y; Jackson, M S; Jogler, T; Jòhannesson, G; Johnson, A S; Kamae, T; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Mazziotta, M N; Mehault, J; Michelson, P F; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Paneque, D; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reyes, L C; Ritz, S; Romoli, C; Roth, M; Parkinson, P M Saz; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Takahashi, H; Takeuchi, Y; Tanaka, T; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Tronconi, V; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Werner, M; Winer, B L; Wood, K S

    2014-01-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the highly dust-absorbed, reddened, and MeV-peaked flat spectrum radio quasar PKS 1830-211 (z=2.507). Its apparent isotropic gamma-ray luminosity (E>100 MeV) averaged over $\\sim$ 3 years of observations and peaking on 2010 October 14/15 at 2.9 X 10^{50} erg s^{-1}, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time delayed variability to follow about 25 days after a primary flare, with flux about a factor 1.5 less. Two large gamma-ray flares of PKS 1830-211 have been detected by the LAT in the considered period and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the gamma rays flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program ...

  15. Fermi-LAT Detection of Gravitational Lens Delayed Gamma-ray Flares from Blazar B0218+357

    CERN Document Server

    Cheung, C C; Scargle, J D; Amin, M A; Blandford, R D; Bulmash, D; Chiang, J; Ciprini, S; Corbet, R H D; Falco, E E; Marshall, P J; Wood, D L; Ajello, M; Bastieri, D; Chekhtman, A; D'Ammando, F; Giroletti, M; Grove, J E; Lott, B; Ojha, R; Orienti, M; Perkins, J S; Razzano, M; Smith, A W; Thompson, D J; Wood, K S

    2014-01-01

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach >20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 +/- 0.16 days (1 sigma) that is ~1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such ~8-10 day-long sequences within a ~4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with ~1, thus systematically smaller than those from radio observations. During the ...

  16. Distribution of iron and titanium on the lunar surface from lunar prospector gamma ray spectra

    Science.gov (United States)

    Prettyman, T.

    2001-01-01

    Gamma ray pulse height spectra acquired by the Lunar Prospector (LP) Gamma-Ray Spectrometer (GRS) contain information on the abundance of major elements in the lunar surface, including O, Si, Ti, Al, Fe, Mg, Ca, K, and Th. With the exception of Th and K, prompt gamma rays produced by cosmic ray interactions with surface materials are used to determine elemental abundance. Most of these gamma rays are produced by inelastic scattering of fast neutrons and by neutrons and by neutron capture. The production of neutron-induced gamma rays reaches a maximum deep below the surface (e.g. approximately 140g/cm2 for inelastic scattering and approximately 50 g/cm2 for capture). Consequently, gamma rays sense the bulk composition of lunar materials, in contrast to optical methods (e.g. Clementine Spectral Reflectance (CSR)), which only sample the top few microns. Because most of the gamma rays are produced deep beneath the surface, few escape unscattered and the continuum of scattered gamma rays dominates the spectrum. In addition, due to the resolution of the spectrometer, there are few well-isolated peaks and peak fitting algorithms must be used to deconvolve the spectrum on order to determine the contribution of individual elements.

  17. The Utilization of the RCT Telescope for Studies of Blazar Continuum Emission during the GLAST Gamma-Ray Mission

    Science.gov (United States)

    Mattox, J. R.; Cominsky, L.; Spear, G.; Carinni, M.; Gelderman, R.; McGruder, C. H.; Guinan, E.; Howell, S.; Davis, D. R.; Everett, M.; Walter, D. K.

    2003-05-01

    The RCT Consortium successfully proposed to refurbish and automate the Kitt Peak 1.3-m telescope, and to operate it as the Robotically Controlled Telescope (RCT). Refurbishment is nearing completion, and observations have begun. The capabilities of the RCT for broad-band optical photometry will be described. A program for systematic optical monitoring of blazars with the RCT is planned. We anticipate that an important utilization of the RCT will be in conjunction with multi-wavelength studies of blazar continuum emission during the operation of NASA's Gamma-ray Large Area Space Telescope (GLAST) satellite, now scheduled for launch in 2006. Refurbishment of the RCT has been made possible by NASA grant NAG58762.

  18. Review of Past Nuclear Accidents: Source Terms and Recorded Gamma-Ray Spectra

    OpenAIRE

    Sanderson, D.C.W.; Cresswell, A.; Allyson, J.D.; McConville, P.; Department of the Environment: Radioactive Substances Division

    1997-01-01

    Airborne gamma ray spectrometry using high volume scintillation detectors, optionally in conjunction with Ge detectors, has potential for making rapid environmental measurements in response to nuclear accidents. A literature search on past nuclear accidents has been conducted to define the source terms which have been experienced so far. Selected gamma ray spectra recorded after past accidents have also been collated to examine the complexity of observed behaviour.

  19. Discovery of a non-blazar $\\gamma$-ray transient near the Galactic plane GRO J1838-04

    CERN Document Server

    Tavani, M; Mattox, J R; Halpern, J; Thompson, D J; Kanbach, G; Hermsen, W; Zhang, S N; Foster, R S

    1997-01-01

    We report the discovery of a remarkable gamma-ray transient source near the Galactic plane, GRO J1838-04. This source was serendipitously discovered by EGRET in June 1995 with a peak intensity of 4 E(-6) ph/cm/cm/s (for photon energies larger than 100 MeV) and a 5.9 sigma significance. At that time, GRO J1838-04 was the second brightest gamma-ray source in the sky. A subsequent EGRET pointing in late September 1995 detected the source at a flux smaller than its peak value by a factor of 7. We determined that no radio-loud spectrally-flat blazar is within the error box of GRO J1838-04. We discuss the origin of the \\ggg-ray transient source and show that interpretations in terms of AGNs or isolated pulsars are highly problematic. GRO J1838-04 provides strong evidence for the existence of a new class of variable gamma-ray sources.

  20. Searching for $\\gamma$-ray signature in WHSP blazars: Fermi-LAT detection of 150 excess signal in the 0.3-500 GeV band

    CERN Document Server

    Arsioli, Bruno

    2016-01-01

    A direct search of $\\gamma$-ray emission centered on multi-frequency selected candidates is a valuable complementary approach to the standard search adopted in current $\\gamma$-ray Fermi-LAT catalogs. Our candidates are part of the 2WHSP sample, that was assembled with the aim of providing targets for Imaging Atmospheric Cherenkov Telescopes (IACT), and is currently the largest set of high synchrotron peaked (HSP) blazars. We perform a likelihood analysis with the Fermi Science Tools using positions from 400 2WHSP blazars as seeds of tentative $\\gamma$-ray sources. This enabled us to detect 150 $\\gamma$-ray excess signals that have not yet been reported in previous $\\gamma$-ray catalogs (1FGL, 2FGL, and 3FGL). By identifying new sources, we solve a fraction of the extragalactic isotropic $\\gamma$-ray background (IGRB) composition, improving the description of the $\\gamma$-ray sky. Our analysis considers the 0.3-500 GeV energy band, integrating over 7.2 yrs of Fermi-LAT observation and making use of the Pass 8...

  1. Through The Ring Of Fire: $\\gamma$-Ray Variability In Blazars By A Moving Plasmoid Passing A Local Source Of Seed Photons

    CERN Document Server

    MacDonald, Nicholas R; Jorstad, Svetlana G; Joshi, Manasvita

    2015-01-01

    Blazars exhibit flares across the electromagnetic spectrum. Many $\\gamma$-ray flares are highly correlated with flares detected at optical wavelengths; however, a small subset appears to occur in isolation, with little or no variability detected at longer wavelengths. These "orphan" $\\gamma$-ray flares challenge current models of blazar variability, most of which are unable to reproduce this type of behavior. We present numerical calculations of the time-variable emission of a blazar based on a proposal by Marscher et al. (2010) to explain such events. In this model, a plasmoid ("blob") propagates relativistically along the spine of a blazar jet and passes through a synchrotron-emitting ring of electrons representing a shocked portion of the jet sheath. This ring supplies a source of seed photons that are inverse-Compton scattered by the electrons in the moving blob. The model includes the effects of radiative cooling, a spatially varying magnetic field, and acceleration of the blob's bulk velocity. Synthetic...

  2. THE SEARCH FOR BLAZARS AMONG THE UNIDENTIFIED EGRET gamma-RAY SOURCES

    Directory of Open Access Journals (Sweden)

    Pieter J. Meintjes

    2013-12-01

    Full Text Available In this paper we report the results of a multi-wavelength follow-up study of selected flat spectrum extragalactic radio-optical counterparts within the error boxes of 13 unidentified EGRET sources. Two of these previously unidentified counterparts have been selected for optical photometric and spectroscopic follow-up studies. Spectroscopic observations made with the 4.1m SOAR telescope at Cerro Pachón, Chile, showed that the spectra of the optical counterparts of 3EG J0821−5814 (PKS J0820−5705 and 3EG J0706−3837 (PMN J0710−3835 correspond to a flat spectrum radio quasar (FSRQ and LINER-Seyfert I galaxy respectively. Optical photometry of these sources, performed with the 1.0m telescope at Sutherland (South-Africa shows noticeable intranight variability for PKS J0820−5705, as well as a 5 sigma variation of the mean brightness in the R-filter over a timescale of three nights. Significant variability has been detected in the B-band for PMN J0710−3835 as well. The gamma-ray spectral indices of all 13 candidates range between 2–3, correlating well with the BL Lacs and FSRQs detected with Fermi-LAT in the first 11 months of operation.

  3. PKS 2123-463: a confirmed gamma-ray blazar at high redshift

    CERN Document Server

    D'Ammando, F; Schady, P; Finke, J; Orienti, M; Greiner, J; Kann, D A; Ojha, R; Foley, A R; Stevens, J; Blanchard, J M; Edwards, P G; Kadler, M; Lovell, J E J

    2012-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm ide...

  4. OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. VI. FURTHER OBSERVATIONS FROM TNG, WHT, OAN, SOAR, AND MAGELLAN TELESCOPES

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez Crespo, N.; Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Milisavljevic, D.; Paggi, A.; Smith, Howard A. [Harvard—Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Landoni, M. [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy); Chavushyan, V.; Patiño-Álvarez, V. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Apartado Postal 51-216, 72000 Puebla, México (Mexico); Masetti, N. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129, Bologna (Italy); Jiménez-Bailón, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 877, Ensenada, 22800 Baja California, México (Mexico); Strader, J.; Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Katagiri, H.; Kagaya, M. [College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito 310-8512 (Japan); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); D’Abrusco, R. [Department of Physical Sciences, University of Napoli Federico II, via Cinthia 9, I-80126 Napoli (Italy); Ricci, F.; La Franca, F. [Dipartimento di Matematica e Fisica, Università Roma Tre, via della Vasca Navale 84, I-00146, Roma (Italy); and others

    2016-04-15

    Blazars, one of the most extreme classes of active galaxies, constitute so far the largest known population of γ-ray sources, and their number is continuously growing in the Fermi catalogs. However, in the latest release of the Fermi catalog there is still a large fraction of sources that are classified as blazar candidates of uncertain type (BCUs) for which optical spectroscopic observations are necessary to confirm their nature and their associations. In addition, about one-third of the γ-ray point sources listed in the Third Fermi-LAT Source Catalog (3FGL) are still unassociated and lacking an assigned lower-energy counterpart. Since 2012 we have been carrying out an optical spectroscopic campaign to observe blazar candidates to confirm their nature. In this paper, the sixth of the series, we present optical spectroscopic observations for 30 γ-ray blazar candidates from different observing programs we carried out with the Telescopio Nazionale Galileo, William Herschel Telescope, Observatorio Astronómico Nacional, Southern Astrophysical Research Telescope, and Magellan Telescopes. We found that 21 out of 30 sources investigated are BL Lac objects, while the remaining targets are classified as flat-spectrum radio quasars showing the typical broad emission lines of normal quasi-stellar objects. We conclude that our selection of γ-ray blazar candidates based on their multifrequency properties continues to be a successful way to discover potential low-energy counterparts of the Fermi unidentified gamma-ray sources and to confirm the nature of BCUs.

  5. GAMMA-RAY LIGHT CURVE AND PHASE-RESOLVED SPECTRA FROM GEMINGA PULSAR

    Institute of Scientific and Technical Information of China (English)

    ZHANG LI; BIAN XIA; MEI DONG-CHENG

    2001-01-01

    We calculate the light curve and phase-resolved spectra of Geminga in a three-dimensional pulsar magnetosphere model. The light curve of gamma-rays is consistent with that observed if the magnetic inclination and viewing angle are~50° and~86° respectively. We also model the phase-resolved spectra of the Geminga pulsar.

  6. Gamma-ray spectra of hexane in gas phase and liquid phase

    CERN Document Server

    Ma, Xiaoguang

    2012-01-01

    Theoretical gamma-ray spectra of molecule hexane have been calculated and compared with the experimental results in both gas (Surko et al, 1997) and liquid (Kerr et al, 1965) phases. The present study reveals that in gas phase not all valence electrons of hexane exhibit the same probability to annihilate a positron. Only the positrophilic electrons in the valence space dominate the gamma-ray spectra, which are in good agreement with the gas phase measurement. When hexane is confined in liquid phase, however, the intermolecular interactions ultimately eliminate the free molecular orientation and selectivity for the positrophilic electrons in the gas phase. As a result, the gamma-ray spectra of hexane become an averaged contribution from all valence electrons, which is again in agreement with liquid phase measurement. The roles of the positrophilic electrons in annihilation process for gas and liquid phases of hexane have been recognized for the first time in the present study.

  7. The gamma-ray spectra of halocarbons in positron–electron annihilation process

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.G., E-mail: hsiaoguangma@188.com; Zhu, Y.H.; Liu, Y.

    2015-10-09

    The gamma-ray spectra of the positron annihilation process in methane CH{sub 4} and its fully substituent halocarbons CF{sub 4}, CCl{sub 4}, and CBr{sub 4} have been studied. The theoretical predictions of the inner valence electrons agree well with the experimental measurements for all these molecules. That the outermost s electrons in carbon or halogen atoms dominate the gamma-ray spectra has been confirmed for the first time. The positrophilic site has also been found in these molecules and understanding of annihilation processes in molecules has been enhanced. - Highlights: • The inner valence electrons in molecules dominate the Doppler shift. • The outermost atomic s electrons in molecules show dominance in the gamma-ray spectra. • The positron can penetrate deeper inside molecules in positrophilic sites to annihilate with inner valence electrons.

  8. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    Science.gov (United States)

    DAmmando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; Blanchard, J. M.; Edwards, P. G.; Kadler, M.; Lovell, J. E. J.

    2012-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the First Fermi-LAT source catalog with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the Second Fermi-LAT source catalog. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift, GROND, ATCA, Ceduna, and KAT-7 observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, UV and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 +/- 0.05 using GROND and Swift/UVOT observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67. We fit the broadband spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disk component is necessary to explain the optical/UV emis- sion detected by Swift/UVOT. This disk has a luminosity of 1.8x1046 erg s-1, and a fit to the disk emission assuming a Schwarzschild (i.e., nonrotating) black hole gives a mass of 2 x 109 M(solar mass). This is the first black hole mass estimate for this source.

  9. 1WHSP: an IR-based sample of $\\sim$1,000 VHE $\\gamma$-ray blazar candidates

    CERN Document Server

    Arsioli, B; Giommi, P; Padovani, P; Marrese, P M

    2015-01-01

    Blazars are the dominant type of extragalactic sources at microwave and at $\\gamma$-ray energies. In the most energetic part of the electromagnetic spectrum (E>100GeV) a large fraction of high Galactic latitude sources are blazars of the High Synchrotron Peaked (HSP) type, that is BL Lac objects with synchrotron power peaking in the UV or in the X-ray band. HSP blazars are remarkably rare, with only a few hundreds of them expected to be above the sensitivity limits of currently available surveys. To find these very uncommon objects, we have devised a method that combines ALLWISE survey data with multi-frequency selection criteria. The sample was defined starting from a primary list of infrared colour-colour selected sources from the ALLWISE all sky survey database, and applying further restrictions on IR-radio and IR-X-ray flux ratios. Using a polynomial fit to the multi-frequency data (radio to X-ray) we estimated synchrotron peak frequencies and fluxes of each object. We assembled a sample including 992 sou...

  10. Gamma-ray observations of blazars and the intergalactic magnetic field spectrum

    CERN Document Server

    Caprini, Chiara

    2015-01-01

    Very-high energy observations of blazars can be used to constrain the strength of the intergalactic magnetic field. A simplifying assumption which is often made is that of a magnetic field of constant strength composed by randomly oriented and identical cells. In this paper, we demonstrate that a more realistic description of the structure of the intergalactic magnetic field is indeed needed. If such a description is adopted, the observational bounds on the field strength are significantly affected in the limit of short field correlation lengths: in particular, they acquire a dependence on the magnetic field power spectrum. In the case of intergalactic magnetic fields which are generated causally, for which the magnetic field large scale spectral index is $n_B\\geq 2$ and even, the observational lower bound becomes more constraining by about a factor 3. If instead $-3spectra can in principle be produced during inflatio...

  11. A large high-energy gamma-ray flare from the blazar 3C 273

    OpenAIRE

    Collmar, W.; Reimer, O.; Bennett, K.; Bloemen, H.; Hermsen, W.; Lichti, G. G.; Ryan, J.; Schoenfelder, V.; Steinle, H.; Williams, O. R.; Boettcher, M.

    2000-01-01

    The Compton Gamma-Ray Observatory (CGRO) experiments EGRET and COMPTEL observed the Virgo sky region continuously for 7 weeks between December 10, 1996 and January 28, 1997. The prominent quasar 3C~273 was found to be the brightest source in gamma-rays and was significantly detected by EGRET and COMPTEL. The EGRET experiment observed a time-variable flux at energies above 100 MeV, which reached in a 2-week flaring period (December 30, 1996 to January 14, 1997) its highest flux level observed ...

  12. PKS 2123-463: A Confirmed Gamma-ray Blazar at High Redshift

    Science.gov (United States)

    D'Ammando, F.; Rau, A.; Schady, P.; Finke, J.; Orienti, M.; Greiner, J.; Kann, D. A.; Ojha, R.; Foley, A. R.; Stevens, J.; Blanchard, J. M.; Edwards, P. G.; Kadler, M.; Lovell, J. E.

    2013-01-01

    The flat spectrum radio quasar (FSRQ) PKS 2123-463 was associated in the first Fermi- Large Area Telescope (LAT) source catalogue with the gamma-ray source 1FGL J2126.1-4603, but when considering the full first two years of Fermi observations, no gamma-ray source at a position consistent with this FSRQ was detected, and thus PKS 2123-463 was not reported in the second Fermi-LAT source catalogue. On 2011 December 14 a gamma-ray source positionally consistent with PKS 2123-463 was detected in flaring activity by Fermi-LAT. This activity triggered radio-to-X-ray observations by the Swift,Gamma-ray Optical/Near-Infrared Detector (GROND), Australia Telescope Compact Array (ATCA), Ceduna and Seven Dishes Karoo Array Telescope (KAT-7) observatories. Results of the localization of the gamma-ray source over 41 months of Fermi-LAT operation are reported here in conjunction with the results of the analysis of radio, optical, ultraviolet (UV) and X-ray data collected soon after the gamma-ray flare. The strict spatial association with the lower energy counterpart together with a simultaneous increase of the activity in optical, UV, X-ray and gamma-ray bands led to a firm identification of the gamma-ray source with PKS 2123-463. A new photometric redshift has been estimated as z = 1.46 plus or minus 0.05 using GROND and Swift Ultraviolet/Optical Telescope (UVOT) observations, in rough agreement with the disputed spectroscopic redshift of z = 1.67.We fit the broad-band spectral energy distribution with a synchrotron/external Compton model. We find that a thermal disc component is necessary to explain the optical/UV emission detected by Swift/UVOT. This disc has a luminosity of approximately 1.8 x 10(exp 46) erg s(exp -1), and a fit to the disc emission assuming a Schwarzschild (i.e. non-rotating) black hole gives a mass of approximately 2 x 10(exp 9) solar mass. This is the first black hole mass estimate for this source.

  13. An MS-DOS-based program for analyzing plutonium gamma-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Ruhter, W.D.; Buckley, W.M.

    1989-09-07

    A plutonium gamma-ray analysis system that operates on MS-DOS-based computers has been developed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra for plutonium isotopics. The program titled IAEAPU consists of three separate applications: a data-transfer application for transferring spectral data from a CICERO multichannel analyzer to a binary data file, a data-analysis application to analyze plutonium gamma-ray spectra, for plutonium isotopic ratios and weight percents of total plutonium, and a data-quality assurance application to check spectral data for proper data-acquisition setup and performance. Volume 3 contains the software listings for these applications.

  14. The gamma-ray Doppler factor determinations for a Fermi blazar sample

    Institute of Scientific and Technical Information of China (English)

    Jun-Hui Fan; Jiang-He Yang; Yi Liu; Jing-Yi Zhang

    2013-01-01

    Observations suggest that γ-ray loud blazars are strongly beamed.The Fermi mission has detected many of blazars,which provide us with a good opportunity to investigate the emission mechanism and the beaming effect in the γ-ray region.We compiled the X-ray observations for 138 Fermi blazars (54 flat spectrum radio quasars,36 low-peaked BL Lacertae objects,and 48 high-peaked BL Lacertae objects) and calculated their Doppler factors,δγ.It is interesting that the calculated Doppler factors,δγ,are strongly correlated with the γ-ray luminosity.

  15. A hydrodynamical model for the FERMI-LAT gamma-ray light curve of Blazar PKS1510-089

    CERN Document Server

    Cabrera, J I; Benitez, E; Mendoza, S; Hiriart, D; Sorcia, M

    2012-01-01

    A physical description of the formation and propagation of the working surface inside the relativistic jet of the Blazar PKS1510-089 is used to model its {\\gamma}-ray variability light curve using FERMI-LAT data from 2008 to 2012. The physical model is based on conservation laws of mass and momentum at the working surface as explained by Mendoza et al. (2009). The hydrodynamical description of the working surface is parametrised by the initial velocity and mass injection rate at the base of the jet. We show that periodic variations on the injected velocity profiles are able to account for the observed luminosity. With this, we are able to obtain mass ejection rates of the central engine which are injected at the base of the jet, and oscillation frequencies of the flow, amongst other physical parameters.

  16. Separation of Different Contributions to the Total X-ray Luminosity in Gamma-ray Loud Blazars

    Institute of Scientific and Technical Information of China (English)

    Jun-Hui Fan; Gustavo E. Romero; Yong-Xiang Wang; Jiang-Shui Zhang

    2005-01-01

    The relativistic beaming model has been successfully used to explain many of the observational properties of active galactic nuclei. In this model the total emission is formed by two components, one beamed, one unbeamed. However,the exact contribution from each component in unresolved sources is still not clear.In the radio band, the core and extended emissions are clearly separated. We adopt the method proposed by Kembhavi to separate the two contributions in the X-ray emissions in a sample of 19 gamma-ray loud blazars. It is clearly shown that the beamed emission dominates the X-ray flux and the unbeamed X-ray emission is correlated with the extended radio emission of the considered objects. We also find that the ratio of the beamed to the unbeamed X-ray luminosity is correlated with the X-ray spectral index, an effect that should be a consequence of the underlying X-ray emission mechanism.

  17. Renewed gamma-ray activity of the Blazar 3C 454.3 detected by AGILE

    Science.gov (United States)

    Bulgarelli, A.; Parmiggiani, N.; Fioretti, V.; Zoli, A.; Lucarelli, F.; Verrecchia, F.; Pittori, C.; Vercellone, S.; Piano, G.; Munar-Adrover, P.; Tavani, M.; Donnarumma, I.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-06-01

    The AGILE satellite is detecting a significant enhancement in gamma-ray activity from the FSRQ 3C 454.3 (known as 1AGLR J2254+1609) since the recent AGILE ATel #9157, and the optical activity reported in ATel #9150.

  18. Fermi Observations of the Very Hard Gamma-ray Blazar PG 1553+113

    CERN Document Server

    ,

    2009-01-01

    We report the observations of PG 1553+113 during the first ~200 days of Fermi Gamma-ray Space Telescope science operations, from 4 August 2008 to 22 February 2009 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in the GeV gamma-ray regime and it allows us to fill a gap of three decades in energy in its spectral energy distribution. We find PG 1553+113 to be a steady source with a hard spectrum that is best fit by a simple power-law in the Fermi energy band. We combine the Fermi data with archival radio, optical, X-ray and very high energy (VHE) gamma-ray data to model its broadband spectral energy distribution and find that a simple, one-zone synchrotron self-Compton model provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all sources detected in that regime and, out of those with significant detections across the Fermi energy bandpass so far, the hardest spectrum in that energy regime. Thus, it has the largest spectral break of any gamma-ray source studied to date, ...

  19. Monitoring of GAmma-ray Bright AGN : The Multi-frequency Polarization of the Flaring Blazar 3C 279

    CERN Document Server

    Kang, Sincheol; Byun, Do-Young

    2015-01-01

    We present results of long-term multi-wavelength polarization observations of the powerful blazar 3C~279 after its $\\gamma$-ray flare on 2013~December 20. We followed up this flare with single-dish polarization observations using two 21-m telescopes of the Korean VLBI Network. Observations carried out weekly from 2013~December~25 to 2015~January~11, at 22~GHz, 43~GHz, 86~GHz simultaneously, as part of the Monitoring Of GAmma-ray Bright AGN (MOGABA) program. We measured 3C~279 total flux densities of 22--34~Jy at 22~GHz, 15--28~Jy (43~GHz), and 10--21~Jy (86~GHz), showing mild variability of $\\leq 50\\,\\%$ over the period of our observations. The spectral index between 22~GHz and 86~GHz ranged from $-0.13$ to $-0.36$. Linear polarization angles were 27$^{\\circ}$--38$^{\\circ}$, 30$^{\\circ}$--42$^{\\circ}$, and 33$^{\\circ}$--50$^{\\circ}$ at 22~GHz, 43~GHz, and 86~GHz, respectively. The degree of linear polarization was in the range of 6--12\\,\\%, and slightly decreased with time at all frequencies. We investigated ...

  20. A simple method for conversion of airborne gamma-ray spectra to ground level doses

    DEFF Research Database (Denmark)

    Korsbech, Uffe C C; Bargholz, Kim

    1996-01-01

    A new and simple method for conversion of airborne NaI(Tl) gamma-ray spectra to dose rates at ground level has been developed. By weighting the channel count rates with the channel numbers a spectrum dose index (SDI) is calculated for each spectrum. Ground level dose rates then are determined...

  1. Least square fitting of low resolution gamma ray spectra with cubic B-spline basis functions

    Institute of Scientific and Technical Information of China (English)

    ZHU Meng-Hua; LIU Liang-Gang; QI Dong-Xu; YOU Zhong; XU Ao-Ao

    2009-01-01

    In this paper,the least square fitting method with the cubic B-spline basis hmctioas is derived to reduce the influence of statistical fluctuations in the gamma ray spectra.The derived procedure is simple and automatic.The results show that this method is better than the convolution method with a sufficient reduction of statistical fluctuation.

  2. Conversion of Airborne Gamma ray Spectra to Ground Level Air Kerma Rates

    DEFF Research Database (Denmark)

    Bargholz, Kim; Korsbech, Uffe C C

    1997-01-01

    A new method for relating airborne gamma-ray spectra to dose rates and kerma rates at ground level is presented. Dependent on flying altitude 50 m to 125 m the method gives correct results for gamma energies above 250 keV respective 350 keV. At lower energies the method underestimate the dose...... or kerma rates; by having a large fraction of the ground level gamma-rays at energies below 350 keV special care should be taken at an interpretation of the results....

  3. The gamma-ray spectra of 5-carbon alkane isomers in the positron annihilation process

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaoguang, E-mail: hsiaoguangma@188.com; Zhu, Yinghao; Liu, Yang

    2016-05-06

    The gamma-ray spectra of pentane (C{sub 5}H{sub 12}) and its two isomers, i.e., 2-Methylbutane (CH{sub 3}C(CH{sub 3})HC{sub 2}H{sub 5}) and 2,2-Dimethylpropane (C(CH{sub 3}){sub 4}) have been studied theoretically in the present work. The recent experimental gamma-ray spectra of these three molecules show that they have the same Doppler shifts, although their molecular structures are dramatically different. In order to reveal why the gamma-ray spectra of these molecules are less sensitive to the molecular structures, the one-dimensional gamma-ray spectra and spherically averaged momentum (SAM) distributions, the two-dimensional angular correlation of annihilation radiation (ACAR), and the three-dimensional momentum distributions of the positron–electron pair are studied. The one-centered momentum distributions of the electrons are found to play more important role than the multi-centered coordinate distributions. The present theoretical predictions have confirmed the experimental findings for the first time. The dominance of the inner valence electrons in the positron–electron annihilation process has also been suggested in the present work. - Highlights: • The structure effects only play a minor role in the one-dimension gamma-ray spectra. • The present study further confirms the dominance of the inner valence electrons in the positron–electron annihilation process. • The momentum distributions of the electrons play more important role than the coordinate distributions.

  4. DAMPE detection of variable GeV gamma-ray emission from blazar CTA 102

    Science.gov (United States)

    Xu, Zun-Lei; Caragiulo, Micaela; Chang, Jin; Duan, Kai-Kai; Fan, Yi-Zhong; Gargano, Fabio; Lei, Shi-Jun; Li, Xiang; Liang, Yun-Feng; Mazziotta, M. Nicola; Shen, Zhao-Qiang; Su, Meng; Tykhonov, Andrii; Yuan, Qiang; Zimmer, Stephan; Dampe Collaboration; Li, Bin; Zhao, Hai-Bin; Cneost Group

    2016-12-01

    The DArk Matter Particle Explorer (DAMPE), has detected variable gamma-ray emission from a source positionally coincident with the flat spectrum radio quasar CTA 102 (also known as 4C +11.69) with redshift of z=1.037 (Schmidt 1965, ApJ, 141, 1295) and coordinates (J2000.0, from VLBI) of R.A.: 338.151704 deg, Dec.: 11.730807 deg (Johnston et al. 1995, AJ, 110, 880).

  5. Radio to gamma-ray variability study of blazar S5 0716+714

    CERN Document Server

    Rani, B; Fuhrmann, L; Boettcher, M; Lott, B; Aller, H D; Aller, M F; Angelakis, E; Bach, U; Bastieri, D; Falcone, A D; Fukazawa, Y; Gabanyi, K E; Gupta, A C; Gurwell, M; Itoh, R; Kawabata, K S; Krips, M; Lähteenmäki, A A; Liu, X; Marchili, N; Max-Moerbeck, W; Nestoras, I; Nieppola, E; Quintana-Lacaci, G; Readhead, A C S; Richards, J L; Sasada, M; Sievers, A; Sokolovsky, K; Stroh, M; Tammi, J; Tornikoski, M; Uemura, M; Ungerechts, H; Urano, T; Zensus, J A

    2013-01-01

    We present the results of a series of radio, optical, X-ray and gamma-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multi-frequency observations were obtained using several ground and space based facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend at a time scale of ~350 days. Episodes of fast variability recur on time scales of ~ 60-70 days. The intense and simultaneous activity at optical and gamma-ray frequencies favors the SSC mechanism for the production of the high-energy emission. Two major low-peaking radio flares were observed during this high optical/gamma-ray activity period. The radio flares are characterized by a rising and a decaying stage and are in agreement with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estima...

  6. Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    CERN Document Server

    Boettcher, Markus

    2016-01-01

    The expected level of gamma-gamma absorption in the Broad Line Region (BLR) radiation field of gamma-ray loud Flat Spectrum Radio Quasars (FSRQs)is evaluated as a function of the location of the gamma-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the gamma-gamma opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to $\\gamma\\gamma$ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the gamma-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the cen...

  7. $\\gamma$-Ray Absorption at High Redshifts and the $\\gamma$-Ray Background

    CERN Document Server

    Stecker, F W

    1997-01-01

    We present results of a calculation of absorption of 10-500 GeV gamma-rays at high redshifts. This calculation requires the determination of the high- redshift evolution of the full spectral energy distribution of the intergalactic photon field. For this, we have primarily followed the recent analysis of Fall, Charlot and Pei. We give our results for the gamma-ray opacity as a function of redshift out to a redshift of 3. We then give predicted gamma-ray spectra for selected blazars and also extend our results on the background from unresolved blazars to an energy of 500 GeV. Absorption effects are predicted to significantly steepen the background spectrum above 20 GeV. Our absorption calculations can be used to place limits on the redshifts of gamma-ray bursts. Our background calculations can be used to determine the observability of multi-GeV lines from dark matter neutralino particles.

  8. OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. V. TNG, KPNO, AND OAN OBSERVATIONS OF BLAZAR CANDIDATES OF UNCERTAIN TYPE IN THE NORTHERN HEMISPHERE

    Energy Technology Data Exchange (ETDEWEB)

    Álvarez Crespo, N.; Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Masetti, N. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129, Bologna (Italy); Ricci, F.; La Franca, F. [Dipartimento di Matematica e Fisica, Università Roma Tre, via della Vasca Navale 84, I-00146, Roma (Italy); Landoni, M. [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy); Patiño-Álvarez, V.; Chavushyan, V.; Torrealba, J. [Instituto Nacional de Astrofisica, Óptica y Electrónica, Apartado Postal 51-216, 72000 Puebla, México (Mexico); D’Abrusco, R.; Paggi, A.; Smith, Howard A. [Harvard—Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Jiménez-Bailón, E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apdo. Postal 877, Ensenada, 22800 Baja California, México (Mexico); Latronico, L. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Tosti, G. [Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia (Italy)

    2016-02-15

    The extragalactic γ-ray sky is dominated by emission from blazars, a peculiar class of active galactic nuclei. Many of the γ-ray sources included in the Fermi-Large Area Telescope Third Source catalog (3FGL) are classified as blazar candidates of uncertain type (BCUs) because there are no optical spectra available in the literature to confirm their nature. In 2013, we started a spectroscopic campaign to look for the optical counterparts of the BCUs and of the unidentified γ-ray sources to confirm their blazar nature. Whenever possible we also determine their redshifts. Here, we present the results of the observations carried out in the northern hemisphere in 2013 and 2014 at the Telescopio Nazionale Galileo, Kitt Peak National Observatory, and Observatorio Astronómico Nacional in San Pedro Mártir. In this paper, we describe the optical spectra of 25 sources. We confirmed that all of the 15 BCUs observed in our campaign and included in our sample are blazars and we estimated the redshifts for three of them. In addition, we present the spectra for three sources classified as BL Lacs in the literature but with no optical spectra available to date. We found that one of them is a quasar (QSO) at a redshift of z = 0.208 and the other two are BL Lacs. Moreover, we also present seven new spectra for known blazars listed in the Roma-BZCAT that have an uncertain redshift or are classified as BL Lac candidates. We found that one of them, 5BZB J0724+2621, is a “changing look” blazar. According to the spectrum available in the literature, it was classified as a BL Lac, but in our observation we clearly detected a broad emission line that led us to classify this source as a QSO at z = 1.17.

  9. OPTICAL SPECTROSCOPIC OBSERVATIONS OF GAMMA-RAY BLAZAR CANDIDATES. IV. RESULTS OF THE 2014 FOLLOW-UP CAMPAIGN

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, F. [Dipartimento di Matematica e Fisica, Università Roma Tre, via della Vasca Navale 84, I-00146, Roma (Italy); Massaro, F. [Dipartimento di Fisica, Università degli Studi di Torino, via Pietro Giuria 1, I-10125 Torino (Italy); Landoni, M. [INAF-Osservatorio Astronomico di Brera, Via Emilio Bianchi 46, I-23807 Merate (Italy); D’Abrusco, R.; Milisavljevic, D.; Paggi, A.; Smith, Howard A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Masetti, N. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129, Bologna (Italy); Tosti, G., E-mail: riccif@fis.uniroma3.it [Dipartimento di Fisica, Università degli Studi di Perugia, I-06123 Perugia (Italy)

    2015-05-15

    The extragalactic γ-ray sky is dominated by the emission arising from blazars, one of the most peculiar classes of radio-loud active galaxies. Since the launch of Fermi several methods were developed to search for blazars as potential counterparts of unidentified γ-ray sources (UGSs). To confirm the nature of the selected candidates, optical spectroscopic observations are necessary. In 2013 we started a spectroscopic campaign to investigate γ-ray blazar candidates selected according to different procedures. The main goals of our campaign are: (1) to confirm the nature of these candidates, and (2) whenever possible, determine their redshifts. Optical spectroscopic observations will also permit us to verify the robustness of the proposed associations and check for the presence of possible source class contaminants to our counterpart selection. This paper reports the results of observations carried out in 2014 in the northern hemisphere with Kitt Peak National Observatory and in the southern hemisphere with the Southern Astrophysical Research telescopes. We also report three sources observed with the Magellan and Palomar telescopes. Our selection of blazar-like sources that could be potential counterparts of UGSs is based on their peculiar infrared colors and on their combination with radio observations both at high and low frequencies (i.e., above and below ∼1 GHz) in publicly available large radio surveys. We present the optical spectra of 27 objects. We confirm the blazar-like nature of nine sources that appear to be potential low-energy counterparts of UGSs. Then we present new spectroscopic observations of 10 active galaxies of uncertain type associated with Fermi sources, classifying all of them as blazars. In addition, we present the spectra for five known γ-ray blazars with uncertain redshift estimates and three BL Lac candidates that were observed during our campaign. We also report the case for WISE J173052.85−035247.2, candidate counterpart of the

  10. Full-spectrum analysis of natural gamma-ray spectra

    NARCIS (Netherlands)

    Hendriks, Peter; Limburg, J; de Meijer, RJ

    2001-01-01

    In this paper, a new system to measure natural gamma -radiation in situ will be presented. This system combines a high-efficiency EGO scintillation detector with full-spectrum data analysis (FSA). This technique uses the (nearly) full spectral shape and the so-called 'standard spectra' to calculate

  11. Fermi-LAT detection of hard spectrum and highest-level gamma-ray outburst from the distant blazar PKS 1502+106

    Science.gov (United States)

    Ciprini, Stefano; Fermi Large Area Telescope Collaboration

    2015-07-01

    The Large Area Telescope (LAT), one of two instruments on the Fermi Gamma-ray Space Telescope, has observed flaring gamma rays from a source positionally consistent with the flat spectrum radio quasar PKS 1502+106 (also known as OR 103, S3 1502+10 and 3FGL J1504.4+1029, Acero et al. 2015, ApJS 218, 23), with radio coordinates, (J2000.0), R.A.: 226.10408 deg, Dec: 10.49422 deg (Johnston et al. 1995, AJ, 110, 880). This blazar has a redshift of z=1.8383 (Hewett & Wild 2010, MNRAS, 405, 2302).

  12. Fermi-LAT Detection of a Hard Spectrum and Enhanced Gamma-ray Emission from the Blazar PMN J2052-5533

    Science.gov (United States)

    Carpenter, Bryce; Magill, Jeff; Ojha, Roopesh

    2015-09-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope has observed an unusually hard spectrum gamma-ray flare from a source positionally consistent with the blazar PMN J2052-5533 (3FGL J2051.8-5535; Acero et al. 2015, ApJS 218, 23), with coordinates RA: 20h52m13.68s, Dec: -55d33m10.0s, J2000, (Healey et al. 2007, ApJS, 171, 61). There is no redshift reported for this source in the literature.

  13. Full-spectrum analysis of natural gamma-ray spectra.

    Science.gov (United States)

    Hendriks, P H; Limburg, J; de Meijer, R J

    2001-01-01

    In this paper, a new system to measure natural gamma-radiation in situ will be presented. This system combines a high-efficiency BGO scintillation detector with full-spectrum data analysis (FSA). This technique uses the (nearly) full spectral shape and the so-called 'standard spectra' to calculate the activity concentrations of 40K, 232Th and 238U present in a geological matrix (sediment, rock, etc.). We describe the FSA and the determination of the standard spectra. Standard spectra are constructed for various geometries and a comparison in intensity and shape will be made. The performance of such a system has been compared to a more traditional system, consisting of a NaI detector in combination with the 'windows' analysis. For count rates typically encountered in field experiments, the same accuracy is obtained 10-20 times faster using the new system. This allows for shorter integration times and hence shorter measurements or a better spatial resolution. The applicability of such a system will be illustrated via an example of an airborne experiment in which the new system produced results comparable to those of much larger traditional systems. This paper will conclude with a discussion of the current status of the system and an outlook for future research.

  14. 2WHSP: A multi-frequency selected catalog of VHE gamma-ray blazars and blazar candidates

    Science.gov (United States)

    Chang, Yu Lin; Arsioli, Bruno; Giommi, Paolo; Padovani, Paolo

    2016-08-01

    High Synchrotron Peaked Blazars (HSPs) are extremely important for VHE astronomy. We built the largest existing catalog of High Synchrotron Blazars (2WHSP) based on multi-frequency data. The catalog is an extension of the 1WHSP list. We compared several general properties of HSPs such as the synchrotron peak, the redshift and IR the color-color diagram. We also built the logN-logS for the sources, trying to see the evolution and the deficiency of the catalog. The catalog will provide a unique sample of targets for VHE observations in future since the HSPs are the dominant extra-Galactic sources in VHE sky. This might help find more VHE sources later. In the future, we will use this catalog to estimate other VHE properties of HSPs.

  15. AGILE detection of increasing gamma-ray activity from the Blazar 3C 454.3

    Science.gov (United States)

    Lucarelli, F.; Pittori, C.; Verrecchia, F.; Bulgarelli, A.; Fioretti, V.; Zoli, A.; Piano, G.; Munar-Adrover, P.; Tavani, M.; Donnarumma, I.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-06-01

    The AGILE satellite is detecting an enhancement of gamma-ray emission above 100 MeV from the FSRQ 3C 454.3. Integrating from 2016-06-11 01:00 UT to 2016-06-15 01:00 UT, a maximum likelihood analysis yields the detection of the source with a flux of (2.7 +/- 0.7) x 10^-6 ph/cm2/s (E > 100 MeV), at a significance level above 5 sigma.

  16. Multi-Epoch VLBA Observations of EGRET-Detected Quasars and BL Lac Objects Superluminal Motion of Gamma-Ray Bright Blazars

    CERN Document Server

    Jorstad, S G; Mattox, J R; Wehrle, A E; Bloom, S D; Yurchenko, A V; Jorstad, Svetlana G; Marscher, Alan P; Mattox, John R; Wehrle, Ann E; Bloom, Steven D; Yurchenko, Alexei V

    2001-01-01

    We present the results of a program to monitor the structure of the radio emission in 42 $\\gamma$-ray bright blazars (31 quasars and 11 BL Lac objects) with the VLBA at 43, 22, and occasionally 15 and 8.4 GHz, over the period from November 1993 to July 1997. We determine proper motions in 33 sources and find that the apparent superluminal motions in $\\gamma$-ray sources are much faster than for the general population of bright compact radio sources. This follows the strong dependence of the $\\gamma$-ray flux on the level of relativistic beaming for both external-radiation Compton and synchrotron self-Compton emission. There is a positive correlation (correlation coefficient $r$=0.45) between the flux density of the VLBI core and the $\\gamma$-ray flux and a moderate correlation (partial correlation coefficient $r$=0.31) between $\\gamma$-ray apparent luminosity and superluminal velocities of jet components, as expected if the $\\gamma$-ray emission originates in a very compact region of the relativistic jet and ...

  17. Multi-Epoch VLBA Observations of EGRET-Detected Quasars and BL Lac Objects Connection between Superluminal Ejections and Gamma-Ray Flares in Blazars

    CERN Document Server

    Jorstad, S G; Mattox, J R; Aller, M F; Aller, H D; Wehrle, A E; Bloom, S D; Jorstad, Svetlana G; Marscher, Alan P; Mattox, John R; Aller, Margo F; Aller, Hugh D; Wehrle, Ann E; Bloom, Steven D

    2001-01-01

    We examine the coincidence of times of high $\\gamma$-ray flux and ejections of superluminal components from the core in EGRET blazars based on a VLBA monitoring program at 22 and 43 GHz from November 1993 to July 1997. In 23 cases of $\\gamma$-ray flares for which sufficient VLBA data exist, 16 of the flares (in 14 objects) fall within 3$\\sigma$ and 9 of these within 1$\\sigma$ uncertainties of the extrapolated epoch of zero separation from the core of a superluminal radio component. In each of two sources (0528+134 and 1730-130) two successive $\\gamma$-ray flares were followed by the appearance of new superluminal components. We carried out statistical simulations which show that if the number of coincidences $\\ge$ 7 the radio and $\\gamma$-ray events are associated with each other at >99.999% confidence. Our analysis of the observed behavior, including variability of the polarized radio flux, of the sources before, during, and after the $\\gamma$-ray flares suggests that the $\\gamma$-ray events occur in the sup...

  18. Coordinated Fermi/Optical Monitoring of Blazars and the Great 2009 September Gamma-ray Flare of 3C 454.3

    CERN Document Server

    Smith, P S; Rightley, S; Turner, J; Schmidt, G D; Jannuzi, B T

    2009-01-01

    We describe the optical spectropolarimetric monitoring program at Steward Observatory centered around gamma-ray-bright blazars and the LAT Monitored Source List planned for Fermi Cycles 2-4. The large number of measurements made during Cycle 1 of the Fermi mission are available to the research community and the data products are summarized (see http://james.as.arizona.edu/~psmith/Fermi). The optical data include spectropolarimetry at a resolution of ~20 A, broad-band polarization and flux measurements, and flux-calibrated spectra spanning 4000-7600 A. These data provide a comprehensive view of the optical variability of an important sample of objects during the Fermi Era. In addition to broad-band flux and linear polarization monitoring, the spectra allow for the tracking of changes to the spectral index of the synchrotron continuum, importance of non-synchrotron emission features, and how and when the polarization varies with wavelength, an important clue as to the structure of the emission region or the ide...

  19. A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30

    Science.gov (United States)

    Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cerruti, M.; Chen, X.; Ciupik, L.; Cui, W.; Dickinson, H. J.; Eisch, J. D.; Errando, M.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortson, L.; Furniss, A.; Gillanders, G. H.; Griffin, S.; Grube, J.; Hütten, M.; Håkansson, N.; Hanna, D.; Holder, J.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kar, P.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nguyen, T.; Nieto, D.; Ong, R. A.; Otte, A. N.; Park, N.; Pelassa, V.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rulten, C.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weiner, O. M.; Weinstein, A.; Wilhelm, A.; Williams, D. A.; VERITAS Collaboration; Fegan, S.; Giebels, B.; Horan, D.; Fermi-LAT Collaboration; Berdyugin, A.; Kuan, J.; Lindfors, E.; Nilsson, K.; Oksanen, A.; Prokoph, H.; Reinthal, R.; Takalo, L.; Zefi, F.

    2017-02-01

    B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS detected a large-amplitude flare from B2 1215+30 during routine monitoring observations of the blazar 1ES 1218+304, located in the same field of view. The TeV flux reached 2.4 times the Crab Nebula flux with a variability timescale of 10, and an electron population with spectral index p< 2.3.

  20. The estimations of four basic parameters for gamma-ray loud blazars

    Institute of Scientific and Technical Information of China (English)

    Jun-Hui Fan; Yu-Hai Yuan; Yi Liu; Jing-Yi Zhang; Yi-Ping Qin; Hua Liu; Yong Huang; Jiang-He Yang; Hong-Guang Wang; Jiang-Shui Zhang

    2009-01-01

    The method used in our previous papers is adopted to estimate four basic pa-rameters (the central black hole mass (M), the boosting factor (or Doppler factor) (δ), the (d)) for 59 γ-ray loud blazars (20 BL Lacertae objects and 39 fiat spectrum radio quasars).The central black hole masses estimated for this sample are in a range of from 107 M⊙to 109 M⊙. In the case of black hole mass, there is no clear difference between BL Lacertae objects and flat spectrum radio quasars, which is consistent with the previous results sug-gesting that the central black hole masses do not play an important role in the evolutionary sequence of blazars.

  1. The BL-Lac gamma-ray blazar PKS 1424+240 associated with a group of galaxies at z=0.6010

    CERN Document Server

    Rovero, A C; Donzelli, C; Pichel, A

    2016-01-01

    PKS 1424+240 is a BL-Lac blazar with unknown redshift that was detected at high-energy gamma rays by Fermi-LAT with a hard spectrum. At VHE, it was first detected by VERITAS and later confirmed by MAGIC. Its spectral energy distribution is highly attenuated at VHE gamma rays, which is coherent with distant sources. Several estimations enabled the redshift to be constrained to the range 0.6 < z < 1.3. These results place PKS 1424+240 in the very interesting condition of being probably the most distant blazar that has been detected at VHE. The ambiguity in the redshift is still large enough to prevent precise studies of the EBL and the intrinsic blazar spectrum. Given the difficulty of measuring spectroscopic redshifts for BL-Lac objects directly, we aim to establish a reliable redshift value for this blazar by finding its host group of galaxies. Elliptical galaxies are associated with groups, and BL-Lac objects are typically hosted by them, so we decided to search for the host group of the blazar. For th...

  2. The effect of Compton scattering on gamma-ray spectra of the 2005 January 20 flare

    Institute of Scientific and Technical Information of China (English)

    Wei Chen; Wei-Qun Gan

    2012-01-01

    Gamma-ray spectroscopy provides a wealth of information about accelerated particles in solar flares,as well as the ambient medium with which these energetic particles interact.The neutron capture line (2.223 MeV),the strongest in the solar gamma-ray spectrum,forms in the deep atmosphere.The energy of these photons can be reduced via Compton scattering.With the fully relativistic GEANT4 toolkit,we have carried out Monte Carlo simulations of the transport of a neutron capture line in solar flares,and applied them to the flare that occurred on 2005 January 20 (X7.1/2B),one of the most powerful gamma-ray flares observed by RHESSI during the 23rd solar cycle.By comparing the fitting results of different models with and without Compton scattering of the neutron capture line,we find that when including the Compton scattering for the neutron capture line,the observed gamma-ray spectrum can be reproduced by a population of accelerated particles with a very hard spectrum (s≤2.3).The Compton effect of a 2.223 MeV line on the spectra is therefore proven to be significant,which influences the time evolution of the neutron capture line flux as well.The study also suggests that the mean vertical depth for neutron capture in hydrogen for this event is about 8 g cm-2.

  3. Individual power density spectra of Swift gamma-ray bursts

    CERN Document Server

    Guidorzi, C; Amati, L

    2016-01-01

    Timing analysis is a powerful tool with which to shed light on the still obscure emission physics and geometry of the prompt emission of GRBs. Fourier power density spectra (PDS) characterise time series as stochastic processes and can be used to search for coherent pulsations and to investigate the dominant variability timescales. Because of the limited duration and of the statistical properties, modelling the PDS of individual GRBs is challenging, and only average PDS of large samples have been discussed in the literature. We characterise the individual PDS of GRBs in terms of a stochastic process, and carry out for the first time a systematic search for periodic signals and for a link between the PDS and other observables. We present a Bayesian procedure that uses a Markov chain Monte Carlo technique and apply it to study 215 bright long GRBs detected with the Swift Burst Alert Telescope from January 2005 to May 2015. The PDS are modelled with a power-law either with or without a break. Two classes of GRBs...

  4. Primary gamma-ray spectra in 44Ti of astrophysical interest

    CERN Document Server

    Larsen, A C; Bürger, A; Guttormsen, M; Görgen, A; Harrisopulos, S; Kmiecik, M; Konstantinopoulos, T; Lagoyannis, A; Lönnroth, T; Mazurek, K; Norrby, M; Nyhus, H T; Perdikakis, G; Schiller, A; Siem, S; Spyrou, A; Syed, N U H; Toft, H K; Tveten, G M; Voinov, A; 10.1103/PhysRevC.85.014320

    2012-01-01

    Primary gamma-ray spectra for a wide excitation-energy range have been extracted for 44Ti from particle-gamma coincidence data of the 46Ti(p,t gamma)44Ti reaction. These spectra reveal information on the gamma-decay pattern of the nucleus, and may be used to extract the level density and radiative strength function applying the Oslo method. Models of the level density and radiative strength function are used as input for cross-section calculations of the 40Ca(alpha,gamma)44Ti reaction. Acceptable models should reproduce data on the 40Ca(alpha,gamma)44Ti reaction cross section as well as the measured primary gamma-ray spectra. This is only achieved when a coherent normalization of the slope of the level density and radiative strength function is performed. Thus, the overall shape of the experimental primary gamma-ray spectra puts a constraint on the input models for the rate calculations.

  5. The Hard VHE Gamma-ray Emission in High-Redshift TeV Blazars: Comptonization of Cosmic Microwave Background Radiation in an Extended Jet?

    CERN Document Server

    Boettcher, Markus; Finke, Justin D

    2008-01-01

    Observations of very-high-energy (VHE, E > 250 GeV) gamma-ray emission from several blazars at z > 0.1 have placed stringent constraints on the elusive spectrum and intensity of the intergalactic infrared background radiation (IIBR). Correcting their observed VHE spectrum for gamma-gamma absorption even by the lowest plausible level of the IIBR provided evidence for a very hard (photon spectral index Gamma_{ph} 4 X 10^6) on kiloparsec scales along the jet.

  6. Automatic Estimation of Peak Regions in Gamma-Ray Spectra Measured by NaI Detector

    Institute of Scientific and Technical Information of China (English)

    ZHU Meng-Hua; LIU Liang-Gang; XU Ao-Ao; Ma Tao

    2008-01-01

    We present an approach to estimate the width of peak regions for the background elimination of gamma ray spectrum. The synthetic and experimental data are used to test this method. With the estimated peak regions using the proposed method in the whole spectra, we find that the approach is simple and effective enough for the background elimination cooperating with the statistics-sensitive nonlinear iterative peak-clipping method.

  7. Spectrum of Very High Energy Gamma-Rays from the blazar 1ES1959+650 during Flaring Activity in 2002

    CERN Document Server

    Daniel, M K; Boyle, P J; Bradbury, S M; Buckley, J H; Carter-Lewis, D A; Celik, O; Cui, W; Dowdall, C; Duke, C; Fegan, D J; La Perez, I C; Fegan, S J; Finley, J P; Fortson, L F; Gaidos, J A; Gibbs, K; Gammell, S; Hall, J; Hall, T A; Hillas, A M; Holder, J; Horan, D; Jordan, M; Kertzman, M; Kieda, D; Kildea, J; Knapp, J; Kosack, K; Krawczynski, H; Krennrich, F; Le Bohec, S; Linton, E T; Lloyd-Evans, J; Moriarty, P; Müller, D; Nagai, T N; Ong, R A; Page, M; Pallassini, R; Petry, D; Power-Mooney, B; Quinn, J; Rebillot, P; Reynolds, P T; Rose, H J; Schroedter, M; Sembroski, G H; Swordy, S P; Vasilev, V V; Wakely, S P; Walker, G; Weekes, T C

    2005-01-01

    The blazar 1ES 1959+650 was observed in a flaring state with the Whipple 10 m Imaging Atmospheric Cherenkov Telescope during May of 2002. A spectral analysis has been carried out on the data from that time period and the resulting very high energy gamma-ray spectrum ($E \\geq 316$ GeV) can be well fit by a power-law of differential spectral index \\alpha = 2.78 +/- 0.12_{stat.} +/- 0.21_{sys.}. On June 4th 2002, the source flared dramatically in the gamma-ray range without any coincident increase in the X-ray emission, providing the first unambiguous example of an `orphan' gamma-ray flare from a blazar. The gamma-ray spectrum for these data can also be described by a simple power-law fit with \\alpha = 2.82 +/- 0.15_{stat.} +/- 0.30_{sys.}. There is no compelling evidence for spectral variability, or for any cut-off to the spectrum.

  8. The brightest gamma-ray flaring blazar in the sky: AGILE and multi-wavelength observations of 3C 454.3 during November 2010

    CERN Document Server

    Vercellone, S; Vittorini, V; Donnarumma, I; Pacciani, L; Pucella, G; Tavani, M; Raiteri, C M; Villata, M; Romano, P; Fiocchi, M; Bazzano, A; Bianchin, V; Ferrigno, C; Maraschi, L; Pian, E; Türler, M; Ubertini, P; Bulgarelli, A; Chen, A W; Giuliani, A; Longo, F; Barbiellini, G; Cardillo, M; Cattaneo, P W; Del Monte, E; Evangelista, Y; Feroci, M; Ferrari, A; Fuschino, F; Gianotti, F; Giusti, M; Lazzarotto, F; Pellizzoni, A; Piano, G; Pilia, M; Rapisarda, M; Rappoldi, A; Sabatini, S; Soffitta, P; Trifoglio, M; Trois, A; Giommi, P; Lucarelli, F; Pittori, C; Santolamazza, P; Verrecchia, F; Agudo, I; Aller, H D; Aller, M F; Arkharov, A A; Bach, U; Berdyugin, A; Borman, G A; Chigladze, R; Efimov, Yu S; Efimova, N V; Gómez, J L; Gurwell, M A; McHardy, I M; Joshi, M; Kimeridze, G N; Krajci, T; Kurtanidze, O M; Kurtanidze, S O; Larionov, V M; Lindfors, E; Molina, S N; Morozova, D A; Nazarov, S V; Nikolashvili, M G; Nilsson, K; Pasanen, M; Reinthal, R; Ros, J A; Sadun, A C; Sakamoto, T; Sallum, S; Sergeev, S G; Schwartz, R D; Sigua, L A; Sillanpää, A; Sokolovsky, K V; Strelnitski, V; Takalo, L; Taylor, B; Walker, G

    2011-01-01

    Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one gamma-ray flare per year, becoming the most active gamma-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, SWIFT, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary gamma-ray flare of 3C 454.3 which occurred in November 2010. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E>100 MeV) of F_gamma(p) = (6.8+-1.0)E-5 ph/cm2/s on a time scale of about 12 hours, more than a factor of 6 higher than the flux of the brightest steady gamma-ray source, the Vela pulsar, and more than a factor of 3 brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make a thorough study of the present event possible: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after t...

  9. Detection of VHE gamma-ray emission from the distant blazar 1ES 1101-232 with H.E.S.S. and broadband characterisation

    CERN Document Server

    Akhperjanian, A G; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brion, E; Brown, A M; Buhler, R; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Chounet, L M; Coignet, G; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Atai, A; O'Connor-Drury, L; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Fussling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; De Jager, O C; Kendziorra, E; Kerschhaggl, M; Khelifi, B; Komin, Nu; Kosack, K; Lamanna, G; Latham, I J; Le Gallou, R; Lemiere, A; Lemoine-Goumard, M; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; De Naurois, Mathieu; Nedbal, D; Nolan, S J; Noutsos, A; Olive, J P; Orford, K J; Osborne, J L; Panter, M; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Sahakian, V V; Santangelo, A; Sauge, L; Schlenker, S; Schlickeiser, R; Schroder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Tluczykont, M; Van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Völk, H J; Wagner, S J; Ward, M

    2007-01-01

    The blazar 1ES 1101-232 was observed with the High Energy Stereoscopic System (H.E.S.S.) of Atmospheric Cherenkov Telescopes (ACT) in 2004 and 2005, for a live time of 43 hours. VHE (E > 10^11 eV) gamma-rays were detected for the first time from this object. VHE observations of blazars are used to investigate the inner parts of the blazar jets, and also to study the extragalactic background light (EBL) in the near-infrared band. Observations in 2005 were conducted in a multiwavelength campaign, together with the RXTE satellite and optical observations. In 2004, simultaneous observations with XMM-Newton were obtained. 1ES 1101-232 was detected with H.E.S.S. with an excess of 722 photons, at a significance of 12 sigma. The measured VHE gamma-ray flux amounts to dN/dE = (5.63 +- 0.89) x 10^-13 (E/TeV)^-(2.94 +- 0.20) cm^-2 s^-1 TeV^-1, above a spectral energy threshold of 225 GeV. No significant variation of the VHE gamma-ray flux on any time scale was found. 1ES 1101-232 exhibits a very hard spectrum, and at a ...

  10. Searching for new gamma-ray blazar candidates in the 3rd Palermo BAT Hard X-ray Catalog with WISE

    CERN Document Server

    Maselli, A; Cusumano, G; D'Abrusco, R; La Parola, V; Paggi, A; Segreto, A; Smith, Howard A; Tosti, G

    2013-01-01

    We searched for gamma-ray blazar candidates among the 382 unidentified hard X-ray sources of the 3rd Palermo BAT Catalog (3PBC) obtained from the analysis of 66 months of SWIFT-BAT survey data and listing 1586 sources. We adopted a recently developed association method based on the peculiar infrared colors which characterize the gamma-ray blazars included in the second catalog of active galactic nuclei detected by the Fermi Large Area Telescope (2LAC). We used this method exploiting the data of the all-sky survey performed by the Wide-Field Infrared Survey Explorer (WISE) to establish correspondences between unidentified 3PBC sources and WISE gamma-ray blazar candidates located within the BAT positional uncertainty region at 99% confidence level. We obtained a preliminary list of candidates for which we analysed all the available data in the SWIFT archive to complement the information in the literature and in the radio, infrared and optical catalogs with the information on their optical-UV and soft X-ray emis...

  11. Blazars as Ultra-High-Energy Cosmic-Ray Sources: Implications for TeV Gamma-Ray Observations

    CERN Document Server

    Murase, Kohta; Takami, Hajime; Migliori, Giulia

    2011-01-01

    Spectral fitting of correlated multiwavelength data of BL Lac objects and Fanaroff-Riley I radio galaxies gives the mean comoving magnetic field strength B', the bulk outflow Doppler factor Gamma, and the emission region size R' of the radiating plasma in the one-zone leptonic synchrotron self-Compton (SSC) model. From the Hillas condition, we show that only in rare cases can these sources accelerate protons to much above 10^19 eV, so >10^20 eV ultra-high-energy cosmic rays are likely to be heavy ions if powered by this type of AGN. One of the signatures of hadronic production by blazars is intergalactic cascade emission initiated by ultra-high-energy cosmic rays, which can explain TeV spectra of some extreme, apparently non-variable blazars such as 1ES 0229+200. We study this kind of cascade signal from such blazars, taking into account effects of the structured extragalactic magnetic fields in clusters and filaments in which the blazars are embedded. We demonstrate the importance of cosmic-ray deflections o...

  12. Discovery of very high energy gamma-ray emission from the blazar 1ES 0033+595 by the MAGIC telescopes

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Fidalgo, D Carreto; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Farina, E; Ferenc, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Hayashida, M; Herrera, J; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Meucci, M; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Nowak, N; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Partini, S; Persic, M; Prada, F; Moroni, P G Prada; Prandini, E; Preziuso, S; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saggion, A; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Zandanel, F; Zanin, R; Tronconi, V; Buson, S

    2014-01-01

    The number of known very high energy (VHE) blazars is $\\sim\\,50$, which is very small in comparison to the number of blazars detected in other frequencies. This situation is a handicap for population studies of blazars, which emit about half of their luminosity in the $\\gamma$-ray domain. Moreover, VHE blazars, if distant, allow for the study of the environment that the high-energy $\\gamma$-rays traverse in their path towards the Earth, like the extragalactic background light (EBL) and the intergalactic magnetic field (IGMF), and hence they have a special interest for the astrophysics community. We present the first VHE detection of 1ES\\,0033+595 with a statistical significance of 5.5\\,$\\sigma$. The VHE emission of this object is constant throughout the MAGIC observations (2009 August and October), and can be parameterized with a power law with an integral flux above 150 GeV of $(7.1\\pm1.3)\\times 10^{-12} {\\mathrm{ph\\,cm^{-2}\\,s^{-1}}}$ and a photon index of ($3.8\\pm0.7$). We model its spectral energy distrib...

  13. The Discovery of gamma-Ray Emission From The Blazar RGB J0710+591

    CERN Document Server

    Acciari, V A; Arlen, T; Aune, T; Bautista, M; Beilicke, M; Benbow, W; Böttcher, M; Boltuch, D; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Cui, W; Dickherber, R; Duke, C; Falcone, A; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Gibbs, K; Gillanders, G H; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Lamerato, A; LeBohec, S; Maier, G; McArthur, S; McCann, A; McCutcheon, M; Moriarty, P; Mukherjee, R; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Petry, D; Pichel, A; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Roustazadeh, P; Schroedter, M; Sembroski, G H; Senturk, G Demet; Smith, A W; Steele, D; Swordy, S P; Tešić, G; Theiling, M; Thibadeau, S; Varlotta, A; Vassiliev, V V; Vincent, S; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Wissel, S; Wood, M; Zitzer, B; Ackermann, M; Ajello, M; Antolini, E; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Carrigan, S; Casandjian, J M; Cavazzuti, E; Cecchi, C; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Dermer, C D; de Palma, F; Silva, E do Couto e; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guiriec, S; Hays, E; Horan, D; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S -H; Garde, M Llena; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Mazziotta, M N; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Ripken, J; Rodriguez, A Y; Roth, M; Sadrozinski, H F -W; Sanchez, D; Sander, A; Scargle, J D; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Ylinen, T; Ziegler, M

    2010-01-01

    The high-frequency-peaked BL Lacertae object RGB J0710+591 was observed in the very high-energy (VHE; E > 100 GeV) wave band by the VERITAS array of atmospheric Cherenkov telescopes. The observations, taken between 2008 December and 2009 March and totaling 22.1 hr, yield the discovery of VHE gamma rays from the source. RGB J0710+591 is detected at a statistical significance of 5.5 standard deviations (5.5{\\sigma}) above the background, corresponding to an integral flux of (3.9 +/- 0.8) x 10-12 cm-2 s-1 (3% of the Crab Nebula's flux) above 300 GeV. The observed spectrum can be fit by a power law from 0.31 to 4.6 TeV with a photon spectral index of 2.69 +/- 0.26stat +/- 0.20sys. These data are complemented by contemporaneous multiwavelength data from the Fermi Large Area Telescope, the Swift X-ray Telescope, the Swift Ultra-Violet and Optical Telescope, and the Michigan-Dartmouth-MIT observatory. Modeling the broadband spectral energy distribution (SED) with an equilibrium synchrotron self-Compton model yields ...

  14. The Spectral Energy Distribution of Fermi bright blazars

    CERN Document Server

    Abdo, A A; Ajello, M; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Charles, E; Chaty, S; Chekhtman, A; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Silva, E do Couto e; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fuhrmann, L; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Healey, S E; Horan, D; Hughes, R E; Itoh, R; Jackson, M S; Johannesson, G; Johnson, A S; Johnson, W N; Kadler, M; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knodlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Max-Moerbeck, W; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F

    2009-01-01

    (Abridged) We have conducted a detailed investigation of the broad-band spectral properties of the \\gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray data, collected within three months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous Spectral Energy Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual Log $\

  15. Optical archival spectra of blazar candidates of uncertain type in the 3$^{rd}$ Fermi Large Area Telescope Catalog

    CERN Document Server

    Crespo, N Álvarez; D'Abrusco, R; Landoni, M; Masetti, N; Chavushyan, V; Jiménez-Bailón, E; La Franca, F; Milisavljevic, D; Paggi, A; Patiño-Álvarez, V; Ricci, F; Smith, Howard A

    2016-01-01

    Despite the fact that blazars constitute the rarest class among active galactic nuclei (AGNs) they are the largest known population of associated $\\gamma$-ray sources. Many of the $\\gamma$-ray objects listed in the Fermi-Large Area Telescope Third Source catalog (3FGL) are classified as blazar candidates of uncertain type (BCUs), either because they show multifrequency behaviour similar to blazars but lacking optical spectra in the literature, or because the quality of such spectra is too low to confirm their nature. Here we select, out of 585 BCUs in the 3FGL, 42 BCUs which we identify as probable blazars by their WISE infrared colors and which also have optical spectra that are available in the Sloan Digital Sky Survey (SDSS) and/or Six-Degree Field Galaxy Survey Database (6dFGS). We confirm the blazar nature of all of the sources. We furthermore conclude that 28 of them are BL Lacs, 8 are radio-loud quasars with flat radio spectrum and 6 are BL Lac whose emission is dominated by their host galaxy.

  16. THE COSMOLOGICAL IMPACT OF LUMINOUS TeV BLAZARS. I. IMPLICATIONS OF PLASMA INSTABILITIES FOR THE INTERGALACTIC MAGNETIC FIELD AND EXTRAGALACTIC GAMMA-RAY BACKGROUND

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, Avery E.; Chang, Philip; Pfrommer, Christoph, E-mail: aeb@cita.utoronto.ca, E-mail: pchang@cita.utoronto.ca, E-mail: christoph.pfrommer@h-its.org [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

    2012-06-10

    Inverse Compton cascades (ICCs) initiated by energetic gamma rays (E {approx}> 100 GeV) enhance the GeV emission from bright, extragalactic TeV sources. The absence of this emission from bright TeV blazars has been used to constrain the intergalactic magnetic field (IGMF), and the stringent limits placed on the unresolved extragalactic gamma-ray background (EGRB) by Fermi have been used to argue against a large number of such objects at high redshifts. However, these are predicated on the assumption that inverse Compton scattering is the primary energy-loss mechanism for the ultrarelativistic pairs produced by the annihilation of the energetic gamma rays on extragalactic background light photons. Here, we show that for sufficiently bright TeV sources (isotropic-equivalent luminosities {approx}> 10{sup 42} erg s{sup -1}) plasma beam instabilities, specifically the 'oblique' instability, present a plausible mechanism by which the energy of these pairs can be dissipated locally, heating the intergalactic medium. Since these instabilities typically grow on timescales short in comparison to the inverse Compton cooling rate, they necessarily suppress the ICCs. As a consequence, this places a severe constraint on efforts to limit the IGMF from the lack of a discernible GeV bump in TeV sources. Similarly, it considerably weakens the Fermi limits on the evolution of blazar populations. Specifically, we construct a TeV-blazar luminosity function from those objects currently observed and find that it is very well described by the quasar luminosity function at z {approx} 0.1, shifted to lower luminosities and number densities, suggesting that both classes of sources are regulated by similar processes. Extending this relationship to higher redshifts, we show that the magnitude and shape of the EGRB above {approx}10 GeV are naturally reproduced with this particular example of a rapidly evolving TeV-blazar luminosity function.

  17. A code to simulate nuclear reactor inventories and associated gamma-ray spectra.

    Science.gov (United States)

    Cresswell, A J; Allyson, J D; Sanderson, D C

    2001-01-01

    A computer code has been developed to simulate the gamma-ray spectra that would be measured by airborne gamma spectrometry (AGS) systems from sources containing short-lived fission products. The code uses simple numerical methods to simulate the production and decay of fission products and generates spectra for sodium iodide (NaI) detectors using Monte Carlo codes. A new Monte Carlo code using a virtual array of detectors to reduce simulation times for airborne geometries is described. Spectra generated for a short irradiation and laboratory geometry have been compared with an experimental data set. The agreement is good. Spectra have also been generated for airborne geometries and longer irradiation periods. The application of this code to generate AGS spectra for accident scenarios and their uses in the development and evaluation of spectral analysis methods for such situations are discussed.

  18. Multi-Frequency Observations of Gamma-Ray Blazar 1633+382

    Indian Academy of Sciences (India)

    S. G. Jorstad; A. P. Marscher; I. Agudo; P. S. Smith; V. M. Larionov; A. Lähteenmäki

    2011-03-01

    We perform monthly monitoring of the quasar 1633+382 (4C+38.41) within a sample of -ray blazars with the VLBA at 43 GHz along with optical photometric and polarimetric observations. We construct the -ray light curve of 1633+382 using data obtained by the Fermi LAT. We find that a high -ray state of the quasar starting in 2009 September is simultaneous with an increase of the flux in the mm-wave VLBI core. We resolve a superluminal feature on the VLBA images that appears to be responsible for the mm-wave flux increase. We find a strong correlation between optical and -ray light curves with a delay of -ray variations of 5 ± 3 days, as well as a strong correlation between optical flux and degree of polarization during the high -ray state. Comparison between the optical polarization position angle and that in the VLBI core supports the idea that in the quasar 1633+382 a high -ray state is connected with processes originating near the mm-VLBI core.

  19. Multi-frequency monitoring of gamma-ray loud blazars: I. Light curves and spectral energy distributions

    CERN Document Server

    Bach, U; Villata, M; Fuhrmann, L; Buemi, C S; Larionov, V M; Leto, P; Arkharov, A A; Coloma, J M; Di Paola, A; Dolci, M; Efimova, N; Forne, E; Ibrahimov, M A; Hagen-Thorn, V; Konstantinova, T; Kopatskaya, E; Lanteri, L; Kurtanidze, O M; Maccaferri, G; Nikolashvili, M G; Orlati, A; Ros, J A; Tosti, G; Trigilio, C; Umana, G

    2006-01-01

    Context: Being dominated by non-thermal emission from aligned relativistic jets, blazars allow us to elucidate the physics of extragalactic jets, and, ltimately, how the energy is extracted from the central black hole in radio-loud active galactic nuclei. Aims: Crucial information is provided by broad-band spectral energy distributions (SEDs), their trends with luminosity and correlated multi-frequency variability. With this study we plan to obtain a database of contemporaneous radio-to-optical spectra of a sample of blazars, which are and will be observed by current and future high-energy satellites. Methods: Since December 2004 we are performing a monthly multi-frequency radio monitoring of a sample of 35 blazars at the antennas in Medicina and Noto. Contemporaneous near-IR and optical observations for all our observing epochs are organised. Results: Until June 2006 about 4000 radio measurements and 5500 near-IR and optical measurements were obtained. Most of the sources show significant variability in all ...

  20. The Power Spectra of Two Classes of Long-duration Gamma-ray Bursts

    CERN Document Server

    Shen, R F

    2003-01-01

    We have studied the averaged power density spectra (PDSs) of two classes of long-duration gamma-ray bursts in the recent classification by Balastegui et al.(2001) based on neural network analysis. Both PDSs follow a power law over a wide frequency range with approximately the same slope, which indicates that a process with a self-similar temporal property may underlie the emission mechanisms of both. The two classes of bursts are divided into groups according to their brightness and spectral hardness respectively and each group's PDS was calculated; For both classes, the PDS is found to flatten both with increasing burst brightness and with increasing hardness.

  1. GAMMA-RAY FLARING ACTIVITY FROM THE GRAVITATIONALLY LENSED BLAZAR PKS 1830–211 OBSERVED BY Fermi LAT

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A. [Center for Earth Observing and Space Research, College of Science, George Mason University, Fairfax, VA 22030 (United States); Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Allafort, A.; Bechtol, K.; Blandford, R. D.; Borgland, A. W.; Caliandro, G. A.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Amin, M. A. [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, Montpellier (France); Brigida, M. [Dipartimento di Fisica " M. Merlin" dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Bulmash, D., E-mail: sara.buson@pd.infn.it, E-mail: stefano.ciprini@asdc.asi.it, E-mail: justin.finke@nrl.navy.mil, E-mail: dammando@ira.inaf.it, E-mail: stefano.ciprini@asdc.asi.it, E-mail: sara.buson@pd.infn.it, E-mail: justin.finke@nrl.navy.mil, E-mail: dammando@ira.inaf.it [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02138 (United States); and others

    2015-02-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the MeV-peaked flat-spectrum radio quasar PKS 1830–211 (z = 2.507). Its apparent isotropic γ-ray luminosity (E > 100 MeV), averaged over ∼3 years of observations and peaking on 2010 October 14/15 at 2.9 × 10{sup 50} erg s{sup –1}, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time-delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large γ-ray flares of PKS 1830–211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the γ-ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X-ray flux with the γ-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and γ-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.

  2. Gamma-Ray Flaring Activity from the Gravitationally Lensed Blazar PKS 1830-211 Observed by Fermi LAT

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A. A.; et al.

    2015-01-23

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the MeV-peaked flat-spectrum radio quasar PKS 1830–211 (z = 2.507). Its apparent isotropic γ-ray luminosity (E > 100 MeV), averaged over ~3 years of observations and peaking on 2010 October 14/15 at 2.9 × 10(50) erg s(–)(1), makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time-delayed variability to follow about 25 days after a primary flare, with flux about a factor of 1.5 less. Two large γ-ray flares of PKS 1830–211 have been detected by the LAT in the considered period, and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the γ-ray flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum with no significant correlation of X-ray flux with the γ-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and γ-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.

  3. Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Lattuada, D; Lefèvre, D; Leonora, E; Loucatos, S; Mangano, S; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Neff, M; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldaña, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tönnis, C; Turpin, D; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2015-01-01

    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using ...

  4. Application of the MST clustering to the high energy gamma-ray sky. IV - Blazar candidates found as possible counterparts of photon clusters

    CERN Document Server

    Campana, R; Bernieri, E

    2016-01-01

    We present the results of a cluster search in the Fermi-LAT Pass 8 gamma-ray sky by means of the Minimum Spanning Tree algorithm, at energies higher than 10 GeV and at Galactic latitudes higher than 25 degrees. The selected clusters have a minimum number of photons higher than or equal to 5, a high degree of concentration, and are without a clear corresponding counterpart in blazar catalogues. A sample of 30 possible gamma-ray sources was obtained. These objects were verified by applying the standard Maximum Likelihood analysis on the Fermi-LAT data. A search for possible radio counterparts in a circle having a radius of 6 arcmin was performed, finding several interesting objects, the majority of them without optical spectroscopical data. These can be considered as new blazar candidates. Some of them were already noticed as possible blazars or Active Galactic Nuclei in previous surveys, but never associated with high energy emission. These possible counterparts are reported and their properties are discussed.

  5. AGILE detection of a rapid gamma-ray flare from the blazar PKS 1510-089 during the GASP-WEBT monitoring

    CERN Document Server

    D'Ammando, F; Raiteri, C M; Villata, M; Vittorini, V; Vercellone, S; Donnarumma, I; Longo, F; Tavani, M; Argan, A; Barbiellini, G; Boffelli, F; Bulgarelli, A; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Costa, E; Del Monte, E; De Paris, G; Di Cocco, G; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Froysland, T; Fuschino, F; Galli, M; Gianotti, F; Giuliani, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Marisaldi, M; Mereghetti, S; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Piano, G; Picozza, P; Pilia, M; Prest, M; Rapisarda, M; Rappoldi, A; Sabatini, S; Soffitta, P; Trifoglio, M; Trois, A; Vallazza, E; Zambra, A; Zanello, D; Agudo, I; Aller, M F; Aller, H D; Arkharov, A A; Bach, U; Benítez, E; Berdyugin, A; Blinov, D A; Buemi, C S; Chen, W P; Di Paola, A; Di Rico, G; Dultzin, D; Fuhrmann, L; Gómez, J L; Gurwell, M A; Jorstad, S G; Heidt, J; Hiriart, D; Hsiao, H Y; Kimeridze, G; Konstantinova, T S; Kopatskaya, E N; Koptelova, E; Kurtanidze, O; Larionov, V M; Leto, P; Lindfors, E; López, J M; Marscher, A P; McHardy, I M; Melnichuk, D A; Mommert, M; Mujica, R; Nilsson, K; Pasanen, M; Roca-Sogorb, M; Sorcia, M; Takalo, L O; Taylor, B; Trigilio, C; Troitsky, I S; Umana, G; Antonelli, L A; Colafrancesco, S; Cutini, S; Gasparrini, D; Pittori, C; Preger, B; Santolamazza, P; Verrecchia, F; Giommi, P; Salotti, L

    2009-01-01

    We report the detection by the AGILE satellite of a rapid gamma-ray flare from the powerful gamma-ray quasar PKS 1510-089, during a pointing centered on the Galactic Center region from 1 March to 30 March 2008. This source has been continuosly monitored in the radio-to-optical bands by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT). Moreover, the gamma-ray flaring episode triggered three ToO observations by the Swift satellite in three consecutive days, starting from 20 March 2008. In the period 1-16 March 2008, AGILE detected gamma-ray emission from PKS 1510-089 at a significance level of 6.2-sigma with an average flux over the entire period of (84 +/- 17) x 10^{-8} photons cm^{-2} s^{-1} for photon energies above 100 MeV. After a predefined satellite re-pointing, between 17 and 21 March 2008, AGILE detected the source at a significance level of 7.3-sigma, with an average flux (E > 100 MeV) of (134 +/- 29) x 10^{-8} photons cm^{-2} s^{-1} and a peak level of (281 +/- 68) x ...

  6. Qualitative and quantitative validation of the SINBAD code on complex HPGe gamma-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Rohee, E.; Coulon, R.; Normand, S.; Carrel, F. [CEA, LIST, Laboratoire Capteurs et Architectures electroniques, F-91191 Gif-sur-Yvette, (France); Dautremer, T.; Barat, E.; Montagu, T. [CEA, LIST, Laboratoire Modelisation, Simulation et Systemes, F-91191 Gif-sur-Yvette, (France); Jammes, C. [CEA/DEN/SPEx/LDCI, Centre de Cadarache, F-13109 Saint-Paul-lez-Durance, (France)

    2015-07-01

    Radionuclides identification and quantification is a serious concern for many applications as safety or security of nuclear power plant or fuel cycle facility, CBRN risk identification, environmental radioprotection and waste measurements. High resolution gamma-ray spectrometry based on HPGe detectors is a performing solution for all these topics. During last decades, a great number of software has been developed to improve gamma spectra analysis. However, some difficulties remain in the analysis when photoelectric peaks are folded together with a high ratio between theirs amplitudes, when the Compton background is much larger compared to the signal of a single peak and when spectra are composed of a great number of peaks. This study deals with the comparison between conventional methods in radionuclides identification and quantification and the code called SINBAD ('Spectrometrie par Inference Non parametrique Bayesienne Deconvolutive'). For many years, SINBAD has been developed by CEA LIST for unfolding complex spectra from HPGe detectors. Contrary to conventional methods using fitting procedures, SINBAD uses a probabilistic approach with Bayesian inference to describe spectrum data. This conventional fitting method founded for example in Genie 2000 is compared with the nonparametric SINBAD approach regarding some key figures of merit as the peak centroid evaluation (identification) and peak surface evaluation (quantification). Unfriendly cases are studied for nuclides detection with closed gamma-rays energies and high photoelectric peak intensity differences. Tests are performed with spectra from the International Atomic Energy Agency (IAEA) for gamma spectra analysis software benchmark and with spectra acquired at the laboratory. Results show that SINBAD and Genie 2000 performances are quite similar with sometimes best results for SINBAD with the important difference that to achieve same performances the nonparametric method is user-friendly compared

  7. CONSTRAINTS ON THE INTERGALACTIC MAGNETIC FIELD WITH GAMMA-RAY OBSERVATIONS OF BLAZARS

    Energy Technology Data Exchange (ETDEWEB)

    Finke, Justin D. [U.S. Naval Research Laboratory, Code 7653, 4555 Overlook Ave. SW, Washington, DC 20375-5352 (United States); Reyes, Luis C.; Reynolds, Kaeleigh [Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93401 (United States); Georganopoulos, Markos; McCann, Kevin [Department of Physics and Center for Space Sciences and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Ajello, Marco [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Fegan, Stephen J., E-mail: justin.finke@nrl.navy.mil, E-mail: lreyes04@calpoly.edu, E-mail: georgano@umbc.edu [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France)

    2015-11-20

    Distant BL Lacertae objects emit γ-rays that interact with the extragalactic background light (EBL), creating electron–positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Compton-scatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies that is observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (L{sub B}). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects and combine them with LAT spectra for these sources to constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B ≲ 10{sup −19} G for L{sub B} ≥ 1 Mpc) at >5σ in all trials with different EBL models and data selection, except when using >1 GeV spectra and the lowest EBL models. We were not able to constrain high values of B.

  8. Gamma-ray spectra of hexane (C6H14) in positron-electron annihilation process

    Science.gov (United States)

    Ma, Xiaoguang; Wang, Feng

    2013-08-01

    Theoretical gamma-ray spectra of molecule hexane have been calculated and compared with the experimental results in both gas (Iwata et al., 1997a) and liquid (Kerr et al., 1965) phases. The present study reveals that in gas phase not all valence electrons of hexane contribute the same degree in the electron-positron annihilation of hexane. The electrons which dominate the positron-electron annihilation of molecules are called positrophilic electrons. The positrophilic electrons are predominately found to involve the electrons on the lowest occupied valence orbital (LOVO) of a free molecule in gas phase. When hexane is confined in liquid phase, however, the intermolecular interactions ultimately eliminate the free molecular orientation and selectivity for the positrophilic electrons in the gas phase. As a result, the gamma-ray spectra of hexane become an "averaged" contribution from all valence electrons, which is again in agreement with liquid phase measurement. The roles of valence electrons in annihilation process for gas and liquid phases of hexane have been recognized for the first time in the present study.

  9. Observations of $\\gamma$-ray emission from the blazar Markarian 421 above 250 GeV with the CAT Cherenkov imaging telescope

    CERN Document Server

    Piron, Frédéric

    1999-01-01

    The gamma-ray emission of the blazar Markarian 421 above 250 GeV has been observed by the CAT Cherenkov imaging telescope since December, 1996. We report here results on the source variability up to April, 1998, with emphasis on the 1998 campaign. For the flaring periods of this year, the energy spectrum was derived from 330 GeV up to 5.2 TeV: it is very well represented by a simple power law, with a differential spectral index of 2.96 +/- 0.13.

  10. Bethe-Heitler cascades as a plausible origin of hard spectra in distant TeV blazars

    CERN Document Server

    Zheng, Y G; Kang, S J

    2016-01-01

    Context. Very high-energy (VHE) $\\gamma$-ray measurements of distant TeV blazars can be nicely explained by TeV spectra induced by ultra high-energy cosmic rays. Aims. We develop a model for a plausible origin of hard spectra in distant TeV blazars. Methods. In the model, the TeV emission in distant TeV blazars is dominated by two mixed components. The first is the internal component with the photon energy around 1 TeV produced by inverse Compton scattering of the relativistic electrons on the synchrotron photons (SSC) with a correction for extragalactic background light absorbtion and the other is the external component with the photon energy more than 1 TeV produced by the cascade emission from high-energy protons propagating through intergalactic space. Results. Assuming suitable model parameters, we apply the model to observed spectra of distant TeV blazars of 1ES 0229+200. Our results show that 1) the observed spectrum properties of 1ES 0229+200, especially the TeV $\\gamma$-ray tail of the observed spect...

  11. Gamma-ray Light Curves and Variability of Bright Fermi-Detected Blazars

    CERN Document Server

    Abdo, A A

    2010-01-01

    This paper presents light curves and the first systematic characterization of variability of the 106 objects in the Fermi Large Area Telescope (LAT) Bright AGN Sample (LBAS). Weekly light curves obtained during the first 11 months of survey (August 04, 2008 - July 04, 2009), are tested for variability, and their properties are quantified through autocorrelation and structure function analysis. For the brightest sources power density spectra (PDS) and fit of the temporal structure of major flares is performed. More than 50% of the sources are variable, where high states do not exceed 1/4 of the total observation range. Variation amplitudes are larger for FSRQs and low/intermediate synchrotron peaked (LSP/ISP) BL Lac objects. Autocorrelation time scales vary from 4 to a dozen of weeks. Variable sources of the sample have 1/(f^{a}) PDS and show two modes: (1) rather constant baseline with sporadic flaring activity characterized by flatter PDS slopes resembling flickering and red-noise with occasional intermitten...

  12. Discovery of High-energy and Very High Energy Gamma-ray Emission from the Blazar RBS 0413

    CERN Document Server

    Aliu, E; Arlen, T; Aune, T; Beilicke, M; Benbow, W; Boettcher, M; Bouvier, A; Bradbury, S M; Buckley, J H; Bugaev, V; Byrum, K; Cannon, A; Cesarini, A; Ciupik, L; Collins-Hughes, E; Connolly, M P; Coppi, P; Cui, W; Decerprit, G; Dickherber, R; Dumm, J; Errando, M; Falcone, A; Feng, Q; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Godambe, S; Griffin, S; Grube, J; Gyuk, G; Hanna, D; Hawkins, K; Holder, J; Huan, H; Hughes, G; Humensky, T B; Kaaret, P; Karlsson, N; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; Lee, K; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; Moriarty, P; Mukherjee, R; Ong, R A; Orr, M; Otte, A N; Palma, N; Park, N; Perkins, J S; Pichel, A; Pohl, M; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Ruppel, J; Saxon, D B; Schroedter, M; Sembroski, G H; Senturk, G D; Smith, A W; Staszak, D; Telezhinsky, I; Tesic, G; Theiling, M; Thibadeau, S; Tsurusaki, K; Varlotta, A; Vivier, M; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; Zitzer, B; Fortin, P; Horan, D

    2012-01-01

    We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high-energy (VHE; E > 100 GeV) gamma-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based gamma-ray observatory, detected VHE gamma rays from RBS 0413 with a statistical significance of 5.5 standard deviations (sigma) and a gamma-ray flux of (1.5 \\pm 0.6stat \\pm 0.7syst) \\times 10^(-8) photons m^(-2) s^(-1) (\\sim 1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 \\pm 0.68stat \\pm 0.30syst. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE gamma rays from RBS 0413 with a statistical significance of more than 9 sigma, a power-law photon index of 1.57 \\pm 0.12stat +0.11sys -0.12sys and a gamma-ray flux between 300 MeV and 300 GeV of (1.64 \\pm 0.43stat +0.31sys -0.22sys) \\times 10^(-5) photons m^(-2) s^(-1). We present the results from Fermi-LAT and VERITAS, including a...

  13. The Extreme Gamma-Ray Blazar S5 0716+714: Jet Conditions from Radio-Band Variability and Radiative Transfer Modeling

    CERN Document Server

    Aller, M F; Aller, H D; Jorstad, S G; Marscher, A P; Bala, V; Hovatta, T

    2015-01-01

    As part of a program to identify the physical conditions in the jets of gamma-ray-flaring blazars detected by Fermi, including the role of shocks in the production of high-energy flaring, we obtained 4 years of 3-frequency, centimeter-band total flux density and linear polarization monitoring observations of the radio-bright blazar S5 0716+714 with the University of Michigan 26-m paraboloid. Light curves constructed from these data exhibit a series of rapid, high-amplitude, centimeter-band total flux density outbursts, and changes in the linear polarization consistent with the passage of shocks during the gamma-ray flaring. The observed spectral evolution of the radio-band flares, in combination with radiative transfer simulations incorporating propagating shocks, was used to constrain the shock and jet flow conditions in the parsec-scale regions of the jet. Eight forward-moving, transverse shocks with unusually-strong shock compression factors, a very fast Lorentz factor of the shocks of 77, a bulk Lorentz f...

  14. A Determination of the Gamma-ray Flux and Photon Spectral Index Distributions of Blazars from the Fermi-LAT 3LAC

    CERN Document Server

    Singal, J

    2015-01-01

    We present a determination of the distributions of gamma-ray photon flux -- the so called LogN-LogS relation -- and photon spectral index for blazars, based on the third extragalactic source catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, and considering the photon energy range from 100 MeV to 100 GeV. The dataset consists of the 774 blazars in the so-called "Clean" sample detected with a greater than approximately seven sigma detection threshold and located above $\\pm$20 deg Galactic latitude. We use non-parametric methods verified in previous works to reconstruct the intrinsic distributions from the observed ones which account for the data truncations introduced by observational bias and includes the effects of the possible correlation between the flux and photon index. The intrinsic flux distribution can be represented by a broken power law with a high flux power-law index of -2.43$\\pm$0.08 and a low flux power-law index of -1.87$\\pm$0.10. The intrinsic photon index distribution can ...

  15. The uncorrelated long term gamma-ray and X-ray variability of blazars and its implications on disk-jet coupling

    CERN Document Server

    Bhattacharya, Debbijoy; Rao, A R; Sreekumar, P; 10.1093/mnras/stt281

    2013-01-01

    We examine the long term (~10 years) gamma-ray variability of blazars observed by EGRET and Fermi and find that for six sources the average flux varied by more than an order of magnitude. For two of these sources (PKS 0208-512 and PKS 0528+134), there were extensive observations (at various observing periods) by EGRET. Hence these dramatic variations are not due to a single short time-scale flare, but reflect long term changes in the average flux. Over the last twenty years, these two sources were also the target of several X-ray observatories (e.g. ROSAT, ASCA, RXTE, BeppoSAX, Chandra, Suzaku, XMM-Newton and Swift). While the ratios of the average gamma-ray fluxes between EGRET and Fermi observations are 22.9 +/- 1.9 and 12.6 +/- 1.5, their estimated 2-10 keV X-ray flux do not show such dramatic variations. The X-ray emission from such flat spectrum radio quasars (FSRQs) are believed to be due to synchrotron self Compton, while gamma-rays originate from inverse Comptonization of external soft photons from an...

  16. Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes

    CERN Document Server

    Ahnen, M L; Antonelli, L A; Antoranz, P; Arcaro, C; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Berti, A; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Buson, S; Carosi, A; Chatterjee, A; Clavero, R; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Lotto, B; Wilhelmi, E de Oña; Di Pierro, F; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Engelkemeier, M; Ramazani, V Fallah; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giammaria, P; Godinović, N; Gora, D; Guberman, D; Hadasch, D; Hahn, A; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kodani, K; Konno, Y; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Moretti, E; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Nogués, L; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Pedaletti, G; Peresano, M; Perri, L; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Garcia, J R; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Saito, T; Satalecka, K; Schroeder, S; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Strzys, M; Surić, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Torres, D F; Toyama, T; Treves, A; Vanzo, G; Verguilov, V; Vovk, I; Ward, J E; Will, M; Wu, M H; Zanin, R; Desiante, R

    2016-01-01

    Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and...

  17. Discovery of very high energy gamma-ray emission from the blazar 1ES 1727+502 with the MAGIC Telescopes

    CERN Document Server

    Aleksić, J; Antoranz, P; Asensio, M; Backes, M; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnefoy, S; Bonnoli, G; Tridon, D Borla; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Fidalgo, D Carreto; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Farina, E; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadamek, A; Hadasch, D; Häfner, D; Herrero, A; Hose, J; Hrupec, D; Idec, W; Jankowski, F; Kadenius, V; Klepser, S; Knoetig, M L; Krähenbühl, T; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Masbou, J; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Partini, S; Persic, M; Prada, F; Moroni, P G Prada; Prandini, E; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Weitzel, Q; Zandanel, F; Zanin, R

    2013-01-01

    Motivated by the Costamante & Ghisellini (2002) predictions we investigated if the blazar 1ES 1727+502 (z=0.055) is emitting very high energy (VHE, E>100 GeV) gamma rays. We observed the BL Lac object 1ES 1727+502 in stereoscopic mode with the two MAGIC telescopes during 14 nights between May 6th and June 10th 2011, for a total effective observing time of 12.6 hours. For the study of the multiwavelength spectral energy distribution (SED) we use simultaneous optical R-band data from the KVA telescope, archival UV/optical and X-ray observations by instruments UVOT and XRT on board of the Swift satellite and high energy (HE, 0.1 GeV - 100 GeV) gamma-ray data from the Fermi-LAT instrument. We detect, for the first time, VHE gamma-ray emission from 1ES 1727+502 at a statistical significance of 5.5 sigma. The integral flux above 150 GeV is estimated to be (2.1\\pm0.4)% of the Crab Nebula flux and the de-absorbed VHE spectrum has a photon index of (2.7\\pm0.5). No significant short-term variability was found in an...

  18. Effects of spatial fluctuations in the extragalactic background light on hard gamma-ray spectra

    Science.gov (United States)

    Kudoda, A. M.; Faltenbacher, A.

    2017-05-01

    This study investigates the impact of the fluctuations in the extragalactic background light (EBL) on the attenuation of the hard γ-ray spectra of distant blazars. EBL fluctuations occur on the scales up to 100 Mpc and are caused by the clustering of galaxies. The EBL photons interact with high-energy γ-rays via the electron-positron pair production mechanism: γ + γ΄ → e+ + e-. The attenuation of γ-rays depends on their energy and the density of the intervening EBL photon field. Using a simple model for the evolution of the mean EBL photon density, we implement an analytical description of the EBL fluctuations. We find that the amplitudes of the EBL energy density can vary by ±1 per cent as a function of environment. The EBL fluctuations lead to mild alterations of the optical depth or equivalently the transmissivity for γ-rays from distant blazars. Our model predicts maximum changes of ±10 per cent in the γ-ray transmissivity. However, this translates into marginal differences in the power-law slopes of currently observed γ-ray spectra. The slopes of deabsorbed γ-ray spectra differ by not more than ±1 per cent if EBL fluctuations are included.

  19. Adiabatic Non-resonant Acceleration in Magnetic Turbulence and Hard Spectra of Gamma-Ray Bursts

    Science.gov (United States)

    Xu, Siyao; Zhang, Bing

    2017-09-01

    We introduce a non-resonant acceleration mechanism arising from the second adiabatic invariant in magnetic turbulence and apply it to study the prompt emission spectra of gamma-ray bursts (GRBs). The mechanism contains both the first- and second-order Fermi acceleration, originating from the interacting turbulent reconnection and dynamo processes. It leads to a hard electron energy distribution up to a cutoff energy at the balance between the acceleration and synchrotron cooling. The sufficient acceleration rate ensures a rapid hardening of any initial energy distribution to a power-law distribution with the index p∼ 1, which naturally produces a low-energy photon index α ∼ -1 via the synchrotron radiation. For typical GRB parameters, the synchrotron emission can extend to a characteristic photon energy on the order of ∼100 keV.

  20. Constraining the Lorentz invariance violation from the continuous spectra of short gamma-ray bursts

    CERN Document Server

    Chang, Zhe; Lin, Hai-Nan; Sang, Yu; Wang, Ping; Wang, Sai

    2015-01-01

    In quantum gravity, a foamy structure of space-time leads to Lorentz invariance violation (LIV). As the most energetic astrophysical processes in the Universe, gamma-ray bursts (GRBs) provide an effective way to probe quantum gravity effects. We use continuous spectra of 20 short GRBs detected by the Swift satellite to give a conservative lower limit of quantum gravity energy scale $M_\\textrm{QG} $. Due to the LIV effect, photons with different energy have different velocities. This will lead to the delayed arrival of high energy photons relative to the low energy ones. Based on the fact that the LIV-induced time delay can't be longer than the duration of a GRB, we present the most conservative estimation of the quantum gravity energy scales from 20 short GRBs. The most strict constraint, $M_\\textrm{QG}>5.05\\times10^{14}$ GeV, is from GRB 140622A.

  1. On the origin of X-ray spectra in luminous blazars

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Marek; Janiak, Mateusz; Moderski, Rafał [Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw (Poland); Nalewajko, Krzysztof [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309 (United States); Madejski, Greg M., E-mail: sikora@camk.edu.pl, E-mail: mjaniak@camk.edu.pl [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States)

    2013-12-10

    Gamma-ray luminosities of some quasar-associated blazars imply jet powers reaching values comparable to the accretion power even if assuming very strong Doppler boosting and very high efficiency of gamma-ray production. With much lower radiative efficiencies of protons than of electrons, and the recent reports of very strong coupling of electrons with shock-heated protons indicated by particle-in-cell simulations, the leptonic models seem to be strongly favored over the hadronic ones. However, the electron-proton coupling combined with the external-radiation-Compton (ERC) models of gamma-ray production in leptonic models predict extremely hard X-ray spectra, with energy indices α {sub x} ∼ 0. This is inconsistent with the observed 2-10 keV slopes of blazars, which cluster around α {sub x} ∼ 0.6. This problem can be resolved by assuming that electrons can be efficiently cooled down radiatively to non-relativistic energies, or that blazar spectra are entirely dominated by the synchrotron self-Compton (SSC) component up to at least 10 keV. Here, we show that the required cooling can be sufficiently efficient only at distances r < 0.03 pc. SSC spectra, on the other hand, can be produced roughly co-spatially with the observed synchrotron and ERC components, which are most likely located roughly at a parsec scale. We show that the dominant SSC component can also be produced much further than the dominant synchrotron and ERC components, at distances of ≳ 10 pc. Hence, depending on the spatial distribution of the energy dissipation along the jet, one may expect to see γ-ray/optical events with either correlated or uncorrelated X-rays. In all cases the number of e{sup +}e{sup –} pairs per proton is predicted to be very low. The direct verification of the proposed SSC scenario, and particularly the question of the co-spatiality of the SSC component with other spectral components, requires sensitive observations in the hard X-ray band. This is now possible with the

  2. DISCOVERY OF HIGH-ENERGY AND VERY HIGH ENERGY {gamma}-RAY EMISSION FROM THE BLAZAR RBS 0413

    Energy Technology Data Exchange (ETDEWEB)

    Aliu, E. [Department of Physics and Astronomy, Barnard College, Columbia University, NY 10027 (United States); Archambault, S. [Physics Department, McGill University, Montreal, QC H3A 2T8 (Canada); Arlen, T. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States); Aune, T.; Bouvier, A. [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA 95064 (United States); Beilicke, M.; Buckley, J. H.; Bugaev, V. [Department of Physics, Washington University, St. Louis, MO 63130 (United States); Benbow, W. [Fred Lawrence Whipple Observatory, Harvard-Smithsonian Center for Astrophysics, Amado, AZ 85645 (United States); Boettcher, M. [Astrophysical Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701 (United States); Bradbury, S. M. [School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT (United Kingdom); Byrum, K.; Decerprit, G. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Cannon, A.; Collins-Hughes, E. [School of Physics, University College Dublin, Belfield, Dublin 4 (Ireland); Cesarini, A.; Connolly, M. P. [School of Physics, National University of Ireland Galway, University Road, Galway (Ireland); Ciupik, L. [Astronomy Department, Adler Planetarium and Astronomy Museum, Chicago, IL 60605 (United States); Coppi, P. [Department of Astronomy, Yale University, P. O. Box 208101 New Haven, CT 06511 (United States); Cui, W., E-mail: gunessenturk@gmail.com, E-mail: fortin@llr.in2p3.fr, E-mail: deirdre@llr.in2p3.fr [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); and others

    2012-05-10

    We report on the discovery of high-energy (HE; E > 0.1 GeV) and very high energy (VHE; E > 100 GeV) {gamma}-ray emission from the high-frequency-peaked BL Lac object RBS 0413. VERITAS, a ground-based {gamma}-ray observatory, detected VHE {gamma} rays from RBS 0413 with a statistical significance of 5.5 standard deviations ({sigma}) and a {gamma}-ray flux of (1.5 {+-} 0.6{sub stat} {+-} 0.7{sub syst}) Multiplication-Sign 10{sup -8} photons m{sup -2} s{sup -1} ({approx}1% of the Crab Nebula flux) above 250 GeV. The observed spectrum can be described by a power law with a photon index of 3.18 {+-} 0.68{sub stat} {+-} 0.30{sub syst}. Contemporaneous observations with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope detected HE {gamma} rays from RBS 0413 with a statistical significance of more than 9{sigma}, a power-law photon index of 1.57 {+-} 0.12{sub stat}+{sup 0.11}{sub -0.12sys}, and a {gamma}-ray flux between 300 MeV and 300 GeV of (1.64 {+-} 0.43{sub stat}{sup +0.31}{sub -0.22sys}) Multiplication-Sign 10{sup -5} photons m{sup -2} s{sup -1}. We present the results from Fermi-LAT and VERITAS, including a spectral energy distribution modeling of the {gamma}-ray, quasi-simultaneous X-ray (Swift-XRT), ultraviolet (Swift-UVOT), and R-band optical (MDM) data. We find that, if conditions close to equipartition are required, both the combined synchrotron self-Compton/external-Compton and the lepto-hadronic models are preferred over a pure synchrotron self-Compton model.

  3. Data pre-processing using an FPGA by binning gamma ray energies and forwarding consolidated spectra data

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Ana, E-mail: anaf@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Pereira, Rita C. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Neto, André C. [Fusion for Energy, 08019 Barcelona (Spain); Sousa, Jorge; Carvalho, Bernardo B. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Kiptily, Vasily [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Correia, Carlos M.B.A. [Centro de Instrumentação, Dept. de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, Bruno [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • JET monitor equipped with a DAQ system to digitize gamma signals from 19 detectors. • DAQ FPGAs used for real-time processing and streaming the gamma-ray energy values. • New algorithm was designed to produce at FPGA real-time spectra from energy values. • Spectra built at FPGA ensures streamed packets not limited by count rate. • New algorithm is relevant for future experiments expecting high event count rates. - Abstract: Gamma-ray diagnostics are considered of crucial importance for understanding the plasma behavior of next fusion devices. Among other physical phenomena, gamma-ray spectra can provide information about the fusion reactions rate and the fast ions temperature and confinement, indicators of how close we are from reaching self-sustained burning plasmas. Accordingly, dedicated gamma-ray diagnostics are currently installed at the Joint European Torus (JET). The 2D gamma-ray profile monitor is one of these diagnostics, equipped with an Advanced Telecommunications Computing Architecture (ATCA) Data Acquisition (DAQ) system, capable of digitizing gamma-ray signals from the 19 photodiode detectors. The DAQ system includes Field Programmable Gate Array (FPGA) devices, with embedded processing algorithms. These algorithms are responsible for processing the gamma-ray signals acquired from each detector in real-time, and for periodically streaming the corresponding energy values to the DAQ host. However, for higher count rates it will be unfeasible to stream periodically all the energy values without loss. Thus, a new algorithm was designed, capable to produce real-time spectra at FPGA from the processed energy values. The spectra should be periodically streamed, delivering binned data rather than a value for each gamma-ray. This allows to reduce the data rate, avoiding data losses. Consequently, the streaming data can be used for control purposes, as demanded by next fusion experiments with long plasma discharges of high energy

  4. ACCURACY OF MEASUREMENT OF NATURAL GAMMA RAY SPECTRA BY HD—8004 NaI(T1) GAMMA SPECTROMETER

    Institute of Scientific and Technical Information of China (English)

    朱国钦; 郑仁淑

    1995-01-01

    The measurement principle and analysis method of natural gammaray spectra using NaI(T1) scintillation spectrometer are briefly described first,then block diagrams of the HD-8004 NaI(T1) gamma-ray spectrometer,Finally,sample measurements are listed and discussed.The results are quite promising.Based on the analysis of these measurements,measures to improve the accuracy of spectrum measurement are proposed.It is well hoped that these measures can contribute to the development and application of gamma-ray spectrum measurement.

  5. Modelling the TeV gamma-ray spectra of two low redshift AGNs Mkn 501 and Mkn 421

    CERN Document Server

    Konopelko, A K; Kirk, J G; De Jager, O C; Stecker, F W; Konopelko, Alexander K.; Mastichiadis, Apostolos; Kirk, John G.; Jager, Ocker C. de; Stecker, Floyd W.

    2003-01-01

    We discuss the results of modelling the TeV gamma-ray spectra of two AGNs, Mkn 501 and Mkn 421 that have almost the same redshifts: z=0.031 and z=0.034, respectively. The effect of intergalactic gamma-ray absorption is treated as an uncertainty in the measurement of the intrinsic spectrum. Although the objects differ, we obtain satisfactory fits for both of them in a synchrotron self-Compton scenario. Compared to previous models, our fits are characterised by higher values of the Doppler factor (>= 50) and an electron injection spectrum extending to higher energies (Gmax = 1.5x10^5). In the case of Mkn 421, the observed difference in spectral slope in X-rays and TeV gamma-rays between the high and low states can be explained as a variation of a single parameter - the maximum energy Gmax mc^2 at which electrons are injected.

  6. Relation between Events in the Millimeter-wave Core and Gamma-ray Outbursts in Blazar Jets

    CERN Document Server

    Marscher, A P; Agudo, I; MacDonald, N R; Scott, T L

    2012-01-01

    Analysis of comprehensive monitoring of 34 gamma-ray bright quasars, BL Lac objects, and radio galaxies reveals a close connection between events in the millimeter-wave emission imaged with the VLBA at 43 GHz and flares at gamma-ray and lower frequencies. Roughly 2/3 of the flares are coincident with the appearance of a new superluminal knot and/or a flare in the millimeter-wave "core'" located parsecs from the central engine. This presents a theoretical challenge to explain how the gamma-ray flux can often be variable on intra-day time-scales. Possible answers to this include very narrow opening angles of the jet, small volume filling factors of the highest energy electrons, chaotic magnetic fields, and turbulent velocity fields relative to the mean jet flow.

  7. A Correlation Between Optical, X-ray, and Gamma-ray Variations in Blazar 3C 454.3

    CERN Document Server

    Tachibana, Yutaro; Pike, Sean

    2015-01-01

    We present the light curve data of a remarkable blazer 3C 454.3 (z=0.859) in optical, X-ray, and gamma-ray bands. Since January 2008, we have been monitoring this object using the 50 cm MITSuME, a optical telescope, and detected several flares including extraordinary and simultaneous flares in the $\\gamma$-ray and optical bands in November 2010. Additionally, the Monitor of All-sky Image (MAXI) has been observing 3C 454.3 continuously since August 2009. Using these data and gamma-ray flux observed with Fermi-LAT, we discuss features and correlations of flux variations between the energy bands.

  8. Gamma-ray flares from the blazars TXS 2241+406, Ton 599, and 4C +01.02

    Science.gov (United States)

    Ojha, Roopesh; Carpen, Bryce

    2015-11-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope has observed a gamma-ray flare from a source positionally consistent with the BL Lac object TXS 2241+406 (3FGL J2244.1+4057, Acero et al. 2015, ApJS 218, 23) with coordinates RA=22h 44m 12.7311s, Dec=40d 57m 13.62s (J2000, Beasley et al. 2002, ApJS, 141, 13) with redshift z=1.171 (Shaw et al. 2012, ApJ, 748, 49). Preliminary analysis indicates that on 20 November 2015 this source was in a high-flux state, with a daily averaged gamma-ray flux (E > 100MeV) of (1.2+/-0.2) X 10^-6 photons cm^-2 s^-1 (statistical uncertainty only) and photon spectral index of 2.2+/-0.1 (errors are statistical only).

  9. Fermi LAT observation of renewed and strong GeV gamma-ray activity from blazar CTA 102

    Science.gov (United States)

    Ciprini, Stefano

    2016-12-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed a new phase of strong gamma-ray activity from a source positionally consistent with the flat spectrum radio quasar CTA 102 (also known as 4C +11.69, PKS 2230+11, 3FGL J2232.5+1143) with VLBI coordinates, (J2000.0), R.A.: 338.151704 deg, Dec.: 11.730807 deg (Johnston et al. 1995, AJ, 110, 880).

  10. The spectra program library: A PC based system for gamma-ray spectra analysis and INAA data reduction

    Science.gov (United States)

    Baedecker, P.A.; Grossman, J.N.

    1995-01-01

    A PC based system has been developed for the analysis of gamma-ray spectra and for the complete reduction of data from INAA experiments, including software to average the results from mulitple lines and multiple countings and to produce a final report of analysis. Graphics algorithms may be called for the analysis of complex spectral features, to compare the data from alternate photopeaks and to evaluate detector performance during a given counting cycle. A database of results for control samples can be used to prepare quality control charts to evaluate long term precision and to search for systemic variations in data on reference samples as a function of time. The entire software library can be accessed through a user-friendly menu interface with internal help.

  11. H.E.S.S and Fermi-LAT discovery of gamma rays from the blazar 1ES 1312-423

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Angüner, E; Anton, G; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Bernlöhr, K; Birsin, E; Bissaldi, E; Biteau, J; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Chalme-Calvet, R; Chaves, R C G; Cheesebrough, A; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; deWilt, P; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Gast, H; Giebels, B; Glicenstein, J F; Göring, D; Grondin, M -H; Grudzińska, M; Häffner, S; Hague, J D; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kneiske, T; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lemoine-Goumard, M; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Menzler, U; Meyer, M; Moderski, R; Mohamed, M; Moulin, E; Murach, T; Naumann, C L; de Naurois, M; Nedbal, D; Niemiec, J; Nolan, S J; Oakes, L; Ohm, S; de OñaWilhelmi, E; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Raue, M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spengler, G; Spieß, F; Stawarz, {Ł }; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorster, M; Wagner, S J; Wagner, P; Ward, M; Weidinger, M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S; Perkins, J S; Ojha, R; Stevens, J; Edwards, P G; Kadler, M

    2013-01-01

    A deep observation campaign carried out by the High Energy Stereoscopic System (H.E.S.S.) on Centaurus A enabled the discovery of gamma rays from the blazar 1ES 1312-423, two degrees away from the radio galaxy. With a differential flux at 1 TeV of (1.9 +/-0.6(stat) +/-0.4(sys)) x 10^{-13} /cm^2 /s /TeV corresponding to 0.5% of the Crab nebula differential flux and a spectral index of 2.9 +/- 0.5 (stat) +/- 0.2 (sys), 1ES 1312-423 is one of the faintest sources ever detected in the very high energy (E>100 GeV) extragalactic sky. A careful analysis using three and a half years of Fermi-LAT data allows the discovery at high energies (E>100 MeV) of a hard spectrum (index of 1.4 +/- 0.4 (stat) +/- 0.2 (sys)) source coincident with 1ES 1312-423. Radio, optical, UV and X-ray observations complete the spectral energy distribution of this blazar, now covering 16 decades in energy. The emission is successfully fitted with a synchrotron self Compton model for the non-thermal component, combined with a black-body spectru...

  12. A Change in the Optical Polarization Associated with a Gamma-Ray Flare in the Blazar 3C 279

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.

    2011-08-19

    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma ({gamma})-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and {gamma}-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10{sup 5} gravitational radii.

  13. A multi-wavelength polarimetric study of the blazar CTA 102 during a Gamma-ray flare in 2012

    CERN Document Server

    Casadio, Carolina; Jorstad, Svetlana G; Marscher, Alan P; Larionov, Valeri M; Smith, Paul S; Gurwell, Mark A; Lähteenmäki, Anne; Agudo, Iván; Molina, Sol N; Bala, Vishal; Joshi, Manasvita; Taylor, Brian; Williamson, Karen E; Arkharov, Arkady A; Blinov, Dmitry A; Borman, George A; Di Paola, Andrea; Grishina, Tatiana S; Hagen-Thorn, Vladimir A; Itoh, Ryosuke; Kopatskaya, Evgenia N; Larionova, Elena G; Larionova, Liudmila V; Morozova, Daria A; Rastorgueva-Foi, Elizaveta; Sergeev, Sergey G; Tornikoski, Merja; Troitsky, Ivan S; Thum, Clemens; Wiesemeyer, Helmut

    2015-01-01

    We perform a multi-wavelength polarimetric study of the quasar CTA 102 during an extraordinarily bright $\\gamma$-ray outburst detected by the {\\it Fermi} Large Area Telescope in September-October 2012 when the source reached a flux of F$_{>100~\\mathrm{MeV}} =5.2\\pm0.4\\times10^{-6}$ photons cm$^{-2}$ s$^{-1}$. At the same time the source displayed an unprecedented optical and NIR outburst. We study the evolution of the parsec scale jet with ultra-high angular resolution through a sequence of 80 total and polarized intensity Very Long Baseline Array images at 43 GHz, covering the observing period from June 2007 to June 2014. We find that the $\\gamma$-ray outburst is coincident with flares at all the other frequencies and is related to the passage of a new superluminal knot through the radio core. The powerful $\\gamma$-ray emission is associated with a change in direction of the jet, which became oriented more closely to our line of sight ($\\theta\\sim$1.2$^{\\circ}$) during the ejection of the knot and the $\\gamm...

  14. First Fermi LAT detection of a strong GeV gamma-ray flare from blazar PKS 0403-13

    Science.gov (United States)

    Ciprini, Stefano

    2016-07-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increasing gamma-ray flux from a source positionally consistent with the flat spectrum radio quasar PKS 0403-13 (also known as TXS 0403-132, OF -105, RX J0405.5-1308, and 3FGL J0405.5-1307), with radio counterpart position R.A.: 61.391680 deg, Dec.: -13.137136 deg (J2000.0, Fey et al. 2004, AJ, 127, 3587) and with redshift z=0.5706+/-0.0001 (Marziani et al. 1996, ApJS, 104, 37). Preliminary analysis indicates that on 2016 July 11, PKS 0403-13 was in a high state with a daily averaged gamma-ray flux (E > 100 MeV) of (1.6+/-0.3) X 10^-6 photons cm^-2 s^-1 (statistical uncertainty only), about 140 times greater than its four-year average flux reported in the third Fermi-LAT source catalog (3FGL, Acero et al. 2015, ApJS, 218, 23). The corresponding daily averaged spectral photon index (E > 100 MeV) of 2.3+/-0.2 (statistical uncertainty only) is compatible with the 3FGL catalog value of 2.35+/-0.11.

  15. Fermi-LAT detection of a GeV gamma-ray flare from the blazar PKS 2023-07

    Science.gov (United States)

    Ciprini, Stefano; Fermi Large Area Telescope Collaboration

    2016-04-01

    The Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed increasing gamma-ray flux from a source positionally consistent with the flat spectrum radio quasar PKS 2023-07 (also known as NRAO 629, TXS 2022-077, 3EG J2025-0744, 1AGLR J2027-0747 and 3FGL J2025.6-0736), with radio counterpart position R.A.: 306.419418 deg, Dec.: -7.597969 deg (J2000.0, Beasley et al. 2002, ApJS, 141, 13) and with redshift z=1.388 (Drinkwater et al. 1997, MNRAS, 284, 85). Preliminary analysis indicates that on 2016 April 9, PKS 2023-07 was in a high state with a daily averaged gamma-ray flux (E > 100 MeV) of (2.0+/-0.3) X 10^-6 photons cm^-2 s^-1 (statistical uncertainty only), about 16 times greater than its four-year average flux reported in the third Fermi-LAT source catalog (3FGL, Acero et al. 2015, ApJS, 218, 23). The corresponding daily averaged spectral photon index (E > 100 MeV) of 2.4+/-0.2 (statistical uncertainty only) is compatible with the 3FGL catalog value of 2.18+/-0.03.

  16. Particle Acceleration Inside Thunderstorms and the Variation in Source Spectra of Terrestrial Gamma-ray Flashes

    Science.gov (United States)

    Cramer, Eric; Dwyer, Joseph R.; Briggs, Michael S.; Rassoul, Hamid K.

    2016-03-01

    One of the unresolved questions in the atmospheric sciences is the origin of Terrestrial Gamma-ray Flashes (TGFs). These flashes are short but intense gamma ray bursts emanating from Earth's atmosphere. This phenomenon has been observed by gamma ray detectors on orbiting satellites, e.g. NASA Fermi, intended to study astrophysical phenomena such as Gamma-ray Bursts. TGFs are thought to originate inside thunderstorms where electrons can be accelerated and emit radiation in the multi MeV range due to bremsstrahlung interactions with air molecules. These so called ``runaway electrons'' are seeded from cosmic ray air showers hitting the Earth's atmosphere from (extra) galactic sources. In this work, we present a Monte Carlo model that simulates particle physics inside a thunderstorm region. The subsequent transport of high energy gamma rays through the Earth's atmosphere and up to satellite orbit is also included. We show that by varying both the potential difference and the ambient electric field inside the thundercloud, different electron and photon energy distributions are produced. This effect may be detectable by orbiting spacecraft, and therefore serves as a method to remote sense the electric fields that exist inside thunderstorms.

  17. Gamma-ray-selected AGN

    Science.gov (United States)

    Giommi, Paolo

    2016-08-01

    The gamma-ray band is the most energetic part of the electromagnetic spectrum. As such it is also where selection effects are most severe, as it can only be reached by the most extreme non-thermal AGN. Blazars, with their emission dominated by non-thermal blue-shifted radiation arising in a relativistic jet pointed in the direction of the observer, naturally satisfy this though requirement. For this reason, albeit these sources are intrisically very rare (orders of magnitude less abundant than radio quiet AGN of the same optical magnitude) they almost completely dominate the extragalactic gamma-ray and very high energy sky. I will discuss the emission of different types of blazars and the selection effects that are at play in the gamma-ray band based on recent results from the current generation of gamma-ray astronomy satellites, ground-based Cherenkov telescopes, and Monte Carlo simulations.

  18. Detection of Low-energy Breaks in Gamma-Ray Burst Prompt Emission Spectra

    Science.gov (United States)

    Oganesyan, Gor; Nava, Lara; Ghirlanda, Giancarlo; Celotti, Annalisa

    2017-09-01

    The radiative process responsible for gamma-ray burst (GRB) prompt emission has not been identified yet. If dominated by fast-cooling synchrotron radiation, the part of the spectrum immediately below the ν {F}ν peak energy should display a power-law behavior with slope {α }2=-3/2, which breaks to a higher value {α }1=-2/3 (i.e., to a harder spectral shape) at lower energies. Prompt emission spectral data (usually available down to ∼ 10{--}20 keV) are consistent with one single power-law behavior below the peak, with typical slope =-1, higher than (and then inconsistent with) the expected value {α }2=-3/2. To better characterize the spectral shape at low energy, we analyzed 14 GRBs for which the Swift X-ray Telescope started observations during the prompt. When available, Fermi-GBM observations have been included in the analysis. For 67% of the spectra, models that usually give a satisfactory description of the prompt (e.g., the Band model) fail to reproduce the 0.5–1000 keV spectra: low-energy data outline the presence of a spectral break around a few keV. We then introduce an empirical fitting function that includes a low-energy power law {α }1, a break energy {E}{break}, a second power law {α }2, and a peak energy {E}{peak}. We find =-0.66 (σ =0.35), =0.63 (σ =0.20), =-1.46 (σ =0.31), and =2.1 (σ =0.56). The values and are very close to expectations from synchrotron radiation. In this context, {E}{break} corresponds to the cooling break frequency. The relatively small ratio {E}{peak}/{E}{break}∼ 30 suggests a regime of moderately fast cooling, which might solve the long-lasting problem of the apparent inconsistency between measured and predicted low-energy spectral index.

  19. Local electron spectrum above 100 MeV derived from gamma-ray emissivity spectra

    Science.gov (United States)

    Strong, A. W.

    1985-01-01

    Two new determinations of the local gamma-ray emmissivity spectrum are in good accord and were used to derive constraints on the local electron spectrum. The requirement for an electron intensity above 1 GeV larger than previously believed is confirmed and no low energy upturn is then needed.

  20. The Hadronic Origin of the Hard Gamma-Ray Spectrum from Blazar 1ES 1101-232

    Science.gov (United States)

    Cao, Gang; Wang, Jiancheng

    2014-03-01

    The very hard γ-ray spectrum from distant blazars challenges the traditional synchrotron self-Compton (SSC) model, which may indicate that there is a contribution from an additional high-energy component beyond the SSC emission. In this paper, we study the possible origin of the hard γ-ray spectrum from distant blazars. We develop a model to explain the hard γ-ray spectrum from blazar 1ES 1101-232. In the model, the optical and X-ray radiation would come from the synchrotron radiation of primary electrons and secondary pairs and the GeV emission would be produced by the SSC process, however, the hard γ-ray spectrum would originate from the decay of neutral pion produced through proton-photon interactions with the synchrotron radiation photons within the jet. Our model can explain the observed spectral energy distribution of 1ES 1101-232 well, especially the very hard γ-ray spectrum. However, our model requires a very large proton power to efficiently produce the γ-ray through proton-photon interactions.

  1. Hints of the Existence of Axion-Like-Particles From the Gamma-Ray Spectra of Cosmological Sources

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Conde, M.A.; /IAA, Granada /SLAC; Paneque, D.; Bloom, E.; /KIPAC, Menlo Park; Prada, F.; /IAA, Granada /UC, Santa Cruz; Dominguez, A.; /IAA, Granada /Seville U.

    2009-06-23

    Axion Like Particles (ALPs) are predicted to couple with photons in the presence of magnetic fields. This effect may lead to a significant change in the observed spectra of gamma-ray sources such as AGNs. Here we carry out a detailed study that for the first time simultaneously considers in the same framework both the photon/axion mixing that takes place in the gamma-ray source and that one expected to occur in the intergalactic magnetic fields. An efficient photon/axion mixing in the source always means an attenuation in the photon flux, whereas the mixing in the intergalactic medium may result in a decrement and/or enhancement of the photon flux, depending on the distance of the source and the energy considered. Interestingly, we find that decreasing the value of the intergalactic magnetic field strength, which decreases the probability for photon/axion mixing, could result in an increase of the expected photon flux at Earth if the source is far enough. We also find a 30% attenuation in the intensity spectrum of distant sources, which occurs at an energy that only depends on the properties of the ALPs and the intensity of the intergalactic magnetic field, and thus independent of the AGN source being observed. Moreover, we show that this mechanism can easily explain recent puzzles in the spectra of distant gamma-ray sources, like the possible detection of TeV photons from 3C 66A (a source located at z=0.444) by MAGIC and VERITAS, which should not happen according to conventional models of photon propagation over cosmological distances. Another puzzle is the recent published lower limit to the EBL intensity at 3.6 {micro}m (which is almost twice larger as the previous one), which implies very hard spectra for some detected TeV gamma-ray sources located at z=0.1-0.2. The consequences that come from this work are testable with the current generation of gamma-ray instruments, namely Fermi (formerly known as GLAST) and imaging atmospheric Cherenkov telescopes like

  2. Fermi Large Area Telescope Detection of Two Very-High-Energy (E>100 GeV) Gamma-ray Photons from the z = 1.1 Blazar PKS 0426-380

    CERN Document Server

    Tanaka, Y T; Inoue, Y; Stawarz, L; Ajello, M; Dermer, C D; Wood, D L; Chekhtman, A; Fukazawa, Y; Mizuno, T; Ohno, M; Paneque, D; Thompson, D J

    2013-01-01

    We report the Fermi Large Area Telescope (LAT) detection of two very-high-energy (VHE, E>100 GeV) gamma-ray photons from the directional vicinity of the distant (redshift, z = 1.1) blazar PKS 0426-380. The null hypothesis probability that both the 134 and 122 GeV photons originate from unrelated sources can be rejected at the 6.1 sigma confidence level. We therefore claim that at least one of the two VHE photons is securely associated with the blazar, making PKS 0426-380 the most distant VHE emitter known to date. The results are in agreement with the most recent Fermi-LAT constraints on the Extragalactic Background Light (EBL) intensity, which imply a $z \\simeq 1$ horizon for $\\simeq$ 100 GeV photons. The LAT detection of the two VHE gamma-rays coincided roughly with flaring states of the source, although we did not find an exact correspondence between the VHE photon arrival times and the flux maxima at lower gamma-ray energies. Modeling the gamma-ray continuum of PKS 0426-380 with daily bins revealed a sign...

  3. VERITAS Observations of a Very High Energy Gamma-ray Flare from the Blazar 3C 66A

    CERN Document Server

    Acciari, V A; Arlen, T; Beilicke, M; Benbow, W; Böttcher, M; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Chow, Y C; Ciupik, L; Cogan, P; Cui, W; Daniel, M K; Dickherber, R; Ergin, T; Falcone, A; Fegan, S J; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Gall, D; Gibbs, K; Gillanders, G H; Godambe, S; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Hays, E; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, Philip; Karlsson, N; Kertzman, M; Kieda, D; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; Le Bohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Mukherjee, R; Nagai, T; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Petry, D; Pizlo, F; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Theiling, M; Toner, J A; Varlotta, A; Vasilev, V V; Wagner, R G; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Williams, D A; Wissel, S; Wood, M; Zitzer, B

    2009-01-01

    The intermediate-frequency peaked BL Lacertae (IBL) object 3C 66A is detected during 2007 - 2008 in VHE (very high energy: E > 100 GeV) gamma-rays with the VERITAS stereoscopic array of imaging atmospheric Cherenkov telescopes. An excess of 1791 events is detected, corresponding to a significance of 21.2 standard deviations (sigma), in these observations (32.8 hours live time). The observed integral flux above 200 GeV is 6% of the Crab Nebula's flux and shows evidence for variability on the time-scale of days. The measured energy spectrum is characterized by a soft power law with photon index Gamma = 4.1 +- 0.4_stat +- 0.6_sys. The radio galaxy 3C 66B is excluded as a possible source of the VHE emission.

  4. Gamma-ray bursts from magnetospheric plasma oscillations. II - Model spectra

    Science.gov (United States)

    Melia, Fulvio

    1990-01-01

    Several mechanisms for the primary release of energy in gamma-ray bursts (GRBs) may result in the excitation of relativistic, magnetospheric plasma oscillations above the polar cap of a neutron star. This paper presents a survey of detailed calculations of the inverse Compton scattering interaction between the sinusoidally accelerated particles in relativistic, magnetospheric plasma oscillations and the self-consistently determined thermal radiation from the stellar surface. The upscattered photons are boosted to gamma-ray energies and a Monte Carlo simulation is used to obtain the spectrum for different viewing angles relative to the magnetic field in the oscillating region. It is shown that several GRB spectral characteristics may be understood in the context of a model wherein the overall spectrum changes with aspect angle as a result of the superposition of four components with different angular distributions.

  5. First look at Gamma-ray background lines in the SPI Ge detector spectra

    Science.gov (United States)

    Wunderer, C. B.; Weidenspointner, G.; Cordier, B.; Diehl, R.; Jean, P.; v. Kienlin, A.; Knoedlseder, J.; Leleux, P.; Lichti, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.; Shrader, C.; Skinner, G.; Strong, A.; Sturner, S.; Teegarden, B.; Vedrenne, G.

    2003-03-01

    ESA's INTEGRAL observatory has been launched successfully on October 17, 2002. Since November 2002, the 19 Ge detectors comprising the camera of one of its main instruments, the Spectrometer SPI, have been recording data. They cover the energy range from ˜ 20 keV to ˜ 8 MeV. The spectrometer is particularly suited to the observations of gamma-ray line emission from astrophysical objects of interest. However, since many astrophysically interesting lines have energies very close to energies of some instrumental background lines, and since some astrophysically interesting radioactive isotopes are also produced within spacecraft and instrument materials by cosmic-ray activation, a detailed study of the gamma-ray background lines seen with the SPI Ge detectors is necessary. We present the first steps taken towards understanding the line components of the gamma-ray background observed with SPI. This includes both isotope identification and preliminary studies of temporal variations. Emphasis is placed on the energy regions of particular interest to astrophysics, especially around the 60Fe and 26Al lines. Preliminary sensitivity estimates for some astrophysically interesting lines will also be presented. This work has been supported by the DLR.

  6. MAXI investigation into the longterm X-ray variability from the very-high-energy gamma-ray blazar Mrk 421

    CERN Document Server

    Isobe, Naoki; Ueda, Yoshihiro; Hayashida, Masaaki; Shidatsu, Megumi; Kawamuro, Taiki; Ueno, Shiro; Sugizaki, Mutsumi; Sugimoto, Juri; Mihara, Tatehiro; Matsuoka, Masaru; Negoro, Hitoshi

    2014-01-01

    The archetypical very-high-energy gamma-ray blazar Mrk 421 was monitored for more than 3 years with the Gas Slit Camera onboard Monitor of All Sky X-ray Image (MAXI), and its longterm X-ray variability was investigated. The MAXI lightcurve in the 3 -- 10 keV range was transformed to the periodogram in the frequency range $f = 1 \\times 10^{-8}$ -- $2 \\times 10^{-6}$ Hz. The artifacts on the periodogram, resulting from data gaps in the observed lightcurve, were extensively simulated for variations with a power-law like Power Spectrum Density (PSD). By comparing the observed and simulated periodograms, the PSD index was evaluated as $\\alpha = 1.60 \\pm 0.25$. This index is smaller than that obtained in the higher frequency range ($f > 1 \\times 10^{-5}$ Hz), namely, $\\alpha = 2.14 \\pm 0.06$ in the 1998 ASCA observation of the object. The MAXI data impose a lower limit on the PSD break at $f_{\\rm b} = 5 \\times 10^{-6}$ Hz, consistent with the break of $f_{\\rm b} = 9.5 \\times 10^{-6}$ Hz, suggested from the ASCA dat...

  7. A Three-Year Multi-Wavelength Study of the Very High Energy Gamma-ray Blazar 1ES 0229+200

    CERN Document Server

    Aliu, E; Arlen, T; Aune, T; Behera, B; Beilicke, M; Benbow, W; Berger, K; Bird, R; Bouvier, A; Buckley, J H; Bugaev, V; Byrum, K; Cerruti, M; Chen, X; Ciupik, L; Connolly, M P; Cui, W; Duke, C; Dumm, J; Errando, M; Falcone, A; Federici, S; Feng, Q; Finley, J P; Fleischhack, H; Fortin, P; Fortson, L; Furniss, A; Galante, N; Gillanders, G H; Griffin, S; Griffiths, S T; Grube, J; Gyuk, G; Hanna, D; Holder, J; Hughes, G; Humensky, T B; Johnson, C A; Kaaret, P; Kertzman, M; Khassen, Y; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; Madhavan, A S; Maier, G; Majumdar, P; McArthur, S; McCann, A; Meagher, K; Millis, J; Moriarty, P; Mukherjee, R; Nieto, D; de Bhroithe, A O'Faolain; Ong, R A; Otte, A N; Park, N; Perkins, J S; Pohl, M; Popkow, A; Prokoph, H; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Richards, G T; Roache, E; Sembroski, G H; Smith, A W; Staszak, D; Telezhinsky, I; Theiling, M; Varlotta, A; Vassiliev, V V; Vincent, S; Wakely, S P; Weekes, T C; Weinstein, A; Welsing, R; Williams, D A; Zajczyk, A; Zitzer, B

    2013-01-01

    The high-frequency-peaked BL Lacertae object 1ES 0229+200 is a relatively distant (z = 0.1396), hard-spectrum (Gamma ~ 2.5), very-high-energy-emitting (E > 100 GeV) gamma-ray blazar. Very-high-energy measurements of this active galactic nucleus have been used to place constraints on the intensity of the extragalactic background light and the intergalactic magnetic field. A multi-wavelength study of this object centered around very-high-energy observations by VERITAS is presented. This study obtained, over a period of three years, an 11.7 standard deviation detection and an average integral flux F(E>300 GeV) = (23.3 +- 2.8_stat +- 5.8_sys) x 10^-9 photons m^-2 s^-1, or 1.7% of the Crab Nebula's flux (assuming the Crab Nebula spectrum measured by H.E.S.S). Supporting observations from Swift and RXTE are analyzed. The Swift observations are combined with previously published Fermi observations and the very-high-energy measurements to produce an overall spectral energy distribution which is then modeled assuming ...

  8. Measurement of angularly dependent spectra of betatron gamma-rays from a laser plasma accelerator with quadrant-sectored range filters

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Ho, E-mail: jhjeon07@ibs.re.kr; Nakajima, Kazuhisa, E-mail: naka115@dia-net.ne.jp; Rhee, Yong Joo; Pathak, Vishwa Bandhu; Cho, Myung Hoon; Shin, Jung Hun; Yoo, Byung Ju; Jo, Sung Ha; Shin, Kang Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Choi, Il Woo [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Advanced Photonics Research Institute, GIST, Gwangju 61005 (Korea, Republic of); Hojbota, Calin; Bae, Lee Jin; Jung, Jaehyung; Cho, Min Sang; Cho, Byoung Ick; Nam, Chang Hee [Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005 (Korea, Republic of); Department of Physics and Photon Science, GIST, Gwangju 61005 (Korea, Republic of)

    2016-07-15

    Measurement of angularly dependent spectra of betatron gamma-rays radiated by GeV electron beams from laser wakefield accelerators (LWFAs) are presented. The angle-resolved spectrum of betatron radiation was deconvolved from the position dependent data measured for a single laser shot with a broadband gamma-ray spectrometer comprising four-quadrant sectored range filters and an unfolding algorithm, based on the Monte Carlo code GEANT4. The unfolded gamma-ray spectra in the photon energy range of 0.1–10 MeV revealed an approximately isotropic angular dependence of the peak photon energy and photon energy-integrated fluence. As expected by the analysis of betatron radiation from LWFAs, the results indicate that unpolarized gamma-rays are emitted by electrons undergoing betatron motion in isotropically distributed orbit planes.

  9. MULTIWAVELENGTH EVIDENCE FOR QUASI-PERIODIC MODULATION IN THE GAMMA-RAY BLAZAR PG 1553+113

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Albert, A.; Baldini, L.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Becerra Gonzalez, J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier (France); Bruel, P., E-mail: David.J.Thompson@nasa.gov, E-mail: sara.cutini@asdc.asi.it, E-mail: stefano.ciprini@asdc.asi.it, E-mail: stefan@astro.su.se, E-mail: stamerra@oato.inaf.it [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2015-11-10

    We report for the first time a γ-ray and multiwavelength nearly periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope we have discovered an apparent quasi-periodicity in the γ-ray flux (E > 100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 ± 0.08 year period γ-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the Owens Valley Radio Observatory, Tuorla, Katzman Automatic Imaging Telescope, and Catalina Sky Survey monitoring programs and Swift-UVOT. The optical cycle appearing in ∼10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multiwavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.

  10. VizieR Online Data Catalog: VERITAS gamma-ray TeV LCs of 6 blazars (Turley+, 2016)

    Science.gov (United States)

    Turley, C. F.; Fox, D. B.; Murase, K.; Falcone, A.; Barnaba, M.; Coutu, S.; Cowen, D. F.; Filippatos, G.; Hanna, C.; Keivani, A.; Messick, C.; Meszaros, P.; Mostafa, M.; Oikonomou, F.; Shoemaker, I.; Toomey, M.; Tesic, G.

    2017-04-01

    The IceCube 40-string data set (hereafter IC40) was collected between 2008 April and 2009 May, a total live time of 375.5 days (Abbasi+ 2011ApJ...732...18A), during which the detector had 40 of the final 86 planned strings deployed. Publicly available blazar data (presented in Table 2) were collected by the four-telescope Very Energetic Radiation Imaging Telescope Array System (VERITAS) and (for Mrk 421 historical data only) its predecessor, the Whipple Telescope. Both facilities consist of atmospheric Cerenkov telescopes located at the Fred Lawrence Whipple Observatory in Arizona, yielding similar effective energy ranges of 0.1TeV<~{epsilon}γ<~30TeV. (2 data files).

  11. The mystery of spectral breaks: Lyman continuum absorption by photon-photon pair production in the Fermi GeV spectra of bright blazars

    CERN Document Server

    Stern, Boris E

    2014-01-01

    We reanalyze Fermi/LAT gamma-ray spectra of bright blazars with a higher photon statistics than in previous works and with new Pass 7 data representation. In the spectra of the brightest blazar 3C 454.3 and possibly of 4C +21.35 we detect breaks at 5 GeV (in the rest frame) associated with the photon-photon pair production absorption by He II Lyman continuum (LyC). We also detect confident breaks at 20 GeV associated with hydrogen LyC both in the individual spectra and in the stacked redshift-corrected spectrum of several bright blazars. The detected breaks in the stacked spectra univocally prove that they are associated with atomic ultraviolet emission features of the quasar broad-line region (BLR). The dominance of the absorption by hydrogen Ly complex over He II, rather small detected optical depth, and the break energy consistent with the head-on collisions with LyC photons imply that the gamma-ray emission site is located within the BLR, but most of the BLR emission comes from a flat disk-like structure ...

  12. Light curves and spectra from off-axis gamma-ray bursts

    Science.gov (United States)

    Salafia, O. S.; Ghisellini, G.; Pescalli, A.; Ghirlanda, G.; Nappo, F.

    2016-10-01

    If gamma-ray burst prompt emission originates at a typical radius, and if material producing the emission moves at relativistic speed, then the variability of the resulting light curve depends on the viewing angle. This is due to the fact that the pulse evolution time-scale is Doppler contracted, while the pulse separation is not. For off-axis viewing angles θview ≳ θjet + Γ-1, the pulse broadening significantly smears out the light-curve variability. This is largely independent of geometry and emission processes. To explore a specific case, we set up a simple model of a single pulse under the assumption that the pulse rise and decay are dominated by the shell curvature effect. We show that such a pulse observed off-axis is (i) broader, (ii) softer and (iii) displays a different hardness-intensity correlation with respect to the same pulse seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then show how a synthetic light curve made by a superposition of pulses changes with increasing viewing angle. We find that a highly variable light curve (as seen on-axis) becomes smooth and apparently single-pulsed (when seen off-axis) because of pulse overlap. To test the relevance of this fact, we estimate the fraction of off-axis gamma-ray bursts detectable by Swift as a function of redshift, finding that a sizeable fraction (between 10 per cent and 80 per cent) of nearby (z < 0.1) bursts are observed with θview ≳ θjet + Γ-1. Based on these results, we argue that low-luminosity gamma-ray bursts are consistent with being ordinary bursts seen off-axis.

  13. A new method of reconstructing very-high-energy gamma-ray spectra: the Template Background Spectrum

    CERN Document Server

    Fernandes, M V; Kosack, K; Raue, M; Rowell, G

    2014-01-01

    Very-high-energy (VHE, E>0.1 TeV) gamma-ray emission regions with angular extents comparable to the field-of-view of current imaging air-Cherenkov telescopes (IACT) require additional observations of source-free regions to estimate the background contribution to the energy spectrum. This reduces the effective observation time and deteriorates the sensitivity. A new method of reconstructing spectra from IACT data without the need of additional observations of source-free regions is developed. Its application is not restricted to any specific IACT or data format. On the basis of the template background method, which defines the background in air-shower parameter space, a new spectral reconstruction method from IACT data is developed and studied, the Template Background Spectrum (TBS); TBS is tested on published H.E.S.S. data and H.E.S.S. results. Good agreement is found between VHE gamma-ray spectra reported by the H.E.S.S. collaboration and those re-analysed with TBS. This includes analyses of point-like sourc...

  14. Modeling Gamma-Ray Attenuation in High-Redshift GeV Spectra

    CERN Document Server

    Gilmore, Rudy C; Primack, Joel R; Somerville, Rachel S

    2008-01-01

    We present two models for the cosmological UV background light, and calculate the opacity of GeV gamma--rays out to redshift 9. The contributors to the background include 2 possible quasar emissivities, and output from star--forming galaxies as determined by recent a semi--analytic model (SAM) of structure formation. The SAM used in this work is based upon a hierarchical build-up of structure in a $\\Lambda$CDM universe and is highly successful in reproducing a variety of observational parameters. Above 1 Rydberg energy, ionizing radiation is subject to reprocessing by the IGM, which we treat using our radiative transfer code, CUBA. The two models for quasar emissivity differing above z = 2.3 are chosen to match the ionization rates observed using flux decrement analysis and the higher values of the line-of-sight proximity effect. We also investigate the possibility of a flat star formation rate density at z $>5$. We conclude that observations of gamma--rays from 10 to 100 GeV by Fermi (GLAST) and the next gen...

  15. Light curves and spectra from off-axis gamma-ray burst single pulses

    CERN Document Server

    Salafia, Om S; Pescalli, Alessio; Ghirlanda, Giancarlo; Nappo, Francesco

    2016-01-01

    We set up a simple model to compute the bolometric light curve and time dependent spectrum of a single pulse of a Gamma-Ray Burst under the assumption that the pulse rise and decay are dominated by the shell curvature effect. For the first time, our model includes the effect of an arbitrary off-axis viewing angle. We show that a pulse observed off-axis is (i) longer, (ii) softer and (iii) displays a different hardness-intensity correlation with respect to the same pulse seen on-axis. For each of these effects, we provide an intuitive physical explanation. We then show how a synthetic light curve made by a superposition of pulses changes with increasing viewing angle. We find that many observed properties found in time-resolved spectral analysis of Gamma-Ray Burst light curves are reproduced in curves with a slightly off-axis viewing angle. Such properties include the fact that the spectral peak energy evolution tracks the variations in flux, leading them slightly. Based on these results, we argue that low lum...

  16. Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program

    Science.gov (United States)

    Jorstad, Svetlana G.; Marscher, Alan P.; Morozova, Daria A.; Troitsky, Ivan S.; Agudo, Iván; Casadio, Carolina; Foord, Adi; Gómez, José L.; MacDonald, Nicholas R.; Molina, Sol N.; Lähteenmäki, Anne; Tammi, Joni; Tornikoski, Merja

    2017-09-01

    We analyze the parsec-scale jet kinematics from 2007 June to 2013 January of a sample of γ-ray bright blazars monitored roughly monthly with the Very Long Baseline Array at 43 GHz. In a total of 1929 images, we measure apparent speeds of 252 emission knots in 21 quasars, 12 BL Lacertae objects (BLLacs), and 3 radio galaxies, ranging from 0.02c to 78c; 21% of the knots are quasi-stationary. Approximately one-third of the moving knots execute non-ballistic motions, with the quasars exhibiting acceleration along the jet within 5 pc (projected) of the core, and knots in BLLacs tending to decelerate near the core. Using the apparent speeds of the components and the timescales of variability from their light curves, we derive the physical parameters of 120 superluminal knots, including variability Doppler factors, Lorentz factors, and viewing angles. We estimate the half-opening angle of each jet based on the projected opening angle and scatter of intrinsic viewing angles of knots. We determine characteristic values of the physical parameters for each jet and active galactic nucleus class based on the range of values obtained for individual features. We calculate the intrinsic brightness temperatures of the cores, {T}{{b},{int}}{core}, at all epochs, finding that the radio galaxies usually maintain equipartition conditions in the cores, while ∼30% of {T}{{b},{int}}{core} measurements in the quasars and BLLacs deviate from equipartition values by a factor >10. This probably occurs during transient events connected with active states. In the Appendix, we briefly describe the behavior of each blazar during the period analyzed.

  17. AGN Winds and Blazar Phenomenology

    Science.gov (United States)

    Kazanas, Demos

    2012-01-01

    The launch of {\\em Fermi} produced a significant number of AGN detections to allow statistical treatment of their properties. One of the first such systematics was the "Blazar Divide" in FSRQs and BL Lacs according to their gamma-ray spectral index and luminosity. Further data accumulation indicated this separation to be less clear than thought before. An MHD wind model which can model successfully the Seyfert X-ray absorber properties provides the vestiges of an account of the observed blazar classification. We propose to employ this model to model in detail the broad band blazar spectra and their statistical properties in terms of the physical parameters of these MHD winds.

  18. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    Science.gov (United States)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  19. Active galactic nuclei at gamma-ray energies

    CERN Document Server

    Dermer, Charles Dennison

    2016-01-01

    Active Galactic Nuclei can be copious extragalactic emitters of MeV-GeV-TeV gamma rays, a phenomenon linked to the presence of relativistic jets powered by a super-massive black hole in the center of the host galaxy. Most of gamma-ray emitting active galactic nuclei, with more than 1500 known at GeV energies, and more than 60 at TeV energies, are called "blazars". The standard blazar paradigm features a jet of relativistic magnetized plasma ejected from the neighborhood of a spinning and accreting super-massive black hole, close to the observer direction. Two classes of blazars are distinguished from observations: the flat-spectrum radio-quasar class (FSRQ) is characterized by strong external radiation fields, emission of broad optical lines, and dust tori. The BL Lac class (from the name of one of its members, BL Lacertae) corresponds to weaker advection-dominated flows with gamma-ray spectra dominated by the inverse Compton effect on synchrotron photons. This paradigm has been very successful for modeling t...

  20. The Infrared-Gamma-Ray Connection: A WISE View of the Extragalactic Gamma-Ray Sky

    CERN Document Server

    Massaro, F

    2016-01-01

    Using data from the WISE all-sky survey we discovered that the non-thermal infrared (IR) emission of blazars, the largest known population of extragalactic gamma-ray sources, has peculiar spectral properties. In this work, we confirm and strengthen our previous analyses using the latest available releases of both the WISE and the Fermi source catalogs. We also show that there is a tight correlation between the mid-IR colors and the gamma-ray spectral index of Fermi blazars. We name this correlation "the infrared--gamma-ray connection". We discuss how this connection links both the emitted powers and the spectral shapes of particles accelerated in jets arising from blazars over ten decades in energy. Based on this evidence, we argue that the infrared--gamma-ray connection is stronger than the well known radio--gamma-ray connection.

  1. The Multiwavelength View of Gamma-Ray Loud AGN

    Science.gov (United States)

    Venters, Tonia

    2011-01-01

    The gamma-ray sky observed by the Fermi Large Area Telescope (Fermi-LAT) encodes much information about the high-energy processes in the universe. Of the extragalactic sources sources resolved by the Fermi-LAT, blazars comprise the class of gamma-ray emitters with the largest number of identified members. Unresolved blazars are expected to contribute significantly to the diffuse extragalactic gamma-ray emission. However, blazars are also broadband emitters (from radio to TeV energies), and as such the multiwavelength study of blazars can provide insight into the high-energy processes of the universe.

  2. $\\gamma$-ray QPO in PKS 2155-304]{Revisiting Quasi-Periodic modulation in $\\gamma$-ray Blazar PKS 2155-304 with \\emph{Fermi} Pass 8 data

    CERN Document Server

    Zhang, Pengfei; Liao, Nenghui; Wang, Jiancheng

    2016-01-01

    We examine the gamma-ray quasi-periodic variability of PKS 2155-304 with the latest publicly available \\emph{Fermi}-LAT Pass 8 data which covers the years from 2008 August to 2016 October. We produce the light curves in two ways, i.e., the exposure-weighted aperture photometry and the maximum likelihood optimization. The light curves are then analyzed by using Lomb-Scargle Periodogram (LSP), and a significant quasi-periodicity in gamma-ray flux is found, with a period of $1.74\\pm0.13$ years and a significance of 4.9 $\\sigma$.

  3. Pair Production Absorption Troughs in $\\gamma$-Ray Burst Spectra A Potential Distance Discriminator

    CERN Document Server

    Baring, M G; Baring, Matthew G.; Harding, Alice K.

    1997-01-01

    Relativistic bulk motion with large Lorentz factors has recently been inferred for gamma-ray bursts regardless of whether they are of galactic or cosmological origin. This conclusion results from calculations of internal pair production transparency in bursts that usually assume an infinite power-law source spectrum for simplicity, an approximation that is quite adequate for some bursts detected by EGRET. However, for a given bulk Lorentz factor sub-MeV photons in such calculations. Hence it is essential to accurately address the spectral curvature in bursts seen by BATSE. In this paper we present the major properties induced in photon-photon opacity considerations by such spectral curvature. The observed spectral breaks around 1 MeV turn out to be irrelevant to opacity in cosmological bursts, but are crucial to estimates of source transparency in the 1 GeV -- 1 TeV range for sources located in the galactic halo. We find that broad absorption troughs can arise at these energies for suitable bulk motion parame...

  4. Influence of Gamma-Ray Irradiation on Absorption and Fluorescent Spectra of Nd:YAG and Yb:YAG Laser Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Dun-Lu; ZHANG Qing-Li; XIAO Jing-Zhong; LUO Jian-Qiao; JIANG Hai-He; YIN Shao-Tang

    2008-01-01

    We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd3+ : Y3Al5O12 (Nd:YAG) and Yb3+ :Y3Al5O12 (Yb:YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340nm. The former is eontributed due to Fe3+ impurity, the latter is due to Fe2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, the same dose irradiation does not impair the fluorescent properties of Yb: YA G crystal. These results indicate that Yb: YA G crystal possesses the advantage over Nd: YA G crystal that has better reliability for applications in harsh radiant environment.

  5. Radio Properties of the $\\gamma$-ray Emitting CSO Candidate 2234+282

    CERN Document Server

    An, T; Gabanyi, K E; Frey, S; Baan, W A; Zhao, W

    2016-01-01

    Most of the gamma-ray emitting active galactic nuclei (AGN) are blazars, although there is still a small fraction of non-blazar AGN in the Fermi/LAT catalog. Among these misaligned gamma-ray-emitting AGN, a few can be classified as Compact Symmetric Objects (CSOs). In contrast to blazars in which gamma-ray emission is generally thought to originate from highly beamed relativistic jets, the source of gamma-ray emission in unbeamed CSOs remains an open question. The rarity of the gamma-ray emitting CSOs is a mystery as well. Here we present the radio properties of the gamma-ray CSO candidate 2234+282.

  6. Ge(Li) detector gamma-ray spectrometer system for measurement of the spectra and production cross sections of. gamma. -rays produced by 14 MeV neutron nonelastic interaction with nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shen Ronglin; Shi Xiamin; Wu Yongshun; Xing Jinjiang; Ding Dazhao

    1982-02-01

    A 42 cm/sup 3/ Ge(Li) detector gamma-ray spectrometer system for measuring the spectra and the production cross sections of ..gamma..-rays produced by fast neutron nonelastic interaction with nuclei is described in this paper. The incident neutrons are produced by T(d,n)/sup 4/He reaction in an high tension set with the incident deuteron energy of 200 keV. The time of flight technique is used to discriminate between the scattered neutrons and gamma-rays resulting from nonelastic interaction. The ..cap alpha..-particles are picked up by a Si(Au) surface barrier detector and the ARC timing discriminaters are used in both Si(Au) and Ge(Li) channels. The overall time resolution (FWHM) of this system is 4.1 ns typically for energy selection threshold at 400keV. The block diagram of spectrometer system is described in detail. The complex complete shielding damage of Ge(Li) detector in this fast neutron field is well discussed.

  7. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components. ...

  8. Absorption of High Energy $\\gamma$ Rays by Interactions With Starlight Photons in Extragalactic Space at High Redshifts and the High Energy $\\gamma$-Ray Background

    CERN Document Server

    Salamon, M H

    1998-01-01

    We calculate the absorption of 10-500 GeV gamma-rays at high redshifts. This calculation requires the determination of the high-redshift evolution of the intergalactic starlight photon field, including its IR-UV spectral energy distribution. To estimate this evolution, we have followed a recent analysis of Fall, Charlot and Pei which gives results consistent with recent data. We give our results for the gamma-ray opacity as a function of redshift out to a redshift of 3. We also give predicted gamma-ray spectra for selected blazars and give an extragalactic unresolved blazar background spectrum up to 500 GeV. Our results indicate that this background should steepen significantly above 20 GeV owing to intergalactic absorption. Future observations of this steepening would provide a test for the blazar background origin hypothesis. We have used our results to discuss upper limits on the redshifts of gamma-ray bursts. We note that the 17 Feb. 1994 burst observed by EGRET must have originated at a redshift less tha...

  9. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    CERN Document Server

    Campana, S; D'Avanzo, P; Ghirlanda, G; Melandri, A; Pescalli, A; Salafia, O S; Salvaterra, R; Tagliaferri, G; Vergani, S D

    2016-01-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence >10^{-7} erg cm^{-2}) and relatively nearby (z=0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of <3.0 sigma. Most of the lines are detected around the observed energy of the oxygen edge at ~0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (N_H) testing different models for the Galactic absorption confirms this origin because we found an indication of an...

  10. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    Science.gov (United States)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  11. Peak center and area estimation in gamma-ray energy spectra using a Mexican-hat wavelet

    Science.gov (United States)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan; Wu, Qi-fan

    2017-06-01

    Wavelet analysis is commonly used to detect and localize peaks within a signal, such as in Gamma-ray energy spectra. This paper presents a peak area estimation method based on a new wavelet analysis. Another Mexican Hat Wavelet Signal (MHWS) named after the new MHWS is obtained with the convolution of a Gaussian signal and a MHWS. During the transform, the overlapping background on the Gaussian signal caused by Compton scattering can be subtracted because the impulse response function MHWS is a second-order smooth function, and the amplitude of the maximum within the new MHWS is the net height corresponding to the Gaussian signal height, which can be used to estimate the Gaussian peak area. Moreover, the zero-crossing points within the new MHWS contain the information of the Gaussian variance whose valve should be obtained when the Gaussian peak area is estimated. Further, the new MHWS center is also the Gaussian peak center. With that distinguishing feature, the channel address of a characteristic peak center can be accurately obtained which is very useful in the stabilization of airborne Gamma energy spectra. In particular, a method for determining the correction coefficient k is given, where the peak area is calculated inaccurately because the value of the scale factor in wavelet transform is too small. The simulation and practical applications show the feasibility of the proposed peak center and area estimation method.

  12. On the Light Curve and Spectra of X-Rays and Gamma-Rays from the Crab Pulsar

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; K. S. Cheng; MEI Dong-Cheng

    2000-01-01

    We use a three-dimensional pulsar magnetosphere model to study the light curve and spectra of x-rays and gamma-rays from the Crab pulsar. In this model, the vertical size of the outer gap is first determined by a self-consistent model in which the outer gap is limited by pair production from collisions of thermal photons produced by polar cap heating of backflow outer gap current and curvature photons emitted by gap accelerated charged particles. The transverse size of the outer gap is determined by local pair production conditions. In principle, there are two topologically disconnected outer gaps present in the magnetosphere of a pulsar, and both incoming and outgoing particle flows are allowed. However, double-peak light curves with strong bridges are most common, Making use of the three-dimensional structure of the outer gap and its local properties, we compare the results of our model with the light curve and phase-resolved spectra of the Crab pulsar.

  13. On the sharpness of gamma-ray burst prompt emission spectra

    CERN Document Server

    Yu, Hoi-Fung; Greiner, Jochen; Sari, Re'em; Bhat, P Narayana; von Kienlin, Andreas; Paciesas, William S; Preece, Robert D

    2015-01-01

    We aim to obtain a measure of the curvature of time-resolved spectra that can be compared directly to theory. This tests the ability of models such as synchrotron emission to explain the peaks or breaks of GBM prompt emission spectra. We take the burst sample from the official Fermi GBM GRB time-resolved spectral catalog. We re-fit all spectra with a measured peak or break energy in the catalog best-fit models in various energy ranges, which cover the curvature around the spectral peak or break, resulting in a total of 1,113 spectra being analysed. We compute the sharpness angles under the peak or break of the triangle constructed under the model fit curves and compare to the values obtained from various representative emission models: blackbody, single-electron synchrotron, synchrotron emission from a Maxwellian or power-law electron distribution. We find that 35% of the time-resolved spectra are inconsistent with the single-electron synchrotron function, and 91% are inconsistent with the Maxwellian synchrot...

  14. Measurement of 14 MeV neutron-induced prompt gamma-ray spectra from 15 elements found in cargo containers

    Energy Technology Data Exchange (ETDEWEB)

    Perot, B. [Commissariat a l' Energie Atomique, 13108 St Paul-lez-Durance (France)], E-mail: bertrand.perot@cea.fr; Carasco, C.; Bernard, S.; Mariani, A. [Commissariat a l' Energie Atomique, 13108 St Paul-lez-Durance (France); Szabo, J.-L.; Sannie, G. [Commissariat a l' Energie Atomique, 91191 Gif-Sur-Yvette (France); Valkovic, V.; Sudac, D. [Institute Ruder Boskovic, 54 Bijenicka c., 10000 Zagreb (Croatia); Viesti, G.; Lunardon, M.; Botosso, C.; Nebbia, G.; Pesente, S.; Moretto, S. [INFN and Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zenoni, A.; Donzella, A. [INFN and Universita di Brescia, 38 Via Branze, 25123 Brescia (Italy); Moszynski, M.; Gierlik, M. [Soltan Institute for Nuclear Studies, PL 05-400 Otwock-Swierk (Poland); Klamra, W. [Royal Institute of Technology, 10691 Stockholm (Sweden); Le Tourneur, P. [EADS-SODERN, 20 Av. Descartes, 94451 Limeil-Brevannes Cedex (France)] (and others)

    2008-04-15

    Within the EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) project, the gamma-ray spectra produced in a series of materials by 14-MeV tagged-neutron beams have been collected in the inspection portal equipped with large volume NaI(Tl) detectors, in order to build a database of signatures for various elements: C, N, O, Na, Al, Si, Cl, K, Ca, Cr, Fe, Ni, Cu, Zn, Pb. The measured spectra have been compared with prediction from Monte Carlo simulations to verify the consistency of the relevant nuclear data inputs. This library of measured 14-MeV neutron-induced gamma-ray spectra is currently used in a data processing algorithm to unfold the energy spectra of the transported goods into elementary contributions, thus allowing material identification.

  15. On the soft X-ray spectra of $\\gamma$-loud blazars

    CERN Document Server

    Comastri, A; Ghisellini, G; Molendi, S

    1996-01-01

    ROSAT observations of a large sample of bright gamma-ray (E > 100 MeV) blazars are presented. Results of a detailed spectral analysis in the soft energy distribution with particular emphasis on the relation between X-ray and gamma-ray properties. A significant anti-correlation between X-ray and gamma-ray spectral shapes of flat radio spectrum quasars (FSRQ) and BL Lacs has been discovered. A different shape in the overall energy distributions from radio to gamma-ray energies between FSRQ and BL Lacs is also implied by the correlation of their broad-band spectral indices $\\alpha_{ro}$ and $\\alpha_{x emission and the hard X-ray to gamma-ray emission originate from the same electron population, via, respectively, the synchrotron process and the inverse Compton mechanism. We suggest that a key parameter for understanding the overall energy distributions of both classes of objects is the energy at which the synchrotron emission peaks in a $\

  16. A method of searching for peaks and multiplets in {gamma}-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Loska, L.; Janczyszyn, J. [Akademia Gorniczo-Hutnicza, Cracow (Poland). Inst. Wiertniczo-Naftowy

    1997-01-01

    A new method of searching peaks in gamma spectra is proposed. The method makes use of the well known Sterlinski`s algorithm. The number proportional to peak area and the variance of this number (from the Sterlinski`s method) are used in the criterion selecting ``true`` peaks. A comparison of performance in searching single and multiple peaks of the proposed method and others frequently used in practice shows a better quality of our method. (Author).

  17. Portable microcomputer for the analysis of plutonium gamma-ray spectra. Volume II. Software description and listings. [IAEAPU

    Energy Technology Data Exchange (ETDEWEB)

    Ruhter, W.D.

    1984-05-01

    A portable microcomputer has been developed and programmed for the International Atomic Energy Agency (IAEA) to perform in-field analysis of plutonium gamma-ray spectra. The unit includes a 16-bit LSI-11/2 microprocessor, 32-K words of memory, a 20-character display for user prompting, a numeric keyboard for user responses, and a 20-character thermal printer for hard-copy output of results. The unit weights 11 kg and has dimensions of 33.5 x 30.5 x 23.0 cm. This compactness allows the unit to be stored under an airline seat. Only the positions of the 148-keV /sup 241/Pu and 208-keV /sup 237/U peaks are required for spectral analysis that gives plutonium isotopic ratios and weight percent abundances. Volume I of this report provides a detailed description of the data analysis methodology, operation instructions, hardware, and maintenance and troubleshooting. Volume II describes the software and provides software listings.

  18. Extragalactic Gamma-Ray Astrophysics

    CERN Document Server

    CERN. Geneva

    2016-01-01

    During the last decades, various classes of radio-loud active galactic nuclei have been established as sources of high-energy radiation extending over a very broad range from soft gamma-rays (photon energies E~MeV) up to very-high-energy gamma-rays (E>100 GeV). These include blazars of different types, as well as young and evolved radio galaxies. The observed gamma-ray emission from such implies efficient particle acceleration processes taking place in highly magnetized and relativistic jets produced by supermassive black holes, processes that have yet to be identified and properly understood. In addition, nearby starforming and starburst galaxies, some of which host radio-quiet Seyfert-type nuclei, have been detected in the gamma-ray range as well. In their cases, the observed gamma-ray emission is due to non-thermal activity in the interstellar medium, possibly including also a contribution from accretion disks and nuclear outflows. Finally, the high-energy emission from clusters of galaxies remains elusive...

  19. Shaping the GeV-spectra of bright blazars

    CERN Document Server

    Hunger, Lars

    2016-01-01

    The non-thermal spectra of jetted active galactic nuclei show a variety of shapes in their low- and high energy components. In some of the brightest Fermi-LAT blazars, prominent spectral breaks at a few GeV have been regularly detected, which is inconsistent with conventional cooling effects. We study the effects of continuous time-dependent injection of electrons into the jet with differing rates, durations, locations, and power-law spectral indices, and evaluate its impact on the ambient emitting particle spectrum at a given snapshot time in the framework of a leptonic blazar emission model. The emitting electron spectrum is calculated by Compton cooling the continuously injected electrons, where target photons are assumed to be provided by the accretion disk and broad line region. We calculate the non-thermal photon spectra produced by inverse Compton scattering of these external target radiation fields using the full Compton cross-section in the head-on approximation. By means of a comprehensive parameter...

  20. Cosmic Connections:. from Cosmic Rays to Gamma Rays, Cosmic Backgrounds and Magnetic Fields

    Science.gov (United States)

    Kusenko, Alexander

    2013-12-01

    Combined data from gamma-ray telescopes and cosmic-ray detectors have produced some new surprising insights regarding intergalactic and galactic magnetic fields, as well as extragalactic background light. We review some recent advances, including a theory explaining the hard spectra of distant blazars and the measurements of intergalactic magnetic fields based on the spectra of distant sources. Furthermore, we discuss the possible contribution of transient galactic sources, such as past gamma-ray bursts and hypernova explosions in the Milky Way, to the observed ux of ultrahigh-energy cosmicrays nuclei. The need for a holistic treatment of gamma rays, cosmic rays, and magnetic fields serves as a unifying theme for these seemingly unrelated phenomena.

  1. COMPTEL gamma-ray observations of the quasars CTA 102 and 3C 454.3

    Science.gov (United States)

    Blom, J. J.; Bloemen, H.; Bennett, K.; Collmar, W.; Hermsen, W.; Mcconnell, M.; Schoenfelder, V.; Stacy, J. G.; Steinle, H.; Strong, A.

    1994-01-01

    The blazar-type active galactic nuclei CTA 102 (QSO 2230+114) and 3C 454.3 (QSO 2251+158), located about 7 deg apart, were observed by the Compton Gamma Ray Observatory at four epochs in 1992. Both were detected by Energy Gamma Ray Experiment Telescope (EGRET). The combined Compton Telescope (COMPTEL) observations in the 10-30 MeV energy range clearly indicate a source of MeV emission, which is likely due to a contribution from both quasars. These observations strongly suggest that the power-law spectra measured by EGRET above approximately 50 MeV flatten at lower MeV energies. A comparison with observations at other wavelengths shows that the power spectra of CTA 102 and 3C 454.3 peak at MeV energies. This behavior appears to be a common feature of gamma-ray active galactic nuclei (AGN).

  2. Fermi-LAT detection of hard spectrum and high-level gamma-ray flare from the blazar PKS 1954-388

    Science.gov (United States)

    Cutini, Sara; Ciprini, Stefano; Fermi Large Area Telescope Collaboration

    2015-09-01

    The Large Area Telescope (LAT), one of two instruments on the Fermi Gamma-ray Space Telescope, has observed flaring gamma rays from a source positionally consistent with the flat spectrum radio quasar PKS 1954-388 (also known as MRC 1954-388, RX J1958.0-3845, and 3FGL J1958.0-3847, Acero et al. 2015, ApJS 218, 23), with radio coordinates, (J2000.0), R.A.: 299.499247 deg, Dec.: -38.751766 deg, (Ma et. al. 1998, AJ, 116, 516).

  3. Applied gamma-ray spectrometry

    CERN Document Server

    Dams, R; Crouthamel, Carl E

    1970-01-01

    Applied Gamma-Ray Spectrometry covers real life application of the gamma-ray and the devices used in their experimental studies. This book is organized into 9 chapters, and starts with discussions of the various decay processes, the possible interaction mechanisms of gamma radiation with matter, and the intrinsic and extrinsic variables, which affect the observed gamma-ray and X-ray spectra. The subsequent chapters deal with the properties and fabrication of scintillation detectors, semiconductor detectors, and proportional gas counters. These chapters present some of the most widely utilized

  4. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baramsai, Bayarbadrakh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jandel, Marian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vieira, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilhelmy, Jerry B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Krticka, Milan [Charles Univ., Prague (Czech Republic)

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  5. Modifications of a method for low energy gamma-ray incident angle reconstruction in the GAMMA-400 gamma-ray telescope

    Science.gov (United States)

    Leonov, A. A.; Galper, A. M.; Topchiev, N. P.; Bonvicini, V.; Adriani, O.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bobkov, S. G.; Boezio, M.; Dalkarov, O. D.; Egorov, A. E.; Glushkov, N. A.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kheymits, M. D.; Korepanov, V. E.; Longo, F.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Moskalenko, I. V.; Naumov, P. Yu; Picozza, P.; Runtso, M. F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Yurkin, Yu T.; Zverev, V. G.

    2017-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the gamma-ray fluxes in the energy range from ∼20 MeV to ∼1 TeV, performing a sensitive search for high-energy gamma-ray emission when annihilating or decaying dark matter particles. Such measurements will be also associated with the following scientific goals: searching for new and studying known Galactic and extragalactic discrete high-energy gamma-ray sources (supernova remnants, pulsars, accreting objects, microquasars, active galactic nuclei, blazars, quasars). It will be possible to study their structure with high angular resolution and measuring their energy spectra and luminosity with high-energy resolution; identify discrete gamma-ray sources with known sources in other energy ranges. The major advantage of the GAMMA-400 instrument is excellent angular and energy resolutions for gamma rays above 10 GeV. The gamma-ray telescope angular and energy resolutions for the main aperture at 100-GeV gamma rays are ∼0.01% and ∼1%, respectively. The motivation of presented results is to improve physical characteristics of the GAMMA-400 gamma-ray telescope in the energy range of ∼20-100 MeV, most unexplored range today. Such observations are crucial today for a number of high-priority problems faced by modern astrophysics and fundamental physics, including the origin of chemical elements and cosmic rays, the nature of dark matter, and the applicability range of the fundamental laws of physics. To improve the reconstruction accuracy of incident angle for low-energy gamma rays the special analysis of topology of pair-conversion events in thin layers of converter performed. Choosing the pair-conversion events with more precise vertical localization allows us to obtain significantly better angular resolution in comparison with previous and current space and ground-based experiments. For 50-MeV gamma rays the GAMMA-400 gamma-ray telescope angular resolution is better than 50.

  6. Extragalactic background light absorption signal in the 0.26-10 TeV spectra of blazars

    CERN Document Server

    Vasilev, V

    1999-01-01

    Recent observations of the TeV gamma-ray spectra of the two closest active galactic nuclei (AGNs), Markarian 501 (Mrk 501) and Markarian 421 (Mrk 421), by the Whipple and HEGRA collaborations have stimulated efforts to estimate or limit the spectral energy density (SED) of extragalactic background light (EBL) which causes attenuation of TeV photons via pair-production when they travel cosmological distances. In spite of the lack of any distinct cutoff-like feature in the spectra of Mrk 501 and Mrk 421 (in the interval 0.26-10 TeV) which could clearly indicate the presence of such a photon absorption mechanism, we demonstrate that strong EBL attenuation signal (survival probability of 10 TeV photon (~10^{-2}) may still be present in the spectra of these AGNs. This attenuation could escape detection due to a special form of SED of EBL and unknown intrinsic spectra of these blazars. Here we show how the proposed and existing experiments, VERITAS, HESS, MAGIC, STACEE and CELESTE may be able to detect or severely ...

  7. DELIN and DELOG codes for graphic representation of gamma ray spectra; Programas DELIN y DELOG para la representacion grafica de espectros gamma

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.; Travesi, A.

    1983-07-01

    Two Fortran IV Codes has been developed for graphic representation of the gamma-ray spectra obtained with Ge Li detectors and multichannel analyzers. The grafic plotting es carried out with the H.P. Graphic Plotter Mod HP-7221 A, using the graphic package software GRAPHICS-1000 from Hewlett-Packard. The codes have a great versatility and the representation of gamma spectra can ba done in a lineal, semi log, or log-log scale, as desired. The gamma ray spectra data are feed into the computer through magnetic tape or perfored paper tape. The different out-put options and complementary data are given in a conversational way through a terminal with T.V. displays. Among the options that can be selected by the user are the following: - smoothing the spectra - drawing the spectra point by point or continuous - out-put drawing an 1, 2, or 4 sheet with automatic division of the energy scale. - overlapping of selected spectra regions in Y scale ampliation with automatic print-out of the region limits and ampliation factor. - Printing spectra data and identifications of selected photo peaks. The codes can be employed with any computer using printing devices, HP-Graphics 1000 software compatible, but are easily modified for another printing software since their modular structure with Fortran IV written.

  8. Photoluminescence spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532-nm laser radiation and gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Suresh C. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)], E-mail: sharma@uta.edu; Murphree, Jay; Chakraborty, Tonmoy [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2008-11-15

    We have investigated temporal behavior of the photoluminescence (PL) spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532 nm laser radiation and gamma-rays. Under {approx}100 W/cm{sup 2} laser radiation, the PL intensity (I{sub PL}) increases with irradiation time upto about 500 s and thereafter declines linearly. The wavelength of the PL emission ({lambda}{sub peak}) exhibits a blue-shift with exposure time. Upon simultaneous irradiation by 100 W/cm{sup 2} 532-nm laser, as well as 0.57 and 1.06 MeV gamma-rays, the temporal behaviors of both I{sub PL} and {lambda}{sub peak} are significantly different; I{sub PL} increases to a saturation level, and the magnitude of the blue-shift in {lambda}{sub peak} is reduced. We discuss possible mechanisms underlying these results.

  9. Numerical study of broadband spectra caused by internal shocks in magnetized relativistic jets of blazars

    CERN Document Server

    Rueda-Becerril, Jesus M; Aloy, Miguel A; Aloy, Carmen

    2013-01-01

    The internal-shocks scenario in relativistic jets has been used to explain the variability of blazars' outflow emission. Recent simulations have shown that the magnetic field alters the dynamics of these shocks producing a whole zoo of spectral energy density patterns. However, the role played by magnetization in such high-energy emission is still not entirely understood. With the aid of \\emph{Fermi}'s second LAT AGN catalog, a comparison with observations in the $\\gamma$-ray band was performed, in order to identify the effects of the magnetic field.

  10. Probing the jet base of the blazar PKS1830-211 from the chromatic variability of its lensed images. Serendipitous ALMA observations of a strong gamma-ray flare

    CERN Document Server

    Marti-Vidal, I; Combes, F; Aalto, S; Beelen, A; Darling, J; Guelin, M; Henkel, C; Horellou, C; Marcaide, J M; Martin, S; Menten, K M; Dinh-V-Trung,; Zwaan, M

    2013-01-01

    The launching mechanism of the jets of active galactic nuclei is observationally poorly constrained, due to the large distances to these objects and the very small scales (sub-parsec) involved. In order to better constrain theoretical models, it is especially important to get information from the region close to the physical base of the jet, where the plasma acceleration takes place. In this paper, we report multi-epoch and multi-frequency continuum observations of the z=2.5 blazar PKS1830-211 with ALMA, serendipitously coincident with a strong $\\gamma$-ray flare reported by Fermi-LAT. The blazar is lensed by a foreground z=0.89 galaxy, with two bright images of the compact core separated by 1". Our ALMA observations individually resolve these two images (although not any of their substructures), and we study the change of their relative flux ratio with time (four epochs spread over nearly three times the time delay between the two lensed images) and frequency (between 350 and 1050 GHz, rest-frame of the blaz...

  11. Discovery of VHE gamma-rays from the blazar 1ES 1215+303 with the MAGIC Telescopes and simultaneous multi-wavelength observations

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Asensio, M; Backes, M; de Almeida, U Barres; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Boller, A; Bonnoli, G; Tridon, D Borla; Bretz, T; Cañellas, A; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Cossio, L; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; del Pozo, E De Cea; De Lotto, B; Mendez, C Delgado; Ortega, A Diago; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Eisenacher, D; Elsaesser, D; Ferenc, D; Fonseca, M V; Font, L; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Häfner, D; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Huber, B; Jankowski, F; Jogler, T; Kadenius, V; Kellermann, H; Klepser, S; Krähenbühl, T; Krause, J; La Barbera, A; Lelas, D; Leonardo, E; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Makariev, M; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Moldón, J; Moralejo, A; Munar-Adrover, P; Niedzwiecki, A; Nieto, D; Nilsson, K; Nowak, N; Orito, R; Paiano, S; Paneque, D; Paoletti, R; Pardo, S; Paredes, J M; Partini, S; Perez-Torres, M A; Persic, M; Pilia, M; Pochon, J; Prada, F; Moroni, P G Prada; Prandini, E; Gimenez, I Puerto; Puljak, I; Reichardt, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Rügamer, S; Saggion, A; Saito, K; Saito, T Y; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Spiro, S; Stamatescu, V; Stamerra, A; Steinke, B; Storz, J; Strah, N; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Tibolla, O; Torres, D F; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Weitzel, Q; Zabalza, V; Zandanel, F; Zanin, R; Berdyugin, A; Buson, S; Järvelä, E; Larsson, S; Lähteenmäki, A; Tammi, J; de Lausanne, now at: Ecole polytechnique fédérale; Lausanne,; Switzerland,; Padova, supported by INFN; Energéticas, now at: Centro de Investigaciones; Tecnológicas, Medioambientales y; Madrid,; Spain,; KIPAC, now at:; Laboratory, SLAC National Accelerator; USA,; ESO, now at: Finnish Centre for Astronomy with; Turku, University of; Finland,; Observatory, Aalto University Metsähovi Radio; Metsähovintie,; Finland,; Physics, Department of; University, Stockholm; Stockholm,; Sweden,; Physics, The Oskar Klein Centre for Cosmoparticle; Stockholm,; Sweden,; Astronomy, Department of; University, Stockholm; Stockholm,; Sweden),

    2012-01-01

    Context. We present the discovery of very high energy (VHE, E > 100GeV) gamma-ray emission from the BL Lac object 1ES 1215+303 by the MAGIC telescopes and simultaneous multi-wavelength data in a broad energy range from radio to gamma-rays. Aims. We study the VHE gamma-ray emission from 1ES 1215+303 and its relation to the emissions in other wavelengths. Methods. Triggered by an optical outburst, MAGIC observed the source in January-February 2011 for 20.3 hrs. The target was monitored in the optical R-band by the KVA telescope that also performed optical polarization measurements. We triggered target of opportunity observations with the Swift satellite and obtained simultaneous and quasi-simultaneous data from the Fermi Large Area Telescope and from the Mets\\"ahovi radio telescope. We also present the analysis of older MAGIC data taken in 2010. Results. The MAGIC observations of 1ES 1215+303 carried out in January-February 2011 resulted in the first detection of the source at VHE with a statistical significanc...

  12. EBL constraints with VERITAS gamma-ray observations

    Science.gov (United States)

    Fernandez Alonso, M.; VERITAS Collaboration

    2017-10-01

    The extragalactic background light (EBL) contains all the radiation emitted by nuclear and accretion processes since the epoch of recombination. Direct measurements of the EBL in the near-IR to mid-IR waveband are extremely difficult due mainly to the zodiacal light foreground. Instead, gamma-ray astronomy offers the possibility to indirectly set limits to the EBL by studying the effects of gamma-ray absorption in the spectra of detected sources in the very high energy range (VHE: 100 GeV). These effects can be generally seen in the spectra of VHE blazars as a softening (steepening) of the spectrum and/or abrupt changes in the spectral index or breaks. In this work, we use recent VERITAS data of a group of blazars and apply two methods to derive constraints for the EBL spectral properties. We present preliminary results that will be completed with new observations in the near future to enhance the calculated restrictions to the EBL.

  13. Gamma-Ray Observations of Active Galactic Nuclei

    Science.gov (United States)

    Madejski, Grzegorz (Greg); Sikora, Marek

    2016-09-01

    This article reviews the recent observational results regarding γ-ray emission from active galaxies. The most numerous discrete extragalactic γ-ray sources are AGNs dominated by relativistic jets pointing in our direction (commonly known as blazars), and they are the main subject of the review. They are detected in all observable energy bands and are highly variable. The advent of the sensitive γ-ray observations, afforded by the launch and continuing operation of the Fermi Gamma-ray Space Telescope and the AGILE Gamma-ray Imaging Detector, as well as by the deployment of current-generation Air Cerenkov Telescope arrays such as VERITAS, MAGIC, and HESS-II, continually provides sensitive γ-ray data over the energy range of ˜100 MeV to multi-TeV. Importantly, it has motivated simultaneous, monitoring observations in other bands, resulting in unprecedented time-resolved broadband spectral coverage. After an introduction, in Sections 3, 4, and 5, we cover the current status and highlights of γ-ray observations with (mainly) Fermi but also AGILE and put those in the context of broadband spectra in Section 6. We discuss the radiation processes operating in blazars in Section 7, and we discuss the content of their jets and the constraints on the location of the energy dissipation regions in, respectively, Sections 8 and 9. Section 10 covers the current ideas for particle acceleration processes in jets, and Section 11 discusses the coupling of the jet to the accretion disk in the host galaxy. Finally, Sections 12, 13, and 14 cover, respectively, the contribution of blazars to the diffuse γ-ray background, the utility of blazars to study the extragalactic background light, and the insight they provide for study of populations of supermassive black holes early in the history of the Universe.

  14. About cosmic gamma ray lines

    Science.gov (United States)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  15. Optical spectroscopic observations of blazars and γ-ray blazar candidates in the sloan digital sky survey data release nine

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Masetti, N.; D' Abrusco, R.; Paggi, A.; Funk, S.

    2014-09-09

    We present an analysis of the optical spectra available in the Sloan Digital Sky Survey data release nine (SDSS DR9) for the blazars listed in the ROMA-BZCAT and for the γ-ray blazar candidates selected according to their IR colors. First, we adopt a statistical approach based on Monte Carlo simulations to find the optical counterparts of the blazars listed in the ROMA-BZCAT catalog. Then, we crossmatched the SDSS spectroscopic catalog with our selected samples of blazars and γ-ray blazar candidates, searching for those with optical spectra available to classify our blazar-like sources and, whenever possible, to confirm their redshifts. Our main objectives are to determine the classification of uncertain blazars listed in the ROMA-BZCAT and to discover new gamma-ray blazars. For the ROMA-BZCAT sources, we investigated a sample of 84 blazars, confirming the classification for 20 of them and obtaining 18 new redshift estimates. For the γ-ray blazars, indicated as potential counterparts of unassociated Fermi sources or with uncertain nature, we established the blazar-like nature of 8 out of the 27 sources analyzed and confirmed 14 classifications.

  16. Is the Universe More Transparent to Gamma Rays than Previously Thought?

    Science.gov (United States)

    Stecker, Floyd W.; Scully, Sean T.

    2009-01-01

    The MAGIC collaboration has recently reported the detection of the strong gamma-ray blazar 3C279 during a 1-2 day flare. They have used their spectral observations to draw conclusions regarding upper limits on the opacity of the Universe to high energy gamma-rays and, by implication, upper limits on the extragalactic mid-infrared background radiation. In this paper we examine the effect of gamma-ray absorption by the extragalactic infrared radiation on intrinsic spectra for this blazar and compare our results with the observational data on 3C279. We find agreement with our previous results, contrary to the recent assertion of the MAGIC group that the Universe is more transparent to gamma-rays than our calculations indicate. Our analysis indicates that in the energy range between approx. 80 and approx. 500 GeV, 3C279 has a best-fit intrinsic spectrum with a spectral index approx. 1.78 using our fast evolution model and approx. 2.19 using our baseline model. However, we also find that spectral indices in the range of 1.0 to 3.0 are almost as equally acceptable as the best fit spectral indices. Assuming the same intrinsic spectral index for this flare as for the 1991 flare from 3C279 observed by EGRET, viz., 2.02, which lies between our best fit indeces, we estimate that the MAGIC flare was approx.3 times brighter than the EGRET flare observed 15 years earlier.

  17. Constraining Emission Models of Luminous Blazar Sources

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Marek; /Warsaw, Copernicus Astron. Ctr.; Stawarz, Lukasz; /Kipac, Menlo Park /Jagiellonian U., Astron. Observ. /SLAC; Moderski, Rafal; Nalewajko, Krzysztof; /Warsaw, Copernicus Astron. Ctr.; Madejski, Greg; /KIPAC, Menlo Park /SLAC

    2009-10-30

    Many luminous blazars which are associated with quasar-type active galactic nuclei display broad-band spectra characterized by a large luminosity ratio of their high-energy ({gamma}-ray) and low-energy (synchrotron) spectral components. This large ratio, reaching values up to 100, challenges the standard synchrotron self-Compton models by means of substantial departures from the minimum power condition. Luminous blazars have also typically very hard X-ray spectra, and those in turn seem to challenge hadronic scenarios for the high energy blazar emission. As shown in this paper, no such problems are faced by the models which involve Comptonization of radiation provided by a broad-line-region, or dusty molecular torus. The lack or weakness of bulk Compton and Klein-Nishina features indicated by the presently available data favors production of {gamma}-rays via up-scattering of infrared photons from hot dust. This implies that the blazar emission zone is located at parsec-scale distances from the nucleus, and as such is possibly associated with the extended, quasi-stationary reconfinement shocks formed in relativistic outflows. This scenario predicts characteristic timescales for flux changes in luminous blazars to be days/weeks, consistent with the variability patterns observed in such systems at infrared, optical and {gamma}-ray frequencies. We also propose that the parsec-scale blazar activity can be occasionally accompanied by dissipative events taking place at sub-parsec distances and powered by internal shocks and/or reconnection of magnetic fields. These could account for the multiwavelength intra-day flares occasionally observed in powerful blazars sources.

  18. Monte Carlo simulation of prompt gamma-ray spectra from depleted uranium under D-T neutron irradiation and electron recoil spectra in a liquid scintillator detector

    CERN Document Server

    Qin, Jianguo; Liu, Rong; Zhu, Tonghua; Zhang, Xinwei; Ye, Bangjiao

    2015-01-01

    To overcome the problem of inefficient computing time and unreliable results in MCNP5 calculation, a two-step method is adopted to calculate the energy deposition of prompt gamma-rays in detectors for depleted uranium spherical shells under D-T neutrons irradiation. In the first step, the gamma-ray spectrum for energy below 7 MeV is calculated by MCNP5 code; secondly, the electron recoil spectrum in a BC501A liquid scintillator detector is simulated based on EGSnrc Monte Carlo Code with the gamma-ray spectrum from the first step as input. The comparison of calculated results with experimental ones shows that the simulations agree well with experiment in the energy region 0.4-3 MeV for the prompt gamma-ray spectrum and below 4 MeVee for the electron recoil spectrum. The reliability of the two-step method in this work is validated.

  19. Energetic neutron and gamma-ray spectra under the earth radiation belts according to "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686" orbital complex and "CORONAS-I" satellite data.

    Science.gov (United States)

    Bogomolov, A V; Dmitriev, A V; Myagkova, I N; Ryumin, S P; Smirnova, O N; Sobolevsky, I M

    1998-01-01

    The spectra of neutrons >10 MeV and gamma-rays 1.5-100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex "SALYUT-7" [correction of "SALUTE-7"]-"KOSMOS-1686", are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm-2 s-1 for neutrons, 0.8 cm-2 s-1 for gamma-rays at the equator and 1.2 cm-2 s-1, 1.9 cm-2 s-1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from "CORONAS-1" data are near those for albedo particles.

  20. On Gamma Ray Burst and Blazar AGN Origins of the Ultra-High Energy Cosmic Rays in Light of First Results from Auger

    CERN Document Server

    Dermer, Charles D

    2007-01-01

    The discoveries of the GZK cutoff with the HiRes and Auger Observatories and the discovery by Auger of clustering of >~60 EeV ultra-high energy cosmic rays (UHECRs) towards nearby <~75 Mpc) AGNs along the supergalactic plane establishes the astrophysical origin of the UHECRs. The likely sources of the UHECRs are gamma-ray bursts and radio-loud AGNs because: (1) they are extragalactic; (2) they are sufficiently powerful; (3) acceleration to ultra-high energies can be achieved in their relativistic ejecta; (4) anomalous X-ray and $\\gamma$-ray features can be explained by nonthermal hadron acceleration in relativistic blast waves; and (5) sources reside within the GZK radius. Two arguments for acceleration to UHE are presented, and limits on UHECR ion acceleration are set. UHECR ions are shown to be able to survive without photodisintegrating while passing through the AGN scattered radiation field, even if launched deep in the broad line region. UHECR injection throughout cosmic time fits the measured energy ...

  1. Search for TeV $\\gamma$--ray emission from blazar 1ES1218+304 with TACTIC telescope during March-April 2013

    CERN Document Server

    Singh, K K; Tickoo, A K; Rannot, R C; Chandra, P; Agarwal, N K; Gaur, K K; Goyal, A; Goyal, H C; Kumar, N; Marandi, P; Kothari, M; Bhatt, H; Chanchalani, K; Chouhan, N; Dhar, V K; Ghosal, B; Kaul, S R; Koul, M K; Koul, R; Venugopal, K; Bhat, C K; Borwankar, C; Bhagwan, J; Gupta, A C

    2014-01-01

    In this paper, we present results of TeV $\\gamma$--ray observations of the high synchrotron peaked BL Lac object 1ES 1218+304 (z=0.182) with the $TACTIC$ (TeV Atmospheric Cherenkov Telescope with Imaging Camera). The observations are primarily motivated by the unusually hard GeV-TeV spectrum of the source despite its relatively large redshift. The source is observed in the TeV energy range with the $TACTIC$ from March 1, 2013 to April 15, 2013 (MJD 56352--56397) for a total observation time of 39.62 h and no evidence of TeV $\\gamma$--ray activity is found from the source. The corresponding 99$\\%$ confidence level upper limit on the integral flux above a threshold energy of 1.1 TeV is estimated to be 3.41 $\\times10^{-12}$ photons cm$^{-2}$ s$^{-1}$ (i.e $<23\\%$ Crab Nebula flux) assuming a power law differential energy spectrum with photon index 3.0, as previously observed by the $MAGIC$ and $VERITAS$ telescopes. For the study of multi-wavelength emission from the source, we use nearly simultaneous optical,...

  2. Detection of VHE gamma-ray emission from the distant blazar 1ES 1101-232 with HESS and broadband characterisation

    Science.gov (United States)

    Aharonian, F.; Akhperjanian, A. G.; Bazer-Bachi, A. R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; Braun, I.; Brion, E.; Brown, A. M.; Bühler, R.; Büsching, I.; Boutelier, T.; Carrigan, S.; Chadwick, P. M.; Chounet, L.-M.; Coignet, G.; Cornils, R.; Costamante, L.; Degrange, B.; Dickinson, H. J.; Djannati-Ataï, A.; O'C. Drury, L.; Dubus, G.; Egberts, K.; Emmanoulopoulos, D.; Espigat, P.; Farnier, C.; Feinstein, F.; Ferrero, E.; Fiasson, A.; Fontaine, G.; Funk, Seb.; Funk, S.; Füßling, M.; Gallant, Y. A.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Hadjichristidis, C.; Hauser, D.; Hauser, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Kendziorra, E.; Kerschhaggl, M.; Khélifi, B.; Komin, Nu.; Kosack, K.; Lamanna, G.; Latham, I. J.; Le Gallou, R.; Lemière, A.; Lemoine-Goumard, M.; Lohse, T.; Martin, J. M.; Martineau-Huynh, O.; Marcowith, A.; Masterson, C.; Maurin, G.; McComb, T. J. L.; Moulin, E.; de Naurois, M.; Nedbal, D.; Nolan, S. J.; Noutsos, A.; Olive, J.-P.; Orford, K. J.; Osborne, J. L.; Panter, M.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Ranchon, S.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Ripken, J.; Rob, L.; Rolland, L.; Rosier-Lees, S.; Rowell, G.; Sahakian, V.; Santangelo, A.; Saugé, L.; Schlenker, S.; Schlickeiser, R.; Schröder, R.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sol, H.; Spangler, D.; Spanier, F.; Steenkamp, R.; Stegmann, C.; Superina, G.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Vincent, P.; Völk, H. J.; Wagner, S. J.; Ward, M.

    2007-08-01

    Context: The blazar 1ES 1101-232 was observed with the High Energy Stereoscopic System (HESS) of Atmospheric Cherenkov Telescopes (ACT) in 2004 and 2005, for a live time of 43 h. VHE (E > 1011 eV) γ-rays were detected for the first time from this object. Aims: VHE observations of blazars are used to investigate the inner parts of the blazar jets, and also to study the extragalactic background light (EBL) in the near-infrared band. Methods: Observations in 2005 were conducted in a multiwavelength campaign, together with the RXTE satellite and optical observations. In 2004, simultaneous observations with XMM-Newton were obtained. Results: 1ES 1101-232 was detected with HESS with an excess of 649 photons, at a significance of 10σ. The measured VHE γ-ray flux amounts to dN/dE = (5.63 ± 0.89) × 10-13 (E/TeV)-(2.94±0.20) cm-2 s-1 TeV-1, above a spectral energy threshold of 225 GeV. No significant variation of the VHE γ-ray flux on any time scale was found. 1ES 1101-232 exhibits a very hard spectrum, and at a redshift of z = 0.186, is the blazar with the highest confirmed redshift detected in VHE γ-rays so far. Conclusions: The data allow the construction of truly simultaneous spectral energy distributions of the source, from the optical to the VHE band. Using an EBL model with ν Fν = 14 nWm-2 sr-1 at 1.5~μm as presented in Aharonian et al. (2006a) suggests an intrinsic VHE power output peak of the source at above 3 TeV.

  3. Probing the very-high-energy gamma-ray spectral curvature in the blazar PG 1553+113 with the MAGIC telescopes

    CERN Document Server

    Aleksić, J.; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biasuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Colin, P; Colombo, E; Contreras, J.L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Fidalgo, D; Fonseca, M.V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Knoetig, M L; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; Longo, F; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Neustroev, V; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamerra, A; Steinbring, T; Storz, J; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Vogler, P; Will, M; Zanin, R; D'Ammando, F; Lähteenmäki, A; Tornikoski, M; Hovatta, T; Readhead, A C S; Max-Moerbeck, W; Richards, J.L

    2015-01-01

    PG 1553+113 is a very-high-energy (VHE, E>100 GeV) gamma-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.40.2). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by the current generation of EBL models assuming a redshift z~0.4. New constraints on the redshift were derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z=0.4. Finally, we find that the synchrotron self-Compton (SSC) model gives a satisfactory description of the observed multi-wavelength spectral energy distribution during the flare.

  4. The WISE Gamma-Ray Strip Parametrization: The Nature of the Gamma-Ray Active Galactic Nuclei of Uncertain Type

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; /SLAC; D' Abrusco, R.; /Harvard-Smithsonian Ctr. Astrophys.; Tosti, G.; /Perugia U. /INFN, Perugia; Ajello, M.; /SLAC; Gasparrini, D.; /ESRIN, Frascati; Grindlay, J.E.; Smith, Howard A.; /Harvard-Smithsonian Ctr. Astrophys.

    2012-04-02

    Despite the large number of discoveries made recently by Fermi, the origins of the so called unidentified {gamma}-ray sources remain unknown. The large number of these sources suggests that among them there could be a population that significantly contributes to the isotropic gamma-ray background and is therefore crucial to understand their nature. The first step toward a complete comprehension of the unidentified {gamma}-ray source population is to identify those that can be associated with blazars, the most numerous class of extragalactic sources in the {gamma}-ray sky. Recently, we discovered that blazars can be recognized and separated from other extragalactic sources using the infrared (IR) WISE satellite colors. The blazar population delineates a remarkable and distinctive region of the IR color-color space, the WISE blazar strip. In particular, the subregion delineated by the {gamma}-ray emitting blazars is even narrower and we named it as the WISE Gamma-ray Strip (WGS). In this paper we parametrize the WGS on the basis of a single parameter s that we then use to determine if {gamma}-ray Active Galactic Nuclei of the uncertain type (AGUs) detected by Fermi are consistent with the WGS and so can be considered blazar candidates. We find that 54 AGUs out of a set 60 analyzed have IR colors consistent with the WGS; only 6 AGUs are outliers. This result implies that a very high percentage (i.e., in this sample about 90%) of the AGUs detected by Fermi are indeed blazar candidates.

  5. Radiative Transfer Modeling of Radio-band Linear Polarization Observations as a Probe of the Physical Conditions in the Jets of Gamma-ray Flaring Blazars

    CERN Document Server

    Aller, Margo F; Aller, Hugh D; Hovatta, Talvikki; Ramakrishnan, Venkatessh

    2016-01-01

    Since the mid-1980s the shock-in-jet model has been the preferred paradigm to explain radio-band flaring in blazar jets. We describe our radiative transfer model incorporating relativistically-propagating shocks, and illustrate how the 4.8, 8, and 14.5 GHz linear polarization and total flux density data from the University of Michigan monitoring program, in combination with the model, constrain jet flow conditions and shock attributes. Results from strong Fermi-era flares in 4 blazars with widely-ranging properties are presented. Additionally, to investigate jet evolution on decadal time scales we analyze 3 outbursts in OT 081 spanning nearly 3 decades and find intrinsic changes attributable to flow changes at a common spatial location, or, alternatively, to a change in the jet segment viewed. The model's success in reproducing these data supports a scenario in which relativistic shocks compress a plasma with an embedded passive, initially-turbulent magnetic field, with additional ordered magnetic field compo...

  6. Very-high-energy gamma-rays from the Universe's middle age: detection of the z=0.940 blazar PKS 1441+25 with MAGIC

    CERN Document Server

    Ahnen, M L; Antonelli, A; Antoranz, P; Babic, A; Banerjee, B; Bangale, P; de Almeida, U Barres; Barrio, J A; Bednarek, W; Bernardini, E; Biassuzzi, B; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Chatterjee, A; Clavero, R; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Lotto, B; Wilhelmi, E de Oña; Mendez, C Delgado; Di Pierro, F; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Glawion, D Eisenacher; Elsaesser, D; Fernández-Barral, A; Fidalgo, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; Galindo, D; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giammaria, P; Godinović, N; Muñoz, A González; Guberman, D; Hahn, A; Hanabata, Y; Hayashida, M; Herrera, J; Hose, J; Hrupec, D; Hughes, G; Idec, W; Kodani, K; Konno, Y; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Majumdar, P; Makariev, M; Mallot, K; Maneva, G; Manganaro, M; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Miranda, J M; Mirzoyan, R; Moralejo, A; Moretti, E; Nakajima, D; Neustroev, V; Niedzwiecki, A; Rosillo, M Nievas; Nilsson, K; Nishijima, K; Noda, K; Orito, R; Overkemping, A; Paiano, S; Palacio, J; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Persic, M; Poutanen, J; Moroni, P G Prada; Prandini, E; Puljak, I; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Saito, T; Satalecka, K; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Stamerra, A; Steinbring, T; Strzys, M; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Torres, D F; Toyama, T; Treves, A; Verguilov, V; Vovk, I; Ward, J E; Will, M; Wu, M H; Zanin, R; :,; Ajello, M; Baldini, L; Barbiellini, G; Bastieri, D; González, J Becerra; Bellazzini, R; Bissaldi, E; Blandford, R D; Bonino, R; Bregeon, J; Bruel, P; Buson, S; Caliandro, G A; Cameron, R A; Caragiulo, M; Caraveo, P A; Cavazzuti, E; Chiang, J; Chiaro, G; Ciprini, S; D'Ammando, F; de Palma, F; Desiante, R; Di Venere, L; Domínguez, A; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giordano, F; Giroletti, M; Grenier, I A; Guiriec, S; Hays, E; Hewitt, J W; Jogler, T; Kuss, M; Larsson, S; Li, J; Li, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Maldera, S; Mayer, M; Mazziotta, M N; McEnery, J E; Mirabal, N; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Nuss, E; Ojha, R; Ohsugi, T; Omodei, N; Orlando, E; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Sgrò, C; Siskind, E J; Spada, F; Spandre, G; Spinelli, P; Tajima, H; Takahashi, H; Thayer, J B; Thompson, D J; Troja, E; Wood, K S; Balokovic, M; Berdyugin, A; Carraminana, A; Carrasco, L; Chavushyan, V; Ramazani, V Fallah; Feige, M; Haarto, S; Haeusner, P; Hovatta, T; Kania, J; Klamt, J; Lähteenmäki, A; Leon-Tavares, J; Lorey, C; Pacciani, L; Porras, A; Recillas, E; Reinthal, R; Tornikoski, M; Wolfert, D; Zottmann, N

    2015-01-01

    The flat-spectrum radio quasar PKS 1441+25 at a redshift of z = 0.940 is detected between 40 and 250 GeV with a significance of 25.5 {\\sigma} using the MAGIC telescopes. Together with the gravitationally lensed blazar QSO B0218+357 (z = 0.944), PKS 1441+25 is the most distant very high energy (VHE) blazar detected to date. The observations were triggered by an outburst in 2015 April seen at GeV energies with the Large Area Telescope on board Fermi. Multi-wavelength observations suggest a subdivision of the high state into two distinct flux states. In the band covered by MAGIC, the variability time scale is estimated to be 6.4 +/- 1.9 days. Modeling the broadband spectral energy distribution with an external Compton model, the location of the emitting region is understood as originating in the jet outside the broad line region (BLR) during the period of high activity, while being partially within the BLR during the period of low (typical) activity. The observed VHE spectrum during the highest activity is used ...

  7. Detecting a unique EBL signature with TeV gamma rays

    OpenAIRE

    Imran, Asif; Krennrich, Frank

    2007-01-01

    We discuss prospects for detecting a spectral break in gamma-ray spectra of blazars due to the extragalactic background light (EBL) density falling off between the near and mid-IR. A measurable spectral change in the TeV spectra at 1 TeV could arise from a rapid or slow drop in the EBL density above ~1 micron. This effect is mediated by the ratio of the near to mid-IR density of EBL. A detection of such a spectral feature could become a clear signature of EBL absorption. A non-detection would...

  8. Calibration of gamma-ray detectors using Gaussian photopeak fitting in the multichannel spectra with a LabVIEW-based digital system

    Science.gov (United States)

    Schlattauer, Leo; Parali, Levent; Pechousek, Jiri; Sabikoglu, Israfil; Celiktas, Cuneyt; Tektas, Gozde; Novak, Petr; Jancar, Ales; Prochazka, Vit

    2017-09-01

    This paper reports on the development of a gamma-ray spectroscopic system for the (i) recording and (ii) processing of spectra. The utilized data read-out unit consists of a PCI digital oscilloscope, personal computer and LabVIEW™ programming environment. A pulse-height spectra of various sources were recorded with two NaI(Tl) detectors and analyzed, demonstrating the proper usage of the detectors. A multichannel analyzer implements the Gaussian photopeak fitting. The presented method provides results which are in compliance to the ones taken from commercial spectroscopy systems. Each individual hardware or software unit can be further utilized in different spectrometric user-systems. An application of the developed system for research and teaching purposes regarding the design of digital spectrometric systems has been successfully tested at the laboratories of the Department of Experimental Physics.

  9. $\\gamma$-ray energy spectra and multiplicities from the neutron-induced fission of $^{235}$U using STEFF

    CERN Multimedia

    An experiment is proposed to use the STEFF spectrometer at n_TOF to study fragment $\\gamma$-correlations following the neutron-induced fission of $^{235}$U. The STEFF array of 12 NaI detectors will allow measurements of the single $\\gamma$-energy, the $\\gamma$ multiplicity, and the summed $\\gamma$energy distributions as a function of the mass and charge split, and deduced excitation energy in the fission event. These data will be used to study the origin of fission-fragment angular momenta, examining angular distribution eects as a function of incident neutron energy. The principal application of this work is in meeting the NEA high-priority request for improved $\\gamma$ray data from $^{235}$U(n; F). To improve the detection rate and expand the range of detection angles, STEFF will be modied to include two new ssion-fragment detectors each at 45 to the beam direction.

  10. Very Rapid High-amplitude Gamma-Ray Variability in Luminous Blazar PKS 1510-089 Studied with Fermi-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Saito, S.; Stawarz, L.; Tanaka, Y.T.; Takahashi, T.; Madejski, G.; D' Ammando, F.

    2013-03-20

    Here we report on the detailed analysis of the γ-ray light curve of a luminous blazar PKS 1510-089 observed in the GeV range with the Large Area Telescope (LAT) onboard the Fermi satellite during the period 2011 September - December. By investigating the properties of the detected three major flares with the shortest possible time binning allowed by the photon statistics, we find a variety of temporal characteristics and variability patterns. This includes a clearly asymmetric profile (with a faster flux rise and a slower decay) of the flare resolved on sub-daily timescales, a superposition of many short uncorrelated flaring events forming the apparently coherent longer-duration outburst, and a huge single isolated outburst unresolved down to the timescale of three-hours. In the latter case we estimate the corresponding γ-ray flux doubling timescale to be below one hour, which is extreme and never previously reported for any active galaxy

  11. FLARE-LIKE VARIABILITY OF THE Mg II {lambda}2800 EMISSION LINE IN THE {gamma}-RAY BLAZAR 3C 454.3

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Tavares, J. [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); Chavushyan, V.; Patino-Alvarez, V.; Carraminana, A.; Carrasco, L. [Instituto Nacional de Astrofisica Optica y Electronica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico); Valtaoja, E. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, FI-20100 Turku (Finland); Arshakian, T. G. [I. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Popovic, L. C. [Astronomical Observatory, Volgina 7, 11160 Belgrade 74 (Serbia); Tornikoski, M.; Laehteenmaeki, A. [Aalto University Metsaehovi Radio Observatory, Metsaehovintie 114, FI-02540 Kylmaelae (Finland); Lobanov, A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)

    2013-02-01

    We report the detection of a statistically significant flare-like event in the Mg II {lambda}2800 emission line of 3C 454.3 during the outburst of autumn 2010. The highest levels of emission line flux recorded over the monitoring period (2008-2011) coincide with a superluminal jet component traversing through the radio core. This finding crucially links the broad emission line fluctuations to the non-thermal continuum emission produced by relativistically moving material in the jet and hence to the presence of broad-line region clouds surrounding the radio core. If the radio core were located at several parsecs from the central black hole, then our results would suggest the presence of broad-line region material outside the inner parsec where the canonical broad-line region is envisaged to be located. We briefly discuss the implications of broad emission line material ionized by non-thermal continuum in the context of virial black hole mass estimates and gamma-ray production mechanisms.

  12. Locating the Gamma-ray Flaring Emission of Blazar AO 0235+164 in the Jet at Parsec Scales Through Multi Spectral Range Monitoring

    CERN Document Server

    Agudo, Ivan; Jorstad, Svetlana G; Larionov, Valeri M; Gomez, Jose L; Lahteenmaki, Anne; Smith, Paul S; Nilsson, Kari; Readhead, Anthony C S; Aller, Margo F; Heidt, Jochen; Gurwell, Mark; Thum, Clemens; Wehrle, Ann E; Kurtanidze, Omar M

    2013-01-01

    We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164 in 2008. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array (VLBA) images at 7mm with ~0.15 milliarcsecond resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte-Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary core and in the superluminal knot, both at >12 parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the l...

  13. A spine-sheath model for strong-line blazars

    CERN Document Server

    Sikora, Marek; Begelman, Mitchell

    2015-01-01

    We have developed a quasi-analytical model for the production of radiation in strong-line blazars, assuming a spine-sheath jet structure. The model allows us to study how the spine and sheath spectral components depend on parameters describing the geometrical and physical structure of "the blazar zone". We show that typical broad-band spectra of strong-line blazars can be reproduced by assuming the magnetization parameter to be of order unity and reconnection to be the dominant dissipation mechanism. Furthermore, we demonstrate that the spine-sheath model can explain why gamma-ray variations are often observed to have much larger amplitudes than the corresponding optical variations. The model is also less demanding of jet power than one-zone models, and can reproduce the basic features of extreme gamma-ray events.

  14. On conservative models of "the pair-production anomaly" in blazar spectra at Very High Energies

    CERN Document Server

    Dzhatdoev, T A

    2015-01-01

    For some blazars, the gamma-ray absorption features due to pair-production on the Extragalactic Background Light (EBL) are fainter than expected. The present work reviews the main models that could explain this paradox, with emphasis on conservative ones, that do not include any new physics. The models that are intrinsic to the source, do allow a very hard primary spectrum, but fail to explain a regular redshift dependence of the anomaly starting energy. The model that includes a contribution from secondary photons produced by cosmic rays (CR) near the Earth seems to require a well collimated CR beam, what is hard to achieve. Finally, the model with secondary photons produced in electromagnetic (EM) cascades initiated by primary gamma-rays is considered. In principle, it allows to decrease the statistical significance of the anomaly and, while requiring quite low EGMF strength B, does not contradict to most contemporary constraints on the B value. Additionally, it is shown that the recently observed correlati...

  15. Constraining gamma-ray propagation on cosmic distances

    OpenAIRE

    Biteau, Jonathan

    2013-01-01

    Studying the propagation of gamma rays on cosmological distances encompasses a variety of scientific fields, focusing on diffuse radiation fields such as the extragalactic background light, on the probe of the magnetism of the Universe on large scales, and on physics beyond the standard models of cosmology and particle physics. The measurements, constraints and hints from observations of gamma-ray blazars by airborne and ground-based instruments are briefly reviewed. These observations point ...

  16. Gamma ray astronomy from satellites and balloons

    Science.gov (United States)

    Schoenfelder, V.

    1986-01-01

    A survey is given of gamma ray astronomy topics presented at the Cosmic Ray Conference. The major conclusions at the Cosmic Ray Conference in the field of gamma ray astronomy are given. (1) MeV-emission of gamma-ray bursts is a common feature. Variations in duration and energy spectra from burst to burst may explain the discrepancy between the measured log N - log S dependence and the observed isotropy of bursts. (2) The gamma-ray line at 1.809 MeV from Al(26) is the first detected line from a radioactive nucleosynthesis product. In order to understand its origin it will be necessary to measure its longitude distribution in the Milky Way. (3) The indications of a gamma-ray excess found from the direction of Loop I is consistent with the picture that the bulk of cosmic rays below 100 GeV is produced in galactic supernova remnants. (4) The interpretation of the large scale distribution of gamma rays in the Milky Way is controversial. At present an extragalactic origin of the cosmic ray nuclei in the GeV-range cannot be excluded from the gamma ray data. (5) The detection of MeV-emission from Cen A is a promising step towards the interesting field of extragalactic gamma ray astronomy.

  17. Novae in gamma-rays

    CERN Document Server

    Hernanz, M

    2013-01-01

    Classical novae produce radioactive nuclei which are emitters of gamma-rays in the MeV range. Some examples are the lines at 478 and 1275 keV (from 7Be and 22Na) and the positron-electron annihilation emission (511 keV line and a continuum below this energy, with a cut-off at 20-30 keV). The analysis of gamma-ray spectra and light curves is a potential unique and powerful tool both to trace the corresponding isotopes and to give insights on the properties of the expanding envelope determining its transparency. Another possible origin of gamma-rays is the acceleration of particles up to very high energies, so that either neutral pions or inverse Compton processes produce gamma-rays of energies larger than 100 MeV. MeV photons during nova explosions have not been detected yet, although several attempts have been made in the last decades; on the other hand, GeV photons from novae have been detected in some particular novae, in symbiotic binaries, where the companion is a red giant with a wind, instead of a main ...

  18. Gamma-ray triangles

    DEFF Research Database (Denmark)

    Ibarra, Alejandro; Lopez-Gehler, Sergio; Molinaro, Emiliano

    2016-01-01

    We introduce a new type of gamma-ray spectral feature, which we denominate gamma-ray triangle. This spectral feature arises in scenarios where dark matter self-annihilates via a chiral interaction into two Dirac fermions, which subsequently decay in flight into another fermion and a photon. The r...

  19. PREFACE: International Workshop on Beamed and Unbeamed Gamma-Rays from Galaxies

    Science.gov (United States)

    Wagner, Robert; Maraschi, Laura; Sillanpää, Aimo

    2012-03-01

    Both the number and types of extragalactic very high-energy gamma-ray emitters have pleasingly increased substantially during the last few years, due to the extremely successful Fermi mission and the achievements of ground-based gamma-ray detectors since 2003. The international scientific workshop 'Beamed and Unbeamed Gamma-rays from Galaxies' took place from 11-15 April 2011 at the Lapland Hotel Olos, Muonio, Finland, with the aim of reviewing and discussing current knowledge and understanding of gamma-ray emission, both from active and other types of galaxies (e.g. starburst galaxies), particularly in the light of results delivered recently from high-energy and very-high energy gamma-ray instruments and by multi-wavelength studies. Following the 2008 Workshop on AGN and Related Fundamental Physics in High-Energy Gamma Astronomy, this workshop consisted of invited review talks and contributed talks. 'Round table' discussions enabled the exchange of facts and ideas. Ample time was provided for discussions not only inside, but also outside the lecture theatre. As for the 2008 workshop, Lapland was chosen for the meeting as an extraordinary location which provided more than just beautiful winter scenery. The 'isolated location' led to an intimate but also open and informal atmosphere for discussions. This, together with the broad approach of the workshop, facilitated communication between theorists, phenomenologists and observers, and started new collaborations. The scientific scope and the topics of the workshop intentionally covered a wide range of topics, including: blazars and jetted AGNs blazar and AGN physics, observations and phenomenology black holes, central engines, jets and environment of the central engine non-blazar AGNs and non-AGN galaxies: star-forming and starburst galaxies, cosmic-ray generation observational tools: variability, correlations, power spectra analysis and periodicity multi-wavelength aspects and approaches: radio, optical and X

  20. Constraining gamma-ray propagation on cosmic distances

    CERN Document Server

    Biteau, Jonathan

    2013-01-01

    Studying the propagation of gamma rays on cosmological distances encompasses a variety of scientific fields, focusing on diffuse radiation fields such as the extragalactic background light, on the probe of the magnetism of the Universe on large scales, and on physics beyond the standard models of cosmology and particle physics. The measurements, constraints and hints from observations of gamma-ray blazars by airborne and ground-based instruments are briefly reviewed. These observations point to gamma-ray cosmology as one of the major science cases of the Cherenkov Telescope Array, CTA.

  1. Galactic gamma ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, V.

    1982-05-01

    During the last decade the exploration of the sky in the light of gamma rays has begun by means of satellite-and balloon-borne instruments. Like in other ranges of the electromagnetic spectrum the Milky Way clearly stands out against the rest of the sphere. Part of the galactic ..gamma..-ray emission is due to discrete sources, part is diffuse in origin and is produced in interstellar space. Some of the discrete ..gamma..-ray sources are radio pulsars, the nature of the other sources is still unknown. The intensity distribution of the diffuse galactic ..gamma..-ray component is consistent with a decrease of the cosmic-ray intensity towards the outer part of the galaxy. The identification of the cosmic-ray sources will be one of the main objectives of the next generation of ..gamma..-ray telescopes.

  2. Multi-wavelength emission from 3C 66A: clues to its redshift and gamma-ray emission location

    Institute of Scientific and Technical Information of China (English)

    Da-Hai Yan; Zhong-Hui Fan; Yao Zhou; Ben-Zhong Dai

    2013-01-01

    The quasi-simultaneous multi-wavelength emission of TeV blazar 3C 66A is studied by using a one-zone multi-component leptonic jet model.It is found that the quasi-simultaneous spectral energy distribution of 3C 66A can be well reproduced; in particular,the first three months of its average Fermi-LAT spectrum can be well reproduced by the synchrotron self-Compton component plus external Compton component of the broad line region (BLR).Clues to its redshift and gamma-ray emission location are obtained.The results indicate the following.(i) On the redshift:The theoretical intrinsic TeV spectra can be predicted by extrapolating the reproduced GeV spectra.Through comparing these extrapolated TeV spectra with the corrected observed TeV spectra from extragalactic background light,it is suggested that the redshift of 3C 66A could be between 0.1 and 0.3,with the most likely value being ~ 0.2.(ii) On the gamma-ray emission location:To well reproduce the GeV emission of 3C 66A under different assumptions on the BLR,the gamma-ray emission region is always required to be beyond the inner zone of the BLR.The BLR absorption effect on gamma-ray emission confirms this point.

  3. "Discrepant hardenings" in cosmic ray spectra: a first estimate of the effects on secondary antiproton and diffuse gamma-ray yields

    CERN Document Server

    Donato, Fiorenza

    2010-01-01

    Recent data from CREAM seem to confirm early suggestions that primary cosmic ray spectra at few TeV/nucleon are harder than in the 10-100 GeV range. Also, helium and heavier nuclei spectra appear systematically harder than the proton fluxes at corresponding energies. We note here that if the measurements reflect intrinsic features in the interstellar fluxes, appreciable modifications are expected in the sub-TeV range for the secondary yields, such as antiprotons and diffuse gamma-rays. Presently, this effect represents a systematic error in the extraction of astrophysical parameters as well as for background estimates for indirect dark matter searches. We find that the spectral modifications are appreciable above 100 GeV, and can be responsible for ~30% effects for antiprotons at energies close to 1 TeV or for gamma's at energies close to 300 GeV, compared to currently considered predictions based on simple extrapolation of input fluxes from low energy data.

  4. The extragalactic background light, the Hubble constant, and anomalies: conclusions from 20 years of TeV gamma-ray observations

    CERN Document Server

    Biteau, Jonathan

    2015-01-01

    Ground-based observatories have been collecting 0.2-20 TeV gamma rays from blazars for about twenty years. These gamma rays can experience absorption along the line of sight due to interactions with the extragalactic background light (EBL). In this paper, we investigate the most extensive set of TeV spectra from blazars collected so far, twice as large as any other studied. We first show that the gamma-ray optical depth can be reduced to the convolution product of an EBL kernel with the EBL intensity. We extract the EBL intensity from the gamma-ray spectra, show that it is preferred at 11 sigma to a null intensity, and unveil the broad-band spectrum of the EBL from mid-UV to far IR. Our measurement shows that the total radiative content of the universe between 0.1 and 1000 microns represents 6.5+/-1.2% of the brightness of the CMB. This is slightly above the accumulated emission of stars and galaxies and constrains the unresolved sources that could have reionized the universe. We also propose a data-driven me...

  5. Reply to "Comment on `Gamma-ray spectra from low-energy positron annihilation processes in molecules' "

    Science.gov (United States)

    Ma, Xiaoguang; Wang, Meishan; Zhu, Yinghao; Yang, Chuanlu

    2017-03-01

    In reply to the Comment of Green et al. [Phys. Rev. A 95, 036701 (2017)., 10.1103/PhysRevA.95.036701] on our paper [Phys. Rev. A 94, 052709 (2016), 10.1103/PhysRevA.94.052709], we reconfirm that all the conclusions are based on the observation and the comparisons of the theoretical and experimental data. One criticism of Green et al. [Phys. Rev. A 95, 036701 (2017)., 10.1103/PhysRevA.95.036701] concerns the positrophilic electrons and the inner valence electrons. The inner valence electrons or positrophilic electrons show most agreeable widths with the corresponding experimental measurements due to their narrowest momentum distributions for all 59 molecules. However, we agree with the criticism of Green et al. [Phys. Rev. A 95, 036701 (2017)., 10.1103/PhysRevA.95.036701] and reconfirm that this agreement does not represent the dominance of the inner valence in the annihilation process. In this Reply, we will clarify the difference between agreement and dominance and illustrate with some figures. Another criticism is about the approximation used in our paper. We emphasize that the averaged discrepancy of 34.2% for these molecules of the theoretical γ -ray spectra from the experimental measurements is due to the neglect of the positron-electron correlations, vibrational couplings, virtual-state formation, even tunneling of core electrons not the neglect of the positron wave function. In this Reply, we will show, even in this zero-order approximation, these positron-induced effects in the electron-positron annihilation process of molecules can also be analyzed with more corrections and explanations.

  6. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  7. Gamma ray camera

    Science.gov (United States)

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  8. Gamma-ray emitting narrow-line Seyfert 1 galaxies. New discoveries and open questions

    CERN Document Server

    D'Ammando, F; Finke, J; Larsson, J; Giroletti, M

    2013-01-01

    The discovery of gamma-ray emission from 5 radio-loud narrow-line Seyfert 1 galaxies revealed the presence of a possible emerging third class of AGNs with relativistic jets, in addition to blazars and radio galaxies. The existence of relativistic jets also in this subclass of Seyfert galaxies opened an unexplored research space for our knowledge of the radio-loud AGNs. Here, we discuss the radio-to-gamma-rays properties of the gamma-ray emitting narrow-line Seyfert 1 galaxies, also in comparison with the blazar scenario.

  9. Angular Anisotropies in the Cosmic Gamma-ray Background as a Probe of its Origin

    CERN Document Server

    Miniati, Francesco; Di Matteo, Tiziana

    2007-01-01

    Notwithstanding the advent of the Gamma-ray Large Area Telescope, theoretical models predict that a significant fraction of the cosmic gamma-ray background (CGB), at the level of 20% of the currently measured value, will remain unresolved. The angular power spectrum of intensity fluctuations of the CGB contains information on its origin. We show that probing the latter from a few tens of arcmin to several degree scales, together with complementary GLAST observations of gamma-ray emission from galaxy clusters and the blazars luminosity function, can discriminate between a background that originates from unresolved blazars or cosmic rays accelerated at structure formation shocks.

  10. THE NATURE OF {gamma}-RAY LOUD NARROW-LINE SEYFERT I GALAXIES PKS 1502+036 AND PKS 2004-447

    Energy Technology Data Exchange (ETDEWEB)

    Paliya, Vaidehi S.; Stalin, C. S.; Shukla, Amit [Indian Institute of Astrophysics, Block II, Koramangala, Bangalore 560 034 (India); Sahayanathan, S., E-mail: vaidehi@iiap.res.in [Astrophysical Science Division, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2013-05-01

    Variable {gamma}-ray emission has been discovered in five radio-loud narrow-line Seyfert 1 (NLSy1) galaxies by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. This has clearly demonstrated that these NLSy1 galaxies do have relativistic jets similar to two other cases of {gamma}-ray-emitting active galactic nuclei (AGNs), namely, blazars and radio galaxies. We present here our results on the multi-band analysis of two {gamma}-ray-emitting NLSy1 galaxies, namely, PKS 1502+036 (z = 0.409) and PKS 2004-447 (z = 0.240), using archival data. We generate multi-band long-term light curves of these sources, build their spectral energy distribution (SED), and model them using a one-zone leptonic model. They resemble more the SEDs of the flat spectrum radio quasar (FSRQ) class of AGNs. We then compare the SEDs of these two sources with two other Fermi-detected AGNs along the traditional blazar sequence, namely, the BL Lac Mrk 421 (z = 0.03) and the FSRQ 3C 454.3 (z = 0.86). The SEDs of both PKS 1502+036 and PKS 2004-447 are found to be intermediate to the SEDs of Mrk 421 and 3C 454.3. In the {gamma}-ray spectral index versus {gamma}-ray luminosity plane, both these NLSy1 galaxies occupy a distinct position, wherein they have luminosity between Mrk 421 and 3C 454.3; however, their steep {gamma}-ray spectra are similar to 3C 454.3. Their Compton dominance as well as their X-ray spectral slope also lie between Mrk 421 and 3C 454.3. We argue that the physical properties of both PKS 1502+036 and PKS 2004-447 are generally similar to blazars and intermediate between FSRQs and BL Lac objects and these sources thus could fit into the traditional blazar sequence.

  11. SVOM Gamma Ray Monitor

    CERN Document Server

    Dong, Yongwei; Li, Yanguo; Zhang, Yongjie; Zhang, Shuangnan

    2009-01-01

    The Space-based multi-band astronomical Variable Object Monitor (SVOM) mission is dedicated to the detection, localization and broad-band study of Gamma-Ray Bursts (GRBs) and other high-energy transient phenomena. The Gamma Ray Monitor (GRM) onboard is designed to observe the GRBs up to 5 MeV. With this instrument one of the key GRB parameter, Epeak, can be easily measured in the hard x-ray band. It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.

  12. SVOM gamma ray monitor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The space-based multi-band astronomical Variable Object Monitor(SVOM) mission is dedicated to the detection,localization and broad-band study of gamma-ray bursts(GRBs) and other high-energy transient phenomena.The gamma ray monitor(GRM) onboard is designed to observe GRBs up to 5 MeV.With this instrument,one of the key GRB parameters,Epeak,can be easily measured in the hard X-ray band.It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.

  13. Gamma Ray Astronomy

    Science.gov (United States)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  14. Gamma-ray spectroscopy on irradiated fuel rods

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, Luis Antonio Albiac [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear], e-mail: laaterre@ipen.br

    2009-07-01

    The recording of gamma-ray spectra along an irradiated fuel rod allows the fission products to be qualitatively and quantitatively examined. Among all nondestructive examinations performed on irradiated fuel rods by gamma-ray spectroscopy, the most comprehensive one is the average burnup measurement, which is quantitative. Moreover, burnup measurements by means of gamma-ray spectroscopy are less time-consuming and waste-generating than burnup measurements by radiochemical, destructive methods. This work presents the theoretical foundations and experimental techniques necessary to measure, using nondestructive gamma-ray spectroscopy, the average burnup of irradiated fuel rods in a laboratory equipped with hot cells. (author)

  15. A new processing technique for airborne gamma-ray data

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    1997-01-01

    The mathematical-statistical background for at new technique for processing gamma-ray spectra is presented. The technique - Noise Adjusted Singular Value Decomposition - decomposes at set of gamma-ray spectra into a few basic spectra - the spectral components. The spectral components can be proce...... be processed in different ways aiming at getting new information that cannot be directly extracted from the original spectra....

  16. Supernovae and Gamma-Ray Bursts

    Science.gov (United States)

    Livio, Mario; Panagia, Nino; Sahu, Kailash

    2001-07-01

    Participants; Preface; Gamma-ray burst-supernova relation B. Paczynski; Observations of gamma-ray bursts G. Fishman; Fireballs T. Piran; Gamma-ray mechanisms M. Rees; Prompt optical emission from gamma-ray bursts R. Kehoe, C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Casperson, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, K. Hurley, B. Lee, S. Marshall, T. McKay, A. Pawl, L. Piro, B. Priedhorsky, J. Szymanski and J. Wren; X-ray afterglows of gamma-ray bursts L. Piro; The first year of optical-IR observations of SN1998bw I. Danziger, T. Augusteijn, J. Brewer, E. Cappellaro, V. Doublier, T. Galama, J. Gonzalez, O. Hainaut, B. Leibundgut, C. Lidman, P. Mazzali, K. Nomoto, F. Patat, J. Spyromilio, M. Turatto, J. Van Paradijs, P. Vreeswijk and J. Walsh; X-ray emission of Supernova 1998bw in the error box of GRB980425 E. Pian; Direct analysis of spectra of type Ic supernovae D. Branch; The interaction of supernovae and gamma-ray bursts with their surroundings R. Chevalier; Magnetars, soft gamma-ray repeaters and gamma-ray bursts A. Harding; Super-luminous supernova remnants Y. -H. Chu, C. -H. Chen and S. -P. Lai; The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy K. Nomoto, P. Mazzali, T. Nakamura, K. Iwanmoto, K. Maeda, T. Suzuki, M. Turatto, I. Danziger and F. Patat; Collapsars, Gamma-Ray Bursts, and Supernovae S. Woosley, A. MacFadyen and A. Heger; Pre-supernova evolution of massive stars N. Panagia and G. Bono; Radio supernovae and GRB 980425 K. Weiler, N. Panagia, R. Sramek, S. Van Dyk, M. Montes and C. Lacey; Models for Ia supernovae and evolutionary effects P. Hoflich and I. Dominguez; Deflagration to detonation A. Khokhlov; Universality in SN Iae and the Phillips relation D. Arnett; Abundances from supernovae F. -K. Thielemann, F. Brachwitz, C. Freiburghaus, S. Rosswog, K. Iwamoto, T. Nakamura, K. Nomoto, H. Umeda, K. Langanke, G. Martinez-Pinedo, D. Dean, W. Hix and M. Strayer; Sne, GRBs, and the

  17. Gamma rays from Galactic pulsars

    OpenAIRE

    2014-01-01

    Gamma rays from young pulsars and milli-second pulsars are expected to contribute to the diffuse gamma-ray emission measured by the {\\it Fermi} Large Area Telescope (LAT) at high latitudes. We derive the contribution of the pulsars undetected counterpart by using information from radio to gamma rays and we show that they explain only a small fraction of the isotropic diffuse gamma-ray background.

  18. Very High Energy Gamma Ray Extension of GRO Observations

    Science.gov (United States)

    Weekes, Trevor C.

    1994-01-01

    The membership, progress, and invited talks, publications, and proceedings made by the Whipple Gamma Ray Collaboration is reported for june 1990 through May 1994. Progress was made in the following areas: the May 1994 Markarian Flare at Whipple and EGRET (Energetic Gamma Ray Experiment Telescope) energies; AGN's (Active Galactic Nuclei); bursts; supernova remnants; and simulations and energy spectra.

  19. Gamma-ray Polarimetry with the All-sky Medium Energy Gamma-ray Observatory (AMEGO)

    Science.gov (United States)

    Kislat, Fabian

    2017-08-01

    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a next-generation Compton and pair-production telescope. It will allow us to perform sensitive polarimetric observations in the 200keV to 3MeV energy range. Due to its wide field of view it will survey the entire sky every 3 hours, enabling polarization measurements not only of persistent, but also of transient sources such as gamma-ray bursts. The polarization of gamma-rays carries geometric information about compact emission regions that are too small to be imaged at any wavelength, and will thus provide qualitatively new insights. In this paper we discuss AMEGO's polarization sensitivity based on detailed simulations of the instrument. We will use these results to discuss the scientific potential of AMEGO to search for violations of Lorentz invariance. Finally, we present predictions for possible observations based on theoretical models of bright gamma-ray bursts, blazar jets, and the high-energy tail of the galactic black hole binary Cygnus X-1. These predictions will demonstrate AMEGO's ability to distinguish different theoretical models.

  20. Meeting the Challenge from Bright and Fast Gamma-Ray Flares of 3C 279

    Science.gov (United States)

    Vittorini, V.; Tavani, M.; Cavaliere, A.

    2017-07-01

    Bright and fast gamma-ray flares with hard spectra have been recently detected from the blazar 3C 279, with apparent GeV luminosities up to 1049 erg s-1. The source is observed to flicker on timescales of minutes with no comparable optical-UV counterparts. Such observations challenge current models of high-energy emissions from 3C 279 and similar blazar sources that are dominated by relativistic jets along our line of sight with bulk Lorentz factors up to Γ ˜ 20 launched by supermassive black holes. We compute and discuss a model based on a clumpy jet comprising strings of compact plasmoids as indicated by radio observations. We follow the path of the synchrotron radiations emitted in the optical-UV bands by relativistic electrons accelerated around the plasmoids to isotropic Lorentz factors γ ˜ {10}3. These primary emissions are partly reflected back by a leading member in the string that acts as a moving mirror for the approaching companions. Around the plasmoids, shrinking gap transient overdensities of seed photons build up. These are upscattered into the GeV range by inverse Compton interactions with the relativistic electrons accelerated in situ. We show that such a combined process produces bright gamma-ray flares with minor optical to X-ray enhancements. Main features of our model include: bright gamma-ray flares with risetimes as short as a few minutes, occurring at distances of order 1018 cm from the central black hole; Compton dominance at GeV energies by factors up to some 102; minimal reabsorption from local photon-photon interactions.

  1. EBL Constraints Using a Sample of TeV Gamma-Ray Emitters Measured with the MAGIC Telescopes

    CERN Document Server

    Mazin, D; Ramazani, V Fallah; Hassan, T; Moralejo, A; Rosillo, M Nievas; Vanzo, G; Acosta, M Vázquez

    2016-01-01

    MAGIC is a stereoscopic system of two Imaging Atmospheric Cherenkov Telescopes operating in the very high energy (VHE) range from about 50 GeV to over 50 TeV. The VHE gamma-ray spectra measured at Earth carry an imprint of the extragalactic background light (EBL) and can be used to study the EBL density and its evolution in time. In the last few years, precision measurements of several blazars in the redshift range from z=0.03 up to z=0.9 were performed with MAGIC obtaining strong limits on the EBL density from single sources. In this paper, we present the results from a combined likelihood analysis using this broad redshift range sample of blazars allowing us to probe the EBL at different wavelengths. The implications on the EBL models and perspectives for future observations with MAGIC are also discussed.

  2. EBL constraints using a sample of TeV gamma-ray emitters measured with the MAGIC telescopes

    Science.gov (United States)

    Mazin, D.; Domínguez, A.; Fallah Ramazani, V.; Hassan, T.; Moralejo, A.; Nievas Rosillo, M.; Vanzo, G.; Vázquez Acosta, M.

    2017-01-01

    MAGIC is a stereoscopic system of two Imaging Atmospheric Cherenkov Telescopes operating in the very high energy (VHE) range from about 50 GeV to over 50 TeV. The VHE gamma-ray spectra measured at Earth carry an imprint of the extra-galactic background light (EBL) and can be used to study the EBL density and its evolution in time. In the last few years, precision measurements of several blazars in the redshift range from z=0.03 up to z=0.9 were performed with MAGIC obtaining strong limits on the EBL density from single sources. In this paper, we present the results from a combined likelihood analysis using this broad redshift range sample of blazars allowing us to probe the EBL at different wavelengths. The implications on the EBL models and perspectives for future observations with MAGIC are also discussed.

  3. Estimation of the Vertical Distribution of Radiocesium in Soil on the Basis of the Characteristics of Gamma-Ray Spectra Obtained via Aerial Radiation Monitoring Using an Unmanned Helicopter.

    Science.gov (United States)

    Ochi, Kotaro; Sasaki, Miyuki; Ishida, Mutsushi; Hamamoto, Shoichiro; Nishimura, Taku; Sanada, Yukihisa

    2017-08-17

    After the Fukushima Daiichi Nuclear Power Plant accident, the vertical distribution of radiocesium in soil has been investigated to better understand the behavior of radiocesium in the environment. The typical method used for measuring the vertical distribution of radiocesium is troublesome because it requires collection and measurement of the activity of soil samples. In this study, we established a method of estimating the vertical distribution of radiocesium by focusing on the characteristics of gamma-ray spectra obtained via aerial radiation monitoring using an unmanned helicopter. The estimates are based on actual measurement data collected at an extended farm. In this method, the change in the ratio of direct gamma rays to scattered gamma rays at various depths in the soil was utilized to quantify the vertical distribution of radiocesium. The results show a positive correlation between the abovementioned and the actual vertical distributions of radiocesium measured in the soil samples. A vertical distribution map was created on the basis of this ratio using a simple equation derived from the abovementioned correlation. This technique can provide a novel approach for effective selection of high-priority areas that require decontamination.

  4. Dissecting the Gamma-Ray Background in Search of Dark Matter

    CERN Document Server

    Cholis, Ilias; McDermott, Samuel D

    2013-01-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitive with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions t...

  5. Discovery of Variability in the Very High Energy Gamma-Ray Emission of 1ES 1218+304 with VERITAS

    CERN Document Server

    Acciari, V A; Beilicke, M; Benbow, W; Boltuch, D; Böttcher, M; Bradbury, S M; Bugaev, V; Byrum, K; Cesarini, A; Ciupik, L; Cogan, P; Cui, W; Dickherber, R; Duke, C; Falcone, A; Finley, J P; Finnegan, G; Fortson, L; Furniss, A; Galante, N; Gall, D; Gibbs, K; Guenette, R; Gillanders, G H; Godambe, S; Grube, J; Hanna, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kertzman, M; Kieda, D; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Maier, G; McArthur, S; McCann, A; Moriarty, P; Nagai, T; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Pichel, A; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Steele, D; Swordy, S P; Theiling, M; Thibadeau, S; Vassiliev, V V; Vincent, S; Wakely, S P; Weekes, T C; Weinstein, A; Weisgarber, T; Williams, D A; 10.1088/2041-8205/709/2/L163

    2010-01-01

    We present results from an intensive VERITAS monitoring campaign of the high-frequency peaked BL Lac object 1ES 1218+304 in 2008/2009. Although 1ES 1218+304 was detected previously by MAGIC and VERITAS at a persistent level of ~6% of the Crab Nebula flux, the new VERITAS data reveal a prominent flare reaching ~20% of the Crab. While very high energy (VHE) flares are quite common in many nearby blazars, the case of 1ES 1218+304 (redshift z = 0.182) is particularly interesting since it belongs to a group of blazars that exhibit unusually hard VHE spectra considering their redshifts. When correcting the measured spectra for absorption by the extragalactic background light, 1ES 1218+304 and a number of other blazars are found to have differential photon indices less than 1.5. The difficulty in modeling these hard spectral energy distributions in blazar jets has led to a range of theoretical gamma-ray emission scenarios, one of which is strongly constrained by these new VERITAS observations. We consider the implic...

  6. Time-of-flight discrimination between gamma-rays and neutrons by neural networks

    OpenAIRE

    2012-01-01

    In gamma-ray spectroscopy, a number of neutrons are emitted from the nuclei together with the gamma-rays and these neutrons influence gamma-ray spectra. An obvious method of separating between neutrons and gamma-rays is based on the time-of-flight (tof) technique. This work aims obtaining tof distributions of gamma-rays and neutrons by using feed-forward artificial neural network (ANN). It was shown that, ANN can correctly classify gamma-ray and neutron events. Testing of trained networks on ...

  7. The Second Catalog of Flaring Gamma-Ray Sources from the Fermi All-sky Variability Analysis

    Science.gov (United States)

    Abdollahi, S.; Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Becerra Gonzalez, J.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Bregeon, J.; Bruel, P.; Buehler, R.; Buson, S.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Chekhtman, A.; Cheung, C. C.; Chiaro, G.; Ciprini, S.; Conrad, J.; Costantin, D.; Costanza, F.; Cutini, S.; D’Ammando, F.; de Palma, F.; Desai, A.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Donaggio, B.; Drell, P. S.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giomi, M.; Giordano, F.; Giroletti, M.; Glanzman, T.; Green, D.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hays, E.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paliya, V. S.; Paneque, D.; Perkins, J. S.; Persic, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Principe, G.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Stawarz, L.; Suson, D. J.; Takahashi, M.; Tanaka, K.; Thayer, J. B.; Thompson, D. J.; Torres, D. F.; Torresi, E.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.

    2017-09-01

    We present the second catalog of flaring gamma-ray sources (2FAV) detected with the Fermi All-sky Variability Analysis (FAVA), a tool that blindly searches for transients over the entire sky observed by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. With respect to the first FAVA catalog, this catalog benefits from a larger data set, the latest LAT data release (Pass 8), as well as from an improved analysis that includes likelihood techniques for a more precise localization of the transients. Applying this analysis to the first 7.4 years of Fermi observations, and in two separate energy bands 0.1–0.8 GeV and 0.8–300 GeV, a total of 4547 flares were detected with significance greater than 6σ (before trials), on the timescale of one week. Through spatial clustering of these flares, 518 variable gamma-ray sources were identified. Based on positional coincidence, likely counterparts have been found for 441 sources, mostly among the blazar class of active galactic nuclei. For 77 2FAV sources, no likely gamma-ray counterpart has been found. For each source in the catalog, we provide the time, location, and spectrum of each flaring episode. Studying the spectra of the flares, we observe a harder-when-brighter behavior for flares associated with blazars, with the exception of BL Lac flares detected in the low-energy band. The photon indexes of the flares are never significantly smaller than 1.5. For a leptonic model, and under the assumption of isotropy, this limit suggests that the spectrum of freshly accelerated electrons is never harder than p∼ 2.

  8. Formation of very hard electron and gamma-ray spectra of flat-spectrum radio quasars in the fast-cooling regime

    Science.gov (United States)

    Yan, Dahai; Zhang, Li; Zhang, Shuang-Nan

    2016-07-01

    In the external Compton scenario, we investigate the formation of a very hard electron spectrum in the fast-cooling regime, using a time-dependent emission model. It is shown that a very hard electron distribution, N^' }_e({γ ^' })∝ {γ ^' }^{-p}, with spectral index p ˜ 1.3 is formed below the minimum energy of injection electrons when inverse Compton scattering takes place in the Klein-Nishina regime, i.e. inverse Compton scattering of relativistic electrons on broad-line region radiation in flat-spectrum radio quasars. This produces a very hard gamma-ray spectrum and can explain in reasonable fashion the very hard Fermi-Large Area Telescope (LAT) spectrum of the flat-spectrum radio quasar 3C 279 during the extreme gamma-ray flare in 2013 December.

  9. Optical archival spectra of blazar candidates of uncertain type in the 3rd Fermi Large Area Telescope Catalog

    Science.gov (United States)

    Álvarez Crespo, N.; Massaro, F.; D'Abrusco, R.; Landoni, M.; Masetti, N.; Chavushyan, V.; Jiménez-Bailón, E.; La Franca, F.; Milisavljevic, D.; Paggi, A.; Patiño-Álvarez, V.; Ricci, F.; Smith, Howard A.

    2016-09-01

    Despite the fact that blazars constitute the rarest class among active galactic nuclei (AGNs) they are the largest known population of associated γ-ray sources. Many of the γ-ray objects listed in the Fermi-Large Area Telescope Third Source catalog (3FGL) are classified as blazar candidates of uncertain type (BCUs), either because they show multifrequency behavior similar to blazars but lacking optical spectra in the literature, or because the quality of such spectra is too low to confirm their nature. Here we select, out of 585 BCUs in the 3FGL, 42 BCUs which we identify as probable blazars by their WISE infrared colors and which also have optical spectra that are available in the Sloan Digital Sky Survey (SDSS) and/or Six-Degree Field Galaxy Survey Database (6dFGS). We confirm the blazar nature of all of the sources. We furthermore conclude that 28 of them are BL Lacs, 8 are radio-loud quasars with flat radio spectrum and 6 are BL Lac whose emission is dominated by their host galaxy.

  10. Probing Acceleration and Turbulence at Relativistic Shocks in Blazar Jets

    CERN Document Server

    Baring, Matthew G; Summerlin, Errol J

    2016-01-01

    Diffusive shock acceleration (DSA) at relativistic shocks is widely thought to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud active galactic nuclei such as blazars. Such acceleration can produce the non-thermal particles that emit the broadband continuum radiation that is detected from extragalactic jets. An important recent development for blazar science is the ability of Fermi-LAT spectroscopy to pin down the shape of the distribution of the underlying non-thermal particle population. This paper highlights how multi-wavelength spectra spanning optical to X-ray to gamma-ray bands can be used to probe diffusive acceleration in relativistic, oblique, magnetohydrodynamic (MHD) shocks in blazar jets. Diagnostics on the MHD turbulence near such shocks are obtained using thermal and non-thermal particle distributions resulting from detailed Monte Carlo simulations of DSA. These probes are afforded by the characteristic property that the synchrotron $\

  11. Gamma-Ray Localization of Terrestrial Gamma-Ray Flashes

    CERN Document Server

    Marisaldi, M; Trois, A; Giuliani, A; Tavani, M; Labanti, C; Fuschino, F; Bulgarelli, A; Longo, F; Barbiellini, G; Del Monte, E; Moretti, E; Trifoglio, M; Costa, E; Caraveo, P; Cattaneo, P W; Chen, A; D'Ammando, F; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Froysland, T; Galli, M; Gianotti, F; Lapshov, I; Lazzarotto, F; Lipari, P; Mereghetti, S; Morselli, A; Pacciani, L; Pellizzoni, A; Perotti, F; Picozza, P; Piano, G; Pilia, M; Prest, M; Pucella, G; Rapisarda, M; Rappoldi, A; Rubini, A; Sabatini, S; Soffitta, P; Striani, E; Vallazza, E; Vercellone, S; Vittorini, V; Zambra, A; Zanello, D; Antonelli, L A; Colafrancesco, S; Cutini, S; Giommi, P; Lucarelli, F; Pittori, C; Santolamazza, P; Verrecchia, F; Salotti, L; 10.1103/PhysRevLett.105.128501

    2010-01-01

    Terrestrial Gamma-Ray Flashes (TGFs) are very short bursts of high energy photons and electrons originating in Earth's atmosphere. We present here a localization study of TGFs carried out at gamma-ray energies above 20 MeV based on an innovative event selection method. We use the AGILE satellite Silicon Tracker data that for the first time have been correlated with TGFs detected by the AGILE Mini-Calorimeter. We detect 8 TGFs with gamma-ray photons of energies above 20 MeV localized by the AGILE gamma-ray imager with an accuracy of 5-10 degrees at 50 MeV. Remarkably, all TGF-associated gamma rays are compatible with a terrestrial production site closer to the sub-satellite point than 400 km. Considering that our gamma rays reach the AGILE satellite at 540 km altitude with limited scattering or attenuation, our measurements provide the first precise direct localization of TGFs from space.

  12. The Spectral Energy Distribution of Fermi Bright Blazars

    Science.gov (United States)

    Abdo, A. A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Arkharov, A. A.; Axelsson, M.; Bach, U.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Benitiez, E.; Berdyugin, A.; Gehrels, N.; Harding, A. K.; Hays, E.; Marshall, F.; Scargle, J. D.; Thompson, D. J.

    2010-01-01

    We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray /gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log v-log v Fv representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(sub ro) , and optical to X-ray, alpha(sub ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (v(sup S) (sub peak)) is positioned between 10(exp 12.5) and 10(exp 14) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(exp 13) and 10(exp 17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than

  13. The Spectral Energy Distribution of Fermi Bright Blazars

    Science.gov (United States)

    Abdo, A. A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Arkharov, A. A.; Axelsson, M.; Bach, U.; hide

    2010-01-01

    We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray /gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log v-log v Fv representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(sub ro) , and optical to X-ray, alpha(sub ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (v(sup S) (sub peak)) is positioned between 10(exp 12.5) and 10(exp 14) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(exp 13) and 10(exp 17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than

  14. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  15. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  16. Novel Features of Gamma Ray from Dark Matter

    CERN Document Server

    Tang, Yong

    2015-01-01

    In this study, we present some general and novel features of gamma ray from dark matter. We find that gamma-ray spectra with sharp features exist in a wide class of dark matter models and mimic the gamma line signals. The generated gamma rays would generally have polynomial-type spectra or power-law with positive index. We illustrate our results in a model-independent framework with generic kinematic analysis. Similar results can also apply for cosmic rays or neutrino cases.

  17. Review of GRANAT observations of gamma-ray bursts

    DEFF Research Database (Denmark)

    Terekhov, O.; Denissenko, D.; Sunyaev, R.;

    1995-01-01

    The GRANAT observatory was launched into a high apogee orbit on 1 December, 1989. Three instruments onboard GRANAT - PHEBUS, WATCH and SIGMA are able to detect gamma-ray bursts in a very broad energy range from 6 keV up to 100 MeV. Over 250 gamma-ray bursts were detected. We discuss the results...... of four differently behaving componenents in gamma-ray burst spectra is discussed. Statistical properties of the gamma-ray burst sources based on the 5 years of observations with (∼ 10−6 erg/cm2) sensitivity as well as the results of high sensitivity (∼ 10−8 erg/cm2) search for Gamma-Ray Bursts within...... the SIGMA telescope field of view are reviewed....

  18. Computers in activation analysis and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, B. S.; D' Agostino, M. D.; Yule, H. P. [eds.

    1979-01-01

    Seventy-three papers are included under the following session headings: analytical and mathematical methods for data analysis; software systems for ..gamma..-ray and x-ray spectrometry; ..gamma..-ray spectra treatment, peak evaluation; least squares; IAEA intercomparison of methods for processing spectra; computer and calculator utilization in spectrometer systems; and applications in safeguards, fuel scanning, and environmental monitoring. Separate abstracts were prepared for 72 of those papers. (DLC)

  19. Predicted Extragalactic TeV $\\gamma$-Ray Sources

    CERN Document Server

    Stecker, F W; Salamon, M H

    1996-01-01

    We suggest that low-redshift XBLs (X-ray selected BL Lacertae objects) may be the only extragalactic gamma-ray sources observable at TeV energies. We use simple physical considerations involving synchrotron and Compton component spectra for blazars to suggest why the observed TeV sources are XBLs, whereas mostly RBLs and FSRQs are seen at GeV energies. These considerations indicate that the differences between XBLs and RBLs cannot be explained purely as relativistic jet orientation effects. We note that the only extragalactic TeV sources which have been observed are XBLs and that a nearby RBL with a very hard spectrum in the GeV range has not been seen at TeV energies. We also note that of the 14 BL Lacs observed by EGRET, 12 are RBLs, whereas only 2 are XBLs. We give a list of nearby XBLs which we consider to be good candidate TeV sources and predict estimated TeV fluxes for these objects.

  20. PKS 1510-089 in high gamma-ray state as detected by AGILE

    Science.gov (United States)

    Minervini, G.; Piano, G.; Munar-Adrover, P.; Verrecchia, F.; Pittori, C.; Lucarelli, F.; Tavani, M.; Donnarumma, I.; Bulgarelli, A.; Fioretti, V.; Zoli, A.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2016-09-01

    The AGILE-GRID is detecting transient gamma-ray emission above 100 MeV from the blazar PKS 1510-089. Integrating from 2016-09-19 UT 01:00:00 to 2016-09-21 UT 01:00:00, a preliminary likelihood analysis provides a gamma-ray flux F( > 100 MeV) = (3.7 +/- 1.2) x 10^-6 photons/cm^2/s with a significance above 5 sigma.

  1. MAGIC TeV Gamma-Ray Observations of Markarian 421 during Multiwavelength Campaigns in 2006

    CERN Document Server

    Aleksić, J; Antoranz, P; Backes, M; Baixeras, C; Balestra, S; Barrio, J A; Bastieri, D; González, J Becerra; Bednarek, W; Berdyugin, A; Berger, K; Bernardini, E; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Tridon, D Borla; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britzger, D; Camara, M; Carmona, E; Carosi, A; Colin, P; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Dazzi, F; De Angelis, A; del Pozo, E De Cea; Mendez, C Delgado; Reyes, R De los; De Lotto, B; De Maria, M; De Sabata, F; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fonseca, M V; Font, L; López, R J García; Garczarczyk, M; Gaug, M; Godinovic, N; Hadasch, D; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hrupec, D; Hsu, C C; Jogler, T; Klepser, S; Krähenbühl, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Orito, R; Oya, I; Paiano, S; Paoletti, R; Paredes, J M; Partini, S; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Puljak, I; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sánchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shayduk, M; Shore, S N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Spiro, S; Stamerra, A; Steinke, B; Struebig, J C; Suric, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzic, T; Tescaro, D; Teshima, M; Torres, D F; Vankov, H; Wagner, R M; Zabalza, V; Zandanel, F; Zanin, R

    2014-01-01

    The Major Atmospheric Gamma Imaging Cerenkov (MAGIC) telescope participated in three multiwavelength (MWL) campaigns, observing the blazar Markarian (Mkn) 421 during the nights of 2006 April 28, 29, and 2006 June 14. We analyzed the corresponding MAGIC very-high energy observations during 9 nights from 2006 April 22 to 30 and on 2006 June 14. We inferred light curves with sub-day resolution and night-by-night energy spectra. A strong gamma-ray signal was detected from Mkn 421 on all observation nights. The flux (E > 250 GeV) varied on night-by-night basis between (0.92+-0.11)10^-10 cm^-2 s^-1 (0.57 Crab units) and (3.21+-0.15)10^-10 cm^-2 s^-1 (2.0 Crab units) in 2006 April. There is a clear indication for intra-night variability with a doubling time of 36+-10(stat) minutes on the night of 2006 April 29, establishing once more rapid flux variability for this object. For all individual nights gamma-ray spectra could be inferred, with power-law indices ranging from 1.66 to 2.47. We did not find statistically si...

  2. Gamma-ray emission from nova outbursts

    CERN Document Server

    Hernanz, M

    2013-01-01

    Classical novae produce radioactive nuclei which are emitters of gamma-rays in the MeV range. Some examples are the lines at 478 and 1275 keV (from 7Be and 22Na) and the positron-electron annihilation emission, with the 511 keV line and a continuum. Gamma-ray spectra and light curves are potential unique tools to trace the corresponding isotopes and to give insights on the properties of the expanding envelope. Another possible origin of gamma-rays is the acceleration of particles up to very high energies, so that either neutral pions or inverse Compton processes produce gamma-rays of energies larger than 100 MeV. MeV photons during nova explosions have not been detected yet, although several attempts have been made in the last decades; on the other hand, GeV photons from novae have been detected with the Fermi satellite in V407 Cyg, a nova in a symbiotic binary, where the companion is a red giant with a wind, instead of a main sequence star as in the cataclysmic variables hosting classical novae. Two more nov...

  3. Stochastic Gyroresonant Acceleration for Hard Electron Spectra of Blazars: Effect of Damping of Cascading Turbulence

    CERN Document Server

    Kakuwa, Jun

    2015-01-01

    Stochastic acceleration of nonthermal electrons is investigated in the context of hard photon spectra of blazars. It is well known that this acceleration mechanism can produce a hard electron spectrum of $m \\equiv \\partial \\ln n_{\\rm e}(\\gamma)/\\partial \\ln \\gamma = 2$ with the high-energy cutoff, called an ultrarelativistic Maxwellian-like distribution, where $n_{\\rm e}(\\gamma)$ is an electron energy spectrum. We revisit the formation of this characteristic spectrum, considering a particular situation where the electrons are accelerated through gyroresonant interaction with magnetohydrodynamic wave turbulence driven by the turbulent cascade. By solving kinetic equations of the turbulent fields, electrons, and photons emitted via the synchrotron self-Compton (SSC) process, we demonstrate that in the non-test-particle treatment, the formation of a Maxwellian-like distribution is prevented by the damping effect on the turbulent fields due to the electron acceleration, at least unless an extreme parameter value ...

  4. On the phenomenological classification of continuum radio spectra variability patterns of Fermi blazars

    CERN Document Server

    Angelakis, E; Nestoras, I; Fromm, C M; Schmidt, R; Zensus, J A; Marchili, N; Krichbaum, T P; Perucho-Pla, M; Ungerechts, H; Sievers, A; Riquelme, D

    2011-01-01

    The F-GAMMA program is a coordinated effort to investigate the physics of Active Galactic Nuclei (AGNs) via multi-frequency monitoring of {\\em Fermi} blazars. The current study is concerned with the broad-band radio spectra composed of measurement at ten frequencies between 2.64 and 142 GHz. It is shown that any of the 78 sources studied can be classified in terms of their variability characteristics in merely 5 types of variability. The first four types are dominated by spectral evolution and can be reproduced by a simple two-component system made of the quiescent spectrum of a large scale jet populated with a flaring event evolving according to Marscher & Gear (1985). The last type is characterized by an achromatic change of the broad-band spectrum which must be attributed to a completely different mechanism. Here are presented, the classification, the assumed physical system and the results of simulations that have been conducted.

  5. Lepto$-$Hadronic Origin of $\\gamma$-ray Outbursts of 3C 279

    CERN Document Server

    Paliya, Vaidehi S; Bottcher, Markus; Stalin, C S; Buckley, David

    2016-01-01

    The blazar 3C 279 exhibited a giant $\\gamma$-ray outburst in 2013 December and 2014 April. Apart from the very fast $\\gamma$-ray flux variability, the spectral nature of the flares were also found to vary significantly between these two flaring events. A prominent curvature in the $\\gamma$-ray spectrum was noticed in 2014 April flare, on the other hand, the 2013 December displayed an extreme hardening of the spectrum. These observations, thus, put strong constraints on our understanding of the underlying particle acceleration mechanisms.

  6. Detecting the EBL attenuation of blazars with GLAST

    Science.gov (United States)

    Reyes, Luis C.

    The Large Area Telescope (LAT) on board GLAST (Gamma-ray Large Area Space Telescope) due for launch in late 2007 will study the gamma-ray sky in the energy range 20 MeV to >300 GeV. GLAST-LAT's improved sensitivity with respect to previous missions will increase the number of known gamma-ray blazars from about 100 to thousands, with redshifts up to z~3-5. Since g-rays with energy above 10 GeV interact via pair-production with photons from the Extragalactic Background Light (EBL), the systematic attenuation of GLAST-detected blazars as a function of redshift would constitute and effective and unique probe of the optical-UV EBL density and its evolution over cosmic history. Analysis techniques introduced in this dissertation make use of the large number of blazars detected by GLAST to study the collective behavior of their spectra as a function of redshift. These techniques are shown to offer powerful ways to help separate the common level of attenuation due to the EBL from the intrinsic peculiarities of individual blazars. The capability of GLAST to perform these measurements depends in great measure on the acceptance of the instrument to high energy g-rays ( E > 10 GeV), which in previous space-experiments has been drastically reduced due to backsplash self-veto. This dissertation includes a study of the backsplash effect as measured with flight-like detectors during a beam test of the LAT calibration unit. This analysis was used to verify the capabilities of the GLAST simulations tools to reproduce backsplash effects.

  7. Gamma-Ray and Neutrino Backgrounds as Probes of the High-Energy Universe: Hints of Cascades, General Constraints, and Implications for TeV Searches

    CERN Document Server

    Murase, Kohta; Takami, Hajime

    2012-01-01

    Recent observations of isotropic diffuse backgrounds by Fermi and IceCube allow us to get more insight into distant very-high-energy (VHE) and ultra-high-energy (UHE) gamma-ray/neutrino emitters, including cosmic-ray accelerators/sources. First, we investigate the contribution of intergalactic cascades induced by gamma-rays and/or cosmic rays (CRs) to the diffuse gamma-ray background (DGB) in view of the latest Fermi data. We identify a possible VHE Excess from the fact that the Fermi data are well above expectations for an attenuated power law, and show that cascades induced by VHE gamma rays (above ~10 TeV) and/or VHECRs (below ~10^19 eV) may significantly contribute to the DGB above ~100 GeV. The relevance of the cascades is also motivated by the intergalactic cascade interpretations of extreme TeV blazars such as 1ES 0229+200, which suggest very hard intrinsic spectra. This strengthens the importance of future detailed VHE DGB measurements. Then, more conservatively, we derive general constraints on the c...

  8. Lower Bound on the Cosmic TeV Gamma-ray Background Radiation

    CERN Document Server

    Inoue, Yoshiyuki

    2015-01-01

    The Fermi gamma-ray space telescope has revolutionized our understanding of the cosmic gamma-ray background radiation in the GeV band. However, investigation on the cosmic TeV gamma-ray background radiation still remains sparse. Here, we report the lower bound on the cosmic TeV gamma-ray background spectrum placed by the cumulative flux of individual detected extragalactic TeV sources including blazars, radio galaxies, and starburst galaxies. The current limit on the cosmic TeV gamma-ray background above 0.1 TeV is obtained as $3\\times10^{-8} (E/100~{\\rm GeV})^{-0.6} \\exp(-E/2000~{\\rm GeV})~{\\rm [GeV/cm^2/s/sr]} < E^2dN/dE < 1\\times10^{-7} (E/100~{\\rm GeV})^{-0.5}~{\\rm [GeV/cm^2/s/sr]}$, where the upper bound is set by requirement that the cascade flux from the cosmic TeV gamma-ray background radiation can not exceed the measured cosmic GeV gamma-ray background spectrum (Inoue & Ioka 2012). Two nearby blazars, Mrk 421 and Mrk 501, explain ~70% of the cumulative flux at 0.8-4 TeV, while extreme blaza...

  9. Photon energy conversion efficiency in gamma-ray spectrometry.

    Science.gov (United States)

    Švec, Anton

    2016-01-01

    Photon energy conversion efficiency coefficient is presented as the ratio of total energy registered in the collected spectrum to the emitted photon energy. This parameter is calculated from the conventional gamma-ray histogram and in principle is not affected by coincidence phenomena. This feature makes it particularly useful for calibration and measurement of radionuclide samples at close geometries. It complements the number of efficiency parameters used in gamma-ray spectrometry and can partly change the view as to how the gamma-ray spectra are displayed and processed.

  10. Hadronic Modeling of Blazars

    Directory of Open Access Journals (Sweden)

    Weidinger Matthias

    2013-12-01

    Full Text Available The ongoing systematic search for sources of extragalactic gamma rays has now revealed many blazars in which the very high energy output can not consistently be described as synchrotron self-Compton radiation. In this paper a self consistent hybrid model is described, explaining the very high energy radiation of those blazars as proton synchrotron radiation accompanied by photo-hadronic cascades. As the model includes all relevant radiative processes it naturally includes the synchrotron self-Compton case as well, depending on the chosen parameters. This paper focuses on rather high magnetic fields to be present within the jet, hence the hadronically dominated case. To discriminate the hadronic scenario against external photon fields being upscattered within the jet to produce the dominating gamma-ray output, the temporal behavior of blazars may be exploited with the presented model. Variability reveals both, the highly non-linear nature caused by the photohadronic cascades and typical timescales as well as fingerprints in the inter-band lightcurves of the involved hadrons. The modeling of two individual sources is shown : 1 ES 1011+496, a high frequency peaked blazar at redshift z = 0.212, which is well described within the hybrid scenario using physically reasonable parameters. The short term variability of the second example, namely 3C 454.3, a Flat Spectrum Radio Quasar at z = 0.859, reveals the limitations of the gamma-rays being highly dominated by proton synchrotron radiation.

  11. $\\gamma$-rays and neutrinos from dark matter

    CERN Document Server

    Stecker, F W

    1996-01-01

    High energy gamma-rays and neutrinos can be produced both by the annihilation and by the possible slow decay of dark matter particles. We discuss the fluxes and spectra of such secondaries produced by dark matter particles in the universe and their observability in competition with other astrophysical gamma-ray signals and with atmospheric neutrinos. To do this, we work within the assumption that the dark matter particles are neutralinos which are the lightest supersymmetric particles (LSPs) predicted by supersymmetry theory.

  12. Exploring the blazar zone in high-energy flares of FSRQs

    Energy Technology Data Exchange (ETDEWEB)

    Pacciani, L.; Donnarumma, I. [INAF-Istituto di Astrofisica e Planetologia Spaziale, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Tavecchio, F. [INAF-Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy); Stamerra, A. [INAF-Osservatorio Astrofisico di Torino, via P. Giuria 1, I-10125 Torino (Italy); Carrasco, L.; Recillas, E.; Porras, A. [Instituto Nacional de Astrofisica, Optica y Electronica, Mexico, Luis E, Erro 1, Sta. Maria Tonantzintla, Puebla, CP 72840 (Mexico); Uemura, M., E-mail: luigi.pacciani@iaps.inaf.it [Hiroshima Astrophysical Science Center, Hiroshima University 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan)

    2014-07-20

    The gamma-ray emission offers a powerful diagnostic tool to probe jets and their surroundings in flat-spectrum radio quasars (FSRQs). In particular, sources emitting at high energies (>10 GeV) give us the strongest constraints. This motivates us to start a systematic study of flares with bright emission above 10 GeV, examining archival data of the Fermi-LAT gamma-ray telescope. At the same time, we began to trigger Target of Opportunity observations to the Swift observatory at the occurrence of high-energy flares, obtaining a wide coverage of the spectral energy distributions (SEDs) for several FSRQs during flares. Among others, we investigate the SED of a peculiar flare of 3C 454.3, showing a remarkably hard gamma-ray spectrum, quite different from the brightest flares of this source, and a bright flare of CTA 102. We modeled the SED in the framework of the one-zone leptonic model, using also archival optical spectroscopic data to derive the luminosity of the broad lines and thus estimate the disk luminosity, from which the structural parameters of the FSRQ nucleus can be inferred. The model allowed us to evaluate the magnetic field intensity in the blazar zone and to locate the emitting region of gamma-rays in the particular case in which gamma-ray spectra show neither absorption from the broad-line region (BLR) nor the Klein-Nishina curvature expected in leptonic models assuming the BLR as the source of seed photons for the External Compton scenario. For FSRQs bright above 10 GeV, we were able to identify short periods lasting less than one day characterized by a high rate of high-energy gamma-rays and hard gamma-ray spectra. We discussed the observed spectra and variability timescales in terms of injection and cooling of energetic particles, arguing that these flares could be triggered by magnetic reconnection events or turbulence in the flow.

  13. VHE gamma-ray emission of PKS 2155-304: spectral and temporal variability

    CERN Document Server

    Abramowski, A; Aharonian, F; Akhperjanian, A G; Anton, G; de Almeida, U Barres; Bazer-Bachi, A R; Becherini, Y; Behera, B; Benbow, W; Bernlohr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Buhler, R; Bulik, T; Busching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Conrad, J; Chounet, L -M; Clapson, A C; Coignet, G; Costamante, L; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Atai, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fiasson, A; Foerster, A; Fontaine, G; Fussling, M; Gabici, S; Gallant, Y A; Gerard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glueck, B; Goret, P; Goering, D; Hampf, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzynski, K; Katz, U; Kaufmann, S; Kerschhaggl, M; Khangulyan, D; Khelifi, B; Keogh, D; Klochkov, D; Kluzniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Lamanna, G; Lenain, J -P; Lohse, T; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, D; McComb, T J L; Medina, M C; Mehault, J; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nguyen, N; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; Wilhelmi, E de Ona; Opitz, B; Orford, K J; Ostrowski, M; Panter, M; Arribas, M Paz; Pedaletti, G; Pelletier, G; Petrucci, P -O; Pita, S; Puehlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Ryde, F; Sahakian, V; Santangelo, A; Schlickeiser, R; Schoeck, F M; Schoenwald, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sushch, I; Sikora, M; Skilton, J L; Sol, H; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J -P; Terrier, R; Tibolla, O; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Viana, A; Vincent, P; Vivier, M; Voelk, H J; Volpe, F; Vorobiov, S; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A; Zechlin, H -S

    2010-01-01

    Observations of very high energy gamma-rays from blazars provide information about acceleration mechanisms occurring in their innermost regions. Studies of variability in these objects allow a better understanding of the mechanisms at play. To investigate the spectral and temporal variability of VHE (>100 GeV) gamma-rays of the well-known high-frequency-peaked BL Lac object PKS 2155-304 with the H.E.S.S. imaging atmospheric Cherenkov telescopes over a wide range of flux states. Data collected from 2005 to 2007 are analyzed. Spectra are derived on time scales ranging from 3 years to 4 minutes. Light curve variability is studied through doubling timescales and structure functions, and is compared with red noise process simulations. The source is found to be in a low state from 2005 to 2007, except for a set of exceptional flares which occurred in July 2006. The quiescent state of the source is characterized by an associated mean flux level of 4.32 +/-0.09 x 10^-11 cm^-2 s^-1 above 200 GeV, or approximately 15% ...

  14. The Gamma-ray Albedo of the Moon

    Energy Technology Data Exchange (ETDEWEB)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.; /UC, Santa Cruz

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makes it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.

  15. Physics of gamma-ray bursts

    Science.gov (United States)

    Lamb, D. Q.

    1984-01-01

    Attention is given to the accumulating evidence for the view that gamma-ray bursts come from strongly magnetic neutron stars, discussing the physical properties of the emission region and the radiation processes expected in strong magnetic fields, and emphasizing that the observed burst spectra require that the emission region be optically thin. This entails that the energy of the emitting plasma and/or the plasma itself be continuously replenished during a burst, and that the cooling time scale of the emitting plasma be much shorter than the observed duration of the bursts. This characteristic of the cooling time scale implies that the burst intensity and spectrum can vary on extremely short time scales, and that the burst duration must have a separate explanation. It is emphasized that synchrotron emission is favored as the gamma-ray production mechanism; it is the only mechanism capable of satisfying the optical thinness constraint while producing the observed luminosity.

  16. Formation of the 0.511.-MeV line in solar flares. [statistical mechanics of line spectra for gamma rays

    Science.gov (United States)

    Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.

    1976-01-01

    The gamma-ray line produced at 0.51-MeV was studied and is shown to be the result of either of free annihilation of positrons with electrons or of the decay of positronium by 2-photon emission. Positron annihilation from the bound state of positronium may also proceed by 3-photon emission, resulting in a continuum with energies up to 0.51-MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar-flare plasma are presented. Estimates of the positronium-formulation rates by charge exchange and the rates of dissociation and quenching are also considered. The temperature and density dependence of the ratio of 3-photon to 2-photon emission was obtained. It is shown that when the ratio of free electrons to neutral atoms in the plasma is approximately unity or greater, the Doppler width of the 0.51-MeV line is a function of the temperature of the annihilation region. For the small ion densities characteristics of the photosphere, the width is predominantly a function of the density.

  17. Method for converting in-situ gamma ray spectra of a portable Ge detector to an incident photon flux energy distribution based on Monte Carlo simulation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A matrix stripping method for the conversion of in-situ gamma ray spectrum, obtained with portable Ge detector, to photon flux energy distribution is proposed. The detector response is fully described by its stripping matrix and full absorption efficiency curve. A charge collection efficiency function is introduced in the simulation to take into account the existence of a transition zone of increasing charge collection after the inactive Ge layer. Good agreement is obtained between simulated and experimental full absorption efficiencies. The characteristic stripping matrix is determined by Monte Carlo simulation for different incident photon energies using the Geant4 toolkit system. The photon flux energy distribution is deduced by stripping the measured spectrum of the partial absorption and cosmic ray events and then applying the full absorption efficiency curve. The stripping method is applied to a measured in-situ spectrum. The value of the absorbed dose rate in air deduced from the corresponding flux energy distribution agrees well with the value measured directly in-situ.

  18. Gamma-ray Burst Cosmology

    CERN Document Server

    Wang, F Y; Liang, E W

    2015-01-01

    Gamma-ray bursts (GRBs) are the most luminous electromagnetic explosions in the Universe, which emit up to $8.8\\times10^{54}$ erg isotropic equivalent energy in the hard X-ray band. The high luminosity makes them detectable out to the largest distances yet explored in the Universe. GRBs, as bright beacons in the deep Universe, would be the ideal tool to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal enrichment history of the Universe. In this article, we review the luminosity correlations of GRBs, and implications for constraining the cosmological parameters and dark energy. Observations show that the progenitors of long GRBs are massive stars. So it is expected that long GRBs are tracers of star formation rate. We also review the high-redshift star formation rate derived from GRBs, and implications for the cosmic reionization history. The afterglows of GRBs generally have broken power-law spectra, so it...

  19. Monitoring blazars with FACT

    Energy Technology Data Exchange (ETDEWEB)

    Mannheim, Karl [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg (Germany)

    2012-07-01

    The FACT collaboration operates an imaging air-Cherenkov telescope on La Palma optimized for monitoring bright blazars. Recently, the collaboration reported a technological breakthrough. For the first time, avalanche photo diodes operated in Geiger mode have been employed in the camera. The low power consumption, high quantum efficiency, and high reliability of the novel semi-conductor based camera is the key to robotic operation needed for monitoring. Moreover, linearity permits observations even during moon light. Analysis of gamma-ray lightcurves of blazars holds the key to understand particle acceleration and its relation to the central engine.

  20. A Search for Spectral Hysteresis and Energy-dependent Time Lags from X-Ray and TeV Gamma-Ray Observations of Mrk 421

    Science.gov (United States)

    Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Cardenzana, J. V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Furniss, A.; Griffin, S.; Håkansson, M. HN.; Hanna, D.; Hervet, O.; Holder, J.; Humensky, T. B.; Kaaret, P.; Kar, P.; Kertzman, M.; Kieda, D.; Krause, M.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nieto, D.; Ong, S. OR. A.; Otte, A. N.; Park, N.; Pelassa, V.; Pohl, M.; Popkow, A.; Pueschel, E.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilhelm, A.; Williams, D. A.; the VERITAS Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Nöthe, M.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; the MAGIC Collaboration; Hovatta, T.; de la Calle Perez, I.; Smith, P. S.; Racero, E.; Baloković, M.

    2017-01-01

    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three “target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4 × 10‑4 Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.

  1. Gamma-ray Pulsar Revolution

    CERN Document Server

    Caraveo, Patrizia A

    2013-01-01

    Isolated Neutron Stars (INSs) were the first sources identified in the field of high-energy gamma-ray astronomy. At first, in the 70s, there were only two identified sources, the Crab and Vela pulsars. However, although few in number, these objects were crucial in establishing the very concept of a gamma-ray source. Moreover, they opened up significant discovery space both in the theoretical and phenomenological fronts. The need to explain the copious gamma-ray emission of these pulsars led to breakthrough developments in understanding the structure and physics of neutron star magnetospheres. In parallel, the 20-year-long chase to understand the nature of Geminga unveiled the existence of a radio-quiet, gamma-ray-emitting, INS, adding a new dimension to the INS family. Today we are living through an extraordinary time of discovery. The current generation of gamma-ray detectors has vastly increased the population of known of gamma-ray-emitting neutron stars. The 100 mark was crossed in 2011 and we are now appr...

  2. Gamma-ray emission from individual classical novae

    CERN Document Server

    Gómez-Gomar, J; José, J; Isern, J

    1997-01-01

    Classical novae are important producers of radioactive nuclei, such as be7, n13, f18, na22 and al26. The disintegration of these nuclei produces positrons (except for be7) that through annihilation with electrons produce photons of energies 511 keV and below. Furthermore, be7 and na22 decay producing photons with energies of 478 keV and 1275 keV, respectively, well in the gamma-ray domain. Therefore, novae are potential sources of gamma-ray emission. The properties of gamma-ray spectra and gamma-ray light curves (for the continuum and for the lines at 511, 478 and 1275 keV) have been analyzed, with a special emphasis on the difference between carbon-oxygen and oxygen-neon novae. Predictions of detectability of individual novae by the future SPI spectrometer on board the INTEGRAL satellite are made.

  3. Enhanced gamma-ray emission from the FSRQ CTA 102 detected by AGILE

    Science.gov (United States)

    Minervini, G.; Bulgarelli, A.; Pittori, C.; Verrecchia, F.; Piano, G.; Tavani, M.; Munar-Adrover, P.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Lucarelli, F.; Vercellone, S.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, Antonelli A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-05-01

    AGILE is detecting since last week increased gamma-ray emission above 100 MeV from a source positionally consistent with the FSRQ blazar CTA 102 [at Galactic coordinates (l,b)= (77.4 , -38) +/- 0.6 deg (stat.

  4. Discovery and characterization of the first low-peaked and intermediate-peaked BL Lacertae objects in the very high energy {gamma}-ray regime

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Karsten

    2009-12-19

    20 years after the discovery of the Crab Nebula as a source of very high energy {gamma}-rays, the number of sources newly discovered above 100 GeV using ground-based Cherenkov telescopes has considerably grown, at the time of writing of this thesis to a total of 81. The sources are of different types, including galactic sources such as supernova remnants, pulsars, binary systems, or so-far unidentified accelerators and extragalactic sources such as blazars and radio galaxies. The goal of this thesis work was to search for {gamma}-ray emission from a particular type of blazars previously undetected at very high {gamma}-ray energies, by using the MAGIC telescope. Those blazars previously detected were all of the same type, the so-called high-peaked BL Lacertae objects. The sources emit purely non-thermal emission, and exhibit a peak in their radio-to-X-ray spectral energy distribution at X-ray energies. The entire blazar population extends from these rare, low-luminosity BL Lacertae objects with peaks at X-ray energies to the much more numerous, high-luminosity infrared-peaked radio quasars. Indeed, the low-peaked sources dominate the source counts obtained from space-borne observations at {gamma}-ray energies up to 10 GeV. Their spectra observed at lower {gamma}-ray energies show power-law extensions to higher energies, although theoretical models suggest them to turn over at energies below 100 GeV. This opened the quest for MAGIC as the Cherenkov telescope with the currently lowest energy threshold. In the framework of this thesis, the search was focused on the prominent sources BL Lac, W Comae and S5 0716+714, respectively. Two of the sources were unambiguously discovered at very high energy {gamma}-rays with the MAGIC telescope, based on the analysis of a total of about 150 hours worth of data collected between 2005 and 2008. The analysis of this very large data set required novel techniques for treating the effects of twilight conditions on the data quality

  5. Gamma-Ray Pulsars Models and Predictions

    CERN Document Server

    Harding, A K

    2001-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10^{12} - 10^{13} G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers at around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. N...

  6. Afterglow Radiation from Gamma Ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  7. Hadronic Gamma Rays from Supernova Remnants

    CERN Document Server

    Moskalenko, I V; Malkov, M A; Diamond, P H

    2007-01-01

    A gas cloud near a supernova remnant (SNR) provides a target for pp-collisions leading to subsequent gamma-ray emission through neutral pion decay. The assumption of a power-law ambient spectrum of accelerated particles with index near -2 is usually built into models predicting the spectra of very-high energy (VHE) gamma-ray emission from SNRs. However, if the gas cloud is located at some distance from the SNR shock, this assumption is not necessarily correct. In this case, the particles which interact with the cloud are those leaking from the shock and their spectrum is approximately monoenergetic with the injection energy gradually decreasing as the SNR ages. The gamma-ray spectrum resulting from particle interactions with the gas cloud will be flatter than expected, with the cutoff defined by the pion momentum distribution in the laboratory frame. We evaluate the flux of particles escaping from a SNR shock and apply the results to the VHE diffuse emission detected by the HESS at the Galactic centre.

  8. Varying Faces of Photospheric Emission in Gamma-Ray Bursts

    CERN Document Server

    Axelsson, M

    2015-01-01

    Among the more than 1000 gamma-ray bursts observed by the Fermi Gamma-ray Space Telescope, a large fraction show narrow and hard spectra inconsistent with non-thermal emission, signifying optically thick emission from the photosphere. However, only a few of these bursts have spectra consistent with a pure Planck function. We will discuss the observational features of photospheric emission in these GRBs as well as in the ones showing multi-component spectra. We interpret the observations in light of models of subphotospheric dissipation, geometrical broadening and multi-zone emission, and show what we can learn about the dissipation mechanism and properties of GRB jets.

  9. Compton scattering in terrestrial gamma-ray flashes detected with the Fermi gamma-ray burst monitor

    CERN Document Server

    Fitzpatrick, Gerard; McBreen, Sheila; Briggs, Michael S; Foley, Suzanne; Tierney, David; Chaplin, Vandiver L; Connaughton, Valerie; Stanbro, Matthew; Xiong, Shaolin; Dwyer, Joseph; Fishman, Gerald J; Roberts, Oliver J; von Kienlin, Andreas

    2015-01-01

    Terrestrial gamma-ray flashes (TGFs) are short intense flashes of gamma rays associated with lightning activity in thunderstorms. Using Monte Carlo simulations of the relativistic runaway electron avalanche (RREA) process, theoretical predictions for the temporal and spectral evolution of TGFs are compared to observations made with the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-ray Space Telescope. Assuming a single source altitude of 15 km, a comparison of simulations to data is performed for a range of empirically chosen source electron variation time scales. The data exhibit a clear softening with increased source distance, in qualitative agreement with theoretical predictions. The simulated spectra follow this trend in the data, but tend to underestimate the observed hardness. Such a discrepancy may imply that the basic RREA model is not sufficient. Alternatively, a TGF beam that is tilted with respect to the zenith could produce an evolution with source distance that is compatible with the da...

  10. On the possibility of sub-TeV Gamma-ray emission from Cyg X-3

    CERN Document Server

    Bednarek, W

    2010-01-01

    The compact X-ray binary system Cyg X-3 has been recently discovered as a source of GeV gamma-rays by the AGILE and the {\\it Fermi} satellites. It shows emission features in the GeV gamma-rays similar to other gamma-ray binaries which were also observed in the TeV gamma-rays (LS 5039 and LSI +61 303). The question appears whether Cyg X-3 can be also detected in the TeV gamma-rays by the Cherenkov telescopes. Here we discuss this problem in detail based on the anisotropic inverse Compton (IC) e-p pair cascade model successfully applied to TeV gamma-ray binaries. We calculate the gamma-ray light curves and gamma-ray spectra expected from the cascade process occurring inside the Cyg X-3 binary system. It is found that the gamma-ray light curves at GeV energies can be consistent with the gamma-ray light curve observed by the Fermi for reasonable parameters of the orbit of the injection source of relativistic electrons. Moreover, we show that in such a model the sub-TeV gamma-ray emission (above 100 GeV) is expect...

  11. F-GAMMA: On the phenomenological classification of continuum radio spectra variability patterns of Fermi blazars

    CERN Document Server

    Angelakis, E; Nestoras, I; Fromm, C M; Perucho, M; Schmidt, R; Zensus, J A; Marchili, N; Krichbaum, T P; Ungerechts, H; Sievers, A; Riquelme, D; Pavlidou, V

    2012-01-01

    The F-GAMMA program is a coordinated effort to investigate the physics of Active Galactic Nuclei (AGNs) via multi-frequency monitoring of Fermi blazars. In the current study we show and discuss the evolution of broad-band radio spectra, which are measured at ten frequencies between 2.64 and 142 GHz using the Effelsberg 100-m and the IRAM 30-m telescopes. It is shown that any of the 78 sources studied can be classified in terms of their variability characteristics in merely 5 types of variability. It is argued that these can be attributed to only two classes of variability mechanisms. The first four types are dominated by spectral evolution and can be described by a simple two-component system composed of: (a) a steep quiescent spectral component from a large scale jet and (b) a time evolving flare component following the "Shock-in-Jet" evolutionary path. The fifth type is characterised by an achromatic change of the broad band spectrum, which could be attributed to a different mechanism, likely involving diff...

  12. On the Nature of the Gamma-ray Source 2FGL J1823.8 4312: The Discovery of a New Class of Extragalactic X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, Francesco

    2012-08-03

    One of the unsolved mysteries of gamma-ray astronomy concerns the nature of the unidentified gamma-ray sources. Recently, using the Second Fermi LAT source catalog (2FGL) and the Wide-field Infrared Survey Explorer (WISE) archive, we discovered that the WISE counterparts of gamma-ray blazars, a class of active galactic nuclei, delineate a region (the WISE Gamma-ray Strip) in the 3-dimensional infrared color space well separated from the locus of the other astronomical objects. Based on this result, we built an association procedure to recognize if there areWISE blazar candidates within the positional uncertainty region of the unidentified gamma-ray sources. Here we report on our analysis of 2FGL J1823.8+4312, a gamma-ray active galactic nucleus of uncertain type associated with the X-ray source 1RXS J182418.7+430954 according to the 2FGL, to verify whether it is a blazar. Applying our association method we found two sources with IR colors typical of gamma-ray blazars, located within the 99.9% confidence region of 2FGL J1823.8+4312: WISE J182352.33+431452.5 and WISE J182409.25+431404.7. Then we searched in the Chandra, NVSS and SDSS archival observations for their counterparts. We discovered that WISE J182352.33+431452.5, our preferred gamma-ray blazar candidate according to our WISE association procedure, is detected in the optical and in the X-rays but not in the radio, making it extremely unusual if it is a blazar. Given its enigmatic spectral energy distribution, we considered the possibility that it is a 'radio faint blazar' or the prototype of a new class of extragalactic sources, our conclusion is independent of whether WISE J182352.33+431452.5 is the actual counterpart of 2FGL J1823.8+4312.

  13. Reducing Statistical Noise in Airborne Gamma-Ray Data

    DEFF Research Database (Denmark)

    Hovgaard, Jens; Grasty, R. L.

    1997-01-01

    By using the Noise Adjusted Singular Value Decomposition (NASVD) technique it is possible to reconstruct the measured airborne gamma-ray spectra with a noise content that is significant smaller than the noise contained in the original measured spectra. The method can be used for improving...

  14. Gamma ray sources observation with the ARGO-YBJ detector

    Energy Technology Data Exchange (ETDEWEB)

    Vernetto, S., E-mail: vernetto@to.infn.it [IFSI-INAF, Corso Fiume 4, 10133 Torino (Italy)

    2012-11-11

    Since November 2007 the air shower detector ARGO-YBJ is continuously monitoring the gamma ray sky in the declination band from -10 Degree-Sign to +70 Degree-Sign at energies E>0.5TeV. In this work we present the results of our observations of galactic and extragalactic sources during more than 3 years, focusing our attention on the Crab Nebula, the blazar Mrk 421 and the galactic extended source MGRO J1908+06, probably associated to the Fermi pulsar PSR J1907+0602.

  15. Gamma ray sources observed with ARGO-YBJ

    Energy Technology Data Exchange (ETDEWEB)

    Vernetto, S., E-mail: vernetto@to.infn.it [INAF, Osservatorio Astrofisico di Torino (Italy); INFN, Sezione di Torino (Italy)

    2013-06-15

    The air shower detector ARGO-YBJ is continuously monitoring the gamma ray sky in the declination band from −10° to +70° at energies E>0.5TeV. After ∼4 years of operation, the integrated sensitivity reached the level of ∼28% the Crab Nebula flux. In this work we present a summary of our observations concerning the Crab Nebula, the Cygnus region, the galactic source MGRO J1908+06, and the blazars Mrk421 and Mrk501.

  16. Quasar-driven outflows account for the missing extragalactic gamma-ray background

    CERN Document Server

    Wang, Xiawei

    2016-01-01

    The origin of the extragalactic $\\gamma$-ray background permeating throughout the Universe remains a mystery forty years after its discovery. The extrapolated population of blazars can account for only half of the background radiation at the energy range of ~ 0.1-10 GeV. Here we show that quasar-driven outflows generate relativistic protons that produce the missing component of the extragalactic $\\gamma$-ray background and naturally match its spectral fingerprint, with a generic break above ~ 1 GeV. The associated $\\gamma$-ray sources are too faint to be detected individually, explaining why they had not been identified so far. However, future radio observations may image their shock fronts directly. Our best fit to the Fermi-LAT observations of extragalactic $\\gamma$-ray background spectrum provides constraints on the outflow parameters that agree with observations of these outflows and theoretical predictions.

  17. Modeling Fermi Large Area Telescope and Multiwavelength Data from Blazars

    CERN Document Server

    Finke, Justin

    2016-01-01

    Blazars are active galactic nuclei with relativistic jets pointed at the Earth, making them extremely bright at essentially all wavelengths, from radio to gamma rays. I review the modeling of this broadband spectral energy distributions of these objects, and what we have learned, with a focus on gamma rays.

  18. Late Time Emission of Prompt Fission Gamma Rays

    CERN Document Server

    Talou, P; Stetcu, I; Lestone, J P; McKigney, E; Chadwick, M B

    2016-01-01

    The emission of prompt fission $\\gamma$ rays within a few nanoseconds to a few microseconds following the scission point is studied in the Hauser-Feshbach formalism applied to the deexcitation of primary excited fission fragments. Neutron and $\\gamma$-ray evaporations from fully accelerated fission fragments are calculated in competition at each stage of the decay, and the role of isomers in the fission products, before $\\beta$-decay, is analyzed. The time evolution of the average total $\\gamma$-ray energy, average total $\\gamma$-ray multiplicity, and fragment-specific $\\gamma$-ray spectra, is presented in the case of neutron-induced fission reactions of $^{235}$U and $^{239}$Pu, as well as spontaneous fission of $^{252}$Cf. The production of specific isomeric states is calculated and compared to available experimental data. About 7% of all prompt fission $\\gamma$ rays are predicted to be emitted between 10 nsec and 5 $\\mu$sec following fission, in the case of $^{235}$U and $^{239}$Pu $(n_{\\rm th},f)$ reactio...

  19. ON THE REDSHIFT OF THE VERY HIGH ENERGY BLAZAR 3C 66A

    Energy Technology Data Exchange (ETDEWEB)

    Furniss, A.; Williams, D. A. [Santa Cruz Institute of Particle Physics and Department of Physics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Fumagalli, M. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Danforth, C. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2013-03-20

    As a bright gamma-ray source, 3C 66A is of great interest to the high-energy astrophysics community, having a potential for placing cosmological constraints on models for the extragalactic background light (EBL) and the processes which contribute to this photon field. No firm spectroscopic redshift measurement has been possible for this blazar due to a lack of intrinsic emission and absorption features in optical spectra. We present new far-ultraviolet spectra from the Hubble Space Telescope/Cosmic Origins Spectrograph (HST/COS) of the BL Lac object 3C 66A covering the wavelength range 1132-1800 A. The data show a smooth continuum with intergalactic medium absorption features which can be used to place a firm lower limit on the blazar redshift of z {>=} 0.3347. An upper limit is set by statistically treating the non-detection of additional absorbers beyond z = 0.3347, indicating a redshift of less than 0.41 at 99% confidence and ruling out z {>=} 0.444 at 99.9% confidence. We conclude by showing how the redshift limits derived from the COS spectra remove the potential for this gamma-ray emitting blazar to place an upper limit on the flux of the EBL using high energy data from a flare in 2009 October.

  20. Terrestrial gamma-ray flashes

    Energy Technology Data Exchange (ETDEWEB)

    Marisaldi, Martino, E-mail: marisaldi@iasfbo.inaf.it [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Fuschino, Fabio; Labanti, Claudio [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy); Tavani, Marco [INAF-IASF Roma, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Argan, Andrea [INAF, Viale del Parco Mellini 84, 00136 Roma (Italy); Del Monte, Ettore [INAF-IASF Roma, Via Fosso del Cavaliere 100, I-00133 Roma (Italy); Longo, Francesco; Barbiellini, Guido [Dipartimento di Fisica Università di Trieste and INFN Trieste, via A. Valerio 2, I-34127 Trieste (Italy); Giuliani, Andrea [INAF-IASF Milano, Via Bassini 15, I-20133 Milano (Italy); Trois, Alessio [INAF Osservatorio Astronomico di Cagliari, loc. Poggio dei Pini, strada 54, I-09012 Capoterra (Italy); Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo [INAF-IASF Bologna, Via Gobetti 101, I-40129 Bologna (Italy)

    2013-08-21

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  1. Zeptosecond $\\gamma$-ray pulses

    CERN Document Server

    Klaiber, Michael; Keitel, Christoph H

    2007-01-01

    High-order harmonic generation (HHG) in the relativistic regime is employed to obtain zeptosecond pulses of $\\gamma$-rays. The harmonics are generated from atomic systems in counterpropagating strong attosecond laser pulse trains of linear polarization. In this setup recollisions of the ionized electrons can be achieved in the highly relativistic regime via a reversal of the commonly deteriorating drift and without instability of the electron dynamics such as in a standing laser wave. As a result, coherent attosecond $\\gamma$-rays in the 10 MeV energy range as well as coherent zeptosecond $\\gamma$-ray pulses of MeV photon energy for time-resolved nuclear spectroscopy become feasible.

  2. Two classes of gamma-ray bursts

    CERN Document Server

    Katz, J I

    1995-01-01

    Data from the 3B Catalogue suggest that short and long GRB are the results of different classes of events, rather than different parameter values within a single class: Short bursts have harder spectra in the BATSE bands, but chiefly long bursts are detected at photon energies over 1 MeV, implying that their hard photons are radiated by a process not found in short bursts. The values of \\langle V/V_{max} \\rangle for short and long bursts differ by 4.3 \\sigma, implying different spatial distributions. Only the soft gamma-ray radiation mechanisms are the same in both classes.

  3. Material recognition using fission gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Viesti, G. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)], E-mail: giuseppe.viesti@pd.infn.it; Sajo-Bohus, L. [Universidad Simon-Bolivar, Laboratorio Fisica Nuclear, Apartado 8900, 1080 A. Caracas (Venezuela, Bolivarian Republic of); Fabris, D. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Lunardon, M.; Moretto, S. [Dipartimento di Fisica dell' Universita di Padova, Via Marzolo 8, I-35131 Padova (Italy); INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Nebbia, G.; Pesente, S. [INFN Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2009-07-21

    Material recognition is studied by measuring the transmission spectrum of {sup 252}Cf fission gamma rays in the energy range E{sub {gamma}}=0.1-5.5 MeV for 0.1-MeV-wide energy bins through a number of elementary samples. Each transmitted spectrum is compared with a library of reference spectra for different elements providing the possibility of material identification. In case of elemental samples with known thickness, this procedure allows the identification of the sample Z with uncertainty typically lower than 3 Z-units over a wide range of elements. Applications to composite materials are also reported.

  4. The Gamma-ray Sky with Fermi

    Science.gov (United States)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  5. Gamma-ray Imaging Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, K; Mihailescu, L; Nelson, K; Valentine, J; Wright, D

    2006-10-05

    In this document we discuss specific implementations for gamma-ray imaging instruments including the principle of operation and describe systems which have been built and demonstrated as well as systems currently under development. There are several fundamentally different technologies each with specific operational requirements and performance trade offs. We provide an overview of the different gamma-ray imaging techniques and briefly discuss challenges and limitations associated with each modality (in the appendix we give detailed descriptions of specific implementations for many of these technologies). In Section 3 we summarize the performance and operational aspects in tabular form as an aid for comparing technologies and mapping technologies to potential applications.

  6. Two Active States of the Narrow-Line Gamma-Ray-Loud AGN GB 1310 + 487

    Science.gov (United States)

    Sokolovsky, K. V.; Schinzel, F. K.; Tanaka, Y. T.; Abolmasov, P. K.; Angelakis, E.; Bulgarelli, A.; Carrasco, L.; Cenko, S. B.; Cheung, C. C.; Clubb, K. I.; D'Ammando, F.; Escande, L.; Fegan, S. J.; Filippenko, A. V.; Finke, J. D.; Fuhrmann, L.; Fukazawa, Y.; Hays, E.; Healey, S. E.; Ikejiri, Y.; Itoh, R.; Kawabata, K. S.; Komatsu, T.; Kovalev, Yu. A.; Kovalev, Y. Y.; Krichbaum, T. P.

    2014-01-01

    Context. Previously unremarkable, the extragalactic radio source GB1310 487 showed gamma-ray flare on 2009 November 18, reaching a daily flux of approximately 10(exp -6) photons cm(exp -2) s(exp -1) at energies E greater than 100MeV and became one of the brightest GeV sources for about two weeks. Its optical spectrum shows strong forbidden-line emission while lacking broad permitted lines, which is not typical for a blazar. Instead, the spectrum resembles those of narrow emission-line galaxies. Aims. We investigate changes in the object's radio-to-GeV spectral energy distribution (SED) during and after the prominent gamma-ray flare with the aim of determining the nature of the object and of constraining the origin of the variable high-energy emission. Methods. The data collected by the Fermi and AGILE satellites at gamma-ray energies; Swift at X-ray and ultraviolet (UV); the Kanata, NOT, and Keck telescopes at optical; OAGH and WISE at infrared (IR); and IRAM30m, OVRO 40m, Effelsberg 100m, RATAN-600, and VLBA at radio are analyzed together to trace the SED evolution on timescales of months. Results. The gamma-ray radio-loud narrow-line active galactic nucleus (AGN) is located at redshift z = 0.638. It shines through an unrelated foreground galaxy at z = 0.500. The AGN light is probably amplified by gravitational lensing. The AGN SED shows a two-humped structure typical of blazars and gamma-ray-loud narrow-line Seyfert 1 galaxies, with the high-energy (inverse-Compton) emission dominating by more than an order of magnitude over the low-energy (synchrotron) emission during gamma-ray flares. The difference between the two SED humps is smaller during the low-activity state. Fermi observations reveal a strong correlation between the gamma-ray flux and spectral index, with the hardest spectrum observed during the brightest gamma-ray state. The gamma-ray flares occurred before and during a slow rising trend in the radio, but no direct association between gamma-ray and

  7. Dissecting the Gamma-Ray Background in Search of Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cholis, Ilias; Hooper, Dan; McDermott, Samuel D.

    2014-02-01

    Several classes of astrophysical sources contribute to the approximately isotropic gamma-ray background measured by the Fermi Gamma-Ray Space Telescope. In this paper, we use Fermi's catalog of gamma-ray sources (along with corresponding source catalogs at infrared and radio wavelengths) to build and constrain a model for the contributions to the extragalactic gamma-ray background from astrophysical sources, including radio galaxies, star-forming galaxies, and blazars. We then combine our model with Fermi's measurement of the gamma-ray background to derive constraints on the dark matter annihilation cross section, including contributions from both extragalactic and galactic halos and subhalos. The resulting constraints are competitive with the strongest current constraints from the Galactic Center and dwarf spheroidal galaxies. As Fermi continues to measure the gamma-ray emission from a greater number of astrophysical sources, it will become possible to more tightly constrain the astrophysical contributions to the extragalactic gamma-ray background. We project that with 10 years of data, Fermi's measurement of this background combined with the improved constraints on the astrophysical source contributions will yield a sensitivity to dark matter annihilations that exceeds the strongest current constraints by a factor of ~ 5 - 10.

  8. Multiwavelength Studies of gamma-ray Binaries

    Science.gov (United States)

    Aragona, Christina

    2011-01-01

    High mass X-ray binaries (HMXBs) consist of an O or B star orbited by either a neutron star or a black hole. Of the 114 known Galactic HMXBs, a handful of these objects, dubbed gamma-ray binaries, have been observed to produce MeV-TeV emission. The very high energy emission can be produced either by accretion from the stellar wind onto a black hole or a collision between the stellar wind and a relativistic pulsar wind. Both these scenarios make gamma-ray binaries valuable nearby systems for studying the physics of shocks and jets. Currently, the nature of the compact object and the high energy production mechanism is unknown or unconfirmed in over half of these systems. My goal for this dissertation is to constrain the parameters describing two of these systems: LS 5039 and HD 259440. LS 5039 exhibits gamma-ray emission modulated with its orbital period. The system consists of an ON6.5V((f)) star and an unidentified compact companion. Using optical spectra from the CTIO 1.5m telescope, we found LS 5039 to have an orbital period of 3.90608 d and an eccentricity of 0.337. Spectra of the Halpha line observed with SOAR indicate a mass loss rate of ˜ 1.9x10 -8 M yr-1. Observations taken with ATCA at 13 cm, 6 cm, and 3 cm indicate radio fluxes between 10--40 mJy. The measurements show variability with time, indicating a source other than thermal emission from the stellar wind. HD 259440 is a B0pe star that was proposed as the optical counterpart to the gamma-ray source HESS J0632+057. Using optical spectra from the KPNO CF, KPNO 2.1m, and OHP telescopes, we find a best fit stellar effective temperature of 27500--30000 K, a log surface gravity of 3.75--4.0, a mass of 13.2--19.0 Msolar, and a radius of 6.0--9.6 Rsolar. By fitting the spectral energy distribution, we find a distance between 1.1--1.7 kpc. We do not detect any significant radial velocity shifts in our data, ruling out orbital periods shorter than one month. If HD 259440 is a binary, it is likely a long

  9. Short duration gamma ray bursts

    Indian Academy of Sciences (India)

    Patrick Das Gupta

    2004-10-01

    After a short review of gamma ray bursts (GRBs), we discuss the physical implications of strong statistical correlations seen among some of the parameters of short duration bursts (90 < 2 s). Finally, we conclude with a brief sketch of a new unified model for long and short GRBs.

  10. Contribution from unresolved discrete sources to the extragalactic gamma-ray background (EGRB)

    Institute of Scientific and Technical Information of China (English)

    Debbijoy Bhattacharya; Parameswaran Sreekumar; Reshmi Mukherjee

    2009-01-01

    The origin of the extragalactic gamma-ray background (EGRB) is still an open question,even nearly forty years after its discovery.The emission could originate either from truly diffuse processes or from unresolved point sources.Although the majority of the 271 point sources detected by EGRET (Energetic Gamma Ray Experiment Telescope)are unidentified,of the identified sources,blazars are the dominant candidates.Therefore,unresolved blazars may be considered the main contributor to the EGRB,and many studies have been carried out to understand their distribution,evolution and contribution to the EGRB.Considering that γ-ray emission comes mostly from jets of blazars and that the jet emission decreases rapidly with increasing jet to line-of-sight angle,it is not surprising that EGRET was not able to detect many large inclination angle active galactic nuclei (AGNs).Though Fermi could only detect a few large inclination angle AGNs during the first three months of its survey,it is expected to detect many such sources in the near future.Since non-blazar AGNs are expected to have higher density as compared to blazars,these could also contribute significantly to the EGRB.In this paper,we discuss contributions from unresolved discrete sources including normal galaxies,starburst galaxies,blazars and off-axis AGNs to the EGRB.

  11. The Origin of the Extragalactic Gamma-Ray Background and Implications for Dark-Matter Annihilation

    CERN Document Server

    Ajello, M; Sanchez-Conde, M; Zaharijas, G; Gustafsson, M; Cohen-Tanugi, J; Dermer, C D; Inoue, Y; Hartmann, D; Ackermann, M; Bechtol, K; Franckowiak, A; Reimer, A; Romani, R W; Strong, A W

    2015-01-01

    The origin of the extragalactic $\\gamma$-ray background (EGB) has been debated for some time. { The EGB comprises the $\\gamma$-ray emission from resolved and unresolved extragalactic sources, such as blazars, star-forming galaxies and radio galaxies, as well as radiation from truly diffuse processes.} This letter focuses on the blazar source class, the most numerous detected population, and presents an updated luminosity function and spectral energy distribution model consistent with the blazar observations performed by the {\\it Fermi} Large Area Telescope (LAT). We show that blazars account for 50$^{+12}_{-11}$\\,\\% of the EGB photons ($>$0.1\\,GeV), and that {\\it Fermi}-LAT has already resolved $\\sim$70\\,\\% of this contribution. Blazars, and in particular low-luminosity hard-spectrum nearby sources like BL Lacs, are responsible for most of the EGB emission above 100\\,GeV. We find that the extragalactic background light, which attenuates blazars' high-energy emission, is responsible for the high-energy cut-off...

  12. Mechanism of spin diffusion in electron spin resonance spectra of trapped electrons in aqueous glasses. Electron--Electron double resonance studies. [. gamma. -rays

    Energy Technology Data Exchange (ETDEWEB)

    Lin, D.P.; Kevan, L.

    1977-05-19

    Electron--electron double resonance (ELDOR) has been used to test the validity of the noninteracting spin packet model for inhomogeneously broadened ESR lines. For trapped electrons in 10M NaOD/D/sub 2/O glassy ice the saturation of field-swept ELDOR spectra fits the above mentioned model in contrast to earlier work on trapped electrons in protiated matrices. In the protiated matrix spin diffusion produces significant interaction between the spin packets. The difference between the protiated and deuterated matrices suggests that nuclear relaxation is the mechanism for spin diffusion. The deuterated matrices show no structure in frequency-swept ELDOR spectra due to deuteron spin--flip transitions whereas structure due to proton spin--flips is seen in protiated matrices.

  13. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    CERN Multimedia

    2002-01-01

    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  14. TPASS: a gamma-ray spectrum analysis and isotope identification computer code

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, J.K.

    1981-03-01

    The gamma-ray spectral data-reduction and analysis computer code TPASS is described. This computer code is used to analyze complex Ge(Li) gamma-ray spectra to obtain peak areas corrected for detector efficiencies, from which are determined gamma-ray yields. These yields are compared with an isotope gamma-ray data file to determine the contributions to the observed spectrum from decay of specific radionuclides. A complete FORTRAN listing of the code and a complex test case are given.

  15. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for the Dark Matter Searches

    CERN Document Server

    Galper, A M; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Boezio, M; Bonvicini, V; Boyarchuk, K A; Fradkin, M I; Gusakov, Yu V; Kaplin, V A; Kachanov, V A; Kheymits, M D; Leonov, A A; Longo, F; Mazets, E P; Maestro, P; Marrocchesi, P; Mereminskiy, I A; Mikhailov, V V; Moiseev, A A; Mocchiutti, E; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Picozza, P; Rodin, V G; Runtso, M F; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Topchiev, N P; Vacchi, A; Vannuccini, E; Yurkin, Yu T; Zampa, N; Zverev, V G; Zirakashvili, V N

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. The GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01 deg (E{\\gamma} > 100 GeV), the energy resolution ~1% (E{\\gamma} > 10 GeV), and the proton rejection factor ~10E6. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  16. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    Science.gov (United States)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  17. Probing acceleration and turbulence at relativistic shocks in blazar jets

    Science.gov (United States)

    Baring, Matthew G.; Böttcher, Markus; Summerlin, Errol J.

    2017-02-01

    Diffusive shock acceleration (DSA) at relativistic shocks is widely thought to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud active galactic nuclei such as blazars. Such acceleration can produce the non-thermal particles that emit the broad-band continuum radiation that is detected from extragalactic jets. An important recent development for blazar science is the ability of Fermi-Large Area Telescope spectroscopy to pin down the shape of the distribution of the underlying non-thermal particle population. This paper highlights how multiwavelength spectra spanning optical to X-ray to gamma-ray bands can be used to probe diffusive acceleration in relativistic, oblique, magnetohydrodynamic (MHD) shocks in blazar jets. Diagnostics on the MHD turbulence near such shocks are obtained using thermal and non-thermal particle distributions resulting from detailed Monte Carlo simulations of DSA. These probes are afforded by the characteristic property that the synchrotron νFν peak energy does not appear in the gamma-ray band above 100 MeV. We investigate self-consistently the radiative synchrotron and inverse Compton signatures of the simulated particle distributions. Important constraints on the diffusive mean free paths of electrons, and the level of electromagnetic field turbulence are identified for three different case study blazars, Mrk 501, BL Lacertae and AO 0235+164. The X-ray excess of AO 0235+164 in a flare state can be modelled as the signature of bulk Compton scattering of external radiation fields, thereby tightly constraining the energy-dependence of the diffusion coefficient for electrons. The concomitant interpretations that turbulence levels decline with remoteness from jet shocks, and the probable significant role for non-gyroresonant diffusion, are posited.

  18. The Gamma-ray Sky with Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.J. [NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771 (United States)

    2013-10-15

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as clusters of galaxies. Some results include a stringent limit on Lorentz invariance violation derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure in the direction of the center of our Galaxy, and strong constraints on some Weakly Interacting Massive Particle (WIMP) models for dark matter.

  19. Cosmic Rays: What Gamma Rays Can Say

    OpenAIRE

    2014-01-01

    We will review the main channels of gamma ray emission due to the acceleration and propagation of cosmic rays, discussing the cases of both galactic and extra-galactic cosmic rays and their connection with gamma rays observations.

  20. The Gamma-ray Universe through Fermi

    Science.gov (United States)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  1. The Extragalactic Background Light and the Gamma-ray Opacity of the Universe

    Science.gov (United States)

    Dwek, Eli; Krennrich, Frank

    2012-01-01

    The extragalactic background light (EBL) is one of the fundamental observational quantities in cosmology. All energy releases from resolved and unresolved extragalactic sources, and the light from any truly diffuse background, excluding the cosmic microwave background (CMB), contribute to its intensity and spectral energy distribution. It therefore plays a crucial role in cosmological tests for the formation and evolution of stellar objects and galaxies, and for setting limits on exotic energy releases in the universe. The EBL also plays an important role in the propagation of very high energy gamma-rays which are attenuated en route to Earth by pair producing gamma-gamma interactions with the EBL and CMB. The EBL affects the spectrum of the sources, predominantly blazars, in the approx 10 GeV to 10 TeV energy regime. Knowledge of the EBL intensity and spectrum will allow the determination of the intrinsic blazar spectrum in a crucial energy regime that can be used to test particle acceleration mechanisms and VHE gamma-ray production models. Conversely, knowledge of the intrinsic gamma-ray spectrum and the detection of blazars at increasingly higher redshifts will set strong limits on the EBL and its evolution. This paper reviews the latest developments in the determination of the EBL and its impact on the current understanding of the origin and production mechanisms of gamma-rays in blazars, and on energy releases in the universe. The review concludes with a summary and future directions in Cherenkov Telescope Array techniques and in infrared ground-based and space observatories that will greatly improve our knowledge of the EBL and the origin and production of very high energy gamma-rays.

  2. Monitoring the Variable Gamma-Ray Sky with HAWC

    CERN Document Server

    Lauer, Robert J

    2016-01-01

    The High Altitude Water Cherenkov (HAWC) observatory monitors the gamma-ray sky at energies between 100 GeV and 100 TeV with a wide field of view of $\\sim 2$ steradians. A duty cycle of $\\sim 90$% allows HAWC to scan two thirds of the sky every day and has resulted in an unprecedented data set of unbiased and evenly sampled daily TeV light curves, collected over more than one year of operation since the completion of the array. These measurements highlight the flaring activity of the blazars Markarian 421 and Markarian 501 and allow us to discuss the frequency of high flux states and correlations with observations at other wavelengths. We will present a first look at how we are using the HAWC data to search for gamma-ray signals and variability from the directions of possible TeV gamma-ray sources and the locations of high-energy neutrinos observed by IceCube. For a selected list of objects, we perform a search for flares in real time during data taking in order to quickly alert other observatories when incre...

  3. Determination of correction factors for borehole natural gamma-ray measurements by Monte Carlo simulations

    NARCIS (Netherlands)

    Maucec, M.; Hendriks, Peter; Limburg, J.; de Meijer, R. J.

    2009-01-01

    The analysis of natural gamma-ray spectra measured in boreholes has to take into account borehole parameters such as the presence of casings and borehole diameter. For large, high-efficiency gamma-ray detectors, such as BGO-based systems, which employ full-spectrum data analysis, corresponding corre

  4. Investigating Gamma-Ray Lines from Dark Matter with Future Observatories

    NARCIS (Netherlands)

    L. Bergström; G. Bertone; J. Conrad; C. Farnier; C. Weniger

    2012-01-01

    We study the prospects for studying line features in gamma-ray spectra with upcoming gamma-ray experiments, such as HESS-II, the Cherenkov Telescope Array (CTA), and the GAMMA-400 satellite. As an example we use the narrow feature at 130 GeV seen in public data from the Fermi-LAT satellite. We found

  5. The Fermi GBM Gamma-Ray Burst Spectral Catalog: Four Years of Data

    NARCIS (Netherlands)

    Gruber, D.; Goldstein, A.; Weller von Ahlefeld, V.; Bhat, N.P.; Bissaldi, E.; Briggs, M.S.; Byrne, D.; Cleveland, W.H.; Connaughton, V.; Diehl, R.; Fishman, G.J.; Fitzpatrick, G.; Foley, S.; Gibby, M.; Giles, M.M.; Greiner, J.; Guiriec, S.; van der Horst, A.J.; von Kienlin, A.; Kouveliotou, C.; Layden, E.; Lin, L.; Meegan, C.A.; McGlynn, S.; Paciesas, W.S.; Pelassa, V.; Preece, R.D.; Rau, A.; Wilson-Hodge, C.A.; Xiong, S.; Younes, G.; Yu, H-F.

    2014-01-01

    In this catalog we present the updated set of spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor during its first four years of operation. It contains two types of spectra, time-integrated spectral fits and spectral fits at the brightest time bin, from 943

  6. The Fermi GBM Gamma-Ray Burst Spectral Catalog: Four Years of Data

    NARCIS (Netherlands)

    Gruber, D.; Goldstein, A.; Weller von Ahlefeld, V.; Bhat, N.P.; Bissaldi, E.; Briggs, M.S.; Byrne, D.; Cleveland, W.H.; Connaughton, V.; Diehl, R.; Fishman, G.J.; Fitzpatrick, G.; Foley, S.; Gibby, M.; Giles, M.M.; Greiner, J.; Guiriec, S.; van der Horst, A.J.; von Kienlin, A.; Kouveliotou, C.; Layden, E.; Lin, L.; Meegan, C.A.; McGlynn, S.; Paciesas, W.S.; Pelassa, V.; Preece, R.D.; Rau, A.; Wilson-Hodge, C.A.; Xiong, S.; Younes, G.; Yu, H-F.

    2014-01-01

    In this catalog we present the updated set of spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor during its first four years of operation. It contains two types of spectra, time-integrated spectral fits and spectral fits at the brightest time bin, from 943 tri

  7. Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy gamma-rays

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Blanch, O; Bock, R K; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Fidalgo, D Carreto; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Farina, E; Ferenc, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Giavitto, G; Godinović, N; Muñoz, A González; Gozzini, S R; Hadamek, A; Hadasch, D; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Knoetig, M L; Krause, J; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Meucci, M; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nowak, N; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Partini, S; Persic, M; Prada, F; Moroni, P G Prada; Prandini, E; Preziuso, S; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saggion, A; Saito, K; Salvati, M; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Sun, S; Surić, T; Takalo, L; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Zandanel, F; Zanin, R; Balmaverde, B; Kataoka, J; Rekola, R; Takahashi, Y; .,

    2013-01-01

    The radio galaxy NGC 1275, recently identified as a very high energy (VHE, >100 GeV) gamma-ray emitter by MAGIC, is one of the few non-blazar AGN detected in the VHE regime. In order to better understand the origin of the gamma-ray emission and locate it within the galaxy, we study contemporaneous multi-frequency observations of NGC 1275 and model the overall spectral energy distribution (SED). We analyze unpublished MAGIC observations carried out between Oct. 2009 and Feb. 2010, and the already published ones taken between Aug. 2010 and Feb. 2011. We study the multi-band variability and correlations analyzing data of Fermi-LAT (0.1 - 100 GeV), Chandra (X-ray), KVA (optical) and MOJAVE (radio) taken during the same period. Using custom Monte Carlo simulations corresponding to early MAGIC stereo data, we detect NGC 1275 also in the earlier MAGIC campaign. The flux level and energy spectra are similar to the results of the second campaign. The monthly light curve above 100 GeV shows a hint of variability at the...

  8. VizieR Online Data Catalog: The cosmic TeV gamma-ray background spectrum (Inoue+, 2016)

    Science.gov (United States)

    Inoue, Y.; Tanaka, Y. T.

    2016-05-01

    We select 35 known extragalactic TeV sources which are located at Galactic latitude |b|>=10° and whose low activity state flux is available, since our aim is to give conservative constraints on the total cosmic gamma-ray background (CGB) in the TeV band. For each source, we select the lowest fluxes among several TeV measurements by modern imaging atmospheric Cherenkov telescopes (IACTs; H.E.S.S., MAGIC, and VERITAS) and further restrict samples showing no significant variability in the TeV band during observations. The sample contains 30 blazars, 3 radio galaxies, and 2 starburst galaxies from the default TeVcat catalog (Wakely & Horan 2008ICRC....3.1341W) which include published sources only. We also include the Fermi third source (3FGL) catalog data (Acero et al. 2015, J/ApJS/218/23) to cover GeV gamma-ray spectra. The 3FGL catalog is based on its first 48 months of survey data. All of our sample have counterparts in the 3FGL catalog. (2 data files).

  9. Gammapy - A Python package for {\\gamma}-ray astronomy

    CERN Document Server

    Donath, Axel; Arribas, Manuel P; King, Johannes; Owen, Ellis; Terrier, Régis; Reichardt, Ignasi; Harris, Jon; Bühler, Rolf; Klepser, Stefan

    2015-01-01

    In the past decade imaging atmospheric Cherenkov telescope arrays such as H.E.S.S., MAGIC, VERITAS, as well as the Fermi-LAT space telescope have provided us with detailed images and spectra of the {\\gamma}-ray universe for the first time. Currently the {\\gamma}-ray community is preparing to build the next-generation Cherenkov Telecope Array (CTA), which will be operated as an open observatory. Gammapy (available at https://github.com/gammapy/gammapy under the open-source BSD li- cense) is a new in-development Astropy affiliated package for high-level analysis and simulation of astronomical {\\gamma}-ray data. It is built on the scientific Python stack (Numpy, Scipy, matplotlib and scikit-image) and makes use of other open-source astronomy packages such as Astropy, Sherpa and Naima to provide a flexible set of tools for {\\gamma}-ray astronomers. We present an overview of the current Gammapy features and example analyses on real as well as simulated {\\gamma}-ray datasets. We would like Gammapy to become a commu...

  10. Prompt gamma-ray spectra measurement of typical sample in explosive detection%爆炸物检测中典型样品的瞬发γ谱测量

    Institute of Scientific and Technical Information of China (English)

    郭海萍; 郑普; 安力; 王新华; 阳剑; 何铁; 杨小飞; 朱传新

    2013-01-01

    In research of explosive detection by neutron probe,the gamma rays was produced by 14 MeV neutron bombardment on the sample nucleus with atom numbers bigger than 5.The gamma spectra of typical elements,such as C,N,O and simulated explosive,were measured by associated particle technique (APT) and time of flight (TOF).The large NaI(Tl) detector with the dimension of φ12.5 cm×20 cm was used.The measured gamma spectra were compared with those of European Union (EU).The results show that both of the experiments were at the same level.%在中子检测爆炸物的研究中,利用14 MeV中子与原子序数大于5的原子核相互作用可产生特征γ射线的特性,采用伴随粒子法结合D-T中子飞行时间技术,使用尺寸为φ12.5 cm×20 cm的大体积NaI(Tl)探测器,对爆炸物所含元素C,N,O以及一些模拟炸药样品进行了瞬发γ谱测量.获得了几种典型样品的特征γ谱,并对其进行了分析.实验结果与欧盟同期结果进行了比较,表明本实验研究达到了目前国际同类实验的水平,可以为中子检测爆炸物识别技术提供实验支持.

  11. Gamma rays from dark matter

    CERN Document Server

    Bringmann, Torsten

    2011-01-01

    A leading hypothesis for the nature of the elusive dark matter are thermally produced, weakly interacting massive particles that arise in many theories beyond the standard model of particle physics. Their self-annihilation in astrophysical regions of high density provides a potential means of indirectly detecting dark matter through the annihilation products, which nicely complements direct and collider searches. Here, I review the case of gamma rays which are particularly promising in this respect: distinct and unambiguous spectral signatures would not only allow a clear discrimination from astrophysical backgrounds but also to extract important properties of the dark matter particles; powerful observational facilities like the Fermi Gamma-ray Space Telescope or upcoming large, ground-based Cherenkov telescope arrays will be able to probe a considerable part of the underlying, e.g. supersymmetric, parameter space. I conclude with a more detailed comparison of indirect and direct dark matter searches, showing...

  12. The gamma ray background from large scale structure formation

    CERN Document Server

    Gabici, S; Gabici, Stefano; Blasi, Pasquale

    2003-01-01

    Hierarchical clustering of dark matter halos is thought to describe well the large scale structure of the universe. The baryonic component of the halos is shock heated to the virial temperature while a small fraction of the energy flux through the shocks may be energized through the first order Fermi process to relativistic energy per particle. It has been proposed that the electrons accelerated in this way may upscatter the photons of the universal microwave background to gamma ray energies and indeed generate a diffuse background of gamma rays that compares well to the observations. In this paper we calculate the spectra of the particles accelerated at the merger shocks and re-evaluate the contribution of structure formation to the extragalactic diffuse gamma ray background (EDGRB), concluding that this contribution adds up to at most 10% of the observed EDGRB.

  13. Electromagnetic cascade masquerade: a way to mimic γ-axion-like particle mixing effects in blazar spectra

    Science.gov (United States)

    Dzhatdoev, T. A.; Khalikov, E. V.; Kircheva, A. P.; Lyukshin, A. A.

    2017-07-01

    Context. Most of the studies on extragalactic γ-ray propagation performed up to now only accounted for primary γ-ray absorption and adiabatic losses, known as the "absorption-only model". However, there is growing evidence that this model is oversimplified and must be modified in some way. In particular, it was found that the intensity extrapolated from the optically-thin energy range of some blazar spectra is insufficient to explain the optically-thick part of these spectra. This effect was interpreted as an indication for γ-axion-like particle (ALP) oscillation. On the other hand, there are many hints that a secondary component from electromagnetic cascades initiated by primary γ-rays or nuclei may be observed in the spectra of some blazars. Aims: We study the impact of electromagnetic cascades from primary γ-rays or protons on the physical interpretation of blazar spectra obtained with imaging Cherenkov telescopes. Methods: We used the publicly-available code ELMAG to compute observable spectra of electromagnetic cascades from primary γ-rays. For the case of primary proton, we developed a simple, fast and reasonably accurate hybrid method to calculate the observable spectrum. We performed the fitting of the observed spectral energy distributions (SEDs) with various physical models: the absorption-only model, the "electromagnetic cascade model" for the case of primary γ-rays, and several versions of the hadronic cascade model for the case of primary protons. We distinguish the following species of hadronic cascade models: 1) the "basic hadronic model", in which it is assumed that the proton beam travels undisturbed by the extragalactic magnetic field and that all observable γ-rays are produced by primary protons through photohadronic processes with subsequent development of electromagnetic cascades; 2) the "intermediate hadronic model", which is the same as the basic hadronic model, but the primary beam is terminated at some redshift zc; and 3) the

  14. A new method for the reconstruction of very-high-energy gamma-ray spectra and application to galatic cosmic-ray accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Milton Virgilio

    2014-09-15

    In this thesis, high-energy (HE; E>0.1 GeV) and very-high-energy (VHE; E>0.1 TeV) γ-ray data were investigated to probe Galactic stellar clusters (SCs) and star-forming regions (SFRs) as sites of hadronic Galactic cosmic-ray (GCR) acceleration. In principle, massive SCs and SFRs could accelerate GCRs at the shock front of the collective SC wind fed by the individual high-mass stars. The subsequently produced VHE γ rays would be measured with imaging air-Cherenkov telescopes (IACTs). A couple of the Galactic VHE γ-ray sources, including those potentially produced by SCs, fill a large fraction of the field-of-view (FoV) and require additional observations of source-free regions to determine the dominant background for a spectral reconstruction. A new method of reconstructing spectra for such extended sources without the need of further observations is developed: the Template Background Spectrum (TBS). This methods is based on a method to generate skymaps, which determines background in parameter space. The idea is the creation of a look-up of the background normalisation in energy, zenith angle, and angular separation and to account for possible systematics. The results obtained with TBS and state-of-the-art background-estimation methods on H.E.S.S. data are in good agreement. With TBS even those sources could be reconstructed that normally would need further observations. Therefore, TBS is the third method to reconstruct VHE γ-ray spectra, but the first one to not need additional observations in the analysis of extended sources. The discovery of the largest VHE γ-ray source HESSJ1646-458 (2.2 in size) towards the SC Westerlund 1 (Wd1) can be plausibly explained by the SC-wind scenario. But owing to its size, other alternative counterparts to the TeV emission (pulsar, binary system, magnetar) were found in the FoV. Therefore, an association of HESSJ1646-458 with the SC is favoured, but cannot be confirmed. The SC Pismis 22 is located in the centre of the

  15. $\\gamma$-Ray Bursts the Four Crises

    CERN Document Server

    Tavani, M

    1998-01-01

    We discuss some open problems concerning the origin and the emission mechanism of gamma-ray bursts (GRBs) in light of recent developments. If GRBs originate at extragalactic distances, we are facing four crises: (1) an energy crisis, models have to account for more than 10^{53} ergs of energy emitted in the gamma-ray energy band; (2) a spectral crisis, emission models have to account for the surprising `smoothness' of GRB broad-band spectra, with no indication of the predicted spectral `distorsions' caused by inverse Compton scattering in large radiation energy density media, and no evidence for beaming; (3) an afterglow crisis, relativistic shock models have to explain the complexity of the afterglow behavior, the longevity of optical transients detectable up to six months after the burst, the erratic behavior of the radio emission, and the lack of evidence for substantial beaming as indicated by recent searches for GRB afterglows in the X-ray band; (4) a population crisis, from data clearly indicating that ...

  16. DUAL Gamma-Ray Mission

    CERN Document Server

    Boggs, S; von Ballmoos, P; Takahashi, T; Gehrels, N; Tueller, J; Baring, M; Beacom, J; Diehl, R; Greiner, J; Grove, E; Hartmann, D; Hernanz, M; Jean, P; Johnson, N; Kanbach, G; Kippen, M; Knödlseder, J; Leising, M; Madejski, G; McConnell, M; Milne, P; Motohide, K; Nakazawa, K; Oberlack, U; Phlips, B; Ryan, J; Skinner, G; Starrfield, S; Tajima, H; Wulf, E; Zoglauer, A; Zych, A

    2010-01-01

    Gamma-ray astronomy presents an extraordinary scientific potential for the study of the most powerful sources and the most violent events in the Universe. In order to take full advantage of this potential, the next generation of instrumentation for this domain will have to achieve an improvement in sensitivity over present technologies of at least an order of magnitude. The DUAL mission concept takes up this challenge in two complementary ways: a very long observation of the entire sky, combined with a large collection area for simultaneous observations of Type Ia SNe. While the Wide-Field Compton Telescope (WCT) accumulates data from the full gamma-ray sky (0.1-10 MeV) over the entire mission lifetime, the Laue-Lens Telescope (LLT) focuses on 56Co emission from SNe Ia (0.8-0.9 MeV), collecting gamma-rays from its large area crystal lens onto the WCT. Two separated spacecraft flying in formation will maintain the DUAL payloads at the lens' focal distance.

  17. HIGH ENERGY POLARIZATION OF BLAZARS: DETECTION PROSPECTS

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, N. [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Pavlidou, V. [Department of Physics, University of Crete, 71003 Heraklion (Greece); Fields, B. D. [Department of Astronomy and Department of Physics, University of Illinois, Urbana, IL 61801 (United States)

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  18. Identification of gamma-ray emission from 3C345 and NRAO512

    CERN Document Server

    Schinzel, F K; D'Ammando, F; Burnett, T H; Max-Moerbeck, W; Cheung, C C; Fegan, S J; Casandjian, J M; Reyes, L C; Villata, M; Raiteri, C M; Agudo, I; Calle, O J A Bravo; Carosati, D; Casas, R; Gomez, J L; Gurwell, M A; Hsiao, H Y; Jorstad, S G; Kimeridze, G; Konstantinova, T S; Kopatskaya, E N; Koptelova, E; Kurtanidze, O M; Kurtanidze, S O; Larionov, V M; Larionova, E G; Larionova, L V; Marscher, A P; Morozova, D A; Nikolashvili, M G; Roca-Sogorb, M; Ros, J A; Sigua, L A; Spiridonova, O; Troitsky, I S; Vlasyuk, V V; Lobanov, A P; Zensus, J A

    2011-01-01

    For more than 15 years, since the days of the Energetic Gamma-Ray Experiment Telescope (EGRET) on board the Compton Gamma-Ray Observatory (CGRO; 1991-2000), it has remained an open question why the prominent blazar 3C 345 was not reliably detected at gamma-ray energies <=20 MeV. Recently a bright gamma-ray source (0FGL J1641.4+3939/1FGL J1642.5+3947), potentially associated with 3C 345, was detected by the Large Area Telescope (LAT) on Fermi. Multiwavelength observations from radio bands to X-rays (mainly GASP-WEBT and Swift) of possible counterparts (3C 345, NRAO 512, B3 1640+396) were combined with 20 months of Fermi-LAT monitoring data (August 2008 - April 2010) to associate and identify the dominating gamma-ray emitting counterpart of 1FGL J1642.5+3947. The source 3C 345 is identified as the main contributor for this gamma-ray emitting region. However, after November 2009 (15 months), a significant excess of photons from the nearby quasar NRAO 512 started to contribute and thereafter was detected with ...

  19. GENJI Programme: Gamma-ray Emitting Notable AGN Monitoring by Japanese VLBI

    CERN Document Server

    Nagai, Hiroshi; Niinuma, Kotaro; Akiyama, Kazunori; Hada, Kazuhiro; Koyama, Shoko; Orienti, Monica; Hiura, Koichiro; Sawada-Satoh, Satoko; Honma, Mareki; Giovannini, Gabriele; Giroletti, Marcello; Shibata, Katsunori; Sorai, Kazuo

    2012-01-01

    We introduce the GENJI program (Gamma-ray Emitting Notable AGN Monitoring by Japanese VLBI), which is a monitoring program of gamma-ray bright AGNs with the VERA array (VLBI Exploration of Radio Astrometry). The GENJI programme aims a dense monitoring at 22 GHz towards the $\\gamma$-ray emitting active galactic nuclei (AGNs) to investigate the radio time variation of the core and possible ejection of new radio component, motion of jets, and their relation with the emission at other wavelengths especially in $\\gamma$-rays. Currently we are monitoring 8 $\\gamma$-ray-emitting notable AGNs (DA 55, 3C 84, M 87, PKS 1510-089, DA 406, NRAO 530, BL Lac, 3C 454.3) about once every two weeks. This programme is promising to trace the trend of radio time variation on shorter timescale than conventional VLBI monitoring programme and to provide complimentary data with them (e.g., MOJAVE, Boston University Blazar Project). In particular, we successfully coordinated quick follow-up observations after the GeV $\\gamma$-ray flar...

  20. MAGIC long-term study of the distant TeV blazar PKS 1424+240 in a multiwavelength context

    CERN Document Server

    Aleksić, J; Antonelli, L A; Antoranz, P; Babic, A; Bangale, P; de Almeida, U Barres; Barrio, J A; González, J Becerra; Bednarek, W; Bernardini, E; Biland, A; Blanch, O; Bonnefoy, S; Bonnoli, G; Borracci, F; Bretz, T; Carmona, E; Carosi, A; Fidalgo, D Carreto; Colin, P; Colombo, E; Contreras, J L; Cortina, J; Covino, S; Da Vela, P; Dazzi, F; De Angelis, A; De Caneva, G; De Lotto, B; Mendez, C Delgado; Doert, M; Domínguez, A; Prester, D Dominis; Dorner, D; Doro, M; Einecke, S; Eisenacher, D; Elsaesser, D; Farina, E; Ferenc, D; Fonseca, M V; Font, L; Frantzen, K; Fruck, C; López, R J García; Garczarczyk, M; Terrats, D Garrido; Gaug, M; Godinović, N; Muñoz, A González; Gozzini, S R; Hadasch, D; Hayashida, M; Herrera, J; Herrero, A; Hildebrand, D; Hose, J; Hrupec, D; Idec, W; Kadenius, V; Kellermann, H; Kodani, K; Konno, Y; Krause, J; Kubo, H; Kushida, J; La Barbera, A; Lelas, D; Lewandowska, N; Lindfors, E; Lombardi, S; López, M; López-Coto, R; López-Oramas, A; Lorenz, E; Lozano, I; Makariev, M; Mallot, K; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Marcote, B; Mariotti, M; Martínez, M; Mazin, D; Menzel, U; Meucci, M; Miranda, J M; Mirzoyan, R; Moralejo, A; Munar-Adrover, P; Nakajima, D; Niedzwiecki, A; Nilsson, K; Nishijima, K; Noda, K; Nowak, N; Orito, R; Overkemping, A; Paiano, S; Palatiello, M; Paneque, D; Paoletti, R; Paredes, J M; Paredes-Fortuny, X; Partini, S; Persic, M; Prada, F; Moroni, P G Prada; Prandini, E; Preziuso, S; Puljak, I; Reinthal, R; Rhode, W; Ribó, M; Rico, J; Garcia, J Rodriguez; Rügamer, S; Saggion, A; Saito, T; Saito, K; Satalecka, K; Scalzotto, V; Scapin, V; Schultz, C; Schweizer, T; Shore, S N; Sillanpää, A; Sitarek, J; Snidaric, I; Sobczynska, D; Spanier, F; Stamatescu, V; Stamerra, A; Steinbring, T; Storz, J; Sun, S; Surić, T; Takalo, L; Takami, H; Tavecchio, F; Temnikov, P; Terzić, T; Tescaro, D; Teshima, M; Thaele, J; Tibolla, O; Torres, D F; Toyama, T; Treves, A; Uellenbeck, M; Vogler, P; Wagner, R M; Zandanel, F; Zanin, R; Cutini, S; Gasparrini, D; Furniss, A; Hovatta, T; Kangas, T; Kankare, E; Kotilainen, J; Lister, M; Lähteenmäki, A; Max-Moerbeck, W; Pavlidou, V; Readhead, A; Richards, J

    2014-01-01

    Aims. We present a study of the very high energy (VHE; E>100 GeV) gamma-ray emission of the blazar PKS 1424+240 observed with the MAGIC telescopes. The primary aim of this paper is the multiwavelength spectral characterization and modeling of this blazar, made particularly interesting by the recent discovery of a lower limit of its redshift of z>0.6, which makes it a promising candidate to be the most distant VHE source. Methods. The source has been observed with the MAGIC telescopes in VHE gamma rays for a total observation time of 33.6 h from 2009 to 2011. Results. The source was marginally detected in VHE gamma rays during 2009 and 2010 and later the detection was confirmed during an optical outburst in 2011. The combined significance of the stacked sample is 7.2 sigma. The differential spectra measured during the different campaigns can be described by steep power laws, with the indices ranging from 3.5+/-1.2 to 5.0+/-1.7. The MAGIC spectra corrected for the absorption due to the extragalactic background ...

  1. Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; Ajello, M.; /SLAC; Anderson, B.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Taiwan, Natl. Taiwan U. /Ohio State U.; Bechtol, K.; /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; Blandford, R.D.; Bloom, E.D.; /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /SLAC; Bregeon, J.; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari /Ecole Polytechnique /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Padua U. /Naval Research Lab, Wash., D.C. /Udine U. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /INFN, Pisa /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /CENBG, Gradignan /CENBG, Gradignan /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Udine U. /INFN, Trieste /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /SLAC /Bari U. /INFN, Bari /INFN, Pisa /INFN, Bari /NASA, Goddard /Maryland U.; /more authors..

    2012-04-11

    The diffuse galactic {gamma}-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess {gamma}-ray emission {ge}1 GeV relative to diffuse galactic {gamma}-ray emission models consistent with directly measured CR spectra (the so-called 'EGRET GeV excess'). The Large Area Telescope (LAT) instrument on the Fermi Gamma-Ray Space Telescope has measured the diffuse {gamma}-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements for energies 100 MeV to 10 GeV and galactic latitudes 10{sup o} {le} |b| {le} 20{sup o}. The LAT spectrum for this region of the sky is well reproduced by a diffuse galactic {gamma}-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.

  2. The GAMMA-400 gamma-ray telescope characteristics. Angular resolution and electrons/protons separation

    CERN Document Server

    Leonov, A A; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Boyarchuk, K A; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2014-01-01

    The measurements of gamma-ray fluxes and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV, which will be implemented by the specially designed GAMMA-400 gamma-ray telescope, concern with the following broad range of science topics. Searching for signatures of dark matter, surveying the celestial sphere in order to study gamma-ray point and extended sources, measuring the energy spectra of Galactic and extragalactic diffuse gamma-ray emission, studying gamma-ray bursts and gamma-ray emission from the Sun, as well as high precision measuring spectra of high-energy electrons and positrons, protons and nuclei up to the knee. To clarify these scientific problems with the new experimental data the GAMMA-400 gamma-ray telescope possesses unique physical characteristics comparing with previous and present experiments. For gamma-ray energies more than 100 GeV GAMMA-400 provides the energy resolution of ~1% and angular resolution better than 0.02 deg. The methods developed to reconstru...

  3. Fast variability of tera-electron volt gamma rays from the radio galaxy M87.

    Science.gov (United States)

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brown, A M; Bühler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L-M; Coignet, G; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'c; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Füssling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Kendziorra, E; Kerschhaggl, M; Khélifi, B; Komin, Nu; Konopelko, A; Kosack, K; Lamanna, G; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; de Naurois, M; Nedbal, D; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Sahakian, V; Santangelo, A; Saugé, L; Schlenker, S; Schlickeiser, R; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J-P; Terrier, R; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Völk, H J; Wagner, S J; Ward, M

    2006-12-01

    The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.

  4. High-Energy Cosmology: gamma rays and neutrinos from beyond the galaxy

    CERN Document Server

    Dermer, C D

    2006-01-01

    Our knowledge of the high-energy universe will change dramatically over the next several years as new astronomical detectors of high-energy radiation reach their design sensitivities. Besides Swift and HESS, which are already making important discoveries, these include the ground-based imaging air-Cherenkov telescopes VERITAS and MAGIC, the gamma-ray space telescopes GLAST and AGILE, and the particle observatories IceCube and Auger. A formalism for calculating statistical properties of cosmological gamma-ray sources is presented. Application is made to model calculations of the statistical distributions of gamma-ray and neutrino emission from beamed sources, specifically, long-duration GRBs, blazars, and extagalactic microquasars, and unbeamed sources, including normal galaxies, starburst galaxies and clusters. Expressions for the integrated intensities of faint beamed and unbeamed high-energy radiation sources are also derived. A toy model for the background intensity of radiation from dark-matter annihilati...

  5. Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S

    CERN Document Server

    :,; Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Tjus, J Becker; Bernlöhr, K; Birsin, E; Biteau, J; Bochow, A; Boisson, C; Bolmont, J; Bordas, P; Brucker, J; Brun, F; Brun, P; Bulik, T; Carrigan, S; Casanova, S; Cerruti, M; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Cologna, G; Conrad, J; Couturier, C; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; deWilt, P; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Egberts, K; Eger, P; Espigat, P; Fallon, L; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gajdus, M; Gallant, Y A; Garrigoux, T; Gast, H; Giebels, B; Glicenstein, J F; Glück, B; Göring, D; Grondin, M -H; Häffner, S; Hague, J D; Hahn, J; Hampf, D; Harris, J; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Jacholkowska, A; Jahn, C; Jamrozy, M; Jung, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Krayzel, F; Laffon, H; Lamanna, G; Lenain, J -P; Lennarz, D; Lohse, T; Lopatin, A; Lu, C -C; Marandon, V; Marcowith, A; Masbou, J; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Medina, M C; Méhault, J; Menzler, U; Moderski, R; Mohamed, M; Moulin, E; Naumann, C L; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nguyen, N; Niemiec, J; Nolan, S J; Ohm, S; Wilhelmi, E de Oña; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, D; Arribas, M Paz; Pekeur, N W; Pelletier, G; Perez, J; Petrucci, P -O; Peyaud, B; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raue, M; Reimer, A; Reimer, O; Renaud, M; Reyes, R de los; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sheidaei, F; Skilton, J L; Sol, H; Spengler, G; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Szostek, A; Tavernet, J -P; Terrier, R; Tluczykont, M; Valerius, K; van Eldik, C; Vasileiadis, G; Venter, C; Viana, A; Vincent, P; Völk, H J; Volpe, F; Vorobiov, S; Vorster, M; Wagner, S J; Ward, M; White, R; Wierzcholska, A; Wouters, D; Zacharias, M; Zajczyk, A; Zdziarski, A A; Zech, A; Zechlin, H -S

    2012-01-01

    The extragalactic background light (EBL) is the diffuse radiation with the second highest energy density in the Universe after the cosmic microwave background. The aim of this study is the measurement of the imprint of the EBL opacity to gamma-rays on the spectra of the brightest extragalactic sources detected with the High Energy Stereoscopic System (H.E.S.S.). The originality of the method lies in the joint fit of the EBL optical depth and of the intrinsic spectra of the sources, assuming intrinsic smoothness. Analysis of a total of ~10^5 gamma-ray events enables the detection of an EBL signature at the 8.8 std dev level and constitutes the first measurement of the EBL optical depth using very-high energy (E>100 GeV) gamma-rays. The EBL flux density is constrained over almost two decades of wavelengths (0.30-17 microns) and the peak value at 1.4 micron is derived as 15 +/- 2 (stat) +/- 3 (sys) nW / m^2 sr.

  6. High Redshift Gamma Ray Bursts

    Science.gov (United States)

    Gehrels, Neil

    2012-01-01

    The Swift Observatory has been detecting 100 gamma-ray bursts per year for 7 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from 1 minute after the burst, continuing for days. GRBs are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=9.4 giving information on metallicity, star formation rate and reionization. The talk will present the latest results.

  7. Gamma ray observatory productivity showcase

    Science.gov (United States)

    Davis, R. L.; Molgaard, D. A.

    1985-01-01

    The Gamma Ray Observatory (GRO) Program has been proclaimed to be the showcase productivity program for NASA and TRW. Among the multiple disciplines of a large-scale program, there is opportunity and need for improved efficiency, effectiveness, and reduction in the cost of doing business. The efforts and tools that will or have been implemented to achieve this end are described. Since the GRO Program is mainly an engineering program with the build of one satellite, the primary emphasis is placed on improving the efficiency and quality of management and engineering.

  8. The Radio/Gamma-Ray Connection from 120 MHz to 230 GHz

    Directory of Open Access Journals (Sweden)

    Marcello Giroletti

    2016-09-01

    Full Text Available Radio loud active galactic nuclei are composed of different spatial features, each one characterized by different spectral properties in the radio band. Among them, blazars are the most common class of sources detected at gamma-rays by Fermi, and their radio emission is dominated by the flat spectrum compact core. In this contribution, we explore the connection between emission at high energy revealed by Fermi and at radio frequencies. Taking as a reference the strong and very highly significant correlation found between gamma rays and cm-λ radio emission, we explore the different behaviours found as we change the energy range in gamma rays and in radio, therefore changing the physical parameters of the zones involved in the emitted radiation. We find that the correlation weakens when we consider (1 gamma rays of energy above 10 GeV (except for high synchrotron peaked blazars or (2 low frequency radio data taken by the Murchison Widefield Array; on the other hand, the correlation strengthens when we consider mm-λ data taken by Atacama Large Millimeter Array (ALMA.

  9. Gamma-ray luminosity function of gamma-ray bright AGNs

    Institute of Scientific and Technical Information of China (English)

    Debbijoy Bhattacharya; P. Sreekumar; R. Mukherjee

    2009-01-01

    Detection of γ-ray emissions from a class of active galactic nuclei (viz blazars),has been one of the important findings from the Compton Gamma-Ray Observatory (CGRO). However, their-γ-ray luminosity function has not been well determined. Few at-tempts have been made in earlier works, where BL Lacs and Flat Spectrum Radio Quasars (FSRQs) have been considered as a single source class. In this paper, we investigated the evolution and γ-ray luminosity function of FSRQs and BL Lacs separately. Our investi-gation indicates no evolution for BL Lacs, however FSRQs show significant evolution. Pure luminosity evolution is assumed for FSRQs and exponential and power law evolu-tion models are examined. Due to the small number of sources, the low luminosity end index of the luminosity function for FSRQs is constrained with an upper limit. BL Lac lu-minosity function shows no signature of break. As a consistency check, the model source distributions derived from these luminosity functions show no significant departure from the observed source distributions.

  10. Gamma-Ray Astronomy Technology Needs

    Science.gov (United States)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  11. Properties of a large NaI(Tl) spectrometer for the energy measurement of high-energy gamma rays on the Gamma Ray Observatory

    Science.gov (United States)

    Hughes, E. B.; Finman, L. C.; Hofstadter, R.; Lepetich, J. E.; Lin, Y. C.

    1986-01-01

    A large NaI(Tl) spectrometer is expected to play a crucial role in the measurement of the energy spectra from an all-sky survey of high-energy celestial gamma rays on the Gamma Ray Observatory. The crystal size and requirements of space flight have resulted in a novel crystal-packaging and optics combination. The structure of this spectrometer and the operating characteristics determined in a test program using high energy positrons are described.

  12. Magnetars and Gamma Ray Bursts

    CERN Document Server

    Bucciantini, N

    2012-01-01

    In the last few years, evidences for a long-lived and sustained engine in Gamma Ray Bursts (GRBs) have increased the attention to the so called millisecond-magnetar model, as a competitive alternative to the standard collapsar scenario. I will review here the key aspects of the {\\it millisecond magnetar} model for Long Duration Gamma Ray Bursts (LGRBs). I will briefly describe what constraints, present observations put on any engine model, both in term of energetic, outflow properties, and the relation with the associated Supernova (SN). For each of these I will show how the millisecond magnetar model satisfies the requirements, what are the limits of the model, how can it be further tested, and what observations might be used to discriminate against it. I will also discuss numerical results that show the importance of the confinement by the progenitor star in explaining the formation of a collimated outflow, how a detailed model for the evolution of the central engine can be built, and show that a wide varie...

  13. Gamma-ray burst models.

    Science.gov (United States)

    King, Andrew

    2007-05-15

    I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.

  14. Search for neutrinos from flaring blazars

    Energy Technology Data Exchange (ETDEWEB)

    Kreter, Michael [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Emil-Fischer-Strasse 31, 97074 Wuerzburg (Germany); ECAP, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Eberl, Thomas; James, Clancy [ECAP, Universitaet Erlangen-Nuernberg, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Kadler, Matthias [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Emil-Fischer-Strasse 31, 97074 Wuerzburg (Germany); Collaboration: ANTARES-KM3NeT-Erlangen-Collaboration

    2016-07-01

    Jets from Active Galactic Nuclei (AGN) are among the best candidates for the recently detected extraterrestrial neutrino flux. Hadronic AGN jet-emission models predict a tight correlation between the neutrino flux and the time-variable gamma-ray emission. At the same time, the atmospheric-background (noise) signal, which often dominates in neutrino-astronomical observations, can be substantially reduced by rejecting long-lasting periods of low flux. For these reasons, short high-amplitude gamma-ray flares, as often observed in blazars, can be used to substantially increase the sensitivity of neutrino telescopes in point-source searches. We develop a strategy to search for TeV neutrinos from flaring blazar jets from the TANAMI sample using the ANTARES telescope and Fermi gamma-ray light curves. An unbinned maximum-likelihood method is applied to optimize the probability of a neutrino detection from TANAMI sources.

  15. Electron-Positron Outflows from $\\gamma$-Ray Emitting Accretion Discs

    CERN Document Server

    Beloborodov, A M

    1999-01-01

    An electron-positron atmosphere is inevitably created around a black hole accretion disc whose spectrum extends to MeV energies. Pairs created in photon-photon collisions outside the disc are blown away by soft radiation (which dominates the bolometric luminosity of the disc) and form a semi-relativistic outflow. We simulate numerically the conversion of the MeV radiation into a vertical e+- outflow above a disc-like source. The outflowing e+- plasma becomes optically thick to Thomson scattering if the compactness of the gamma-ray source exceeds 30. The scattering by e+- then collimates the bulk of soft radiation along the disc axis, and the apparent bolometric luminosity of the disc depends strongly on its inclination to the line of sight. The anisotropic central emission may account for the lack of Fe K-alpha lines in the X-ray spectra of bright radio-quiet quasars. The scattering in e+- outflows may also explain the orientation of optical polarization in non-blazar active galactic nuclei.

  16. The Spectral Index Distribution of EGRET Blazars: Prospects for GLAST

    Energy Technology Data Exchange (ETDEWEB)

    Venters, Tonia M.; Pavlidou, Vasiliki; /SLAC

    2011-11-29

    The intrinsic distribution of spectral indices in GeV energies of gamma-ray-loud blazars is a critical input in determining the spectral shape of the unresolved blazar contribution to the diffuse extragalactic gamma-ray background, as well as an important test of blazar emission theories. We present a maximum-likelihood method of determining the intrinsic spectral index distribution (ISID) of a population of {gamma}-ray emitters which accounts for error in measurement of individual spectral indices, and we apply it to EGRET blazars. We find that the most likely Gaussian ISID for EGRET blazars has a mean of 2.27 and a standard deviation of 0.20. We additionally find some indication that FSRQs and BL Lacs may have different ISIDs (with BL Lacs being harder). We also test for spectral index hardening associated with blazar variability for which we find no evidence. Finally, we produce simulated GLAST spectral index datasets and perform the same analyses. With improved statistics due to the much larger number of resolvable blazars, GLAST data will help us determine the ISIDs with much improved accuracy. Should any difference exist between the ISIDs of BL Lacs and FSRQs or between the ISIDs of blazars in the quiescent and flaring states, GLAST data will be adequate to separate these ISIDs at a significance better than 3{sigma}.

  17. THE FIRM REDSHIFT LOWER LIMIT OF THE MOST DISTANT TeV-DETECTED BLAZAR PKS 1424+240

    Energy Technology Data Exchange (ETDEWEB)

    Furniss, A.; Williams, D. A.; Primack, J. [Santa Cruz Institute of Particle Physics, and Department of Physics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Danforth, C.; Stocke, J. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Fumagalli, M. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Prochaska, J. X. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Urry, C. M. [Department of Astronomy, Yale University, New Haven, CT 06520-8120 (United States); Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Neely, W. [NF/Observatory, Silver City, NM 88041 (United States)

    2013-05-10

    We present the redshift lower limit of z {>=} 0.6035 for the very high energy (VHE; E {>=} 100 GeV) emitting blazar PKS 1424+240 (PG 1424+240). This limit is inferred from Ly{beta} and Ly{gamma} absorption observed in the far-ultraviolet spectra from the Hubble Space Telescope/Cosmic Origins Spectrograph. No VHE-detected blazar has shown solid spectroscopic evidence of being more distant. At this distance, VHE observations by VERITAS are shown to sample historically large gamma-ray opacity values at 500 GeV, extending beyond {tau} = 4 for low-level models of the extragalactic background light (EBL) and beyond {tau} = 5 for high levels. The majority of the z = 0.6035 absorption-corrected VHE spectrum appears to exhibit a lower flux than an extrapolation of the contemporaneous Large Area Telescope power-law fit beyond 100 GeV. However, the highest energy VERITAS point is the only point showing agreement with this extrapolation, possibly implying the overestimation of the gamma-ray opacity or the onset of an unexpected VHE spectral feature. A curved log parabola is favored when fitting the full range of gamma-ray data (0.5-500 GeV). While fitting the absorption-corrected VHE data alone results in a harder differential power law than that from the full range, the indices derived using three EBL models are consistent with the physically motivated limit set by Fermi acceleration processes.

  18. The Most Remote Gamma-Ray Burst

    Science.gov (United States)

    2000-10-01

    years, the look-back time indicates that the explosion took place around the time our own galaxy, the Milky Way, was formed and at least 6,000 million years before the solar system was born. GRB 000131 and other gamma-ray bursts are believed to have taken place in remote galaxies. However, due to the huge distance, it has not yet been possible to see the galaxy in which the GRB 000131 event took place (the "host" galaxy). From the observed fading of the afterglow it is possible to estimate that the maximum brightness of this explosion was at least 10,000 times brighter than the host galaxy. Future studies of gamma-ray bursts The present team of astronomers has now embarked upon a detailed study of the surroundings of GRB 000131 with the VLT. A main goal is to observe the properties of the host galaxy. From the observations of about twenty optical counterparts of gamma-ray bursts identified until now, it is becoming increasingly clear that these very rare events are somehow related to the death of massive, short-lived stars . But despite the accumulating amount of excellent data, the details of the mechanism that leads to such dramatic explosions still remain a puzzle to astrophysicists. The detection and present follow-up observations of GRB 000131 highlight the new possibilities for studies of the extremely distant (and very early) Universe, now possible by means of gamma-ray bursts. When observed with the powerful instruments at a large ground-based telescope like the VLT, this incredibly bright class of cosmological objects may throw light on the fundamental processes of star formation in the infant universe. Of no less interest is the opportunity to analyse the chemical composition of the gas clouds at the epoch galaxies formed, by means of the imprints of the corresponding absorption lines on the afterglow spectrum. Waiting for the opportunity In this context, it would be extremely desirable to obtain very detailed (high-dispersion) spectra of the afterglow of a

  19. An optimum analysis sequence for environmental gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    De la Torre, F.; Rios M, C.; Ruvalcaba A, M. G.; Mireles G, F.; Saucedo A, S.; Davila R, I.; Pinedo, J. L., E-mail: fta777@hotmail.co [Universidad Autonoma de Zacatecas, Centro Regional de Estudis Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2010-10-15

    This work aims to obtain an optimum analysis sequence for environmental gamma-ray spectroscopy by means of Genie 2000 (Canberra). Twenty different analysis sequences were customized using different peak area percentages and different algorithms for: 1) peak finding, and 2) peak area determination, and with or without the use of a library -based on evaluated nuclear data- of common gamma-ray emitters in environmental samples. The use of an optimum analysis sequence with certified nuclear information avoids the problems originated by the significant variations in out-of-date nuclear parameters of commercial software libraries. Interference-free gamma ray energies with absolute emission probabilities greater than 3.75% were included in the customized library. The gamma-ray spectroscopy system (based on a Ge Re-3522 Canberra detector) was calibrated both in energy and shape by means of the IAEA-2002 reference spectra for software intercomparison. To test the performance of the analysis sequences, the IAEA-2002 reference spectrum was used. The z-score and the reduced {chi}{sup 2} criteria were used to determine the optimum analysis sequence. The results show an appreciable variation in the peak area determinations and their corresponding uncertainties. Particularly, the combination of second derivative peak locate with simple peak area integration algorithms provides the greater accuracy. Lower accuracy comes from the combination of library directed peak locate algorithm and Genie's Gamma-M peak area determination. (Author)

  20. Shock Acceleration and Gamma-Ray Emitting Supernova Remnants

    CERN Document Server

    Baring, M G; Reynolds, S P; Grenier, I A; Goret, P; Baring, Matthew G.; Ellison, Donald C.; Reynolds, Stephen P; Grenier, Isabelle A.; Goret, Philippe

    1997-01-01

    Diffusive shock acceleration in the environs of a remnant's expanding shell is a popular candidate for the origin of SNR gamma-rays. In this paper, results from our study of non-linear effects in shock acceleration theory and their impact on the gamma-ray spectra of SNRs are presented. These effects describe the dynamical influence of the accelerated cosmic rays on the shocked plasma at the same time as addressing how the non-uniformities in the fluid flow force the distribution of the cosmic rays to deviate from pure power-laws. Such deviations are crucial to gamma-ray spectral determination. Our self-consistent Monte Carlo approach to shock acceleration is used to predict ion and electron distributions that spawn neutral pion decay, bremsstrahlung and inverse Compton emission components for SNRs. We demonstrate how the spatial and temporal limitations imposed by the expanding SNR shell quench acceleration above critical energies in the 500 GeV - 10 TeV range, thereby spawning gamma-ray spectral cutoffs that...

  1. Experiment Signal for Gamma-Ray Research of the Sun

    Science.gov (United States)

    Galper, Arkady; Arkhangelskaja, Irene; Arkhangelsky, Andrey; Shustov, Alexander; Ulin, Sergey; Novikov, Alexander; Grachev, Viktor; Uteshev, Ziyaetdin; Petrenko, Denis; Vlasik, Konstantin; Krivova, Kira; Dmitrenko, Valery; Chernysheva, Irina

    Description as well as physical and technical characteristics of Scientific Instrument (SI) “Signal” are presented. This equipment will be installed onboard the spacecraft (SC) “Interhelioprobe” for researching the Sun and Heliosphere at close distance. “Signal” will be developed for study cosmic gamma-rays. It consists of Xenon Gamma-Spectrometer (XeGS), the anticoincidence scintillation system and the digital electronic module. XeGS is based on cylindrical pulse ionization chamber with Frisch grid filled with high pressure xenon. Anticoincidence system will be made of polystyrene organic scintillator and silicon photomultipliers. Digital electronic module provides analyzing and data processing, collecting measured gamma-ray spectra and communication with onboard systems of SC “Interhelioprobe”. Main “Signal” scientific tasks are: begin{itemize} Research of X-ray and gamma emission in lines and continuum in energy range 30 keV - 5 MeV; begin{itemize} Study of gamma-ray bursts with Galactic and Metagalactic origin; begin{itemize} Analysis of gamma-ray lines near the Earth and Venus; begin{itemize} Charged particle fluxes registration along the spacecraft trajectory.

  2. Gamma-Ray Variability of Cygnus X-1

    Science.gov (United States)

    McConnell, Mark; Ryan, James; Zdziarski, Andrzej; Bennett, Kevin; Bloemen, Hans; Hermsen, Wim; Kuiper, Lucien; Collmar, Werner; Schoenfelder, Volker; Steinle, Helmut; Strong, Andrew; Paciesas, William; Phlips, Bernard; Poutanen, Juri

    2002-04-01

    We have used observations of Cygnus X-1 from the Compton Gamma-Ray Observatory (CGRO) and BeppoSAX to study the variation in the MeV gamma-ray emission between the hard and soft spectral states, using spectra that cover the energy range 20 keV up to 10 MeV. These data provide evidence for significant spectral variability at energies above 1 MeV. In particular, whereas the hard X-ray flux decreases during the soft state, the flux at energies above 1 MeV increases, resulting in a significantly harder gamma-ray spectrum at energies above 1 MeV. This behavior is consistent with the general picture of galactic black hole candidates having two distinct spectral forms at soft gamma-ray energies. These data extend this picture, for the first time, to energies above 1 MeV. We have used two different hybrid thermal/non-thermal Comptonization models to fit broad band spectral data obtained in both the hard and soft spectral states. These fits provide a quantitative estimate of the electron distribution and allow us to probe the physical changes that take place during transitions between the low and high X-ray states. We find that there is a significant increase (by a factor of 4) in the bolometric luminosity as the source moves from the hard state to the soft state.

  3. Gamma-Ray Spectral States of Galactic Black Hole Candidates

    CERN Document Server

    Grove, J E; Kroeger, R A; McNaron-Brown, K; Skibo, J G; Phlips, B F

    1998-01-01

    OSSE has observed seven transient black hole candidates: GRO J0422+32, GX339-4, GRS 1716-249, GRS 1009-45, 4U 1543-47, GRO J1655-40, and GRS 1915+105. Two gamma-ray spectral states are evident and, based on a limited number of contemporaneous X-ray and gamma-ray observations, these states appear to be correlated with X-ray states. The former three objects show hard spectra below 100 keV (photon number indices Gamma < 2) that are exponentially cut off with folding energy ~100 keV, a spectral form that is consistent with thermal Comptonization. This "breaking gamma-ray state" is the high-energy extension of the X-ray low, hard state. In this state, the majority of the luminosity is above the X-ray band, carried by photons of energy ~100 keV. The latter four objects exhibit a "power-law gamma-ray state" with a relatively soft spectral index (Gamma ~ 2.5-3) and no evidence for a spectral break. For GRO J1655-40, the lower limit on the break energy is 690 keV. GRS 1716-249 exhibits both spectral states, with th...

  4. High Energy Polarization of Blazars : Detection Prospects

    CERN Document Server

    Chakraborty, Nachiketa; Fields, Brian

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (wit...

  5. A gamma-ray spectrometer system for fusion applications

    CERN Document Server

    Esposito, B; Kaschuck, Y A; Martin-Solis, J R; Portnov, D V

    2002-01-01

    A NaI scintillator spectrometer system for the measurement of gamma-ray spectra in tokamak discharges has been developed and installed on the Frascati Tokamak Upgrade. Two NaI scintillators are viewing the plasma at two different angles with respect to the equatorial plane. The main features of the spectrometer system (energy range: 0.3-23 MeV) and of the unfolding technique used to restore physical spectra from the pulse-height distributions are described: a method of solution with regularisation for matrix equations of large size, allowing to process count distributions with significant statistical noise, has been developed. A dedicated software, portable to any platform, has been written both for the acquisition and the analysis of the spectra. The typical gamma-ray spectra recorded in hydrogen and deuterium discharges, also with additional heating, are presented and discussed; two components have been observed: (a) thick-target Bremsstrahlung gamma-rays produced by runaway electrons hitting the Inconel po...

  6. Gamma-ray variability of radio-loud narrow-line Seyfert 1 galaxies

    CERN Document Server

    Calderone, G; Ghisellini, G; Colpi, M; Maraschi, L; Tavecchio, F; Decarli, R; Tagliaferri, G

    2011-01-01

    The recent detection of gamma-ray emission from four radio-loud narrow-line Seyfert 1 galaxies suggests that the engine driving the AGN activity of these objects share some similarities with that of blazars, namely the presence of a gamma-ray emitting, variable, jet of plasma closely aligned to the line of sight. In this work we analyze the gamma-ray light curves of the four radio-loud narrow-line Seyfert 1 galaxies for which high-energy gamma-ray emission has been discovered by Fermi/LAT, in order to study their variability. We find significant flux variability in all the sources. This allows us to exclude a starburst origin of the gamma-ray photons and confirms the presence of a relativistic jet. Furthermore we estimate the minimum e-folding variability timescale (3 - 30 days) and infer an upper limit for the size of the emitting region (0.2 - 2 pc, assuming a relativistic Doppler factor delta=10 and a jet aperture of theta=0.1 rad).

  7. The star forming region Monoceros R2 as a gamma-ray source

    CERN Document Server

    Martí, Josep; Muñoz-Arjonilla, Álvaro J; Sánchez-Ayaso, Estrella; Munar-Adrover, Pere; Sánchez-Sutil, Juan R; Romero, Gustavo E; Paredes, Josep M; Combi, Jorge A

    2013-01-01

    Context. After the release of the gamma-ray source catalog produced by the Fermi satellite during its first two years of operation, a significant fraction of sources still remain unassociated at lower energies. In addition to well-known high-energy emitters (pulsars, blazars, supernova remnants, etc.) theoretical expectations predict new classes of gamma-ray sources. In particular, gamma-ray emission could be associated with some of the early phases of stellar evolution, but this interesting possibility is still poorly understood. Aims. The aim of this paper is to assess the possibility of the Fermi gamma-ray source 2FGL J0607.5-0618c being associated with the massive star forming region Monoceros R2. Methods. A multi-wavelength analysis of the Monoceros R2 region is carried out using archival data at radio, infrared, X-ray, and gamma-ray wavelengths. The resulting observational properties are used to estimate the physical parameters needed to test the different physical scenarios. Results. We confirm the 2FG...

  8. Multiwavelength Emission from Blazars – Conference Summary

    Indian Academy of Sciences (India)

    Meg Urry

    2011-03-01

    Presentations at the Guangzhou Conference on Multiwave-length Emission from Blazars confirmed our understanding of blazars as relativistic jets closely aligned with the line of sight. Powerful new studies have been enabled by the Fermi gamma-ray satellite and new ground-based TeV facilities, which are an order of magnitude more sensitive than their predecessors. Combining gamma-ray data with VLBA radio and with optical/IR photometry has shed new light on the emission mechanisms and the jet geometry. This conference summary sets the context for the 4th blazar conference and presents some of the highlights from the meeting, as well as the questions that remain outstanding.

  9. Origin of $\\gamma$ Ray Bursters

    CERN Document Server

    Mészáros, P

    1999-01-01

    The successful discovery of X-ray, optical and radio afterglows of GRB hasmade possible the identification of host galaxies at cosmological distances.The energy release inferred in these outbursts place them among the mostenergetic and violent events in the Universe. They are thought to be theoutcome of a cataclysmic stellar collapse or compact stellar merger, leading toa relativistically expanding fireball, in which particles are accelerated atshocks and produce nonthermal radiation. The substantial agreement betweenobservations and the theoretical predictions of the fireball shock modelprovide confirmation of the basic aspects of this scenario. Among recent issuesare the collimation of the outflow and its implications for the energetics, theproduction of prompt bright flashes at wavelenghts much longer than gamma-rays,the time structure of the afterglow, its dependence on the central engine orprogenitor system behavior, and the role of the environment on the afterglow.

  10. Gamma-ray properties of active galactic nuclei

    Science.gov (United States)

    Schoenfelder, V.

    1994-01-01

    Recent observations by the Compton Observatory (CGRO) have increased our knowledge about the gamma-ray emission from Active Galactic Nuclei (AGN) considerably. The three most important findings of CGRO with respect to AGNs are: first, no Seyfert 1 galaxy has been found to show emission above 500 keV. The by far strongest Seyfert 1 galaxy NGC 4151 shows a spectrum which falls off exponentially with an e-folding energy of 39 keV between 65 and 500 keV. OSSE so far has detected or has indications of detections for seven additional Seyfert 1 galaxies, which, however, all show very weak hard X-ray emission compared to NGC 4151. No annihilation feature has been seen from any Seyfert galaxy to this date. Second, the radio galaxy Cen A shows a power-law energy spectrum from hard X-ray energies of about 150 keV to at least 3 MeV. It has not been seen at EGRET-energies. Third, a new class of AGN was discovered at energies above 100 MeV by EGRET. The power of these objects in gamma-rays can dominate the luminosity in other spectral ranges. These objects are associated with extragalactic sources that have blazar properties. The high-energy gamma-ray emission is probably produced in relativistically outflowing jets. At hard X-ray energies the objects are rather weak. Spectral breaks at MeV energies were found by COMPTEL for three of these objects (3C 273, 3C 279, and PKS 0528+134).

  11. GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    CERN Document Server

    Greiner, J; Aharonian, F; Ajello, M; Balasz, L G; Barbiellini, G; Bellazzini, R; Bishop, S; Bisnovatij-Kogan, G S; Boggs, S; Bykov, A; DiCocco, G; Diehl, R; Elsässer, D; Foley, S; Fransson, C; Gehrels, N; Hanlon, L; Hartmann, D; Hermsen, W; Hillebrandt, W; Hudec, R; Iyudin, A; Jose, J; Kadler, M; Kanbach, G; Klamra, W; Kiener, J; Klose, S; Kreykenbohm, I; Kuiper, L M; Kylafis, N; Labanti, C; Langanke, K; Langer, N; Larsson, S; Leibundgut, B; Laux, U; Longo, F; Maeda, K; Marcinkowski, R; Marisaldi, M; McBreen, B; McBreen, S; Meszaros, A; Nomoto, K; Pearce, M; Peer, A; Pian, E; Prantzos, N; Raffelt, G; Reimer, O; Rhode, W; Ryde, F; Schmidt, C; Silk, J; Shustov, B M; Strong, A; Tanvir, N; Thielemann, F -K; Tibolla, O; Tierney, D; Trümper, J; Varshalovich, D A; Wilms, J; Wrochna, G; Zdziarski, A; Zoglauer, A

    2011-01-01

    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate $\\gamma$-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. G...

  12. High Energy Gamma-rays from FR I Jets

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Marek

    2003-07-22

    Thanks to Hubble and Chandra telescopes, some of the large scale jets in extragalactic radio sources are now being observed at optical and X-ray frequencies. For the FR I objects the synchrotron nature of this emission is surely established, although a lot of uncertainties--connected for example with the particle acceleration processes involved--remain. In this paper we study production of high energy {gamma}-rays in FR I kiloparsec-scale jets by inverse-Compton emission of the synchrotron-emitting electrons. We consider different origin of seed photons contributing to the inverse-Compton scattering, including nuclear jet radiation as well as ambient, stellar and circumstellar emission of the host galaxies. We discuss how future detections or non-detections of the evaluated {gamma}-ray fluxes can provide constraints on the unknown large scale jet parameters, i.e. the magnetic field intensity and the jet Doppler factor. For the nearby sources Centaurus A and M 87, we find measurable fluxes of TeV photons resulting from synchrotron self-Compton process and from comptonization of the galactic photon fields, respectively. In the case of Centaurus A, we also find a relatively strong emission component due to comptonization of the nuclear blazar photons, which could be easily observed by GLAST at energy {approx} 10 GeV, providing important test for the unification of FR I sources with BL Lac objects.

  13. Calculations of gamma-ray spectral profiles of linear alkanes in the positron annihilation process

    CERN Document Server

    Ma, X G

    2014-01-01

    The positron-electron annihilation gamma-ray spectra of linear alkanes CnH2n+2 (n=1-12) have been studied systematically. A profile quality (PQ) parameter, is introduced to assess the agreement between the obtained theoretical profiles and the experimental measurements in the entire region of energy shift of the spectra. Together with the Doppler shift of the gamma-ray spectra, the two parameters,PQ and Doppler shift, are able to provide a more comprehensive assessment of the calculated gamma-ray spectra with respect to available experiment. Applying the recently developed docking model, the present study determines the positrophilic electrons for individual alkanes from which the gamma-ray spectral profiles are calculated. The results achieve an excellent agreement with experiment, not only with respect to the Doppler shift, but also with respect to the gamma-ray profiles in the photon energy region up to 5 keV. The study further calculates the gamma-ray spectra of other linear alkanes in the series without ...

  14. Prompt gamma-ray activation analysis (PGAA)

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J. [Fribourg Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The paper deals with a brief description of the principles of prompt gamma-ray activation analysis (PGAA), with the detection of gamma-rays, the PGAA project at SINQ and with the expected performances. 8 figs., 3 tabs., 10 refs.

  15. GAMMA-400 gamma-ray observatory

    CERN Document Server

    Topchiev, N P; Bonvicini, V; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bakaldin, A V; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, L; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Cumani, P; Dalkarov, O D; Dedenko, G L; De Donato, C; Dogiel, V A; Finetti, N; Gascon, D; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Leonov, A A; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Martinez, M; Menshenin, A L; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Paredes, J M; Pearce, M; Picozza, P; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Stozhkov, Yu I; Suchkov, S I; Taraskin, A A; Tavani, M; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Ward, J E; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    The GAMMA-400 gamma-ray telescope with excellent angular and energy resolutions is designed to search for signatures of dark matter in the fluxes of gamma-ray emission and electrons + positrons. Precision investigations of gamma-ray emission from Galactic Center, Crab, Vela, Cygnus, Geminga, and other regions will be performed, as well as diffuse gamma-ray emission, along with measurements of high-energy electron + positron and nuclei fluxes. Furthermore, it will study gamma-ray bursts and gamma-ray emission from the Sun during periods of solar activity. The energy range of GAMMA-400 is expected to be from ~20 MeV up to TeV energies for gamma rays, up to 20 TeV for electrons + positrons, and up to 10E15 eV for cosmic-ray nuclei. For high-energy gamma rays with energy from 10 to 100 GeV, the GAMMA-400 angular resolution improves from 0.1{\\deg} to ~0.01{\\deg} and energy resolution from 3% to ~1%; the proton rejection factor is ~5x10E5. GAMMA-400 will be installed onboard the Russian space observatory.

  16. Gamma ray spectroscopy with PPM resolving power

    CERN Document Server

    Börner, H; Mutti, P

    2002-01-01

    Applications of gamma-ray spectroscopy with ppm resolving power are presented. The extraordinary resolution allows via the Gamma Ray Induced Doppler broadening (GRID) technique to determine lifetimes of excited nuclear levels. This has contributed to important nuclear structure information. We report on the current status of the technique

  17. Gamma-Ray Interactions for Reachback Analysts

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, Steven Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-02

    This presentation is a part of the DHS LSS spectroscopy training course and presents an overview of the following concepts: identification and measurement of gamma rays; use of gamma counts and energies in research. Understanding the basic physics of how gamma rays interact with matter can clarify how certain features in a spectrum were produced.

  18. Handbook on Mobile Gamma-ray Spectrometry

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    2003-01-01

    Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing......Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing...

  19. Handbook on Mobile Gamma-ray Spectrometry

    DEFF Research Database (Denmark)

    Aage, Helle Karina; Korsbech, Uffe C C

    2003-01-01

    Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing......Basic physics and mathematics for Airborne and Car-borne Gamma-ray Spectrometry supplemented with practical examples and methods for advanced data processing...

  20. A separation of electrons and protons in the GAMMA-400 gamma-ray telescope

    CERN Document Server

    Leonov, A A; Bonvicini, V; Topchiev, N P; Adriani, O; Aptekar, R L; Arkhangelskaja, I V; Arkhangelskiy, A I; Bergstrom, L; Berti, E; Bigongiari, G; Bobkov, S G; Boezio, M; Bogomolov, E A; Bonechi, S; Bongi, M; Bottai, S; Castellini, G; Cattaneo, P W; Cumani, P; Dedenko, G L; De Donato, C; Dogiel, V A; Gorbunov, M S; Gusakov, Yu V; Hnatyk, B I; Kadilin, V V; Kaplin, V A; Kaplun, A A; Kheymits, M D; Korepanov, V E; Larsson, J; Loginov, V A; Longo, F; Maestro, P; Marrocchesi, P S; Mikhailov, V V; Mocchiutti, E; Moiseev, A A; Mori, N; Moskalenko, I V; Naumov, P Yu; Papini, P; Pearce, M; Picozza, P; Popov, A V; Rappoldi, A; Ricciarini, S; Runtso, M F; Ryde, F; Serdin, O V; Sparvoli, R; Spillantini, P; Suchkov, S I; Tavani, M; Taraskin, A A; Tiberio, A; Tyurin, E M; Ulanov, M V; Vacchi, A; Vannuccini, E; Vasilyev, G I; Yurkin, Yu T; Zampa, N; Zirakashvili, V N; Zverev, V G

    2015-01-01

    The GAMMA-400 gamma-ray telescope is intended to measure the fluxes of gamma rays and cosmic-ray electrons and positrons in the energy range from 100 MeV to several TeV. Such measurements concern with the following scientific goals: search for signatures of dark matter, investigation of gamma-ray point and extended sources, studies of the energy spectra of Galactic and extragalactic diffuse emission, studies of gamma-ray bursts and gamma-ray emission from the active Sun, as well as high-precision measurements of spectra of high-energy electrons and positrons, protons, and nuclei up to the knee. The main components of cosmic rays are protons and helium nuclei, whereas the part of lepton component in the total flux is ~10E-3 for high energies. In present paper, the capability of the GAMMA-400 gamma-ray telescope to distinguish electrons and positrons from protons in cosmic rays is investigated. The individual contribution to the proton rejection is studied for each detector system of the GAMMA-400 gamma-ray tel...

  1. Instrumentation for gamma-ray astronomy

    Science.gov (United States)

    Bertsch, David L.; Fichtel, Carl E.; Trombka, Jacob I.

    1988-01-01

    The current status of gamma-ray-telescope technology for ground, airborne, and space observations is surveyed and illustrated with drawings, diagrams, and graphs and tables of typical data. For the low- and medium-energy ranges, consideration is given to detectors and detector cooling systems, background-rejection methods, radiation damage, large-area detectors, gamma-ray imaging, data analysis, and the Compton-interaction region. Also discussed are the gamma-ray interaction process at high energies; multilevel automated spark-chamber gamma-ray telescopes; the Soviet Gamma-1 telescope; the EGRET instrument for the NASA Gamma-Ray Observatory; and Cerenkov, air-shower, and particle-detector instruments for the TeV and PeV ranges. Significant improvements in resolution and sensitivity are predicted for the near future.

  2. Gamma-ray pulsars: a gold mine

    CERN Document Server

    Grenier, Isabelle A

    2015-01-01

    The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to gamma rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of gamma-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic gamma rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing gamma-ray observations and magnetospheric models in more detail.

  3. High energy gamma-rays and hadrons at Mount Fuji

    Science.gov (United States)

    Amenomori, M.; Nanjo, H.; Konishi, E.; Hotta, N.; Mizutani, K.; Kasahara, K.; Kobayashi, T.; Mikumo, E.; Sato, K.; Yuda, T.

    1985-01-01

    The energy spectra of high energy gamma-rays and hadrons were obtained by the emulsion chamber with 40 c.u. thickness at Mt. Fuji (3750 m). These results are compared with the Monte Carlo calculation based on the same model which is used in a family analysis. Our data are compatible with the model of heavy-enriched primary and scaling in the fragmentation region.

  4. AGILE and blazar studies

    CERN Document Server

    Marisaldi, M; Vercellone, S; Donnarumma, I; Bulgarelli, A; Chen, A W; Giuliani, A; Longo, F; Pacciani, L; Pucella, G; Tavani, M; Vittorini, V

    2009-01-01

    During the first two years of observation, AGILE detected several blazars at high significance: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421 and PKS 0537-441. We obtained long-term coverage of 3C 454.3, for a total of more than three months at energies above 100 MeV. 3C 273 was the first blazar detected simultaneously by the AGILE gamma-ray detector and by its hard X-ray monitor. S5 0716+714, an intermediate BL Lac object, exhibited a very fast and intense gamma-ray transient during an optical high-state phase, challenging the current theoretical models for energy extraction from a rotating black hole, while W Comae and Mkn 421 were detected during an AGILE Target of Opportunity (ToO) repointing, and were simultaneously detected by Cherenkov telescopes. Thanks to the rapid dissemination of our alerts, we were able to obtain multi-wavelength ToO data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, as well as radio-to-optical coverage by means of...

  5. Fermi-LAT Gamma-ray Observations of Nova Lupus 2016 (ASASSN-16kt)

    Science.gov (United States)

    Cheung, C. C.; Jean, P.; Shore, S. N.; Fermi Large Area Telescope Collaboration

    2016-10-01

    The Fermi Gamma-ray Space Telescope performed a ~6-day Target of Opportunity (ToO) observation of Nova Lupus 2016 (ATel #9538, #9539, CBET #4322) that commenced on September 28. Considering earlier all-sky survey Large Area Telescope (LAT) observations as well, preliminary analysis indicates gamma-ray emission at ~2 sigma was detected around 1 to 2 days after the optical peak on September 25th (pre-validated AAVSO visual lightcurve; ATel #9550, CBET #4322) when the optical spectra show opaque ejecta, similar to previous gamma-ray detected novae (Fermi-LAT collaboration, 2014 Science 345, 554; Cheung et al. 2016 ApJ 826, 142).

  6. Measurements of keV-neutron capture {gamma} rays of fission products. 3

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    {gamma} rays from the keV-neutron capture reactions by {sup 143,145}Nd and {sup 153}Eu have been measured in a neutron energy region of 10 to 80 keV, using a large anti-Compton NaI(Tl) {gamma}-ray spectrometer and the {sup 7}Li(p,n){sup 7}Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and {gamma}-ray spectra of those nuclei are presented and discussed. (author)

  7. Modeling gamma-ray bursts

    Science.gov (United States)

    Maxham, Amanda

    Discovered serendipitously in the late 1960s, gamma-ray bursts (GRBs) are huge explosions of energy that happen at cosmological distances. They provide a grand physical playground to those who study them, from relativistic effects such as beaming, jets, shocks and blastwaves to radiation mechanisms such as synchrotron radiation to galatic and stellar populations and history. Through the Swift and Fermi space telescopes dedicated to observing GRBs over a wide range of energies (from keV to GeV), combined with accurate pinpointing that allows ground based follow-up observations in the optical, infrared and radio, a rich tapestry of GRB observations has emerged. The general picture is of a mysterious central engine (CE) probably composed of a black hole or neutron star that ejects relativistic shells of matter into intense magnetic fields. These shells collide and combine, releasing energy in "internal shocks" accounting for the prompt emission and flaring we see and the "external shock" or plowing of the first blastwave into the ambient surrounding medium has well-explained the afterglow radiation. We have developed a shell model code to address the question of how X-ray flares are produced within the framework of the internal shock model. The shell model creates randomized GRB explosions from a central engine with multiple shells and follows those shells as they collide, merge and spread, producing prompt emission and X-ray flares. We have also included a blastwave model, which can constrain X-ray flares and explain the origin of high energy (GeV) emission seen by the Fermi telescope. Evidence suggests that gamma-ray prompt emission and X-ray flares share a common origin and that at least some flares can only be explained by long-lasting central engine activity. We pay special attention to the time history of central engine activity, internal shocks, and observed flares. We calculate the gamma-ray (Swift/BAT band) and X-ray (Swift/XRT band) lightcurves for arbitrary

  8. Studying the WHIM with Gamma Ray Bursts

    CERN Document Server

    Branchini, E; Corsi, A; Martizzi, D; Amati, L; Herder, J W den; Galeazzi, M; Gendre, B; Kaastra, J; Moscardini, L; Nicastro, F; Ohashi, T; Paerels, F; Piro, L; Roncarelli, M; Takei, Y; Viel, M

    2009-01-01

    We assess the possibility to detect and characterize the physical state of the missing baryons at low redshift by analyzing the X-ray absorption spectra of the Gamma Ray Burst [GRB] afterglows, measured by a micro calorimeters-based detector with 3 eV resolution and 1000 cm2 effective area and capable of fast re-pointing, similar to that on board of the recently proposed X-ray satellites EDGE and XENIA. For this purpose we have analyzed mock absorption spectra extracted from different hydrodynamical simulations used to model the properties of the Warm Hot Intergalactic Medium [WHIM]. These models predict the correct abundance of OVI absorption lines observed in UV and satisfy current X-ray constraints. According to these models space missions like EDGE and XENIA should be able to detect about 60 WHIM absorbers per year through the OVII line. About 45 % of these have at least two more detectable lines in addition to OVII that can be used to determine the density and the temperature of the gas. Systematic error...

  9. Sensitivity of HAWC to gamma ray bursts

    Science.gov (United States)

    Taboada, Ignacio; HAWC Collaboration

    2012-12-01

    HAWC is a ground based very high-energy gamma ray detector under construction in Mexico at an altitude of 4100 m a.s.l. Higher altitude, improved design and a larger physical size used to reject CR background, make HAWC 10-20 times more sensitive than its predecessor Milagro. HAWC's large field of view, ~2sr, and over 90% duty cycle make it ideal to search for GRBs. We review the sensitivity of HAWC to GRBs with two independent data acquisition systems. We show that some of the brightest GRBs observed by Fermi LAT (e.g. GRB 090510) could result in >5 σ observation by HAWC. The observations (or limits) of GRBs by HAWC will provide information on the high-energy spectra of GRBs. The high-energy spectra will teach us about extra galactic background light, the Lorentz boost factor of the jets tha power GRBs and/or particle acceleration models of GRBs. Finally we present limits on > 10 GeV emission from GRB 111016B, recently studied with HAWC's engineering array VAMOS.

  10. Perspectives of the GAMMA-400 space observatory for high-energy gamma rays and cosmic rays measurements

    Science.gov (United States)

    Topchiev, N. P.; Galper, A. M.; Bonvicini, V.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Bakaldin, A. V.; Bergstrom, L.; Berti, E.; Bigongiari, G.; Bobkov, S. G.; Boezio, M.; Bogomolov, E. A.; Bonechi, S.; Bongi, M.; Bottai, S.; Castellini, G.; Cattaneo, P. W.; Cumani, P.; Dalkarov, O. D.; Dedenko, G. L.; De Donato, C.; Dogiel, V. A.; Finetti, N.; Gorbunov, M. S.; Gusakov, Yu V.; Hnatyk, B. I.; Kadilin, V. V.; Kaplin, V. A.; Kaplun, A. A.; Kheymits, M. D.; Korepanov, V. E.; Larsson, J.; Leonov, A. A.; Loginov, V. A.; Longo, F.; Maestro, P.; Marrocchesi, P. S.; Men'shenin, A. L.; Mikhailov, V. V.; Mocchiutti, E.; Moiseev, A. A.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu; Papini, P.; Pearce, M.; Picozza, P.; Rappoldi, A.; Ricciarini, S.; Runtso, M. F.; Ryde, F.; Serdin, O. V.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Suchkov, S. I.; Taraskin, A. A.; Tavani, M.; Tiberio, A.; Tyurin, E. M.; Ulanov, M. V.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Yurkin, Yu T.; Zampa, N.; Zira