WorldWideScience

Sample records for blastocyst microrna expression

  1. Human Blastocyst Secreted microRNA Regulate Endometrial Epithelial Cell Adhesion

    Directory of Open Access Journals (Sweden)

    Carly Cuman

    2015-10-01

    Full Text Available Successful embryo implantation requires synchronous development and communication between the blastocyst and the endometrium, however the mechanisms of communication in humans are virtually unknown. Recent studies have revealed that microRNAs (miRs are present in bodily fluids and secreted by cells in culture. We have identified that human blastocysts differentially secrete miRs in a pattern associated with their implantation outcome. miR-661 was the most highly expressed miR in blastocyst culture media (BCM from blastocysts that failed to implant (non-implanted compared to blastocysts that implanted (implanted. Our results indicate a possible role for Argonaute 1 in the transport of miR-661 in non-implanted BCM and taken up by primary human endometrial epithelial cells (HEECs. miR-661 uptake by HEEC reduced trophoblast cell line spheroid attachment to HEEC via PVRL1. Our results suggest that human blastocysts alter the endometrial epithelial adhesion, the initiating event of implantation, via the secretion of miR, abnormalities in which result in implantation failure.

  2. Uterine micro-environment and estrogen-dependent regulation of osteopontin expression in mouse blastocyst.

    Science.gov (United States)

    Xie, Qing-Zhen; Qi, Qian-Rong; Chen, Ying-Xian; Xu, Wang-Ming; Liu, Qian; Yang, Jing

    2013-07-11

    Embryo implantation is a highly synchronized bioprocess between an activated blastocyst and a receptive uterus. In mice, successful implantation relies on the dynamic interplay of estrogen and progesterone; however, the key mediators downstream of these hormones that act on blastocyst competency and endometrium receptivity acquisition are largely unknown. In this study, we showed that the expression of osteopontin (OPN) in mouse blastocysts is regulated by ovarian estrogen and uterine micro-environment. OPN mRNA is up-regulated in mouse blastocyst on day 4 of pregnancy, which is associated with ovarian estrogen secretion peak. Hormone treatment in vivo demonstrated that OPN expression in a blastocyst is regulated by estrogen through an estrogen receptor (ER). Our results of the delayed and activated implantation model showed that OPN expression is induced after estrogen injection. While estrogen treatment during embryo culture in vitro showed less effect on OPN expression, the tubal ligation model on day 3 of pregnancy confirmed that the regulation of estrogen on OPN expression in blastocyst might, through some specific cytokines, have existed in a uterine micro-environment. Collectively, our study presents that estrogen regulates OPN expression and it may play an important role during embryo implantation by activating blastocyst competence and facilitating the endometrium acceptable for active blastocyst.

  3. Distinct differences in global gene expression profiles in non-implanted blastocysts and blastocysts resulting in live birth

    DEFF Research Database (Denmark)

    Kirkegaard, Kirstine; Villesen, Palle; Jensen, Jacob Malte

    2015-01-01

    Results from animal models points towards the existence of a gene expression profile that is distinguishably different in viable embryos compared with non-viable embryos. Knowledge of human embryo transcripts is however limited, in particular with regard to how gene expression is related to clini......Results from animal models points towards the existence of a gene expression profile that is distinguishably different in viable embryos compared with non-viable embryos. Knowledge of human embryo transcripts is however limited, in particular with regard to how gene expression is related...... to clinical outcome. The purpose of the present study was therefore to determine the global gene expression profiles of human blastocysts. Next Generation Sequencing was used to identify genes that were differentially expressed in non-implanted embryos and embryos resulting in live birth. Three trophectoderm...

  4. Identification and expression analysis of genes associated with bovine blastocyst formation

    Directory of Open Access Journals (Sweden)

    Van Zeveren Alex

    2007-06-01

    Full Text Available Abstract Background Normal preimplantation embryo development encompasses a series of events including first cleavage division, activation of the embryonic genome, compaction and blastocyst formation. First lineage differentiation starts at the blastocyst stage with the formation of the trophectoderm and the inner cell mass. The main objective of this study was the detection, identification and expression analysis of genes associated with blastocyst formation in order to help us better understand this process. This information could lead to improvements of in vitro embryo production procedures. Results A subtractive cDNA library was constructed enriched for transcripts preferentially expressed at the blastocyst stage compared to the 2-cell and 8-cell stage. Sequence information was obtained for 65 randomly selected clones. The RNA expression levels of 12 candidate genes were determined throughout 3 stages of preimplantation embryo development (2-cell, 8-cell and blastocyst and compared with the RNA expression levels of in vivo "golden standard" embryos using real-time PCR. The RNA expression profiles of 9 (75% transcripts (KRT18, FN1, MYL6, ATP1B3, FTH1, HINT1, SLC25A5, ATP6V0B, RPL10 were in agreement with the subtractive cDNA cloning approach, whereas for the remaining 3 (25% (ACTN1, COPE, EEF1A1 the RNA expression level was equal or even higher at the earlier developmental stages compared to the blastocyst stage. Moreover, significant differences in RNA expression levels were observed between in vitro and in vivo produced embryos. By immunofluorescent labelling, the protein expression of KRT18, FN1 and MYL6 was determined throughout bovine preimplantation embryo development and showed the same pattern as the RNA expression analyses. Conclusion By subtractive cDNA cloning, candidate genes involved in blastocyst formation were identified. For several candidate genes, important differences in gene expression were observed between in vivo and in

  5. Unique regulation of CYP17 expression in the trophectoderm of the preattachment porcine blastocyst.

    Science.gov (United States)

    Chu, X; Corbin, C J; Kaminski, M A; Conley, A J

    1999-02-01

    Expression of the gene encoding cytochrome P450 17alpha-hydroxylase, CYP17, is necessary for adrenal and gonadal steroidogenesis in most species. However, some animals, such as the pig, express CYP17 in the trophectoderm of the preattachment blastocyst, an event associated with estrogen synthesis and the establishment of pregnancy. How trophoblastic expression of CYP17 is regulated in the porcine blastocyst remains unknown and forms the basis of the following studies. The porcine CYP17 gene, including the complete coding and several kilobases of 5'-flanking regions, was cloned and sequenced. Blastocysts were examined by Northern analysis to verify the level of CYP17 transcript, and tissue-specific expression in the trophectoderm was confirmed by in situ hybridization. Primer extension, S1 nuclease protection, and 5'-rapid amplification of cDNA ends confirmed a common proximal transcription start site in adrenals and gonads (-48 bp) but identified a unique distal start site used in porcine trophectoderm (-182 bp). Additionally, reporter analysis of the CYP17 regulatory region demonstrated that constructs (-27 to -718 bp) were unresponsive to forskolin when expressed in porcine trophoblast cells, suggesting that trophoblast may not be able to respond to cAMP induction of this gene. The identification of this distal, previously undescribed, transcriptional start site suggests that unique mechanisms control the expression of CYP17 in porcine trophectoderm and possibly other genes important in implantation and early placental development.

  6. Blastocyst recovery and multifactorial gene expression analysis in the wild guinea pig (Cavia aperea).

    Science.gov (United States)

    Hribal, Romy; Guenther, Anja; Rübensam, Kathrin; Jewgenow, Katarina

    2016-09-15

    The expression of specific developmentally important genes in preimplantation embryos is an accepted marker for unraveling the influence of single factors in studies that are mostly related to artificial reproduction techniques. Such studies, however, often reveal high levels of heterogeneity between single embryos, independently of the influence of factors of interest. A possible explanation for this variation could be the large variety of physiological and environmental factors to which early embryos are exposed and their ability to react to them. Here, we investigated several potentially important parameters of development at the same time, in blastocysts of the wild guinea pig (Cavia aperea) generated in vivo after natural mating. The optimal time for flushing fully developed blastocysts was between 123 and 126 hours after mating. The abundance of POU5F1 (P = 0.042), BAX (P multifactorial environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    DEFF Research Database (Denmark)

    Jakobsen, Jannik E.; Li, Juan; Moldt, Brian

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon...... transfer. PFV cells supported Flp mediated cassette exchange for transgene substitution of eGFP with dsRED, and the dsRED transgenic PFV cells generated blastocysts with transgene expression. Hence, the PFV cell line constitutes a valuable pig equivalent to transformed cell lines from other mammalian...

  8. MicroRNA expression of C. elegans in space environment

    Data.gov (United States)

    National Aeronautics and Space Administration — Entire microRNA expression were analyzed using the Filgen Array miRNA Caenorhabditis elegans 232 probes (Filgen). In the microRNA expression analysis we compared the...

  9. Over-expression of CXCR4, a stemness enhancer, in human blastocysts by low level laser irradiation

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Tahmasbi

    2013-09-01

    Full Text Available The key role of chemokine receptor CXCR4 in the maintenance of stemness property of stem cells has been shown recently. The low level laser irradiation (LLLI is being used currently in a wide variety of clinical cases as a therapeutic tool for wound healing, relieving pain and destroying tumor cells. The aim of this study was to evaluate the effect of LLLI mimicking low level laser therapy (LLLT on the expression level of CXCR4 gene a few hours after irradiation on human blastocysts. After the development of human embryos to the first grade blastocyst stage, they were irradiated with a low power Ga-Al-As laser at a continuous wavelength of 650 nm and a power output of 30 mW. The total RNA of the irradiated blastocysts and control groups were isolated in groups of 1x2 J/cm2, 2x2 J/cm2, 1x4 J/cm2 and 2x4 J/cm2 LLLI. Specific Real-Time PCR primers were designed to amplify all the two CXCR4 isoforms yet identified. RNA amplifications were done for all the groups. We showed for the first time that LLLI makes the human blastocysts to increase the expression level of CXCR4 a few hours after irradiation. Moreover, it was shown that two irradiation doses with one day interval can cause a significant increase in CXCR4 expression level in human blastocysts. This study revealed that LLLI could be a proliferation motivator for embryonic cell divisions through enhanced over-expression of CXCR4 level.

  10. Expression of microRNAs in bovine and human pre-implantation embryo culture media

    Science.gov (United States)

    Kropp, Jenna; Salih, Sana M.; Khatib, Hasan

    2014-01-01

    MicroRNAs (miRNA) are short non-coding RNAs which act to regulate expression of genes driving numerous cellular processes. These RNAs are secreted within exosomes from cells into the extracellular environment where they may act as signaling molecules. In addition, they are relatively stable and are specifically expressed in association to certain cancers making them strong candidates as biological markers. Moreover, miRNAs have been detected in body fluids including urine, milk, saliva, semen, and blood plasma. However, it is unknown whether they are secreted by embryonic cells into the culture media. Given that miRNAs are expressed throughout embryonic cellular divisions and embryonic genome activation, we hypothesized that they are secreted from the embryo into the extracellular environment and may play a role in the developmental competence of bovine embryos. To test this hypothesis, bovine embryos were cultured individually from day 5 to day 8 of development in an in vitro fertilization system and gene expression of 5 miRNAs was analyzed in both embryos and culture media. Differential miRNA gene expression was observed between embryos that developed to the blastocyst stage and those that failed to develop from the morula to blastocyst stage, deemed degenerate embryos. MiR-25, miR-302c, miR-196a2, and miR-181a expression was found to be higher in degenerate embryos compared to blastocyst embryos. Interestingly, these miRNAs were also found to be expressed in the culture media of both bovine and human pre-implantation embryos. Overall, our results show for the first time that miRNAs are secreted from pre-implantation embryos into culture media and that miRNA expression may correlate with developmental competence of the embryo. Expression of miRNAs in in vitro culture media could allow for the development of biological markers for selection of better quality embryos and for subsequent successful pregnancy. PMID:24795753

  11. H2O2-induced mild stress in relation with in vitro ovine oocyte developmental competence: implications for blastocyst apoptosis and related genes expression.

    Science.gov (United States)

    Nikdel, K; Aminafshar, M; Mohammadi-Sangcheshmeh, A; EmamJomeh-Kashan, N; Seyedjafari, E

    2017-05-20

    In this study, in vitro maturation was performed in presence of various concentrations (0, 10, 100, or 1000 µM) of H2O2. The intracellular glutathione (GSH) level, fertilization, cleavage, and blastocyst rates, total cell number, and apoptotic cell number and expression of Bax, Bcl-2, and p53 genes in blastocyst-stage embryos were studied. At 10 μM H2O2 concentration, a higher GSH level was detected in comparison to the other groups while oocytes exposed to 1000 μM H2O2 had the lowest GSH level. Treatment of oocytes with 1000 μM H2O2 decreased the rate of two pronuclei formation as compared with other groups. A higher rate of blastocyst formation was seen in 100 μM H2O2 group as compared with the control group. However, exogenous H2O2 in maturation medium did not affect total cell numbers and apoptotic cell ratio at the blastocyst stage. Moreover, mRNA transcript abundance of Bax, Bcl-2, and p53 genes was similar between blastocysts derived from H2O2-induced oocytes and control blastocysts. Treatment of oocytes with H2O2 at mild level during in vitro maturation had a positive effect on GSH level and this, in turn, may lead to improvement in preimplantation embryonic development.

  12. MicroRNA expression profiling of the porcine developing brain

    DEFF Research Database (Denmark)

    Podolska, Agnieszka; Kaczkowski, Bogumil; Busk, Peter Kamp

    2011-01-01

    MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most micro...... and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain.......RNA expression profiling studies have been performed in human or rodents and relatively limited knowledge exists in other mammalian species. The domestic pig is considered to be an excellent, alternate, large mammal model for human-related neurological studies, due to its similarity in both brain development...

  13. Expression of proposed implantation marker genes CDX2 and HOXB7 in the blastocyst does not distinguish viable from non-viable human embryos

    DEFF Research Database (Denmark)

    Kirkegaard, Kirstine; Hindkjær, Johnny Juhl; Ingerslev, Hans Jakob

    2012-01-01

    was to investigate the expression of selected genes in human blastocysts in relation to the outcome of implantation. Materials and methods: Embryos from 10 oatients undergoing in vitro fertilization treatment were included in the project. A single blastocyst was chosen for biopsy on the morning of day 5 after oocyte....... After 4-5 hours of continued culture 5-10 herniating TE cells were aspirated into a biopsy pipette and dissected free of the blastocyst mass using a laser (ZilosTM, Hamilton Thorne Research, wavelength 1480 nm). Biopsied embryos were cultured overnight prior to re-assessment and transfer early on day 6...... after oocyte retrieval. Immediately following biopsy, cells were lysed and reverse transcriptase PCR (RT-PCR) was carried out directly on the cell lysate using Superscript® III First Strand Synthesis kit (Invitrogen) thus avoiding introducing RNA amplification steps. As part of the study, the expression...

  14. MicroRNA expression characterizes oligometastasis(es.

    Directory of Open Access Journals (Sweden)

    Yves A Lussier

    Full Text Available Cancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by ≤ 5 cumulative metastasis(es, termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy.Here, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy.Patients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression.These results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment.

  15. MicroRNA expression characterizes oligometastasis(es).

    Science.gov (United States)

    Lussier, Yves A; Xing, H Rosie; Salama, Joseph K; Khodarev, Nikolai N; Huang, Yong; Zhang, Qingbei; Khan, Sajid A; Yang, Xinan; Hasselle, Michael D; Darga, Thomas E; Malik, Renuka; Fan, Hanli; Perakis, Samantha; Filippo, Matthew; Corbin, Kimberly; Lee, Younghee; Posner, Mitchell C; Chmura, Steven J; Hellman, Samuel; Weichselbaum, Ralph R

    2011-01-01

    Cancer staging and treatment presumes a division into localized or metastatic disease. We proposed an intermediate state defined by ≤ 5 cumulative metastasis(es), termed oligometastases. In contrast to widespread polymetastases, oligometastatic patients may benefit from metastasis-directed local treatments. However, many patients who initially present with oligometastases progress to polymetastases. Predictors of progression could improve patient selection for metastasis-directed therapy. Here, we identified patterns of microRNA expression of tumor samples from oligometastatic patients treated with high-dose radiotherapy. Patients who failed to develop polymetastases are characterized by unique prioritized features of a microRNA classifier that includes the microRNA-200 family. We created an oligometastatic-polymetastatic xenograft model in which the patient-derived microRNAs discriminated between the two metastatic outcomes. MicroRNA-200c enhancement in an oligometastatic cell line resulted in polymetastatic progression. These results demonstrate a biological basis for oligometastases and a potential for using microRNA expression to identify patients most likely to remain oligometastatic after metastasis-directed treatment.

  16. MicroRNA expression profiles associated with pancreatic adenocarcinoma and ampullary adenocarcinoma

    DEFF Research Database (Denmark)

    Schultz, Nicolai A; Werner, Jens; Willenbrock, Hanni

    2012-01-01

    MicroRNAs have potential as diagnostic cancer biomarkers. The aim of this study was (1) to define microRNA expression patterns in formalin-fixed parafin-embedded tissue from pancreatic ductal adenocarcinoma, ampullary adenocarcinoma, normal pancreas and chronic pancreatitis without using micro......-dissection and (2) to discover new diagnostic microRNAs and combinations of microRNAs in cancer tissue. The expression of 664 microRNAs in tissue from 170 pancreatic adenocarcinomas and 107 ampullary adenocarcinomas were analyzed using a commercial microRNA assay. Results were compared with chronic pancreatitis......, normal pancreas and duodenal adenocarcinoma. In all, 43 microRNAs had higher and 41 microRNAs reduced expression in pancreatic cancer compared with normal pancreas. In all, 32 microRNAs were differently expressed in pancreatic adenocarcinoma compared with chronic pancreatitis (17 higher; 15 reduced...

  17. MicroRNAs expression profile in solid and unicystic ameloblastomas.

    Directory of Open Access Journals (Sweden)

    A Setién-Olarra

    Full Text Available Odontogenic tumors (OT represent a specific pathological category that includes some lesions with unpredictable biological behavior. Although most of these lesions are benign, some, such as the ameloblastoma, exhibit local aggressiveness and high recurrence rates. The most common types of ameloblastoma are the solid/multicystic (SA and the unicystic ameloblastoma (UA; the latter considered a much less aggressive entity as compared to the SA. The microRNA system regulates the expression of many human genes while its deregulation has been associated with neoplastic development. The aim of the current study was to determine the expression profiles of microRNAs present in the two most common types of ameloblastomas.MicroRNA expression profiles were assessed using TaqMan® Low Density Arrays (TLDAs in 24 samples (8 SA, 8 UA and 8 control samples. The findings were validated using quantitative RTqPCR in an independent cohort of 19 SA, 8 UA and 19 dentigerous cysts as controls.We identified 40 microRNAs differentially regulated in ameloblastomas, which are related to neoplastic development and differentiation, and with the osteogenic process. Further validation of the top ranked microRNAs revealed significant differences in the expression of 6 of them in relation to UA, 7 in relation to SA and 1 (miR-489 that was related to both types.We identified a new microRNA signature for the ameloblastoma and for its main types, which may be useful to better understand the etiopathogenesis of this neoplasm. In addition, we identified a microRNA (miR-489 that is suggestive of differentiating among solid from unicystic ameloblastoma.

  18. MicroRNA expression patterns in indeterminate inflammatory bowel disease.

    Science.gov (United States)

    Lin, Jingmei; Cao, Qi; Zhang, Jianjun; Li, Yong; Shen, Bo; Zhao, Zijin; Chinnaiyan, Arul M; Bronner, Mary P

    2013-01-01

    A diagnosis of idiopathic inflammatory bowel disease requires synthesis of clinical, radiographic, endoscopic, surgical, and histologic data. While most cases of inflammatory bowel disease can be specifically classified as either ulcerative colitis or Crohns disease, 5-10% of patients have equivocal features placing them into the indeterminate colitis category. This study examines whether microRNA biomarkers assist in the classification of classically diagnosed indeterminate inflammatory bowel disease. Fresh frozen colonic mucosa from the distal-most part of the colectomy from 53 patients was used (16 indeterminate colitis, 14 Crohns disease, 12 ulcerative colitis, and 11 diverticular disease controls). Total RNA extraction and quantitative reverse-transcription-PCR was performed using five pairs of microRNA primers (miR-19b, miR-23b, miR-106a, miR-191, and miR-629). Analysis of variance was performed assessing differences among the groups. A significant difference in expressions of miR-19b, miR-106a, and miR-629 was detected between ulcerative colitis and Crohns disease groups (PCrohns disease groups (PCrohns disease-like microRNA pattern. MicroRNA expression patterns in indeterminate colitis are far more similar to those of ulcerative colitis than Crohns disease. MicroRNA expression patterns of indeterminate colitis provide molecular evidence indicating that most cases are probably ulcerative colitis-similar to the data from long-term clinical follow-up studies. Validation of microRNA results by additional long-term outcome data is needed, but the data presented show promise for improved classification of indeterminate inflammatory bowel disease.

  19. Aberrant microRNA expression in multiple myeloma

    DEFF Research Database (Denmark)

    Dimopoulos, Konstantinos; Gimsing, Peter; Grønbæk, Kirsten

    2013-01-01

    Multiple myeloma (MM) is a devastating disease with a complex biology, and in spite of improved survivability by novel treatment strategies over the last decade, MM is still incurable by current therapy. MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at a post...

  20. MicroRNA expression profiling in neurogenesis of adipose tissue ...

    Indian Academy of Sciences (India)

    [Cho J. A., Park H., Lim E. H. and Lee K. W. 2011 MicroRNA expression profiling in neurogenesis of adipose tissue-derived stem cells. J. Genet. 90, 81–93] ... capability, however there are considerable challenges to the use of these cells for ... tissues including brain, blood, muscle, skin, bone marrow, umbilical cord blood ...

  1. MicroRNA expression correlated with hygienic behaviour in honeybees

    Directory of Open Access Journals (Sweden)

    Francesca Dell'Orco

    2015-07-01

    Full Text Available Honeybees (Apis mellifera play important roles in modern agriculture regarding zootechnical production and crop pollination. Recently, honeybees have received more attention from the public, beekeepers and researchers due to emerging heath issues. Thus, scientific interest for honeybee health and selection resistance to major pathogens is sharply increasing. Honeybees evolved social immunity mechanisms consisting in the cooperation of individuals to control disease level in the hive, and in particular hygienic behavior (HB, as based on the uncapping and removal of dead, diseased or parasitized brood. HB is affected by heritable and environmental factors, and specific neurogenomic states can be inferred based on the coordinated brain expression of transcription factors and their predicted target genes, including Mblk-1 (transcription factor that function in the mushroom body and Obp4 (sensitive olfactory detection in the antennae of adult bees. Besides, microRNAs are known to influence neurological status linked to age-related social behaviour in honeybees7. In order to investigate the relationship between microRNA expression and HB, the present work performed the expression profile of selected honeybee brain microRNA in individual’s honeybee from field colonies with high HB level compared to low HB level, in comparison with the expression profile of Mblk-1 and Obp4. The genetic information resulting from this project could help to understand the role of microRNAs in HB and to drive honeybee selection schemes for production, health, and behavioral traits favoring pathogen control.

  2. Scriptaid Treatment Decreases DNA Methyltransferase 1 Expression by Induction of MicroRNA-152 Expression in Porcine Somatic Cell Nuclear Transfer Embryos.

    Directory of Open Access Journals (Sweden)

    Shuang Liang

    Full Text Available Abnormal epigenetic reprogramming of donor nuclei after somatic cell nuclear transfer (SCNT is thought to be the main cause of low cloning efficiencies. A growing body of evidence has demonstrated a positive role of Scriptaid, a histone deacetylase inhibitor (HDACi that belongs to an existing class of hydroxamic acid-containing HDACis, on the development competence of cloned embryos in many species. The present study investigated the effects of Scriptaid on the development of porcine SCNT embryos in vitro and its mechanism. Treatment with 300 or 500 nM Scriptaid for 20 h after activation significantly increased the percentage of SCNT embryos that developed to the blastocyst stage and the total number of cells per blastocyst and significantly decreased the percentage of apoptotic cells in blastocysts. Scriptaid treatment significantly increased the level of histone H3 acetylated at K9 and the conversion of 5-methylcytosine into 5-hydroxymethylcytosine and significantly decreased the level of histone H3 trimethylated at K9 at the pronuclear stage. As a potential mechanism for the DNA methylation changes, our results showed that the expression of DNA methyltransferase 1 was frequently down-regulated in Scriptaid-treated embryos in comparison with untreated embryos and was inversely correlated to endogenous microRNA-152 (miR-152. Taken together, these findings illustrated a crucial functional crosstalk between miR-152 and DNMT1. Meanwhile, mRNA and protein levels of POU5F1 and CDX2 were increased in Scriptaid-treated embryos. mRNA levels of Caspase3, and Bax were significantly decreased and that of Bcl-xL was significantly increased in Scriptaid-treated embryos. In conclusion, these observations would contribute to uncover the nuclear reprogramming mechanisms underlying the effects of Scriptaid on the improvement of porcine SCNT embryos.

  3. Differentially expressed microRNAs in colorectal cancer metastasis.

    Science.gov (United States)

    Abba, Mohammed; Benner, Axel; Patil, Nitin; Heil, Oliver; Allgayer, Heike

    2015-12-01

    Tumor metastasis continues to be the most significant contributor to cancer related mortality, and although several studies have examined expression profiles emanating from patients with metastatic disease, very little information is available about signatures that differentiate metastatic lesions from primary tumors and associated normal tissues, largely because such matched tissue sample series are rare. This study was specifically designed to identify the metastasis relevant microRNAs in colorectal cancer and characterize microRNAs that modulate the metastatic phenotype. Here we describe in detail how the data, deposited in the Gene Expression Omnibus (GEO) with the accession number GSE54088, was generated including the basic analysis as contained in the manuscript published in Cancer Research with the PMID 26069251.

  4. Differentially expressed microRNAs in colorectal cancer metastasis

    Directory of Open Access Journals (Sweden)

    Mohammed Abba

    2015-12-01

    Full Text Available Tumor metastasis continues to be the most significant contributor to cancer related mortality, and although several studies have examined expression profiles emanating from patients with metastatic disease, very little information is available about signatures that differentiate metastatic lesions from primary tumors and associated normal tissues, largely because such matched tissue sample series are rare. This study was specifically designed to identify the metastasis relevant microRNAs in colorectal cancer and characterize microRNAs that modulate the metastatic phenotype. Here we describe in detail how the data, deposited in the Gene Expression Omnibus (GEO with the accession number GSE54088, was generated including the basic analysis as contained in the manuscript published in Cancer Research with the PMID 26069251.

  5. New methods for next generation sequencing based microRNA expression profiling

    OpenAIRE

    den Dunnen Johan T; van Ommen Gertjan; Ariyurek Yavuz; Buermans Henk PJ; 't Hoen Peter AC

    2010-01-01

    Abstract Background MicroRNAs are small non-coding RNA transcripts that regulate post-transcriptional gene expression. The millions of short sequence reads generated by next generation sequencing technologies make this technique explicitly suitable for profiling of known and novel microRNAs. A modification to the small-RNA expression kit (SREK, Ambion) library preparation method for the SOLiD sequencing platform is described to generate microRNA sequencing libraries that are compatible with t...

  6. The RPMI-1640 vitamin mixture promotes bovine blastocyst development in vitro and downregulates gene expression of TXNIP with epigenetic modification of associated histones.

    Science.gov (United States)

    Ikeda, S; Sugimoto, M; Kume, S

    2018-02-01

    Diverse environmental conditions surrounding preimplantation embryos, including available nutrients, affect their metabolism and development in both short- and long-term manner. Thioredoxin-interacting protein (TXNIP) is a possible marker for preimplantation stress that is implicated in in vitro fertilization- (IVF) induced long-term DOHaD effects. B vitamins, as participants in one-carbon metabolism, may affect preimplantation embryos by epigenetic alterations of metabolically and developmentally important genes. In vitro-produced bovine embryos were cultured with or without Roswell Park Memorial Institute 1640 vitamin mixture, containing B vitamins and B vitamin-like substances, from day 3 after IVF and we evaluated blastocyst development and TXNIP messenger RNA (mRNA) expression in the blastocysts by reverse transcription-quantitative polymerase chain reaction. The degree of trimethylation of histone H3 lysine 27 (H3K27me3) at TXNIP promoter was examined semi-quantitatively by chromatin immunoprecipitation polymerase chain reaction. Total H3K27me3 were also compared between the groups by Western blot analysis. The vitamin treatment significantly increased the rates of blastocyst development (Pvitamin-mixture-treated group concomitant with higher (Pvitamin-mixture-treated group was also higher (P<0.01) than that in the control group. The epigenetic control of genes related to important metabolic processes during the periconceptional period by nutritional conditions in utero and/or in vitro may have possible implication for the developmental programming during this period that may impact the welfare and production traits of farm animals.

  7. Deregulation of microRNA expression in thyroid neoplasias.

    Science.gov (United States)

    Pallante, Pierlorenzo; Battista, Sabrina; Pierantoni, Giovanna Maria; Fusco, Alfredo

    2014-02-01

    MicroRNAs (miRNAs) have emerged as a class of powerful gene expression regulators. Acting at the post-transcriptional level, miRNAs modulate the expression of at least one-third of the mRNAs that are encoded by the human genome. The expression of a single gene can be regulated by several miRNAs, and every miRNA has more than one target gene. Thus, the miRNA regulatory circuit, which affects essential cellular functions, is of enormous complexity. Moreover, a fundamental role for miRNAs has been determined in the onset and progression of human cancers. Here, we summarize the main alterations in miRNA expression that have been identified in thyroid neoplasias and examine the mechanisms through which miRNA deregulation might promote thyroid cell transformation. We also discuss how the emerging knowledge on miRNA deregulation could be harnessed for the diagnosis and treatment of thyroid neoplasias.

  8. MicroRNA expression profiles in avian haemopoietic cells

    Directory of Open Access Journals (Sweden)

    Yongxiu eYao

    2013-08-01

    Full Text Available MicroRNAs (miRNAs are small, abundant, non-coding RNAs that modulate gene expression by interfering with translation or stability of mRNA transcripts in a sequence-specific manner. A total of 734 precursor and 996 mature miRNAs have so far been identified in the chicken genome. A number of these miRNAs are expressed in a cell type-specific manner, and understanding their function requires detailed examination of their expression in different cell types. We carried out deep sequencing of small RNA populations isolated from stimulated or transformed avian haemopoietic cell lines to determine the changes in the expression profiles of these important regulatory molecules during these biological events. There were significant changes in the expression of a number of miRNAs, including miR-155, in chicken B cells stimulated with CD40 ligand. Similarly, avian leukosis virus (ALV-transformed DT40 cells also showed changes in miRNA expression in relation to the naïve cells. Embryonic stem cell line BP25 demonstrated a distinct cluster of upregulated miRNAs, many of which were shown previously to be involved in embryonic stem cell development. Finally, chicken macrophage cell line HD11 showed changes in miRNA profiles, some of which are thought to be related to the transformation by v-myc transduced by the virus. This work represents the first publication of a catalog of microRNA expression in a range of important avian cells and provides insights into the potential roles of miRNAs in the hematopoietic lineages of cells in a model non-mammalian species.

  9. Expression of microRNA-184 in glioma.

    Science.gov (United States)

    Wu, Xiao-Ben; Yang, Wei; Fan, Gang; Lin, Wan-Run; Liu, Fang; Lu, Zhi-Ming

    2018-01-01

    The aim of the present study was to examine the expression of microRNA (miRNA)-184 in gliomas with different pathological grades, and its effect on survival prognosis. For the present study, 40 participants were selected with different pathological grades of glioma tissues with grade I (n=10), grade II (n=8), grade III (n=16), and grade IV (n=6). In addition, 10 cases of normal brain tissue (obtained by decompression because of traumatic brain injury) were selected. RT-PCR and immunohistochemical techniques were used to detect the expression level and intensity of miRNA-184 in different grades of glioma tissues. The length of survival of miRNA-184-positive patients was analyzed. miRNA-184 mRNA expression was found in normal tissues and tumor tissues, and the expression in tumor tissues was significant (P184 expression were observed among different grades (P184 expression increased with the increase of grade level. The differences in expression across grade levels was statistically significant (P184-positive expression was significantly shorter than that of the negative expression group (P184 is highly expressed in gliomas, which is positively correlated with pathological grade, and is not correlated with pathological type, and negatively correlated with survival time. Thus, miRNA-184 is a potentially important molecular marker for glioma.

  10. Differentially expressed microRNA in multiple sclerosis: A window into pathogenesis?

    DEFF Research Database (Denmark)

    Martin, Nellie Anne; Illés, Zsolt

    2014-01-01

    MicroRNA are small non-coding RNA that mediate mRNA translation repression or mRNA degradation, and thereby refine protein expression levels. More than 30–60% of all genes are regulated by microRNA. Exploring disease-related microRNA signatures is an emerging tool in biomarker discovery......, and silencing has already been used in a clinical phase 2a trial. As microRNA regulate translation of more than 100 genes, they could also provide a focused insight into important pathways, and offer a better understanding of diseases with heterogeneous pathogenesis. The number of studies investigating micro......RNA related to multiple sclerosis has increased significantly in recent years. Differentially expressed microRNA have been identified in the whole blood, serum, plasma, cerebrospinal fluid, peripheral blood mononuclear cells, blood-derived cell subsets and brain lesions of patients with multiple sclerosis...

  11. Comparison of microRNA expression using different preservation methods of matched psoriatic skin samples

    DEFF Research Database (Denmark)

    Løvendorf, Marianne B; Zibert, John R; Hagedorn, Peter H

    2012-01-01

    MicroRNAs are non-coding RNA molecules modulating gene expression post-transcriptionally. Formalin-fixed, paraffin-embedding (FFPE) is a standard preservation method often used in clinical practices, but induces RNA degradation. Extracting high-quality RNA from human skin can be challenging as skin...... contains high levels of RNases. As microRNAs are 19-23 nucleotides long and lack a poly-A tail, they may be less prone to RNA degradation than mRNAs. We investigated whether microRNAs in psoriatic (FFPE) samples reliably reflect microRNA expression in samples less prone to RNA degradation such as fresh...... that microRNA detection in human skin is robust irrespective of preservation method; thus, microRNAs offer an appropriate and flexible approach in clinical practices and for diagnostic purposes in skin disorders....

  12. Identification of differentially expressed microRNAs in human male breast cancer

    Directory of Open Access Journals (Sweden)

    Schipper Elisa

    2010-03-01

    Full Text Available Abstract Background The discovery of small non-coding RNAs and the subsequent analysis of microRNA expression patterns in human cancer specimens have provided completely new insights into cancer biology. Genetic and epigenetic data indicate oncogenic or tumor suppressor function of these pleiotropic regulators. Therefore, many studies analyzed the expression and function of microRNA in human breast cancer, the most frequent malignancy in females. However, nothing is known so far about microRNA expression in male breast cancer, accounting for approximately 1% of all breast cancer cases. Methods The expression of 319 microRNAs was analyzed in 9 primary human male breast tumors and in epithelial cells from 15 male gynecomastia specimens using fluorescence-labeled bead technology. For identification of differentially expressed microRNAs data were analyzed by cluster analysis and selected statistical methods. Expression levels were validated for the most up- or down-regulated microRNAs in this training cohort using real-time PCR methodology as well as in an independent test cohort comprising 12 cases of human male breast cancer. Results Unsupervised cluster analysis separated very well male breast cancer samples and control specimens according to their microRNA expression pattern indicating cancer-specific alterations of microRNA expression in human male breast cancer. miR-21, miR519d, miR-183, miR-197, and miR-493-5p were identified as most prominently up-regulated, miR-145 and miR-497 as most prominently down-regulated in male breast cancer. Conclusions Male breast cancer displays several differentially expressed microRNAs. Not all of them are shared with breast cancer biopsies from female patients indicating male breast cancer specific alterations of microRNA expression.

  13. MicroRNA expression profiles of cancer stem cells in head and neck squamous cell carcinoma

    OpenAIRE

    YATA, KAZUYA; BEDER, LEVENT BEKIR; TAMAGAWA, SHUNJI; HOTOMI, MUNEKI; HIROHASHI, YOSHIHIKO; GRENMAN, REIDAR; YAMANAKA, NOBORU

    2015-01-01

    Increasing evidence indicates that cancer stem cells have essential roles in tumor initiation, progression, metastasis and resistance to chemo-radiation. Recent research has pointed out biological importance of microRNAs in cancer stem cell dysregulation. Total number of mature microRNAs in human genome increased to more than 2,500 with the recent up-date of the database. However, currently no information is available regarding microRNA expression profiles of cancer stem cells in head and nec...

  14. MicroRNA expression profiling in neurogenesis of adipose tissue ...

    Indian Academy of Sciences (India)

    differentiated ADSCs to identify the responsible microRNAs in neurogenesis using this type of stem cell. MicroRNAs from four different donors were analysed by microarray. Compared to the undifferentiation control, we identified 39–101 ...

  15. Expression pattern of inflammatory response genes and their regulatory micrornas in bovine oviductal cells in response to lipopolysaccharide: implication for early embryonic development.

    Directory of Open Access Journals (Sweden)

    Sally Ibrahim

    Full Text Available In the present study, we used an in vitro model to investigate the response of the oviduct with respect to inflammatory mediators and their regulatory microRNAs in case of bacterial infection and subsequent association with embryo survival. For this, we conducted two experiments. In the first experiment, cultured primary bovine oviductal cells (BOEC were challenged with lipopolysaccharide (LPS for 24h and the temporal expression pattern of inflammatory mediators and their regulatory microRNAs were measured at 0, 3, 6, 12, 24 and 48h after LPS treatment. Intriguingly, the temporal patterns of all miRNAs except miR-21 were significantly up-regulated at 6h after LPS treatment. Whereas, we observed significant overexpression of pro-inflammatory mediators as tumor necrosis factor alpha (TNFα and interleukin-1 beta (IL1β after LPS challenge for 24h. On the other hand, the expression level of essential elements like oviductal glycoprotein 1 (OVGP1 and insulin-like growth factor 2 (IGF2 was significantly decreased in challenged groups compared with control. Moreover, miR-155, miR-146a, miR-223, miR-21, miR-16 and miR-215 have shown a clear suppression in challenged group after LPS treatment. In the 2nd experiment there were four groups of blastocysts produced, namely embryo+LPS free media, embryo+LPS, BOEC+embryo and BOEC+embryo+LPS. The suboptimal oviduct environment due to LPS challenge is found to have a significant influence on the expression of inflammatory response genes (TNFα and CSF1, stress response genes (SOD and CAT, mitochondrial activity, reactive oxygen species (ROS accumulation and apoptotic level either in cultured or co-cultured blastocysts. Collectively, LPS challenge led to aberrant changes in oviductal transcriptome profile, which could lead to a suboptimal environment for embryo development.

  16. Highly dynamic and sex-specific expression of microRNAs during early ES cell differentiation.

    Directory of Open Access Journals (Sweden)

    Constance Ciaudo

    2009-08-01

    Full Text Available Embryonic stem (ES cells are pluripotent cells derived from the inner cell mass of the mammalian blastocyst. Cellular differentiation entails loss of pluripotency and gain of lineage-specific characteristics. However, the molecular controls that govern the differentiation process remain poorly understood. We have characterized small RNA expression profiles in differentiating ES cells as a model for early mammalian development. High-throughput 454 pyro-sequencing was performed on 19-30 nt RNAs isolated from undifferentiated male and female ES cells, as well as day 2 and 5 differentiating derivatives. A discrete subset of microRNAs (miRNAs largely dominated the small RNA repertoire, and the dynamics of their accumulation could be readily used to discriminate pluripotency from early differentiation events. Unsupervised partitioning around meloids (PAM analysis revealed that differentiating ES cell miRNAs can be divided into three expression clusters with highly contrasted accumulation patterns. PAM analysis afforded an unprecedented level of definition in the temporal fluctuations of individual members of several miRNA genomic clusters. Notably, this unravelled highly complex post-transcriptional regulations of the key pluripotency miR-290 locus, and helped identify miR-293 as a clear outlier within this cluster. Accordingly, the miR-293 seed sequence and its predicted cellular targets differed drastically from those of the other abundant cluster members, suggesting that previous conclusions drawn from whole miR-290 over-expression need to be reconsidered. Our analysis in ES cells also uncovered a striking male-specific enrichment of the miR-302 family, which share the same seed sequence with most miR-290 family members. Accordingly, a miR-302 representative was strongly enriched in embryonic germ cells derived from primordial germ cells of male but not female mouse embryos. Identifying the chromatin remodelling and E2F-dependent transcription

  17. Detecting microRNA activity from gene expression data.

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-01-01

    BACKGROUND: MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. RESULTS: Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. CONCLUSIONS: We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  18. Detecting microRNA activity from gene expression data

    LENUS (Irish Health Repository)

    Madden, Stephen F

    2010-05-18

    Abstract Background MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions. Results Here we combine correspondence analysis, between group analysis and co-inertia analysis (CIA) to determine which miRNAs are associated with differences in gene expression levels in microarray data sets. Using a database of miRNA target predictions from TargetScan, TargetScanS, PicTar4way PicTar5way, and miRanda and combining these data with gene expression levels from sets of microarrays, this method produces a ranked list of miRNAs associated with a specified split in samples. We applied this to three different microarray datasets, a papillary thyroid carcinoma dataset, an in-house dataset of lipopolysaccharide treated mouse macrophages, and a multi-tissue dataset. In each case we were able to identified miRNAs of biological importance. Conclusions We describe a technique to integrate gene expression data and miRNA target predictions from multiple sources.

  19. Circulating microRNA expression profiles associated with systemic lupus erythematosus

    DEFF Research Database (Denmark)

    Carlsen, Anting Liu; Schetter, Aaron J; Nielsen, Christoffer

    2013-01-01

    OBJECTIVE: To evaluate the specificity of expression patterns of cell-free, circulating microRNAs in systemic lupus erythematosus (SLE). METHODS: Total RNA was purified from plasma and 45 different specific mature microRNAs were determined using quantitative reverse transcription polymerase chain...

  20. MicroRNAs Expression Profiles in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Elsa Bronze-da-Rocha

    2014-01-01

    Full Text Available The current search for new markers of cardiovascular diseases (CVDs is explained by the high morbidity and mortality still observed in developed and developing countries due to cardiovascular events. Recently, microRNAs (miRNAs or miRs have emerged as potential new biomarkers and are small sequences of RNAs that regulate gene expression at posttranscriptional level by inhibiting translation or inducing degradation of the target mRNAs. Circulating miRNAs are involved in the regulation of signaling pathways associated to aging and can be used as novel diagnostic markers for acute and chronic diseases such as cardiovascular pathologies. This review summarizes the biogenesis, maturation, and stability of miRNAs and their use as potential biomarkers for coronary artery disease (CAD, myocardial infarction (MI, and heart failure (HF.

  1. MicroRNA expression variability in human cervical tissues.

    Directory of Open Access Journals (Sweden)

    Patrícia M Pereira

    Full Text Available MicroRNAs (miRNAs are short (approximately 22 nt non-coding regulatory RNAs that control gene expression at the post-transcriptional level. Deregulation of miRNA expression has been discovered in a wide variety of tumours and it is now clear that they contribute to cancer development and progression. Cervical cancer is one of the most common cancers in women worldwide and there is a strong need for a non-invasive, fast and efficient method to diagnose the disease. We investigated miRNA expression profiles in cervical cancer using a microarray platform containing probes for mature miRNAs. We have evaluated miRNA expression profiles of a heterogeneous set of cervical tissues from 25 different patients. This set included 19 normal cervical tissues, 4 squamous cell carcinoma, 5 high-grade squamous intraepithelial lesion (HSIL and 9 low-grade squamous intraepithelial lesion (LSIL samples. We observed high variability in miRNA expression especially among normal cervical samples, which prevented us from obtaining a unique miRNA expression signature for this tumour type. However, deregulated miRNAs were identified in malignant and pre-malignant cervical tissues after tackling the high expression variability observed. We were also able to identify putative target genes of relevant candidate miRNAs. Our results show that miRNA expression shows natural variability among human samples, which complicates miRNA data profiling analysis. However, such expression noise can be filtered and does not prevent the identification of deregulated miRNAs that play a role in the malignant transformation of cervical squamous cells. Deregulated miRNAs highlight new candidate gene targets allowing for a better understanding of the molecular mechanism underlying the development of this tumour type.

  2. Dehydration triggers differential microRNA expression in Xenopus laevis brain.

    Science.gov (United States)

    Luu, Bryan E; Storey, Kenneth B

    2015-11-15

    African clawed frogs, Xenopus laevis, although primarily aquatic, have a high tolerance for dehydration, being capable of withstanding the loss of up to 32-35% of total water body water. Recent studies have shown that microRNAs play a role in the response to dehydration by the liver, kidney and ventral skin of X. laevis. MicroRNAs act by modulating the expression of mRNA transcripts, thereby affecting diverse biochemical pathways. In this study, 43 microRNAs were assessed in frog brains comparing control and dehydrated (31.2±0.83% of total body water lost) conditions. MicroRNAs of interest were measured using a modified protocol which employs polyadenylation of microRNAs prior to reverse transcription and qPCR. Twelve microRNAs that showed a significant decrease in expression (to 41-77% of control levels) in brains from dehydrated frogs (xla-miR-15a, -150, -181a, -191, -211, -218, -219b, -30c, -30e, -31, -34a, and -34b) were identified. Genomic analysis showed that the sequences of these dehydration-responsive microRNAs were highly conserved as compared with the comparable microRNAs of mice (91-100%). Suppression of these microRNAs implies that translation of the mRNA transcripts under their control could be enhanced in response to dehydration. Bioinformatic analysis using the DIANA miRPath program (v.2.0) predicted the top two KEGG pathways that these microRNAs collectively regulate: 1. Axon guidance, and 2. Long-term potentiation. Previous studies indicated that suppression of these microRNAs promotes neuroprotective pathways by increasing the expression of brain-derived neurotrophic factor and activating anti-apoptotic pathways. This suggests that similar actions may be triggered in X. laevis brains as a protective response to dehydration. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  3. Human Corneal MicroRNA Expression Profile in Fungal Keratitis.

    Science.gov (United States)

    Boomiraj, Hemadevi; Mohankumar, Vidyarani; Lalitha, Prajna; Devarajan, Bharanidharan

    2015-12-01

    MicroRNAs (miRNAs) are small, stable, noncoding RNA molecules with regulatory function and marked tissue specificity that posttranscriptionally regulate gene expression. However, their role in fungal keratitis remains unknown. The purpose of this study was to identify the miRNA profile and its regulatory role in fungal keratitis. Normal donor (n = 3) and fungal keratitis (n = 5) corneas were pooled separately, and small RNA deep sequencing was performed using a sequencing platform. A bioinformatics approach was applied to identify differentially-expressed miRNAs and their targets, and select miRNAs were validated by real-time quantitative PCR (qPCR). The regulatory functions of miRNAs were predicted by combining miRNA target genes and pathway analysis. The mRNA expression levels of select target genes were further analyzed by qPCR. By deep sequencing, 75 miRNAs were identified as differentially expressed with fold change greater than 2 and probability score greater than 0.9 in fungal keratitis corneas. The highly dysregulated miRNAs (miR-511-5p, miR-142-3p, miR-155-5p, and miR-451a) may regulate wound healing as they were predicted to specifically target wound inflammatory genes. Moreover, the increased expression of miR-451a in keratitis correlated with reduced expression of its target, macrophage migration inhibitory factor, suggesting possible regulatory functions. This is, to our knowledge, the first report on comprehensive human corneal miRNA expression profile in fungal keratitis. Several miRNAs with high expression in fungal keratitis point toward their potential role in regulation of pathogenesis. Further insights in understanding their role in corneal wound inflammation may help design new therapeutic strategies.

  4. Cloning, characterization and expression analysis of porcine microRNAs

    Directory of Open Access Journals (Sweden)

    Desilva Udaya

    2009-02-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small ~22-nt regulatory RNAs that can silence target genes, by blocking their protein production or degrading the mRNAs. Pig is an important animal in the agriculture industry because of its utility in the meat production. Besides, pig has tremendous biomedical importance as a model organism because of its closer proximity to humans than the mouse model. Several hundreds of miRNAs have been identified from mammals, humans, mice and rats, but little is known about the miRNA component in the pig genome. Here, we adopted an experimental approach to identify conserved and unique miRNAs and characterize their expression patterns in diverse tissues of pig. Results By sequencing a small RNA library generated using pooled RNA from the pig heart, liver and thymus; we identified a total of 120 conserved miRNA homologs in pig. Expression analysis of conserved miRNAs in 14 different tissue types revealed heart-specific expression of miR-499 and miR-208 and liver-specific expression of miR-122. Additionally, miR-1 and miR-133 in the heart, miR-181a and miR-142-3p in the thymus, miR-194 in the liver, and miR-143 in the stomach showed the highest levels of expression. miR-22, miR-26b, miR-29c and miR-30c showed ubiquitous expression in diverse tissues. The expression patterns of pig-specific miRNAs also varied among the tissues examined. Conclusion Identification of 120 miRNAs and determination of the spatial expression patterns of a sub-set of these in the pig is a valuable resource for molecular biologists, breeders, and biomedical investigators interested in post-transcriptional gene regulation in pig and in related mammals, including humans.

  5. [Electroacupuncture Combined with Clomiphene Promotes Pregnancy and Blastocyst Implantation Possibly by Up-regulating Expression of Insulin Receptor and Insulin Receptor Substrate 1 Proteins in Endometrium in Rats with PCOS].

    Science.gov (United States)

    Lai, Mao-Hua; Ma, Hong-Xia; Song, Xing-Hua

    2016-10-25

    To observe the effect of electroacupuncture (EA) intervention combined with clomiphene critate (CC) on the blastocyst implantation and pregnancy rate and expression of insulin receptor (INSR) and insulin receptor substrate 1 (IRS 1) proteins in the endometrium in rats with polycystic ovary syndrome (PCOS), so as to reveal its mechanisms underlying improvement of PCOS. One hundred and twenty-five female SD rats were randomly divided into normal control, PCOS model, medication (CC), EA and EA+CC groups ( n =25 in each group, 15 for checking blastocyst implantation, and 10 for Western blot). The PCOS model was established by subcutaneous injection of Dehydroepiandrosterone (DHEA) and fed with high-fat diet. Rats of the normal control group were treated by subcutaneous injection of sesame oil and fed with the normal forage. EA stimulation was applied to "Zhongwan" (CV 12), "Guanyuan" (CV 4) and bilateral "Tianshu" (ST 25) for 30 min, 3 times a week, 5 weeks altogether. Rats of the CC and EA+CC groups were fed with CC (100 mg·kg -1 ·d -1 ) for 2 days after regular restriction (30 min, 3 times a week, 5 weeks altogether). The pregnancy was determined by vaginal smear tests and the number of blastocyst implantation determined by examination of the uterus after execution. The expression of INSR and IRS 1 proteins in the endometrium was detected by Western blot. The pregnancy rate and the number of blastocyst implantation were significantly lower in the model group than in the normal control group ( P 0.05). The relative expression levels of both INSR and IRS 1 proteins were markedly lower in the model group than in the normal control group ( P 0.05). EA intervention can improve pregnancy rate and the number of blastocyst implantation in PCOS rats, which may be related to its effects in up-regulating the expression of INSR and IRS 1 proteins in the endometrium.

  6. MicroRNA-146a expression as a potential biomarker for rheumatoid ...

    African Journals Online (AJOL)

    MicroRNA-146a expression as a potential biomarker for rheumatoid arthritis in Egypt. Heba Mohamed Abdelkader Elsayed, Walaa Shawky Khater, Ayman Asaad Ibrahim, Maha Salah El-din Hamdy, Nashwa Aly Morshedy ...

  7. MicroRNA expression profiling during upland cotton gland forming ...

    African Journals Online (AJOL)

    This data may be useful in future studies associated with gland control involved in the terpenoid aldehyde biosynthesis pathway, genetic engineering and molecular breeding of cotton. Key words: MicroRNA, cotton, gland morphogenesis, microRNA microarray, quantitative real-time reversetranscription polymerase chain ...

  8. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Science.gov (United States)

    Furuse, Yuki; Finethy, Ryan; Saka, Hector A; Xet-Mull, Ana M; Sisk, Dana M; Smith, Kristen L Jurcic; Lee, Sunhee; Coers, Jörn; Valdivia, Raphael H; Tobin, David M; Cullen, Bryan R

    2014-01-01

    MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  9. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells.

    Directory of Open Access Journals (Sweden)

    Yuki Furuse

    Full Text Available MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.

  10. MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression.

    Science.gov (United States)

    Chinchilla, Ana; Lozano, Estefania; Daimi, Houria; Esteban, Francisco J; Crist, Colin; Aranega, Amelia E; Franco, Diego

    2011-01-01

    non-coding RNA has been recently demonstrated to be a novel mechanism for modulation of gene expression at the post-transcriptional level. The importance of microRNAs in the cardiovascular system is now apparent. Mutations of distinct microRNAs have provided evidence for fundamental roles of microRNAs during cardiovascular development. However, there is limited information about global microRNA profiles during mouse heart development. In this study, we have gained insight from the expression profiles of microRNAs during mouse ventricular development by microarray and qRT-PCR analysis. our microarray analysis reveals that relatively few microRNAs display either increasing or decreasing expression profiles during ventricular chamber formation. Interestingly, most of the differentially expressed microRNAs display a rather discrete peak of expression at particular developmental stages. Furthermore, we demonstrate that microRNA-27b (miR-27b) displays an overt myocardial expression during heart development and that the transcription factor-encoding gene Mef2c is an miR-27b target. our data present a comprehensive profile of microRNA expression during ventricular maturation, providing an entry point for investigation of the functional roles of the most abundantly and differentially expressed microRNAs during cardiogenesis.

  11. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

    Science.gov (United States)

    Fiorillo, Alyson A; Heier, Christopher R; Novak, James S; Tully, Christopher B; Brown, Kristy J; Uaesoontrachoon, Kitipong; Vila, Maria C; Ngheim, Peter P; Bello, Luca; Kornegay, Joe N; Angelini, Corrado; Partridge, Terence A; Nagaraju, Kanneboyina; Hoffman, Eric P

    2015-09-08

    The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Cryopreservation of boar sperm induces differential microRNAs expression.

    Science.gov (United States)

    Zhang, Yan; Dai, Dinghui; Chang, Yu; Li, Yuan; Zhang, Ming; Zhou, Guangbin; Peng, Zhanghua; Zeng, Changjun

    2017-06-01

    Lower conception rates and litter sizes limit the wide use of artificial insemination with frozen-thawed boar sperm, due to a lack of understanding of the mechanisms that cause cryodamage and cryoinjury to sperm during cryopreservation. CryoMiRs, a family of freeze-related microRNAs (miRNAs), are associated with freeze tolerance, and regulate metabolism in mammalian hibernators and insects. Thus, we speculate that miRNAs maybe involved in the regulation of the freeze-thaw process and may affect boar sperm function. In this study, we studied the differential expression of 46 miRNAs that have roles in spermatogenesis, sperm maturation, and sperm quality in response to cryopreservation (with or without 3% glycerol). The results indicated that, in response to cryopreservation with 3% glycerol, 14 miRNAs were significantly up-regulated, but only two miRNAs (miR-22 and miR-450b-5p) were significantly down-regulated, relative to fresh sperm. Preservation with 3% glycerol caused up-regulation of 17 miRNAs, but only caused down-regulation of one miRNA (miR-24), relative to sperm cryopreserved without glycerol. Functional annotations of these differentially expressed miRNAs indicated that these miRNAs and their targets are mainly associated with metabolic and cellular processes. Therefore, our findings show that cryopreservation results in changes in miRNA expression, and suggest that the anti-freeze mechanisms of boar sperm need to be studied further. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

    Directory of Open Access Journals (Sweden)

    Steven W Paugh

    2016-02-01

    Full Text Available MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16 for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.

  14. Transcriptomic difference in bovine blastocysts following vitrification and slow freezing at morula stage.

    Directory of Open Access Journals (Sweden)

    Alisha Gupta

    Full Text Available Cryopreservation is known for its marked deleterious effects on embryonic health. Bovine compact morulae were vitrified or slow-frozen, and post-warm morulae were cultured to the expanded blastocyst stage. Blastocysts developed from vitrified and slow-frozen morulae were subjected to microarray analysis and compared with blastocysts developed from unfrozen control morulae for differential gene expression. Morula to blastocyst conversion rate was higher (P < 0.05 in control (72% and vitrified (77% than in slow-frozen (34% morulae. Total 20 genes were upregulated and 44 genes were downregulated in blastocysts developed from vitrified morulae (fold change ≥ ± 2, P < 0.05 in comparison with blastocysts developed from control morulae. In blastocysts developed from slow-frozen morulae, 102 genes were upregulated and 63 genes were downregulated (fold change ≥ ± 1.5, P < 0.05. Blastocysts developed from vitrified morulae exhibited significant changes in gene expression mainly involving embryo implantation (PTGS2, CALB1, lipid peroxidation and reactive oxygen species generation (HSD3B1, AKR1B1, APOA1 and cell differentiation (KRT19, CLDN23. However, blastocysts developed from slow-frozen morulae showed changes in the expression of genes related to cell signaling (SPP1, cell structure and differentiation (DCLK2, JAM2 and VIM, and lipid metabolism (PLA2R1 and SMPD3. In silico comparison between blastocysts developed form vitrified and slow-frozen morulae revealed similar changes in gene expression as between blastocysts developed from vitrified and control morulae. In conclusion, blastocysts developed form vitrified morulae demonstrated better post-warming survival than blastocysts developed from slow-frozen morulae but their gene expression related to lipid metabolism, steroidogenesis, cell differentiation and placentation changed significantly (≥ 2 fold. Slow freezing method killed more morulae than vitrification but those which survived up to

  15. microRNA expression profile of peripheral blood mononuclear cells of Klinefelter syndrome

    Science.gov (United States)

    SUI, WEIGUO; OU, MINGLIN; CHEN, JIEJING; LI, HUAN; LIN, HUA; ZHANG, YUE; LI, WUXIAN; XUE, WEN; TANG, DONGE; GONG, WEIWEI; ZHANG, RUOHAN; LI, FENGYAN; DAI, YONG

    2012-01-01

    microRNAs are a type of small non-coding RNAs which play important roles in post-transcriptional gene regulation, and the characterization of microRNA expression profiling in peripheral blood mononuclear cells (PBMCs) from patients with Klinefelter syndrome requires further investigation. In this study, PBMCs were obtained from patients with Klinefelter syndrome and normal controls. After preparation of small RNA libraries, the two groups of samples were sequenced simultaneously using next generation high-throughput sequencing technology, and novel and known microRNAs were analyzed. A total of 9,772,392 and 9,717,633 small RNA reads were obtained; 8,014,466 (82.01%) and 8,104,423 (83.40%) genome-matched reads, 64 and 49 novel microRNAs were identified in the library of Klinefelter syndrome and the library of healthy controls, respectively. There were 71 known microRNAs with differential expression levels between the two libraries. Clustering of over-represented gene ontology (GO) classes in predicted targets of novel microRNAs in the Klinefelter syndrome library showed that the most significant GO terms were genes involved in the endomembrane system, nucleotide binding and kinase activity. Our data revealed that there are a large number of microRNAs deregulated in PBMCs taken from patients with Klinefelter syndrome, of which certain novel and known microRNAs may be involved in the pathological process of Klinefelter syndrome. Further studies are necessary to determine the roles of microRNAs in the pathological process of Klinefelter syndrome in the future. PMID:23226734

  16. Differentially Expressed microRNAs and Target Genes Associated with Plastic Internode Elongation in Alternanthera philoxeroides in Contrasting Hydrological Habitats

    Directory of Open Access Journals (Sweden)

    Gengyun Li

    2017-12-01

    Full Text Available Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philoxeroides were identified by time course expression profiling using high-throughput sequencing technology. A total of 128 known and 18 novel microRNAs were found to be differentially expressed under contrasting hydrological habitats. The microRNA:mRNA pairs potentially associated with plastic internode elongation were identified by integrative analysis of microRNA and mRNA expression profiles, and were validated by qRT-PCR and 5′ RLM-RACE. The results showed that both the universal microRNAs conserved across different plants and the unique microRNAs novelly identified in A. philoxeroides were involved in the responses to varied water regimes. The results also showed that most of the differentially expressed microRNAs were transiently up-/down-regulated at certain time points during the treatments. The fine-scale temporal changes in microRNA expression highlighted the importance of time-series sampling in identifying stress-responsive microRNAs and analyzing their role in stress response/tolerance.

  17. Conjunctival MicroRNA expression in inflammatory trachomatous scarring.

    Directory of Open Access Journals (Sweden)

    Tamsyn Derrick

    Full Text Available Trachoma is a fibrotic disease of the conjunctiva initiated by Chlamydia trachomatis infection. This blinding disease affects over 40 million people worldwide yet the mechanisms underlying its pathogenesis remain poorly understood. We have investigated host microRNA (miR expression in health (N and disease (conjunctival scarring with (TSI and without (TS inflammation to determine if these epigenetic differences are associated with pathology.We collected two independent samples of human conjunctival swab specimens from individuals living in The Gambia (n = 63 & 194. miR was extracted, and we investigated the expression of 754 miR in the first sample of 63 specimens (23 N, 17 TS, 23 TSI using Taqman qPCR array human miRNA genecards. Network and pathway analysis was performed on this dataset. Seven miR that were significantly differentially expressed between different phenotypic groups were then selected for validation by qPCR in the second sample of 194 specimens (93 N, 74 TS, 22 TSI.Array screening revealed differential expression of 82 miR between N, TS and TSI phenotypes (fold change >3, p<0.05. Predicted mRNA targets of these miR were enriched in pathways involved in fibrosis and epithelial cell differentiation. Two miR were confirmed as being differentially expressed upon validation by qPCR. miR-147b is significantly up-regulated in TSI versus N (fold change = 2.3, p = 0.03 and miR-1285 is up-regulated in TSI versus TS (fold change = 4.6, p = 0.005, which was consistent with the results of the qPCR array.miR-147b and miR-1285 are up-regulated in inflammatory trachomatous scarring. Further investigation of the function of these miR will aid our understanding of the pathogenesis of trachoma.

  18. Differential Expression of MicroRNAs between Eutopic and Ectopic Endometrium in Ovarian Endometriosis

    Directory of Open Access Journals (Sweden)

    Nicoletta Filigheddu

    2010-01-01

    Full Text Available Endometriosis, defined as the presence of endometrial tissue outside the uterus, is a common gynecological disease with poorly understood pathogenesis. MicroRNAs are members of a class of small noncoding RNA molecules that have a critical role in posttranscriptional regulation of gene expression by repression of target mRNAs translation. We assessed differentially expressed microRNAs in ectopic endometrium compared with eutopic endometrium in 3 patients through microarray analysis. We identified 50 microRNAs differentially expressed and the differential expression of five microRNAs was validated by real-time RT-PCR in other 13 patients. We identified in silico their predicted targets, several of which match the genes that have been identified to be differentially expressed in ectopic versus eutopic endometrium in studies of gene expression. A functional analysis of the predicted targets indicates that several of these are involved in molecular pathways implicated in endometriosis, thus strengthening the hypothesis of the role of microRNAs in this pathology.

  19. Differential Expression of MicroRNAs in Leprosy Skin Lesions

    Directory of Open Access Journals (Sweden)

    Cleverson T. Soares

    2017-08-01

    Full Text Available Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is a major public health problem in poor and developing countries of the Americas, Africa, and Asia. MicroRNAs (miRNAs, which are small non-coding RNAs (18–24 nucleotides, play an important role in regulating cell and tissue homeostasis through translational downregulation of messenger RNAs (mRNAs. Deregulation of miRNA expression is important for the pathogenesis of various neoplastic and non-neoplastic diseases and has been the focus of many publications; however, studies on the expression of miRNAs in leprosy are rare. Herein, an extensive evaluation of differentially expressed miRNAs was performed on leprosy skin lesions using microarrays. Leprosy patients, classified according to Ridley and Jopling’s classification or reactional states (R1 and R2, and healthy controls (HCs were included. Punch biopsies were collected from the borders of leprosy lesions (10 tuberculoid, 10 borderline tuberculoid, 10 borderline borderline, 10 borderline lepromatous, 4 lepromatous, 14 R1, and 9 R2 and from 9 HCs. miRNA expression profiles were obtained using the Agilent Microarray platform with miRBase, which consists of 1,368 Homo sapiens (hsa-miRNA candidates. TaqMan quantitative real-time reverse transcription polymerase chain reaction (RT-PCR was used to validate differentially expressed miRNAs. Sixty-four differentially expressed miRNAs, including 50 upregulated and 14 downregulated (fold change ≥2.0, p-value ≤ 0.05 were identified after comparing samples from patients to those of controls. Twenty differentially expressed miRNAs were identified exclusively in the reactional samples (14 type 1 and 6 type 2. Eight miRNAs were validated by RT-PCR, including seven upregulated (hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-146b-5p, hsa-miR-342-3p, hsa-miR-361-3p, hsa-miR-3653, and hsa-miR-484 and one downregulated (hsa-miR-1290. These miRNAs were differentially expressed in leprosy and

  20. Identification of novel and differentially expressed MicroRNAs of dairy goat mammary gland tissues using solexa sequencing and bioinformatics.

    Directory of Open Access Journals (Sweden)

    Zhibin Ji

    Full Text Available MicroRNAs are small, noncoding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in various biological processes. Although most microRNAs expression profiles studies have been performed in humans or rodents, relatively limited knowledge also exists in other mammalian species. The identification of the full repertoire of microRNAs expressed in the lactating mammary gland of Capra hircus would significantly increase our understanding of the physiology of lactating mammary glands. In this study, two libraries were constructed using the lactating mammary gland tissues of Laoshan dairy goats (Capra hircus during peak and late lactation. Solexa high-throughput sequencing technique and bioinformatics were used to determine the abundance and differential expression of the microRNAs between peak and late lactation. As a result, 19,044,002 and 7,385,833 clean reads were obtained, respectively, and 1,113 conserved known microRNAs and 31 potential novel microRNA candidates were identified. A total of 697 conserved microRNAs were significantly differentially expressed with a P-value<0.01, 272 microRNAs were up-regulated and 425 microRNAs were down-regulated during peak lactation. The results were validated using real-time quantitative RT-PCR. 762,557 annotated mRNA transcripts were predicted as putative target gene candidates. The GO annotation and KEGG pathway analysis suggested that differentially expressed microRNAs were involved in mammary gland physiology, including signal transduction, and cell-cell and cell-extracellular communications. This study provided the first global of the microRNA in Capra hircus and expanded the repertoire of microRNAs. Our results have great significance and value for the elucidation of complex regulatory networks between microRNAs and mRNAs and for the study of mammary gland physiology and lactation.

  1. [microRNA expression in childhood acute granulocytic leukemia and its subtypes].

    Science.gov (United States)

    Luo, Xue-qun; Xu, Ling; Ke, Zhi-yong; Huang, Li-bin; Zhang, Xiao-li; Zhang, Li-dan

    2011-11-01

    Recent studies have suggested that there is a close relation between microRNA and acute leukemia (AL). The aim of this study was to investigate and better understand the classification and diagnosis of AL as well as pathogenesis and prognosis of this disease. A total of 93 children with AL and and 12 cases of idiopathic thrombocytopenic purpura (as control group) were enrolled in this study. Microarray chip analysis of their bone marrow samples was conducted to evaluate the microRNA profiles. Quantitative real-time PCR was performed for validating the abnormal expression of microRNA. The microRNA expression profiles were different between acute granulocytic leukemia and acute lymphoblastic leukemia and also between the three subtypes (M1, M2 and M3) of acute granulocytic leukemia according to FAB classification based on leukemic cell differentiation. These three subtypes of leukemia could be identified by unsupervised hierarchical cluster analysis of microRNA expression and had specific up-regulation of miR-335, miR-126 and miR-125b, respectively. However, in the M2 and M3 subtypes with positive AML1-ETO and PML-RARα, respectively, which have a better prognosis, the expressions of miR-126 and miR-125b were significantly higher than those with negative AML1-ETO and PML-RARα. Further more, miR-335 and miR-146 were up-regulated in acute granulocytic leukemia observed in this study, which are different from those reported for adult patients. microRNA cascade may serve as new biomarkers for the classification and diagnosis of pediatric AL. It is also suggested that there might be different pathogenesis and prognosis between AL types related to specific expression and regulation of microRNA.

  2. MicroRNA expression in a phosphaturic mesenchymal tumour

    Directory of Open Access Journals (Sweden)

    Darrell Green

    2017-12-01

    Full Text Available Phosphaturic mesenchymal tumours are a heterogeneous set of bone and soft tissue neoplasms that can cause a number of paraneoplastic syndromes such as tumour induced osteomalacia. The term phosphaturic comes from the common finding that these tumours secrete high levels of fibroblast growth factor 23 which causes renal phosphate wasting leading to hypophosphatemia. Phosphaturic mesenchymal tumours are rare and diagnosis is difficult. A very active 68 year old male presented with bone pain and muscle weakness. He was hypophosphataemic and total alkaline phosphatase was markedly elevated. The patient was placed on vitamin D supplementation but his condition progressed. In the fifth year of presentation the patient required the use of a wheelchair and described “explosive” bone pain on physical contact. Serum 1,25 dihydroxyvitamin D was low and serum fibroblast growth factor 23 was significantly elevated, raising suspicion of a phosphaturic mesenchymal tumour. A lesion was detected in his left femoral head and the patient underwent a total hip replacement. The patient displayed a rapid improvement to his condition and during a three year follow up period he returned to an active lifestyle. As molecular testing may help provide a robust diagnosis and is particularly useful in rare diseases we took a next generation sequencing approach to identify a differential expression of small RNAs in the resected tumour. Small RNAs are non-coding RNA molecules that play a key role in regulation of gene expression and can be used as specific biomarkers. We found an upregulation of miR-197. We also found a downregulation of miR-20b, miR-144 and miR-335 which is a small RNA profile typical of osteosarcoma. MiR-21, the most frequently upregulated microRNA in cancer, was downregulated. We conclude that the specific small RNA profile is typical of osteosarcoma except for the downregulation of oncogenic miR-21. Transcriptional plasticity of miR-197, which is

  3. [Effect of xenobiotics on microRNA expression in rat liver].

    Science.gov (United States)

    Gulyaeva, L F; Chanyshev, M D; Kolmykov, S K; Ushakov, D S; Nechkin, S S

    2016-01-01

    Using bioinformatics analysis we selected microRNAs which could bind 3'-UTR-region of cytochrome P450 (CYP) genes. Three microRNA miR-21, -221, -222, their potential targets might be mRNA for CYP1A1, and two microRNA miR-143, miR-152 for CYP2B1 accordingly were selected for experimental verification. Expression level of these microRNAs in rat liver upon benzo(a)pyrene (BP), phenobarbital (PB), and DDT induction was determined using RT-qPCR method. In rats treated by both BP, and DDT the hepatic content of miR-21, -221, -222 significantly demonstrated a 2-3-fold decrease. The decrease in miR expression was accompanied by a considerable (5.5-8.7-fold) increase in the CYP1A1-mediated EROD activity. The expression of miR-143 remained unchanged after the PB treatment, while the expression of miR-152 increased by 2 times, however, the (10.5-fold) increase in PROD activity of CYP2B was much higher. In the DDT-treated liver PROD activity increased by 20 times, the expression of miR-152 didn't change, and the expression of miR-143 increased by 2 times. The bioinformatics analysis of interactions between microRNAs and targets showed that the studied miRs can potentially bind 3'-end of AhR, ESR1, GR, CCND1, PTEN mRNA. Thus, the expression profile of miR-21, -221, -222, -143, -152 might change under the xenobiotics exposure. In silico analysis confirmed, that microRNAs target not only cytochrome P450 mRNA but also other genes, including those involved in hormonal carcinogenesis, they also can be regulated with studied miRs.

  4. In Situ Detection of MicroRNA Expression with RNAscope Probes.

    Science.gov (United States)

    Yin, Viravuth P

    2018-01-01

    Elucidating the spatial resolution of gene transcripts provides important insight into potential gene function. MicroRNAs are short, singled-stranded noncoding RNAs that control gene expression through base-pair complementarity with target mRNAs in the 3' untranslated region (UTR) and inhibiting protein expression. However, given their small size of ~22- to 24-nt and low expression levels, standard in situ hybridization detection methods are not amendable for microRNA spatial resolution. Here, I describe a technique that employs RNAscope probe design and propriety amplification technology that provides simultaneous single molecule detection of individual microRNA and its target gene. This method allows for rapid and sensitive detection of noncoding RNA transcripts in frozen tissue sections.

  5. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome

    Science.gov (United States)

    de la Morena, M. Teresa; Eitson, Jennifer L.; Dozmorov, Igor M.; Belkaya, Serkan; Hoover, Ashley R.; Anguiano, Esperanza; Pascual, M. Virginia; van Oers, Nicolai S.C.

    2013-01-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3 Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance. PMID:23454892

  6. Brain expressed microRNAs implicated in schizophrenia etiology

    DEFF Research Database (Denmark)

    Hansen, Thomas; Olsen, Line; Lindow, Morten

    2007-01-01

    Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors...

  7. MicroRNA expression and clinical outcome of small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Jih-Hsiang Lee

    Full Text Available The role of microRNAs in small-cell lung carcinoma (SCLC is largely unknown. miR-34a is known as a p53 regulated tumor suppressor microRNA in many cancer types. However, its therapeutic implication has never been studied in SCLC, a cancer type with frequent dysfunction of p53. We investigated the expression of a panel of 7 microRNAs (miR-21, miR-29b, miR-34a/b/c, miR-155, and let-7a in 31 SCLC tumors, 14 SCLC cell lines, and 26 NSCLC cell lines. We observed significantly lower miR-21, miR-29b, and miR-34a expression in SCLC cell lines than in NSCLC cell lines. The expression of the 7 microRNAs was unrelated to SCLC patients' clinical characteristics and was neither prognostic in term of overall survival or progression-free survival nor predictive of treatment response. Overexpression or downregulation of miR-34a did not influence SCLC cell viability. The expression of these 7 microRNAs also did not predict in vitro sensitivity to cisplatin or etoposide in SCLC cell lines. Overexpression or downregulation of miR-34a did not influence sensitivity to cisplatin or etoposide in SCLC cell lines. In contrast to downregulation of the miR-34a target genes cMET and Axl by overexpression of miR-34a in NSCLC cell lines, the intrinsic expression of cMET and Axl was low in SCLC cell lines and was not influenced by overexpression of miR-34a. Our results suggest that the expression of the 7 selected microRNAs are not prognostic in SCLC patients, and miR-34a is unrelated to the malignant behavior of SCLC cells and is unlikely to be a therapeutic target.

  8. MicroRNA expression profile in head and neck cancer: HOX-cluster embedded microRNA-196a and microRNA-10b dysregulation implicated in cell proliferation

    International Nuclear Information System (INIS)

    Severino, Patricia; Mathor, Monica Beatriz; Nunes, Fabio Daumas; Ragoussis, Jiannis; Tajara, Eloiza Helena; Brüggemann, Holger; Andreghetto, Flavia Maziero; Camps, Carme; Klingbeil, Maria de Fatima Garrido; Pereira, Welbert Oliveira de; Soares, Renata Machado; Moyses, Raquel; Wünsch-Filho, Victor

    2013-01-01

    Current evidence implicates aberrant microRNA expression patterns in human malignancies; measurement of microRNA expression may have diagnostic and prognostic applications. Roles for microRNAs in head and neck squamous cell carcinomas (HNSCC) are largely unknown. HNSCC, a smoking-related cancer, is one of the most common malignancies worldwide but reliable diagnostic and prognostic markers have not been discovered so far. Some studies have evaluated the potential use of microRNA as biomarkers with clinical application in HNSCC. MicroRNA expression profile of oral squamous cell carcinoma samples was determined by means of DNA microarrays. We also performed gain-of-function assays for two differentially expressed microRNA using two squamous cell carcinoma cell lines and normal oral keratinocytes. The effect of the over-expression of these molecules was evaluated by means of global gene expression profiling and cell proliferation assessment. Altered microRNA expression was detected for a total of 72 microRNAs. Among these we found well studied molecules, such as the miR-17-92 cluster, comprising potent oncogenic microRNA, and miR-34, recently found to interact with p53. HOX-cluster embedded miR-196a/b and miR-10b were up- and down-regulated, respectively, in tumor samples. Since validated HOX gene targets for these microRNAs are not consistently deregulated in HNSCC, we performed gain-of-function experiments, in an attempt to outline their possible role. Our results suggest that both molecules interfere in cell proliferation through distinct processes, possibly targeting a small set of genes involved in cell cycle progression. Functional data on miRNAs in HNSCC is still scarce. Our data corroborate current literature and brings new insights into the role of microRNAs in HNSCC. We also show that miR-196a and miR-10b, not previously associated with HNSCC, may play an oncogenic role in this disease through the deregulation of cell proliferation. The study of microRNA

  9. Development of a modified straw method for vitrification of in vitro-produced bovine blastocysts and various genes expression in between the methods.

    Science.gov (United States)

    Ha, A-Na; Lee, Sang-Ryeul; Jeon, Jeong-Seon; Park, Han-Seul; Lee, Sang-Ho; Jin, Jong-In; Sessions, Benjamin R; Wang, Zhongde; White, Kenneth L; Kong, Il-Keun

    2014-02-01

    This study evaluated a modified plastic straw loading method for vitrification of in vitro-produced bovine blastocysts. A modified straw was used with a depressed area on its inner surface to which embryos attach. In vitro-produced blastocysts were randomly assigned into three groups: (i) blastocysts attached to the inner surface of a plastic straw (aV), (ii) blastocysts attached to the inner surface of a modified plastic straw (maV), and (iii) non-vitrified blastocysts (control). The recovery rates were not significantly different between aV and maV groups (95.8% vs. 94.3%). The post-thaw survival rate did not significantly differ between aV and maV groups (86.4% vs. 88.2%). The total cell numbers of blastocyst was higher in control than in aV and maV groups (142 ± 21.8 vs. 117 ± 29.7 and 120 ± 25.2; P < 0.05), but not significantly differ between aV and maV groups. The mRNA levels of pro-apoptosis related genes Bax and Caspase-3 were higher in aV and maV than in control (P < 0.05). By contrast, the mRNA levels of anti-apoptotic genes Bcl-2 and Mcl-1 and of antioxidant-related genes MnSOD and Prdx5 were lower in aV and maV than in control (P < 0.05). Confocal microscopy analysis of Golgi apparatus and mitochondria showed that the fluorescence intensity of Golgi apparatus and mitochondria was higher in control than in aV and maV groups. In conclusion, both aV and maV methods can be used to successfully vitrify IVP blastocysts, with maV method to be preferable because of its easiness in embryo loading. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Differentially Expressed microRNAs and Target Genes Associated with Plastic Internode Elongation in Alternanthera philoxeroides in Contrasting Hydrological Habitats

    OpenAIRE

    Gengyun Li; Gengyun Li; Ying Deng; Yupeng Geng; Chengchuan Zhou; Yuguo Wang; Wenju Zhang; Zhiping Song; Lexuan Gao; Ji Yang; Ji Yang

    2017-01-01

    Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philox...

  11. In vivo expression of human cytomegalovirus (HCMV) microRNAs during latency.

    Science.gov (United States)

    Meshesha, Mesfin K; Bentwich, Zvi; Solomon, Semaria A; Avni, Yonat Shemer

    2016-01-01

    Viral encoded microRNAs play key roles in regulating gene expression and the life cycle of human herpes viruses. Latency is one of the hallmarks of the human cytomegalovirus (HCMV or HHV5) life cycle, and its control may have immense practical applications. The present study aims to identify HCMV encoded microRNAs during the latency phase of the virus. We used a highly sensitive real time PCR (RTPCR) assay that involves a pre-amplification step before RTPCR. It can detect HCMV encoded microRNAs (miRNAs) during latency in purified monocytes and PBMCs from HCMV IgG positive donors and in latently infected monocytic THP-1 cell lines. During the latency phase, only eight HCMV encoded microRNAs were detected in PBMCs, monocytes and in the THP-1 cells. Five originated from the UL region of the virus genome and three from the US region. Reactivation of the virus from latency, in monocytes obtained from the same donor, using dexamethasone restored the expression of all known HCMV encoded miRNAs including those that were absent during latency. We observed a shift in the abundance of the two arms of mir-US29 between the productive and latency stages of the viral life cycle, suggesting that the star "passenger" form of this microRNA is preferentially expressed during latency. As a whole, our study demonstrates that HCMV expresses during the latency phase, both in vivo and in vitro, only a subset of its microRNAs, which may indicate that they play an important role in maintenance and reactivation of latency. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Environmental contaminants and microRNA regulation: Transcription factors as regulators of toxicant-altered microRNA expression

    International Nuclear Information System (INIS)

    Sollome, James; Martin, Elizabeth; Sethupathy, Praveen; Fry, Rebecca C.

    2016-01-01

    MicroRNAs (miRNAs) regulate gene expression by binding mRNA and inhibiting translation and/or inducing degradation of the associated transcripts. Expression levels of miRNAs have been shown to be altered in response to environmental toxicants, thus impacting cellular function and influencing disease risk. Transcription factors (TFs) are known to be altered in response to environmental toxicants and play a critical role in the regulation of miRNA expression. To date, environmentally-responsive TFs that are important for regulating miRNAs remain understudied. In a state-of-the-art analysis, we utilized an in silico bioinformatic approach to characterize potential transcriptional regulators of environmentally-responsive miRNAs. Using the miRStart database, genomic sequences of promoter regions for all available human miRNAs (n = 847) were identified and promoter regions were defined as − 1000/+500 base pairs from the transcription start site. Subsequently, the promoter region sequences of environmentally-responsive miRNAs (n = 128) were analyzed using enrichment analysis to determine overrepresented TF binding sites (TFBS). While most (56/73) TFs differed across environmental contaminants, a set of 17 TFs was enriched for promoter binding among miRNAs responsive to numerous environmental contaminants. Of these, one TF was common to miRNAs altered by the majority of environmental contaminants, namely SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 3 (SMARCA3). These identified TFs represent candidate common transcriptional regulators of miRNAs perturbed by environmental toxicants. - Highlights: • Transcription factors that regulate environmentally-modulated miRNA expression are understudied • Transcription factor binding sites (TFBS) located within DNA promoter regions of miRNAs were identified. • Specific transcription factors may serve as master regulators of environmentally-mediated microRNA expression

  13. Cell and genetic predictors of human blastocyst hatching success in assisted reproduction.

    Science.gov (United States)

    Syrkasheva, Anastasiya G; Dolgushina, Nataliya V; Romanov, Andrey Yu; Burmenskaya, Olga V; Makarova, Nataliya P; Ibragimova, Espet O; Kalinina, Elena A; Sukhikh, Gennady T

    2017-10-01

    The aim was to identify cell and genetic predictors of human blastocyst hatching success in assisted reproduction programmes via a prospective case-control study. Blastocysts, donated by couples in assisted reproduction programmes were used. Hatching success assessment was performed after 144-146 h post-fertilization. The mRNA expression levels of cathepsin V (CTSV), GATA-binding protein 3 (GATA3) and human chorionic gonadotropin beta subunit 3, 5, 7 and 8 (CGB) genes were detected by quantitative real-time polymerase chain reaction. The odds ratio (OR) of hatching due to zona pellucida (ZP) thickness, oocyte and sperm quality, embryo quality and mRNA expression of CTSV, GATA3 and CGB genes in blastocysts was determined. From 62 blastocysts included in the study, 47 (75.8%) were unable to hatch spontaneously. The ZP thickening, and oocyte and sperm quality did not affect human blastocyst ability to hatch, except the combination of cytoplasmic and extracytoplasmic oocyte dysmorphisms (OR = 1.25; 95% confidence interval = 1.08, 1.45). Hatching-capable blastocysts had higher Gardner scale grade and mRNA expression of CTSV, GATA3 and CGB genes than hatching-incapable blastocysts. The human blastocyst hatching success depends on the blastocyst Gardner grade, but not on ZP and gamete quality. Blastocyst development was regulated by CTSV, GATA3 and CGB gene expression.

  14. Endocrine disruptor regulation of microRNA expression in breast carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Syreeta L Tilghman

    Full Text Available Several environmental agents termed "endocrine disrupting compounds" or EDCs have been reported to bind and activate the estrogen receptor-α (ER. The EDCs DDT and BPA are ubiquitously present in the environment, and DDT and BPA levels in human blood and adipose tissue are detectable in most if not all women and men. ER-mediated biological responses can be regulated at numerous levels, including expression of coding RNAs (mRNAs and more recently non-coding RNAs (ncRNAs. Of the ncRNAs, microRNAs have emerged as a target of estrogen signaling. Given the important implications of EDC-regulated ER function, we sought to define the effects of BPA and DDT on microRNA regulation and expression levels in estrogen-responsive human breast cancer cells.To investigate the cellular effects of DDT and BPA, we used the human MCF-7 breast cancer cell line, which is ER (+ and hormone sensitive. Our results show that DDT and BPA potentiate ER transcriptional activity, resulting in an increased expression of receptor target genes, including progesterone receptor, bcl-2, and trefoil factor 1. Interestingly, a differential increase in expression of Jun and Fas by BPA but not DDT or estrogen was observed. In addition to ER responsive mRNAs, we investigated the ability of DDT and BPA to alter the miRNA profiles in MCF-7 cells. While the EDCs and estrogen similarly altered the expression of multiple microRNAs in MCF-7 cells, including miR-21, differential patterns of microRNA expression were induced by DDT and BPA compared to estrogen.We have shown, for the first time, that BPA and DDT, two well known EDCs, alter the expression profiles of microRNA in MCF-7 breast cancer cells. A better understanding of the molecular mechanisms of these compounds could provide important insight into the role of EDCs in human disease, including breast cancer.

  15. Identification of valid reference genes for microRNA expression studies in a hepatitis B virus replicating liver cell line

    DEFF Research Database (Denmark)

    Jacobsen, Kari Stougaard; Nielsen, Kirstine Overgaard; Nordmann Winther, Thilde

    2016-01-01

    expressed microRNAs with liver-specific target genes in plasma from children with chronic hepatitis B. To further understand the biological role of these microRNAs in the pathogenesis of chronic hepatitis B, we have used the human liver cell line HepG2, with and without HBV replication, after transfection...

  16. Racial differences in microRNA and gene expression in hypertensive women.

    Science.gov (United States)

    Dluzen, Douglas F; Noren Hooten, Nicole; Zhang, Yongqing; Kim, Yoonseo; Glover, Frank E; Tajuddin, Salman M; Jacob, Kimberly D; Zonderman, Alan B; Evans, Michele K

    2016-10-25

    Systemic arterial hypertension is an important cause of cardiovascular disease morbidity and mortality. African Americans are disproportionately affected by hypertension, in fact the incidence, prevalence, and severity of hypertension is highest among African American (AA) women. Previous data suggests that differential gene expression influences individual susceptibility to selected diseases and we hypothesized that this phenomena may affect health disparities in hypertension. Transcriptional profiling of peripheral blood mononuclear cells from AA or white, normotensive or hypertensive females identified thousands of mRNAs differentially-expressed by race and/or hypertension. Predominant gene expression differences were observed in AA hypertensive females compared to AA normotensives or white hypertensives. Since microRNAs play important roles in regulating gene expression, we profiled global microRNA expression and observed differentially-expressed microRNAs by race and/or hypertension. We identified novel mRNA-microRNA pairs potentially involved in hypertension-related pathways and differently-expressed, including MCL1/miR-20a-5p, APOL3/miR-4763-5p, PLD1/miR-4717-3p, and PLD1/miR-4709-3p. We validated gene expression levels via RT-qPCR and microRNA target validation was performed in primary endothelial cells. Altogether, we identified significant gene expression differences between AA and white female hypertensives and pinpointed novel mRNA-microRNA pairs differentially-expressed by hypertension and race. These differences may contribute to the known disparities in hypertension and may be potential targets for intervention.

  17. Brain expressed microRNAs implicated in schizophrenia etiology

    DEFF Research Database (Denmark)

    Hansen, Thomas; Olsen, Line; Lindow, Morten

    2007-01-01

    Protein encoding genes have long been the major targets for research in schizophrenia genetics. However, with the identification of regulatory microRNAs (miRNAs) as important in brain development and function, miRNAs genes have emerged as candidates for schizophrenia-associated genetic factors....... Indeed, the growing understanding of the regulatory properties and pleiotropic effects that miRNA have on molecular and cellular mechanisms, suggests that alterations in the interactions between miRNAs and their mRNA targets may contribute to phenotypic variation....

  18. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection

    DEFF Research Database (Denmark)

    Hamam, Rimi; Ali, Arwa M.; Alsaleh, Khalid A.

    2016-01-01

    Breast cancer (BC) is the most common cancer type and the second cause of cancer-related death among women. Therefore, better understanding of breast cancer tumor biology and the identification of novel biomarkers is essential for the early diagnosis and for better disease stratification...... of 46 BC and 14 controls. The expression of those microRNAs was overall higher in patients with stage I, II, and III, compared to stage IV, with potential utilization for early detection. The expression of this microRNA panel was slightly higher in the HER2 and TN compared to patients with luminal...

  19. Cis-regulation of microRNA expression by scaffold/matrix-attachment regions

    OpenAIRE

    Chavali, Pavithra Lakshminarasimhan; Funa, Keiko; Chavali, Sreenivas

    2011-01-01

    microRNAs (miRNAs) spatio-temporally modulate gene expression; however, very little is known about the regulation of their expression. Here, we hypothesized that the well-known cis-regulatory elements of gene expression, scaffold/matrix-attachment regions (MARs) could modulate miRNA expression. Accordingly, we found MARs to be enriched in the upstream regions of miRNA genes. To determine their role in cell type-specific expression of miRNAs, we examined four individual miRNAs (let-7b, miR-17,...

  20. Implications of microRNA-197 downregulated expression in esophageal cancer with poor prognosis.

    Science.gov (United States)

    Wang, T-Y; Liu, S-G; Zhao, B-S; Qi, B; Qin, X-G; Yao, W-J

    2014-07-25

    The aim of this study was to investigate the significance of the microRNA miR-197 expression level in relation to clinicopathological factors and prognoses of esophageal cancer (EC). MicroRNA was extracted using the Taqman(®) MicroRNA Assay from 46 EC patients at the same tumor node metastasis (TNM) stage, but with different prognoses, who underwent surgery. Paracancerous normal tissues were used as controls. The correlation between miR-197 expression and clinicopathologic features was analyzed, and the significance of miR-197 as a prognostic factor and its relationship with survival was determined. miR-197 expression was lower in patients with poor prognosis than in those with good prognosis (P 197 expression level is significantly correlated with survival time (P = 0.030), and that patients with higher expression of miR-197 had longer survival times. Cox multi-factor model analysis showed that patient prognosis (P = 0.001), tumor length (P = 0.010) and expression (P = 0.042), and survival time were significantly correlated, with corresponding risks of 9.183, 2.318, and 1.925, respectively. This study supports a role of miR-197 as an anti-oncogene and a biomarker for EC and its relationship with other prognostic factors and survival.

  1. SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation

    DEFF Research Database (Denmark)

    Wainwright, Elanor N; Jorgensen, Joan S; Kim, Youngha

    2013-01-01

    MicroRNAs are important regulators of developmental gene expression, but their contribution to fetal gonad development is not well understood. We have identified the evolutionarily conserved gonadal microRNAs miR-202-5p and miR-202-3p as having a potential role in regulating mouse embryonic gonad...... differentiation. These microRNAs are expressed in a sexually dimorphic pattern as the primordial XY gonad differentiates into a testis, with strong expression in Sertoli cells. In vivo, ectopic expression of pri-miR-202 in XX gonads did not result in molecular changes to the ovarian determination pathway...... findings indicate that expression of the conserved gonad microRNA, miR-202-5p/3p, is downstream of the testis-determining factor SOX9, suggesting an early role in testis development....

  2. MicroRNA expression in nodal and extranodal Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Mandrup, Charlotte; Petersen, Anders; Højfeldt, Anne Dirks

    MicroRNA expression in nodal and extranodal Diffuse Large B-cell Lymphoma   C. Mandrup1, A. Petersen1, A. D. Hoejfeldt1, H. F. Thomsen1, J. Madsen1, J. Dahlgaard1, P. Johansen2, A. Bukh1, K. Dybkaer1 and H. E Johnsen1. 1Department of Hematology, 2Pathological Institute, Aalborg Hospital, Aarhus...... University Hospital, Aalborg, Denmark Introduction: The aim of this project was to analyse microRNA (miRNA) expression in nodal and extranodal diffuse large B-cell lymphoma (DLBCL). Manifestation at diagnosis may be nodal and/or extranodal. At present, there are no known determinants for none...... of the manifestations, and no way to predict the potential progression from nodal to extranodal disease. miRNA are small regulatory RNA molecules with core function to repress/cleave sequence complementary mRNA targets. Abnormalities in miRNA genetics and expression are known to affect initiation and development...

  3. Impact of gastro-oesophageal reflux on microRNA expression, location and function

    Directory of Open Access Journals (Sweden)

    Smith Cameron M

    2013-01-01

    Full Text Available Abstract Background Ulceration of the oesophageal squamous mucosa (ulcerative oesophagitis is a pathological manifestation of gastro-oesophageal reflux disease, and is a major risk factor for the development of Barrett’s oesophagus. Barrett’s oesophagus is characterised by replacement of reflux-damaged oesophageal squamous epithelium with a columnar intestinal-like epithelium. We previously reported discovery of microRNAs that are differentially expressed between oesophageal squamous mucosa and Barrett’s oesophagus mucosa. Now, to better understand early steps in the initiation of Barrett’s oesophagus, we assessed the expression, location and function of these microRNAs in oesophageal squamous mucosa from individuals with ulcerative oesophagitis. Methods Quantitative real-time PCR was used to compare miR-21, 143, 145, 194, 203, 205 and 215 expression levels in oesophageal mucosa from individuals without pathological gastro-oesophageal reflux to individuals with ulcerative oesophagitis. Correlations between microRNA expression and messenger RNA differentiation markers BMP-4, CK8 and CK14 were analyzed. The cellular localisation of microRNAs within the oesophageal mucosa was determined using in-situ hybridisation. microRNA involvement in proliferation and apoptosis was assessed following transfection of a human squamous oesophageal mucosal cell line (Het-1A. Results miR-143, miR-145 and miR-205 levels were significantly higher in gastro-oesophageal reflux compared with controls. Elevated miR-143 expression correlated with BMP-4 and CK8 expression, and elevated miR-205 expression correlated negatively with CK14 expression. Endogenous miR-143, miR-145 and miR-205 expression was localised to the basal layer of the oesophageal epithelium. Transfection of miR-143, 145 and 205 mimics into Het-1A cells resulted in increased apoptosis and decreased proliferation. Conclusions Elevated miR-143, miR-145 and miR-205 expression was observed in

  4. High-Salt Intake Suppressed MicroRNA-133a Expression in Dahl SS Rat Myocardium

    Science.gov (United States)

    Guo, Tong-Shuai; Zhang, Jie; Mu, Jian-Jun; Liu, Fu-Qiang; Yuan, Zu-Yi; Ren, Ke-Yu; Wang, Dan

    2014-01-01

    Salt-sensitive individuals show earlier and more serious cardiac damage than nonsalt-sensitive ones. Some studies have suggested that microRNA-133a could reduce cardiac hypertrophy and myocardial fibrosis. The current study aims to investigate the different functions of high-salt intake on salt-sensitive (SS) rats and Sprague-Dawley (SD) rats and the involvement of microRNA-133a in these roles. After high-salt intervention, the left ventricular mass (LVW) and left ventricular mass index (LVMI) of the salt-sensitive high salt (SHS) group were obviously higher than those of the salt-sensitive low salt (SLS) group. However, the difference between the Sprague-Dawley high salt (DHS) group and the Sprague-Dawley low salt (DLS) group was not significant. Compared with SLS group, collagen I and connective tissue growth factor (CTGF) in the heart of SHS group were significantly higher, whereas no statistical difference was observed between the DHS group and the DLS group. Compared with low-salt diet, microRNA-133a in the heart of both strains were significantly decreased, but that in the SHS group decreased more significantly. These results suggest that high salt intervention could down-regulate the expression of myocardial microRNA-133a, which may be one of the mechanisms involved in myocardial fibrosis in salt-sensitive hypertension. PMID:24937684

  5. High-Salt Intake Suppressed MicroRNA-133a Expression in Dahl SS Rat Myocardium

    Directory of Open Access Journals (Sweden)

    Tong-Shuai Guo

    2014-06-01

    Full Text Available Salt-sensitive individuals show earlier and more serious cardiac damage than nonsalt-sensitive ones. Some studies have suggested that microRNA-133a could reduce cardiac hypertrophy and myocardial fibrosis. The current study aims to investigate the different functions of high-salt intake on salt-sensitive (SS rats and Sprague-Dawley (SD rats and the involvement of microRNA-133a in these roles. After high-salt intervention, the left ventricular mass (LVW and left ventricular mass index (LVMI of the salt-sensitive high salt (SHS group were obviously higher than those of the salt-sensitive low salt (SLS group. However, the difference between the Sprague-Dawley high salt (DHS group and the Sprague-Dawley low salt (DLS group was not significant. Compared with SLS group, collagen I and connective tissue growth factor (CTGF in the heart of SHS group were significantly higher, whereas no statistical difference was observed between the DHS group and the DLS group. Compared with low-salt diet, microRNA-133a in the heart of both strains were significantly decreased, but that in the SHS group decreased more significantly. These results suggest that high salt intervention could down-regulate the expression of myocardial microRNA-133a, which may be one of the mechanisms involved in myocardial fibrosis in salt-sensitive hypertension.

  6. Characterisation of microRNA expression in post-natal mouse mammary gland development

    Directory of Open Access Journals (Sweden)

    Karagavriilidou Konstantina

    2009-11-01

    Full Text Available Abstract Background The differential expression pattern of microRNAs (miRNAs during mammary gland development might provide insights into their role in regulating the homeostasis of the mammary epithelium. Our aim was to analyse these regulatory functions by deriving a comprehensive tissue-specific combined miRNA and mRNA expression profile of post-natal mouse mammary gland development. We measured the expression of 318 individual murine miRNAs by bead-based flow-cytometric profiling of whole mouse mammary glands throughout a 16-point developmental time course, including juvenile, puberty, mature virgin, gestation, lactation, and involution stages. In parallel whole-genome mRNA expression data were obtained. Results One third (n = 102 of all murine miRNAs analysed were detected during mammary gland development. MicroRNAs were represented in seven temporally co-expressed clusters, which were enriched for both miRNAs belonging to the same family and breast cancer-associated miRNAs. Global miRNA and mRNA expression was significantly reduced during lactation and the early stages of involution after weaning. For most detected miRNA families we did not observe systematic changes in the expression of predicted targets. For miRNA families whose targets did show changes, we observed inverse patterns of miRNA and target expression. The data sets are made publicly available and the combined expression profiles represent an important community resource for mammary gland biology research. Conclusion MicroRNAs were expressed in likely co-regulated clusters during mammary gland development. Breast cancer-associated miRNAs were significantly enriched in these clusters. The mechanism and functional consequences of this miRNA co-regulation provide new avenues for research into mammary gland biology and generate candidates for functional validation.

  7. Expression of NMDA receptor and microRNA-219 in rats submitted to cerebral ischemia associated with alcoholism

    Directory of Open Access Journals (Sweden)

    Cristiane Iozzi Silva

    Full Text Available ABSTRACT Alcohol consumption aggravates injuries caused by ischemia. Many molecular mechanisms are involved in the pathophysiology of cerebral ischemia, including neurotransmitter expression, which is regulated by microRNAs. Objective: To evaluate the microRNA-219 and NMDA expression in brain tissue and blood of animals subjected to cerebral ischemia associated with alcoholism. Methods: Fifty Wistar rats were divided into groups: control, sham, ischemic, alcoholic, and ischemic plus alcoholic. The expression of microRNA-219 and NMDA were analyzed by real-time PCR. Results: When compared to the control group, the microRNA-219 in brain tissue was less expressed in the ischemic, alcoholic, and ischemic plus alcoholic groups. In the blood, this microRNA had lower expression in alcoholic and ischemic plus alcoholic groups. In the brain tissue the NMDA gene expression was greater in the ischemic, alcoholic, and ischemic plus alcoholic groups. Conclusion: A possible modulation of NMDA by microRNA-219 was observed with an inverse correlation between them.

  8. Human papillomavirus 16 E5 modulates the expression of host microRNAs.

    Directory of Open Access Journals (Sweden)

    Dario Greco

    Full Text Available Human papillomavirus (HPV infection is a prerequisite of developing cervical cancer, approximately half of which are associated with HPV type 16. HPV 16 encodes three oncogenes, E5, E6, and E7, of which E5 is the least studied so far. Its roles in regulating replication and pathogenesis of HPV are not fully understood. Here we utilize high-throughput screening to coordinately investigate the effect of E5 on the expression of host protein-coding and microRNA genes. MicroRNAs form a class of 22nt long noncoding RNAs with regulatory activity. Among the altered cellular microRNAs we focus on the alteration in the expression of miR-146a, miR-203 and miR-324-5p and their target genes in a time interval of 96 hours of E5 induction. Our results indicate that HPV infection and subsequent transformation take place through complex regulatory patterns of gene expression in the host cells, part of which are regulated by the E5 protein.

  9. Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis.

    Directory of Open Access Journals (Sweden)

    Yuqian Ma

    Full Text Available Sepsis is a common cause of death in the intensive care unit with mortality up to 70% when accompanied by multiple organ dysfunction. Rapid diagnosis and the institution of appropriate antibiotic therapy and pressor support are therefore critical for survival. MicroRNAs are small non-coding RNAs that play an important role in the regulation of numerous cellular processes, including inflammation and immunity.We hypothesized changes in expression of microRNAs during sepsis may be of diagnostic value in the intensive care unit (ICU.Massively parallel sequencing of microRNAs was utilised for screening microRNA candidates. Putative microRNAs were validated using quantitative real-time PCR (qRT-PCR. This study includes data from both a training cohort (UK and an independent validation cohort (Sweden. A linear discriminant statistical model was employed to construct a diagnostic microRNA signature.A panel of known and novel microRNAs were detectable in the blood of patients with sepsis. After qRT-PCR validation, microRNA miR-150 and miR-4772-5p-iso were able to discriminate between patients who have systemic inflammatory response syndrome and patients with sepsis. This finding was also validated in independent cohort with an average diagnostic accuracy of 86%. Fractionating the cellular components of blood reveals miR-4772-5p-iso is expressed differentially in monocytes. Functional experiments using primary human monocytes demonstrate that it expressed in response to TLR ligation.Taken together, these data provide a novel microRNA signature of sepsis that should allow rapid point-of-care diagnostic assessment of patients on ICU and also provide greater insight into the pathobiology of this severe disease.

  10. Genome-wide sequencing of cellular microRNAs identifies a combinatorial expression signature diagnostic of sepsis.

    Science.gov (United States)

    Ma, Yuqian; Vilanova, David; Atalar, Kerem; Delfour, Olivier; Edgeworth, Jonathan; Ostermann, Marlies; Hernandez-Fuentes, Maria; Razafimahatratra, Sandrine; Michot, Bernard; Persing, David H; Ziegler, Ingrid; Törös, Bianca; Mölling, Paula; Olcén, Per; Beale, Richard; Lord, Graham M

    2013-01-01

    Sepsis is a common cause of death in the intensive care unit with mortality up to 70% when accompanied by multiple organ dysfunction. Rapid diagnosis and the institution of appropriate antibiotic therapy and pressor support are therefore critical for survival. MicroRNAs are small non-coding RNAs that play an important role in the regulation of numerous cellular processes, including inflammation and immunity. We hypothesized changes in expression of microRNAs during sepsis may be of diagnostic value in the intensive care unit (ICU). Massively parallel sequencing of microRNAs was utilised for screening microRNA candidates. Putative microRNAs were validated using quantitative real-time PCR (qRT-PCR). This study includes data from both a training cohort (UK) and an independent validation cohort (Sweden). A linear discriminant statistical model was employed to construct a diagnostic microRNA signature. A panel of known and novel microRNAs were detectable in the blood of patients with sepsis. After qRT-PCR validation, microRNA miR-150 and miR-4772-5p-iso were able to discriminate between patients who have systemic inflammatory response syndrome and patients with sepsis. This finding was also validated in independent cohort with an average diagnostic accuracy of 86%. Fractionating the cellular components of blood reveals miR-4772-5p-iso is expressed differentially in monocytes. Functional experiments using primary human monocytes demonstrate that it expressed in response to TLR ligation. Taken together, these data provide a novel microRNA signature of sepsis that should allow rapid point-of-care diagnostic assessment of patients on ICU and also provide greater insight into the pathobiology of this severe disease.

  11. Differential MicroRNA Expression Profile in Myxomatous Mitral Valve Prolapse and Fibroelastic Deficiency Valves

    Directory of Open Access Journals (Sweden)

    Yei-Tsung Chen

    2016-05-01

    Full Text Available Myxomatous mitral valve prolapse (MMVP and fibroelastic deficiency (FED are two common variants of degenerative mitral valve disease (DMVD, which is a leading cause of mitral regurgitation worldwide. While pathohistological studies have revealed differences in extracellular matrix content in MMVP and FED, the molecular mechanisms underlying these two disease entities remain to be elucidated. By using surgically removed valvular specimens from MMVP and FED patients that were categorized on the basis of echocardiographic, clinical and operative findings, a cluster of microRNAs that expressed differentially were identified. The expressions of has-miR-500, -3174, -17, -1193, -646, -1273e, -4298, -203, -505, and -939 showed significant differences between MMVP and FED after applying Bonferroni correction (p < 0.002174. The possible involvement of microRNAs in the pathogenesis of DMVD were further suggested by the presences of in silico predicted target sites on a number of genes reported to be involved in extracellular matrix homeostasis and marker genes for cellular composition of mitral valves, including decorin (DCN, aggrecan (ACAN, fibromodulin (FMOD, α actin 2 (ACTA2, extracellular matrix protein 2 (ECM2, desmin (DES, endothelial cell specific molecule 1 (ESM1, and platelet/ endothelial cell adhesion molecule 1 (PECAM1, as well as inverse correlations of selected microRNA and mRNA expression in MMVP and FED groups. Our results provide evidence that distinct molecular mechanisms underlie MMVP and FED. Moreover, the microRNAs identified may be targets for the future development of diagnostic biomarkers and therapeutics.

  12. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes

    DEFF Research Database (Denmark)

    Walden, Tomas B; Timmons, James A; Keller, Pernille

    2009-01-01

    MicroRNAs, a novel class of post-transcriptional gene regulators, have been demonstrated to be involved in several cellular processes regulating the expression of protein-coding genes. Here we examine murine white and brown primary cell cultures for differential expression of mi...... regulated. However, expression of the miRNA miR-455 was enhanced during brown adipocyte differentiation, similarly to the expression pattern of the brown adipocyte differentiation marker UCP1. In conclusion, miRNAs are differentially expressed in white and brown adipocytes and may be important in defining......RNAs. The adipogenesis-related miRNA miR-143 was highly expressed in mature white adipocytes but was low in mature brown adipocytes. Three classical "myogenic" miRNAs miR-1, miR-133a and miR-206 were absent from white adipocytes but were specifically expressed both in brown pre- and mature adipocytes, reinforcing...

  13. MicroRNA Expression during Viral Infection or PolyI:C Stimulation in a Fish Model

    DEFF Research Database (Denmark)

    Kristensen, Lasse Bøgelund Juel; Schyth, Brian Dall; Lorenzen, Niels

    Fish are important as small vertebrate models for studying various aspects of development and disease. MicroRNA regulation in fish has so far received attention especially in studies of their expression and function during embryonic development. In the studies carried out at the National Veterinary...... Institute in Århus we aim at using fish models for studying microRNA regulation during viral infection. In the studies presented here we make use of a qPCR method to detect miRNAs in fish cells. We present results regarding the expression of the immunologically relevant microRNAs, miR-155, miR-146a and mi......R-146b in fish cells during infection with the fish pathogenic virus viral hemorrhagic septicemia virus (VHSV) and during immune stimulation with double stranded RNA (polyI:C). We highlight the need of finding stable normalization genes for microRNA detection....

  14. microRNAs and Fragile X Syndrome.

    Science.gov (United States)

    Lin, Shi-Lung

    2015-01-01

    Fragile X syndrome (FXS) is one of the major causes for autism and mental retardation in humans. The etiology of FXS is linked to the expansion of the CGG trinucleotide repeats, r(CGG), suppressing the fragile X mental retardation 1 (FMR1) gene on the X chromosome, resulting in a loss of fragile X mental retardation protein (FMRP) expression, which is required for regulating normal neuronal connectivity and plasticity. Recent studies have further identified that microRNAs are involved in the mechanisms underlying FXS pathogenesis at three different developmental stages. During early embryogenesis before the blastocyst stage, an embryonic stem cell (ESC)-specific microRNA, miR-302, interferes with FMR1 mRNA translation to maintain the stem cell status and inhibit neural development. After blastocyst, the downregulation of miR-302 releases FMRP synthesis and subsequently leads to neuronal development; yet, in FXS, certain r(CGG)-derived microRNAs, such as miR-fmr1s, are expressed and accumulated and then induce DNA hypermethylation on the FMR1 gene promoter regions, resulting in transcriptional inactivation of the FMR1 gene and the loss of FMRP. In normal neuronal development, FMRP is an RNA-binding protein responsible for interacting with miR-125 and miR-132 to regulate the signaling of Group 1 metabotropic glutamate receptor (mGluR1) and N-methyl-D-aspartate receptor (NMDAR), respectively, and consequently affecting synaptic plasticity. As a result, the loss of FMRP impairs these signaling controls and eventually causes FXS-associated disorders, such as autism and mental retardation. Based on these current findings, this chapter will summarize the etiological causes of FXS and further provides significant insights into the molecular mechanisms underlying microRNA-mediated FXS pathogenesis and the related therapy development.

  15. Restoration of altered microRNA expression in the ischemic heart with resveratrol.

    Directory of Open Access Journals (Sweden)

    Partha Mukhopadhyay

    2010-12-01

    Full Text Available Resveratrol, a constituent of red wine, is important for cardioprotection. MicroRNAs are known regulators for genes involved in resveratrol-mediated cardiac remodeling and the regulatory pathway involving microRNA has not been studied so far.We explored the cardioprotection by resveratrol in ischemia/reperfusion model of rat and determined cardiac functions. miRNA profile was determined from isolated RNA using quantitative Real-time PCR based array. Systemic analyses of miRNA array and theirs targets were determined using a number of computational approaches.Cardioprotection by resveratrol and its derivative in ischemia/reperfusion [I/R] rat model was examined with miRNA expression profile. Unique expression pattern were found for each sample, particularly with resveratrol [pure compound] and longevinex [commercial resveratrol formulation] pretreated hearts. Longevinex and resveratrol pretreatment modulates the expression pattern of miRNAs close to the control level based on PCA analyses. Differential expression was observed in over 25 miRNAs, some of them, such as miR-21 were previously implicated in cardiac remodeling. The target genes for the differentially expressed miRNA include genes of various molecular function such as metal ion binding, sodium-potassium ion, transcription factors, which may play key role in reducing I/R injury.Rats pretreated with resveratrol for 3 weeks leads to significant cardioprotection against ischemia/reperfusion injury. A unique signature of miRNA profile is observed in control heart pretreated with resveratrol or longevinex. We have determined specific group of miRNA in heart that have altered during IR injuries. Most of those altered microRNA expressions modulated close to their basal level in resveratrol or longevinex treated I/R mice.

  16. Dose-responsiveness and persistence of microRNA expression alterations induced by cigarette smoke in mouse lung

    Energy Technology Data Exchange (ETDEWEB)

    Izzotti, Alberto; Larghero, Patrizia; Longobardi, Mariagrazia; Cartiglia, Cristina; Camoirano, Anna [Department of Health Sciences, University of Genoa, Genoa (Italy); Steele, Vernon E. [National Cancer Institute (NCI), Rockville, MD (United States); De Flora, Silvio, E-mail: sdf@unige.it [Department of Health Sciences, University of Genoa, Genoa (Italy)

    2011-12-01

    Our previous studies demonstrated that exposure to cigarette smoke (CS), either mainstream or environmental, results in a remarkable downregulation of microRNA expression in the lung of both mice and rats. The goals of the present study were to evaluate the dose responsiveness to CS and the persistence of microRNA alterations after smoking cessation. ICR (CD-1) neonatal mice were exposed whole-body to mainstream CS, at the doses of 119, 292, 438, and 631 mg/m{sup 3} of total particulate matter. Exposure started within 12 h after birth and continued daily for 4 weeks. The levels of bulky DNA adducts and 8-oxo-7,8-dihydro-2 Prime -deoxyguanosine (8-oxodGuo) were measured by {sup 32}P postlabeling procedures, and the expression of 697 mouse microRNAs was analyzed by microarray. The highest CS dose was lethal. Exposure to CS caused a dose-dependent increase of DNA alterations. DNA adducts and, even more sharply, 8-oxodGuo were reverted 1 and 4 weeks after smoking cessation. Exposure to CS resulted in an evident dysregulation of microRNA expression profiles, mainly in the sense of downregulation. The two lowest doses were not particularly effective, while the highest nonlethal dose produced extensive microRNA alterations. The expression of most downregulated microRNAs, including among others 7 members of the let-7 family, was restored one week after smoking cessation. However, the recovery was incomplete for a limited array of microRNAs, including mir-34b, mir-345, mir-421, mir-450b, mir-466, and mir-469. Thus, it appears that microRNAs mainly behave as biomarkers of effect and that exposure to high-dose, lasting for an adequate period of time, is needed to trigger the CS-related carcinogenesis process in the experimental animal model used.

  17. Microarray profiling of microRNAs expressed in testis tissues of developing primates

    DEFF Research Database (Denmark)

    Yan, Naihong; Lu, Yilu; Sun, Huaqin

    2009-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that have been identified as potent regulators of gene expression. Recent studies indicate that miRNAs are involved in mammalian spermatogenesis but the mechanism of regulation is largely unknown.......MicroRNAs (miRNAs) are small non-coding RNA molecules that have been identified as potent regulators of gene expression. Recent studies indicate that miRNAs are involved in mammalian spermatogenesis but the mechanism of regulation is largely unknown....

  18. Identification of Novel and Conserved microRNAs in Homalodisca vitripennis, the Glassy-Winged Sharpshooter by Expression Profiling.

    Directory of Open Access Journals (Sweden)

    Raja Sekhar Nandety

    Full Text Available The glassy-winged sharpshooter (GWSS Homalodisca vitripennis (Hemiptera: Cicadellidae, is a xylem-feeding leafhopper and an important vector of the bacterium Xylella fastidiosa; the causal agent of Pierce's disease of grapevines. MicroRNAs are a class of small RNAs that play an important role in the functional development of various organisms including insects. In H. vitripennis, we identified microRNAs using high-throughput deep sequencing of adults followed by computational and manual annotation. A total of 14 novel microRNAs that are not found in the miRBase were identified from adult H. vitripennis. Conserved microRNAs were also found in our datasets. By comparison to our previously determined transcriptome sequence of H. vitripennis, we identified the potential targets of the microRNAs in the transcriptome. This microRNA profile information not only provides a more nuanced understanding of the biological and physiological mechanisms that govern gene expression in H. vitripennis, but may also lead to the identification of novel mechanisms for biorationally designed management strategies through the use of microRNAs.

  19. microRNA expression signatures of gastrointestinal stromal tumours: associations with imatinib resistance and patient outcome

    Science.gov (United States)

    Akçakaya, P; Caramuta, S; Åhlen, J; Ghaderi, M; Berglund, E; Östman, A; Bränström, R; Larsson, C; Lui, W-O

    2014-01-01

    Background: Gastrointestinal stromal tumour (GIST) is mainly initialised by receptor tyrosine kinase gene mutations. Although the tyrosine kinase inhibitor imatinib mesylate considerably improved the outcome of patients, imatinib resistance still remains a major therapeutic challenge in GIST therapy. Herein we evaluated the clinical impact of microRNAs in imatinib-treated GISTs. Methods: The expression levels of microRNAs were quantified using microarray and RT–qPCR in GIST specimens from patients treated with neoadjuvant imatinib. The functional roles of miR-125a-5p and PTPN18 were evaluated in GIST cells. PTPN18 expression was quantified by western blotting in GIST samples. Results: We showed that overexpression levels of miR-125a-5p and miR-107 were associated with imatinib resistance in GIST specimens. Functionally, miR-125a-5p expression modulated imatinib sensitivity in GIST882 cells with a homozygous KIT mutation but not in GIST48 cells with double KIT mutations. Overexpression of miR-125a-5p suppressed PTPN18 expression, and silencing of PTPN18 expression increased cell viability in GIST882 cells upon imatinib treatment. PTPN18 protein levels were significantly lower in the imatinib-resistant GISTs and inversely correlated with miR-125a-5p. Furthermore, several microRNAs were significantly associated with metastasis, KIT mutational status and survival. Conclusions: Our findings highlight a novel functional role of miR-125a-5p on imatinib response through PTPN18 regulation in GIST. PMID:25349971

  20. Pathology, genetic alterations, and targets of differentially expressed microRNAs in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Azevedo-Pouly ACP

    2014-06-01

    Full Text Available Ana Clara P Azevedo-Pouly, Thomas D SchmittgenDivision of Pharmaceutics and Pharmaceutical Chemistry, the Ohio State University College of Pharmacy, Columbus, OH, USAAbstract: Since their discovery in mammals in 2001, the field of microRNA (miRNA research has grown exponentially. miRNAs regulate protein translation following binding to conserved sequences within the 3' untranslated region of messenger RNAs. miRNAs are found to regulate nearly all biological processes, and their expression has been shown to differentially regulate a large number of diseases including cancer. Pancreatic ductal adenocarcinoma (PDAC was one of the initial groups of cancers to demonstrate differential miRNA expression. Since then, there have been numerous studies linking differential miRNA expression to PDAC. Translational extrapolation of these studies has been done linking diagnostic, prognostic, and therapeutic applications, and multiple review articles and book chapters have been written on these subjects. The intent here is to provide an overview of pancreatic cancer and review the current state of the validated and published findings on the messenger RNA targets of differentially expressed miRNAs in PDAC. We then attempt to summarize these findings to extrapolate them in the hopes of better understanding how altered miRNA expression in PDAC may alter the phenotype of this disease.Keywords: microRNA, pancreatic cancer, pancreatic ductal adenocarcinoma, target

  1. Proanthocyanidins modulate microRNA expression in human HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Anna Arola-Arnal

    Full Text Available Mi(croRNAs are small non-coding RNAs of 18-25 nucleotides in length that modulate gene expression at the post-transcriptional level. These RNAs have been shown to be involved in a several biological processes, human diseases and metabolic disorders. Proanthocyanidins, which are the most abundant polyphenol class in the human diet, have positive health effects on a variety of metabolic disorders such as inflammation, obesity, diabetes and insulin resistance. The present study aimed to evaluate whether proanthocyanidin-rich natural extracts modulate miRNA expression. Using microarray analysis and Q-PCR, we investigated miRNA expression in HepG2 cells treated with proanthocyanidins. Our results showed that when HepG2 cells were treated with grape seed proanthocyanidin extract (GSPE, cocoa proanthocyanidin extract (CPE or pure epigallocatechin gallate isolated from green tea (EGCG, fifteen, six and five differentially expressed miRNAs, respectively, were identified out of 904 mRNAs. Specifically, miR-30b* was downregulated by the three treatments, and treatment with GSPE or CPE upregulated miR-1224-3p, miR-197 and miR-532-3p. Therefore, these results provide evidence of the capacity of dietary proanthocyanidins to influence microRNA expression, suggesting a new mechanism of action of proanthocyanidins.

  2. MicroRNA Expression Profiling Identifies Molecular Diagnostic Signatures for Anaplastic Large Cell Lymphoma

    DEFF Research Database (Denmark)

    Liu, Cuiling; Iqbal, Javeed; Teruya-Feldstein, Julie

    2013-01-01

    Anaplastic large-cell lymphomas (ALCLs) encompass at least 2 systemic diseases distinguished by the presence or absence of anaplastic lymphoma kinase (ALK) expression. We performed genome-wide microRNA (miRNA) profiling on 33 ALK-positive (ALK[+]) ALCLs, 25 ALK-negative (ALK[-]) ALCLs, 9......) that differentiates ALK(-) ALCL from other PTCLs. Our in vitro studies identified a set of 32 miRNAs associated with ALK expression. Of these, the miR-17∼92 cluster and its paralogues were also highly expressed in ALK(+) ALCL and may represent important downstream effectors of the ALK oncogenic pathway....... angioimmunoblastic T-cell lymphomas, 11 peripheral T-cell lymphomas not otherwise specified (PTCLNOS), and normal T cells, and demonstrated that ALCLs express many of the miRNAs that are highly expressed in normal T cells with the prominent exception of miR-146a. Unsupervised hierarchical clustering demonstrated...

  3. MicroRNA expression profile of mouse lung infected with 2009 pandemic H1N1 influenza virus.

    Directory of Open Access Journals (Sweden)

    Zhihao Wu

    Full Text Available MicroRNAs have been implicated in the regulation of gene expression of various biological processes in a post-transcriptional manner under physiological and pathological conditions including host responses to viral infections. The 2009 pandemic H1N1 influenza virus is an emerging reassortant strain of swine, human and bird influenza virus that can cause mild to severe illness and even death. To further understand the molecular pathogenesis of the 2009 pandemic H1N1 influenza virus, we profiled cellular microRNAs of lungs from BALB/c mice infected with wild-type 2009 pandemic influenza virus A/Beijing/501/2009 (H1N1 (hereafter referred to as BJ501 and mouse-adapted influenza virus A/Puerto Rico/8/1934 (H1N1 (hereafter referred to as PR8 for comparison. Microarray analysis showed both the influenza virus BJ501 and PR8 infection induced strain- and temporal-specific microRNA expression patterns and that their infection caused a group of common and distinct differentially expressed microRNAs. Characteristically, more differentially expressed microRNAs were aroused on day 5 post infection than on day 2 and more up-regulated differentially expressed microRNAs were provoked than the down-regulated for both strains of influenza virus. Finally, 47 differentially expressed microRNAs were obtained for the infection of both strains of H1N1 influenza virus with 29 for influenza virus BJ501 and 43 for PR8. Among them, 15 microRNAs had no reported function, while 32 including miR-155 and miR-233 are known to play important roles in cancer, immunity and antiviral activity. Pathway enrichment analyses of the predicted targets revealed that the transforming growth factor-β (TGF-β signaling pathway was the key cellular pathway associated with the differentially expressed miRNAs during influenza virus PR8 or BJ501 infection. To our knowledge, this is the first report of microRNA expression profiles of the 2009 pandemic H1N1 influenza virus in a mouse model, and

  4. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer

    DEFF Research Database (Denmark)

    Eriksen, Anne Haahr Mellergaard; Andersen, Rikke Fredslund; Nielsen, Boye Schnack

    2016-01-01

    study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. MATERIALS AND METHODS: The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH......) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated...

  5. Epstein-Barr virus growth/latency III program alters cellular microRNA expression

    International Nuclear Information System (INIS)

    Cameron, Jennifer E.; Fewell, Claire; Yin, Qinyan; McBride, Jane; Wang Xia; Lin Zhen

    2008-01-01

    The Epstein-Barr virus (EBV) is associated with lymphoid and epithelial cancers. Initial EBV infection alters lymphocyte gene expression, inducing cellular proliferation and differentiation as the virus transitions through consecutive latency transcription programs. Cellular microRNAs (miRNAs) are important regulators of signaling pathways and are implicated in carcinogenesis. The extent to which EBV exploits cellular miRNAs is unknown. Using micro-array analysis and quantitative PCR, we demonstrate differential expression of cellular miRNAs in type III versus type I EBV latency including elevated expression of miR-21, miR-23a, miR-24, miR-27a, miR-34a, miR-146a and b, and miR-155. In contrast, miR-28 expression was found to be lower in type III latency. The EBV-mediated regulation of cellular miRNAs may contribute to EBV signaling and associated cancers

  6. MicroRNA expression in the adult mouse central nervous system

    DEFF Research Database (Denmark)

    Bak, Mads; Silahtaroglu, Asli; Møller, Morten

    2008-01-01

    MicroRNAs are approximately 22 nucleotide endogenous noncoding RNAs that post-transcriptionally repress expression of protein-coding genes by base-pairing with the 3'-untranslated regions of the target mRNAs. We present here an inventory of miRNA expression profiles from 13 neuroanatomically......, hypothalamus, hippocampus, neocortex, olfactory bulb, eye, and pituitary gland. These findings suggest that a large number of mouse CNS-expressed miRNAs may be associated with specific functions within these regions. Notably, more than 50% of the identified mouse CNS-enriched miRNAs showed different expression...... patterns compared to those reported in zebrafish, although the mature miRNA sequences are nearly 100% conserved between the two vertebrate species. The inventory of miRNA profiles in the adult mouse CNS presented here provides an important step toward further elucidation of miRNA function and mi...

  7. Expression levels of microRNAs are not associated with their regulatory activities

    Directory of Open Access Journals (Sweden)

    Wu Jiarui

    2011-09-01

    Full Text Available Abstract MicroRNAs (miRNAs regulate their targets by triggering mRNA degradation or translational repression. The negative relationship between miRNAs and their targets suggests that the regulatory effect of a miRNA could be determined from the expression levels of its targets. Here, we investigated the relationship between miRNA activities determined by computational programs and miRNA expression levels by using data in which both mRNA and miRNA expression from the same samples were measured. We found that different from the intuitive expectation one might have, miRNA activity shows very weak correlation with miRNA expression, which indicates complex regulating mechanisms between miRNAs and their target genes. Reviewers This manuscript was reviewed by an anonymous reviewer and Dr Yuriy Gusev.

  8. Altered Expression of MicroRNA-203 in Rheumatoid Arthritis Synovial Fibroblasts and Its Role in Fibroblast Activation

    NARCIS (Netherlands)

    Stanczyk, Joanna; Ospelt, Caroline; Karouzakis, Emmanuel; Filer, Andrew; Raza, Karim; Kolling, Christoph; Gay, Renate; Buckley, Christopher D.; Tak, Paul P.; Gay, Steffen; Kyburz, Diego

    2011-01-01

    Objective. MicroRNA (miRNA) are recognized as important regulators of a variety of fundamental biologic processes. Previously, we described increased expression of miR-155 and miR-146a in rheumatoid arthritis (RA) and showed a repressive effect of miR-155 on matrix metalloproteinase (MMP) expression

  9. MicroRNA expression in lung tissue and blood isolated from pigs suffering from bacterial pneumonia

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Wendt, Karin Tarp; Heegaard, Peter M. H.

    MicroRNAs (miRNAs) are a highly evolutionarily conserved group of small non-coding RNA molecules, which regulate the activity of other genes at the post-transcriptional level. Recently it has become evident that miRNA plays an important role in modulating and fine tuning of the innate and adaptive...... expressed (p-values lower than 0.05). MicroRNA expression in lung tissue over time in response to the two different serotypes were very similar. miR-223 was found to be highly up regulated, followed by miR-146a and to a lesser degree miR-21 in lung tissue of the AP serotype 2 infected animals. MiR-233...... immune responses. Still, little is known about the impact of miRNAs in the development and pathogenesis of lung infections. Expression of miRNA, known to be induced by bacterial (i.e., LPS) ligands and thus supposed to play a role in the regulation of antimicrobial defence, were studied in lung tissue...

  10. MicroRNA expression analysis in endometriotic serum treated mesenchymal stem cells

    Science.gov (United States)

    Abdel-Rasheed, Mazen; Nour Eldeen, Ghada; Mahmoud, Marwa; ElHefnawi, Mahmoud; Abu-Shahba, Nourhan; Reda, Mohamed; Elsetohy, Khaled; Nabil, Michael; Elnoury, Amr; Taha, Tamer; Azmy, Osama

    2017-01-01

    Endometriosis is defined by presence of endometrial-like-tissue outside the uterus. Recently, ectopic endometriotic lesions have been suggested to originate by abnormal differentiation of endometrial mesenchymal stem cells (eMSCs). MicroRNAs (miRNAs) play an important role in the pathophysiology of endometriosis. Through a PCR array approach, we aimed to assess the differential expression of microRNAs in human eMSC treated in culture with sera derived from women with severe endometriosis. Sera were collected from five patients with severe endometriosis and three control women and added individually in the culture medium to conduct experimental and control eMSC sets, respectively. Regular microscopic follow-up for cell morphology was performed. SYBR Green based real-time PCR array was used to assess the expression of 84 miRNAs. Bioinformatics analysis was done to predict the target genes of the significantly dysregulated miRNAs and their enriched biological processes and pathways. Thirty-two miRNAs were found significantly dysregulated in experimental cultures. Functional enrichment analysis revealed several endometriosis associated biological processes and pathways were enriched by target genes of these miRNAs. In conclusion, treatment of human eMSCs with sera of severe endometriosis cases affects the expression of certain miRNAs and their target genes. This may result in altering cell functions and consequently, endometriosis development. PMID:28828000

  11. MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression

    Science.gov (United States)

    Jeong, B-C; Kang, I-H; Hwang, Y-C; Kim, S-H; Koh, J-T

    2014-01-01

    Osteoblasts and adipocytes are differentiated from common mesenchymal stem cells (MSCs) in processes which are tightly controlled by various growth factors, signaling molecules, transcriptional factors and microRNAs. Recently, chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) was identified as a critical regulator of MSC fate. In the present study, we aimed to identify some microRNAs (miR), which target COUP-TFII, and to determine the effects on MSCs fate. During osteoblastic or adipocytic differentiation from MSCs lineage cells, miR-194 expression was found to be reversal. In the cultures of mesenchymal C3H10T1/2 and primary bone marrow stromal cells, osteogenic stimuli increased miR-194 expression with accompanying decreases in COUP-TFII expression, whereas adipogenic stimuli reduced miR-194 expression with accompanying increases in COUP-TFII expression. A luciferase assay with COUP-TFII 3′-untranslated region (UTR) reporter plasmid, including the miR-194 binding sequences, showed that the introduction of miR-194 reduced the luciferase activity. However, it did not affect the activity of mutated COUP-TFII 3′-UTR reporter. Enforced expression of miR-194 significantly enhanced osteoblast differentiation, but inhibited adipocyte differentiation by decreasing COUP-TFII mRNA and protein levels. In contrast, inhibition of the endogenous miR-194 reduced matrix mineralization in the MSCs cultures, promoting the formation of lipid droplets by rescuing COUP-TFII expression. Furthermore, overexpression of COUP-TFII reversed the effects of miR-194 on the cell fates. Taken together, our results showed that miR-194 acts as a critical regulator of COUP-TFII, and can determinate the fate of MSCs to differentiate into osteoblasts and adipocytes. This suggests that miR-194 and COUP-TFII may be good target molecules for controlling bone and metabolic diseases. PMID:25412310

  12. Genome-wide microRNA expression profiling in placentas from pregnant women exposed to BPA.

    Science.gov (United States)

    De Felice, Bruna; Manfellotto, Francesco; Palumbo, Annarita; Troisi, Jacopo; Zullo, Fulvio; Di Carlo, Costantino; Di Spiezio Sardo, Attilio; De Stefano, Noè; Ferbo, Umberto; Guida, Marco; Guida, Maurizio

    2015-09-07

    Bisphenol A (BPA) is an environmental compounds is known to possess endocrine disruption potentials. Bisphenol A has epigenetic effects as deregulated expression of microRNAs; such epigenetic marks can induce up/down alterations in gene expression that may persist throughout a lifetime. Bisphenol A (BPA) exposure has been documented in pregnant women, but consequences for development of offspring after BPA exposure during pregnancy are not yet widely studied. Therefore, the aim of this study was to gain a comprehensive understanding of microRNAs changes in the placenta transcriptome from pregnant women subjected to therapeutic abortion for fetal malformation and correlate the impact of gestational exposure to BPA on these developmental changes. We performed a comparative analysis of genome wide miRNA expression in placentas from pregnant women exposed to BPA using microarray technology to identify miRNAs which were aberrantly expressed in placentas from malformed fetuses. The expression changes of differential expressed miRNAs in the samples used for microarray were confirmed by qPCR . Beside, we applied various bioinformatics tools to predict the target genes of the identified miR-146a and explore their biological function and downstream pathways. We found that miR-146a was significant overexpressed and correlated significantly with BPA accumulation in the placenta from pregnant women living in a polluted area and undergoing therapeutic abortion due to fetal malformations. Beside, we applied various bioinformatics tools to predict the target genes of miR-146a and explore their biological function and downstream pathways. For the first time, we found, in humans, that miR-146a was significant over-expressed and correlated significantly with BPA accumulation in the placenta. Our results lead to the suggestion that miRNAs could be potential biomarkers to clarify the mechanisms of environmental diseases.

  13. MicroRNA Expression Profile in the Prenatal Amniotic Fluid Samples of Pregnant Women with Down Syndrome.

    Science.gov (United States)

    Karaca, Emin; Aykut, Ayça; Ertürk, Biray; Durmaz, Burak; Güler, Ahmet; Büke, Barış; Yeniel, Ahmet Özgür; Ergenoğlu, Ahmet Mete; Özkınay, Ferda; Özeren, Mehmet; Kazandı, Mert; Akercan, Fuat; Sağol, Sermet; Gündüz, Cumhur; Çoğulu, Özgür

    2018-03-15

    Down syndrome, which is the most common human chromosomal anomaly that can affect people of any race and age, can be diagnosed prenatally in most cases. Prenatal diagnosis via culture method is time-consuming; thus, genetic analysis has thus been introduced and is continually being developed for rapid prenatal diagnosis. For this reason, the effective use of microRNA profiling for the rapid analysis of prenatal amniotic fluid samples for the diagnosis of Down syndrome was investigated. To evaluate the expression levels of 14 microRNAs encoded by chromosome 21 in amniotic fluid samples and their utility for prenatal diagnosis of Down syndrome. Case-control study. We performed invasive prenatal testing for 56 pregnant women; 23 carried fetuses with Down syndrome, and 33 carried fetuses with a normal karyotype. Advanced maternal age and increased risk for Down syndrome in the screening tests were indications for invasive prenatal testing. The age of gestation in the study and control groups ranged between 17 and 18 weeks. The expression levels of microRNA were measured by real-time polymerase chain reaction. The expression levels of microRNA-125b-2, microRNA-155 , and microRNA-3156 were significantly higher in the study group than in the control group. The presence of significantly dysregulated microRNAs may be associated with either the phenotype or the result of abnormal development. Further large-scale comparative studies conducted in a variety of conditions may bring novel insights in the field of abnormal prenatal conditions.

  14. Diagnostic Role of MicroRNA Expression Profile in the Prenatal Amniotic Fluid Samples of Pregnant Women with Down Syndrome

    Directory of Open Access Journals (Sweden)

    Emin Karaca

    2018-03-01

    Full Text Available Background: Down syndrome, which is the most common human chromosomal anomaly that can affect people of any race and age, can be diagnosed prenatally in most cases. Prenatal diagnosis via culture method is time-consuming; thus, genetic analysis has thus been introduced and is continually being developed for rapid prenatal diagnosis. For this reason, the effective use of microRNA profiling for the rapid analysis of prenatal amniotic fluid samples for the diagnosis of Down syndrome was investigated. Aims: To evaluate the expression levels of 14 microRNAs encoded by chromosome 21 in amniotic fluid samples and their utility for prenatal diagnosis of Down syndrome. Study Design: Case-control study. Methods: We performed invasive prenatal testing for 56 pregnant women; 23 carried fetuses with Down syndrome, and 33 carried fetuses with a normal karyotype. Advanced maternal age and increased risk for Down syndrome in the screening tests were indications for invasive prenatal testing. The age of gestation in the study and control groups ranged between 17 and 18 weeks. The expression levels of microRNA were measured by real-time polymerase chain reaction. Results: The expression levels of microRNA-125b-2, microRNA-155, and microRNA-3156 were significantly higher in the study group than in the control group. Conclusion: The presence of significantly dysregulated microRNAs may be associated with either the phenotype or the result of abnormal development. Further large-scale comparative studies conducted in a variety of conditions may bring novel insights in the field of abnormal prenatal conditions.

  15. MicroRNA expression analysis and Multiplex ligation-dependent probe amplification in metastatic and non-metastatic uveal melanoma

    DEFF Research Database (Denmark)

    Larsen, Ann-Cathrine; Holst, Line; Kaczkowski, Bogumil

    2014-01-01

    Purpose: To determine the association of microRNA expression and chromosomal changes with metastasis and survival in uveal melanoma (UM). Methods: Thirty-six patients with UM were selected based on the metastatic status, and clinicopathological data were collected. Multiplex ligation-dependent pr......Purpose: To determine the association of microRNA expression and chromosomal changes with metastasis and survival in uveal melanoma (UM). Methods: Thirty-six patients with UM were selected based on the metastatic status, and clinicopathological data were collected. Multiplex ligation...

  16. Expression signature of microRNA-155 in hepatitis C virus genotype 4 infection.

    Science.gov (United States)

    Riad, Sarah Ehab; El-Ekiaby, Nada; Mekky, Radwa Yehia; Ahmed, Rasha; El Din, Mohammad Ahmed Mohey; El-Sayed, Mohammad; Abouelkhair, Mahmoud Mohammad; Salah, Ayman; Zekri, Abdel Rahman; Esmat, Gamal; Abdelaziz, Ahmed Ihab

    2015-01-01

    Hepatits C virus (HCV) genotype 4 (GT4) shows low treatment response rates and discrepancies when compared to other genotypes. However, the reason underlying these discrepancies remains unclear due to the limited number of studies on GT4. microRNA-155 ( miR-155 ) is a noteworthy example of a discrepancy in GT4, as it was found to be upregulated in genotypes 1, 2 and 3 HCV infection, but downregulated in GT4-HCV-infected peripheral blood mononuclear cells (PBMCs). The present study aimed to investigate the expression of miR-155 in PBMCs, serum and liver tissues of GT4-HCV-infected patients. miR-155 expression was assessed using reverse transcription-quantitative polymerase chain reaction in GT4-HCV-infected PBMCs, serum and liver tissues, as well as GT2- and GT4-infected Huh7 cells, and compared to the healthy controls. There was no difference in miR-155 expression observed between naïve GT4-HCV patients and healthy controls in the PBMCs and serum. In HCV-infected liver tissues, however, a significant downregulation was observed. The unique miR-155 expression pattern during GT4 infection was confirmed in the infected Huh7 cell lines when compared to GT2 infection. Clinical data showed a positive correlation between liver transaminases and serum miR-155 expression. In addition, serum miR-155 expression was significantly lower in naïve non-responders (NRs) than naïve sustained virological responders (SVRs), and in post-treatment NRs compared to post-treatment SVRs. In conclusion, miR-155 was not only proven to be a genotype-specific microRNA that is not induced during GT4-HCV infection, but also a good prognostic factor and predictor of response to treatment enabling a non-invasive differentiation between NRs and SVRs during GT4-HCV infection.

  17. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism.

    Science.gov (United States)

    Jansen, Felix; Yang, Xiaoyan; Baumann, Katharina; Przybilla, David; Schmitz, Theresa; Flender, Anna; Paul, Kathrin; Alhusseiny, Adil; Nickenig, Georg; Werner, Nikos

    2015-09-01

    Endothelial microparticles (EMP) are released from activated or apoptotic endothelial cells (ECs) and can be taken up by adjacent ECs, but their effect on vascular inflammation after engulfment is largely unknown. We sought to determine the role of EMP in EC inflammation. In vitro, EMP treatment significantly reduced tumour necrosis factor-α-induced endothelial intercellular adhesion molecule (ICAM)-1 expression on mRNA and protein level, whereas there was no effect on vascular cell adhesion molecule-1 expression. Reduced ICAM-1 expression after EMP treatment resulted in diminished monocyte adhesion in vitro. In vivo, systemic treatment of ApoE-/- mice with EMP significantly reduced murine endothelial ICAM-1 expression. To explore the underlying mechanisms, Taqman microRNA array was performed and microRNA (miR)-222 was identified as the strongest regulated miR between EMP and ECs. Following experiments demonstrated that miR-222 was transported into recipient ECs by EMP and functionally regulated expression of its target protein ICAM-1 in vitro and in vivo. After simulating diabetic conditions, EMP derived from glucose-treated ECs contained significantly lower amounts of miR-222 and showed reduced anti-inflammatory capacity in vitro and in vivo. Finally, circulating miR-222 level was diminished in patients with coronary artery disease (CAD) compared to patients without CAD. EMPs promote anti-inflammatory effects in vitro and in vivo by reducing endothelial ICAM-1 expression via the transfer of functional miR-222 into recipient cells. In pathological hyperglycaemic conditions, EMP-mediated miR-222-dependent anti-inflammatory effects are reduced. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  18. Analysis of serum microRNA expression in male workers with occupational noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Y.H. Li

    2018-01-01

    Full Text Available Occupational noise-induced hearing loss (ONIHL is a prevalent occupational disorder that impairs auditory function in workers exposed to prolonged noise. However, serum microRNA expression in ONIHL subjects has not yet been studied. We aimed to compare the serum microRNA expression profiles in male workers of ONIHL subjects and controls. MicroRNA microarray analysis revealed that four serum microRNAs were differentially expressed between controls (n=3 and ONIHL subjects (n=3. Among these microRNAs, three were upregulated (hsa-miR-3162-5p, hsa-miR-4484, hsa-miR-1229-5p and one was downregulated (hsa-miR-4652-3p in the ONIHL group (fold change >1.5 and Pbon value <0.05. Real time quantitative PCR was conducted for validation of the microRNA expression. Significantly increased serum levels of miR-1229-5p were found in ONIHL subjects compared to controls (n=10 for each group; P<0.05. A total of 659 (27.0% genes were predicted as the target genes of miR-1229-5p. These genes were involved in various pathways, such as mitogen-activated protein kinase (MAPK signaling pathway. Overexpression of miR-1229-5p dramatically inhibited the luciferase activity of 3′ UTR segment of MAPK1 (P<0.01. Compared to the negative control, HEK293T cells expressing miR-1229-5p mimics showed a significant decline in mRNA levels of MAPK1 (P<0.05. This preliminary study indicated that serum miR-1229-5p was significantly elevated in ONIHL subjects. Increased miR-1229-5p may participate in the pathogenesis of ONIHL through repressing MAPK1 signaling.

  19. Analysis of serum microRNA expression in male workers with occupational noise-induced hearing loss.

    Science.gov (United States)

    Li, Y H; Yang, Y; Yan, Y T; Xu, L W; Ma, H Y; Shao, Y X; Cao, C J; Wu, X; Qi, M J; Wu, Y Y; Chen, R; Hong, Y; Tan, X H; Yang, L

    2018-01-11

    Occupational noise-induced hearing loss (ONIHL) is a prevalent occupational disorder that impairs auditory function in workers exposed to prolonged noise. However, serum microRNA expression in ONIHL subjects has not yet been studied. We aimed to compare the serum microRNA expression profiles in male workers of ONIHL subjects and controls. MicroRNA microarray analysis revealed that four serum microRNAs were differentially expressed between controls (n=3) and ONIHL subjects (n=3). Among these microRNAs, three were upregulated (hsa-miR-3162-5p, hsa-miR-4484, hsa-miR-1229-5p) and one was downregulated (hsa-miR-4652-3p) in the ONIHL group (fold change >1.5 and Pbon value <0.05). Real time quantitative PCR was conducted for validation of the microRNA expression. Significantly increased serum levels of miR-1229-5p were found in ONIHL subjects compared to controls (n=10 for each group; P<0.05). A total of 659 (27.0%) genes were predicted as the target genes of miR-1229-5p. These genes were involved in various pathways, such as mitogen-activated protein kinase (MAPK) signaling pathway. Overexpression of miR-1229-5p dramatically inhibited the luciferase activity of 3' UTR segment of MAPK1 (P<0.01). Compared to the negative control, HEK293T cells expressing miR-1229-5p mimics showed a significant decline in mRNA levels of MAPK1 (P<0.05). This preliminary study indicated that serum miR-1229-5p was significantly elevated in ONIHL subjects. Increased miR-1229-5p may participate in the pathogenesis of ONIHL through repressing MAPK1 signaling.

  20. MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.

  1. MicroRNA expression in serum samples of sulfur mustard veterans as a diagnostic gateway to improve care.

    Science.gov (United States)

    Gharbi, Sedigheh; Khateri, Shahriar; Soroush, Mohammad Reza; Shamsara, Mehdi; Naeli, Parisa; Najafi, Ali; Korsching, Eberhard; Mowla, Seyed Javad

    2018-01-01

    Sulfur mustard is a vesicant chemical warfare agent, which has been used during Iraq-Iran-war. Many veterans and civilians still suffer from long-term complications of sulfur mustard exposure, especially in their lung. Although the lung lesions of these patients are similar to Chronic Obstructive Pulmonary Disease (COPD), there are some differences due to different etiology and clinical care. Less is known on the molecular mechanism of sulfur mustard patients and specific treatment options. microRNAs are master regulators of many biological pathways and proofed to be stable surrogate markers in body fluids. Based on that microRNA expression for serum samples of sulfur mustard patients were examined, to establish specific microRNA patterns as a basis for diagnostic use and insight into affected molecular pathways. Patients were categorized based on their long-term complications into three groups and microRNA serum levels were measured. The differentially regulated microRNAs and their corresponding gene targets were identified. Cell cycle arrest, ageing and TGF-beta signaling pathways showed up to be the most deregulated pathways. The candidate microRNA miR-143-3p could be validated on all individual patients. In a ROC analysis miR-143-3p turned out to be a suitable diagnostic biomarker in the mild and severe categories of patients. Further microRNAs which might own a link to the biology of the sulfur mustard patients are miR-365a-3p, miR-200a-3p, miR-663a. miR-148a-3p, which showed up only in a validation study, might be linked to the airway complications of the sulfur mustard patients. All the other candidate microRNAs do not directly link to COPD phenotype or lung complications. In summary the microRNA screening study characterizes several molecular differences in-between the clinical categories of the sulfur mustard exposure groups and established some useful microRNA biomarkers. qPCR raw data is available via the Gene Expression Omnibus https://www.ncbi

  2. Synaptic adaptations by alcohol and drugs of abuse: changes in microRNA expression and mRNA regulation

    Directory of Open Access Journals (Sweden)

    Dana eMost

    2014-12-01

    Full Text Available Local translation of mRNAs is a mechanism by which cells can rapidly remodel synaptic structure and function. There is ample evidence for a role of synaptic translation in the neuroadaptations resulting from chronic drug use and abuse. Persistent and coordinated changes of many mRNAs, globally and locally, may have a causal role in complex disorders such as addiction. In this review we examine the evidence that translational regulation by microRNAs drives synaptic remodeling and mRNA expression, which may regulate the transition from recreational to compulsive drug use.MicroRNAs are small, non-coding RNAs that control the translation of mRNAs in the cell and within spatially restricted sites such as the synapse. MicroRNAs typically repress the translation of mRNAs into protein by binding to the 3’UTR of their targets. As ‘master regulators’ of many mRNAs, changes in microRNAs could account for the systemic alterations in mRNA and protein expression observed with drug abuse and dependence. Recent studies indicate that manipulation of microRNAs affects addiction-related behaviors such as the rewarding properties of cocaine, cocaine-seeking behavior and self-administration rates of alcohol. There is limited evidence, however, regarding how synaptic microRNAs control local mRNA translation during chronic drug exposure and how this contributes to the development of dependence.Here, we discuss research supporting microRNA regulation of local mRNA translation and how drugs of abuse may target this process. The ability of synaptic microRNAs to rapidly regulate mRNAs provides a discrete, localized system that could potentially be used as diagnostic and treatment tools for alcohol and other addiction disorders.

  3. MicroRNA miR-328 regulates zonation morphogenesis by targeting CD44 expression.

    Directory of Open Access Journals (Sweden)

    Chia-Hui Wang

    Full Text Available Morphogenesis is crucial to initiate physiological development and tumor invasion. Here we show that a microRNA controls zonation morphogenesis by targeting hyaluronan receptor CD44. We have developed a novel system to study microRNA functions by generating constructs expressing pre-miRNAs and mature miRNAs. Using this system, we have demonstrated that expression of miR-328 reduced cell adhesion, aggregation, and migration, and regulated formation of capillary structure. Protein analysis indicated that miR-328 repressed CD44 expression. Activities of luciferase constructs harboring the target site in CD44, but not the one containing mutation, were repressed by miR-328. Zonation morphogenesis appeared in cells transfected by miR-328: miR-328-transfected cells were present on the surface of zonating structures while the control cells stayed in the middle. MiR-328-mediated CD44 actions was validated by anti-CD44 antibody, hyaluronidase, CD44 siRNA, and CD44 expression constructs. In vivo experiments showed that CD44-silencing cells appeared as layers on the surfaces of nodules or zonating structures. Immuno-histochemistry also exhibited CD44-negative cells on the surface layers of normal rat livers and the internal zones of Portal veins. Our results demonstrate that miR-328 targets CD44, which is essential in regulating zonation morphogenesis: silencing of CD44 expression is essential in sealing the zonation structures to facilitate their extension and to inhibit complex expansion.

  4. Human embryos secrete microRNAs into culture media--a potential biomarker for implantation.

    Science.gov (United States)

    Rosenbluth, Evan M; Shelton, Dawne N; Wells, Lindsay M; Sparks, Amy E T; Van Voorhis, Bradley J

    2014-05-01

    To determine whether human blastocysts secrete microRNA (miRNAs) into culture media and whether these reflect embryonic ploidy status and can predict in vitro fertilization (IVF) outcomes. Experimental study of human embryos and IVF culture media. Academic IVF program. 91 donated, cryopreserved embryos that developed into 28 tested blastocysts, from 13 couples who had previously completed IVF cycles. None. Relative miRNA expression in IVF culture media. Blastocysts were assessed by chromosomal comparative genomic hybridization analysis, and the culture media from 55 single-embryo transfer cycles was tested for miRNA expression using an array-based quantitative real-time polymerase chain reaction analysis. The expression of the identified miRNA was correlated with pregnancy outcomes. Ten miRNA were identified in the culture media; two were specific to spent media (miR-191 and miR-372), and one was only present in media before the embryos had been cultured (miR-645). MicroRNA-191 was more highly concentrated in media from aneuploid embryos, and miR-191, miR-372, and miR-645 were more highly concentrated in media from failed IVF/non-intracytoplasmic sperm injection cycles. Additionally, miRNA were found to be more highly concentrated in ICSI and day-5 media samples when compared with regularly inseminated and day-4 samples, respectively. MicroRNA can be detected in IVF culture media. Some of these miRNA are differentially expressed according to the fertilization method, chromosomal status, and pregnancy outcome, which makes them potential biomarkers for predicting IVF success. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. MicroRNA and mRNA Expression Changes in Steroid Naïve and Steroid Treated DMD Patients.

    Science.gov (United States)

    Liu, Da Zhi; Stamova, Boryana; Hu, Shengyong; Ander, Bradley P; Jickling, Glen C; Zhan, Xinhua; Sharp, Frank R; Wong, Brenda

    2015-09-22

    Duchenne Muscular Dystrophy (DMD) is a recessive X-linked form of muscular dystrophy. Steroid therapy has clinical benefits for DMD patients, but the mechanism remains unclear. This study was designed to identify mRNAs and microRNAs regulated in Duchenne Muscular Dystrophy patients prior to and after steroid therapy. Genome wide transcriptome profiling of whole blood was performed to identify mRNAs and microRNAs regulated in DMD patients. The data show many regulated mRNAs and some microRNAs, including some muscle-specific microRNAs (e.g., miR-206), that were significantly altered in blood of young (age 3-10) DMD patients compared to young controls. A total of 95 microRNAs, but no mRNAs, were differentially expressed in older DMD patients compared to matched controls (age 11-20). Steroid treatment reversed expression patterns of several microRNAs (miR-206, miR-181a, miR-4538, miR-4539, miR-606, and miR-454) that were altered in the young DMD patients. As an example, the over-expression of miR-206 in young DMD patients is predicted to down-regulate a set of target genes (e.g., RHGAP31, KHSRP, CORO1B, PTBP1, C7orf58, DLG4, and KLF4) that would worsen motor function. Since steroids decreased miR-206 expression to control levels, this could provide one mechanism by which steroids improve motor function. These identified microRNA-mRNA alterations will help better understand the pathophysiology of DMD and the response to steroid treatment.

  6. Gender and obesity specific MicroRNA expression in adipose tissue from lean and obese pigs

    DEFF Research Database (Denmark)

    Mentzel, Caroline M. Junker; Anthon, Christian; Jacobsen, Mette Juul

    2015-01-01

    Obesity is a complex condition that increases the risk of life threatening diseases such as cardiovascular disease and diabetes. Studying the gene regulation of obesity is important for understanding the molecular mechanisms behind the obesity derived diseases and may lead to better intervention...... and treatment plans. MicroRNAs (miRNAs) are short non-coding RNAs regulating target mRNA by binding to their 3'UTR. They are involved in numerous biological processes and diseases, including obesity. In this study we use a mixed breed pig model designed for obesity studies to investigate differentially...... expressed miRNAs in subcutaneous adipose tissue by RNA sequencing (RNAseq). Both male and female pigs are included to explore gender differences. The RNAseq study shows that the most highly expressed miRNAs are in accordance with comparable studies in pigs and humans. A total of six mi...

  7. Chronological changes in microRNA expression in the developing human brain.

    Directory of Open Access Journals (Sweden)

    Michael P Moreau

    Full Text Available MicroRNAs (miRNAs are endogenously expressed noncoding RNA molecules that are believed to regulate multiple neurobiological processes. Expression studies have revealed distinct temporal expression patterns in the developing rodent and porcine brain, but comprehensive profiling in the developing human brain has not been previously reported.We performed microarray and TaqMan-based expression analysis of all annotated mature miRNAs (miRBase 10.0 as well as 373 novel, predicted miRNAs. Expression levels were measured in 48 post-mortem brain tissue samples, representing gestational ages 14-24 weeks, as well as early postnatal and adult time points.Expression levels of 312 miRNAs changed significantly between at least two of the broad age categories, defined as fetal, young, and adult.We have constructed a miRNA expression atlas of the developing human brain, and we propose a classification scheme to guide future studies of neurobiological function.

  8. MicroRNA-203 induces apoptosis by upregulating Puma expression in colon and lung cancer cells.

    Science.gov (United States)

    Funamizu, Naotake; Lacy, Curtis R; Kamada, Minori; Yanaga, Katsuhiko; Manome, Yoshinobu

    2015-11-01

    The present study investigated the relationship between microRNA-203 (miR-203) and the p53 upregulated modulator of apoptosis (Puma) in colon (HCT116) and lung cancer (A549) cells. Colon and lung cancer cell lines were selected for this study since a relationship between p53/miR-203 and p53/Puma has been established in both cancers. In the present study, adriamycin and nutlin-3 were used to activate p53, which induced both miR-203 and Puma expression in HCT116 cells. In contrast, HCT 116 cells with downregulated p53 showed decreased miR-203 and Puma expression. Importantly, we found that overexpressed miR-203 in HCT116 cells resulted in significantly increased Puma expression (PPuma axis depends on miR-203 expression. To further validate this relationship, we used lung cancer cells (A549) and found that activated p53 increased both miR-203 and Puma expression. In addition, we found that Puma expression remained elevated in cells with overexpressed miR-203 in the presence of p53 downregulation. Cumulatively, our data purport that p53 not only increased Puma expression directly, but that it may also do so through miR-203. Additionally, functional studies revealed that miR-203 overexpression induced apoptosis and inhibited cell invasiveness.

  9. Increased Expression of microRNA-17 Predicts Poor Prognosis in Human Glioma

    Directory of Open Access Journals (Sweden)

    Shengkui Lu

    2012-01-01

    Full Text Available Aim. To investigate the clinical significance of microRNA-17 (miR-17 expression in human gliomas. Methods. Quantitative real-time polymerase chain reaction (qRT-PCR analysis was used to characterize the expression patterns of miR-17 in 108 glioma and 20 normal brain tissues. The associations of miR-17 expression with clinicopathological factors and prognosis of glioma patients were also statistically analyzed. Results. Compared with normal brain tissues, miR-17 expression was significantly higher in glioma tissues (P<0.001. In addition, the increased expression of miR-17 in glioma was significantly associated with advanced pathological grade (P=0.006 and low Karnofsky performance score (KPS, P=0.01. Moreover, Kaplan-Meier survival and Cox regression analyses showed that miR-17 overexpression (P=0.008 and advanced pathological grade (P=0.02 were independent factors predicting poor prognosis for gliomas. Furthermore, subgroup analyses showed that miR-17 expression was significantly associated with poor overall survival in glioma patients with high pathological grades (for grade III~IV: P<0.001. Conclusions. Our data offer the convinced evidence that the increased expression of miR-17 may have potential value for predicting poor prognosis in glioma patients with high pathological grades, indicating that miR-17 may contribute to glioma progression and be a candidate therapeutic target for this disease.

  10. UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes.

    Directory of Open Access Journals (Sweden)

    Anne Kraemer

    Full Text Available MicroRNA (miRNA-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2, which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis.

  11. Expression of microRNA-184 in keratinocytes represses argonaute 2.

    Science.gov (United States)

    Roberts, Julian C; Warren, Richard B; Griffiths, Christopher E M; Ross, Kehinde

    2013-12-01

    Interleukin-22 (IL-22) is a proinflammatory cytokine that has been associated with the pathogenesis of inflammatory skin disorders. However, the impact of IL-22 on microRNA (miRNA) expression in epidermal keratinocytes is unknown. Here we show that IL-22 induces miR-184 in reconstituted human epidermis (RHE) and in the HaCaT keratinocyte cell line. Exposure to IL-22 increased miR-184 expression 8- and 15-fold in RHE and HaCaT cells, respectively. Oncostatin M, an unrelated proinflammatory cytokine, also raised miR-184 expression in RHE and HaCaT keratinocytes. Pharmacologic and genetic inhibition demonstrated that cytokine-induced expression of miR-184 was mediated by signal transducer and activation of transcription 3 (STAT3). Argonaute 2 (AGO2), a member of the RNA-induced silencing complex (RISC), is a predicted miR-184 target. Using protein, messenger RNA and reporter analyses, we found that miR-184 regulates the expression of AGO2. We conclude that cytokine-induced miR-184 attenuates AGO2 expression in keratinocytes. Copyright © 2013 Wiley Periodicals, Inc.

  12. Aberrantly expressed microRNAs in the context of bladder tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jong-Young Lee

    2016-06-01

    Full Text Available MicroRNAs (miRNAs, small noncoding RNAs 19–22 nucleotides in length, play a major role in negative regulation of gene expression at the posttranscriptional level. Several miRNAs act as tumor suppressors or oncogenes that control cell differentiation, proliferation, apoptosis, or angiogenesis during tumorigenesis. To date, 19 research groups have published large-scale expression profiles that identified 261 miRNAs differentially expressed in bladder cancer, of which 76 were confirmed to have consistent expression patterns by two or more groups. These consistently expressed miRNAs participated in regulation of multiple biological processes and factors, including axon guidance, cancer-associated proteoglycans, and the ErbB and transforming growth factorbeta signaling pathways. Because miRNAs can be released from cancer cells into urine via secreted particles, we propose that miRNAs differentially expressed between tissue and urine could serve as predictors of bladder cancer, and could thus be exploited for noninvasive diagnosis.

  13. Relationship between microRNA expression levels and histopathological features of dysplasia in oral leukoplakia.

    Science.gov (United States)

    Brito, João A R; Gomes, Carolina C; Guimarães, André L S; Campos, Kelma; Gomez, Ricardo S

    2014-03-01

    Increased expression of microRNAs (miRNAs), miR-21, miR-345, and miR-181b has been demonstrated in oral leukoplakia (OL) that progresses to oral squamous cell carcinoma (OSCC), suggesting a miRNA signature with potential prognostic value. On the basis of these findings, this pilot study aimed to investigate the cytological and histopathological features that are used to grade oral dysplasia and determine associations with the expression of these 3 potentially cancer-related miRNAs. We also compared the expression levels of these miRNAs in OL with normal oral mucosa and OSCC. We evaluated miRNA expression by qPCR in 22 samples of OL demonstrating different grades of dysplasia, as well as 17 cases of OSCC, and 6 samples of normal oral mucosa. We associated the miRNAs expression profiles with cytological and histopathological features of OL. OSCC cases showed increased expression of all 3 miRNAs when compared with OL and normal oral mucosa. Increased expression of miR-21 was also observed in OL when compared with normal oral mucosa. We found a higher expression of miR-21 and miR-181b in OL that presented with an increased number of mitotic figures, increased nuclear/cytoplasmic ratio, or hyperchromasia. Increased expression of miR-21 was also detected in OL with abnormally superficial mitosis. Higher expression of miR-345 was observed in OL with an increased number and size of nucleoli or increased nuclear/cytoplasmic ratio. In conclusion, the present study shows that some cytological and histopathological parameters used to grade dysplasia are associated with altered miRNA expression. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. MicroRNA Expression Profiling to Identify and Validate Reference Genes for the Relative Quantification of microRNA in Rectal Cancer

    DEFF Research Database (Denmark)

    Eriksen, Anne Haahr Mellergaard; Andersen, Rikke Fredslund; Pallisgaard, Niels

    2016-01-01

    INTRODUCTION: MicroRNAs (miRNAs) play important roles in regulating biological processes at the post-transcriptional level. Deregulation of miRNAs has been observed in cancer, and miRNAs are being investigated as potential biomarkers regarding diagnosis, prognosis and prediction in cancer...... management. Real-time quantitative polymerase chain reaction (RT-qPCR) is commonly used, when measuring miRNA expression. Appropriate normalisation of RT-qPCR data is important to ensure reliable results. The aim of the present study was to identify stably expressed miRNAs applicable as normaliser candidates...... in future studies of miRNA expression in rectal cancer.MATERIALS AND METHODS: We performed high-throughput miRNA profiling (OpenArray®) on ten pairs of laser micro-dissected rectal cancer tissue and adjacent stroma. A global mean expression normalisation strategy was applied to identify the most stably...

  15. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies.

    Science.gov (United States)

    Drusco, Alessandra; Bottoni, Arianna; Laganà, Alessandro; Acunzo, Mario; Fassan, Matteo; Cascione, Luciano; Antenucci, Anna; Kumchala, Prasanthi; Vicentini, Caterina; Gardiman, Marina P; Alder, Hansjuerg; Carosi, Mariantonia A; Ammirati, Mario; Gherardi, Stefano; Luscrì, Marilena; Carapella, Carmine; Zanesi, Nicola; Croce, Carlo M

    2015-08-28

    Central Nervous System malignancies often require stereotactic biopsy or biopsy for differential diagnosis, and for tumor staging and grading. Furthermore, stereotactic biopsy can be non-diagnostic or underestimate grading. Hence, there is a compelling need of new diagnostic biomarkers to avoid such invasive procedures. Several biological markers have been proposed, but they can only identify specific prognostic subtype of Central Nervous System tumors, and none of them has found a standardized clinical application.The aim of the study was to identify a Cerebro-Spinal Fluid microRNA signature that could differentiate among Central Nervous System malignancies.CSF total RNA of 34 neoplastic and of 14 non-diseased patients was processed by NanoString. Comparison among groups (Normal, Benign, Glioblastoma, Medulloblastoma, Metastasis and Lymphoma) lead to the identification of a microRNA profile that was further confirmed by RT-PCR and in situ hybridization.Hsa-miR-451, -711, 935, -223 and -125b were significantly differentially expressed among the above mentioned groups, allowing us to draw an hypothetical diagnostic chart for Central Nervous System malignancies.This is the first study to employ the NanoString technique for Cerebro-Spinal Fluid microRNA profiling. In this article, we demonstrated that Cerebro-Spinal Fluid microRNA profiling mirrors Central Nervous System physiologic or pathologic conditions. Although more cases need to be tested, we identified a diagnostic Cerebro-Spinal Fluid microRNA signature with good perspectives for future diagnostic clinical applications.

  16. The Roles of microRNAs in Regulating the Expression of PD-1/PD-L1 Immune Checkpoint

    Science.gov (United States)

    Wang, Qingshui; Lin, Wei; Tang, Xiaoqiong; Li, Suhuan; Guo, Libin

    2017-01-01

    Engagement of programmed death-ligand 1 (PD-L1) with its receptor programmed death 1 (PD-1) on T cells has been speculated to play a major role in suppressing the immune system, which helps tumor cells evade anti-tumor immunity. With the development of whole genome sequencing technologies, microRNAs have gained more attention as an important new layer of molecular regulation. Recent studies have revealed that altered expression of microRNAs play a pivotal role in immune checkpoint and various cellular processes in cancer. In this review, we focused on the latest progress about microRNAs research which involves the regulation of PD-1/PD-L1 immune checkpoint. PMID:29186904

  17. The Roles of microRNAs in Regulating the Expression of PD-1/PD-L1 Immune Checkpoint

    Directory of Open Access Journals (Sweden)

    Qingshui Wang

    2017-11-01

    Full Text Available Engagement of programmed death-ligand 1 (PD-L1 with its receptor programmed death 1 (PD-1 on T cells has been speculated to play a major role in suppressing the immune system, which helps tumor cells evade anti-tumor immunity. With the development of whole genome sequencing technologies, microRNAs have gained more attention as an important new layer of molecular regulation. Recent studies have revealed that altered expression of microRNAs play a pivotal role in immune checkpoint and various cellular processes in cancer. In this review, we focused on the latest progress about microRNAs research which involves the regulation of PD-1/PD-L1 immune checkpoint.

  18. Differential expression of cellular microRNAs in HPV-11 transfected cells. An analysis by three different array platforms and qRT-PCR

    DEFF Research Database (Denmark)

    Dreher, Anita; Rossing, Maria; Kaczkowski, Bogumil

    2010-01-01

    . The changes of cellular microRNAs by HPV-11 gene expression were investigated in a cell culture model of HaCaT cells transfected with HPV-11, with the goal of understanding which cellular processes were affected by the virus. Human microRNA profiling was conducted on three different array platform systems...

  19. MicroRNA Expression Profiling of the Porcine Developing Hypothalamus and Pituitary Tissue

    Science.gov (United States)

    Zhang, Lifan; Cai, Zhaowei; Wei, Shengjuan; Zhou, Huiyun; Zhou, Hongmei; Jiang, Xiaoling; Xu, Ningying

    2013-01-01

    MicroRNAs (miRNAs), a class of small non-coding RNA molecules, play important roles in gene expressions at transcriptional and post-transcriptional stages in mammalian brain. So far, a growing number of porcine miRNAs and their function have been identified, but little is known regarding the porcine developing hypothalamus and pituitary. In the present study, Solexa sequencing analysis showed 14,129,397 yielded reads, 6,680,678 of which were related to 674 unique miRNAs. After a microarray assay, we detected 175 unique miRNAs in the hypothalamus, including 136 previously known miRNAs and 39 novel candidates, while a total of 140 miRNAs, including 104 known and 36 new candidate miRNAs, were discovered in pituitary. More importantly, 37 and 30 differentially expressed miRNAs from several developmental stages of hypothalamus and pituitary were revealed, respectively. The 37 differentially expressed miRNAs in hypothalamus represented 6 different expression patterns, while the 30 differentially expressed miRNAs in pituitary represented 7 different expression patterns. To clarify potential target genes and specific functions of these differentially expressed miRNAs in hypothalamus and pituitary, TargetScan and Gorilla prediction tools were then applied. The current functional analysis showed that the differentially expressed miRNAs in hypothalamus and pituitary shared many biological processes, with the main differences being found in tissue-specific processes including: CDP-diacylglycerol biosynthetic/metabolic process; phosphatidic acid biosynthetic/metabolic process; energy reserve metabolic process for hypothalamus; adult behavior; sterol transport/homeostasis; and cholesterol/reverse cholesterol transport for pituitary. Overall, this study identified miRNA profiles and differentially expressed miRNAs among various developmental stages in hypothalamus and pituitary and indicated miRNA profiles change with age and brain location, enhancing our knowledge about spatial

  20. Correlation between tissue expression of microRNA-137 and CD8 in oral lichen planus.

    Science.gov (United States)

    Aghbari, Sana Maher Hasan; Abushouk, Abdelrahman Ibrahim; Shakir, Olfat Gamil; Zayed, Shaimaa Omar; Attia, Attia

    2018-04-01

    Oral lichen planus (OLP) is a chronic, inflammatory condition, classified by the World Health Organization as a premalignant lesion. We performed this study to evaluate the correlation between microRNA-137 (miR-137) and CD8 oral tissue expression in OLP patients. Twenty OLP patients [classified into three groups: (a) papular, reticular, or plaque; (b) atrophic; and (c) erosive] and 20 healthy controls were subjected to biopsy of the oral mucosa. To evaluate CD8 tissue expression, we performed immunohistochemical examination, followed by immunostaining and computerized quantification. The expression of miR-137 was evaluated using real-time quantitative PCR. We used SPSS software (version 15 for windows) to perform the statistical analysis. Our analysis showed an increased tissue expression of CD8 (p < 0.01) and reduced expression of miR-137 (p < 0.001) in OLP patients, compared to the control group. Moreover, there was a statistically significant difference (p = 0.001) between OLP subgroups in terms of CD8 tissue expression [highest in erosive OLP and lowest in papular/reticular/plaque OLP]. However, these subgroups showed no significant difference (p = 0.168) in terms of miR-137 expression. A negative correlation (p < 0.05) between tissue expression of miR-137 and CD8 was noted with a varying correlation coefficient in different OLP subgroups (-0.250 in erosive OLP, -0.491 in atrophic OLP and -0.616 in papular/reticular/plaque OLP). Our findings indicate reduced expression of miR-137 and a reverse correlation between tissue expression of miR-137 and CD8 in the oral mucosa of OLP patients. Future studies should investigate the therapeutic potential of miR-137 overexpression in OLP patients.

  1. MicroRNA Expression Profiling of the Porcine Developing Hypothalamus and Pituitary Tissue

    Directory of Open Access Journals (Sweden)

    Xiaoling Jiang

    2013-10-01

    Full Text Available MicroRNAs (miRNAs, a class of small non-coding RNA molecules, play important roles in gene expressions at transcriptional and post-transcriptional stages in mammalian brain. So far, a growing number of porcine miRNAs and their function have been identified, but little is known regarding the porcine developing hypothalamus and pituitary. In the present study, Solexa sequencing analysis showed 14,129,397 yielded reads, 6,680,678 of which were related to 674 unique miRNAs. After a microarray assay, we detected 175 unique miRNAs in the hypothalamus, including 136 previously known miRNAs and 39 novel candidates, while a total of 140 miRNAs, including 104 known and 36 new candidate miRNAs, were discovered in pituitary. More importantly, 37 and 30 differentially expressed miRNAs from several developmental stages of hypothalamus and pituitary were revealed, respectively. The 37 differentially expressed miRNAs in hypothalamus represented 6 different expression patterns, while the 30 differentially expressed miRNAs in pituitary represented 7 different expression patterns. To clarify potential target genes and specific functions of these differentially expressed miRNAs in hypothalamus and pituitary, TargetScan and Gorilla prediction tools were then applied. The current functional analysis showed that the differentially expressed miRNAs in hypothalamus and pituitary shared many biological processes, with the main differences being found in tissue-specific processes including: CDP-diacylglycerol biosynthetic/metabolic process; phosphatidic acid biosynthetic/metabolic process; energy reserve metabolic process for hypothalamus; adult behavior; sterol transport/homeostasis; and cholesterol/reverse cholesterol transport for pituitary. Overall, this study identified miRNA profiles and differentially expressed miRNAs among various developmental stages in hypothalamus and pituitary and indicated miRNA profiles change with age and brain location, enhancing our

  2. Increased expression of microRNA-196a predicts poor prognosis in human ovarian carcinoma.

    Science.gov (United States)

    Fan, Yi; Fan, Jin; Huang, Liu; Ye, Ming; Huang, Zheng; Wang, Yibin; Li, Qiufen; Huang, Jiezhen

    2015-01-01

    Overexpression of MicroRNA-196a (miR-196a) has recently been reported in different types of human cancers. However, the prognostic value of miR-196a in ovarian carcinoma remains unknown. In this study, we investigated the expression of miR-196a in ovarian carcinoma and its relationship with tumor progression and clinical prognosis. The expression level of miR-196a was examined by quantitative Real-time PCR (qRT-PCR) in surgically removed ovarian cancer tissues and ovarian cancer cell lines. The correlation between miR-196a expression and clinical features and prognosis were statistically analyzed. The results showed that the miR-196a expression was significantly upregulated in tumor tissues and ovarian cancer cell lines compared with that in normal ovarian surface tissues and normal ovarian epithelial cells. Moreover, miR-196a expression was positively correlated with FIGO stage (Povarian carcinoma. In conclusion, miR-196a may play an important role in the progression of ovarian carcinoma, and could be used as an independent prognostic biomarker for patients with ovarian carcinoma.

  3. MicroRNA Expression Varies according to Glucose Tolerance, Measurement Platform, and Biological Source

    Directory of Open Access Journals (Sweden)

    S. Dias

    2017-01-01

    Full Text Available Dysregulated microRNA (miRNA expression is observed during type 2 diabetes (T2D, although the consistency of miRNA expression across measurement platform and biological source is uncertain. Here we report miRNA profiling in the whole blood and serum of South African women with different levels of glucose tolerance, using next generation sequencing (NGS and quantitative real time PCR (qRT-PCR. Whole blood-derived miRNAs from women with newly diagnosed T2D (n=4, impaired glucose tolerance (IGT (n=4, and normal glucose tolerance (NGT (n=4 were subjected to NGS, whereafter transcript levels of selected miRNAs were quantified in the whole blood and serum of these women using qRT-PCR. Of the five significantly differentially expressed miRNAs identified by NGS, only the directional increase of miR-27b in women with IGT compared to NGT was confirmed in whole blood and serum, using qRT-PCR. Functional enrichment of miR-27b gene targets identified biological pathways associated with glucose transport and insulin regulation. In conclusion, this study showed poor correlation in miRNA expression profiled using NGS and qRT-PCR and in whole blood and serum. The consistent increased expression of miR-27b in women with IGT compared to NGT across measurement platform and biological source holds potential as a biomarker for risk stratification in our population.

  4. Dysregulation of hepatic microRNA expression profiles with Clonorchis sinensis infection.

    Science.gov (United States)

    Han, Su; Tang, Qiaoran; Lu, Xi; Chen, Rui; Li, Yihong; Shu, Jing; Zhang, Xiaoli; Cao, Jianping

    2016-11-30

    Clonorchiasis remains an important zoonotic parasitic disease worldwide. The molecular mechanisms of host-parasite interaction are not fully understood. Non-coding microRNAs (miRNAs) are considered to be key regulators in parasitic diseases. The regulation of miRNAs and host micro-environment may be involved in clonorchiasis, and require further investigation. MiRNA microarray technology and bioinformatic analysis were used to investigate the regulatory mechanisms of host miRNA and to compare miRNA expression profiles in the liver tissues of control and Clonorchis sinensis (C. sinensis)-infected rats. A total of eight miRNAs were downregulated and two were upregulated, which showed differentially altered expression profiles in the liver tissue of C. sinensis-infected rats. Further analysis of the differentially expressed miRNAs revealed that many important signal pathways were triggered after infection with C. sinensis, which were related to clonorchiasis pathogenesis, such as cell apoptosis and inflammation, as well as genes involved in signal transduction mechanisms, such as pathways in cancer and the Wnt and Mitogen-activated protein kinases (MAPK) signaling pathways. The present study revealed that the miRNA expression profiles of the host were changed by C. sinensis infection. This dysregulation in miRNA expression may contribute to the etiology and pathophysiology of clonorchiasis. These results also provide new insights into the regulatory mechanisms of miRNAs in clonorchiasis, which may present potential targets for future C. sinensis control strategies.

  5. Epigenetic Regulation of Gene Expression Induced by Butyrate in Colorectal Cancer: Involvement of MicroRNA

    Directory of Open Access Journals (Sweden)

    Karen S Bishop

    2017-09-01

    Full Text Available Colorectal cancer (CRC is the third most common cause of cancer mortality globally. Development of CRC is closely associated with lifestyle, and diet may modulate risk. A Western-style diet is characterised by a high intake of red meat but low consumption of fruit, vegetables, and whole cereals. Such a diet is associated with CRC risks. It has been demonstrated that butyrate, produced by the fermentation of dietary plant fibre, can alter both genetic and epigenetic expressions. MicroRNAs (miRNAs are small non-coding RNAs that are commonly present in both normal and tumour cells. Aberrant miRNA expression is associated with CRC initiation, progression, and metastasis. In addition, butyrate can modulate cell proliferation, differentiation, apoptosis, and miRNA expression in CRC. In this review, the effects of butyrate on modulating miRNA expression in CRC will be discussed. Furthermore, evidence on the effect of butyrate on CRC risk through reducing oncogenic miRNA expression will be presented.

  6. Expression-based functional investigation of the organ-specific microRNAs in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Yijun Meng

    Full Text Available MicroRNAs (miRNAs play a pivotal role in plant development. The expression patterns of the miRNA genes significantly influence their regulatory activities. By utilizing small RNA (sRNA high-throughput sequencing (HTS data, the miRNA expression patterns were investigated in four organs (flowers, leaves, roots and seedlings of Arabidopsis. Based on a set of criteria, dozens of organ-specific miRNAs were discovered. A dominant portion of the organ-specific miRNAs identified from the ARGONAUTE 4-enriched sRNA HTS libraries were highly expressed in flowers. Additionally, the expression of the precursors of the organ-specific miRNAs was analyzed. Degradome sequencing data-based approach was employed to identify the targets of the organ-specific miRNAs. The miRNA-target interactions were used for network construction. Subnetwork analysis unraveled some novel regulatory cascades, such as the feedback regulation mediated by miR161, the potential self-regulation of the genes miR172, miR396, miR398 and miR860, and the miR863-guided cleavage of the SERRATE transcript. Our bioinformatics survey expanded the organ-specific miRNA-target list in Arabidopsis, and could deepen the biological view of the miRNA expression and their regulatory roles.

  7. Protection against inflammatory β-cell damage by lysine deacetylase inhibition and microRNA expression?

    DEFF Research Database (Denmark)

    Vestergaard, Anna Lindeløv; Pallesen, Emil Marek Heymans; Novotny, Guy Wayne

    1 or HDAC3, and is associated with down-regulation of inflammatory gene expression, only in part through hyperacetylation of NFB. We therefore hypothesize that HDACi-mediated hyperacetylation of histones and/or other proteins upregulate expression of microRNAs (miR), which repress translation......), and RT-qPCR-based miR array was performed. Regulation of several miR was verified by TaqMan RT-qPCR, and medium nitrite was determined with Griess’ reagent. Results: Following systematic analysis using NormFinder, miR-103 was chosen for normalization of the qPCR array data. Constitutive expression of 103...... miR, and cytokine-induced expression of 84 miR were up- or down-regulated more than 3-fold by KD of HDAC1, -2, and/or -3 (see figure). MiR-146a, -146b, -21 and -34a were chosen for further analysis, and their expression was assessed by RT-qPCR normalized to U6. Cytokine exposure induced a 15-fold...

  8. Genome-Wide Expression of MicroRNAs Is Regulated by DNA Methylation in Hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2015-01-01

    Full Text Available Background. Previous studies, including ours, have examined the regulation of microRNAs (miRNAs by DNA methylation, but whether this regulation occurs at a genome-wide level in hepatocellular carcinoma (HCC is unclear. Subjects/Methods. Using a two-phase study design, we conducted genome-wide screening for DNA methylation and miRNA expression to explore the potential role of methylation alterations in miRNAs regulation. Results. We found that expressions of 25 miRNAs were statistically significantly different between tumor and nontumor tissues and perfectly differentiated HCC tumor from nontumor. Six miRNAs were overexpressed, and 19 were repressed in tumors. Among 133 miRNAs with inverse correlations between methylation and expression, 8 miRNAs (6% showed statistically significant differences in expression between tumor and nontumor tissues. Six miRNAs were validated in 56 additional paired HCC tissues, and significant inverse correlations were observed for miR-125b and miR-199a, which is consistent with the inactive chromatin pattern found in HepG2 cells. Conclusion. These data suggest that the expressions of miR-125b and miR-199a are dramatically regulated by DNA hypermethylation that plays a key role in hepatocarcinogenesis.

  9. Deep Sequencing Reveals a MicroRNA Expression Signature in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Chang, Yao-Yin; Lai, Liang-Chuan; Tsai, Mong-Hsun; Chuang, Eric Y

    2018-01-01

    Deep sequencing is an advanced technology in genomic biology to detect the precise order of nucleotides in a strand of DNA/RNA molecule. The analysis of deep sequencing data also requires sophisticated knowledge in both computational software and bioinformatics. In this chapter, the procedures of deep sequencing analysis of microRNA (miRNA) transcriptome in triple-negative breast cancer and adjacent normal tissue are described in detail. As miRNAs are critical regulators of gene expression and many of them were previously reported to be associated with the malignant progression of human cancer, the analytical method that accurately identifies deregulated miRNAs in a specific type of cancer is thus important for the understanding of its tumor behavior. We obtained raw sequence reads of miRNA expression from 24 triple-negative breast cancers and 14 adjacent normal tissues using deep sequencing technology in this work. Expression data of miRNA reads were normalized with the quantile-quantile scaling method and were analyzed statistically. A miRNA expression signature composed of 25 differentially expressed miRNAs showed to be an effective classifier between triple-negative breast cancers and adjacent normal tissues in a hierarchical clustering analysis.

  10. MicroRNA-10 modulates Hox genes expression during Nile tilapia embryonic development.

    Science.gov (United States)

    Giusti, Juliana; Pinhal, Danillo; Moxon, Simon; Campos, Camila Lovaglio; Münsterberg, Andrea; Martins, Cesar

    2016-05-01

    Hox gene clusters encode a family of transcription factors that govern anterior-posterior axis patterning during embryogenesis in all bilaterian animals. The time and place of Hox gene expression are largely determined by the relative position of each gene within its cluster. Furthermore, Hox genes were shown to have their expression fine-tuned by regulatory microRNAs (miRNAs). However, the mechanisms of miRNA-mediated regulation of these transcription factors during fish early development remain largely unknown. Here we have profiled three highly expressed miR-10 family members of Nile tilapia at early embryonic development, determined their genomic organization as well as performed functional experiments for validation of target genes. Quantitative analysis during developmental stages showed miR-10 family expression negatively correlates with the expression of HoxA3a, HoxB3a and HoxD10a genes, as expected for bona fide miRNA-mRNA interactions. Moreover, luciferase assays demonstrated that HoxB3a and HoxD10a are targeted by miR-10b-5p. Overall, our data indicate that the miR-10 family directly regulates members of the Hox gene family during Nile tilapia embryogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Acute hypoxia induces upregulation of microRNA-210 expression in glioblastoma spheroids

    DEFF Research Database (Denmark)

    Rosenberg, Tine Agerbo; Thomassen, Mads; Jensen, Stine Skov

    2015-01-01

    AIM: Tumor hypoxia and presence of tumor stem cells are related to therapeutic resistance and tumorigenicity in glioblastomas. The aim of the present study was therefore to identify microRNAs deregulated in acute hypoxia and to identify possible associated changes in stem cell markers. MATERIALS...... & METHODS: Glioblastoma spheroid cultures were grown in either 2 or 21% oxygen. Subsequently, miRNA profiling was performed and expression of ten stem cell markers was examined. RESULTS: MiRNA-210 was significantly upregulated in hypoxia in patient-derived spheroids. The stem cell markers displayed...... a complex regulatory pattern. CONCLUSION: MiRNA-210 appears to be upregulated in hypoxia in immature glioblastoma cells. This miRNA may represent a therapeutic target although it is not clear from the results whether this miRNA may be related to specific cancer stem cell functions....

  12. A Review of DNA Methylation and microRNA Expression in Recurrent Pediatric Acute Leukemia.

    Science.gov (United States)

    Hale, Victoria; Hale, Gregory A; Brown, Patrick A; Amankwah, Ernest K

    2017-01-01

    Acute leukemia is the most common childhood cancer diagnosis and leading cause of cancer-related death among children and adolescents. Despite substantial improvements in the survival rate of childhood acute leukemia, approximately 20-40% of the patients who undergo treatment develop relapse, with a dismal one third of these patients surviving in the long term. Epigenetics plays an important role in the progression of cancer, and existing evidence suggests a role in childhood acute leukemia relapse. A better understanding of the epigenetic mechanisms in recurrent acute leukemia could potentially lead to novel therapeutic regimens to prevent or treat disease recurrences. In this review, we summarize existing evidence on two of the most studied epigenetic mechanisms, DNA methylation and microRNA expression, in recurrent pediatric acute leukemia. © 2016 S. Karger AG, Basel.

  13. Retracted: Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids.

    Science.gov (United States)

    2015-10-01

    The above article, published online on 20 December 2007 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the journal Editor in Chief, Professor L Popescu and John Wiley and Sons Ltd. The retraction has been requested by the University of Florida, Office of Research, in response to their investigation which concluded fabrication of data in Figures 2, 3 and 4. Reference Pan Q, Luo X, Chegini N. Retracted: differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids. J Cell Mol Med 12: 227-240. Doi: 10.1111/j.1582-4934.2007.00207.x. Copyright © 2015 Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Expression patterns of conserved microRNAs in the male gametophyte of loblolly pine (Pinus taeda).

    Science.gov (United States)

    Quinn, Christina R; Iriyama, Rie; Fernando, Danilo D

    2014-06-01

    MicroRNAs (miRNAs) are small RNAs that regulate genes involved in various aspects of plant development, but their presence and expression patterns in the male gametophytes of gymnosperms have not yet been established. Therefore, this study identified and compared the expression patterns of conserved miRNAs from two stages of the male gametophyte of loblolly pine (Pinus taeda), which are the mature (ungerminated) and germinated pollen. Microarray was used to identify conserved miRNAs that varied in expression between these two stages of the loblolly pine male gametophyte. Forty-seven conserved miRNAs showed significantly different expression levels between mature and germinated loblolly pine pollen. In particular, miRNAs representing 14 and 8 families were up- and down-regulated in germinated loblolly pine pollen, respectively. qRT-PCR was used to validate their expression patterns using representative miRNAs. Target genes and proteins were identified using psRNATarget program. Predicted targets of the 22 miRNA families belong mostly to classes of genes involved in defense/stress response, metabolism, regulation, and signaling. qRT-PCR was also used to validate the expression patterns of representative target genes. This study shows that conserved miRNAs are expressed in mature and germinated loblolly pine pollen. Many of these miRNAs are differentially expressed, which indicates that the two stages of the male gametophyte examined are regulated at the miRNA level. This study also expands our knowledge of the male gametophytes of seed plants by providing insights on some similarities and differences in the types and expression patterns of conserved miRNAs between loblolly pine with those of rice and Arabidopsis.

  15. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression.

    Directory of Open Access Journals (Sweden)

    Jingcheng Zhang

    Full Text Available Retinoic acid (RA is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs. Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.

  16. Expression profiling of microRNAs in optineurin (E50K) mutant transgenic mice.

    Science.gov (United States)

    Gao, Lin; Jiang, B O; Lei, Dawei; Zhou, Xinrong; Yuan, Huiping

    2016-02-01

    An E50K substitution in the transcription factor optineurin (OPTN) induces primary open-angle glaucoma (POAG). To explore the potential role of microRNAs (miRNAs) in E50K OPTN-induced POAG, miRNA expression profiling was performed on retinal samples from OPTN (E50K) transgenic and wild-type mice. The retinas were collected from 30 transgenic and 30 wild-type mice, and miRNA expression was evaluated using a genome-wide miRNA microarray. miRNAs that were differentially expressed in retinal samples from OPTN (E50K) transgenic mice were identified and validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Additional gene ontology and signaling pathway analyses were performed using bioinformatics tools. A total of 48 miRNAs exhibited increased or decreased expression in the retinas from OPTN (E50K) transgenic mice when compared with the expression in the retinas from wild-type mice. A total of 5 miRNAs with increased expression in OPTN (E50K) transgenic mice could be grouped into one cluster as they belong to the miR-8 family and may act as regulators in the development of POAG in OPTN (E50K) transgenic mice. RT-qPCR results confirmed significantly increased expression of miR-141 in the retinas of OPTN (E50K) transgenic mice as compared to wild-type mice. In conclusion, these results show that certain miRNAs are differentially expressed in the retinas of OPTN (E50K) transgenic mice and may play roles in the pathogenesis of POAG induced by OPTN (E50K).

  17. Inflammation-related microRNA expression level in the bovine milk is affected by mastitis.

    Science.gov (United States)

    Lai, Yu-Chang; Fujikawa, Takuro; Maemura, Tadashi; Ando, Takaaki; Kitahara, Go; Endo, Yasuyuki; Yamato, Osamu; Koiwa, Masateru; Kubota, Chikara; Miura, Naoki

    2017-01-01

    MicroRNA (miRNA) in tissue and liquid samples have been shown to be associated with many diseases including inflammation. We aimed to identify inflammation-related miRNA expression level in the bovine mastitis milk. Expression level of inflammation-related miRNA in milk from mastitis-affected and normal cows was analyzed using qPCR. We found that expression level of miR-21, miR-146a, miR-155, miR-222, and miR-383 was significantly upregulated in California mastitis test positive (CMT+) milk. We further analyzed these miRNA using a chip-based QuantStudio Digital PCR System. The digital PCR results correlated with those of qPCR, demonstrating upregulation of miR-21, miR-146a, miR-155, miR-222, and miR-383 in CMT+ milk. In conclusion, we identified miRNA that are upregulated in CMT+ milk. These miRNA exhibited sensitivity and specificity greater than 80% for differentiating between CMT+ milk and normal milk. Our findings suggest that inflammation-related miRNA expression level in the bovine milk was affected by mastitis, and miRNA in milk have potential for use as biomarkers of bovine mastitis.

  18. MicroRNAs show mutually exclusive expression patterns in the brain of adult male rats

    DEFF Research Database (Denmark)

    Olsen, Line; Klausen, Mikkel; Helboe, Lone

    2009-01-01

    BACKGROUND: The brain is a major site of microRNA (miRNA) gene expression, but the spatial expression patterns of miRNAs within the brain have not yet been fully covered. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized the regional expression profiles of miRNAs in five distinct regions...... of the adult rat brain: amygdala, cerebellum, hippocampus, hypothalamus and substantia nigra. Microarray profiling uncovered 48 miRNAs displaying more than three-fold enrichment between two or more brain regions. Notably, we found reciprocal expression profiles for a subset of the miRNAs predominantly found...... (> ten times) in either the cerebellum (miR-206 and miR-497) or the forebrain regions (miR-132, miR-212, miR-221 and miR-222). CONCLUSIONS/SIGNIFICANCE: The results indicate that some miRNAs could be important for area-specific functions in the brain. Our data, combined with previous studies in mice...

  19. Regulation of mouse stomach development and Barx1 expression by specific microRNAs

    Science.gov (United States)

    Kim, Byeong-Moo; Woo, Janghee; Kanellopoulou, Chryssa; Shivdasani, Ramesh A.

    2011-01-01

    Although microRNAs (miRNAs) are postulated to fine-tune many developmental processes, their relationships with specific targets and tissues remain largely undefined. The mesenchymal transcription factor Barx1 controls spleen and stomach morphogenesis and is required to specify stomach-specific epithelium in adjacent endoderm. Barx1 expression is precisely regulated in space and time, with a sharp drop in stomach levels after epithelial specification. We tested the hypothesis that specific miRNAs mediate this marked decline in Barx1 levels. Depletion of the miRNA-processing enzyme Dicer in cultured stomach mesenchyme and conditional Dicer gene deletion in mice significantly increased Barx1 levels, disrupted stomach and intestine development and caused spleen agenesis. Computational and experimental studies identified miR-7a and miR-203 as candidate miRNAs that regulate Barx1 and are expressed in inverse proportion to it in the fetal mouse stomach. Through specific interactions with cognate sequences in the Barx1 3′ untranslated region, miR-7a and miR-203 repress Barx1 expression in stomach mesenchymal cells and its function in inducing gastric epithelium. These results indicate that miRNAs are required for proper digestive tract organogenesis and that miR-7a and miR-203 control expression of the stomach homeotic regulator Barx1. PMID:21307095

  20. Expression Profiling of Circulating MicroRNAs in Canine Myxomatous Mitral Valve Disease

    Directory of Open Access Journals (Sweden)

    Qinghong Li

    2015-06-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that have shown promise as noninvasive biomarkers in cardiac disease. This study was undertaken to investigate the miRNA expression profile in dogs with myxomatous mitral valve disease (MMVD. 277 miRNAs were quantified using RT-qPCR from six normal dogs (American College of Veterinary Internal Medicine Stage A, six dogs with MMVD mild to moderate cardiac enlargement (ACVIM Stage B1/B2 and six dogs with MMVD and congestive heart failure (ACVIM Stage C/D. Eleven miRNAs were differentially expressed (False Discovery Rate < 0.05. Dogs in Stage B1/B2 or C/D had four upregulated miRNAs, including three cfa-let-7/cfa-miR-98 family members, while seven others were downregulated, compared to Stage A. Expression of six of the 11 miRNAs also were significantly different between dogs in Stage C/D and those in Stage B1/B2. The expression changes were greater as disease severity increased. These miRNAs may be candidates for novel biomarkers and may provide insights into genetic regulatory pathways in canine MMVD.

  1. microRNAs and the mammary gland: a new understanding of gene expression

    Directory of Open Access Journals (Sweden)

    Isabel Gigli

    2013-01-01

    Full Text Available MicroRNAs (miRNAs have been identified in cells as well as in exosomes in biological fluids such as milk. In mammary gland, most of the miRNAs studied have functions related to immunity and show alterations in their pattern of expression during lactation. In mastitis, the inflammatory response caused by Streptococcus uberis alters the expression of miRNAs that may regulate the innate immune system. These small RNAs are stable at room temperature and are resistant to repeated freeze/thaw cycles, acidic conditions and degradation by RNAse, making them resistant to industrial procedures. These properties mean that miRNAs could have multiple applications in veterinary medicine and biotechnology. Indeed, lactoglobulin-free milk has been produced in transgenic cows expressing specific miRNAs. Although plant and animal miRNAs have undergone independent evolutionary adaptation recent studies have demonstrated a cross-kingdom passage in which rice miRNA was isolated from human serum. This finding raises questions about the possible effect that miRNAs present in foods consumed by humans could have on human gene regulation. Further studies are needed before applying miRNA biotechnology to the milk industry. New discoveries and a greater knowledge of gene expression will lead to a better understanding of the role of miRNAs in physiology, nutrition and evolution.

  2. Differentially expressed microRNAs in diapausing versus HCl-treated Bombyx embryos

    Science.gov (United States)

    Qin, Mingyue; Lin, Bimin; Chen, Fangyan; Yan, Huichao; Li, Wenchu

    2017-01-01

    Differentially expressed microRNAs were detected to explore the molecular mechanisms of diapause termination. The total small RNA of diapause-destined silkworm eggs and HCl-treated eggs was extracted and then sequenced using HiSeq high-throughput method. 44 novel miRNAs were discovered. Compared to those in the diapause-destined eggs, 61 miRNAs showed significant changes in the acid-treated eggs, with 23 being up-regulated and 38 being down-regulated. The potential target genes of differentially expressed miRNAs were predicted by miRanda. Gene Ontology and KEGG pathway enrichment analysis of these potential target genes revealed that they were mainly located within cells and organelles, involved in cellular and metabolic processes, and participated in protein production, processing and transportation. Two differentially expressed genes, Bombyx mori SDH and Bmo-miR-2761-3p, were further analyzed with qRT-PCR. BmSDH was significantly up-regulated in the HCl-treated eggs, while Bmo-miR-2761-3p was down-regulated. These results suggested that these two genes were well coordinated in silkworm eggs. Dual luciferase reporter assay demonstrated that Bmo-miR-2761-3p inhibited the expression of BmSDH. PMID:28700597

  3. MicroRNA-205 downregulates mixed-lineage-AF4 oncogene expression in acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Dou L

    2013-08-01

    Full Text Available Liping Dou,1,* Jingxin Li,1,* Dehua Zheng,2,* Yonghui Li,1 Xiaoning Gao,1 Chengwang Xu,1 Li Gao,1 Lili Wang,1 Li Yu1 1Department of Hematology, Chinese PLA General Hospital, Beijing, People's Republic of China; 2Department of Hepatobiliary Surgery, Organ Transplant Center, Chinese PLA 309th Hospital, Beijing, People's Republic of China*These authors contributed equally to this workAbstract: Myeloid/lymphoid or mixed-lineage AF4 acute lymphoblastic leukemia (MLL-AF4 ALL is a pediatric leukemia that occurs rarely in adults. MLL-AF4 ALL is typically characterized by the presence of chromosomal translocation (t(4;11(q21;q23, leading to expression of MLL-AF4 fusion protein. Although MLL-AF4 fusion protein triggers a molecular pathogenesis and hematological presentations that are unique to leukemias, the precise role of this oncogene in leukemogenesis remains unclear. Previous studies have indicated that microRNAs (miRs might modulate the expression of MLL-AF4 ALL fusion protein, thereby suggesting the involvement of miR in progression or suppression of MLL-AF4 ALL. We have previously demonstrated that miR-205 negatively regulates transcription of an MLL-AF4 luciferase reporter. Here, we report that exogenous expression of miR-205 in MLL-AF4 human cell lines (RS4;11 and MV4-11 inversely regulates the expression of MLL-AF4 at both messenger RNA (mRNA and protein level. Furthermore, miR-205 significantly induced apoptosis in MLL-AF4 cells as evidenced by Annexin V staining using fluorescence-activated cell sorting (FACS analysis. The proliferative capacity of leukemic cells was suppressed by miR-205. The addition of an miR-205 inhibitor was able to restore the observed effects. In conclusion, these findings demonstrate that miR-205 may have potential value as a novel therapeutic agent in the treatment of MLL-AF4 ALL.Keywords: miR-205, MLL-AF4, leukemia, microRNA, oncogene expression, untranslated regions, proliferation

  4. Expression profiles of estrogen-regulated microRNAs in breast cancer cells

    OpenAIRE

    Katchy, Anne; Williams, Cecilia

    2016-01-01

    Molecular signaling through both estrogen and microRNAs are critical for breast cancer development and growth. The activity of estrogen is mediated by transcription factors, the estrogen receptors. Here we describe a method for robust characterization of estrogen-regulated microRNA profiles. The method details how to prepare cells for optimal estrogen response, directions for estrogen treatment, RNA extraction, microRNA large-scale profiling and subsequent confirmations.

  5. MicroRNA-302a stimulates osteoblastic differentiation by repressing COUP-TFII expression.

    Science.gov (United States)

    Kang, In-Hong; Jeong, Byung-Chul; Hur, Sung-Woong; Choi, Hyuck; Choi, Seung-Ho; Ryu, Je-Hwang; Hwang, Yun-Chan; Koh, Jeong-Tae

    2015-04-01

    Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) is a potent transcription factor that represses osteoblast differentiation and bone formation. Previously, we observed that stimuli for osteoblast differentiation, such as bone morphogenetic protein 2 (BMP2), inhibits COUP-TFII expression. This study was undertaken to identify BMP2-regulated and COUP-TFII-targeting microRNAs (miRNAs), and to explore their regulatory roles in osteoblast differentiation. Based on in silico analysis, 12 miRNAs were selected and their expression in BMP2-treated MC3T3-E1 cells was examined. BMP2 induced miR-302a expression in dose- and time-dependent manners with the decrease in COUP-TFII expression. Runx2, a BMP2-downstream transcription factor, specifically regulated miR-302a expression and its promoter activity. A computer-based prediction algorithm led to the identification of two miR-302a binding sites on the 3'-untranslational region of COUP-TFII mRNA (S1: 620-626 bp, S2: 1,016-1,022 bp), and a luciferase assay showed that miR-302a directly targeted S1 and S2. Transfection of miR-302a precursor significantly enhanced expression of osteogenic marker genes with decreasing COUP-TFII mRNA and protein level, alkaline phosphatase activity and matrix mineralization. On the other hand, inhibition of miR-302a significantly attenuated BMP2-induced osteoblast specific gene expression, alkaline phosphatase activity, and matrix mineralization with increasing COUP-TFII mRNA and protein level. These results indicate that miR-302a is induced by osteogenic stimuli and promotes osteoblast differentiation by targeting COUP-TFII. MiR-302a could be a positive regulator for osteoblast differentiation. © 2014 Wiley Periodicals, Inc.

  6. Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPARα expression

    Science.gov (United States)

    Loyer, Xavier; Paradis, Valérie; Hénique, Carole; Vion, Anne-Clémence; Colnot, Nathalie; Guerin, Coralie L; Devue, Cécile; On, Sissi; Scetbun, Jérémy; Romain, Mélissa; Paul, Jean-Louis; Rothenberg, Marc E; Marcellin, Patrick; Durand, François; Bedossa, Pierre; Prip-Buus, Carina; Baugé, Eric; Staels, Bart; Boulanger, Chantal M; Tedgui, Alain; Rautou, Pierre-Emmanuel

    2016-01-01

    Objective Previous studies suggested that microRNA-21 may be upregulated in the liver in non-alcoholic steatohepatitis (NASH), but its role in the development of this disease remains unknown. This study aimed to determine the role of microRNA-21 in NASH. Design We inhibited or suppressed microRNA-21 in different mouse models of NASH: (a) low-density lipoprotein receptor-deficient (Ldlr−/−) mice fed a high-fat diet and treated with antagomir-21 or antagomir control; (b) microRNA-21-deficient and wild-type mice fed a methionine-choline-deficient (MCD) diet; (c) peroxisome proliferation-activator receptor α (PPARα)-deficient mice fed an MCD diet and treated with antagomir-21 or antagomir control. We assessed features of NASH and determined liver microRNA-21 levels and cell localisation. MicroRNA-21 levels were also quantified in the liver of patients with NASH, bland steatosis or normal liver and localisation was determined. Results Inhibiting or suppressing liver microRNA-21 expression reduced liver cell injury, inflammation and fibrogenesis without affecting liver lipid accumulation in Ldlr−/− fed a high-fat diet and in wild-type mice fed an MCD diet. Liver microRNA-21 was overexpressed, primarily in biliary and inflammatory cells, in mouse models as well as in patients with NASH, but not in patients with bland steatosis. PPARα, a known microRNA-21 target, implicated in NASH, was decreased in the liver of mice with NASH and restored following microRNA-21 inhibition or suppression. The effect of antagomir-21 was lost in PPARα-deficient mice. Conclusions MicroRNA-21 inhibition or suppression decreases liver injury, inflammation and fibrosis, by restoring PPARα expression. Antagomir-21 might be a future therapeutic strategy for NASH. PMID:26338827

  7. Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased Differentiation-Related Genes but Not Inflammatory Activation.

    Science.gov (United States)

    Baldeón R, Lucy; Weigelt, Karin; de Wit, Harm; Ozcan, Behiye; van Oudenaren, Adri; Sempértegui, Fernando; Sijbrands, Eric; Grosse, Laura; van Zonneveld, Anton-Jan; Drexhage, Hemmo A; Leenen, Pieter J M

    2015-01-01

    To study the expression pattern of microRNAs and mRNAs related to inflammation in T2D monocytes. A microRNA finding study on monocytes of T2D patients and controls using array profiling was followed by a quantitative Real Time PCR (qPCR) study on monocytes of an Ecuadorian validation cohort testing the top over/under-expressed microRNAs. In addition, monocytes of the validation cohort were tested for 24 inflammation-related mRNAs and 2 microRNAs previously found deregulated in (auto)-inflammatory monocytes. In the finding study, 142 significantly differentially expressed microRNAs were identified, 15 having the strongest power to discriminate T2D patients from controls (sensitivity 66%, specificity 90%). However, differences in expression of these microRNAs between patients and controls were small. On the basis of >1.4 or <0.6-fold change expression 5 microRNAs were selected for further validation. One microRNA (miR-34c-5p) was validated as significantly over-expressed in T2D monocytes. In addition, we found over expression of 3 mRNAs (CD9, DHRS3 and PTPN7) in the validation cohort. These mRNAs are important for cell morphology, adhesion, shape change, and cell differentiation. Classical inflammatory genes (e.g. TNFAIP3) were only over-expressed in monocytes of patients with normal serum lipids. Remarkably, in dyslipidemia, there was a reduction in the expression of inflammatory genes (e.g. ATF3, DUSP2 and PTGS2). The expression profile of microRNAs/mRNAs in monocytes of T2D patients indicates an altered adhesion, differentiation, and shape change potential. Monocyte inflammatory activation was only found in patients with normal serum lipids. Abnormal lipid values coincided with a reduced monocyte inflammatory state.

  8. Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased Differentiation-Related Genes but Not Inflammatory Activation.

    Directory of Open Access Journals (Sweden)

    Lucy Baldeón R

    Full Text Available To study the expression pattern of microRNAs and mRNAs related to inflammation in T2D monocytes.A microRNA finding study on monocytes of T2D patients and controls using array profiling was followed by a quantitative Real Time PCR (qPCR study on monocytes of an Ecuadorian validation cohort testing the top over/under-expressed microRNAs. In addition, monocytes of the validation cohort were tested for 24 inflammation-related mRNAs and 2 microRNAs previously found deregulated in (auto-inflammatory monocytes.In the finding study, 142 significantly differentially expressed microRNAs were identified, 15 having the strongest power to discriminate T2D patients from controls (sensitivity 66%, specificity 90%. However, differences in expression of these microRNAs between patients and controls were small. On the basis of >1.4 or <0.6-fold change expression 5 microRNAs were selected for further validation. One microRNA (miR-34c-5p was validated as significantly over-expressed in T2D monocytes. In addition, we found over expression of 3 mRNAs (CD9, DHRS3 and PTPN7 in the validation cohort. These mRNAs are important for cell morphology, adhesion, shape change, and cell differentiation. Classical inflammatory genes (e.g. TNFAIP3 were only over-expressed in monocytes of patients with normal serum lipids. Remarkably, in dyslipidemia, there was a reduction in the expression of inflammatory genes (e.g. ATF3, DUSP2 and PTGS2.The expression profile of microRNAs/mRNAs in monocytes of T2D patients indicates an altered adhesion, differentiation, and shape change potential. Monocyte inflammatory activation was only found in patients with normal serum lipids. Abnormal lipid values coincided with a reduced monocyte inflammatory state.

  9. Cadmium Nephrotoxicity Is Associated with Altered MicroRNA Expression in the Rat Renal Cortex

    Directory of Open Access Journals (Sweden)

    Michael J. Fay

    2018-03-01

    Full Text Available Cadmium (Cd is a nephrotoxic environmental pollutant that causes a generalized dysfunction of the proximal tubule characterized by polyuria and proteinuria. Even though the effects of Cd on the kidney have been well-characterized, the molecular mechanisms underlying these effects have not been fully elucidated. MicroRNAs (miRNAs are small non-coding RNAs that regulate cellular and physiologic function by modulating gene expression at the post-transcriptional level. The goal of the present study was to determine if Cd affects renal cortex miRNA expression in a well-established animal model of Cd-induced kidney injury. Male Sprague-Dawley rats were treated with subcutaneous injections of either isotonic saline or CdCl2 (0.6 mg/kg 5 days a week for 12 weeks. The 12-week Cd-treatment protocol resulted in kidney injury as determined by the development of polyuria and proteinuria, and a significant increase in the urinary biomarkers Kim-1, β2 microglobulin and cystatin C. Total RNA was isolated from the renal cortex of the saline control and Cd treated animals, and differentially expressed miRNAs were identified using µParafloTM microRNA microarray analysis. The microarray results demonstrated that the expression of 44 miRNAs were significantly increased and 54 miRNAs were significantly decreased in the Cd treatment group versus the saline control (t-test, p ≤ 0.05, N = 6 per group. miR-21-5p, miR-34a-5p, miR-146b-5p, miR-149-3p, miR-224-5p, miR-451-5p, miR-1949, miR-3084a-3p, and miR-3084c-3p demonstrated more abundant expression and a significant two-fold or greater increased expression in the Cd-treatment group versus the saline control group. miR-193b-3p, miR-455-3p, and miR-342-3p demonstrated more abundant expression and a significant two-fold or greater decreased expression in the Cd-treatment group versus the saline control group. Real-time PCR validation demonstrated (1 a significant (t-test, p ≤ 0.05, N = 6 per group increase in

  10. MicroRNA expression profiles associated with development of drug resistance in Ehrlich ascites tumor cells

    DEFF Research Database (Denmark)

    Husted, Susanne; Søkilde, Rolf; Rask, Lene

    2011-01-01

    Multidrug resistance (MDR) poses a major obstacle to successful chemotherapeutic treatment of cancer, and often involves multiple genes, which may be regulated post-transcriptionally by microRNAs (miRNAs). The purpose of the present study was therefore to identify any resistance-associated changes...... in miRNA expression in a sensitive and five increasingly drug-resistant Ehrlich ascites tumor (EAT) cell lines, representing different steps in the development of resistance. We used an LNA-enhanced microarray platform to study the global miRNA expression profiles in the six murine EAT cell lines......, and identified growth-, hypoxia-, and resistance-specific miRNA patterns. Among the differentially expressed miRNAs, we found the two clusters miR-183∼miR-96∼miR-182 and miR-200b∼miR-200a∼miR-429 as well as miR-141 to be consistently upregulated in the MDR cell lines, while miR-125b-5p and the two clusters mi...

  11. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    International Nuclear Information System (INIS)

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S.; Arbuthnot, Patrick

    2009-01-01

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  12. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie; Weinberg, Marc S. [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa); Arbuthnot, Patrick, E-mail: Patrick.Arbuthnot@wits.ac.za [Antiviral Gene Therapy Research Unit, University of the Witwatersrand (South Africa)

    2009-11-20

    RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.

  13. Knockdown of Polyphenol Oxidase Gene Expression in Potato (Solanum tuberosum L.) with Artificial MicroRNAs.

    Science.gov (United States)

    Chi, Ming; Bhagwat, Basdeo; Tang, Guiliang; Xiang, Yu

    2016-01-01

    It is of great importance and interest to develop crop varieties with low polyphenol oxidase (PPO) activity for the food industry because PPO-mediated oxidative browning is a main cause of post-harvest deterioration and quality loss of fresh produce and processed foods. We recently demonstrated that potato tubers with reduced browning phenotypes can be produced by inhibition of the expression of several PPO gene isoforms using artificial microRNA (amiRNA) technology. The approach introduces a single type of 21-nucleotide RNA population to guide silencing of the PPO gene transcripts in potato tissues. Some advantages of the technology are: small RNA molecules are genetically transformed, off-target gene silencing can be avoided or minimized at the stage of amiRNA designs, and accuracy and efficiency of the processes can be detected at every step using molecular biological techniques. Here we describe the methods for transformation and regeneration of potatoes with amiRNA vectors, detection of the expression of amiRNAs, identification of the cleaved product of the target gene transcripts, and assay of the expression level of PPO gene isoforms in potatoes.

  14. MicroRNA expression profiles in conventional and micropropagated strawberry (Fragaria x ananassa Duch.) plants.

    Science.gov (United States)

    Li, He; Zhang, Zhihong; Huang, Feifei; Chang, Linlin; Ma, Yue

    2009-06-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs which play a critical role in plant growth and development. To detect strawberry miRNAs and discover the expression difference between conventional and micropropagated strawberry plants, we carried out the detection and quantification of strawberry miRNAs by microarray. The main findings were that 74 miRNAs were checked in strawberry plants and four miRNA genes displayed clear expression difference between conventional and micropropagated strawberry plants, including two up-regulated genes (miR535 and miR390) and two down-regulated genes (miR169a and miR169d). The ratios of conventionally propagated strawberry plant/micropropagated strawberry plant for miR535, miR390, miR169a and miR169d were 2.6884, 2.2673, 0.2496 and 0.3814, respectively. Quantitative reverse transcription polymerase chain reaction applied to the two up-regulated genes (miR535 and miR390) validated the microarray result. This is the first report on differential expression of miRNAs in conventional and micropropagated plants.

  15. Alteration of microRNA expression of human dental pulp cells during odontogenic differentiation.

    Science.gov (United States)

    Gong, Qimei; Wang, Runfu; Jiang, Hongwei; Lin, Zhengmei; Ling, Junqi

    2012-10-01

    MicroRNAs (miRNAs) play momentous roles in various biological processes including cell differentiation. However, little is known about the role of miRNAs in human dental pulp cells (hDPCs) during odontogenic differentiation. The aims of this study were to investigate the expression of miRNAs in the primary culture of hDPCs when incubated in odontogenic medium. The potential characteristics of hDPCs were investigated by miRNA microarray and real-time reverse transcriptase polymerase chain reaction. Bioinformatics (ie, target prediction, Gene Ontology analysis, and Kyoto Encyclopedia of Genes and Genomes mapping tools) were applied for predicting the complementary target genes of miRNAs and their biological functions. A total of 22 miRNAs were differentially expressed in which 12 miRNAs up-regulated and 10 miRNAs down-regulated in differentiated hDPCs compared with the control. The target genes of differential miRNAs were predicted to associate with several biological functions and signaling pathways including the mitogen-activated protein kinase (MAPK) and the Wnt signaling pathway. The differential expression miRNAs may be involved in governing hDPC odontogenic differentiation, thus contributing to the future investigations of regulatory mechanisms in reparative dentin formation and dental pulp regeneration. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development

    KAUST Repository

    Xin, Chengqi

    2015-01-29

    MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development.

  17. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles.

    Science.gov (United States)

    Wu, N; Gaur, U; Zhu, Q; Chen, B; Xu, Z; Zhao, X; Yang, M; Li, D

    2017-04-01

    MicroRNA (miRNA) is a highly conserved class of small noncoding RNA about 19-24 nucleotides in length that function in a specific manner to post-transcriptionally regulate gene expression in organisms. Tissue miRNA expression studies have discovered a myriad of functions for miRNAs in various aspects, but a role for miRNAs in chicken ovarian tissue at 300 days of age has not hitherto been reported. In this study, we performed the first miRNA analysis of ovarian tissues in chickens with low and high rates of egg production using high-throughput sequencing. By comparing low rate of egg production chickens with high rate of egg production chickens, 17 significantly differentially expressed miRNAs were found (P chickens with high rates of egg production, suggesting that these miRNAs have an important role in ovary development and reproductive management of chicken. Furthermore, we uncovered that a significantly up-regulated miRNA-gga-miR-200a-3p-is ubiquitous in reproduction-regulation-related pathways. This miRNA may play a special central role in the reproductive management of chicken, and needs to be further studied for confirmation. © 2016 Stichting International Foundation for Animal Genetics.

  18. MirZ: an integrated microRNA expression atlas and target prediction resource.

    Science.gov (United States)

    Hausser, Jean; Berninger, Philipp; Rodak, Christoph; Jantscher, Yvonne; Wirth, Stefan; Zavolan, Mihaela

    2009-07-01

    MicroRNAs (miRNAs) are short RNAs that act as guides for the degradation and translational repression of protein-coding mRNAs. A large body of work showed that miRNAs are involved in the regulation of a broad range of biological functions, from development to cardiac and immune system function, to metabolism, to cancer. For most of the over 500 miRNAs that are encoded in the human genome the functions still remain to be uncovered. Identifying miRNAs whose expression changes between cell types or between normal and pathological conditions is an important step towards characterizing their function as is the prediction of mRNAs that could be targeted by these miRNAs. To provide the community the possibility of exploring interactively miRNA expression patterns and the candidate targets of miRNAs in an integrated environment, we developed the MirZ web server, which is accessible at www.mirz.unibas.ch. The server provides experimental and computational biologists with statistical analysis and data mining tools operating on up-to-date databases of sequencing-based miRNA expression profiles and of predicted miRNA target sites in species ranging from Caenorhabditis elegans to Homo sapiens.

  19. Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development.

    Science.gov (United States)

    Xin, Chengqi; Liu, Wanfei; Lin, Qiang; Zhang, Xiaowei; Cui, Peng; Li, Fusen; Zhang, Guangyu; Pan, Linlin; Al-Amer, Ali; Mei, Hailiang; Al-Mssallem, Ibrahim S; Hu, Songnian; Al-Johi, Hasan Awad; Yu, Jun

    2015-04-01

    MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development. Copyright © 2015. Published by Elsevier Inc.

  20. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma.

    Science.gov (United States)

    Tomaselli, Sara; Galeano, Federica; Alon, Shahar; Raho, Susanna; Galardi, Silvia; Polito, Vinicia Assunta; Presutti, Carlo; Vincenti, Sara; Eisenberg, Eli; Locatelli, Franco; Gallo, Angela

    2015-01-13

    ADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known. By integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration. Our findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.

  1. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Science.gov (United States)

    Funari, Vincent A; Winkler, Michael; Brown, Jordan; Dimitrijevich, Slobodan D; Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2013-01-01

    MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC) in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6) and diabetic (n=6) central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR) and by in situ hybridization (ISH) in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR) or their inhibitors (antagomirs) using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  2. Differentially expressed wound healing-related microRNAs in the human diabetic cornea.

    Directory of Open Access Journals (Sweden)

    Vincent A Funari

    Full Text Available MicroRNAs are powerful gene expression regulators, but their corneal repertoire and potential changes in corneal diseases remain unknown. Our purpose was to identify miRNAs altered in the human diabetic cornea by microarray analysis, and to examine their effects on wound healing in cultured telomerase-immortalized human corneal epithelial cells (HCEC in vitro. Total RNA was extracted from age-matched human autopsy normal (n=6 and diabetic (n=6 central corneas, Flash Tag end-labeled, and hybridized to Affymetrix® GeneChip® miRNA Arrays. Select miRNAs associated with diabetic cornea were validated by quantitative RT-PCR (Q-PCR and by in situ hybridization (ISH in independent samples. HCEC were transfected with human pre-miR™miRNA precursors (h-miR or their inhibitors (antagomirs using Lipofectamine 2000. Confluent transfected cultures were scratch-wounded with P200 pipette tip. Wound closure was monitored by digital photography. Expression of signaling proteins was detected by immunostaining and Western blot. Using microarrays, 29 miRNAs were identified as differentially expressed in diabetic samples. Two miRNA candidates showing the highest fold increased in expression in the diabetic cornea were confirmed by Q-PCR and further characterized. HCEC transfection with h-miR-146a or h-miR-424 significantly retarded wound closure, but their respective antagomirs significantly enhanced wound healing vs. controls. Cells treated with h-miR-146a or h-miR-424 had decreased p-p38 and p-EGFR staining, but these increased over control levels close to the wound edge upon antagomir treatment. In conclusion, several miRNAs with increased expression in human diabetic central corneas were found. Two such miRNAs inhibited cultured corneal epithelial cell wound healing. Dysregulation of miRNA expression in human diabetic cornea may be an important mediator of abnormal wound healing.

  3. MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Céline Sabatel

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are endogenously expressed small non-coding RNAs that regulate gene expression at post-transcriptional level. The recent discovery of the involvement of these RNAs in the control of angiogenesis renders them very attractive in the development of new approaches for restoring the angiogenic balance. Whereas miRNA-21 has been demonstrated to be highly expressed in endothelial cells, the potential function of this miRNA in angiogenesis has never been investigated. METHODOLOGY/PRINCIPAL FINDINGS: We first observed in endothelial cells a negative regulation of miR-21 expression by serum and bFGF, two pro-angiogenic factors. Then using in vitro angiogenic assays, we observed that miR-21 acts as a negative modulator of angiogenesis. miR-21 overexpression reduced endothelial cell proliferation, migration and the ability of these cells to form tubes whereas miR-21 inhibition using a LNA-anti-miR led to opposite effects. Expression of miR-21 in endothelial cells also led to a reduction in the organization of actin into stress fibers, which may explain the decrease in cell migration. Further mechanistic studies showed that miR-21 targets RhoB, as revealed by a decrease in RhoB expression and activity in miR-21 overexpressing cells. RhoB silencing impairs endothelial cell migration and tubulogenesis, thus providing a possible mechanism for miR-21 to inhibit angiogenesis. Finally, the therapeutic potential of miR-21 as an angiogenesis inhibitor was demonstrated in vivo in a mouse model of choroidal neovascularization. CONCLUSIONS/SIGNIFICANCE: Our results identify miR-21 as a new angiogenesis inhibitor and suggest that inhibition of cell migration and tubulogenesis is mediated through repression of RhoB.

  4. An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression.

    Science.gov (United States)

    Ucar, Olga; Tykocinski, Lars-Oliver; Dooley, James; Liston, Adrian; Kyewski, Bruno

    2013-07-01

    The establishment and maintenance of central tolerance depends to a large extent on the ability of medullary thymic epithelial cells to express a variety of tissue-restricted antigens, the so-called promiscuous gene expression (pGE). Autoimmune regulator (Aire) is to date the best characterised transcriptional regulator known to at least partially coordinate pGE. There is accruing evidence that the expression of Aire-dependent and -independent genes is modulated by higher order chromatin configuration, epigenetic modifications and post-transcriptional control. Given the involvement of microRNAs (miRNAs) as potent post-transcriptional modulators of gene expression, we investigated their role in the regulation of pGE in purified mouse and human thymic epithelial cells (TECs). Microarray profiling of TEC subpopulations revealed evolutionarily conserved cell type and differentiation-specific miRNA signatures with a subset of miRNAs being significantly upregulated during terminal medullary thymic epithelial cell differentiation. The differential regulation of this subset of miRNAs was correlated with Aire expression and some of these miRNAs were misexpressed in the Aire knockout thymus. In turn, the specific absence of miRNAs in TECs resulted in a progressive reduction of Aire expression and pGE, affecting both Aire-dependent and -independent genes. In contrast, the absence of miR-29a only affected the Aire-dependent gene pool. These findings reveal a mutual interdependence of miRNA and Aire. © 2013 The Authors. European Journal of Immunology published byWiley-VCH Verlag GmbH & Co. KGaA Weinheim.

  5. Profiling microRNA expression in bovine alveolar macrophages using RNA-seq.

    Science.gov (United States)

    Vegh, Peter; Foroushani, Amir B K; Magee, David A; McCabe, Matthew S; Browne, John A; Nalpas, Nicolas C; Conlon, Kevin M; Gordon, Stephen V; Bradley, Daniel G; MacHugh, David E; Lynn, David J

    2013-10-01

    MicroRNAs (miRNAs) are important regulators of gene expression and are known to play a key role in regulating both adaptive and innate immunity. Bovine alveolar macrophages (BAMs) help maintain lung homeostasis and constitute the front line of host defense against several infectious respiratory diseases, such as bovine tuberculosis. Little is known, however, about the role miRNAs play in these cells. In this study, we used a high-throughput sequencing approach, RNA-seq, to determine the expression levels of known and novel miRNAs in unchallenged BAMs isolated from lung lavages of eight different healthy Holstein-Friesian male calves. Approximately 80 million sequence reads were generated from eight BAM miRNA Illumina sequencing libraries, and 80 miRNAs were identified as being expressed in BAMs at a threshold of at least 100 reads per million (RPM). The expression levels of miRNAs varied over a large dynamic range, with a few miRNAs expressed at very high levels (up to 800,000RPM), and the majority lowly expressed. Notably, many of the most highly expressed miRNAs in BAMs have known roles in regulating immunity in other species (e.g. bta-let-7i, bta-miR-21, bta-miR-27, bta-miR-99b, bta-miR-146, bta-miR-147, bta-miR-155 and bta-miR-223). The most highly expressed miRNA in BAMs was miR-21, which has been shown to regulate the expression of antimicrobial peptides in Mycobacterium leprae-infected human monocytes. Furthermore, the predicted target genes of BAM-expressed miRNAs were found to be statistically enriched for roles in innate immunity. In addition to profiling the expression of known miRNAs, the RNA-seq data was also analysed to identify potentially novel bovine miRNAs. One putatively novel bovine miRNA was identified. To the best of our knowledge, this is the first RNA-seq study to profile miRNA expression in BAMs and provides an important reference dataset for investigating the regulatory roles miRNAs play in this important immune cell type. Copyright

  6. MicroRNA expression in alpha and beta cells of human pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Dagmar Klein

    Full Text Available microRNAs (miRNAs play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98% subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs and 134 were expressed more in β-cells (β-miRNAs. Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels.In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different

  7. Changes in Rat Brain MicroRNA Expression Profiles Following Sevoflurane and Propofol Anesthesia

    Directory of Open Access Journals (Sweden)

    Yu Lu

    2015-01-01

    Full Text Available Background: Sevoflurane and propofol are widely used anesthetics for surgery. Studies on the mechanisms of general anesthesia have focused on changes in protein expression properties and membrane lipid. MicroRNAs (miRNAs regulate neural function by altering protein expression. We hypothesize that sevoflurane and propofol affect miRNA expression profiles in the brain, expect to understand the mechanism of anesthetic agents. Methods: Rats were randomly assigned to a 2% sevoflurane group, 600 μg·kg − 1·min − 1 propofol group, and a control group without anesthesia (n = 4, respectively. Treatment group was under anesthesia for 6 h, and all rats breathed spontaneously with continuous monitoring of respiration and blood gases. Changes in rat cortex miRNA expression profiles were analyzed by miRNA microarrays and validated by quantitative real-time polymerase chain reaction (qRT-PCR. Differential expression of miRNA using qRT-PCR among the control, sevoflurane, and propofol groups were compared using one-way analysis of variance (ANOVA. Results: Of 677 preloaded rat miRNAs, the microarray detected the expression of 277 miRNAs in rat cortex (40.9%, of which 9 were regulated by propofol and (or sevoflurane. Expression levels of three miRNAs (rno-miR-339-3p, rno-miR-448, rno-miR-466b-1FNx01 were significantly increased following sevoflurane and six (rno-miR-339-3p, rno-miR-347, rno-miR-378FNx01, rno-miR-412FNx01, rno-miR-702-3p, and rno-miR-7a-2FNx01 following propofol. Three miRNAs (rno-miR-466b-1FNx01, rno-miR-3584-5p and rno-miR-702-3p were differentially expressed by the two anesthetic treatment groups. Conclusions: Sevoflurane and propofol anesthesia induced distinct changes in brain miRNA expression patterns, suggesting differential regulation of protein expression. Determining the targets of these differentially expressed miRNAs may help reveal both the common and agent-specific actions of anesthetics on neurological and physiological

  8. MicroRNA expression profile in human macrophages in response to Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Julien Lemaire

    Full Text Available Leishmania (L. are intracellular protozoan parasites able to survive and replicate in the hostile phagolysosomal environment of infected macrophages. They cause leishmaniasis, a heterogeneous group of worldwide-distributed affections, representing a paradigm of neglected diseases that are mainly embedded in impoverished populations. To establish successful infection and ensure their own survival, Leishmania have developed sophisticated strategies to subvert the host macrophage responses. Despite a wealth of gained crucial information, these strategies still remain poorly understood. MicroRNAs (miRNAs, an evolutionarily conserved class of endogenous 22-nucleotide non-coding RNAs, are described to participate in the regulation of almost every cellular process investigated so far. They regulate the expression of target genes both at the levels of mRNA stability and translation; changes in their expression have a profound effect on their target transcripts.We report in this study a comprehensive analysis of miRNA expression profiles in L. major-infected human primary macrophages of three healthy donors assessed at different time-points post-infection (three to 24 h. We show that expression of 64 out of 365 analyzed miRNAs was consistently deregulated upon infection with the same trends in all donors. Among these, several are known to be induced by TLR-dependent responses. GO enrichment analysis of experimentally validated miRNA-targeted genes revealed that several pathways and molecular functions were disturbed upon parasite infection. Finally, following parasite infection, miR-210 abundance was enhanced in HIF-1α-dependent manner, though it did not contribute to inhibiting anti-apoptotic pathways through pro-apoptotic caspase-3 regulation.Our data suggest that alteration in miRNA levels likely plays an important role in regulating macrophage functions following L. major infection. These results could contribute to better understanding of the

  9. Altered microRNA expression profiles in a rat model of spina bifida.

    Science.gov (United States)

    Qin, Pan; Li, Lin; Zhang, Da; Liu, Qiu-Liang; Chen, Xin-Rang; Yang, He-Ying; Fan, Ying-Zhong; Wang, Jia-Xiang

    2016-03-01

    MicroRNAs (miRNAs) are dynamically regulated during neurodevelopment, yet few reports have examined their role in spina bifida. In this study, we used an established fetal rat model of spina bifida induced by intragastrically administering olive oil-containing all-trans retinoic acid to dams on day 10 of pregnancy. Dams that received intragastric administration of all-trans retinoic acid-free olive oil served as controls. The miRNA expression profile in the amniotic fluid of rats at 20 days of pregnancy was analyzed using an miRNA microarray assay. Compared with that in control fetuses, the expression of miRNA-9, miRNA-124a, and miRNA-138 was significantly decreased (> 2-fold), whereas the expression of miRNA-134 was significantly increased (> 4-fold) in the amniotic fluid of rats with fetuses modeling spina bifida. These results were validated using real-time quantitative reverse-transcription polymerase chain reaction. Hierarchical clustering analysis of the microarray data showed that these differentially expressed miRNAs could distinguish fetuses modeling spina bifida from control fetuses. Our bioinformatics analysis suggested that these differentially expressed miRNAs were associated with many cytological pathways, including a nervous system development signaling pathway. These findings indicate that further studies are warranted examining the role of miRNAs through their regulation of a variety of cell functional pathways in the pathogenesis of spina bifida. Such studies may provide novel targets for the early diagnosis and treatment of spina bifida.

  10. Circulating MicroRNA Expression Levels Associated With Internet Gaming Disorder

    Directory of Open Access Journals (Sweden)

    Minho Lee

    2018-03-01

    Full Text Available BackgroundAddictive use of the Internet and online games is a potential psychiatric disorder termed Internet gaming disorder (IGD. Altered microRNA (miRNA expression profiles have been reported in blood and brain tissue of patients with certain psychiatric disorders and suggested as biomarkers. However, there have been no reports on blood miRNA profiles in IGD.MethodsTo discover IGD-associated miRNAs, we analyzed the miRNA expression profiles of 51 samples (25 IGD and 26 controls using the TaqMan Low Density miRNA Array. For validation, we performed quantitative reverse transcription PCR with 36 independent samples (20 IGD and 16 controls.ResultsThrough discovery and independent validation, we identified three miRNAs (hsa-miR-200c-3p, hsa-miR-26b-5p, hsa-miR-652-3p that were significantly downregulated in the IGD group. Individuals with all three miRNA alterations had a much higher risk of IGD than those with no alteration [odds ratio (OR 22, 95% CI 2.29–211.11], and the ORs increased dose dependently with number of altered miRNAs. The predicted target genes of the three miRNAs were associated with neural pathways. We explored the protein expression of the three downstream target genes by western blot and confirmed that expression of GABRB2 and DPYSL2 was significantly higher in the IGD group.ConclusionWe observed that expressions of hsa-miR-200c-3p, hsa-miR-26b-5p, and hsa-miR-652-3p were downregulated in the IGD patients. Our results will be helpful to understand the pathophysiology of IGD.

  11. Expression of hsa Let-7a MicroRNA of Macrophages Infected by Leishmania Major

    Directory of Open Access Journals (Sweden)

    Nooshin Hashemi

    2016-10-01

    Full Text Available Leishmaniasis is a vector-born disease caused by species of the genus Leishmania and is transmitted from host to host through the bite of an infected sandfly. MicroRNAs (miRNAs are non-coding small RNAs with 22-nucleotide length. They are involved in some biological and cellular processes. We aimed to evaluate the expression of let-7a in human macrophages miRNA when are infected by Leishmania major. We also evaluated the impact of Leishmania major infection on the expression of let-7a at two different times, 24 and 48 hours, after infection. Blood samples were collected from ten healthy volunteers with no history of leishmaniasis. Development of macrophages from peripheral monocytes and infection with stationary phase of Leishmania major promastigotes were done through serial cultures under 5% CO2 environment and 37C. To measure the expression levels of let-7a real-time PCR was performed with specific related primers using the SYBR® Green master mix Kit™. The real-time PCR showed let-7a was expressed in cells infected with parasites after 24 and 48h post-infection. Comparison of let-7a miRNA expression after 24 and 48 h revealed that let-7a miRNAs were down-regulated at 48 h post-infection more than 24h after infection. The results of this study suggest that according to the main function of miRNA in repression of mRNA translation it could be possible to manipulate host cells in order to alter miRNA levels and regulate macrophage functions after establishment of intracellular parasites such as Leishmania.

  12. X-linked gene transcription patterns in female and male in vivo, in vitro and cloned porcine individual blastocysts.

    Directory of Open Access Journals (Sweden)

    Chi-Hun Park

    Full Text Available To determine the presence of sexual dimorphic transcription and how in vitro culture environments influence X-linked gene transcription patterns in preimplantation embryos, we analyzed mRNA expression levels in in vivo-derived, in vitro-fertilized (IVF, and cloned porcine blastocysts. Our results clearly show that sex-biased expression occurred between female and male in vivo blastocysts in X-linked genes. The expression levels of XIST, G6PD, HPRT1, PGK1, and BEX1 were significantly higher in female than in male blastocysts, but ZXDA displayed higher levels in male than in female blastocysts. Although we found aberrant expression patterns for several genes in IVF and cloned blastocysts, similar sex-biased expression patterns (on average were observed between the sexes. The transcript levels of BEX1 and XIST were upregulated and PGK1 was downregulated in both IVF and cloned blastocysts compared with in vivo counterparts. Moreover, a remarkable degree of expression heterogeneity was observed among individual cloned embryos (the level of heterogeneity was similar in both sexes but only a small proportion of female IVF embryos exhibited variability, indicating that this phenomenon may be primarily caused by faulty reprogramming by the somatic cell nuclear transfer (SCNT process rather than in vitro conditions. Aberrant expression patterns in cloned embryos of both sexes were not ameliorated by treatment with Scriptaid as a potent HDACi, although the blastocyst rate increased remarkably after this treatment. Taken together, these results indicate that female and male porcine blastocysts produced in vivo and in vitro transcriptional sexual dimorphisms in the selected X-linked genes and compensation of X-linked gene dosage may not occur at the blastocyst stage. Moreover, altered X-linked gene expression frequently occurred in porcine IVF and cloned embryos, indicating that X-linked gene regulation is susceptible to in vitro culture and the SCNT process

  13. MicroRNA Expression Profile during Aphid Feeding in Chrysanthemum (Chrysanthemum morifolium).

    Science.gov (United States)

    Xia, Xiaolong; Shao, Yafeng; Jiang, Jiafu; Du, Xinping; Sheng, Liping; Chen, Fadi; Fang, Weimin; Guan, Zhiyong; Chen, Sumei

    2015-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression, affecting many biological processes. As yet, their roles in the response of chrysanthemum to aphid feeding have not been explored. Here, the identity and abundance of miRNAs induced by aphid infestation have been obtained using high-throughput Illumina sequencing platform. Three leaf small RNA libraries were generated, one from plants infested with the aphid Macrosiphoniella sanbourni (library A), one from plants with mock puncture treatment (library M), and the third from untreated control plants (library CK). A total of 7,944,797, 7,605,251 and 9,244,002 clean unique reads, ranging from 18 to 30 nucleotides (nt) in length, were obtained from library CK, A and M, respectively. As a result, 303 conserved miRNAs belonging to 276 miRNAs families and 234 potential novel miRNAs were detected in chrysanthemum leaf, out of which 80, 100 and 79 significantly differentially expressed miRNAs were identified in the comparison of CK-VS-A, CK-VS-M and M-VS-A, respectively. Several of the differentially abundant miRNAs (in particular miR159a, miR160a, miR393a) may be associated with the plant's response to aphid infestation.

  14. Luteolin Induces microRNA-132 Expression and Modulates Neurite Outgrowth in PC12 Cells

    Science.gov (United States)

    Wu, Ming-Jiuan; Chen, Pei-Yi; Yen, Jui-Hung

    2012-01-01

    Luteolin (3′,4′,5,7-tetrahydroxyflavone), a food-derived flavonoid, has been reported to exert neurotrophic properties that are associated with its capacity to promote neuronal survival and neurite outgrowth. In this study, we report for the first time that luteolin induces the persistent expression of microRNA-132 (miR-132) in PC12 cells. The correlation between miR-132 knockdown and a decrease in luteolin-mediated neurite outgrowth may indicate a mechanistic link by which miR-132 functions as a mediator for neuritogenesis. Furthermore, we find that luteolin led to the phosphorylation and activation of cAMP response element binding protein (CREB), which is associated with the up-regulation of miR-132 and neurite outgrowth. Moreover, luteolin-induced CREB activation, miR-132 expression and neurite outgrowth were inhibited by adenylate cyclase, protein kinase A (PKA) and MAPK/ERK kinase 1/2 (MEK1/2) inhibitors but not by protein kinase C (PKC) or calcium/calmodulin-dependent protein kinase II (CaMK II) inhibitors. Consistently, we find that luteolin treatment increases ERK phosphorylation and PKA activity in PC12 cells. These results show that luteolin induces the up-regulation of miR-132, which serves as an important regulator for neurotrophic actions, mainly acting through the activation of cAMP/PKA- and ERK-dependent CREB signaling pathways in PC12 cells. PMID:22916239

  15. Expression of human ARGONAUTE 2 inhibits endogenous microRNA activity in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Ira eDeveson

    2013-04-01

    Full Text Available Plant and animal microRNA (miRNA pathways share many analogous components, the ARGONAUTE (AGO proteins being foremost among them. We sought to ascertain the degree of functional conservation shared by Homo sapiens ARGONAUTE 2 (HsAGO2 and Arabidopsis thaliana ARGONAUTE 1 (AtAGO1, which are the predominant AGO family members involved with miRNA activity in their respective species. Transgenic Arabidopsis plants expressing HsAGO2 were indistinguishable from counterparts over-expressing AtAGO1, each group exhibiting the morphological and molecular hallmarks of miRNA-pathway loss-of-function alleles. However, unlike AtAGO1, HsAGO2 was unable to rescue the ago1-27 allele. We conclude that, despite the evolutionary gulf between them, HsAGO2 is likely capable of interacting with some component/s of the Arabidopsis miRNA pathway, thereby perturbing its operation, although differences have arisen such that HsAGO2 alone is insufficient to confer efficient silencing of miRNA targets in planta.

  16. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia.

    Directory of Open Access Journals (Sweden)

    Amanda Dixon-McIver

    2008-05-01

    Full Text Available Acute myeloid leukaemia (AML is the most common acute leukaemia in adults; however, the genetic aetiology of the disease is not yet fully understood. A quantitative expression profile analysis of 157 mature miRNAs was performed on 100 AML patients representing the spectrum of known karyotypes common in AML. The principle observation reported here is that AMLs bearing a t(15;17 translocation had a distinctive signature throughout the whole set of genes, including the up regulation of a subset of miRNAs located in the human 14q32 imprinted domain. The set included miR-127, miR-154, miR-154*, miR-299, miR-323, miR-368, and miR-370. Furthermore, specific subsets of miRNAs were identified that provided molecular signatures characteristic of the major translocation-mediated gene fusion events in AML. Analysis of variance showed the significant deregulation of 33 miRNAs across the leukaemic set with respect to bone marrow from healthy donors. Fluorescent in situ hybridisation analysis using miRNA-specific locked nucleic acid (LNA probes on cryopreserved patient cells confirmed the results obtained by real-time PCR. This study, conducted on about a fifth of the miRNAs currently reported in the Sanger database (microrna.sanger.ac.uk, demonstrates the potential for using miRNA expression to sub-classify cancer and suggests a role in the aetiology of leukaemia.

  17. Integration of microRNA miR-122 in hepatic circadian gene expression

    Science.gov (United States)

    Gatfield, David; Le Martelot, Gwendal; Vejnar, Charles E.; Gerlach, Daniel; Schaad, Olivier; Fleury-Olela, Fabienne; Ruskeepää, Anna-Liisa; Oresic, Matej; Esau, Christine C.; Zdobnov, Evgeny M.; Schibler, Ueli

    2009-01-01

    In liver, most metabolic pathways are under circadian control, and hundreds of protein-encoding genes are thus transcribed in a cyclic fashion. Here we show that rhythmic transcription extends to the locus specifying miR-122, a highly abundant, hepatocyte-specific microRNA. Genetic loss-of-function and gain-of-function experiments have identified the orphan nuclear receptor REV-ERBα as the major circadian regulator of mir-122 transcription. Although due to its long half-life mature miR-122 accumulates at nearly constant rates throughout the day, this miRNA is tightly associated with control mechanisms governing circadian gene expression. Thus, the knockdown of miR-122 expression via an antisense oligonucleotide (ASO) strategy resulted in the up- and down-regulation of hundreds of mRNAs, of which a disproportionately high fraction accumulates in a circadian fashion. miR-122 has previously been linked to the regulation of cholesterol and lipid metabolism. The transcripts associated with these pathways indeed show the strongest time point-specific changes upon miR-122 depletion. The identification of Pparβ/δ and the peroxisome proliferator-activated receptor α (PPARα) coactivator Smarcd1/Baf60a as novel miR-122 targets suggests an involvement of the circadian metabolic regulators of the PPAR family in miR-122-mediated metabolic control. PMID:19487572

  18. Bioinformatic identification and expression analysis of banana microRNAs and their targets.

    Science.gov (United States)

    Chai, Juan; Feng, Renjun; Shi, Hourui; Ren, Mengyun; Zhang, Yindong; Wang, Jingyi

    2015-01-01

    MicroRNAs (miRNAs) represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome) and M. balbisiana (B genome). Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST) and Genomic Survey Sequence (GSS), a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions.

  19. Bioinformatic identification and expression analysis of banana microRNAs and their targets.

    Directory of Open Access Journals (Sweden)

    Juan Chai

    Full Text Available MicroRNAs (miRNAs represent a class of endogenous non-coding small RNAs that play important roles in multiple biological processes by degrading targeted mRNAs or repressing mRNA translation. Thousands of miRNAs have been identified in many plant species, whereas only a limited number of miRNAs have been predicted in M. acuminata (A genome and M. balbisiana (B genome. Here, previously known plant miRNAs were BLASTed against the Expressed Sequence Tag (EST and Genomic Survey Sequence (GSS, a database of banana genes. A total of 32 potential miRNAs belonging to 13 miRNAs families were detected using a range of filtering criteria. 244 miRNA:target pairs were subsequently predicted, most of which encode transcription factors or enzymes that participate in the regulation of development, growth, metabolism, and other physiological processes. In order to validate the predicted miRNAs and the mutual relationship between miRNAs and their target genes, qRT-PCR was applied to detect the tissue-specific expression levels of 12 putative miRNAs and 6 target genes in roots, leaves, flowers, and fruits. This study provides some important information about banana pre-miRNAs, mature miRNAs, and miRNA target genes and these findings can be applied to future research of miRNA functions.

  20. Differential MicroRNA Expression in Human Macrophages with Mycobacterium tuberculosis Infection of Beijing/W and Non-Beijing/W Strain Types.

    Directory of Open Access Journals (Sweden)

    Lin Zheng

    Full Text Available The role of microRNAs in association with Mycobacterium tuberculosis (MTB infection and the immunology regulated by microRNAs upon MTB infection have not been fully unravelled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of the host macrophages by microarray in a small cohort with active MTB disease, latent infection (LTBI, and from healthy controls.The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Beijing/W strains (P<0.05. A unique signature of 11 microRNAs in human macrophages was identified to differentiate active MTB disease from LTBI and healthy controls. Pathway analyses of these differentially expressed miRNAs suggest that the immune-regulatory interactions involving TGF-β signalling pathway take part in the dysregulation of critical TB processes in the macrophages, resulting in active expression of both cell communication and signalling transduction systems.We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs expressions which may reflect their virulence characteristics in altering the host response. The unique signatures of 11 microRNAs may deserve further evaluation as candidates for biomarkers in the diagnosis of MTB and Beijing/W infections.

  1. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors.

    Science.gov (United States)

    Braza-Boïls, Aitana; Marí-Alexandre, Josep; Gilabert, Juan; Sánchez-Izquierdo, Dolors; España, Francisco; Estellés, Amparo; Gilabert-Estellés, Juan

    2014-05-01

    Could an aberrant microRNA (miRNA) expression profile be responsible for the changes in the angiogenic and fibrinolytic states observed in endometriotic lesions? This study revealed characteristic miRNA expression profiles associated with endometriosis in endometrial tissue and endometriotic lesions from the same patient and their correlation with the most important angiogenic and fibrinolytic factors. WHAT IS ALREADY KNOWN?: An important role for dysregulated miRNA expression in the pathogenesis of endometriosis is well documented. However, to the best of our knowledge, there are no reports of the relationship between angiogenic and fibrinolytic factors and miRNAs when endometrial tissue and different types of endometriotic lesions from the same patient are compared. Case-control study that involved 51 women with endometriosis and 32 women without the disease (controls). The miRNA expression profiles were determined using the GeneChip miRNA 2.0 Affymetrix array platform, and the results were analysed using Partek Genomic Suite software. To validate the obtained results, 12 miRNAs differentially expressed were quantified by using miRCURY LNA™ Universal RT microRNA PCR. Levels of vascular endothelial growth factor (VEGF-A), thrombospondin-1 (TSP-1), urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) proteins were quantified by ELISA. Patient endometrial tissue showed significantly lower levels of miR-202-3p, miR-424-5p, miR-449b-3p and miR-556-3p, and higher levels of VEGF-A and uPA than healthy (control) endometrium. However, tissue affected by ovarian endometrioma showed significantly lower expression of miR-449b-3p than endometrium from both controls and patients, and higher levels of PAI-1 and the angiogenic inhibitor TSP-1. A significant inverse correlation between miR-424-5p and VEGF-A protein levels was observed in patient endometrium, and an inverse correlation between miR-449b-3p and TSP-1 protein levels was observed in

  2. Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Science.gov (United States)

    Jain, Shilpa; Kapetanaki, Maria G.; Raghavachari, Nalini; Woodhouse, Kimberly; Yu, Guoying; Barge, Suchitra; Coronnello, Claudia; Benos, Panayiotis V.; Kato, Gregory J.; Kaminski, Naftali; Gladwin, Mark T.

    2013-01-01

    Background Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed mi

  3. Expression Profiling and Structural Characterization of MicroRNAs in Adipose Tissues of Hibernating Ground Squirrels

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Wu

    2014-12-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that are important in regulating metabolic stress. In this study, we determined the expression and structural characteristics of 20 miRNAs in brown (BAT and white adipose tissue (WAT during torpor in thirteen-lined ground squirrels. Using a modified stem-loop technique, we found that during torpor, expression of six miRNAs including let-7a, let-7b, miR-107, miR-150, miR-222 and miR-31 was significantly downregulated in WAT (P < 0.05, which was 16%–54% of euthermic non-torpid control squirrels, whereas expression of three miRNAs including miR-143, miR-200a and miR-519d was found to be upregulated by 1.32–2.34-fold. Similarly, expression of more miRNAs was downregulated in BAT during torpor. We detected reduced expression of 6 miRNAs including miR-103a, miR-107, miR-125b, miR-21, miR-221 and miR-31 (48%–70% of control, while only expression of miR-138 was significantly upregulated (2.91 ± 0.8-fold of the control, P < 0.05. Interestingly, miRNAs found to be downregulated in WAT during torpor were similar to those dysregulated in obese humans for increased adipogenesis, whereas miRNAs with altered expression in BAT during torpor were linked to mitochondrial β-oxidation. miRPath target prediction analysis showed that miRNAs downregulated in both WAT and BAT were associated with the regulation of mitogen-activated protein kinase (MAPK signaling, while the miRNAs upregulated in WAT were linked to transforming growth factor β (TGFβ signaling. Compared to mouse sequences, no unique nucleotide substitutions within the stem-loop region were discovered for the associated pre-miRNAs for the miRNAs used in this study, suggesting no structure-influenced changes in pre-miRNA processing efficiency in the squirrel. As well, the expression of miRNA processing enzyme Dicer remained unchanged in both tissues during torpor. Overall, our findings suggest that changes of miRNA expression in adipose tissues may

  4. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia.

    Science.gov (United States)

    Abd-El-Fattah, Amal A; Sadik, Nermin Abdel Hamid; Shaker, Olfat Gamil; Aboulftouh, Mariam Lotfy

    2013-01-01

    MicroRNAs (miRNAs) play critical regulatory roles in the physiological and pathological processes. The high stability of miRNAs in human serum represents attractive novel diagnostic biomarkers of clinical conditions. Several studies have shown that aberrant expression of miRNAs in human cancer including lung cancer, but little is known about their effects on some infectious lung diseases such as pulmonary tuberculosis (TB) and pneumonia. In this study, we investigated miRNA expression pattern in serum of Egyptian patients with lung cancer, TB, and pneumonia compared with matched healthy controls. Using microarray-based expression profiling followed by real-time quantitative polymerase chain reaction validation, we compared the levels of a series of circulating miRNAs (miR-21, miR-155, miR-182, and miR-197) in serum from patients with lung cancer (n = 65), pulmonary tuberculosis (n = 29), pneumonia (n = 29), and transudate (n = 16) compared with matched healthy controls (n = 37). MiRNA SNORD68 was the housekeeping endogenous control. We found that the serum levels of miR-21, miR-155, and miR-197 were significantly elevated in the patients with lung cancer and pneumonia whereas miR-182 and miR-197 levels were increased only in patients with lung cancer and TB, respectively, compared with controls. Receiver operating characteristic analysis revealed that miR-182, miR-155, and miR-197 have superior diagnostic potential in discriminating patients with lung cancer, pneumonia, and TB, respectively, from controls. Our results conclude that the differential expression of the four studied miRNAs can be potential non-invasive biomarkers for patients with lung cancer, TB and pneumonia.

  5. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients

    Science.gov (United States)

    Singh, Prashant K.; Preus, Leah; Hu, Qiang; Yan, Li; Long, Mark D.; Morrison, Carl D.; Nesline, Mary; Johnson, Candace S.; Koochekpour, Shahriar; Kohli, Manish; Liu, Song; Trump, Donald L.

    2014-01-01

    We aimed to identify microRNA (miRNA) expression patterns in the serum of prostate cancer (CaP) patients that predict the risk of early treatment failure following radical prostatectomy (RP). Microarray and Q-RT-PCR analyses identified 43 miRNAs as differentiating disease stages within 14 prostate cell lines and reflectedpublically available patient data. 34 of these miRNA were detectable in the serum of CaP patients. Association with time to biochemical progression was examined in a cohort of CaP patients following RP. A greater than two-fold increase in hazard of biochemical progression associated with altered expression of miR-103, miR-125b and miR-222 (p <.0008) in the serum of CaP patients. Prediction models based on penalized regression analyses showed that the levels of the miRNAs and PSA together were better at detecting false positives than models without miRNAs, for similar level of sensitivity. Analyses of publically available data revealed significant and reciprocal relationships between changes in CpG methylation and miRNA expression patterns suggesting a role for CpG methylation to regulate miRNA. Exploratory validation supported roles for miR-222 and miR-125b to predict progression risk in CaP. The current study established that expression patterns of serum-detectable miRNAs taken at the time of RP are prognostic for men who are at risk of experiencing subsequent early biochemical progression. These non-invasive approaches could be used to augment treatment decisions. PMID:24583788

  6. Differential microRNA expression in breast cancer with different onset age.

    Science.gov (United States)

    Tsai, Hsiu-Pei; Huang, Shiang-Fu; Li, Chien-Fan; Chien, Huei-Tzu; Chen, Shin-Cheh

    2018-01-01

    The lower breast cancer incidence in Asian populations compared with Western populations has been speculated to be caused by environmental and genetic variation. Early-onset breast cancer occupies a considerable proportion of breast cancers in Asian populations, but the reason for this is unclear. We aimed to examine miRNA expression profiles in different age-onset groups and pathological subtypes in Asian breast cancer. At the first stage, 10 samples (tumor: n = 6, normal tissue: n = 4) were analyzed with an Agilent microRNA 470 probe microarray. Candidate miRNAs with expression levels that were significantly altered in breast cancer samples or selected from a literature review were further validated by quantitative real-time PCR (qPCR) of 145 breast cancer samples at the second stage of the process. Correlations between clinicopathological parameters of breast cancer patients from different age groups and candidate miRNA expression were elucidated. In the present study, the tumor subtypes were significantly different in each age group, and an onset age below 40 had poor disease-free and overall survival rates. For all breast cancer patients, miR-335 and miR-145 were down-regulated, and miR-21, miR-200a, miR-200c, and miR-141 were up-regulated. In very young patients (age cancer. Differential miRNA expressions between normal and tumor tissues were observed in different age groups and tumor subtypes. Evolutionarily conserved miRNA clusters, which initiate malignancy transformation, were up-regulated in the breast cancers of very young patients. None of the significantly altered miRNAs were observed in postmenopausal patients.

  7. microRNA-135b expression silences Ppm1e to provoke AMPK activation and inhibit osteoblastoma cell proliferation.

    Science.gov (United States)

    Li, Zheng-Wei; Zhu, Yun-Rong; Zhou, Xiao-Zhong; Zhuo, Bao-Biao; Wang, Xiao-Dong

    2017-04-18

    Forced-activation of AMP-activated protein kinase (AMPK) can possibly inhibit osteoblastoma cells. Here, we aim to provoke AMPK activation via microRNA silencing its phosphatase Ppm1e (protein phosphatase Mg2+/Mn2+-dependent 1e). We showed that microRNA-135b-5p ("miR-135b-5p"), the anti-Ppm1e microRNA, was significantly downregulated in human osteoblastoma tissues. It was correlated with Ppm1e upregulation and AMPKα1 de-phosphorylation. Forced-expression of miR-135b-5p in human osteoblastoma cells (MG-63 and U2OS lines) silenced Ppm1e, and induced a profound AMPKα1 phosphorylation (at Thr-172). Osteoblastoma cell proliferation was inhibited after miR-135b-5p expression. Intriguingly, Ppm1e shRNA knockdown similarly induced AMPKα1 phosphorylation, causing osteoblastoma cell proliferation. Reversely, AMPKα1 shRNA knockdown or dominant negative mutation almost abolished miR-135b-5p's actions in osteoblastoma cells. Further in vivo studies demonstrated that U2OS tumor growth in mice was dramatically inhibited after expressing miR-135b-5p or Ppm1e shRNA. Together, our results suggest that miR-135b-induced Ppm1e silence induces AMPK activation to inhibit osteoblastoma cell proliferation.

  8. microRNA-135b expression silences Ppm1e to provoke AMPK activation and inhibit osteoblastoma cell proliferation

    Science.gov (United States)

    Li, Zheng-Wei; Zhu, Yun-Rong; Zhou, Xiao-Zhong; Zhuo, Bao-Biao; Wang, Xiao-Dong

    2017-01-01

    Forced-activation of AMP-activated protein kinase (AMPK) can possibly inhibit osteoblastoma cells. Here, we aim to provoke AMPK activation via microRNA silencing its phosphatase Ppm1e (protein phosphatase Mg2+/Mn2+-dependent 1e). We showed that microRNA-135b-5p (“miR-135b-5p”), the anti-Ppm1e microRNA, was significantly downregulated in human osteoblastoma tissues. It was correlated with Ppm1e upregulation and AMPKα1 de-phosphorylation. Forced-expression of miR-135b-5p in human osteoblastoma cells (MG-63 and U2OS lines) silenced Ppm1e, and induced a profound AMPKα1 phosphorylation (at Thr-172). Osteoblastoma cell proliferation was inhibited after miR-135b-5p expression. Intriguingly, Ppm1e shRNA knockdown similarly induced AMPKα1 phosphorylation, causing osteoblastoma cell proliferation. Reversely, AMPKα1 shRNA knockdown or dominant negative mutation almost abolished miR-135b-5p's actions in osteoblastoma cells. Further in vivo studies demonstrated that U2OS tumor growth in mice was dramatically inhibited after expressing miR-135b-5p or Ppm1e shRNA. Together, our results suggest that miR-135b-induced Ppm1e silence induces AMPK activation to inhibit osteoblastoma cell proliferation. PMID:28460435

  9. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression.

    Science.gov (United States)

    Zhou, Siying; Li, Jian; Xu, Hanzi; Zhang, Sijie; Chen, Xiu; Chen, Wei; Yang, Sujin; Zhong, Shanliang; Zhao, Jianhua; Tang, Jinhai

    2017-07-30

    Emerging evidence suggests that curcumin can overcome drug resistance to classical chemotherapies, but poor bioavailability and low absorption have limited its clinical use and the mechanisms remain unclear. Also, Adriamycin (Adr) is one of the most active cytotoxic agents in breast cancer; however, the high resistant rate of Adr leads to a poor prognosis. We utilized encapsulation in liposomes as a strategy to improve the bioavailability of curcumin and demonstrated that liposomal curcumin altered chemosensitivity of Adr-resistant MCF-7 human breast cancer (MCF-7/Adr) by MTT assay. The miRNA and mRNA expression profiles of MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr cells were analyzed by microarray and further confirmed by real-time PCR. We focused on differentially expressed miR-29b-1-5p to explore the involvement of miR-29b-1-5p in the resistance of Adr. Candidate genes of dysregulated miRNAs were identified by prediction algorithms based on gene expression profiles. Networks of KEGG pathways were organized by the selected dysregulated miRNAs. Moreover, protein-protein interaction (PPI) was utilized to map protein interaction networks of curcumin regulated proteins. We first demonstrated liposomal curcumin could rescue part of Adriamycin resistance in breast cancer and further identified 67 differentially expressed microRNAs among MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr. The results showed that lower expressed miR-29b-1-5p decreased the IC50 of MCF-7/Adr cells and higher expressed miR-29b-1-5p, weaken the effects of liposomal curcumin to Adr-resistance. Besides, we found that 20 target genes (mRNAs) of each dysregulated miRNA were not only predicted by prediction algorithms, but also differentially expressed in the microarray. The results showed that MAPK, mTOR, PI3K-Akt, AMPK, TNF, Ras signaling pathways and several target genes such as PPARG, RRM2, SRSF1and EPAS1, may associate with drug resistance of breast cancer cells to Adr. We determined

  10. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    International Nuclear Information System (INIS)

    Price, Karina J.; Tsykin, Anna; Giles, Keith M.; Sladic, Rosemary T.; Epis, Michael R.; Ganss, Ruth; Goodall, Gregory J.; Leedman, Peter J.

    2012-01-01

    Highlights: ► Matrigel alters cancer cell line miRNA expression relative to culture on plastic. ► Many identified Matrigel-regulated miRNAs are implicated in cancer. ► miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. ► miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence of Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a valuable approach to the in vitro study of miRNAs.

  11. Changes in microRNAs expression profile of olive flounder (Paralichthys olivaceus) in response to viral hemorrhagic septicemia virus (VHSV) infection.

    Science.gov (United States)

    Najib, Abdellaoui; Kim, Min Sun; Choi, Seung Hyuk; Kang, Yue Jai; Kim, Ki Hong

    2016-04-01

    To know the effect of viral hemorrhagic septicemia virus (VHSV) infection on the cellular microRNA expression profile in olive flounder (Paralichthys olivaceus), fish were infected with VHSV, and cellular microRNAs expression was analyzed at 0 (control), 6, 12, 24, 48 and 72 h post-infection (h.p.i.) by the high-throughput sequencing. A total of 372 mature miRNAs were identified, and, among them, 63 miRNAs were differentially expressed during VHSV infection. The differentially expressed microRNAs number was greatly increased from 24 h.p.i. compared to the number at 6 and 12 h.p.i., suggesting that the alteration of microRNAs expression by VHSV infection may be related to the progression of VHSV disease. The target prediction analysis, the GO enrichment analysis, and the KEGG pathway analysis of the predicted target genes showed that various biological pathways could be affected by VHSV infection through the down-regulation or up-regulation of host miRNAs. The present results provide a basic information on the microRNAs related to VHSV infection in olive flounder. Considering broad effects of microRNAs on various biological pathways, data in this study can be used to interpret the mechanism of VHSV pathogenesis, which, vice versa, can be used to develop control measures against VHSV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Tu Zhijian

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are non-coding RNAs that are now recognized as a major class of gene-regulating molecules widely distributed in metozoans and plants. miRNAs have been found to play important roles in apoptosis, cancer, development, differentiation, inflammation, longevity, and viral infection. There are a few reports describing miRNAs in the African malaria mosquito, Anopheles gambiae, on the basis of similarity to known miRNAs from other species. An. stephensi is the most important malaria vector in Asia and it is becoming a model Anopheline species for physiological and genetics studies. Results We report the cloning and characterization of 27 distinct miRNAs from 17-day old An. stephensi female mosquitoes. Seventeen of the 27 miRNAs matched previously predicted An. gambiae miRNAs, offering the first experimental verification of miRNAs from mosquito species. Ten of the 27 are miRNAs previously unknown to mosquitoes, four of which did not match any known miRNAs in any organism. Twenty-five of the 27 Anopheles miRNAs had conserved sequences in the genome of a divergent relative, the yellow fever mosquito Aedes aegypti. Two clusters of miRNAs were found within introns of orthologous genes in An. gambiae, Ae. aegypti, and Drosophila melanogaster. Mature miRNAs were detected in An. stephensi for all of the nine selected miRNAs, including the four novel miRNAs (miR-x1- miR-x4, either by northern blot or by Ribonuclease Protection Assay. Expression profile analysis of eight of these miRNAs revealed distinct expression patterns from early embryo to adult stages in An. stephensi. In both An. stephensi and Ae. aegypti, the expression of miR-x2 was restricted to adult females and predominantly in the ovaries. A significant reduction of miR-x2 level was observed 72 hrs after a blood meal. Thus miR-x2 is likely involved in female reproduction and its function may be conserved among divergent mosquitoes. A mosquito homolog of miR-14, a

  13. Transfer of spontaneously hatching or hatched blastocyst yields better pregnancy rates than expanded blastocyst transfer

    Directory of Open Access Journals (Sweden)

    Natachandra M Chimote

    2013-01-01

    Full Text Available Context: Blastocyst stage embryo transfer (ET has become routine practice in recent years. However, probably due to limitations of assisted hatching techniques, expanded blastocyst transfer (EBT is still the preferred mode. Inexplicably, not much consideration has been given to spontaneously hatching/hatched blastocyst transfer (SHBT. Aim: This study aimed to investigate developmental potential of spontaneously hatching/hatched blastocyst against EBT in in vitro fertilization (IVF cycles. Settings and Design: Prospective study of 146 women undergoing their first IVF- ET cycle. SUBJECTS AND Methods: On the basis of blastocyst status, women were classified into SHBT and EBT groups. Intracytoplasmic sperm injection cycles were excluded to remove male factor bias. Implantation rate (IR, clinical pregnancy rate, and live birth rate were the main outcome measures. Statistical Analysis: Graph-pad Prism 5 statistical package. Results: SHBT group showed significantly higher blastocyst formation rate (53.3 ± 17.5 vs. 43.1 ± 14.5%, P = 0.0098, top-quality blastocysts (71.8 vs. 53.7%, P = 0.0436, IR (43.6 vs. 27.9%, P = 0.0408, pregnancy rate (59.4 vs. 45.1%, P = 0.0173, and live birth rate (36.8 vs. 22.8%, P = 0.003 compared to EBT group. Multiple pregnancy rates remained comparable between the two groups. Implantation correlated strongly with top-quality blastocysts (Pearson, r = 0.4441 in SHBT group, while the correlation was nonsignificant in EBT group. Conclusion: Extending culture of expanded blastocysts by a few hours to allow transfer of spontaneously hatching/hatched blastocysts gives higher implantation and pregnancy rates with no added risk of multiple gestations. Spontaneously hatching/hatched blastocysts have a better potential to implant and develop into a positive pregnancy.

  14. Regulation of coagulation factor XI expression by microRNAs in the human liver.

    Directory of Open Access Journals (Sweden)

    Salam Salloum-Asfar

    Full Text Available High levels of factor XI (FXI increase the risk of thromboembolic disease. However, the genetic and environmental factors regulating FXI expression are still largely unknown. The aim of our study was to evaluate the regulation of FXI by microRNAs (miRNAs in the human liver. In silico prediction yielded four miRNA candidates that might regulate FXI expression. HepG2 cells were transfected with miR-181a-5p, miR-23a-3p, miR-16-5p and miR-195-5p. We used mir-494, which was not predicted to bind to F11, as a negative control. Only miR-181a-5p caused a significant decrease both in FXI protein and F11 mRNA levels. In addition, transfection with a miR-181a-5p inhibitor in PLC/PRF/5 hepatic cells increased both the levels of F11 mRNA and extracellular FXI. Luciferase assays in human colon cancer cells deficient for Dicer (HCT-DK demonstrated a direct interaction between miR-181a-5p and 3'untranslated region of F11. Additionally, F11 mRNA levels were inversely and significantly correlated with miR-181a-5p levels in 114 healthy livers, but not with miR-494. This study demonstrates that FXI expression is directly regulated by a specific miRNA, miR-181a-5p, in the human liver. Future studies are necessary to further investigate the potential consequences of miRNA dysregulation in pathologies involving FXI.

  15. Expression and Genetic Analysis of MicroRNAs Involved in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Daniela Galimberti

    2013-02-01

    Full Text Available Evidence underlines the importance of microRNAs (miRNAs in the pathogenesis of multiple sclerosis (MS. Based on the fact that miRNAs are present in human biological fluids, we previously showed that miR-223, miR-23a and miR-15b levels were downregulated in the sera of MS patients versus controls. Here, the expression levels of these candidate miRNAs were determined in peripheral blood mononuclear cells (PBMCs and the serum of MS patients, in addition to three genotyped single nucleotide polymorphisms (SNPs. Mapping in the genomic regions of miR-223, miR-23a and miR-15b genes, 399 cases and 420 controls were tested. Expression levels of miR-223 and miR-23a were altered in PBMCs from MS patients versus controls. Conversely, there were no differences in the expression levels of miR-15b. A significantly decreased genotypic frequency of miR-223 rs1044165 T/T genotype was observed in MS patients. Moreover, the allelic frequency of miR-23a rs3745453 C allele was significantly increased in patients versus controls. In contrast, there were no differences in the distribution of miR-15b SNP. In conclusion, our results suggest that miR-223 and miR-23a could play a role in the pathogenesis of MS. Moreover, miR-223 rs1044165 polymorphism likely acts as a protective factor, while miR-23a rs3745453 variant seems to act as a risk factor for MS.

  16. Expression and Genetic Analysis of MicroRNAs Involved in Multiple Sclerosis.

    Science.gov (United States)

    Ridolfi, Elisa; Fenoglio, Chiara; Cantoni, Claudia; Calvi, Alberto; De Riz, Milena; Pietroboni, Anna; Villa, Chiara; Serpente, Maria; Bonsi, Rossana; Vercellino, Marco; Cavalla, Paola; Galimberti, Daniela; Scarpini, Elio

    2013-02-25

    Evidence underlines the importance of microRNAs (miRNAs) in the pathogenesis of multiple sclerosis (MS). Based on the fact that miRNAs are present in human biological fluids, we previously showed that miR-223, miR-23a and miR-15b levels were downregulated in the sera of MS patients versus controls. Here, the expression levels of these candidate miRNAs were determined in peripheral blood mononuclear cells (PBMCs) and the serum of MS patients, in addition to three genotyped single nucleotide polymorphisms (SNPs). Mapping in the genomic regions of miR-223, miR-23a and miR-15b genes, 399 cases and 420 controls were tested. Expression levels of miR-223 and miR-23a were altered in PBMCs from MS patients versus controls. Conversely, there were no differences in the expression levels of miR-15b. A significantly decreased genotypic frequency of miR-223 rs1044165 T/T genotype was observed in MS patients. Moreover, the allelic frequency of miR-23a rs3745453 C allele was significantly increased in patients versus controls. In contrast, there were no differences in the distribution of miR-15b SNP. In conclusion, our results suggest that miR-223 and miR-23a could play a role in the pathogenesis of MS. Moreover, miR-223 rs1044165 polymorphism likely acts as a protective factor, while miR-23a rs3745453 variant seems to act as a risk factor for MS.

  17. Role of CTCF in the regulation of microRNA expression

    Directory of Open Access Journals (Sweden)

    Yoshimasa eSaito

    2012-09-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs that regulate expression of various target genes. MiRNAs are expressed in a tissue-specific manner and play important roles in cell proliferation, apoptosis, and differentiation. Epigenetic alterations such as DNA methylation and histone modification are essential for chromatin remodeling and regulation of gene expression including miRNAs. The CCCTC-binding factor, CTCF, is known to bind insulators and exhibits an enhancer-blocking and barrier function, and more recently, it also contributes to the three-dimensional organization of the genome. CTCF can also serve as a barrier against the spread of DNA methylation and histone repressive marks over promoter regions of tumor suppressor genes. Recent studies have shown that CTCF is also involved in the regulation of miRNAs such as miR-125b1, miR-375 and the miR-290 cluster in cancer cells and stem cells. MiR-125b1 is a candidate of tumor suppressor and is silenced in breast cancer cells. On the other hand, miR-375 may have oncogenic function and is overexpressed in breast cancer cells. CTCF is involved in the regulation of both miR-125b1 and miR-375, indicating that there are various patterns of CTCF-associated epigenetic regulation of miRNAs. CTCF may also play a key role in the pluripotency of cells through the regulation of miR-290 cluster. These observations suggest that CTCF-mediated regulation of miRNAs could be a novel approach for cancer therapy and regenerative medicine.

  18. Identifying key radiogenomic associations between DCE-MRI and micro-RNA expressions for breast cancer

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Kim, Renaid

    2017-03-01

    Understanding the key radiogenomic associations for breast cancer between DCE-MRI and micro-RNA expressions is the foundation for the discovery of radiomic features as biomarkers for assessing tumor progression and prognosis. We conducted a study to analyze the radiogenomic associations for breast cancer using the TCGA-TCIA data set. The core idea that tumor etiology is a function of the behavior of miRNAs is used to build the regression models. The associations based on regression are analyzed for three study outcomes: diagnosis, prognosis, and treatment. The diagnosis group consists of miRNAs associated with clinicopathologic features of breast cancer and significant aberration of expression in breast cancer patients. The prognosis group consists of miRNAs which are closely associated with tumor suppression and regulation of cell proliferation and differentiation. The treatment group consists of miRNAs that contribute significantly to the regulation of metastasis thereby having the potential to be part of therapeutic mechanisms. As a first step, important miRNA expressions were identified and their ability to classify the clinical phenotypes based on the study outcomes was evaluated using the area under the ROC curve (AUC) as a figure-of-merit. The key mapping between the selected miRNAs and radiomic features were determined using least absolute shrinkage and selection operator (LASSO) regression analysis within a two-loop leave-one-out cross-validation strategy. These key associations indicated a number of radiomic features from DCE-MRI to be potential biomarkers for the three study outcomes.

  19. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Il Lae Jung

    Full Text Available MicroRNAs (miRNAs are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.

  20. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen.

    Science.gov (United States)

    Zhang, Tao; Zhao, Yun-Long; Zhao, Jian-Hua; Wang, Sheng; Jin, Yun; Chen, Zhong-Qi; Fang, Yuan-Yuan; Hua, Chen-Lei; Ding, Shou-Wei; Guo, Hui-Shan

    2016-09-26

    Plant pathogenic fungi represent the largest group of disease-causing agents on crop plants, and are a constant and major threat to agriculture worldwide. Recent studies have shown that engineered production of RNA interference (RNAi)-inducing dsRNA in host plants can trigger specific fungal gene silencing and confer resistance to fungal pathogens 1-7 . Although these findings illustrate efficient uptake of host RNAi triggers by pathogenic fungi, it is unknown whether or not such an uptake mechanism has been evolved for a natural biological function in fungus-host interactions. Here, we show that in response to infection with Verticillium dahliae (a vascular fungal pathogen responsible for devastating wilt diseases in many crops) cotton plants increase production of microRNA 166 (miR166) and miR159 and export both to the fungal hyphae for specific silencing. We found that two V. dahliae genes encoding a Ca 2+ -dependent cysteine protease (Clp-1) and an isotrichodermin C-15 hydroxylase (HiC-15), and targeted by miR166 and miR159, respectively, are both essential for fungal virulence. Notably, V. dahliae strains expressing either Clp-1 or HiC-15 rendered resistant to the respective miRNA exhibited drastically enhanced virulence in cotton plants. Together, our findings identify a novel defence strategy of host plants by exporting specific miRNAs to induce cross-kingdom gene silencing in pathogenic fungi and confer disease resistance.

  1. Cross-platform analysis of global microRNA expression technologies

    Directory of Open Access Journals (Sweden)

    Stead John DH

    2010-05-01

    Full Text Available Abstract Background Although analysis of microRNAs (miRNAs by DNA microarrays is gaining in popularity, these new technologies have not been adequately validated. We examined within and between platform reproducibility of four miRNA array technologies alongside TaqMan PCR arrays. Results Two distinct pools of reference materials were selected in order to maximize differences in miRNA content. Filtering for miRNA that yielded signal above background revealed 54 miRNA probes (matched by sequence across all platforms. Using this probeset as well as all probes that were present on an individual platform, within-platform analyses revealed Spearman correlations of >0.9 for most platforms. Comparing between platforms, rank analysis of the log ratios of the two reference pools also revealed high correlation (range 0.663-0.949. Spearman rank correlation and concordance correlation coefficients for miRNA arrays against TaqMan qRT-PCR arrays were similar for all of the technologies. Platform performances were similar to those of previous cross-platform exercises on mRNA and miRNA microarray technologies. Conclusions These data indicate that miRNA microarray platforms generated highly reproducible data and can be recommended for the study of changes in miRNA expression.

  2. Ectopic expression of microRNA-155 enhances innate antiviral immunity against HBV infection in human hepatoma cells

    Directory of Open Access Journals (Sweden)

    Su Chenhe

    2011-07-01

    Full Text Available Abstract Background Host innate antiviral immunity is the first line of defense against viral infection, and is precisely regulated by thousands of genes at various stages, including microRNAs. MicroRNA-155 (miR-155 was found to be up-regualted during viral infection, and influence the host immune response. Besides, the expression of miR-155, or its functional orthologs, may also contribute to viral oncogenesis. HBV is known to cause hepatocellular carcinoma, and there is evidence that attenuated intracellular immune response is the main reason for HBV latency. Thus, we assume miR-155 may affect the immune response during HBV infection in human hepatoma cells. Results We found that ectopic expression of miR-155 upregulated the expression of several IFN-inducible antiviral genes in human hepatoma cells. And over-expression of miR-155 suppressed suppressor of cytokine signaling 1 (SOCS1 expression and subsequently enhanced signal transducers and activators of transcription1 (STAT1 and signal transducers and activators of transcription3 (STAT3 phosphorylation. We further demonstrate that ectopic expression of miR-155 inhibits HBV X gene expression to some extent in vitro. Conclusion MiR-155 enhances innate antiviral immunity through promoting JAK/STAT signaling pathway by targeting SOCS1, and mildly inhibits HBV infection in human hepatoma cells.

  3. Target gene expression levels and competition between transfected and endogenous microRNAs are strong confounding factors in microRNA high-throughput experiments

    Science.gov (United States)

    2012-01-01

    Background MicroRNA (miRNA) target genes tend to have relatively long and conserved 3' untranslated regions (UTRs), but to what degree these characteristics contribute to miRNA targeting is poorly understood. Different high-throughput experiments have, for example, shown that miRNAs preferentially regulate genes with both short and long 3' UTRs and that target site conservation is both important and irrelevant for miRNA targeting. Results We have analyzed several gene context-dependent features, including 3' UTR length, 3' UTR conservation, and messenger RNA (mRNA) expression levels, reported to have conflicting influence on miRNA regulation. By taking into account confounding factors such as technology-dependent experimental bias and competition between transfected and endogenous miRNAs, we show that two factors - target gene expression and competition - could explain most of the previously reported experimental differences. Moreover, we find that these and other target site-independent features explain about the same amount of variation in target gene expression as the target site-dependent features included in the TargetScan model. Conclusions Our results show that it is important to consider confounding factors when interpreting miRNA high throughput experiments and urge special caution when using microarray data to compare average regulatory effects between groups of genes that have different average gene expression levels. PMID:22325809

  4. Differential Expression of MicroRNAs in Papillary Thyroid Carcinoma and Their Role in Racial Disparity.

    Science.gov (United States)

    Suresh, Raagini; Sethi, Seema; Ali, Shadan; Giorgadze, Tamar; Sarkar, Fazlul H

    2015-05-01

    MicroRNAs (miRNAs) are known to play important roles in the diagnosis and prognosis of papillary thyroid cancer (PTC), and they are useful in developing targeted therapies. However, there have been no studies on the existence of racial differences in miRNAs expression that could explain differential overall survival of PTC patients. Expression analysis of miRNAs in major racial groups would be important for optimizing personalized treatment strategies. In the current study, we assessed the differential expression of 8 miRNAs between normal and tumor tissues, and also assessed racial differences between African American (AA) and Caucasian American (CA). First, the miRNA expression profiling was performed using formalin-fixed paraffin embedded (FFPE) tissue sections of tumor containing over 70% tumor cells. Normal and tumor sections of thyroid tissues were studied from AA and CA patients. The miRNA microarray profiling was done using miRBase version 18 (LC Sciences, Houston, TX, USA). Quantitative real-time PCR (qRT-PCR) was used to validate expression of 8 selected miRNAs. Ingenuity pathway analysis showed involvement of target genes, such as Ras and NF-κB. Deregulated miRNAs such as miR-221 and miR-31 were found to be statistically significant between the two races. Using qRT-PCR, we found that miR-21 , miR-146b , miR-221 , miR-222 , miR-31 , and miR-3613 were up-regulated while miR-138 and miR-98 were down-regulated in tumors compared to normal tissues. Though sample size was small, we found several deregulated miRNAs having racial differences. The differential expression of miRNAs suggest that these miRNAs and their target genes could be useful to gain further mechanistic insight of PTC and their clinical implications, including miRNA replacement therapy or their knockdown strategies.

  5. MicroRNA and gene expression changes in unruptured human cerebral aneurysms

    Science.gov (United States)

    Bekelis, Kimon; Hamilton, Joanna; Teegarden, Amy; Tomlinson, Craig R.; Kuintzle, Rachael; Simmons, Nathan; Singer, Robert J.; Roberts, David W.; Kellis, Manolis; Hendrix, David

    2016-01-01

    Background The molecular mechanisms behind cerebral aneurysm formation and rupture remain poorly understood. In the past decade, microRNAs (miRNAs) have been shown to be key regulators in a host of biological processes. They are non-coding RNA molecules, approximately 21 nucleotides long, which post-transcriptionally inhibit mRNAs by attenuating protein translation and promoting mRNA degradation. We attempted to profile the miRNA and mRNA interactions and expression levels in cerebral aneurysm tissue from human subjects. Methods We performed a prospective case-control study in human subjects in order to characterize the differential expression of mRNA and miRNA in unruptured cerebral aneurysms compared to control tissue [healthy superficial temporal arteries (STA)]. Ion Torrent was used for deep RNA sequencing. Affymetrix miRNA microarrays were used to analyze miRNA expression, whereas Nanostring nCounter technology was used for validation of identified targets. Results Overall, 7 unruptured cerebral aneurysm and 10 STA specimens were collected. We identified several differentially expressed genes in aneurysm tissue with MMP-13 (Fold change 7.21) and various collagen genes (COL1A1, COL5A1, COL5A2) being among the most upregulated. In addition, multiple miRNAs were significantly differentially expressed, with miR-21 (Fold change 16.97) being the most upregulated, and miR-143-5p (Fold change −11.14) being the most downregulated. From these, miR-21, miR-143, and miR-145 had several significantly anti-correlated target genes in our cohort, associated with smooth muscle cell function, extracellular matrix remodeling, inflammation signaling, and lipid accumulation. All these processes are crucial in the pathophysiology of cerebral aneurysms. Conclusion Our analysis identified differentially expressed genes and miRNAs in unruptured human cerebral aneurysms, suggesting the possibility of a role for miRNAs in aneurysm formation. Further investigation for their importance

  6. MicroRNA and gene expression changes in unruptured human cerebral aneurysms.

    Science.gov (United States)

    Bekelis, Kimon; Kerley-Hamilton, Joanna S; Teegarden, Amy; Tomlinson, Craig R; Kuintzle, Rachael; Simmons, Nathan; Singer, Robert J; Roberts, David W; Kellis, Manolis; Hendrix, David A

    2016-12-01

    OBJECTIVE The molecular mechanisms behind cerebral aneurysm formation and rupture remain poorly understood. In the past decade, microRNAs (miRNAs) have been shown to be key regulators in a host of biological processes. They are noncoding RNA molecules, approximately 21 nucleotides long, that posttranscriptionally inhibit mRNAs by attenuating protein translation and promoting mRNA degradation. The miRNA and mRNA interactions and expression levels in cerebral aneurysm tissue from human subjects were profiled. METHODS A prospective case-control study was performed on human subjects to characterize the differential expression of mRNA and miRNA in unruptured cerebral aneurysms in comparison with control tissue (healthy superficial temporal arteries [STA]). Ion Torrent was used for deep RNA sequencing. Affymetrix miRNA microarrays were used to analyze miRNA expression, whereas NanoString nCounter technology was used for validation of the identified targets. RESULTS Overall, 7 unruptured cerebral aneurysm and 10 STA specimens were collected. Several differentially expressed genes were identified in aneurysm tissue, with MMP-13 (fold change 7.21) and various collagen genes (COL1A1, COL5A1, COL5A2) being among the most upregulated. In addition, multiple miRNAs were significantly differentially expressed, with miR-21 (fold change 16.97) being the most upregulated, and miR-143-5p (fold change -11.14) being the most downregulated. From these, miR-21, miR-143, and miR-145 had several significantly anticorrelated target genes in the cohort that are associated with smooth muscle cell function, extracellular matrix remodeling, inflammation signaling, and lipid accumulation. All these processes are crucial to the pathophysiology of cerebral aneurysms. CONCLUSIONS This analysis identified differentially expressed genes and miRNAs in unruptured human cerebral aneurysms, suggesting the possibility of a role for miRNAs in aneurysm formation. Further investigation for their importance

  7. MicroRNA-22 can reduce parathymosin expression in transdifferentiated hepatocytes.

    Directory of Open Access Journals (Sweden)

    Hung-Lin Chen

    Full Text Available Pancreatic acinar cells AR42J-B13 can transdifferentiate into hepatocyte-like cells permissive for efficient hepatitis B virus (HBV replication. Here, we profiled miRNAs differentially expressed in AR42J-B13 cells before and after transdifferentiation to hepatocytes, using chip-based microarray. Significant increase of miRNA expression, including miR-21, miR-22, and miR-122a, was confirmed by stem-loop real-time PCR and Northern blot analyses. In contrast, miR-93, miR-130b, and a number of other miRNAs, were significantly reduced after transdifferentiation. To investigate the potential significance of miR-22 in hepatocytes, we generated cell lines stably expressing miR-22. By 2D-DIGE, LC-MS/MS, and Western blot analyses, we identified several potential target genes of miR-22, including parathymosin. In transdifferentiated hepatocytes, miR-22 can inhibit both mRNA and protein expression of parathymosin, probably through a direct and an indirect mechanism. We tested two computer predicted miR-22 target sites at the 3' UTR of parathymosin, by the 3' UTR reporter gene assay. Treatment with anti-miR-22 resulted in significant elevation of the reporter activity. In addition, we observed an in vivo inverse correlation between miR-22 and parathymosin mRNA in their tissue distribution in a rat model. The phenomenon that miR-22 can reduce parathymosin protein was also observed in human hepatoma cell lines Huh7 and HepG2. So far, we detected no major effect on several transdifferentiation markers when AR42J-B13 cells were transfected with miR-22, or anti-miR-22, or a parathymosin expression vector, with or without dexamethasone treatment. Therefore, miR-22 appears to be neither necessary nor sufficient for transdifferentiation. We discussed the possibility that altered expression of some other microRNAs could induce cell cycle arrest leading to transdifferentiation.

  8. MicroRNA Expression Profiling by Bead Array Technology in Human Tumor Cell Lines Treated with Interferon-Alpha-2a

    Directory of Open Access Journals (Sweden)

    Siegrist Fredy

    2009-01-01

    Full Text Available Abstract MicroRNAs are positive and negative regulators of eukaryotic gene expression that modulate transcript abundance by specific binding to sequence motifs located prevalently in the 3' untranslated regions of target messenger RNAs (mRNA. Interferon-alpha-2a (IFNα induces a large set of protein coding genes mediating antiproliferative and antiviral responses. Here we use a global microarray-based microRNA detection platform to identify genes that are induced by IFNα in hepatoma- or melanoma-derived human tumor cell lines. Despite the enormous differences in expression levels between these models, we were able to identify microRNAs that are upregulated by IFNα in both lines suggesting the possibility that interferon-regulated microRNAs are involved in the transcriptional repression of mRNA relevant to cytokine responses.

  9. Data describing the effects of dietary bioactive agents on colonic stem cell microRNA and mRNA expression

    Directory of Open Access Journals (Sweden)

    Manasvi S. Shah

    2016-03-01

    Full Text Available With the identification of Lgr5 as a definitive marker for intestinal stem cells, we used the highly novel, recently described, Lgr5-EGFP-IRES-cre ERT2 knock in mouse model. Mice were injected with azoxymethane (AOM, a colon carcinogen or saline (control and fed a chemo-protective diet containing n-3 fatty acids and fermentable fiber (n-3 PUFA+pectin or a control diet (n-6 PUFA + cellulose. Single cells were isolated from colonic mucosa crypts and three discrete populations of cells were collected via fluorescence activated cell sorting (FACS: Lgr5high (stem cells, Lgr5low (daughter cells and Lgr5negative (differentiated cells. microRNA profiling and RNA sequencing were performed from the same sample and analyzed. These data refer to ‘Comparative effects of diet and carcinogen on microRNA expression in the stem cell niche of the mouse colonic crypt’ (Shah et al., 2016 [5].

  10. Similar Squamous Cell Carcinoma Epithelium microRNA Expression in Never Smokers and Ever Smokers.

    Directory of Open Access Journals (Sweden)

    Antonia Kolokythas

    Full Text Available The incidence of oral tumors in patients who never used mutagenic agents such as tobacco is increasing. In an effort to better understand these tumors we studied microRNA (miRNA expression in tumor epithelium of never tobacco users, tumor epithelium of ever tobacco users, and nonpathological control oral epithelium. A comparison of levels among 372 miRNAs in 12 never tobacco users with oral squamous cell carcinoma (OSCC versus 10 healthy controls was made using the reverse transcription quantitative polymerase chain reaction. A similar analysis was done with 8 ever tobacco users with OSCC. These comparisons revealed miR-10b-5p, miR-196a-5p, and miR-31-5p as enriched in the tumor epithelium in OSCC of both never and ever tobacco users. Examination of The Cancer Genome Atlas (TCGA project miRNA data on 305 OSCCs and 30 controls revealed 100% of those miRNAs enriched in never smoker OSCCs in this patient group were also enriched in ever smoker OSCCs. Nonsupervised clustering of TCGA OSCCs was suggestive of two or four subgroups of tumors based on miRNA levels with limited evidence for differences in tobacco exposure among the groups. Results from both patient groups together stress the importance of miR196a-5p in OSCC malignancy in both never and ever smokers, and emphasize the overall similarity of miRNA expression in OSCCs in these two risk groups. It implies that there may be great similarity in etiology of OSCC in never and ever smokers and that classifying OSCC based on tobacco exposure may not be helpful in the clinic.

  11. Sex-different and growth hormone-regulated expression of microRNA in rat liver

    Directory of Open Access Journals (Sweden)

    Tollet-Egnell Petra

    2009-02-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are short non-coding RNAs playing an important role in post-transcriptional regulation of gene expression. We have previously shown that hepatic transcript profiles are different between males and females; that some of these differences are under the regulation of growth hormone (GH; and that mild starvation diminishes some of the differences. In this study, we tested if hepatic miRNAs are regulated in a similar manner. Results Using microarrays, miRNA screening was performed to identify sex-dependent miRNAs in rat liver. Out of 324 unique probes on the array, 254 were expressed in the liver and eight (3% of 254 of those were found to be different between the sexes. Among the eight putative sex-different miRNAs, only one female-predominant miRNA (miR-29b was confirmed using quantitative real-time PCR. Furthermore, 1 week of continuous GH-treatment in male rats reduced the levels of miR-451 and miR-29b, whereas mild starvation (12 hours raised the levels of miR-451, miR-122a and miR-29b in both sexes. The biggest effects were obtained on miR-29b with GH-treatment. Conclusion We conclude that hepatic miRNA levels depend on the hormonal and nutritional status of the animal and show that miR-29b is a female-predominant and GH-regulated miRNA in rat liver.

  12. Acute resistance exercise modulates microRNA expression profiles: Combined tissue and circulatory targeted analyses.

    Directory of Open Access Journals (Sweden)

    Randall F D'Souza

    Full Text Available A subset of short non-coding RNAs, microRNAs (miRs, have been identified in the regulation of skeletal muscle hypertrophy and atrophy. Expressed within cells, miRs are also present in circulation (c-miR and have a putative role in cross-tissue signalling. The aim of this study was to examine the impact of a single bout of high intensity resistance exercise (RE on skeletal muscle and circulatory miRs harvested simultaneously. Resistance trained males (n = 9, 24.6 ± 4.9 years undertook a single bout of high volume RE with venous blood and muscle biopsies collected before, 2 and 4hr post-exercise. Real time polymerase chain reaction (Rt-PCR analyses was performed on 30 miRs that have previously been shown to be required for skeletal muscle function. Of these, 6 miRs were significantly altered within muscle following exercise; miR-23a, -133a, -146a, -206, -378b and 486. Analysis of these same miRs in circulation demonstrated minimal alterations with exercise, although c-miR-133a (~4 fold, p = 0.049 and c-miR-149 (~2.4 fold; p = 0.006 were increased 4hr post-exercise. Thus a single bout of RE results in the increased abundance of a subset of miRs within the skeletal muscle, which was not evident in plasma. The lack a qualitative agreement in the response pattern of intramuscular and circulating miR expression suggests the analysis of circulatory miRs is not reflective of the miR responses within skeletal muscle after exercise.

  13. Characterization of microRNAs expressed during secondary wall biosynthesis in Acacia mangium.

    Directory of Open Access Journals (Sweden)

    Seong Siang Ong

    Full Text Available MicroRNAs (miRNAs play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156 as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants.

  14. Analysis of MicroRNA Expression in Newborns with Differential Birth Weight Using Newborn Screening Cards

    Directory of Open Access Journals (Sweden)

    Patricia Rodil-Garcia

    2017-11-01

    Full Text Available Birth weight is an early predictor for metabolic diseases and microRNAs (miRNAs are proposed as fetal programming participants. To evaluate the use of dried blood spots (DBS on newborn screening cards (NSC as a source of analyzable miRNAs, we optimized a commercial protocol to recover total miRNA from normal birth weight (NBW, n = 17–20, low birth weight (LBW, n = 17–20 and high birth weight (macrosomia, n = 17–20 newborns and analyzed the relative expression of selected miRNAs by stem-loop RT-qPCR. The possible role of miRNAs on the fetal programming of metabolic diseases was explored by bioinformatic tools. The optimized extraction of RNA resulted in a 1.2-fold enrichment of miRNAs respect to the commercial kit. miR-33b and miR-375 were overexpressed in macrosomia 9.8-fold (p < 0.001 and 1.7-fold, (p < 0.05, respectively and miR-454-3p was overexpressed in both LBW and macrosomia (19.7-fold, p < 0.001 and 10.8-fold, p < 0.001, respectively, as compared to NBW. Potential target genes for these miRNAs are associated to cyclic-guanosine monophosphate (cGMP-dependent protein kinase (PKG, mitogen-activated protein kinase (MAPK, type 2 diabetes, transforming growth factor-β (TGF-βand Forkhead box O protein (FoxO pathways. In summary, we improved a protocol for analyzing miRNAs from NSC and provide the first evidence that birth weight modifies the expression of miRNAs associated to adult metabolic dysfunctions. Our work suggests archived NSC are an invaluable resource in the search for fetal programming biomarkers.

  15. Dynamical Expression of MicroRNA-127-3p in Proliferating and Differentiating C2C12 Cells

    OpenAIRE

    Jie Li; Gaofu Wang; Jing Jiang; Peng Zhou; Liangjia Liu; Jinhong Zhao; Lin Wang; Yongfu Huang; Youji Ma; Hangxing Ren

    2016-01-01

    MicroRNAs (miRNAs) are highly conserved, short non-coding RNAs that regulate gene expression at the posttranscriptional level. Although many miRNAs are identified in muscles and muscle cells, their individual roles are still not fully understood. In the present study, we investigated a muscle highly-expressed miRNA, miR-127-3p, in C2C12 myoblasts and tissues of goats with different muscle phenotypes (Boer vs Wushan black goats). Our results demonstrated that i) miR-127-3p was extensively expr...

  16. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis.

    Science.gov (United States)

    Xiong, Fen; Du, Xinhua; Hu, Jianyan; Li, Tingting; Du, Shanshan; Wu, Qiang

    2014-07-01

    MicroRNAs (miRNAs) - as negative regulators of target genes - are associated with various human diseases, but their precise role(s) in diabetic retinopathy (DR) remains to be elucidated. The aim of this study was to elucidate the involvement of miRNAs in early DR using in silico analysis to explore their gene expression patterns. We used the streptozotocin (STZ)-induced diabetic rat to investigate the roles of miRNAs in early DR. Retinal miRNA expression profiles from diabetic versus healthy control rats were examined by miRNA array analysis. Based on several bioinformatic systems, specifically, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we identified signatures of the potential pathological processes, gene functions, and signaling pathways that are influenced by dysregulated miRNAs. We used quantitative real-time polymerase chain reaction (qRT-PCR) to validate six (i.e. those with significant changes in expression levels) of the 17 miRNAs that were detected in the miRNA array. We also describe the significant role of the miRNA-gene network, which is based on the interactions between miRNAs and target genes. GO analysis of the 17 miRNAs detected in the miRNA array analysis revealed the most prevalent miRNAs to be those related to biological processes, olfactory bulb development and axonogenesis. These miRNAs also exert significant influence on additional pathways, including the mitogen-activated protein and calcium signaling pathways. Six of the seventeen miRNAs were chosen for qRT-PCR validation. With the exception of a slight difference in miRNA-350, our results are in close agreement with the differential expressions detected by array analysis. This study, which describes miRNA expression during the early developmental phases of DR, revealed extensive miRNA interactions. Based on both their target genes and signaling pathways, we suggest that miRNAs perform critical regulatory functions during the early stages of DR

  17. Differential MicroRNA Expression in Human Macrophages with Mycobacterium tuberculosis Infection of Beijing/W and Non-Beijing/W Strain Types.

    Science.gov (United States)

    Zheng, Lin; Leung, Eric; Lee, Nelson; Lui, Grace; To, Ka-Fai; Chan, Raphael C Y; Ip, Margaret

    2015-01-01

    The role of microRNAs in association with Mycobacterium tuberculosis (MTB) infection and the immunology regulated by microRNAs upon MTB infection have not been fully unravelled. We examined the microRNA profiles of THP-1 macrophages upon the MTB infection of Beijing/W and non-Beijing/W clinical strains. We also studied the microRNA profiles of the host macrophages by microarray in a small cohort with active MTB disease, latent infection (LTBI), and from healthy controls. The results revealed that 14 microRNAs differentiated infections of Beijing/W from non-Beijing/W strains (PmicroRNAs in human macrophages was identified to differentiate active MTB disease from LTBI and healthy controls. Pathway analyses of these differentially expressed miRNAs suggest that the immune-regulatory interactions involving TGF-β signalling pathway take part in the dysregulation of critical TB processes in the macrophages, resulting in active expression of both cell communication and signalling transduction systems. We showed for the first time that the Beijing/W TB strains repressed a number of miRNAs expressions which may reflect their virulence characteristics in altering the host response. The unique signatures of 11 microRNAs may deserve further evaluation as candidates for biomarkers in the diagnosis of MTB and Beijing/W infections.

  18. MicroRNA-194 Modulates Glucose Metabolism and Its Skeletal Muscle Expression Is Reduced in Diabetes.

    Science.gov (United States)

    Latouche, Celine; Natoli, Alaina; Reddy-Luthmoodoo, Medini; Heywood, Sarah E; Armitage, James A; Kingwell, Bronwyn A

    2016-01-01

    The regulation of microRNAs (miRNAs) at different stages of the progression of type 2 diabetes mellitus (T2DM) and their role in glucose homeostasis was investigated. Microarrays were used to assess miRNA expression in skeletal muscle biopsies taken from healthy individuals and patients with pre-diabetes or T2DM, and insulin resistant offspring of rat dams fed a high fat diet during pregnancy. Twenty-three miRNAs were differentially expressed in patients with T2DM, and 7 in the insulin resistant rat offspring compared to their controls. Among these, only one miRNA was similarly regulated: miR-194 expression was significantly reduced by 25 to 50% in both the rat model and in human with pre-diabetes and established diabetes. Knockdown of miR-194 in L6 skeletal muscle cells induced an increase in basal and insulin-stimulated glucose uptake and glycogen synthesis. This occurred in conjunction with an increased glycolysis, indicated by elevated lactate production. Moreover, oxidative capacity was also increased as we found an enhanced glucose oxidation in presence of the mitochondrial uncoupler FCCP. When miR-194 was down-regulated in vitro, western blot analysis showed an increased phosphorylation of AKT and GSK3β in response to insulin, and an increase in expression of proteins controlling mitochondrial oxidative phosphorylation. Type 2 diabetes mellitus is associated with regulation of several miRNAs in skeletal muscle. Interestingly, miR-194 was a unique miRNA that appeared regulated across different stages of the disease progression, from the early stages of insulin resistance to the development of T2DM. We have shown miR-194 is involved in multiple aspects of skeletal muscle glucose metabolism from uptake, through to glycolysis, glycogenesis and glucose oxidation, potentially via mechanisms involving AKT, GSK3 and oxidative phosphorylation. MiR-194 could be down-regulated in patients with early features of diabetes as an adaptive response to facilitate tissue

  19. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum).

    Science.gov (United States)

    Frazier, Taylor P; Burklew, Caitlin E; Zhang, Baohong

    2014-03-01

    Titanium dioxide (TiO(2)) is one of the most widely used pigments in the world. Due to its heavy use in industry and daily life, such as food additives, cosmetics, pharmaceuticals, and paints, many residues are released into the environment and currently TiO(2) nanoparticles are considered an emerging environmental contaminant. Although several studies have shown the effect of TiO(2) nanoparticles on a wide range of organisms including bacteria, algae, plankton, fish, mice, and rats, little research has been performed on land plants. In this study, we investigated the effect of TiO(2) nanoparticles on the growth, development, and gene expression of tobacco, an important economic and agricultural crop in the southeastern USA as well as around the world. We found that TiO(2) nanoparticles significantly inhibited the germination rates, root lengths, and biomasses of tobacco seedlings after 3 weeks of exposure to 0.1, 1, 2.5, and 5 % TiO(2) nanoparticles and that overall growth and development of the tobacco seedlings significantly decreased as TiO(2) nanoparticle concentrations increased. Overall, tobacco roots were the most sensitive to TiO(2) nanoparticle exposure. Nano-TiO(2) also significantly influenced the expression profiles of microRNAs (miRNAs), a recently discovered class of small endogenous noncoding RNAs (∼20-22 nt) that are considered important gene regulators and have been shown to play an important role in plant development as well as plant tolerance to abiotic stresses such as drought, salinity, cold, and heavy metal. Low concentrations (0.1 and 1 %) of TiO(2) nanoparticles dramatically induced miRNA expression in tobacco seedlings with miR395 and miR399 exhibiting the greatest fold changes of 285-fold and 143-fold, respectively. The results of this study show that TiO(2) nanoparticles have a negative impact on tobacco growth and development and that miRNAs may play an important role in tobacco response to heavy metals/nanoparticles by regulating

  20. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  1. MicroRNA as Crucial Regulators of Gene Expression in Estradiol-Treated Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xavier Vidal-Gómez

    2018-02-01

    Full Text Available Background/Aims: Estrogen signalling plays an important role in vascular biology as it modulates vasoactive and metabolic pathways in endothelial cells. Growing evidence has also established microRNA (miRNA as key regulators of endothelial function. Nonetheless, the role of estrogen regulation on miRNA profile in endothelial cells is poorly understood. In this study, we aimed to determine how estrogen modulates miRNA profile in human endothelial cells and to explore the role of the different estrogen receptors (ERα, ERβ and GPER in the regulation of miRNA expression by estrogen. Methods: We used miRNA microarrays to determine global miRNA expression in human umbilical vein endothelial cells (HUVEC exposed to a physiological concentration of estradiol (E2; 1 nmol/L for 24 hours. miRNA-gene interactions were computationally predicted using Ingenuity Pathway Analysis and changes in miRNA levels were validated by qRT-PCR. Role of ER in the E2-induced miRNA was additionally confirmed by using specific ER agonists and antagonists. Results: miRNA array revealed that expression of 114 miRNA were significantly modified after E2 exposition. Further biological pathway analysis revealed cell death and survival, lipid metabolism, reproductive system function, as the top functions regulated by E2. We validated changes in the most significantly increased (miR-30b-5p, miR-487a-5p, miR-4710, miR-501-3p and decreased (miR-378h and miR-1244 miRNA and the role of ER in these E2-induced miRNA was determined. Results showed that both classical, ERα and ERβ, and membrane-bound ER, GPER, differentially regulated specific miRNA. In silico analysis of validated miRNA promoters identified specific ER binding sites. Conclusion: Our findings identify differentially expressed miRNA pathways linked to E2 in human endothelial cells through ER, and provide new insights by which estrogen can modulate endothelial function.

  2. Analysis of MicroRNA Expression Profiles in Weaned Pig Skeletal Muscle after Lipopolysaccharide Challenge

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-09-01

    Full Text Available MicroRNAs (miRNAs constitute a class of non-coding RNAs that play a crucial regulatory role in skeletal muscle development and disease. Several acute inflammation conditions including sepsis and cancer are characterized by a loss of skeletal muscle due primarily to excessive muscle catabolism. As a well-known inducer of acute inflammation, a lipopolysaccharide (LPS challenge can cause serious skeletal muscle wasting. However, knowledge of the role of miRNAs in the course of inflammatory muscle catabolism is still very limited. In this study, RNA extracted from the skeletal muscle of pigs injected with LPS or saline was subjected to small RNA deep sequencing. We identified 304 conserved and 114 novel candidate miRNAs in the pig. Of these, four were significantly increased in the LPS-challenged samples and five were decreased. The expression of five miRNAs (ssc-miR-146a-5p, ssc-miR-221-5p, ssc-miR-148b-3p, ssc-miR-215 and ssc-miR-192 were selected for validation by quantitative polymerase chain reaction (qPCR, which found that ssc-miR-146a-5p and ssc-miR-221-5p were significantly upregulated in LPS-challenged pig skeletal muscle. Moreover, we treated mouse C2C12 myotubes with 1000 ng/mL LPS as an acute inflammation cell model. Expression of TNF-α, IL-6, muscle atrophy F-box (MAFbx and muscle RING finger 1 (MuRF1 mRNA was strongly induced by LPS. Importantly, miR-146a-5p and miR-221-5p also showed markedly increased expression in LPS-treated C2C12 myotubes, suggesting the two miRNAs may be involved in muscle catabolism systems in response to acute inflammation caused by a LPS challenge. To our knowledge, this study is the first to examine miRNA expression profiles in weaned pig skeletal muscle challenged with LPS, and furthers our understanding of miRNA function in the regulation of inflammatory muscle catabolism.

  3. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.

    Science.gov (United States)

    Bhagwat, Basdeo; Chi, Ming; Han, Dianwei; Tang, Haifeng; Tang, Guiliang; Xiang, Yu

    2016-01-01

    Artificial microRNA (amiRNA) technology utilizes microRNA (miRNA) biogenesis pathway to produce artificially selected small RNAs using miRNA gene backbone. It provides a feasible strategy for inducing loss of gene function, and has been applied in functional genomics study, improvement of crop quality and plant virus disease resistance. A big challenge in amiRNA applications is the unpredictability of silencing efficacy of the designed amiRNAs and not all constructed amiRNA candidates would be expressed effectively in plant cells. We and others found that high efficiency and specificity in RNA silencing can be achieved by designing amiRNAs with perfect or almost perfect sequence complementarity to their targets. In addition, we recently demonstrated that Agrobacterium-mediated transient expression system can be used to validate amiRNA constructs, which provides a simple, rapid and effective method to select highly expressible amiRNA candidates for stable genetic transformation. Here, we describe the methods for design of amiRNA candidates with perfect or almost perfect base-pairing to the target gene or gene groups, incorporation of amiRNA candidates in miR168a gene backbone by one step inverse PCR amplification, construction of plant amiRNA expression vectors, and assay of transient expression of amiRNAs in Nicotiana benthamiana through agro-infiltration, small RNA extraction, and amiRNA Northern blot.

  4. Hepatic expression of inflammatory genes and microRNAs in pigs with high “cholesteryl ester transfer protein” (CETP) activity

    DEFF Research Database (Denmark)

    Cirera, Susanna; Tørsleff, Benedicte C Juul; Ritz, Christian

    2016-01-01

    is accompanied by a modest differential hepatic expression of several microRNAs and inflammatory-related genes. Furthermore, our study demonstrates that when modeling the analysis of expression data, it is important to take gender- and breed-specific effects into account....... differences in the hepatic expression of genes involved in low-grade inflammation and of obesity- and cholesterol-related microRNAs in two mixed breed populations of pigs (Yorkshire-Göttingen minipig, YM and Duroc-Göttingen minipig, DM) including males and females, with extreme phenotypes for CETP activity...... levels (designated as CETP-high and CETP-low, respectively). Furthermore, breed and gender differences were also investigated. We found significant difference (P expression levels of several mRNAs and microRNAs between the CETP-high and -low groups (C5, IL1RN, IL18, and miR-223-5p...

  5. The Prognostic and Predictive Value of Melanoma-related MicroRNAs Using Tissue and Serum: A MicroRNA Expression Analysis.

    Science.gov (United States)

    Stark, Mitchell S; Klein, Kerenaftali; Weide, Benjamin; Haydu, Lauren E; Pflugfelder, Annette; Tang, Yue Hang; Palmer, Jane M; Whiteman, David C; Scolyer, Richard A; Mann, Graham J; Thompson, John F; Long, Georgina V; Barbour, Andrew P; Soyer, H Peter; Garbe, Claus; Herington, Adrian; Pollock, Pamela M; Hayward, Nicholas K

    2015-07-01

    The overall 5-year survival for melanoma is 91%. However, if distant metastasis occurs (stage IV), cure rates are melanoma detection in earlier stages (stages I-III) maximises the chances of patient survival. We measured the expression of a panel of 17 microRNAs (miRNAs) (MELmiR-17) in melanoma tissues (stage III; n = 76 and IV; n = 10) and serum samples (collected from controls with no melanoma, n = 130; and patients with melanoma (stages I/II, n = 86; III, n = 50; and IV, n = 119)) obtained from biobanks in Australia and Germany. In melanoma tissues, members of the 'MELmiR-17' panel were found to be predictors of stage, recurrence, and survival. Additionally, in a minimally-invasive blood test, a seven-miRNA panel (MELmiR-7) detected the presence of melanoma (relative to controls) with high sensitivity (93%) and specificity (≥ 82%) when ≥ 4 miRNAs were expressed. Moreover, the 'MELmiR-7' panel characterised overall survival of melanoma patients better than both serum LDH and S100B (delta log likelihood = 11, p melanoma progression, recurrence, and survival; and would be ideally suited to monitor tumour progression in patients diagnosed with early metastatic disease (stages IIIa-c/IV M1a-b) to detect relapse following surgical or adjuvant treatment.

  6. Small RNA cloning and sequencing strategy affects host and viral microRNA expression signatures.

    Science.gov (United States)

    Stik, Grégoire; Muylkens, Benoît; Coupeau, Damien; Laurent, Sylvie; Dambrine, Ginette; Messmer, Mélanie; Chane-Woon-Ming, Béatrice; Pfeffer, Sébastien; Rasschaert, Denis

    2014-07-10

    The establishment of the microRNA (miRNA) expression signatures is the basic element to investigate the role played by these regulatory molecules in the biology of an organism. Marek's disease virus 1 (MDV-1) is an avian herpesvirus that naturally infects chicken and induces T cells lymphomas. During latency, MDV-1, like other herpesviruses, expresses a limited subset of transcripts. These include three miRNA clusters. Several studies identified the expression of virus and host encoded miRNAs from MDV-1 infected cell cultures and chickens. But a high discrepancy was observed when miRNA cloning frequencies obtained from different cloning and sequencing protocols were compared. Thus, we analyzed the effect of small RNA library preparation and sequencing on the miRNA frequencies obtained from the same RNA samples collected during MDV-1 infection of chicken at different steps of the oncoviral pathogenesis. Qualitative and quantitative variations were found in the data, depending on the strategy used. One of the mature miRNA derived from the latency-associated-transcript (LAT), mdv1-miR-M7-5p, showed the highest variation. Its cloning frequency was 50% of the viral miRNA counts when a small scale sequencing approach was used. Its frequency was 100 times less abundant when determined through the deep sequencing approach. Northern blot analysis showed a better correlation with the miRNA frequencies found by the small scale sequencing approach. By analyzing the cellular miRNA repertoire, we also found a gap between the two sequencing approaches. Collectively, our study indicates that next-generation sequencing data considered alone are limited for assessing the absolute copy number of transcripts. Thus, the quantification of small RNA should be addressed by compiling data obtained by using different techniques such as microarrays, qRT-PCR and NB analysis in support of high throughput sequencing data. These observations should be considered when miRNA variations are studied

  7. Evaluation of microRNA Expression in Patients with Herpes Zoster

    Directory of Open Access Journals (Sweden)

    Xihan Li

    2016-12-01

    Full Text Available Reactivated varicella-zoster virus (VZV, which lies latent in the dorsal root ganglions and cranial nerves before its reactivation, is capable of causing herpes zoster (HZ, but the specific mechanism of virus reactivation and latency remains unknown. It was proposed that circulating microRNAs (miRNAs in body fluids could potentially indicate infection. However, the connection between herpes zoster and circulating miRNAs has not been demonstrated. In this study, 41 HZ patients without superinfection were selected. The serum miRNA levels were analyzed by TaqMan low density array (TLDA and confirmed individually by quantitative reverse transcription PCR (RT-qPCR analysis. Thirty-five age-matched subjects without any infectious diseases or inflammation were selected as controls. The results showed that the serum miRNA expression profiles in 41 HZ patients were different from those of control subjects. Specifically, 18 miRNAs were up-regulated and 126 were down-regulated more than two-fold in HZ patients compared with controls. The subsequent confirmation of these results by qRT-PCR, as well as receiver operating characteristic (ROC curve analysis, revealed that six kinds of miRNAs, including miR-190b, miR-571, miR-1276, miR-1303, miR-943, and miR-661, exhibited statistically significant enhanced expression levels (more than four-fold in HZ patients, compared with those of healthy controls and herpes simplex virus (HSV patients. Subsequently, it is proposed that these circulating miRNAs are capable of regulating numerous pathways and some may even participate in the inflammatory response or nervous system activity. This study has initially demonstrated that the serum miRNA expression profiles in HZ patients were different from those of uninfected individuals. Additionally, these findings also suggest that six of the altered miRNA could be potentially used as biomarkers to test for latent HZ infection.

  8. The expression profile of microRNAs in a model of 7,12-dimethyl-benz[a]anthrance-induced oral carcinogenesis in Syrian hamster

    Directory of Open Access Journals (Sweden)

    Wen Yu-ming

    2009-05-01

    Full Text Available Abstract Background Non-coding RNA molecules, such as microRNAs, may play an important role in carcinogenesis. Recent studies have indicated that microRNAs are involved in initiation and progression of various malignancies. However, little work has been done to compare the microRNA expression patterns in oral cancer. In this study, we constructed an animal model of oral squamous cell carcinoma to investigate expression profiles of microRNAs in oral carcinogenesis. Methods The animal model of oral squamous cell carcinoma was conducted by tri-weekly (Monday, Wednesday, and Friday painting with 5% DMBA in acetone. Six Syrian hamsters, including three from the treated group and three from the control group, were used as a training group for microRNA microarray analysis. All microarray data were analyzed by Significance Analysis of Microarrays (SAM and CLUSTER 3.0 software, and this result was further confirmed by qRT-PCR assay. Results Seventeen microRNAs were differentially expressed in oral squamous cell carcinoma. Five microRNAs (hsa-miR-21, hsa-miR-200b, hsa-miR-221, hsa-miR-338, and mmu-miR-762 were significantly upregulated and twelve microRNAs (hsa-miR-16, hsa-miR-26a, hsa-miR-29a, hsa-miR-124a, hsa-miR-125b, mmu-miR-126-5p, hsa-miR-143, hsa-miR-145, hsa-miR-148b, hsa-miR-155, hsa-miR-199a, and hsa-miR-203 were down-regulated in cancer tissues. The expression levels of hsa-miR-21 and hsa-miR-16 seen with Stem-loop qRT-PCR were also seen in microarray analysis in all samples. Conclusion Our findings identified specific microRNA expression in oral squamous cell carcinoma and suggested that microRNAs have a role in oral carcinogenesis.

  9. Could Oxidative Stress Regulate the Expression of MicroRNA-146a and MicroRNA-34a in Human Osteoarthritic Chondrocyte Cultures?

    Science.gov (United States)

    Cheleschi, Sara; De Palma, Anna; Pascarelli, Nicola Antonio; Giordano, Nicola; Galeazzi, Mauro; Tenti, Sara

    2017-01-01

    Oxidative stress and the overproduction of reactive oxygen species (ROS) play an important role in the pathogenesis of osteoarthritis (OA). Accumulating evidence has demonstrated the involvement of microRNAs (miRNAs) dysregulation in disease development and progression. In this study, we evaluated the effect of oxidative stress on miR-146a and miR-34a expression levels in human OA chondrocytes cultures stimulated by H2O2. Mitochondrial ROS production and cell apoptosis were detected by flow cytometry. The antioxidant enzymes SOD-2, CAT, GPx, the transcriptional factor NRF2 and the selected miRNAs were analyzed by qRT-PCR. The H2O2-induced oxidative stress was confirmed by a significant increase in superoxide anion production and of the apoptotic ratio. Furthermore, H2O2 significantly up-regulated the expression levels of SOD-2, CAT, GPx and NRF2, and modulated miR-146a and miR-34a gene expression. The same analyses were carried out after pre-treatment with taurine, a known antioxidant substance, which, in our experience, counteracted the H2O2-induced effect. In conclusion, the induction of oxidative stress affected cell apoptosis and the expression of the enzymes involved in the oxidant/antioxidant balance. Moreover, we demonstrated for the first time the modification of miR-146a and miR-34a in OA chondrocytes subjected to H2O2 stimulus and we confirmed the antioxidant effect of taurine. PMID:29292727

  10. Could Oxidative Stress Regulate the Expression of MicroRNA-146a and MicroRNA-34a in Human Osteoarthritic Chondrocyte Cultures?

    Directory of Open Access Journals (Sweden)

    Sara Cheleschi

    2017-12-01

    Full Text Available Oxidative stress and the overproduction of reactive oxygen species (ROS play an important role in the pathogenesis of osteoarthritis (OA. Accumulating evidence has demonstrated the involvement of microRNAs (miRNAs dysregulation in disease development and progression. In this study, we evaluated the effect of oxidative stress on miR-146a and miR-34a expression levels in human OA chondrocytes cultures stimulated by H2O2. Mitochondrial ROS production and cell apoptosis were detected by flow cytometry. The antioxidant enzymes SOD-2, CAT, GPx, the transcriptional factor NRF2 and the selected miRNAs were analyzed by qRT-PCR. The H2O2-induced oxidative stress was confirmed by a significant increase in superoxide anion production and of the apoptotic ratio. Furthermore, H2O2 significantly up-regulated the expression levels of SOD-2, CAT, GPx and NRF2, and modulated miR-146a and miR-34a gene expression. The same analyses were carried out after pre-treatment with taurine, a known antioxidant substance, which, in our experience, counteracted the H2O2-induced effect. In conclusion, the induction of oxidative stress affected cell apoptosis and the expression of the enzymes involved in the oxidant/antioxidant balance. Moreover, we demonstrated for the first time the modification of miR-146a and miR-34a in OA chondrocytes subjected to H2O2 stimulus and we confirmed the antioxidant effect of taurine.

  11. Targeted microRNA expression in dairy cattle directs production of β-lactoglobulin-free, high-casein milk.

    Science.gov (United States)

    Jabed, Anower; Wagner, Stefan; McCracken, Judi; Wells, David N; Laible, Goetz

    2012-10-16

    Milk from dairy cows contains the protein β-lactoglobulin (BLG), which is not present in human milk. As it is a major milk allergen, we wished to decrease BLG levels in milk by RNAi. In vitro screening of 10 microRNAs (miRNAs), either individually or in tandem combinations, identified several that achieved as much as a 98% knockdown of BLG. One tandem construct was expressed in the mammary gland of an ovine BLG-expressing mouse model, resulting in 96% knockdown of ovine BLG in milk. Following this in vivo validation, we produced a transgenic calf, engineered to express these tandem miRNAs. Analysis of hormonally induced milk from this calf demonstrated absence of BLG and a concurrent increase of all casein milk proteins. The findings demonstrate miRNA-mediated depletion of an allergenic milk protein in cattle and validate targeted miRNA expression as an effective strategy to alter milk composition and other livestock traits.

  12. Pre-processing and differential expression analysis of Agilent microRNA arrays using the AgiMicroRna Bioconductor library

    Directory of Open Access Journals (Sweden)

    López-Romero Pedro

    2011-01-01

    Full Text Available Abstract Background The main research tool for identifying microRNAs involved in specific cellular processes is gene expression profiling using microarray technology. Agilent is one of the major producers of microRNA arrays, and microarray data are commonly analyzed by using R and the functions and packages collected in the Bioconductor project. However, an analytical package that integrates the specific characteristics of microRNA Agilent arrays has been lacking. Results This report presents the new bioinformatic tool AgiMicroRNA for the pre-processing and differential expression analysis of Agilent microRNA array data. The software is implemented in the open-source statistical scripting language R and is integrated in the Bioconductor project (http://www.bioconductor.org under the GPL license. For the pre-processing of the microRNA signal, AgiMicroRNA incorporates the robust multiarray average algorithm, a method that produces a summary measure of the microRNA expression using a linear model that takes into account the probe affinity effect. To obtain a normalized microRNA signal useful for the statistical analysis, AgiMicroRna offers the possibility of employing either the processed signal estimated by the robust multiarray average algorithm or the processed signal produced by the Agilent image analysis software. The AgiMicroRNA package also incorporates different graphical utilities to assess the quality of the data. AgiMicroRna uses the linear model features implemented in the limma package to assess the differential expression between different experimental conditions and provides links to the miRBase for those microRNAs that have been declared as significant in the statistical analysis. Conclusions AgiMicroRna is a rational collection of Bioconductor functions that have been wrapped into specific functions in order to ease and systematize the pre-processing and statistical analysis of Agilent microRNA data. The development of this package

  13. Validation of artificial microRNA expression by poly(A) tailing-based RT-PCR

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Rui Shi, Chenmin Yang, Ronald Sederoff & Vincent Chiang ### Abstract Here we describe a protocol for validating expression of artificial microRNAs (amiRNAs) by poly(A) tailing-based RT-PCR. Total RNAs, including amiRNA, are poly(A) tailed using E.coli. poly(A) polymerase. Poly(A) tailed amiRNA can be converted into cDNA along with mRNAs in a reverse transcription reaction primed by a standard poly(T) anchor adaptor. AmiRNA can then be amplified and quantitated by real-time PC...

  14. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells

    OpenAIRE

    Cai, Xuezhong; Lu, Shihua; Zhang, Zhihong; Gonzalez, Carlos M.; Damania, Blossom; Cullen, Bryan R.

    2005-01-01

    MicroRNAs (miRNAs) are an endogenously encoded class of small RNAs that have been proposed to function as key posttranscriptional regulators of gene expression in a range of eukaryotic species, including humans. The small size of miRNA precursors makes them potentially ideal for use by viruses as inhibitors of host cell defense pathways. Here, we demonstrate that the pathogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an array of 11 distinct miRNAs, all of whic...

  15. High Throughput qPCR Expression Profiling of Circulating MicroRNAs Reveals Minimal Sex- and Sample Timing-Related Variation in Plasma of Healthy Volunteers.

    Directory of Open Access Journals (Sweden)

    Catherine Mooney

    Full Text Available MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease opens up a new field for biomarker study. However, diurnal and day-to-day variation in plasma microRNA levels, and differential regulation between males and females, may affect biomarker stability. A QuantStudio 12K Flex Real-Time PCR System was used to profile plasma microRNA levels using OpenArray in male and female healthy volunteers, in the morning and afternoon, and at four time points over a one month period. Using this system we were able to run four OpenArray plates in a single run, the equivalent of 32 traditional 384-well qPCR plates or 12,000 data points. Up to 754 microRNAs can be identified in a single plasma sample in under two hours. 108 individual microRNAs were identified in at least 80% of all our samples which compares favourably with other reports of microRNA profiles in serum or plasma in healthy adults. Many of these microRNAs, including miR-16-5p, miR-17-5p, miR-19a-3p, miR-24-3p, miR-30c-5p, miR-191-5p, miR-223-3p and miR-451a are highly expressed and consistent with previous studies using other platforms. Overall, microRNA levels were very consistent between individuals, males and females, and time points and we did not detect significant differences in levels of microRNAs. These results suggest the suitability of this platform for microRNA profiling and biomarker discovery and suggest minimal confounding influence of sex or sample timing. However, the platform has not been subjected to rigorous validation which must be demonstrated in future biomarker studies where large differences may exist between disease and control samples.

  16. Trichostatin A Suppresses EGFR Expression through Induction of MicroRNA-7 in an HDAC-Independent Manner in Lapatinib-Treated Cells

    Directory of Open Access Journals (Sweden)

    Chih-Yen Tu

    2014-01-01

    Full Text Available Lapatinib, a dual EGFR/HER2 tyrosine kinase inhibitor, has been shown to improve the survival rate of patients with advanced HER2-positive breast cancers. However, the off-target activity of lapatinib in inducing EGFR expression without tyrosine kinase activity was demonstrated to render HER2-negative breast cancer cells more metastatic, suggesting a limitation to the therapeutic effectiveness of this dual inhibitor in HER2-heterogeneous tumors. Therefore, targeting EGFR expression may be a feasible approach to improve the anticancer efficiency of lapatinib-based therapy. Inhibition of HDAC has been previously reported to epigenetically suppress EGFR protein expression. In this study, however, our data indicated that treatment with HDAC inhibitors trichostatin A (TSA, but not suberoylanilide hydroxamic acid (SAHA or HDAC siRNA, can attenuate both protein and mRNA expressions of EGFR in lapatinib-treated triple-negative breast cancer cells, suggesting that TSA may suppress EGFR expression independently of HDAC inhibition. Nevertheless, TSA reduced EGFR 3′UTR activity and induced the gene expression of microRNA-7, a known EGFR-targeting microRNA. Furthermore, treatment with microRNA-7 inhibitor attenuated TSA-mediated EGFR suppression. These results suggest that TSA induced microRNA-7 expression to downregulate EGFR expression in an HDAC-independent manner.

  17. microRNA 184 regulates expression of NFAT1 in umbilical cord blood CD4+ T cells.

    Science.gov (United States)

    Weitzel, R Patrick; Lesniewski, Mathew L; Haviernik, Peter; Kadereit, Suzanne; Leahy, Patrick; Greco, Nicholas J; Laughlin, Mary J

    2009-06-25

    The reduced expression of nuclear factor of activated T cells-1 (NFAT1) protein in umbilical cord blood (UCB)-derived CD4+ T cells and the corresponding reduction in inflammatory cytokine secretion after stimulation in part underlies their phenotypic differences from adult blood (AB) CD4+ T cells. This muted response may contribute to the lower incidence and severity of high-grade acute graft-versus-host disease (aGVHD) exhibited by UCB grafts. Here we provide evidence that a specific microRNA, miR-184, inhibits NFAT1 protein expression elicited by UCB CD4+ T cells. Endogenous expression of miR-184 in UCB is 58.4-fold higher compared with AB CD4+ T cells, and miR-184 blocks production of NFAT1 protein through its complementary target sequence on the NFATc2 mRNA without transcript degradation. Furthermore, its negative effects on NFAT1 protein and downstream interleukin-2 (IL-2) transcription are reversed through antisense blocking in UCB and can be replicated via exogenous transfection of precursor miR-184 into AB CD4+ T cells. Our findings reveal a previously uncharacterized role for miR-184 in UCB CD4+ T cells and a novel function for microRNA in the early adaptive immune response.

  18. Perturbed microRNA Expression by Mycobacterium tuberculosis Promotes Macrophage Polarization Leading to Pro-survival Foam Cell.

    Science.gov (United States)

    Ahluwalia, Pankaj Kumar; Pandey, Rajan Kumar; Sehajpal, Prabodh Kumar; Prajapati, Vijay Kumar

    2017-01-01

    Tuberculosis (TB) is one of the prevalent causes of death worldwide, with 95% of these deaths occurring in developing countries, like India. The causative agent, Mycobacterium tuberculosis (MTb) has the tenacious ability to circumvent the host's immune system for its own advantage. Macrophages are one of the phagocytic cells that are central to immunity against MTb. These are highly plastic cells dependent on the milieu and can showcase M1/M2 polarization. M1 macrophages are bactericidal in action, but M2 macrophages are anti-inflammatory in their immune response. This computational study is an effort to elucidate the role of miRNAs that influences the survival of MTb in the macrophage. To identify the miRNAs against critical transcription factors, we selected only conserved hits from TargetScan database. Further, validation of these miRNAs was achieved using four databases viz . DIANA-microT, miRDB, miRanda-mirSVR, and miRNAMap. All miRNAs were identified through a conserved seed sequence against the 3'-UTR of transcription factors. This bioinformatics study found that miR-27a and miR-27b has a putative binding site at 3'-UTR of IRF4, and miR-302c against IRF5. miR-155, miR-132, and miR-455-5p are predicted microRNAs against suppressor of cytokine signaling transcription factors. Several other microRNAs, which have an affinity for critical transcription factors, are also predicted in this study. This MTb-associated modulation of microRNAs to modify the expression of the target gene(s) plays a critical role in TB pathogenesis. Other than M1/M2 plasticity, MTb has the ability to convert macrophage into foam cells that are rich in lipids and cholesterol. We have highlighted few microRNAs which overlap between M2/foam cell continuums. miR-155, miR-33, miR-27a, and miR-27b plays a dual role in deciding macrophage polarity and its conversion to foam cells. This study shows a glimpse of microRNAs which can be modulated by MTb not only to prevent its elimination but also

  19. The JCPYV DNA load inversely correlates with the viral microrna expression in blood and cerebrospinal fluid of patients at risk of PML.

    Science.gov (United States)

    Rocca, Arianna; Martelli, Francesco; Delbue, Serena; Ferrante, Pasquale; Bartolozzi, Dario; Azzi, Alberta; Giannecchini, Simone

    2015-09-01

    In light of their regulatory role, changes in the expression of Polyomavirus JC (JCPyV) microRNAs may be relevant for virus reactivation and the development of progressive multifocal leukoencephalopathy (PML). To investigate the presence of JCPyV-DNA and JCPyV microRNA expression in clinical specimens of patients at risk for PML. The JCPyV-DNA and microRNA status was assessed in peripheral blood mononuclear cells (PBMCs) and plasma from 100 HIV patients, in serum and cerebrospinal fluid (CSF) from 14 HIV PML patients and in PBMCs and plasma from 50 healthy controls using Multiplex real-time PCR and JCPyV miRNA-J1-3p and -5p stem-loop RT-PCR. The JCPyV-DNA microRNA-expressing region was also sequenced. A positive JCPyV-DNA status was more prevalent in HIV patients (67%, 67/100) compared to healthy controls (18%, 9/50). Among these, 46% and 42% of the HIV patients and 18% and 0% of the healthy controls were positive based on PBMC and plasma determinations, respectively. PBMC JCPyV microRNA positivity was observed in 22 out of 46 (48%) JCPyV+ HIV patients and in 3 out of 9 (33%) JCPyV+ healthy controls. Moreover, JCPyV microRNAs in exosomes were found in 6 out of 100 (6%) HIV plasma samples, in 12 out of 50 (24%) healthy samples, in 6 out of 14 (43%) serum samples, and in 3 out of 5 (60%) HIV PML CSF samples. Of note, the JCPyV-DNA load was inversely correlated with expression of the viral microRNA. The JCPyV microRNA genomic expression region showed a different combination of three mutations. The low levels of JCPyV microRNA expression in HIV patients with high JCPyV-DNA prevalence observed in this study highlight the potential clinical relevance of JCPyV microRNAs in PML risk assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression

    DEFF Research Database (Denmark)

    Davidsen, Peter K; Gallagher, Iain J; Hartman, Joseph W

    2011-01-01

    MicroRNAs (miRNA), small noncoding RNA molecules, may regulate protein synthesis, while resistance exercise training (RT) is an efficient strategy for stimulating muscle protein synthesis in vivo. However, RT increases muscle mass, with a very wide range of effectiveness in humans. We therefore...

  1. Current understanding of the functional roles of aberrantly expressed microRNAs in esophageal cancer

    NARCIS (Netherlands)

    Kestens, C.; Siersema, P.D.; Baal, J.W. van

    2016-01-01

    The incidence of esophageal cancer is rising, mostly because the increasing incidence of esophageal adenocarcinoma in Western countries. Despite improvements in diagnosis and treatment, the overall 5-year survival rates remain low. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate

  2. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection

    Science.gov (United States)

    Background: Milk exosomes are a rich source of microRNAs (miRNAs) that are protected from degradation. Ingestion of milk and subsequent absorption of miRNAs into recipient cells by endocytosis may play a role in the regulation of neonatal innate and adaptive immunity. In contrast, the miRNA content ...

  3. MicroRNA Expression in Formalin-fixed Paraffin-embedded Cancer Tissue

    DEFF Research Database (Denmark)

    Boisen, Mogens Karsbøl; Dehlendorff, Christian; Linnemann, Dorte

    2015-01-01

    BACKGROUND: Archival formalin-fixed paraffin-embedded (FFPE) cancer tissue samples are a readily available resource for microRNA (miRNA) biomarker identification. No established standard for reference miRNAs in FFPE tissue exists. We sought to identify stable reference miRNAs for normalization...

  4. Differential Expression of MicroRNAs in Uterine Cervical Cancer and Its Implications in Carcinogenesis; An Integrative Approach.

    Science.gov (United States)

    Nair, Veena B; Manasa, V G; Sinto, M S; Jayasree, K; James, Francis V; Kannan, S

    2018-03-01

    Cervical cancer is the second most common cancer in women in developing countries, including India. Recently, microRNAs (miRNAs) are gaining importance in cancer biology because of their involvement in various cellular processes. The present study aimed to profile miRNA expression pattern in cervical cancer, identify their target genes, and understand their role in carcinogenesis. Human papillomavirus (HPV) infection statuses in samples were assessed by heminested polymerase chain reaction followed by direct DNA sequencing. Next-generation sequencing and miRNA microarray were used for miRNA profiling in cervical cancer cell lines and tissue samples, respectively. MicroRNA signature was validated by quantitative real-time PCR, and biological significance was elucidated using various in silico analyses. Cervical cancer tissues samples were mostly infected by HPV type 16 (93%). MicroRNA profiling showed that the pattern of miRNA expression differed with respect to HPV positivity in cervical cancer cell lines. However, target and pathway analyses indicated identical involvement of these significantly deregulated miRNAs in HPV-positive cervical cancer cell lines irrespective of type of HPV infected. Microarray profiling identified a set of miRNAs that are differentially deregulated in cervical cancer tissue samples which were validated using quantitative real-time PCR. In silico analyses revealed that the signature miRNAs are mainly involved in PI3K-Akt and mTOR pathways. The study identified that high-risk HPV induces similar carcinogenic mechanism irrespective of HPV type. The miRNA signature of cervical cancer and their target genes were also elucidated, thereby providing a better insight into the molecular mechanism underlying cervical cancer development.

  5. Knockdown of microRNA-29a Changes the Expression of Heat Shock Proteins in Breast Carcinoma MCF-7 Cells.

    Science.gov (United States)

    Choghaei, Encieh; Khamisipour, Gholamreza; Falahati, Mojtaba; Naeimi, Behrooz; Mossahebi-Mohammadi, Majid; Tahmasebi, Rahim; Hasanpour, Mojtaba; Shamsian, Shakib; Hashemi, Zahra Sadat

    2016-01-21

    Breast cancer is the most commonly occurring cancer among women. MicroRNAs as noncoding small RNA molecules play pivotal roles in cancer-related biological processes. Increased levels of microRNA-29a in the serum of breast cancer patients have been reported. Since heat shock proteins (HSPs) play important roles in cell events, the quantitative fluctuations in their cellular levels could be deemed as key indicators of how the exerted treatment alters cell behavior. In this regard, using an antisense small RNA, we attempted to investigate the effects of miR-29a knockdown on the expression of HSPs genes in the MCF-7 breast cancer cell line. MCF-7 cells were cultured in high-glucose Dulbecco's modified Eagle's medium with 10% FBS. Studied cells were subdivided into five groups: treated with scramble, anti-miR-29a, anti-miR-29a + Taxol, Taxol, and control. Taxol was added 24 h post-anti-miR transfection and RNA extraction, and cDNA synthesis was done 48 h later. The changes in expression of HSP27, HSP40, HSP60, HSP70, and HSP90 were evaluated by real-time PCR. Our results revealed that inhibitors of microRNA-29a promote apoptosis through upregulation of HSP60 level and downregulation of HSP27, HSP40, HSP70, and HSP90 levels and could be contemplated as a compelling alternative for Taxol employment with similar effects and/or to sensitize cancer cells to chemotherapy with fewer side effects.

  6. RNA Helicase DDX5 Regulates MicroRNA Expression and Contributes to Cytoskeletal Reorganization in Basal Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Huang, Jing; Hu, Zhi

    2011-11-15

    RNA helicase DDX5 (also p68) is involved in all aspects of RNA metabolism and serves as a transcriptional co-regulator, but its functional role in breast cancer remains elusive. Here, we report an integrative biology study of DDX5 in breast cancer, encompassing quantitative proteomics, global MicroRNA profiling, and detailed biochemical characterization of cell lines and human tissues. We showed that protein expression of DDX5 increased progressively from the luminal to basal breast cancer cell lines, and correlated positively with that of CD44 in the basal subtypes. Through immunohistochemistry analyses of tissue microarrays containing over 200 invasive human ductal carcinomas, we observed that DDX5 was upregulated in the majority of malignant tissues, and its expression correlated strongly with those of Ki67 and EGFR in the triple-negative tumors. We demonstrated that DDX5 regulated a subset of MicroRNAs including miR-21 and miR-182 in basal breast cancer cells. Knockdown of DDX5 resulted in reorganization of actin cytoskeleton and reduction of cellular proliferation. The effects were accompanied by upregulation of tumor suppressor PDCD4 (a known miR-21 target); as well as upregulation of cofilin and profilin, two key proteins involved in actin polymerization and cytoskeleton maintenance, as a consequence of miR-182 downregulation. Treatment with miR-182 inhibitors resulted in morphologic phenotypes resembling those induced by DDX5 knockdown. Using bioinformatics tools for pathway and network analyses, we confirmed that the network for regulation of actin cytoskeleton was predominantly enriched for the predicted downstream targets of miR-182. Our results reveal a new functional role of DDX5 in breast cancer via the DDX5→miR-182→actin cytoskeleton pathway, and suggest the potential clinical utility of DDX5 and its downstream MicroRNAs in the theranostics of breast cancer.

  7. Centella asiatica protects against UVB-induced HaCaT keratinocyte damage through microRNA expression changes.

    Science.gov (United States)

    An, In-Sook; An, Sungkwan; Choe, Tae-Βoo; Kang, Sang-Μo; Lee, Jae Ho; Park, In-Chul; Jin, Young-Woo; Lee, Su-Jae; Bae, Seunghee

    2012-12-01

    This study aimed to evaluate the protective effects of Centella asiatica (C. asiatica) against ultraviolet B (UVB) damage in human keratinocytes using microRNA (miRNA) expression profiling analysis. Titrated extract of C. asiatica (TECA) demonstrated low cytotoxicity in normal human HaCaT keratinocytes only at low doses (<5 µg/ml). UVB (50 mJ/cm2) irradiation significantly decreased cell viability, and TECA treatment decreased the UVB toxicity. By using miRNA microarrays, we determined that 72 miRNAs had an altered expression following TECA treatment in UVB-irradiated keratinocytes (46 upregulated and 26 downregulated). Using an miRNA target gene prediction tool and Gene Ontology (GO) analysis, we determined that miRNAs with altered expression were functionally related with the inhibition of apoptosis and cell proliferation. Overall, these results provide meaningful information to facilitate the understanding of TECA-mediated UVB protection in human keratinocytes.

  8. Cell-specific detection of microRNA expression during cardiomyogenesis by combined in situ hybridization and immunohistochemistry

    DEFF Research Database (Denmark)

    Schneider, Mikael; Andersen, Ditte Caroline; Silahtaroglu, Asli

    2011-01-01

    MicroRNAs (miRNAs) regulate gene expression by mediating translational repression or mRNA degradation of their targets, and several miRNAs control developmental decisions through embryogenesis. In the developing heart, miRNA targets comprise key players mediating cardiac lineage determination......-based miRNA expression profiling. In this manner, we found specific co-localization of miR-1 to myosin positive cells (cardiomyocytes) of EBs, developing and mature hearts. In contrast, miR-125b and -199a did not localize to cardiomyocytes, as previously suggested for miR-199a, but were rather expressed...... present highlight the importance of determining exact cell-specific localization of miRNAs by sequential miRNA-ISH and IHC in studies aiming at understanding the role of miRNAs and their targets. This approach will hopefully aid in identifying relevant miRNA targets of both the heart and other organs....

  9. Circulating microRNA expression pattern separates patients with anti-neutrophil cytoplasmic antibody-associated vasculitis from healthy controls

    DEFF Research Database (Denmark)

    Skoglund, C.; Carlsen, A.; Weiner, M.

    2015-01-01

    patients from healthy subjects as well as from renal transplant recipients. Loadings plots indicated similar contribution of the same miRNAs in both cohorts to the PCA. Renal engagement was important for miRNA expression but consistent correlations between estimated glomerular filtration rate and mi......Objective. Antineutrophil cytoplasmic antibody-associated vasculitis (AAV) has an unpredictable course and better biomarkers are needed. Micro-RNAs in body fluids are protected from degradation and might be used as biomarkers for diagnosis and prognosis, here we explore the potential in AAV...... individual miRNAs were differently expressed compared to controls in both cohorts; miR-29a, -34a, -142-3p and -383 were up-regulated and miR-20a, -92a and -221 were down-regulated. Cluster analysis as well as principal component analysis (PCA) indicated that patterns of miRNA expression differentiate AAV...

  10. Expression of coding (mRNA) and non-coding (microRNA) RNA in lung tissue and blood isolated from pigs suffering from bacterial pleuropneumonia

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Schou, Kirstine Klitgaard; Wendt, Karin Tarp

    2010-01-01

    MicroRNAs are small non-coding RNA molecules (18-23 nt), that regulate the activity of other genes at the post-transcriptional level. Recently it has become evident that microRNA plays an important role in modulating and fine tuning innate and adaptive immune responses. Still, little is known about...... the impact of microRNAs in the development and pathogenesis of lung infections. Expression of microRNA known to be induced by bacterial (i.e., LPS) ligands and thus supposed to play a role in the regulation of antimicrobial defence, were studied in lung tissue and in blood from pigs experimentally infected...... with Actinobacillus pleuropneumoniae (AP). Expression differences of mRNA and microRNA were quantified at different time points (6h, 12h, 24h, 48h PI) using reverse transcription quantitative real-time PCR (Rotor-Gene and Fluidigm). Expression profiles of miRNA in blood of seven animals were further studied using mi...

  11. Computational exploration of microRNAs from expressed sequence tags of Humulus lupulus, target predictions and expression analysis

    Czech Academy of Sciences Publication Activity Database

    Mishra, Ajay Kumar; Duraisamy, Ganesh Selvaraj; Týcová, Anna; Matoušek, Jaroslav

    2015-01-01

    Roč. 59, December 2015 (2015), s. 131-141 ISSN 1476-9271 R&D Projects: GA ČR GA13-03037S Institutional support: RVO:60077344 Keywords : MicroRNA * Humulus lupulus * Comparative genomics * Posttranscriptional gene regulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.014, year: 2015

  12. The GATA factor elt-1 regulates C. elegans developmental timing by promoting expression of the let-7 family microRNAs.

    Science.gov (United States)

    Cohen, Max L; Kim, Sunhong; Morita, Kiyokazu; Kim, Seong Heon; Han, Min

    2015-03-01

    Postembryonic development in Caenorhabditis elegans is a powerful model for the study of the temporal regulation of development and for the roles of microRNAs in controlling gene expression. Stable switch-like changes in gene expression occur during development as stage-specific microRNAs are expressed and subsequently down-regulate other stage-specific factors, driving developmental progression. Key genes in this regulatory network are phylogenetically conserved and include the post-transcriptional microRNA repressor LIN-28; the nuclear hormone receptor DAF-12; and the microRNAs LIN-4, LET-7, and the three LET-7 family miRNAs (miR-48, miR-84, and miR-241). DAF-12 is known to regulate transcription of miR-48, miR-84 and miR-241, but its contribution is insufficient to account for all of the transcriptional regulation implied by the mutant phenotypes. In this work, the GATA-family transcription factor ELT-1 is identified from a genetic enhancer screen as a regulator of developmental timing in parallel to DAF-12, and is shown to do so by promoting the expression of the LET-7, miR-48, miR-84, and miR-241 microRNAs. The role of ELT-1 in developmental timing is shown to be separate from its role in cell-fate maintenance during post-embryonic development. In addition, analysis of Chromatin Immnoprecipitation (ChIP) data from the modENCODE project and this work suggest that the contribution of ELT-1 to the control of let-7 family microRNA expression is likely through direct transcription regulation.

  13. The Prognostic and Predictive Value of Melanoma-related MicroRNAs Using Tissue and Serum: A MicroRNA Expression Analysis☆

    Science.gov (United States)

    Stark, Mitchell S.; Klein, Kerenaftali; Weide, Benjamin; Haydu, Lauren E.; Pflugfelder, Annette; Tang, Yue Hang; Palmer, Jane M.; Whiteman, David C.; Scolyer, Richard A.; Mann, Graham J.; Thompson, John F.; Long, Georgina V.; Barbour, Andrew P.; Soyer, H. Peter; Garbe, Claus; Herington, Adrian; Pollock, Pamela M.; Hayward, Nicholas K.

    2015-01-01

    The overall 5-year survival for melanoma is 91%. However, if distant metastasis occurs (stage IV), cure rates are melanoma detection in earlier stages (stages I–III) maximises the chances of patient survival. We measured the expression of a panel of 17 microRNAs (miRNAs) (MELmiR-17) in melanoma tissues (stage III; n = 76 and IV; n = 10) and serum samples (collected from controls with no melanoma, n = 130; and patients with melanoma (stages I/II, n = 86; III, n = 50; and IV, n = 119)) obtained from biobanks in Australia and Germany. In melanoma tissues, members of the ‘MELmiR-17’ panel were found to be predictors of stage, recurrence, and survival. Additionally, in a minimally-invasive blood test, a seven-miRNA panel (MELmiR-7) detected the presence of melanoma (relative to controls) with high sensitivity (93%) and specificity (≥ 82%) when ≥ 4 miRNAs were expressed. Moreover, the ‘MELmiR-7’ panel characterised overall survival of melanoma patients better than both serum LDH and S100B (delta log likelihood = 11, p melanoma progression, recurrence, and survival; and would be ideally suited to monitor tumour progression in patients diagnosed with early metastatic disease (stages IIIa–c/IV M1a–b) to detect relapse following surgical or adjuvant treatment. PMID:26288839

  14. Genome-Wide Analysis of Differentially Expressed microRNA in Bombyx mori Infected with Nucleopolyhedrosis Virus.

    Directory of Open Access Journals (Sweden)

    Ping Wu

    Full Text Available Bombyx mori nucleopolyhedrosis virus (BmNPV is a major pathogen that threatens the growth and sustainability of the sericulture industry. Since microRNAs (miRNAs have been shown to play important roles in host-pathogen interactions, in this study we investigated the effects of BmNPV infection on silkworm microRNAs expression profile. To achieve this, we constructed and deep-sequenced two small RNA libraries generated from BmNPV infected and un-infected larvae. The results revealed that 38 silkworm miRNAs were differentially expressed after BmNPV infection. Based on the GO analysis, their predicted target genes were found to be involved in diverse functions such as binding, catalytic, virion and immune response to stimulus suggesting their potential roles in host-virus interactions. Using the dual-luciferase reporter assay, we confirmed that Bmo-miR-277-5p, up-regulated in BmNPV-infected larvae, targeted the B. mori DNA cytosine-5 methyltransferase (Dnmt2 gene which may play potential role in silkworm-BmNPV interaction. These results provide new insights into exploring the interaction mechanism between silkworm and BmNPV.

  15. Genome-Wide Analysis of Differentially Expressed microRNA in Bombyx mori Infected with Nucleopolyhedrosis Virus.

    Science.gov (United States)

    Wu, Ping; Jiang, Xiaoxu; Guo, Xijie; Li, Long; Chen, Tao

    2016-01-01

    Bombyx mori nucleopolyhedrosis virus (BmNPV) is a major pathogen that threatens the growth and sustainability of the sericulture industry. Since microRNAs (miRNAs) have been shown to play important roles in host-pathogen interactions, in this study we investigated the effects of BmNPV infection on silkworm microRNAs expression profile. To achieve this, we constructed and deep-sequenced two small RNA libraries generated from BmNPV infected and un-infected larvae. The results revealed that 38 silkworm miRNAs were differentially expressed after BmNPV infection. Based on the GO analysis, their predicted target genes were found to be involved in diverse functions such as binding, catalytic, virion and immune response to stimulus suggesting their potential roles in host-virus interactions. Using the dual-luciferase reporter assay, we confirmed that Bmo-miR-277-5p, up-regulated in BmNPV-infected larvae, targeted the B. mori DNA cytosine-5 methyltransferase (Dnmt2) gene which may play potential role in silkworm-BmNPV interaction. These results provide new insights into exploring the interaction mechanism between silkworm and BmNPV.

  16. Aging-associated changes in microRNA expression profile of internal anal sphincter smooth muscle: Role of microRNA-133a.

    Science.gov (United States)

    Singh, Jagmohan; Boopathi, Ettickan; Addya, Sankar; Phillips, Benjamin; Rigoutsos, Isidore; Penn, Raymond B; Rattan, Satish

    2016-11-01

    A comprehensive genomic and proteomic, computational, and physiological approach was employed to examine the (previously unexplored) role of microRNAs (miRNAs) as regulators of internal anal sphincter (IAS) smooth muscle contractile phenotype and basal tone. miRNA profiling, genome-wide expression, validation, and network analyses were employed to assess changes in mRNA and miRNA expression in IAS smooth muscles from young vs. aging rats. Multiple miRNAs, including rno-miR-1, rno-miR-340-5p, rno-miR-185, rno-miR-199a-3p, rno-miR-200c, rno-miR-200b, rno-miR-31, rno-miR-133a, and rno-miR-206, were found to be upregulated in aging IAS. qPCR confirmed the upregulated expression of these miRNAs and downregulation of multiple, predicted targets (Eln, Col3a1, Col1a1, Zeb2, Myocd, Srf, Smad1, Smad2, Rhoa/Rock2, Fn1, Tagln v2, Klf4, and Acta2) involved in regulation of smooth muscle contractility. Subsequent studies demonstrated an aging-associated increase in the expression of miR-133a, corresponding decreases in RhoA, ROCK2, MYOCD, SRF, and SM22α protein expression, RhoA-signaling, and a decrease in basal and agonist [U-46619 (thromboxane A 2 analog)]-induced increase in the IAS tone. Moreover, in vitro transfection of miR-133a caused a dose-dependent increase of IAS tone in strips, which was reversed by anti-miR-133a. Last, in vivo perianal injection of anti-miR-133a reversed the loss of IAS tone associated with age. This work establishes the important regulatory effect of miRNA-133a on basal and agonist-stimulated IAS tone. Moreover, reversal of age-associated loss of tone via anti-miR delivery strongly implicates miR dysregulation as a causal factor in the aging-associated decrease in IAS tone and suggests that miR-133a is a feasible therapeutic target in aging-associated rectoanal incontinence. Copyright © 2016 the American Physiological Society.

  17. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    International Nuclear Information System (INIS)

    Liu, Te; Cheng, Weiwei; Huang, Yongyi; Huang, Qin; Jiang, Lizhen; Guo, Lihe

    2012-01-01

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: ► microRNA-145 inhibits Sox2 expression in human iPS cells. ► microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. ► HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. ► HuAECs feeder layers maintain human iPS cells pluripotency. ► HuAECs negatively regulates the synthesis of

  18. Human amniotic epithelial cell feeder layers maintain human iPS cell pluripotency via inhibited endogenous microRNA-145 and increased Sox2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Te, E-mail: liute79@yahoo.com [School of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Shanghai Geriatric Institute of Chinese Medicine, Shanghai 200031 (China); Cheng, Weiwei [International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai 200030 (China); Huang, Yongyi [Laboratoire PROTEE, Batiment R, Universite du Sud Toulon-Var, 83957 LA GARDE Cedex (France); Huang, Qin; Jiang, Lizhen [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China); Guo, Lihe, E-mail: liute79@yahoo.com [Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031 (China)

    2012-02-15

    Currently, human induced pluripotent stem (iPS) cells were generated from patient or disease-specific sources and share the same key properties as embryonic stem cells. This makes them attractive for personalized medicine, drug screens or cellular therapy. Long-term cultivation and maintenance of normal iPS cells in an undifferentiated self-renewing state are a major challenge. Our previous studies have shown that human amniotic epithelial cells (HuAECs) could provide a good source of feeder cells for mouse and human embryonic stem cells, or spermatogonial stem cells, but the mechanism for this is unknown. Here, we examined the effect of endogenous microRNA-145 regulation on Sox2 expression in human iPS cells by HuAECs feeder cells regulation, and in turn on human iPS cells pluripotency. We found that human IPS cells transfected with a microRNA-145 mutant expressed Sox2 at high levels, allowing iPS to maintain a high level of AP activity in long-term culture and form teratomas in SCID mice. Expression of stem cell markers was increased in iPS transfected with the microRNA-145 mutant, compared with iPS was transfected with microRNA-145. Besides, the expression of Drosha proteins of the microRNA-processor complex, required for the generation of precursor pre-miRNA, was significantly increased in human iPS cells cultured on MEF but not on HuAECs. Taken together, these results suggest that endogenous Sox2 expression may be regulated by microRNA-145 in human iPS cells with HuAECs feeder cells, and Sox2 is a crucial component required for maintenance of them in an undifferentiated, proliferative state capable of self-renewal. Highlights: Black-Right-Pointing-Pointer microRNA-145 inhibits Sox2 expression in human iPS cells. Black-Right-Pointing-Pointer microRNA-145 suppresses the self-renewal and pluripotency of human iPS cells. Black-Right-Pointing-Pointer HuAECs regulate expression of microRNA-145 and Sox2 in human iPS cells. Black-Right-Pointing-Pointer HuAECs feeder

  19. Early life ozone exposure results in dysregulated innate immune function and altered microRNA expression in airway epithelium.

    Directory of Open Access Journals (Sweden)

    Candice C Clay

    Full Text Available Exposure to ozone has been associated with increased incidence of respiratory morbidity in humans; however the mechanism(s behind the enhancement of susceptibility are unclear. We have previously reported that exposure to episodic ozone during postnatal development results in an attenuated peripheral blood cytokine response to lipopolysaccharide (LPS that persists with maturity. As the lung is closely interfaced with the external environment, we hypothesized that the conducting airway epithelium of neonates may also be a target of immunomodulation by ozone. To test this hypothesis, we evaluated primary airway epithelial cell cultures derived from juvenile rhesus macaque monkeys with a prior history of episodic postnatal ozone exposure. Innate immune function was measured by expression of the proinflammatory cytokines IL-6 and IL-8 in primary cultures established following in vivo LPS challenge or, in response to in vitro LPS treatment. Postnatal ozone exposure resulted in significantly attenuated IL-6 mRNA and protein expression in primary cultures from juvenile animals; IL-8 mRNA was also significantly reduced. The effect of antecedent ozone exposure was modulated by in vivo LPS challenge, as primary cultures exhibited enhanced cytokine expression upon secondary in vitro LPS treatment. Assessment of potential IL-6-targeting microRNAs miR-149, miR-202, and miR-410 showed differential expression in primary cultures based upon animal exposure history. Functional assays revealed that miR-149 is capable of binding to the IL-6 3' UTR and decreasing IL-6 protein synthesis in airway epithelial cell lines. Cumulatively, our findings suggest that episodic ozone during early life contributes to the molecular programming of airway epithelium, such that memory from prior exposures is retained in the form of a dysregulated IL-6 and IL-8 response to LPS; differentially expressed microRNAs such as miR-149 may play a role in the persistent modulation of the

  20. Differential expression profiles of microRNAs in liver of 60Co γ-ray irradiated mice

    International Nuclear Information System (INIS)

    Sun Xiujin; Cui Fengmei; Huang Chengcheng; Hu Mingjiang; Wang Daojin; Tu Yu

    2011-01-01

    Objective: To investigate the differential expression profiles of microRNAs in the liver of 60 Co γ-ray irradiated mice using microRNA microarray and to explore their main functions by bioinformatic analysis. Methods: After SPF C57BL/6J mice expose to 4 Gy-single whole body radiation,total number of peripheral WBC and the fMNPCE were measured at 3 d.The differentially expressed miRNAs in mouse liver were detected with miRNA microarray, miRNA-124 and miR-34a were confirmed by real time RT-PCR assay. Bioinformatic analysis was applied to explore target genes and the main functions of the differential expressed miRNAs. Results: Compared with control group, the total number of peripheral WBC decreased (t=2.87, P<0.05), while the fMNPCE in bone marrow increased (t=-2.91, P<0.05) after 4 Gy γ-ray irradiation.miRNA microarray revealed that 17 miRNAs were differentially expressed, in which 9 up-regulated, 8 down-regulated. The expression levels of miR-124 and miR-34a were coincident with the result of real time RT-PCR. GO analysis showed that some pathways including adherens junction and cell cycle were suppressed, while some immune-related pathways were activated. Conclusions: miR-34a and miR-194 were involved in the regulation of acute radiation damage, some other miRNAs including miR-124, miR-382 and miR-92a * also played important roles in radiation process. (authors)

  1. microRNA profiling: increased expression of miR-147a and miR-518e in progressive supranuclear palsy (PSP).

    Science.gov (United States)

    Tatura, Roman; Buchholz, Malte; Dickson, Dennis W; van Swieten, John; McLean, Catriona; Höglinger, Günter; Müller, Ulrich

    2016-07-01

    Progressive supranuclear palsy is a sporadic neurodegenerative disorder. Genetic, environmental, and possibly epigenetic factors contribute to disease. In order to better understand the potential role of epigenetic changes in progressive supranuclear palsy, we investigated whether some microRNAs and their target genes are dysregulated. We analyzed expression of 372 well-characterized microRNAs in forebrains of a total of 40 patients and of 40 controls using TaqMan arrays and SYBR Green quantitative real-time PCR. The exploratory cohort included forebrains from 20 patients and 20 controls provided by the Erasmus Medical Centre in Rotterdam, Netherlands. Confirmatory samples were from Jacksonville, Florida, and from Melbourne, Australia. Both microRNA profiling and SYBR Green quantitative real-time PCR revealed significant upregulation of miR-147 (miR-147a) and miR-518e in the exploratory cohort. Highly increased expression of these two microRNAs was validated in the confirmatory samples. Target genes of miR-147a (NF1, ACLY, ALG12) and of miR-518e (CPEB1, JAZF1, RAP1B) were repressed in patients' forebrains. The results suggest that dysregulation of specific microRNAs contributes to disease by repressing target genes involved in various cellular functions.

  2. Distinct Expression Profiles and Novel Targets of MicroRNAs in Human Spermatogonia, Pachytene Spermatocytes, and Round Spermatids between OA Patients and NOA Patients

    Directory of Open Access Journals (Sweden)

    Chencheng Yao

    2017-12-01

    Full Text Available Human spermatogenesis includes three main stages, namely, the mitosis of spermatogonia, meiosis of spermatocytes, and spermiogenesis of spermatids, which are precisely regulated by epigenetic and genetic factors. Abnormality of epigenetic and genetic factors can result in aberrant spermatogenesis and eventual male infertility. However, epigenetic regulators in controlling each stage of normal and abnormal human spermatogenesis remain unknown. Here, we have revealed for the first time the distinct microRNA profiles in human spermatogonia, pachytene spermatocytes, and round spermatids between obstructive azoospermia (OA patients and non-obstructive azoospermia (NOA patients. Human spermatogonia, pachytene spermatocytes, and round spermatids from OA patients and NOA patients were isolated using STA-PUT velocity sedimentation and identified by numerous hallmarks for these cells. RNA deep sequencing showed that 396 microRNAs were differentially expressed in human spermatogonia between OA patients and NOA patients and 395 differentially expressed microRNAs were found in human pachytene spermatocytes between OA patients and NOA patients. Moreover, 378 microRNAs were differentially expressed in human round spermatids between OA patients and NOA patients. The differential expression of numerous microRNAs identified by RNA deep sequencing was verified by real-time PCR. Moreover, a number of novel targeting genes for microRNAs were predicted using various kinds of software and further verified by real-time PCR. This study thus sheds novel insights into epigenetic regulation of human normal spermatogenesis and the etiology of azoospermia, and it could offer new targets for molecular therapy to treat male infertility.

  3. Fluorescence-based codetection with protein markers reveals distinct cellular compartments for altered MicroRNA expression in solid tumors

    DEFF Research Database (Denmark)

    Sempere, Lorenzo F; Preis, Meir; Yezefski, Todd

    2010-01-01

    High-throughput profiling experiments have linked altered expression of microRNAs (miRNA) to different types of cancer. Tumor tissues are a heterogeneous mixture of not only cancer cells, but also supportive and reactive tumor microenvironment elements. To clarify the clinical significance...... of altered miRNA expression in solid tumors, we developed a sensitive fluorescence-based in situ hybridization (ISH) method to visualize miRNA accumulation within individual cells in formalin-fixed, paraffin-embedded tissue specimens. This ISH method was implemented to be compatible with routine clinical...... immunohistochemical (IHC) assays to enable the detection of miRNAs and protein markers in the same tissue section for colocalization and functional studies....

  4. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro.

    Directory of Open Access Journals (Sweden)

    Dessie Salilew-Wondim

    Full Text Available Early embryonic loss and altered gene expression in in vitro produced blastocysts are believed to be partly caused by aberrant DNA methylation. However, specific embryonic stage which is sensitive to in vitro culture conditions to alter the DNA methylation profile of the resulting blastocysts remained unclear. Therefore, the aim of this study was to investigate the stage specific effect of in vitro culture environment on the DNA methylation response of the resulting blastocysts. For this, embryos cultured in vitro until zygote (ZY, 4-cell (4C or 16-cell (16C were transferred to recipients and the blastocysts were recovery at day 7 of the estrous cycle. Another embryo group was cultured in vitro until blastocyst stage (IVP. Genome-wide DNA methylation profiles of ZY, 4C, 16C and IVP blastocyst groups were then determined with reference to blastocysts developed completely under in vivo condition (VO using EmbryoGENE DNA Methylation Array. To assess the contribution of methylation changes on gene expression patterns, the DNA methylation data was superimposed to the transcriptome profile data. The degree of DNA methylation dysregulation in the promoter and/or gene body regions of the resulting blastocysts was correlated with successive stages of development the embryos advanced under in vitro culture before transfer to the in vivo condition. Genomic enrichment analysis revealed that in 4C and 16C blastocyst groups, hypermethylated loci were outpacing the hypomethylated ones in intronic, exonic, promoter and proximal promoter regions, whereas the reverse was observed in ZY blastocyst group. However, in the IVP group, as much hypermethylated as hypomethylated probes were detected in gene body and promoter regions. In addition, gene ontology analysis indicated that differentially methylated regions were found to affected several biological functions including ATP binding in the ZY group, programmed cell death in the 4C, glycolysis in 16C and genetic

  5. MicroRNA expressing profiles in A53T mutant alpha-synuclein transgenic mice and Parkinsonian.

    Science.gov (United States)

    Mo, Mingshu; Xiao, Yousheng; Huang, Shuxuan; Cen, Luan; Chen, Xiang; Zhang, Limin; Luo, Qin; Li, Shaomin; Yang, Xinling; Lin, Xian; Xu, Pingyi

    2017-01-03

    α-synuclein gene mutations can cause α-synuclein protein aggregation in the midbrain of Parkinson's disease (PD) patients. MicroRNAs (miRNAs) play a key role in the metabolism of α-synuclein but the mechanism involved in synucleinopathy remains unclear. In this study, we investigated the miRNA profiles in A53T-α-synuclein transgenic mice and analyzed the candidate miRNAs in the cerebrospinal fluid (CSF) of PD patients. The 12-month A53T-transgenic mouse displayed hyperactive movement and anxiolytic-like behaviors with α-synuclein aggregation in midbrain. A total of 317,759 total and 289,207 unique small RNA sequences in the midbrain of mice were identified by high-throughput deep sequencing. We found 644 miRNAs were significantly changed in the transgenic mice. Based on the conserved characteristic of miRNAs, we selected 11 candidates from the 40 remarkably expressed miRNAs and explored their expression in 44 CSF samples collected from PD patients. The results revealed that 11 microRNAs were differently expressed in CSF, emphatically as miR-144-5p, miR-200a-3p and miR-542-3p, which were dramatically up-regulated in both A53T-transgenic mice and PD patients, and had a helpful accuracy for the PD prediction. The ordered logistic regression analysis showed that the severity of PD has strong correlation with an up-expression of miR-144-5p, miR-200a-3p and miR-542-3p in CSF. Taken together, our data suggested that miRNAs in CSF, such as miR-144-5p, miR-200a-3p and miR-542-3p, may be useful to the PD diagnosis as potential biomarkers.

  6. Elongated Hypocotyl 5-Homolog (HYH Negatively Regulates Expression of the Ambient Temperature-Responsive MicroRNA Gene MIR169

    Directory of Open Access Journals (Sweden)

    Phanu T. Serivichyaswat

    2017-12-01

    Full Text Available Arabidopsis microRNA169 (miR169 is an ambient temperature-responsive microRNA that plays an important role in stress responses and the floral transition. However, the transcription factors that regulate the expression of MIR169 have remained unknown. In this study, we show that Elongated Hypocotyl 5-Homolog (HYH directly binds to the promoter of MIR169a and negatively regulates its expression. Absolute quantification identified MIR169a as the major locus producing miR169. GUS reporter assays revealed that the deletion of a 498-bp fragment (–1,505 to –1,007, relative to the major transcriptional start site of MIR169a abolished its ambient temperature-responsive expression. DNA-affinity chromatography followed by liquid chromatography-mass spectrometry analysis identified transcription factor HYH as a trans-acting factor that binds to the 498-bp promoter fragment of pri-miR169a. Electrophoretic mobility shift assays and chromatin immunoprecipitation–quantitative PCR demonstrated that the HYH.2 protein, a predominant isoform of HYH, directly associated with a G-box-like motif in the 498-bp fragment of pri-miR169a. Higher enrichment of HYH.2 protein on the promoter region of MIR169a was seen at 23°C, consistent with the presence of more HYH.2 protein in the cell at the temperature. Transcript levels of pri-miR169a increased in hyh mutants and decreased in transgenic plants overexpressing HYH. Consistent with the negative regulation of MIR169a by HYH, the diurnal levels of HYH mRNA and pri-miR169a showed opposite patterns. Taken together, our results suggest that HYH is a transcription factor that binds to a G-box-like motif in the MIR169a promoter and negatively regulates ambient temperature-responsive expression of MIR169a at higher temperatures in Arabidopsis.

  7. Melatonin promotes the in vitro development of pronuclear embryos and increases the efficiency of blastocyst implantation in murine.

    Science.gov (United States)

    Wang, Feng; Tian, XiuZhi; Zhang, Lu; Tan, DunXian; Reiter, Russel J; Liu, GuoShi

    2013-10-01

    When a defect occurs in the in vitro development of a pronuclear embryo, the interruption of the subsequent implantation limits the success of assisted conception. This common problem remains to be solved. In this study, we observed that melatonin at its physiological concentration (10(-7)  m) significantly promoted the in vitro development of murine pronuclear embryos. This was indicated by the increased blastocyst rate, hatching blastocyst rate, and blastocyst cell number with melatonin treatment. In addition, when these blastocysts were implanted into female recipient mice, the pregnancy rates (95.0% versus control 67.8%), litter sizes (4.1 pups/litter versus control 2.7 pups/litter), and postnatal survival rates of offspring (96.84% versus control 81.24%) were significantly improved compared with their non-melatonin-treated counterparts. Mechanistic studies revealed that melatonin treatment upregulates gene expression of the antioxidant enzyme, superoxide dismutase (SOD), and the anti-apoptotic factor bcl-2 while downregulating the expression of pro-apoptotic genes p53 and caspase-3. Due to these changes, melatonin treatment reduces ROS production and cellular apoptosis during in vitro embryo development and improves the quality of blastocysts. The implantation of blastocysts with higher quality leads to more healthy offspring and increased pup survival. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. The microRNA molecular signature of atypic and common acquired melanocytic nevi: differential expression of miR-125b and let-7c

    DEFF Research Database (Denmark)

    Holst, Line Marie Broksø; Kaczkowski, Bogumil; Glud, Martin

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which regulate gene expression through base pairing with mRNA and which are crucially involved in carcinogenesis (the so-called oncomiRs). We compared the miRNA signature between acquired melanocytic nevi showing clinical atypia (atypic nevi, AN...

  9. RNA-Seq reveals MicroRNA expression signature and genetic polymorphism associated with growth and muscle quality traits in rainbow trout

    Science.gov (United States)

    The role of microRNA expression and genetic variation in microRNA-binding sites of target genes on growth and muscle quality traits is poorly characterized. We used RNA-Seq approach to investigate their importance on 5 growth and muscle quality traits: whole body weight (WBW), muscle yield, muscle c...

  10. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qiang [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhao, Zhi-Ning [Clinical Laboratory, 451 Hospital of Chinese PLA, Xi' an 710054 (China); Cheng, Jing-Tao [Department of Special Dentistry, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Zhang, Bin [Department of Orthodontics, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Xu, Jie [Department of Periodontology, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Huang, Fei; Zhao, Rui-Ni [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China); Chen, Yong-Jin, E-mail: cyj1229@fmmu.edu.cn [Department of General Dentistry and Emergency, College of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032 (China)

    2011-01-07

    Research highlights: {yields} Ibandronate significantly promote the proliferation of PDLSC cells. {yields} Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. {yields} The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. {yields} Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. {yields} Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation

  11. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs

    International Nuclear Information System (INIS)

    Zhou, Qiang; Zhao, Zhi-Ning; Cheng, Jing-Tao; Zhang, Bin; Xu, Jie; Huang, Fei; Zhao, Rui-Ni; Chen, Yong-Jin

    2011-01-01

    Research highlights: → Ibandronate significantly promote the proliferation of PDLSC cells. → Ibandronate enhanced the expression of ALP, COL-1, OPG, OCN, Runx2. → The expression of a class of miRNAs, e.g., miR-18a, miR-133a, miR-141 and miR-19a, was significantly modified in PDLSC cells cultured with ibandronate. → Ibandronate regulates the expression of diverse bone formation-related genes via miRNAs in PDLSCs. → Ibandronate can suppress the activity of osteoclast while promoting the proliferation of osteoblast by regulating the expression of microRNAs. -- Abstract: Bisphosphonates (BPs) have a profound effect on bone resorption and are widely used to treat osteoclast-mediated bone diseases. They suppress bone resorption by inhibiting the activity of mature osteoclasts and/or the formation of new osteoclasts. Osteoblasts may be an alternative target for BPs. Periodontal ligament stem cells (PDLSCs) exhibit osteoblast-like features and are capable of differentiating into osteoblasts or cementoblasts. This study aimed to determine the effects of ibandronate, a nitrogen-containing BP, on the proliferation and the differentiation of PDLSCs and to identify the microRNAs (miRNAs) that mediate these effects. The PDLSCs were treated with ibandronate, and cell proliferation was measured using the MTT (3-dimethylthiazol-2,5-diphenyltetrazolium bromide) assay. The expression of genes and miRNAs involved in osteoblastic differentiation was assayed using quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). Ibandronate promoted the proliferation of PDLSCs and enhanced the expression of alkaline phosphatase (ALP), type I collagen (COL-1), osteoprotegerin (OPG), osteocalcin (OCN), and Runx2. The expression of miRNAs, including miR-18a, miR-133a, miR-141 and miR-19a, was significantly altered in the PDLSCs cultured with ibandronate. In PDLSCs, ibandronate regulates the expression of diverse bone formation-related genes via miRNAs. The exact

  12. Alteration of microRNA expression correlates to fatty acid-mediated insulin resistance in mouse myoblasts.

    Science.gov (United States)

    Li, Zhen-Ya; Na, Hui-Min; Peng, Gong; Pu, Jing; Liu, Pingsheng

    2011-03-01

    As new regulators at the post-transcriptional level, microRNAs (miRNAs) are non-coding 19-22 nucleotide RNA molecules that are believed to regulate the expression of thousands of genes. Since the monounsaturated fatty acid oleate can reverse insulin resistance induced by the saturated fatty acid palmitate, we carried out microarray analysis to determine differences in miRNA expression profiles in mouse muscle C2C12 cells that were treated with palmitate and palmitate plus oleate. Among the altered miRNAs, the expression levels of miR-7a, miR-194, miR-337-3p, miR-361, miR-466i, miR-706 and miR-711 were up- or down-regulated by palmitate, but restored to their original level by oleate. These results were verified by quantitative RT-PCR (QRT-PCR). Further studies showed that over-expression of miR-7 down-regulated insulin receptor substrate 1 (IRS1) expression as well as inhibited insulin-stimulated Akt phosphorylation and glucose uptake. The miRNA expression profiles correlated to oleate protection against palmitate-induced insulin resistance in mouse muscle cells offer an alternative understanding of the molecular mechanism of insulin resistance.

  13. Dynamical Expression of MicroRNA-127-3p in Proliferating and Differentiating C2C12 Cells.

    Science.gov (United States)

    Li, Jie; Wang, Gaofu; Jiang, Jing; Zhou, Peng; Liu, Liangjia; Zhao, Jinhong; Wang, Lin; Huang, Yongfu; Ma, Youji; Ren, Hangxing

    2016-12-01

    MicroRNAs (miRNAs) are highly conserved, short non-coding RNAs that regulate gene expression at the posttranscriptional level. Although many miRNAs are identified in muscles and muscle cells, their individual roles are still not fully understood. In the present study, we investigated a muscle highly-expressed miRNA, miR-127-3p, in C2C12 myoblasts and tissues of goats with different muscle phenotypes (Boer vs Wushan black goats). Our results demonstrated that i) miR-127-3p was extensively expressed in tissues of goats; ii) miR-127-3p was higher expressed in muscle, spleen, heart, and skin in the muscular goats (Boer goats) than the control (Wushan black goats). Then we further characterized the dynamical expression of miR-127-3p, MyoD , MyoG , Myf5 , Mef2c , and Myosin in the proliferating and differentiating C2C12 myoblasts at day of 0, 1, 3, 5, and 7 in culture mediums. Especially, we found that miR-127-3p was significantly higher expressed in the proliferating than differentiating cells. Our findings suggest that miR-127-3p probably plays roles in the proliferation and differentiation of myoblasts, which further underlies regulation of muscle phenotype in goats.

  14. Dynamical Expression of MicroRNA-127-3p in Proliferating and Differentiating C2C12 Cells

    Directory of Open Access Journals (Sweden)

    Jie Li

    2016-12-01

    Full Text Available MicroRNAs (miRNAs are highly conserved, short non-coding RNAs that regulate gene expression at the posttranscriptional level. Although many miRNAs are identified in muscles and muscle cells, their individual roles are still not fully understood. In the present study, we investigated a muscle highly-expressed miRNA, miR-127-3p, in C2C12 myoblasts and tissues of goats with different muscle phenotypes (Boer vs Wushan black goats. Our results demonstrated that i miR-127-3p was extensively expressed in tissues of goats; ii miR-127-3p was higher expressed in muscle, spleen, heart, and skin in the muscular goats (Boer goats than the control (Wushan black goats. Then we further characterized the dynamical expression of miR-127-3p, MyoD, MyoG, Myf5, Mef2c, and Myosin in the proliferating and differentiating C2C12 myoblasts at day of 0, 1, 3, 5, and 7 in culture mediums. Especially, we found that miR-127-3p was significantly higher expressed in the proliferating than differentiating cells. Our findings suggest that miR-127-3p probably plays roles in the proliferation and differentiation of myoblasts, which further underlies regulation of muscle phenotype in goats.

  15. MicroRNA genes preferentially expressed in dendritic cells contain sites for conserved transcription factor binding motifs in their promoters

    Directory of Open Access Journals (Sweden)

    Huynen Martijn A

    2011-06-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a fundamental role in the regulation of gene expression by translational repression or target mRNA degradation. Regulatory elements in miRNA promoters are less well studied, but may reveal a link between their expression and a specific cell type. Results To explore this link in myeloid cells, miRNA expression profiles were generated from monocytes and dendritic cells (DCs. Differences in miRNA expression among monocytes, DCs and their stimulated progeny were observed. Furthermore, putative promoter regions of miRNAs that are significantly up-regulated in DCs were screened for Transcription Factor Binding Sites (TFBSs based on TFBS motif matching score, the degree to which those TFBSs are over-represented in the promoters of the up-regulated miRNAs, and the extent of conservation of the TFBSs in mammals. Conclusions Analysis of evolutionarily conserved TFBSs in DC promoters revealed preferential clustering of sites within 500 bp upstream of the precursor miRNAs and that many mRNAs of cognate TFs of the conserved TFBSs were indeed expressed in the DCs. Taken together, our data provide evidence that selected miRNAs expressed in DCs have evolutionarily conserved TFBSs relevant to DC biology in their promoters.

  16. A genomic portrait of the genetic architecture and regulatory impact of microRNA expression in response to infection.

    Science.gov (United States)

    Siddle, Katherine J; Deschamps, Matthieu; Tailleux, Ludovic; Nédélec, Yohann; Pothlichet, Julien; Lugo-Villarino, Geanncarlo; Libri, Valentina; Gicquel, Brigitte; Neyrolles, Olivier; Laval, Guillaume; Patin, Etienne; Barreiro, Luis B; Quintana-Murci, Lluís

    2014-05-01

    MicroRNAs (miRNAs) are critical regulators of gene expression, and their role in a wide variety of biological processes, including host antimicrobial defense, is increasingly well described. Consistent with their diverse functional effects, miRNA expression is highly context dependent and shows marked changes upon cellular activation. However, the genetic control of miRNA expression in response to external stimuli and the impact of such perturbations on miRNA-mediated regulatory networks at the population level remain to be determined. Here we assessed changes in miRNA expression upon Mycobacterium tuberculosis infection and mapped expression quantitative trait loci (eQTL) in dendritic cells from a panel of healthy individuals. Genome-wide expression profiling revealed that ∼40% of miRNAs are differentially expressed upon infection. We find that the expression of 3% of miRNAs is controlled by proximate genetic factors, which are enriched in a promoter-specific histone modification associated with active transcription. Notably, we identify two infection-specific response eQTLs, for miR-326 and miR-1260, providing an initial assessment of the impact of genotype-environment interactions on miRNA molecular phenotypes. Furthermore, we show that infection coincides with a marked remodeling of the genome-wide relationships between miRNA and mRNA expression levels. This observation, supplemented by experimental data using the model of miR-29a, sheds light on the role of a set of miRNAs in cellular responses to infection. Collectively, this study increases our understanding of the genetic architecture of miRNA expression in response to infection, and highlights the wide-reaching impact of altering miRNA expression on the transcriptional landscape of a cell.

  17. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart.

    Science.gov (United States)

    Kakimoto, Yu; Tanaka, Masayuki; Kamiguchi, Hiroshi; Hayashi, Hideki; Ochiai, Eriko; Osawa, Motoki

    2016-05-15

    Heart chamber-specific mRNA expression patterns have been extensively studied, and dynamic changes have been reported in many cardiovascular diseases. MicroRNAs (miRNAs) are also important regulators of normal cardiac development and functions that generally suppress gene expression at the posttranscriptional level. Recent focus has been placed on circulating miRNAs as potential biomarkers for cardiac disorders. However, miRNA expression levels in human normal hearts have not been thoroughly studied, and chamber-specific miRNA expression signatures in particular remain unclear. We performed miRNA deep sequencing on human paired left atria (LA) and ventricles (LV) under normal physiologic conditions. Among 438 miRNAs, miR-1 was the most abundant in both chambers, representing 21% of the miRNAs in LA and 26% in LV. A total of 25 miRNAs were differentially expressed between LA and LV; 14 were upregulated in LA, and 11 were highly expressed in LV. Notably, the miR-208 family in particular showed prominent chamber specificity; miR-208a-3p and miR-208a-5p were abundant in LA, whereas miR-208b-3p and miR-208b-5p were preferentially expressed in LV. Subsequent real-time polymerase chain reaction analysis validated the predominant expression of miR-208a in LA and miR-208b in LV. Human atrial and ventricular tissues display characteristic miRNA expression signatures under physiological conditions. Notably, miR-208a and miR-208b show significant chamber-specificity as do their host genes, α-MHC and β-MHC, which are mainly expressed in the atria and ventricles, respectively. These findings might also serve to enhance our understanding of cardiac miRNAs and various heart diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Effects of trimetazidine on periprocedural microRNA-21 expression by CD4+ T lymphocytes in patients with unstable angina pectoris.

    Science.gov (United States)

    Su, Qiang; Li, Lang; Zhao, Jinmin; Sun, Yuhan; Yang, Huafeng

    2017-12-01

    Post-percutaneous coronary intervention (PCI) myocardial injury is related to the CD4+ T lymphocyte-mediated inflammatory response. microRNA-21 expression is associated with CD4+ T lymphocyte activation. The pre-PCI use of trimetazidine prevents periprocedural myocardial injury and reduces inflammatory cytokine levels. This study aimed to assess the effects of trimetazidine on periprocedural microRNA-21 expression by CD4+ T lymphocytes in patients with unstable angina pectoris. A total of 252 patients with unstable angina pectoris were randomized to the trimetazidine (60 mg/d, administered 3 days before PCI, n=128) and control (no trimetazidine, n=124) groups. Serum CK-MB, cTnI, and hs-CRP levels were tested pre-PCI and 16-24 h post-PCI. Peripheral blood CD4+ T lymphocytes were isolated by magnetic activated cell sorting. Quantitative polymerase chain reaction was used to assess microRNA-21 and PDCD4 mRNA expression levels in CD4+ T lymphocytes, and western blot was used to evaluate PDCD4 protein expression. Enzyme-linked immunosorbent assay was used to assess serum TNF-α and IL-10 levels. Compared with the control group, the trimetazidine group had a lower frequency of patients with post-PCI serum CK-MB and cTnI levels higher than normal values; the trimetazidine group had also significantly lower serum hs-CRP and TNF-α levels, and higher IL-10 levels post-PCI. Finally, the trimetazidine group had significantly lower PDCD4 expression and higher microRNA-21 levels in CD4+ T lymphocytes post-PCI. Trimetazidine reduces the incidence of periprocedural myocardial injury, possibly by increasing microRNA-21 levels in CD4+ T lymphocytes and inhibiting PDCD4-mediated inflammatory response.

  19. An Analysis of MicroRNA Expression in the Myelodysplastic Syndromes Using Hematopoietic Stem Cells

    Science.gov (United States)

    2015-10-01

    predisposition for the development of MDS. 15. SUBJECT TERMS MicroRNAs, the myelodysplastic syndromes, hematopoietic stem cells...hematopoietic  stem  cells  (HSCs),  demonstrating   the  presence  of  disease  associated  cytogenetic  and  molecular   genetic ...hematopoiesis   in   the   context   of   aging   and   its   likely   implication   in   the   age-­‐related   predisposition

  20. Time-Dependent Expression Profiles of microRNAs and mRNAs in Rat Milk Whey

    Science.gov (United States)

    Izumi, Hirohisa; Kosaka, Nobuyoshi; Shimizu, Takashi; Sekine, Kazunori; Ochiya, Takahiro; Takase, Mitsunori

    2014-01-01

    Functional RNAs, such as microRNA (miRNA) and mRNA, are present in milk, but their roles are unknown. To clarify the roles of milk RNAs, further studies using experimental animals such as rats are needed. However, it is unclear whether rat milk also contains functional RNAs and what their time dependent expression profiles are. Thus, we prepared total RNA from whey isolated from rat milk collected on days 2, 9, and 16 postpartum and analyzed using microarrays and quantitative PCR. The concentration of RNA in colostrum whey (day 2) was markedly higher than that in mature milk whey (days 9 and 16). Microarray analysis detected 161 miRNAs and 10,948 mRNA transcripts. Most of the miRNAs and mRNA transcripts were common to all tested milks. Finally, we selected some immune- and development-related miRNAs and mRNAs, and analysed them by quantitative PCR (in equal sample volumes) to determine their time-dependent changes in expression in detail. Some were significantly more highly expressed in colostrum whey than in mature milk whey, but some were expressed equally. And mRNA expression levels of some cytokines and hormones did not reflect the protein levels. It is still unknown whether RNAs in milk play biological roles in neonates. However, our data will help guide future in vivo studies using experimental animals such as rats. PMID:24533154

  1. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells

    Science.gov (United States)

    Cai, Xuezhong; Lu, Shihua; Zhang, Zhihong; Gonzalez, Carlos M.; Damania, Blossom; Cullen, Bryan R.

    2005-01-01

    MicroRNAs (miRNAs) are an endogenously encoded class of small RNAs that have been proposed to function as key posttranscriptional regulators of gene expression in a range of eukaryotic species, including humans. The small size of miRNA precursors makes them potentially ideal for use by viruses as inhibitors of host cell defense pathways. Here, we demonstrate that the pathogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an array of 11 distinct miRNAs, all of which are expressed at readily detectable levels in latently KSHV infected cells. Individual KSHV miRNAs were expressed at up to 2,200 copies per cell. The KSHV miRNAs are expressed from what appears to be a single genetic locus that largely coincides with an ≈4-kb noncoding sequence located between the KSHV v-cyclin and K12/Kaposin genes, both of which are also expressed in latently infected cells. Computer analysis of potential mRNA targets for these viral miRNAs identified a number of interesting candidate genes, including several mRNAs previously shown to be down-regulated in KSHV-infected cells. We hypothesize that these viral miRNAs play a critical role in the establishment and/or maintenance of KSHV latent infection in vivo and, hence, in KSHV-induced oncogenesis. PMID:15800047

  2. Time-dependent expression profiles of microRNAs and mRNAs in rat milk whey.

    Directory of Open Access Journals (Sweden)

    Hirohisa Izumi

    Full Text Available Functional RNAs, such as microRNA (miRNA and mRNA, are present in milk, but their roles are unknown. To clarify the roles of milk RNAs, further studies using experimental animals such as rats are needed. However, it is unclear whether rat milk also contains functional RNAs and what their time dependent expression profiles are. Thus, we prepared total RNA from whey isolated from rat milk collected on days 2, 9, and 16 postpartum and analyzed using microarrays and quantitative PCR. The concentration of RNA in colostrum whey (day 2 was markedly higher than that in mature milk whey (days 9 and 16. Microarray analysis detected 161 miRNAs and 10,948 mRNA transcripts. Most of the miRNAs and mRNA transcripts were common to all tested milks. Finally, we selected some immune- and development-related miRNAs and mRNAs, and analysed them by quantitative PCR (in equal sample volumes to determine their time-dependent changes in expression in detail. Some were significantly more highly expressed in colostrum whey than in mature milk whey, but some were expressed equally. And mRNA expression levels of some cytokines and hormones did not reflect the protein levels. It is still unknown whether RNAs in milk play biological roles in neonates. However, our data will help guide future in vivo studies using experimental animals such as rats.

  3. Increased expression of microRNA-221 inhibits PAK1 in endothelial progenitor cells and impairs its function via c-Raf/MEK/ERK pathway

    International Nuclear Information System (INIS)

    Zhang, Xiaoping; Mao, Haian; Chen, Jin-yuan; Wen, Shengjun; Li, Dan; Ye, Meng; Lv, Zhongwei

    2013-01-01

    Highlights: ► MicroRNA-221 is upregulated in the endothelial progenitor cells of atherosclerosis patients. ► PAK1 is a direct target of microRNA-221. ► MicroRNA-221 inhibits EPCs proliferation through c-Raf/MEK/ERK pathway. -- Abstract: Coronary artery disease (CAD) is associated with high mortality and occurs via endothelial injury. Endothelial progenitor cells (EPCs) restore the integrity of the endothelium and protect it from atherosclerosis. In this study, we compared the expression of microRNAs (miRNAs) in EPCs in atherosclerosis patients and normal controls. We found that miR-221 expression was significantly up-regulated in patients compared with controls. We predicted and identified p21/Cdc42/Rac1-activated kinase 1 (PAK1) as a novel target of miR-221 in EPCs. We also demonstrated that miR-221 targeted a putative binding site in the 3′UTR of PAK1, and absence of this site was inversely associated with miR-221 expression in EPCs. We confirmed this relationship using a luciferase reporter assay. Furthermore, overexpression of miR-221 in EPCs significantly decreased EPC proliferation, in accordance with the inhibitory effects induced by decreased PAK1. Overall, these findings demonstrate that miR-221 affects the MEK/ERK pathway by targeting PAK1 to inhibit the proliferation of EPCs

  4. Comprehensive study of gene and microRNA expression related to epithelial-mesenchymal transition in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Betina Katz

    Full Text Available Prostate cancer is the most common cancer in men, and most patients have localized disease at the time of diagnosis. However, 4% already present with metastatic disease. Epithelial-mesenchymal transition is a fundamental process in carcinogenesis that has been shown to be involved in prostate cancer progression. The main event in epithelial-mesenchymal transition is the repression of E-cadherin by transcription factors, but the process is also regulated by microRNAs. The aim of this study was to analyze gene and microRNA expression involved in epithelial-mesenchymal transition in localized prostate cancer and metastatic prostate cancer cell lines and correlate with clinicopathological findings. We studied 51 fresh frozen tissue samples from patients with localized prostate cancer (PCa treated by radical prostatectomy and three metastatic prostate cancer cell lines (LNCaP, DU145, PC3. The expression of 10 genes and 18 miRNAs were assessed by real-time PCR. The patients were divided into groups according to Gleason score, pathological stage, preoperative PSA, biochemical recurrence, and risk group for correlation with clinicopathological findings. The majority of localized PCa cases showed an epithelial phenotype, with overexpression of E-cadherin and underexpression of the mesenchymal markers. MiRNA-200 family members and miRNAs 203, 205, 183, 373, and 21 were overexpressed, while miRNAs 9, 495, 29b, and 1 were underexpressed. Low-expression levels of miRNAs 200b, 30a, and 1 were significantly associated with pathological stage. Lower expression of miR-200b was also associated with a Gleason score ≥ 8 and shorter biochemical recurrence-free survival. Furthermore, low-expression levels of miR-30a and high-expression levels of Vimentin and Twist1 were observed in the high-risk group. Compared with the primary tumor, the metastatic cell lines showed significantly higher expression levels of miR-183 and Twist1. In summary, miRNAs 200b, 30a, 1, and

  5. Obstetric and perinatal outcomes of singletons after single blastocyst transfer: is there any difference according to blastocyst morphology?

    Science.gov (United States)

    Bouillon, Céline; Celton, Noémie; Kassem, Sandra; Frapsauce, Cynthia; Guérif, Fabrice

    2017-08-01

    A strong correlation between blastocyst morphology and implantation has been shown by many studies. The consequences and effects of assisted reproductive techniques on children's short and long-term health have always been a source of discussion. The obstetric and perinatal outcome of singletons according to blastocyst morphology has rarely been evaluated. The aim of this observational study is to determine whether a relationship exists between blastocyst morphology and obstetric and perinatal outcomes. A total of 799 singleton clinical pregnancies were analysed after transfer of a single fresh blastocyst on day 5 between 2006 and 2013. Blastocysts were divided into four groups based on their morphology on day 5: group 1 = good morphology blastocysts; group 2 = fair morphology blastocysts; group 3 = poor morphology blastocysts and group 4 = early (B1/B2) blastocysts. Obstetric and perinatal outcomes were compared between the four groups. After adjustment for some confounding variables, main obstetric and perinatal outcomes after transfer of blastocysts with poor morphological characteristics were not associated with increased adverse obstetric and perinatal events. Sex ratio was significantly higher in group 1 compared with groups 2, 3 and 4, and in Group 2 compared with Group 3 (P < 0.001) even after adjustment (P < 0.05). Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. MicroRNA MIR21 (miR-21) and PTGS2 expression in colorectal cancer and patient survival

    Science.gov (United States)

    Mima, Kosuke; Nishihara, Reiko; Yang, Juhong; Dou, Ruoxu; Masugi, Yohei; Shi, Yan; da Silva, Annacarolina; Cao, Yin; Song, Mingyang; Nowak, Jonathan A.; Gu, Mancang; Li, Wanwan; Morikawa, Teppei; Zhang, Xuehong; Wu, Kana; Baba, Hideo; Giovannucci, Edward L.; Meyerhardt, Jeffrey A.; Chan, Andrew T.; Fuchs, Charles S.; Qian, Zhi Rong; Ogino, Shuji

    2016-01-01

    Purpose Prostaglandin-endoperoxide synthase 2 (PTGS2, cyclooxygenase-2; a target of aspirin) produces inflammatory mediator prostaglandin E2 (PGE2), and contributes to colorectal neoplasia development. PTGS2-driven inflammatory responses can induce tumor expression of microRNA MIR21 (miR-21) that can increase local PGE2 level by downregulating PGE2-metabolizing enzymes. We hypothesized that the prognostic association of tumor MIR21 expression level in colorectal carcinoma might depend on inflammatory tumor microenvironment and be stronger in tumors expressing high-level PTGS2. Experimental Design Utilizing 765 rectal and colon cancer specimens in the Nurses’ Health Study and the Health Professionals Follow-up Study, we measured MIR21 expression by quantitative reverse-transcription PCR, and PTGS2 expression by immunohistochemistry. Cox proportional hazards regression model was used to assess statistical interaction between MIR21 and PTGS2 in colorectal cancer-specific survival analysis, controlling for potential confounders including microsatellite instability, CpG island methylator phenotype, LINE-1 methylation level, and KRAS, BRAF, and PIK3CA mutations. Results Tumor MIR21 expression level was associated with higher colorectal cancer-specific mortality (Ptrend = 0.029), and there was a statistically significant interaction between MIR21 and PTGS2 (Pinteraction = 0.0004). The association between MIR21 expression and colorectal cancer-specific mortality was statistically significant in PTGS2-high cancers (multivariable hazard ratio of the highest vs. lowest quartile of MIR21, 2.28; 95% confidence interval, 1.42 to 3.67; Ptrend = 0.0004) but not in PTGS2-absent/low cancers (Ptrend = 0.22). Conclusions MIR21 expression level in colorectal carcinoma is associated with worse clinical outcome, and this association is stronger in carcinomas expressing high-level PTGS2, suggesting complex roles of immunity and inflammation in tumor progression. PMID:26957558

  7. Mechanical stretch modulates microRNA 21 expression, participating in proliferation and apoptosis in cultured human aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Jian tao Song

    Full Text Available OBJECTIVES: Stretch affects vascular smooth muscle cell proliferation and apoptosis, and several responsible genes have been proposed. We tested whether the expression of microRNA 21 (miR-21 is modulated by stretch and is involved in stretch-induced proliferation and apoptosis of human aortic smooth muscle cells (HASMCs. METHODS AND RESULTS: RT-PCR revealed that elevated stretch (16% elongation, 1 Hz increased miR-21 expression in cultured HASMCs, and moderate stretch (10% elongation, 1 Hz decreased the expression. BrdU incorporation assay and cell counting showed miR-21 involved in the proliferation of HASMCs mediated by stretch, likely by regulating the expression of p27 and phosphorylated retinoblastoma protein (p-Rb. FACS analysis revealed that the complex of miR-21 and programmed cell death protein 4 (PDCD4 participated in regulating apoptosis with stretch. Stretch increased the expression of primary miR-21 and pre-miR-21 in HASMCs. Electrophoretic mobility shift assay (EMSA demonstrated that stretch increased NF-κB and AP-1 activities in HASMCs, and blockade of AP-1 activity by c-jun siRNA significantly suppressed stretch-induced miR-21 expression. CONCLUSIONS: Cyclic stretch modulates miR-21 expression in cultured HASMCs, and miR-21 plays important roles in regulating proliferation and apoptosis mediated by stretch. Stretch upregulates miR-21 expression at least in part at the transcription level and AP-1 is essential for stretch-induced miR-21 expression.

  8. Spatial and temporal expression levels of specific microRNAs in a spinal cord injury mouse model and their relationship to the duration of compression.

    Science.gov (United States)

    Ziu, Mateo; Fletcher, Lauren; Savage, Jennifer G; Jimenez, David F; Digicaylioglu, Murat; Bartanusz, Viktor

    2014-02-01

    MicroRNAs, a class of small nonprotein-coding RNAs, are thought to control gene translation into proteins. The latter are the ultimate effectors of the biochemical cascade occurring in any physiological and pathological process. MicroRNAs have been shown to change their expression levels during injury of spinal cord in contusion rodent models. Compression is the most frequent mode of damage of neural elements in spinal cord injury. The cellular and molecular changes occurring in the spinal cord during prolonged compression are not very well elucidated. Understanding the underlying molecular events that occur during sustained compression is paramount in building new therapeutic strategies. The purpose of our study was to probe the relationship between the expression level changes of different miRNAs and the timing of spinal cord decompression in a mouse model. A compression spinal cord injury mouse model was used for the study. A laminectomy was performed in the thoracic spine of C57BL/6 mice. Then, the thecal sac was compressed to create the injury. Decompression was performed early for one group and it was delayed in the second group. The spinal cord at the epicenter of the injury and one level rostral to it were removed at 3, 6, and 24 hours after trauma, and RNA was extracted. Expression levels of six different microRNAs and the relationship to the duration of compression were analyzed. This work was supported in part by the University Research Council Grants Program at the University of Texas Health Science Center San Antonio (Grant 130267). There are no specific conflicts of interest to be disclosed for this work. Expression levels of microRNAs in the prolonged compression of spinal cord model were significantly different compared with the expression levels in the short duration of compression spinal cord injury model. Furthermore, microRNAs show a different expression pattern in different regions of the injured spinal cord. Our findings demonstrate that

  9. Identification and differential expression of microRNAs in ovaries of laying and Broody geese (Anser cygnoides by Solexa sequencing.

    Directory of Open Access Journals (Sweden)

    Qi Xu

    Full Text Available BACKGROUND: Recent functional studies have demonstrated that the microRNAs (miRNAs play critical roles in ovarian gonadal development, steroidogenesis, apoptosis, and ovulation in mammals. However, little is known about the involvement of miRNAs in the ovarian function of fowl. The goose (Anas cygnoides is a commercially important food that is cultivated widely in China but the goose industry has been hampered by high broodiness and poor egg laying performance, which are influenced by ovarian function. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the miRNA transcriptomes of ovaries from laying and broody geese were profiled using Solexa deep sequencing and bioinformatics was used to determine differential expression of the miRNAs. As a result, 11,350,396 and 9,890,887 clean reads were obtained in laying and broodiness goose, respectively, and 1,328 conserved known miRNAs and 22 novel potential miRNA candidates were identified. A total of 353 conserved microRNAs were significantly differentially expressed between laying and broody ovaries. Compared with miRNA expression in the laying ovary, 127 miRNAs were up-regulated and 126 miRNAs were down-regulated in the ovary of broody birds. A subset of the differentially expressed miRNAs (G-miR-320, G-miR-202, G-miR-146, and G-miR-143* were validated using real-time quantitative PCR. In addition, 130,458 annotated mRNA transcripts were identified as putative target genes. Gene ontology annotation and KEGG (Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the differentially expressed miRNAs are involved in ovarian function, including hormone secretion, reproduction processes and so on. CONCLUSIONS: The present study provides the first global miRNA transcriptome data in A. cygnoides and identifies novel and known miRNAs that are differentially expressed between the ovaries of laying and broody geese. These findings contribute to our understanding of the functional involvement of mi

  10. Tumor-suppressing effects of microRNA-612 in bladder cancer cells by targeting malic enzyme 1 expression.

    Science.gov (United States)

    Liu, Mengnan; Chen, Yifan; Huang, Bisheng; Mao, Shiyu; Cai, Keke; Wang, Longsheng; Yao, Xudong

    2018-03-29

    The present study investigated the possible tumor-suppressing function of microRNA (miR)-612 and the underlying molecular mechanism of its action in bladder cancer in vitro and in vivo. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was carried out to quantify the expression levels of miR‑612 in bladder cancer tissues and cell lines. The data demonstrated that the level of miR‑612 expression was significantly reduced in bladder cancer tissues and cell lines, as compared with that in non‑cancerous tissues and cells. Reduced miR‑612 expression was associated with advanced tumor, lymph node and metastasis stages, and with distant metastasis of bladder cancer. A functional study revealed that transfection of cells with an miR‑612 mimic suppressed bladder cancer cell growth, colony formation, migration, invasion and epithelial-mesenchymal transition. Bioinformatics analysis identified that miR‑612 targeted the expression of malic enzyme 1 (ME1), and this was confirmed by western blot and luciferase reporter assay results. Furthermore, the ME1 expression levels were inversely associated with miR‑612 expression in bladder cancer tissue specimens. In addition, knockdown of ME1 expression using ME1 siRNA mimicked the effect of ectopic miR‑612 overexpression in bladder cancer cells in terms of tumor cell growth, migration and invasion. By contrast, ME1 overexpression weakened the inhibitory effect of the miR‑612 mimic in bladder cancer cells. In conclusion, the present study demonstrated that miR‑612 may function as a tumor suppressor in bladder cancer by targeting ME1 expression.

  11. Establishment and in-house validation of stem-loop RT PCR method for MicroRNA398 expression analysis

    Directory of Open Access Journals (Sweden)

    Timotijević Gordana S.

    2015-01-01

    Full Text Available MicroRNAs (miRNAs belong to the class of small non-coding RNAs which have important roles throughout development as well as in plant response to diverse environmental stresses. Some of plant miRNAs are essential for regulation and maintenance of nutritive homeostasis when nutrients are in excess or shortage comparing to optimal concentration for certain plant species. Better understanding of miRNAs functions implies development of efficient technology for profiling their gene expression. We set out to establish validate the methodology for miRNA gene expression analysis in cucumber grown under suboptimal mineral nutrient regimes, including iron deficiency. Reverse transcription by “stem-loop” primers in combination with Real time PCR method is one of potential approaches for quantification of miRNA gene expression. In this paper we presented a method for “stem loop” primer design specific for miR398, as well as reaction optimization and determination of Real time PCR efficiency. Proving the accuracy of this method was imperative as “stem loop” RT which consider separate transcription of target and endogenous control. The method was verified by comparison of the obtained data with results of miR398 expression achieved using a commercial kit based on simultaneous conversion of all RNAs in cDNAs. [Projekat Ministarstva nauke Republike Srbije, br. 173005 i br. ON-173028

  12. Targeted microRNA expression in dairy cattle directs production of β-lactoglobulin-free, high-casein milk

    Science.gov (United States)

    Jabed, Anower; Wagner, Stefan; McCracken, Judi; Wells, David N.; Laible, Goetz

    2012-01-01

    Milk from dairy cows contains the protein β-lactoglobulin (BLG), which is not present in human milk. As it is a major milk allergen, we wished to decrease BLG levels in milk by RNAi. In vitro screening of 10 microRNAs (miRNAs), either individually or in tandem combinations, identified several that achieved as much as a 98% knockdown of BLG. One tandem construct was expressed in the mammary gland of an ovine BLG-expressing mouse model, resulting in 96% knockdown of ovine BLG in milk. Following this in vivo validation, we produced a transgenic calf, engineered to express these tandem miRNAs. Analysis of hormonally induced milk from this calf demonstrated absence of BLG and a concurrent increase of all casein milk proteins. The findings demonstrate miRNA–mediated depletion of an allergenic milk protein in cattle and validate targeted miRNA expression as an effective strategy to alter milk composition and other livestock traits. PMID:23027958

  13. Differences in the expression of microRNAs and their predicted gene targets between cauda epididymal and ejaculated boar sperm.

    Science.gov (United States)

    Chang, Yu; Dai, Ding-Hui; Li, Yuan; Zhang, Yan; Zhang, Ming; Zhou, Guang-Bin; Zeng, Chang-Jun

    2016-12-01

    Mammalian spermatozoa gradually mature and acquire fertility during the transition from the testis to the caput and cauda epididymis, after which they are stored at the tail of the epididymis and the ampulla of vas deferens. During ejaculation, mixing of spermatozoa with the secretions of accessory sex glands leads to their dilution and changes in their function. Although remarkable progress has been made toward the understanding of changes in spermatozoa biochemistry and function before and after ejaculation, it is unknown whether microRNAs (miRNAs) are involved in regulating the function of spermatozoa during the transition between the cauda epididymis and ejaculation. In this study, 48 miRNAs were selected for analysis on the basis of their potential involvement in spermatogenesis, sperm maturation, and quality parameters markers. The differential expression levels of these 48 miRNAs between the caudal epididymis and fresh ejaculates of boar spermatozoa were determined. We found that 15 miRNAs were significantly differentially expressed (eight downregulated and seven upregulated) between boar cauda epididymal and fresh spermatozoa. Five miRNAs hypothesized to be involved in sperm apoptosis were further tested to demonstrate their influence over the expression of their target mRNAs using quantitative reverse-transcription polymerase chain reaction. Together, our findings suggest that these differentially expressed miRNAs are associated with the functional regulation of spermatozoa between cauda epididymis and ejaculation. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Parthenogenic blastocysts derived from cumulus-free in vitro matured human oocytes.

    Directory of Open Access Journals (Sweden)

    Sohyun L McElroy

    Full Text Available BACKGROUND: Approximately 20% of oocytes are classified as immature and discarded following intracytoplasmic sperm injection (ICSI procedures. These oocytes are obtained from gonadotropin-stimulated patients, and are routinely removed from the cumulus cells which normally would mature the oocytes. Given the ready access to these human oocytes, they represent a potential resource for both clinical and basic science application. However culture conditions for the maturation of cumulus-free oocytes have not been optimized. We aimed to improve maturation conditions for cumulus-free oocytes via culture with ovarian paracrine/autocrine factors identified by single cell analysis. METHODOLOGY/PRINCIPAL FINDING: Immature human oocytes were matured in vitro via supplementation with ovarian paracrine/autocrine factors that were selected based on expression of ligands in the cumulus cells and their corresponding receptors in oocytes. Matured oocytes were artificially activated to assess developmental competence. Gene expression profiles of parthenotes were compared to IVF/ICSI embryos at morula and blastocyst stages. Following incubation in medium supplemented with ovarian factors (BDNF, IGF-I, estradiol, GDNF, FGF2 and leptin, a greater percentage of oocytes demonstrated nuclear maturation and subsequently, underwent parthenogenesis relative to control. Similarly, cytoplasmic maturation was also improved as indicated by development to blastocyst stage. Parthenogenic blastocysts exhibited mRNA expression profiles similar to those of blastocysts obtained after IVF/ICSI with the exception for MKLP2 and PEG1. CONCLUSIONS/SIGNIFICANCE: Human cumulus-free oocytes from hormone-stimulated cycles are capable of developing to blastocysts when cultured with ovarian factor supplementation. Our improved IVM culture conditions may be used for obtaining mature oocytes for clinical purposes and/or for derivation of embryonic stem cells following parthenogenesis or nuclear

  15. Parthenogenic Blastocysts Derived from Cumulus-Free In Vitro Matured Human Oocytes

    Science.gov (United States)

    McElroy, Sohyun L.; Byrne, James A.; Chavez, Shawn L.; Behr, Barry; Hsueh, Aaron J.; Westphal, Lynn M.; Reijo Pera, Renee A.

    2010-01-01

    Background Approximately 20% of oocytes are classified as immature and discarded following intracytoplasmic sperm injection (ICSI) procedures. These oocytes are obtained from gonadotropin-stimulated patients, and are routinely removed from the cumulus cells which normally would mature the oocytes. Given the ready access to these human oocytes, they represent a potential resource for both clinical and basic science application. However culture conditions for the maturation of cumulus-free oocytes have not been optimized. We aimed to improve maturation conditions for cumulus-free oocytes via culture with ovarian paracrine/autocrine factors identified by single cell analysis. Methodology/Principal Finding Immature human oocytes were matured in vitro via supplementation with ovarian paracrine/autocrine factors that were selected based on expression of ligands in the cumulus cells and their corresponding receptors in oocytes. Matured oocytes were artificially activated to assess developmental competence. Gene expression profiles of parthenotes were compared to IVF/ICSI embryos at morula and blastocyst stages. Following incubation in medium supplemented with ovarian factors (BDNF, IGF-I, estradiol, GDNF, FGF2 and leptin), a greater percentage of oocytes demonstrated nuclear maturation and subsequently, underwent parthenogenesis relative to control. Similarly, cytoplasmic maturation was also improved as indicated by development to blastocyst stage. Parthenogenic blastocysts exhibited mRNA expression profiles similar to those of blastocysts obtained after IVF/ICSI with the exception for MKLP2 and PEG1. Conclusions/Significance Human cumulus-free oocytes from hormone-stimulated cycles are capable of developing to blastocysts when cultured with ovarian factor supplementation. Our improved IVM culture conditions may be used for obtaining mature oocytes for clinical purposes and/or for derivation of embryonic stem cells following parthenogenesis or nuclear transfer. PMID

  16. The microRNA machinery regulates fasting-induced changes in gene expression and longevity inCaenorhabditis elegans.

    Science.gov (United States)

    Kogure, Akiko; Uno, Masaharu; Ikeda, Takako; Nishida, Eisuke

    2017-07-07

    Intermittent fasting (IF) is a dietary restriction regimen that extends the lifespans of Caenorhabditis elegans and mammals by inducing changes in gene expression. However, how IF induces these changes and promotes longevity remains unclear. One proposed mechanism involves gene regulation by microRNAs (miRNAs), small non-coding RNAs (∼22 nucleotides) that repress gene expression and whose expression can be altered by fasting. To test this proposition, we examined the role of the miRNA machinery in fasting-induced transcriptional changes and longevity in C. elegans We revealed that fasting up-regulated the expression of the miRNA-induced silencing complex (miRISC) components, including Argonaute and GW182, and the miRNA-processing enzyme DRSH-1 (the ortholog of the Drosophila Drosha enzyme). Our lifespan measurements demonstrated that IF-induced longevity was suppressed by knock-out or knockdown of miRISC components and was completely inhibited by drsh-1 ablation. Remarkably, drsh-1 ablation inhibited the fasting-induced changes in the expression of the target genes of DAF-16, the insulin/IGF-1 signaling effector in C. elegans Fasting-induced transcriptome alterations were substantially and modestly suppressed in the drsh-1 null mutant and the null mutant of ain-1 , a gene encoding GW182, respectively. Moreover, miRNA array analyses revealed that the expression levels of numerous miRNAs changed after 2 days of fasting. These results indicate that components of the miRNA machinery, especially the miRNA-processing enzyme DRSH-1, play an important role in mediating IF-induced longevity via the regulation of fasting-induced changes in gene expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Characterization and identification of differentially expressed microRNAs during the process of the peribiliary fibrosis induced by Clonorchis sinensis.

    Science.gov (United States)

    Yan, Chao; Shen, Li-Ping; Ma, Rui; Li, Bo; Li, Xiang-Yang; Hua, Hui; Zhang, Bo; Yu, Qian; Wang, Yu-Gang; Tang, Ren-Xian; Zheng, Kui-Yang

    2016-09-01

    Clonorchis sinensis (C. sinensis) infection can lead to biliary fibrosis. MicroRNAs (miRNAs) play important roles in regulation of genes expression in the liver diseases. However, the differential expression of miRNAs that probably regulates the portal fibrogenesis caused by C. sinensis has not yet been investigated. Hepatic miRNAs expression profiles from C. sinensis-infected mice at different time-points were analyzed by miRNA microarray and validated by quantitative real-time PCR (qRT-PCR). 349 miRNAs were differentially expressed in the liver of the C. sinensis-infected mice at 2, 8 or 16weeks post infection (p.i.), compared with those at 0week p.i., and there were 143 down-regulated and 206 up-regulated miRNAs among them. These all dysregulated miRNAs were potentially involved in the pathological processes of clonorchiasis by regulation of cancer-related signaling pathway, TGF-β signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway, PI3K /AKT signaling pathway, etc. 169 of these dysregulated miRNAs were predicted to be involved in the TGF/Smads signaling pathway which plays an important role in the biliary fibrosis caused by C. sinensis. Additionally, miRNA-32, miRNA-34a, miRNA-125b and miRNA-497 were negatively correlated with Smad7 expression, indicating these miRNAs may specifically down-regulate Smad7 expression and participate in regulation of biliary fibrosis caused by C. sinensis. The results of the present study for the first time demonstrated that miRNAs were differentially expressed in the liver of mice infected by C. sinensis, and these miRNAs may play important roles in regulation of peribiliary fibrosis caused by C. sinensis, which may provide possible therapeutic targets for clonorchiasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects.

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    Full Text Available Recent studies suggest that alterations in expression of genes, including those which regulate neural and structural plasticity, may be crucial in the pathogenesis of depression. MicroRNAs (miRNAs are newly discovered regulators of gene expression that have recently been implicated in a variety of human diseases, including neuropsychiatric diseases.The present study was undertaken to examine whether the miRNA network is altered in the brain of depressed suicide subjects. Expression of miRNAs was measured in prefrontal cortex (Brodmann Area 9 of antidepressant-free depressed suicide (n = 18 and well-matched non-psychiatric control subjects (n = 17 using multiplex RT-PCR plates. We found that overall miRNA expression was significantly and globally down-regulated in prefrontal cortex of depressed suicide subjects. Using individual tests of statistical significance, 21 miRNAs were significantly decreased at p = 0.05 or better. Many of the down-regulated miRNAs were encoded at nearby chromosomal loci, shared motifs within the 5'-seeds, and shared putative mRNA targets, several of which have been implicated in depression. In addition, a set of 29 miRNAs, whose expression was not pairwise correlated in the normal controls, showed a high degree of co-regulation across individuals in the depressed suicide group.The findings show widespread changes in miRNA expression that are likely to participate in pathogenesis of major depression and/or suicide. Further studies are needed to identify whether the miRNA changes lead to altered expression of prefrontal cortex mRNAs, either directly (by acting as miRNA targets or indirectly (e.g., by affecting transcription factors.

  19. Hepatic microRNA expression is associated with the response to interferon treatment of chronic hepatitis C

    Directory of Open Access Journals (Sweden)

    Kuroda Masahiko

    2010-10-01

    Full Text Available Abstract Background HCV infection frequently induces chronic liver diseases. The current standard treatment for chronic hepatitis (CH C combines pegylated interferon (IFN and ribavirin, and is less than ideal due to undesirable effects. MicroRNAs (miRNAs are endogenous small non-coding RNAs that control gene expression by degrading or suppressing the translation of target mRNAs. In this study we administered the standard combination treatment to CHC patients. We then examined their miRNA expression profiles in order to identify the miRNAs that were associated with each patient's drug response. Methods 99 CHC patients with no anti-viral therapy history were enrolled. The expression level of 470 mature miRNAs found their biopsy specimen, obtained prior to the combination therapy, were quantified using microarray analysis. The miRNA expression pattern was classified based on the final virological response to the combination therapy. Monte Carlo Cross Validation (MCCV was used to validate the outcome of the prediction based on the miRNA expression profile. Results We found that the expression level of 9 miRNAs were significantly different in the sustained virological response (SVR and non-responder (NR groups. MCCV revealed an accuracy, sensitivity, and specificity of 70.5%, 76.5% and 63.3% in SVR and non-SVR and 70.0%, 67.5%, and 73.7% in relapse (R and NR, respectively. Conclusions The hepatic miRNA expression pattern that exists in CHC patients before combination therapy is associated with their therapeutic outcome. This information can be utilized as a novel biomarker to predict drug response and can also be applied to developing novel anti-viral therapy for CHC patients.

  20. City block distance and rough-fuzzy clustering for identification of co-expressed microRNAs.

    Science.gov (United States)

    Paul, Sushmita; Maji, Pradipta

    2014-06-01

    The microRNAs or miRNAs are short, endogenous RNAs having ability to regulate mRNA expression at the post-transcriptional level. Various studies have revealed that miRNAs tend to cluster on chromosomes. The members of a cluster that are in close proximity on chromosomes are highly likely to be processed as co-transcribed units. Therefore, a large proportion of miRNAs are co-expressed. Expression profiling of miRNAs generates a huge volume of data. Complicated networks of miRNA-mRNA interaction increase the challenges of comprehending and interpreting the resulting mass of data. In this regard, this paper presents a clustering algorithm in order to extract meaningful information from miRNA expression data. It judiciously integrates the merits of rough sets, fuzzy sets, the c-means algorithm, and the normalized range-normalized city block distance to discover co-expressed miRNA clusters. While the membership functions of fuzzy sets enable efficient handling of overlapping partitions in a noisy environment, the concept of lower and upper approximations of rough sets deals with uncertainty, vagueness, and incompleteness in cluster definition. The city block distance is used to compute the membership functions of fuzzy sets and to find initial partition of a data set, and therefore helps to handle minute differences between two miRNA expression profiles. The effectiveness of the proposed approach, along with a comparison with other related methods, is demonstrated for several miRNA expression data sets using different cluster validity indices. Moreover, the gene ontology is used to analyze the functional consistency and biological significance of generated miRNA clusters.

  1. Circulating microRNA expression and their target genes in deep vein thrombosis: A systematic review and bioinformatics analysis.

    Science.gov (United States)

    Jiang, Zhiyun; Ma, Junfen; Wang, Qian; Wu, Fan; Ping, Jiedan; Ming, Liang

    2017-12-01

    Clinically, D-dimer is the only established biomarker for the diagnosis of deep vein thrombosis (DVT). However, low specificity discounts its diagnostic value. Several publications have illustrated the differentially expressed circulating microRNAs (miRNAs) and their potential diagnostic values for DVT patients. Therefore, we systematically evaluated present researches and further performed bioinformatics analysis, to provide new insights into the diagnosis and underlying mechanisms of miRNAs in DVT. Databases PubMed, Web of Science, and Embase were searched from January 2000 to April 2017. Articles on circulating miRNAs expression in DVT were retrieved and reference lists were handpicked. Bioinformatics analysis was conducted for further evaluation. Eventually, the eligibility criteria for inclusion in this study were met by 3 articles, which consisted of 13 specially expressed miRNAs and 149 putative target genes. Two representative KEGG pathways, vascular endothelial growth factor and phosphatidylinositol 3'-kinase (PI3K)-Akt signaling pathway, seemed to participate in the regulatory network of thrombosis. Despite the potential diagnostic value and regulation effect, the results of circulating miRNAs used as biomarkers for DVT are not so encouraging. More in-depth and larger sample investigations are needed to explore the diagnostic and therapeutic values of miRNAs for DVT. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  2. A Complex Network of MicroRNAs Expressed in Brain and Genes Associated with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Santosh Shinde

    2013-01-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a rare neurological disease affecting mainly motor neurons and often leads to paralysis and death in extreme cases. For exploring the role of microRNAs in genes regulation in ALS disease, miRanda was employed for prediction of target sites of miRNAs expressed in various parts of brain and CNS on 35 genes associated with ALS. Similar search was conducted using TargetScan and PicTar for prediction of target sites in 3′ UTR only. 1456 target sites were predicted using miRanda and more target sites were found in 5′ UTR and CDS region as compared to 3′ UTR. 11 target sites were predicted to be common by all the algorithms and, thus, these represent the most significant sites. Target site hotspots were identified and were recognized as hotspots for multiple miRNAs action, thus, acting as favoured sites of action for the repression of gene expression. The complex interplay of genes and miRNAs brought about by multiplicity and cooperativity was explored. This investigation will aid in elucidating the mechanism of action of miRNAs for the considered genes. The intrinsic network of miRNAs expressed in nervous system and genes associated with ALS may provide rapid and effective outcome for therapeutic applications and diagnosis.

  3. Promiscuous Effects of Some Phenolic Natural Products on Inflammation at Least in Part Arise from Their Ability to Modulate the Expression of Global Regulators, Namely microRNAs

    Directory of Open Access Journals (Sweden)

    Esmerina Tili

    2016-09-01

    Full Text Available Recent years have seen the exploration of a puzzling number of compounds found in human diet that could be of interest for prevention or treatment of various pathologies. Although many of these natural products (NPs have long been used as remedies, their molecular effects still remain elusive. With the advent of biotechnology revolution, NP studies turned from chemistry and biochemistry toward global analysis of gene expression. Hope is to use genetics to identify groups of patient for whom certain NPs or their derivatives may offer new preventive or therapeutic treatments. Recently, microRNAs have gained the statute of global regulators controlling cell homeostasis by regulating gene expression through genetic and epigenetic regulatory loops. Realization that certain plant polyphenols can modify microRNA expression and thus impact gene expression globally, initiated new, mainly in vitro studies, in particular to determine phytochemicals effects on inflammatory response, whose exacerbation has been linked to several disorders including cancer, auto-immune, metabolic, cardiovascular and neuro-inflammatory diseases. However, very few mechanistic insights have been provided, given the complexity of genetic regulatory networks implicated. In this review, we will concentrate on data showing the potential interest of some plant polyphenols in manipulating the expression of pro- and anti-inflammatory microRNAs in pathological conditions.

  4. Ouabain stimulates a Na+/K+-ATPase-mediated SFK-activated signalling pathway that regulates tight junction function in the mouse blastocyst.

    Directory of Open Access Journals (Sweden)

    Holly Giannatselis

    Full Text Available The Na(+/K(+-ATPase plays a pivotal role during preimplantation development; it establishes a trans-epithelial ionic gradient that facilitates the formation of the fluid-filled blastocyst cavity, crucial for implantation and successful pregnancy. The Na(+/K(+-ATPase is also implicated in regulating tight junctions and cardiotonic steroid (CTS-induced signal transduction via SRC. We investigated the expression of SRC family kinase (SFK members, Src and Yes, during preimplantation development and determined whether SFK activity is required for blastocyst formation. Embryos were collected following super-ovulation of CD1 or MF1 female mice. RT-PCR was used to detect SFK mRNAs encoding Src and Yes throughout preimplantation development. SRC and YES protein were localized throughout preimplantation development. Treatment of mouse morulae with the SFK inhibitors PP2 and SU6656 for 18 hours resulted in a reversible blockade of progression to the blastocyst stage. Blastocysts treated with 10(-3 M ouabain for 2 or 10 minutes and immediately immunostained for phosphorylation at SRC tyr418 displayed reduced phosphorylation while in contrast blastocysts treated with 10(-4 M displayed increased tyr418 fluorescence. SFK inhibition increased and SFK activation reduced trophectoderm tight junction permeability in blastocysts. The results demonstrate that SFKs are expressed during preimplantation development and that SFK activity is required for blastocyst formation and is an important mediator of trophectoderm tight junction permeability.

  5. The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated

    Directory of Open Access Journals (Sweden)

    Shahab Shubin W

    2012-08-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are a class of small RNAs that have been linked to a number of diseases including cancer. The potential application of miRNAs in the diagnostics and therapeutics of ovarian and other cancers is an area of intense interest. A current challenge is the inability to accurately predict the functional consequences of exogenous modulations in the levels of potentially therapeutic miRNAs. Methods In an initial effort to systematically address this issue, we conducted miRNA transfection experiments using two miRNAs (miR-7, miR-128. We monitored the consequent changes in global patterns of gene expression by microarray and quantitative (real-time polymerase chain reaction. Network analysis of the expression data was used to predict the consequence of each transfection on cellular function and these predictions were experimentally tested. Results While ~20% of the changes in expression patterns of hundreds to thousands of genes could be attributed to direct miRNA-mRNA interactions, the majority of the changes are indirect, involving the downstream consequences of miRNA-mediated changes in regulatory gene expression. The changes in gene expression induced by individual miRNAs are functionally coordinated but distinct between the two miRNAs. MiR-7 transfection into ovarian cancer cells induces changes in cell adhesion and other developmental networks previously associated with epithelial-mesenchymal transitions (EMT and other processes linked with metastasis. In contrast, miR-128 transfection induces changes in cell cycle control and other processes commonly linked with cellular replication. Conclusions The functionally coordinated patterns of gene expression displayed by different families of miRNAs have the potential to provide clinicians with a strategy to treat cancers from a systems rather than a single gene perspective.

  6. MicroRNA-146a and AMD3100, two ways to control CXCR4 expression in acute myeloid leukemias

    International Nuclear Information System (INIS)

    Spinello, I; Quaranta, M T; Riccioni, R; Riti, V; Pasquini, L; Boe, A; Pelosi, E; Vitale, A; Foà, R; Testa, U; Labbaye, C

    2011-01-01

    CXCR4 is a negative prognostic marker in acute myeloid leukemias (AMLs). Therefore, it is necessary to develop novel ways to inhibit CXCR4 expression in leukemia. AMD3100 is an inhibitor of CXCR4 currently used to mobilize cancer cells. CXCR4 is a target of microRNA (miR)-146a that may represent a new tool to inhibit CXCR4 expression. We then investigated CXCR4 regulation by miR-146a in primary AMLs and found an inverse correlation between miR-146a and CXCR4 protein expression levels in all AML subtypes. As the lowest miR-146a expression levels were observed in M5 AML, we analyzed the control of CXCR4 expression by miR-146a in normal and leukemic monocytic cells and showed that the regulatory miR-146a/CXCR4 pathway operates during monocytopoiesis, but is deregulated in AMLs. AMD3100 treatment and miR-146a overexpression were used to inhibit CXCR4 in leukemic cells. AMD3100 treatment induces the decrease of CXCR4 protein expression, associated with miR-146a increase, and increases sensitivity of leukemic blast cells to cytotoxic drugs, this effect being further enhanced by miR-146a overexpression. Altogether our data indicate that miR-146a and AMD3100, acting through different mechanism, downmodulate CXCR4 protein levels, impair leukemic cell proliferation and then may be used in combination with anti-leukemia drugs, for development of new therapeutic strategies

  7. Vascular endothelial growth factor C promotes cervical cancer cell invasiveness via regulation of microRNA-326/cortactin expression.

    Science.gov (United States)

    Cheng, Yang; Jiang, Shuyi; Yuan, Jin; Liu, Junxiu; Simoncini, Tommaso

    2018-04-16

    Vascular endothelial growth factor C (VEGF-C) accelerates cervical cancer metastasis, while the detailed mechanism remains largely unknown. Recent evidence indicates that microRNA play a crucial role in controlling cancer cell invasiveness. In the present study, we investigated the role of miR-326 in VEGF-C-induced cervical cancer cell invasion. VEGF-C expression was higher and miR-326 was much lower in primary cervical cancer specimens than that in non-cancerous specimens, and a negative correlation between VEGF-C and miR-326 was found. On cervical carcinoma cell line SiHa cells, treatment with VEGF-C downregulated miR-326 level and increased cortactin protein expression. Transfection with miR-326 mimic reversed cortactin expression induced by VEGF-C, suggesting that VEGF-C increased cortactin via downregulation of miR-326. VEGF-C activated c-Src and c-Src inhibitor PP2 abolished VEGF-C effect on miR-326 and cortactin expression, implying that VEGF-C regulated miR-326/cortactin via c-Src signaling. VEGF-C promoted SiHa cell invasion index, which was largely inhibited by transfection with miR-326 antagonist or by siRNA against cortactin. In conclusion, our findings implied that VEGF-C reduced miR-326 expression and increased cortactin expression through c-Src signaling, leading to enhanced cervical cancer invasiveness. This may shed light on potential therapeutic strategies for cervical cancer therapy.

  8. Identification of Suitable Endogenous Normalizers for qRT- PCR Analysis of Plasma microRNA Expression in Essential Hypertension

    Science.gov (United States)

    Solayman, Mohamed Hassan M.; Langaee, Taimour; Patel, Archanakumari; El-Wakeel, Lamia; El-Hamamsy, Manal; Badary, Osama; Johnson, Julie A.

    2016-01-01

    Circulating microRNAs (miRNAs) are promising biomarkers for many diseases. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is a gold standard for miRNA expression profiling that requires proper data normalization. Since there is no universal normalizer, it is recommended to evaluate normalizers under every experimental condition. This study describes the identification of suitable endogenous normalizer(s) (ENs) for plasma miRNA expression in essential hypertension. Expression levels of 5 candidate ENs and 2 plasma quality markers were determined by qRT-PCR in plasma samples from 18 hypertensive patients and 10 healthy controls. NormFinder, GeNorm, and DataAssist software programs were used to select the best EN(s). Expression levels of the 5 candidate ENs were also analyzed in urine samples from hypertensive patients and compared to the plasma samples of the hypertensive patients. Among the analyzed candidates, hsa-miR-92a-3p was identified as the best EN, and hsa-miR-21-5p and hsa-miR-16-5p as next best. Moreover, hsa-miR-92a-3p showed the most consistent expression between plasma and urine In conclusion, this study showed that hsa-miR-92a-3p, hsa-miR-21-5p, and hsa-miR-16-5p may be used as normalizers for plasma miRNA expression data in essential hypertension studies. PMID:26798072

  9. Analysis of altered microRNA expression profile in the reparative interface of the femoral head with osteonecrosis.

    Science.gov (United States)

    Yuan, Heng-feng; Von Roemeling, Christina; Gao, Hui-di; Zhang, Jing; Guo, Chang-an; Yan, Zuo-qin

    2015-04-01

    The reparative reaction is considered to be important during the occurrence of collapse in the femoral head with osteonecrosis (ONFH), but little is known about the long-term reparative process. The aim of this study was to determine and analyze the altered microRNA expression profile in the reparative interface of ONFH, and further validate the expression of the involved genes in the predicted pathways. Microarray analysis was performed comparing the reparative interface of patients with ONFH and normal tissue of patients with fresh femoral neck fracture (FNF) and partly validated by real-time PCR. Potential target genes of differentially expressed miRNAs were predicted by TargetScan and miRanda, and the target genes were used for further bioinformatics analysis such as Gene Ontology and Pathway assay. The filtered miRNAs and genes in the predict pathways were further examined by real-time PCR in another 6 independent ONFH patients. Among the 2578 miRNAs identified, 17 were consistently differentially expressed, 12 of which are up-regulated and 5 down-regulated. GO classification showed that the predicted target genes of these miRNAs are involved in signal transduction, cell differentiation, methylation, cell growth and apoptosis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) classification indicated that these genes play a role in angiogenesis and Wnt signaling pathways. The expression of miR-34a and miR-146a and genes in the predict pathways were significantly up-regulated. This study presented a global view of miRNA expression in the reparative interface of osteonecrosis. In addition, our data provided novel and robust information for further researches in the pathogenesis and molecular events of ONFH. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Differential expression of microRNAs and other small RNAs in barley between water and drought conditions

    Science.gov (United States)

    Hackenberg, Michael; Gustafson, Perry; Langridge, Peter; Shi, Bu-Jun

    2015-01-01

    Drought is a major constraint to crop production, and microRNAs (miRNAs) play an important role in plant drought tolerance. Analysis of miRNAs and other classes of small RNAs (sRNAs) in barley grown under water and drought conditions reveals that drought selectively regulates expression of miRNAs and other classes of sRNAs. Low-expressed miRNAs and all repeat-associated siRNAs (rasiRNAs) tended towards down-regulation, while tRNA-derived sRNAs (tsRNAs) had the tendency to be up-regulated, under drought. Antisense sRNAs (putative siRNAs) did not have such a tendency under drought. In drought-tolerant transgenic barley overexpressing DREB transcription factor, most of the low-expressed miRNAs were also down-regulated. In contrast, tsRNAs, rasiRNAs and other classes of sRNAs were not consistently expressed between the drought-treated and transgenic plants. The differential expression of miRNAs and siRNAs was further confirmed by Northern hybridization and quantitative real-time PCR (qRT-PCR). Targets of the drought-regulated miRNAs and siRNAs were predicted, identified by degradome libraries and confirmed by qRT-PCR. Their functions are diverse, but most are involved in transcriptional regulation. Our data provide insight into the expression profiles of miRNAs and other sRNAs, and their relationship under drought, thereby helping understand how miRNAs and sRNAs respond to drought stress in cereal crops. PMID:24975557

  11. Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer

    International Nuclear Information System (INIS)

    Arndt, Greg M; Retzlaff, Kathy; Bittner, Anton; Raponi, Mitch; Dossey, Lesley; Cullen, Lara M; Lai, Angela; Druker, Riki; Eisbacher, Michael; Zhang, Chunyan; Tran, Nham; Fan, Hongtao

    2009-01-01

    MicroRNAs (MiRNAs) are short non-coding RNAs that control protein expression through various mechanisms. Their altered expression has been shown to be associated with various cancers. The aim of this study was to profile miRNA expression in colorectal cancer (CRC) and to analyze the function of specific miRNAs in CRC cells. MirVana miRNA Bioarrays were used to determine the miRNA expression profile in eight CRC cell line models, 45 human CRC samples of different stages, and four matched normal colon tissue samples. SW620 CRC cells were stably transduced with miR-143 or miR-145 expression vectors and analyzed in vitro for cell proliferation, cell differentiation and anchorage-independent growth. Signalling pathways associated with differentially expressed miRNAs were identified using a gene set enrichment analysis. The expression analysis of clinical CRC samples identified 37 miRNAs that were differentially expressed between CRC and normal tissue. Furthermore, several of these miRNAs were associated with CRC tumor progression including loss of miR-133a and gain of miR-224. We identified 11 common miRNAs that were differentially expressed between normal colon and CRC in both the cell line models and clinical samples. In vitro functional studies indicated that miR-143 and miR-145 appear to function in opposing manners to either inhibit or augment cell proliferation in a metastatic CRC model. The pathways targeted by miR-143 and miR-145 showed no significant overlap. Furthermore, gene expression analysis of metastatic versus non-metastatic isogenic cell lines indicated that miR-145 targets involved in cell cycle and neuregulin pathways were significantly down-regulated in the metastatic context. MiRNAs showing altered expression at different stages of CRC could be targets for CRC therapies and be further developed as potential diagnostic and prognostic analytes. The identified biological processes and signalling pathways collectively targeted by co-expressed miRNAs in

  12. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer

    LENUS (Irish Health Repository)

    Chang, Kah Hoong

    2010-04-29

    Abstract Background Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies. Methods We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (miR-21 and miR-31) and tumour suppressor (miR-143 and miR-145) target miRNAs were assessed. Results In the array experiment, miR-26a, miR-345, miR-425 and miR-454 were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) and two small nucleolar RNA genes (RNU48 and Z30), miR-16 and miR-345 were identified as the most stably expressed reference genes. The combined use of miR-16 and miR-345 to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue. Conclusions Our study demonstrates that the top six most

  13. MicroRNA expression profiling to identify and validate reference genes for relative quantification in colorectal cancer.

    LENUS (Irish Health Repository)

    Chang, Kah Hoong

    2010-01-01

    BACKGROUND: Advances in high-throughput technologies and bioinformatics have transformed gene expression profiling methodologies. The results of microarray experiments are often validated using reverse transcription quantitative PCR (RT-qPCR), which is the most sensitive and reproducible method to quantify gene expression. Appropriate normalisation of RT-qPCR data using stably expressed reference genes is critical to ensure accurate and reliable results. Mi(cro)RNA expression profiles have been shown to be more accurate in disease classification than mRNA expression profiles. However, few reports detailed a robust identification and validation strategy for suitable reference genes for normalisation in miRNA RT-qPCR studies. METHODS: We adopt and report a systematic approach to identify the most stable reference genes for miRNA expression studies by RT-qPCR in colorectal cancer (CRC). High-throughput miRNA profiling was performed on ten pairs of CRC and normal tissues. By using the mean expression value of all expressed miRNAs, we identified the most stable candidate reference genes for subsequent validation. As such the stability of a panel of miRNAs was examined on 35 tumour and 39 normal tissues. The effects of normalisers on the relative quantity of established oncogenic (miR-21 and miR-31) and tumour suppressor (miR-143 and miR-145) target miRNAs were assessed. RESULTS: In the array experiment, miR-26a, miR-345, miR-425 and miR-454 were identified as having expression profiles closest to the global mean. From a panel of six miRNAs (let-7a, miR-16, miR-26a, miR-345, miR-425 and miR-454) and two small nucleolar RNA genes (RNU48 and Z30), miR-16 and miR-345 were identified as the most stably expressed reference genes. The combined use of miR-16 and miR-345 to normalise expression data enabled detection of a significant dysregulation of all four target miRNAs between tumour and normal colorectal tissue. CONCLUSIONS: Our study demonstrates that the top six most

  14. An Integrated Analysis of MicroRNA and mRNA Expression Profiles to Identify RNA Expression Signatures in Lambskin Hair Follicles in Hu Sheep.

    Directory of Open Access Journals (Sweden)

    Xiaoyang Lv

    Full Text Available Wave patterns in lambskin hair follicles are an important factor determining the quality of sheep's wool. Hair follicles in lambskin from Hu sheep, a breed unique to China, have 3 types of waves, designated as large, medium, and small. The quality of wool from small wave follicles is excellent, while the quality of large waves is considered poor. Because no molecular and biological studies on hair follicles of these sheep have been conducted to date, the molecular mechanisms underlying the formation of different wave patterns is currently unknown. The aim of this article was to screen the candidate microRNAs (miRNA and genes for the development of hair follicles in Hu sheep. Two-day-old Hu lambs were selected from full-sib individuals that showed large, medium, and small waves. Integrated analysis of microRNA and mRNA expression profiles employed high-throughout sequencing technology. Approximately 13, 24, and 18 differentially expressed miRNAs were found between small and large waves, small and medium waves, and medium and large waves, respectively. A total of 54, 190, and 81 differentially expressed genes were found between small and large waves, small and medium waves, and medium and large waves, respectively, by RNA sequencing (RNA-seq analysis. Differentially expressed genes were classified using gene ontology and pathway analyses. They were found to be mainly involved in cell differentiation, proliferation, apoptosis, growth, immune response, and ion transport, and were associated with MAPK and the Notch signaling pathway. Reverse transcription-polymerase chain reaction (RT-PCR analyses of differentially-expressed miRNA and genes were consistent with sequencing results. Integrated analysis of miRNA and mRNA expression indicated that, compared to small waves, large waves included 4 downregulated miRNAs that had regulatory effects on 8 upregulated genes and 3 upregulated miRNAs, which in turn influenced 13 downregulated genes. Compared to

  15. Antrodia cinnamomea sensitizes radio-/chemo-therapy of cancer stem-like cells by modulating microRNA expression.

    Science.gov (United States)

    Su, Yu-Kai; Shih, Ping-Hsiao; Lee, Wei-Hwa; Bamodu, Oluwaseun Adebayo; Wu, Alexander T H; Huang, Chun-Chih; Tzeng, Yew-Min; Hsiao, Michael; Yeh, Chi-Tai; Lin, Chien-Min

    2017-07-31

    The discovery of many tissue-specific cancer stem cells (CSCs) continues to attract scientific attention. These CSCs are considered to be associated with chemo- and radio-resistance, and consequently, failure of conventional anticancer therapies. The recent demonstration of several microRNAs as enhancers of tumorigenicity via modulation of epithelial-mesenchymal transition and cancer stemness, makes them putative novel therapeutic target in oncology. Antrodia cinnamomea is a Chinese traditional medicine with several biological functions including anti-inflammation, antioxidant, and cancer prevention. However, the anti-CSC capability of A. Cinnamomea is not clear yet. To investigate the inhibitory effect of A. cinnamomea mycelium and extract on CSCs derived from various human cancer cell lines using our in-house therapeutics and human genome-wide miRNA screening panels. A broad range of human cancer cell lines, including the acute monocytic leukemia (THP-1), glioblastoma multiforme (GBM 8401), lung carcinoma (A549), breast adenocarcinoma (MDA-MB-231), hepatoblastoma (HepG2), colorectal adenocarcinoma (SW620), and foreskin fibroblast (HS68), were exposed to A. cinnamomea in this study. CD133 + CSCs generated from the cell lines were characterized and isolated by flow cytometry, effect of chemo- and radiotherapy was assessed using the MTT assay, while the RT-PCR and human genome wide qRT-PCR determined the differential gene expression patterns. A comparative analysis of the anticancer effect of A. cinnamomea and Cisplatin, Taxol, or irradiation was also performed. Our results indicated that A. cinnamomea mycelium and its ethyl acetate extracts showed anti-proliferation effects against all types of CSCs, especially the lung, breast, and head and neck squamous cell carcinoma CSCs. Furthermore, CSCs treatment with A. cinnamomea combined with irradiation or chemotherapeutics demonstrated significant anti-cancer effect. We also established an association between the CSC

  16. A comparison of microRNA expression profiles from splenic hemangiosarcoma, splenic nodular hyperplasia, and normal spleens of dogs.

    Science.gov (United States)

    Grimes, Janet A; Prasad, Nripesh; Levy, Shawn; Cattley, Russell; Lindley, Stephanie; Boothe, Harry W; Henderson, Ralph A; Smith, Bruce F

    2016-12-03

    Splenic masses are common in older dogs; yet diagnosis preceding splenectomy and histopathology remains elusive. MicroRNAs (miRNAs) are short, non-coding RNAs that play a role in post-transcriptional regulation, and differential expression of miRNAs between normal and tumor tissue has been used to diagnose neoplastic diseases. The objective of this study was to determine differential expression of miRNAs by use of RNA-sequencing in canine spleens that were histologically confirmed as hemangiosarcoma, nodular hyperplasia, or normal. Twenty-two miRNAs were found to be differentially expressed in hemangiosarcoma samples (4 between hemangiosarcoma and both nodular hyperplasia and normal spleen and 18 between hemangiosarcoma and normal spleen only). In particular, mir-26a, mir-126, mir-139, mir-140, mir-150, mir-203, mir-424, mir-503, mir-505, mir-542, mir-30e, mir-33b, mir-365, mir-758, mir-22, and mir-452 are of interest in the pathogenesis of hemangiosarcoma. Findings of this study confirm the hypothesis that miRNA expression profiles are different between canine splenic hemangiosarcoma, nodular hyperplasia, and normal spleens. A large portion of the differentially expressed miRNAs have roles in angiogenesis, with an additional group of miRNAs being dysregulated in vascular disease processes. Two other miRNAs have been implicated in cancer pathways such as PTEN and cell cycle checkpoints. The finding of multiple miRNAs with roles in angiogenesis and vascular disease is important, as hemangiosarcoma is a tumor of endothelial cells, which are driven by angiogenic stimuli. This study shows that miRNA dysregulation is a potential player in the pathogenesis of canine splenic hemangiosarcoma.

  17. MicroRNAs-143 and -145 induce epithelial to mesenchymal transition and modulate the expression of junction proteins.

    Science.gov (United States)

    Avalle, Lidia; Incarnato, Danny; Savino, Aurora; Gai, Marta; Marino, Francesca; Pensa, Sara; Barbieri, Isaia; Stadler, Michael B; Provero, Paolo; Oliviero, Salvatore; Poli, Valeria

    2017-10-01

    Transforming growth factor (TGF)-β is one of the major inducers of epithelial to mesenchymal transition (EMT), a crucial program that has a critical role in promoting carcinoma's metastasis formation. MicroRNAs-143 and -145, which are both TGF-β direct transcriptional targets, are essential for the differentiation of vascular smooth muscle cells (VSMC) during embryogenesis, a TGF-β-dependent process reminiscent of EMT. Their role in adult tissues is however less well defined and even ambiguous, as their expression was correlated both positively and negatively with tumor progression. Here we show that high expression of both miRs-143 and -145 in mouse mammary tumor cells expressing constitutively active STAT3 (S3C) is involved in mediating their disrupted cell-cell junctions. Additionally, miR-143 appears to have a unique role in tumorigenesis by enhancing cell migration in vitro and extravasation in vivo while impairing anchorage-independent growth, which may explain the contradictory reports about its role in tumors. Accordingly, we demonstrate that overexpression of either miRNA in the non-transformed mammary epithelial NMuMG cells leads to upregulation of EMT markers and of several endogenous TGF-β targets, downmodulation of a number of junction proteins and increased motility, correlating with enhanced basal and TGF-β-induced SMAD-mediated transcription. Moreover, pervasive transcriptome perturbation consistent with the described phenotype was observed. In particular, the expression of several transcription factors involved in the mitogenic responses, of MAPK family members and, importantly, of several tight junction proteins and the SMAD co-repressor TGIF was significantly reduced. Our results provide important mechanistic insight into the non-redundant role of miRs-143 and -145 in EMT-related processes in both transformed and non-transformed cells, and suggest that their expression must be finely coordinated to warrant optimal migration/invasion while

  18. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.

    Directory of Open Access Journals (Sweden)

    Sabah Kadri

    Full Text Available microRNAs (miRNAs are small (20-23 nt, non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin and Patiria miniata (sea star are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc. to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads. Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common. We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html.

  19. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.

    Science.gov (United States)

    Kadri, Sabah; Hinman, Veronica F; Benos, Panayiotis V

    2011-01-01

    microRNAs (miRNAs) are small (20-23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html. © 2011 Kadri et al.

  20. MicroRNA-1908 is upregulated in human osteosarcoma and regulates cell proliferation and migration by repressing PTEN expression.

    Science.gov (United States)

    Yuan, Hongmou; Gao, Yanjun

    2015-11-01

    Osteosarcoma is a high-grade malignant bone neoplasm. Although the introduction of chemotherapy has reduced its mortality, >50% of patients develop chemoresistance and have an extremely poor prognosis due to pulmonary metastasis. Several molecular pathways contributing to osteosarcoma development and progression have recently been identified. Various studies have addressed the genes involved in the metastasis of osteosarcoma. However, the highly complex molecular mechanisms of metastasis remain to be elucidated. Recent studies have emphasized causative links between aberrant microRNA expression patterns and osteosarcoma progression. miR-1908 is dysregulated in certain human types of cancer. The expression pattern, clinical significance and biological role of miR-1908 in osteosarcoma, however, remain largely undefined. In the present study, we showed that miR-1908 was markedly upregulated in osteosarcoma cells and tissues compared with normal bone tissues using RT-qPCR. miR-1908 upregulation in osteosarcoma tissues was significantly associated with cell proliferation, invasion, advanced TNM stage and tumor growth. Both gain- and loss-of-function studies showed that miR-1908 markedly increased the ability of osteosarcoma cells to proliferate and to invade through Matrigel in vitro. Analyses using mouse xenograft model revealed that xenografts of miR-1908 stable-expressing osteosarcoma cells exhibited a significant increase in tumor volume and weight, compared with the control group. Subsequent investigations revealed that miR-1908 directly inhibited the expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Using a luciferase reporter carrying the 3'-untranslated region (3'-UTR) of PTEN, we identified PTEN as a direct target of miR-1908. Collectively, the results showed that, miR-1908 promotes proliferation and invasion of osteosarcoma cells by repressing PTEN expression.

  1. Dysregulated expression of microRNA-150 in human papillomavirus-induced lesions of K14-HPV16 transgenic mice.

    Science.gov (United States)

    Santos, Joana M O; Fernandes, Mara; Araújo, Rita; Sousa, Hugo; Ribeiro, Joana; Bastos, Margarida M S M; Oliveira, Paula A; Carmo, Diogo; Casaca, Fátima; Silva, Sandra; Teixeira, Ana L; Gil da Costa, Rui M; Medeiros, Rui

    2017-04-15

    High-risk human papillomavirus (HPV) infection is one of the major causes of infection-related cancers worldwide. MicroRNAs (miRNAs) are a family of non-coding RNAs (ncRNAs), whose dysregulated levels may cause an aberrant expression of genes involved in oncogenic pathways and consequently lead to cancer development. This is the case of the miRNA-150 (miR-150), whose expression in HPV-induced lesions remains unclear and the present work aims to clarify it. We employed K14-HPV16 mice, which express the early genes of HPV16 in basal keratinocytes, leading to the development of hyperplastic and dysplastic skin lesions and squamous cell carcinomas, and are a representative model of HPV-induced cancers. In order to evaluate the expression of miR-150 in HPV-induced lesions, we performed qPCR in wild-type mice (HPV -/- ) and in skin lesions of K14-HPV16 transgenic mice (HPV +/- ). Matched skin samples were analyzed histologically. 24-26weeks-old HPV +/- mice showed diffuse epidermal hyperplasia and focal dysplasia in a hyperplastic background (31.8% incidence), but 28-30weeks-old HPV +/- mice presented higher incidence of dysplasia (100.0%). MiR-150 was upregulated in HPV +/- mice when compared with HPV -/- mice (p<0.001). MiR-150 was also overexpressed in diffuse dysplastic lesions when compared with hyperplastic lesions (p=0.005). The present results suggest that miR-150 is overexpressed in HPV-induced lesions in this model and its expression seems to increase with lesion progression, along the process of multi-step carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. MicroRNA-182 Promotes Lipoprotein Lipase Expression and Atherogenesisby Targeting Histone Deacetylase 9 in Apolipoprotein E-Knockout Mice.

    Science.gov (United States)

    Cheng, Hai-Peng; Gong, Duo; Zhao, Zhen-Wang; He, Ping-Ping; Yu, Xiao-Hua; Ye, Qiong; Huang, Chong; Zhang, Xin; Chen, Ling-Yan; Xie, Wei; Zhang, Min; Li, Liang; Xia, Xiao-Dan; Ouyang, Xin-Ping; Tan, Yu-Lin; Wang, Zong-Bao; Tian, Guo-Ping; Zheng, Xi-Long; Yin, Wei-Dong; Tang, Chao-Ke

    2017-12-25

    Lipoprotein lipase (LPL) expressed in macrophages plays an important role in promoting the development of atherosclerosis or atherogenesis. MicroRNA-182 (miR-182) is involved in the regulation of lipid metabolism and inflammation. However, it remains unclear how miR-182 regulates LPL and atherogenesis.Methods and Results:Using bioinformatics analyses and a dual-luciferase reporter assay, we identified histone deacetylase 9 (HDAC9) as a target gene of miR-182. Moreover, miR-182 upregulated LPL expression by directly targetingHDAC9in THP-1 macrophages. Hematoxylin-eosin (H&E), Oil Red O and Masson's trichrome staining showed that apolipoprotein E (ApoE)-knockout (KO) mice treated with miR-182 exhibited more severe atherosclerotic plaques. Treatment with miR-182 increased CD68 and LPL expression in atherosclerotic lesions in ApoE-KO mice, as indicated by double immunofluorescence staining in the aortic sinus. Increased miR-182-induced increases in LPL expression in ApoE-KO mice was confirmed by real-time quantitative polymerase chain reaction and western blotting analyses. Treatment with miR-182 also increased plasma concentrations of proinflammatory cytokines and lipids in ApoE-KO mice. The results of the present study suggest that miR-182 upregulates LPL expression, promotes lipid accumulation in atherosclerotic lesions, and increases proinflammatory cytokine secretion, likely through targetingHDAC9, leading to an acceleration of atherogenesis in ApoE-KO mice.

  3. RNA Deep Sequencing Reveals Differential MicroRNA Expression during Development of Sea Urchin and Sea Star

    Science.gov (United States)

    Kadri, Sabah; Hinman, Veronica F.; Benos, Panayiotis V.

    2011-01-01

    microRNAs (miRNAs) are small (20–23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html. PMID:22216218

  4. High-throughput sequencing of microRNA transcriptome and expression assay in the sturgeon, Acipenser schrenckii.

    Directory of Open Access Journals (Sweden)

    Lihong Yuan

    Full Text Available Sturgeons are considered as living fossils and have very high evolutionary, economical and conservation values. The multiploidy of sturgeon that has been caused by chromosome duplication may lead to the emergence of new microRNAs (miRNAs involved in the ploidy and physiological processes. In the present study, we performed the first sturgeon miRNAs analysis by RNA-seq high-throughput sequencing combined with expression assay of microarray and real-time PCR, and aimed to discover the sturgeon-specific miRNAs, confirm the expressed pattern of miRNAs and illustrate the potential role of miRNAs-targets on sturgeon biological processes. A total of 103 miRNAs were identified, including 58 miRNAs with strongly detected signals (signal >500 and P≤0.01, which were detected by microarray. Real-time PCR assay supported the expression pattern obtained by microarray. Moreover, co-expression of 21 miRNAs in all five tissues and tissue-specific expression of 16 miRNAs implied the crucial and particular function of them in sturgeon physiological processes. Target gene prediction, especially the enriched functional gene groups (369 GO terms and pathways (37 KEGG regulated by 58 miRNAs (P<0.05, illustrated the interaction of miRNAs and putative mRNAs, and also the potential mechanism involved in these biological processes. Our new findings of sturgeon miRNAs expand the public database of transcriptome information for this species, contribute to our understanding of sturgeon biology, and also provide invaluable data that may be applied in sturgeon breeding.

  5. High-throughput sequencing of microRNA transcriptome and expression assay in the sturgeon, Acipenser schrenckii.

    Science.gov (United States)

    Yuan, Lihong; Zhang, Xiujuan; Li, Linmiao; Jiang, Haiying; Chen, Jinping

    2014-01-01

    Sturgeons are considered as living fossils and have very high evolutionary, economical and conservation values. The multiploidy of sturgeon that has been caused by chromosome duplication may lead to the emergence of new microRNAs (miRNAs) involved in the ploidy and physiological processes. In the present study, we performed the first sturgeon miRNAs analysis by RNA-seq high-throughput sequencing combined with expression assay of microarray and real-time PCR, and aimed to discover the sturgeon-specific miRNAs, confirm the expressed pattern of miRNAs and illustrate the potential role of miRNAs-targets on sturgeon biological processes. A total of 103 miRNAs were identified, including 58 miRNAs with strongly detected signals (signal >500 and P≤0.01), which were detected by microarray. Real-time PCR assay supported the expression pattern obtained by microarray. Moreover, co-expression of 21 miRNAs in all five tissues and tissue-specific expression of 16 miRNAs implied the crucial and particular function of them in sturgeon physiological processes. Target gene prediction, especially the enriched functional gene groups (369 GO terms) and pathways (37 KEGG) regulated by 58 miRNAs (P<0.05), illustrated the interaction of miRNAs and putative mRNAs, and also the potential mechanism involved in these biological processes. Our new findings of sturgeon miRNAs expand the public database of transcriptome information for this species, contribute to our understanding of sturgeon biology, and also provide invaluable data that may be applied in sturgeon breeding.

  6. Differential expression of circulating microRNAs in blood and haematoma samples from patients with intracerebral haemorrhage.

    Science.gov (United States)

    Wang, Jialu; Zhu, Ying; Jin, Feng; Tang, Ling; He, Zhenwei; He, Zhiyi

    2016-06-01

    To measure the differential expression of microRNAs (miRNAs) in peripheral blood samples from patients with intracerebral haemorrhage (ICH) and to measure the levels of hsa-miR-21-5p in peripheral blood and haematoma samples from patients with ICH. This case-control study enrolled individuals with ICH in the putamen treated by craniotomy and age- and sex-matched healthy control subjects. Serum miRNA expression profiles were determined in the patient and control groups using miRNA polymerase chain reaction (PCR) arrays. The ICH-related miRNA hsa-miR-21-5p was selected and its differential expression was assessed in peripheral blood and haematoma specimens from patients with ICH compared with peripheral blood samples controls using real-time PCR. Seven patients and five control subjects were included in the miRNA expression profile analysis; and 31 patients and 22 control subjects provided samples for the real-time PCR of hsa-miR-21-5p expression. A total of 59 miRNAs were significantly downregulated in patients with ICH. Relative hsa-miR-21-5p levels of 0.43 and 0.31 for peripheral blood and haematoma samples, respectively, were obtained in the patient group compared with the control subjects. Hsa-miR-21-5p levels were significantly reduced in both peripheral blood and haematoma samples in patients with ICH. © The Author(s) 2016.

  7. A decrease in hepatic microRNA-9 expression impairs gluconeogenesis by targeting FOXO1 in obese mice.

    Science.gov (United States)

    Yan, Caifeng; Chen, Jinfeng; Li, Min; Xuan, Wenying; Su, Dongming; You, Hui; Huang, Yujie; Chen, Nuoqi; Liang, Xiubin

    2016-07-01

    MicroRNA-9 (miR-9) is involved in the regulation of pancreatic beta cell function. However, its role in gluconeogenesis is still unclear. Our objective was to investigate the role of miR-9 in hepatic glucose production (HGP). MiR-9 expression was measured in livers of high-fat diet (HFD) mice and ob/ob mice. The methylation status of the miR-9-3 promoter regions in hepatocytes was determined by the methylation-specific PCR procedure. The binding activity of DNA methyltransferase (DNMT)1, DNMT3a and DNMT3b on the miR-9-3 promoter was detected by chromatin immunoprecipitation (ChIP) and quantitative real-time PCR assays. HGP was evaluated in vitro and in vivo. Glucose tolerance, insulin tolerance and pyruvate tolerance tests were also performed. Reduced miR-9 expression and hypermethylation of the miR-9-3 promoter were observed in the livers of obese mice. Further study showed that the binding of DNMT1, but not of DNMT3a and DNMT3b, to the miR-9-3 promoter was increased in hepatocytes from ob/ob mice. Knockdown of DNMT1 alleviated the decrease in hepatic miR-9 expression in vivo and in vitro. Overexpression of hepatic miR-9 improved insulin sensitivity in obese mice and inhibited HGP. In addition, deletion of hepatic miR-9 led to an increase in random and fasting blood glucose levels in lean mice. Importantly, silenced forkhead box O1 (FOXO1) expression reversed the gluconeogenesis and glucose production in hepatocytes induced by miR-9 deletion. Our observations suggest that the decrease in miR-9 expression contributes to an inappropriately activated gluconeogenesis in obese mice.

  8. Altered microRNA expression in bovine subcutaneous and visceral adipose tissues from cattle under different diet.

    Directory of Open Access Journals (Sweden)

    Josue Moura Romao

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are a class of molecular regulators found to participate in numerous biological processes, including adipogenesis in mammals. This study aimed to evaluate the differences of miRNA expression between bovine subcutaneous (backfat and visceral fat depots (perirenal fat and the dietary effect on miRNA expression in these fat tissues. METHODOLOGY/PRINCIPAL FINDINGS: Fat tissues were collected from 16 Hereford×Aberdeen Angus cross bred steers (15.5 month old fed a high-fat diet (5.85% fat, n = 8 or control diet (1.95% fat, n = 8. Total RNA from each animal was subjected to miRNA microarray analysis using a customized Agilent miRNA microarray containing 672 bovine miRNA probes. Expression of miRNAs was not equal between fat depots as well as diets: 207 miRNAs were detected in both fat depots, while 37 of these were found to be tissue specific; and 169 miRNAs were commonly expressed under two diets while 75 were diet specific. The number of miRNAs detected per animal fed the high fat diet was higher than those fed control diet (p = 0.037 in subcutaneous fat and p = 0.002 visceral fat. Further qRT-PCR analysis confirmed that the expression of some miRNAs was highly influenced by diet (miR-19a, -92a, -92b, -101, -103, -106, -142-5p, and 296 or fat depot (miR-196a and -2454. CONCLUSIONS/SIGNIFICANCE: Our results revealed that the miRNA may differ among adipose depots and level of fat in the diet, suggesting that miRNAs may play a role in the regulation of bovine adipogenesis.

  9. Expression of Senescence-Associated microRNAs and Target Genes in Cellular Aging and Modulation by Tocotrienol-Rich Fraction

    Directory of Open Access Journals (Sweden)

    Sharon Gwee Sian Khee

    2014-01-01

    Full Text Available Emerging evidences highlight the implication of microRNAs as a posttranscriptional regulator in aging. Several senescence-associated microRNAs (SA-miRNAs are found to be differentially expressed during cellular senescence. However, the role of dietary compounds on SA-miRNAs remains elusive. This study aimed to elucidate the modulatory role of tocotrienol-rich fraction (TRF on SA-miRNAs (miR-20a, miR-24, miR-34a, miR-106a, and miR-449a and established target genes of miR-34a (CCND1, CDK4, and SIRT1 during replicative senescence of human diploid fibroblasts (HDFs. Primary cultures of HDFs at young and senescent were incubated with TRF at 0.5 mg/mL. Taqman microRNA assay showed significant upregulation of miR-24 and miR-34a and downregulation of miR-20a and miR-449a in senescent HDFs (P<0.05. TRF reduced miR-34a expression in senescent HDFs and increased miR-20a expression in young HDFs and increased miR-449a expression in both young and senescent HDFs. Our results also demonstrated that ectopic expression of miR-34a reduced the expression of CDK4 significantly (P<0.05. TRF inhibited miR-34a expression thus relieved its inhibition on CDK4 gene expression. No significant change was observed on the expression of CCND1, SIRT1, and miR-34a upstream transcriptional regulator, TP53. In conclusion tocotrienol-rich fraction prevented cellular senescence of human diploid fibroblasts via modulation of SA-miRNAs and target genes expression.

  10. Differentially Expressed MicroRNAs in Maternal Plasma for the Noninvasive Prenatal Diagnosis of Down Syndrome (Trisomy 21

    Directory of Open Access Journals (Sweden)

    Julian Kamhieh-Milz

    2014-01-01

    Full Text Available Objectives. Most developmental processes are under the control of small regulatory RNAs called microRNAs (miRNAs. We hypothesize that different fetal developmental processes might be reflected by extracellular miRNAs in maternal plasma and may be utilized as biomarkers for the noninvasive prenatal diagnosis of chromosomal aneuploidies. In this proof-of-concept study, we report on the identification of extracellular miRNAs in maternal plasma of Down syndrome (DS pregnancies. Methods. Using high-throughput quantitative PCR (HT-qPCR, 1043 miRNAs were investigated in maternal plasma via comparison of seven DS pregnancies with age and fetal sex matched controls. Results. Six hundred and ninety-five miRNAs were identified. Thirty-six significantly differentially expressed mature miRNAs were identified as potential biomarkers. Hierarchical cluster analysis of these miRNAs resulted in the clear discrimination of DS from euploid pregnancies. Gene targets of the differentially expressed miRNAs were enriched in signaling pathways such as mucin type-O-glycans, ECM-receptor interactions, TGF-beta, and endocytosis, which have been previously associated with DS. Conclusions. miRNAs are promising and stable biomarkers for a broad range of diseases and may allow a reliable, cost-efficient diagnostic tool for the noninvasive prenatal diagnosis of DS.

  11. Impact of MicroRNA Levels, Target-Site Complementarity, and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression.

    Science.gov (United States)

    Denzler, Rémy; McGeary, Sean E; Title, Alexandra C; Agarwal, Vikram; Bartel, David P; Stoffel, Markus

    2016-11-03

    Expression changes of competing endogenous RNAs (ceRNAs) have been proposed to influence microRNA (miRNA) activity and thereby regulate other transcripts containing miRNA-binding sites. Here, we find that although miRNA levels define the extent of repression, they have little effect on the magnitude of the ceRNA expression change required to observe derepression. Canonical 6-nt sites, which typically mediate modest repression, can nonetheless compete for miRNA binding, with potency ∼20% of that observed for canonical 8-nt sites. In aggregate, low-affinity/background sites also contribute to competition. Sites with extensive additional complementarity can appear as more potent, but only because they induce miRNA degradation. Cooperative binding of proximal sites for the same or different miRNAs does increase potency. These results provide quantitative insights into the stoichiometric relationship between miRNAs and target abundance, target-site spacing, and affinity requirements for ceRNA-mediated gene regulation, and the unusual circumstances in which ceRNA-mediated gene regulation might be observed. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Qing; Xu, Hui; Zhang, Qian-Qian; Zhou, Hui [Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou 510275 (China); Qu, Liang-Hu, E-mail: lssqlh@mail.sysu.edu.cn [Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-Sen University, Guangzhou 510275 (China)

    2009-10-23

    MicroRNAs are involved in cancer-related processes. The microRNA-21(miR-21) has been identified as the only miRNA over-expressed in a wide variety of cancers, including cervical cancer. However, the function of miR-21 is unknown in cervical carcinomas. In this study, we found that the inhibition of miR-21 in HeLa cervical cancer cells caused profound suppression of cell proliferation, and up-regulated the expression of the tumor suppressor gene PDCD4. We also provide direct evidence that PDCD4-3'UTR is a functional target of miR-21 and that the 18 bp putative target site can function as the sole regulatory element in HeLa cells. These results suggest that miR-21 may play an oncogenic role in the cellular processes of cervical cancer and may serve as a target for effective therapies.

  13. Expression of microRNAs and innate immune factor genes in lung tissue of pigs infected with influenza virus (H1N2)

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Cirera, S.; Vasby, D.

    , this response must be tightly regulated. Recently, microRNA (miRNA) has been proposed to play an important role in modulating and fine tuning the innate immune response in order to avoid such harmful overreactions. Little is known about the significance of miRNA regulation in the lung during acute influenza...... virus. Expression of mRNA coding for cytokines, chemokines, pattern recognition receptors and other antiviral effector molecules were quantified in lung tissue at different time points after challenge (24h PI, 72h PI, and 14days PI). Likewise, microRNA in the lung tissue was quantified at the same time......Swine influenza is a highly infectious respiratory disease in pigs caused by influenza A virus. Activation of a frontline of pattern-recognition receptors (PRRs) expressed by epithelial cells as well as immune cells of the upper respiratory tract, leads to a potent type 1 interferon (IFN) release...

  14. A genome-wide transgenic resource for conditional expression of Drosophila microRNAs

    Science.gov (United States)

    Bejarano, Fernando; Bortolamiol-Becet, Diane; Dai, Qi; Sun, Kailiang; Saj, Abil; Chou, Yu-Ting; Raleigh, David R.; Kim, Kevin; Ni, Jian-Quan; Duan, Hong; Yang, Jr-Shiuan; Fulga, Tudor A.; Van Vactor, David; Perrimon, Norbert; Lai, Eric C.

    2012-01-01

    microRNAs (miRNAs) are endogenous short RNAs that mediate vast networks of post-transcriptional gene regulation. Although computational searches and experimental profiling provide evidence for hundreds of functional targets for individual miRNAs, such data rarely provide clear insight into the phenotypic consequences of manipulating miRNAs in vivo. We describe a genome-wide collection of 165 Drosophila miRNA transgenes and find that a majority induced specific developmental defects, including phenocopies of mutants in myriad cell-signaling and patterning genes. Such connections allowed us to validate several likely targets for miRNA-induced phenotypes. Importantly, few of these phenotypes could be predicted from computationally predicted target lists, thus highlighting the value of whole-animal readouts of miRNA activities. Finally, we provide an example of the relevance of these data to miRNA loss-of-function conditions. Whereas misexpression of several K box miRNAs inhibited Notch pathway activity, reciprocal genetic interaction tests with miRNA sponges demonstrated endogenous roles of the K box miRNA family in restricting Notch signaling. In summary, we provide extensive evidence that misexpression of individual miRNAs often induces specific mutant phenotypes that can guide their functional study. By extension, these data suggest that the deregulation of individual miRNAs in other animals may frequently yield relatively specific phenotypes during disease conditions. PMID:22745315

  15. RNA polymerase III regulates cytosolic RNA:DNA hybrids and intracellular microRNA expression.

    Science.gov (United States)

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J

    2015-03-20

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. RNA Polymerase III Regulates Cytosolic RNA:DNA Hybrids and Intracellular MicroRNA Expression*

    Science.gov (United States)

    Koo, Christine Xing'er; Kobiyama, Kouji; Shen, Yu J.; LeBert, Nina; Ahmad, Shandar; Khatoo, Muznah; Aoshi, Taiki; Gasser, Stephan; Ishii, Ken J.

    2015-01-01

    RNA:DNA hybrids form in the nuclei and mitochondria of cells as transcription-induced R-loops or G-quadruplexes, but exist only in the cytosol of virus-infected cells. Little is known about the existence of RNA:DNA hybrids in the cytosol of virus-free cells, in particular cancer or transformed cells. Here, we show that cytosolic RNA:DNA hybrids are present in various human cell lines, including transformed cells. Inhibition of RNA polymerase III (Pol III), but not DNA polymerase, abrogated cytosolic RNA:DNA hybrids. Cytosolic RNA:DNA hybrids bind to several components of the microRNA (miRNA) machinery-related proteins, including AGO2 and DDX17. Furthermore, we identified miRNAs that are specifically regulated by Pol III, providing a potential link between RNA:DNA hybrids and the miRNA machinery. One of the target genes, exportin-1, is shown to regulate cytosolic RNA:DNA hybrids. Taken together, we reveal previously unknown mechanism by which Pol III regulates the presence of cytosolic RNA:DNA hybrids and miRNA biogenesis in various human cells. PMID:25623070

  17. Differential expression of microRNA in the lungs of rats with pulmonary arterial hypertension.

    Science.gov (United States)

    Xiao, Tingting; Xie, Lijian; Huang, Min; Shen, Jie

    2017-02-01

    Pulmonary arterial hypertension (PAH) is a chronic disorder of the small pulmonary arteries, and the efficacy of the therapies and the prognosis remain poor. The pathobiology of PAH is complex, and needs to be elucidated by multiple approaches. The present study used a monocrotaline‑induced PAH rat model to perform a comprehensive microRNA (miRNA) microarray screening in the lungs and identified 16 downregulated miRNAs in the lungs from PAH rats. High‑enrichment gene ontology (GO) analysis identified several sets of genes, and established the miRNA‑mRNA network by outlining the interactions of miRNA and GO‑associated genes. Three downregulated miRNAs [miRNA 125‑3p (miR‑125‑3p), miR‑148‑3p and miR‑193] displayed the most marked regulatory function, and miR‑148‑3p and miR‑193 were observed to have the highest number of target mRNAs. Signaling pathway analysis demonstrated 26 signal transduction pathways, with MAPK, TGF‑β and cell cycle signaling as the most prominent. In addition, 342 genes were identified as the potential targets of these 16 miRNAs. Thus, a set of miRNAs in the lungs from rats with PAH and novel associations between biological events and PAH pathogenesis were identified, providing potential therapeutic targets for this disorder.

  18. microRNA expression profiling and functional annotation analysis of their targets modulated by oxidative stress during embryonic heart development in diabetic mice

    OpenAIRE

    Dong, Daoyin; Zhang, Yuji; Reece, E. Albert; Wang, Lei; Harman, Christopher R.; Yang, Peixin

    2016-01-01

    Maternal pregestational diabetes mellitus (PGDM) induces congenital heart defects (CHDs). The molecular mechanism underlying PGDM-induced CHDs is unknown. microRNAs (miRNAs), small non-coding RNAs, repress gene expression at the posttranscriptional level and play important roles in heart development. We performed a global miRNA profiling study to assist in revealing potential miRNAs modulated by PGDM and possible developmental pathways regulated by miRNAs during heart development. A total of ...

  19. MicroRNA-203 inhibits cell proliferation by repressing ΔNp63 expression in human esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Cheng He-Zhong

    2011-02-01

    Full Text Available Abstract Background This study was performed to investigate the effect of microRNA-203 (miR-203 and ΔNp63 on cell proliferation and the functional connection between miR-203 and ΔNp63 in ESCC. Methods We employed 2 human ESCC cell lines, Eca109 and TE-1, as the model system. The effect of miR-203 and ΔNp63 on cell proliferation was determined in cells transfected with miR-203 mimic and ΔNp63 small interfering RNA (siRNA, respectively. The regulation of ΔNp63 expression in ESCC cells by miR-203 was studied by luciferase reporter assay, RT-PCR and western blot analysis in cells transfected with miR-203. The effect of ΔNp63 re-expression on miR-203 induced inhibition of cell proliferation was studied by cell proliferation assay in cells cotransfected with miR-203 and pcDNA-ΔNp63 plasmid (without the 3'-UTR of ΔNp63. Results We found that both miR-203 and ΔNp63 siRNA signicantly inhibited cell proliferation in ESCC. MiR-203 could down-regulate endogenous ΔNp63 expression at the posttranscriptional level. Moreover, re-expression of ΔNp63 in cells transfected with miR-203 significantly attenuated the miR-203 induced inhibition of cell proliferation. Conclusions Our data implied that miR-203 could inhibit cell proliferation in human ESCC through ΔNp63-mediated signal pathway. Therefore, we propose that miR-203 might be used as a therapeutic agent for human ESCC.

  20. Epstein–Barr Virus MicroRNAs are Expressed in Patients with Chronic Lymphocytic Leukemia and Correlate with Overall Survival

    Directory of Open Access Journals (Sweden)

    Alessandra Ferrajoli

    2015-06-01

    Full Text Available Although numerous studies highlighted the role of Epstein–Barr Virus (EBV in B-cell transformation, the involvement of EBV proteins or genome in the development of the most frequent adult leukemia, chronic lymphocytic leukemia (CLL, has not yet been defined. We hypothesized that EBV microRNAs contribute to progression of CLL and demonstrated the presence of EBV miRNAs in B-cells, in paraffin-embedded bone marrow biopsies and in the plasma of patients with CLL by using three different methods (small RNA-sequencing, quantitative reverse transcription PCR [q-RT-PCR] and miRNAs in situ hybridization [miRNA-ISH]. We found that EBV miRNA BHRF1-1 expression levels were significantly higher in the plasma of patients with CLL compared with healthy individuals (p < 0 · 0001. Notably, BHRF1-1 as well as BART4 expression were detected in the plasma of either seronegative or seropositive (anti-EBNA-1 IgG and EBV DNA tested patients; similarly, miRNA-ISH stained positive in bone marrow specimens while LMP1 and EBER immunohistochemistry failed to detect viral proteins and RNA. We also found that BHRF1-1 plasma expression levels were positively associated with elevated beta-2-microglobulin levels and advanced Rai stages and observed a correlation between higher BHRF1-1 expression levels and shorter survival in two independent patients' cohorts. Furthermore, in the majority of CLL cases where BHRF1-1 was exogenously induced in primary malignant B cells the levels of TP53 were reduced. Our findings suggest that EBV may have a role in the process of disease progression in CLL and that miRNA RT-PCR and miRNAs ISH could represent additional methods to detect EBV miRNAs in patients with CLL.

  1. Chromosome 21-derived microRNAs provide an etiological basis for aberrant protein expression in human Down syndrome brains.

    Science.gov (United States)

    Kuhn, Donald E; Nuovo, Gerard J; Terry, Alvin V; Martin, Mickey M; Malana, Geraldine E; Sansom, Sarah E; Pleister, Adam P; Beck, Wayne D; Head, Elizabeth; Feldman, David S; Elton, Terry S

    2010-01-08

    Down syndrome (DS), or Trisomy 21, is the most common genetic cause of cognitive impairment and congenital heart defects in the human population. Bioinformatic annotation has established that human chromosome 21 (Hsa21) harbors five microRNA (miRNAs) genes: miR-99a, let-7c, miR-125b-2, miR-155, and miR-802. Our laboratory recently demonstrated that Hsa21-derived miRNAs are overexpressed in DS brain and heart specimens. The aim of this study was to identify important Hsa21-derived miRNA/mRNA target pairs that may play a role, in part, in mediating the DS phenotype. We demonstrate by luciferase/target mRNA 3'-untranslated region reporter assays, and gain- and loss-of-function experiments that miR-155 and -802 can regulate the expression of the predicted mRNA target, the methyl-CpG-binding protein (MeCP2). We also demonstrate that MeCP2 is underexpressed in DS brain specimens isolated from either humans or mice. We further demonstrate that, as a consequence of attenuated MeCP2 expression, transcriptionally activated and silenced MeCP2 target genes, CREB1/Creb1 and MEF2C/Mef2c, are also aberrantly expressed in these DS brain specimens. Finally, in vivo silencing of endogenous miR-155 or -802, by antagomir intra-ventricular injection, resulted in the normalization of MeCP2 and MeCP2 target gene expression. Taken together, these results suggest that improper repression of MeCP2, secondary to trisomic overexpression of Hsa21-derived miRNAs, may contribute, in part, to the abnormalities in the neurochemistry observed in the brains of DS individuals. Finally these results suggest that selective inactivation of Hsa21-derived miRNAs may provide a novel therapeutic tool in the treatment of DS.

  2. MicroRNA Profiling Identifies miR-196a as Differentially Expressed in Childhood Adrenoleukodystrophy and Adult Adrenomyeloneuropathy

    Science.gov (United States)

    Shah, Navjot; Singh, Inderjit

    2016-01-01

    X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene, leading to a defect in the peroxisomal adrenoleukodystrophy protein (ALDP), which inhibits the β-oxidation of very long chain fatty acids (VLCFAs). It is a complex disease where the same mutation in the peroxisomal ABCD1 can lead to clinically diverse phenotypes ranging from the fatal disorder of cerebral ALD (cALD) to mild adult disorder of adrenomyeloneuropathy (AMN). This suggests a role of epigenetic factors/modifier genes in disease progression of X-ALD which is not understood at present. To examine the possible role of microRNA (miRNA) in X-ALD disease mechanisms for differences in cALD and AMN phenotype, we profiled 1008 known miRNA in cALD, AMN, and normal human skin fibroblasts using miScript miRNA PCR array (Qiagen) and selected miRNAs which had differential expression in cALD and AMN fibroblasts. Eleven miRNA which were differentially regulated in cALD and AMN fibroblasts were identified. miR-196a showed a significant differential expression between cALD and AMN and is further characterized for target gene regulation. The predicted role of miR-196a in inhibition of inflammatory signaling factors (IKKα and IKKβ) and ELOVL1 expression suggests the pathological role of altered expression of miR-196a. This study indicates that miR-196a participated in differential regulation of ELOVL1 and inflammatory response between cALD as compared to AMN and may be a possible biomarker to differentiate between cALD and AMN. PMID:26843114

  3. MicroRNA Profiling Identifies miR-196a as Differentially Expressed in Childhood Adrenoleukodystrophy and Adult Adrenomyeloneuropathy.

    Science.gov (United States)

    Shah, Navjot; Singh, Inderjit

    2017-03-01

    X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene, leading to a defect in the peroxisomal adrenoleukodystrophy protein (ALDP), which inhibits the β-oxidation of very long chain fatty acids (VLCFAs). It is a complex disease where the same mutation in the peroxisomal ABCD1 can lead to clinically diverse phenotypes ranging from the fatal disorder of cerebral ALD (cALD) to mild adult disorder of adrenomyeloneuropathy (AMN). This suggests a role of epigenetic factors/modifier genes in disease progression of X-ALD which is not understood at present. To examine the possible role of microRNA (miRNA) in X-ALD disease mechanisms for differences in cALD and AMN phenotype, we profiled 1008 known miRNA in cALD, AMN, and normal human skin fibroblasts using miScript miRNA PCR array (Qiagen) and selected miRNAs which had differential expression in cALD and AMN fibroblasts. Eleven miRNA which were differentially regulated in cALD and AMN fibroblasts were identified. miR-196a showed a significant differential expression between cALD and AMN and is further characterized for target gene regulation. The predicted role of miR-196a in inhibition of inflammatory signaling factors (IKKα and IKKβ) and ELOVL1 expression suggests the pathological role of altered expression of miR-196a. This study indicates that miR-196a participated in differential regulation of ELOVL1 and inflammatory response between cALD as compared to AMN and may be a possible biomarker to differentiate between cALD and AMN.

  4. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients

    International Nuclear Information System (INIS)

    Svoboda, Marek; Sana, Jiri; Fabian, Pavel; Kocakova, Ilona; Gombosova, Jana; Nekvindova, Jana; Radova, Lenka; Vyzula, Rostislav; Slaby, Ondrej

    2012-01-01

    Rectal cancer accounts for approximately one third of all colorectal cancers (CRC), which belong among leading causes of cancer deaths worldwide. Standard treatment for locally advanced rectal cancer (cT3/4 and/or cN+) includes neoadjuvant chemoradiotherapy with fluoropyrimidines (capecitabine or 5-fluorouracil) followed by radical surgical resection. Unfortunately, a significant proportion of tumors do not respond enough to the neoadjuvant treatment and these patients are at risk of relapse. MicroRNAs (miRNAs) are small non-coding RNAs playing significant roles in the pathogenesis of many cancers including rectal cancer. MiRNAs could present the new predictive biomarkers for rectal cancer patients. We selected 20 patients who underwent neoadjuvant chemoradiotherapy for advanced rectal cancer and whose tumors were classified as most sensitive or resistant to the treatment. These two groups were compared using large-scale miRNA expression profiling. Expression levels of 8 miRNAs significantly differed between two groups. MiR-215, miR-190b and miR-29b-2* have been overexpressed in non-responders, and let-7e, miR-196b, miR-450a, miR-450b-5p and miR-99a* have shown higher expression levels in responders. Using these miRNAs 9 of 10 responders and 9 of 10 non-responders (p < 0.05) have been correctly classified. Our pilot study suggests that miRNAs are part of the mechanisms that are involved in response of rectal cancer to the chemoradiotherapy and that miRNAs may be promising predictive biomarkers for such patients. In most miRNAs we identified (miR-215, miR-99a*, miR-196b, miR-450b-5p and let-7e), the connection between their expression and radioresistance or chemoresistance to inhibitors of thymidylate synthetase was already established

  5. Identification of Echinococcus granulosus microRNAs and their expression in different life cycle stages and parasite genotypes.

    Science.gov (United States)

    Cucher, M; Prada, L; Mourglia-Ettlin, G; Dematteis, S; Camicia, F; Asurmendi, S; Rosenzvit, M

    2011-03-01

    The aetiological agent of cystic hydatid disease, the platyhelminth parasite Echinococcus granulosus, undergoes a series of metamorphic events during its complex life cycle. One of its developmental stages, the protoscolex, shows a remarkable degree of heterogeneous morphogenesis, being able to develop either into the vesicular or strobilar direction. Another level of complexity is added by the existence of genotypes or strains that differ in the range of intermediate hosts where they can develop and form fertile cysts. These features make E. granulosus an interesting model for developmental studies. Hence, we focused on the study of the regulation of gene expression by microRNAs (miRNAs), one of the key mechanisms that control development in metazoans and plants and which has not been analysed in E. granulosus yet. In this study, we cloned 38 distinct miRNAs, including four candidate new miRNAs that seem to be specific to Echinococcus spp. Thirty-four cloned sequences were orthologous to miRNAs already described in other organisms and were grouped in 16 metazoan miRNA families, some of them known for their role in the development of other organisms. The expression of some of the cloned miRNAs differs according to the parasite life cycle stage analysed, showing differential developmental expression. We did not detect differences in the expression of the analysed miRNAs between protoscoleces of two parasite genotypes. This work sets the scene for the study of gene regulation mediated by miRNAs in E. granulosus and provides a new approach to study the molecules involved in its developmental plasticity and intermediate host specificity. Understanding the developmental processes of E. granulosus may help to find new strategies for the control of cystic hydatid disease, caused by the metacestode stage of the parasite. Copyright © 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  6. MicroRNA-3148 modulates allelic expression of toll-like receptor 7 variant associated with systemic lupus erythematosus.

    Directory of Open Access Journals (Sweden)

    Yun Deng

    Full Text Available We previously reported that the G allele of rs3853839 at 3'untranslated region (UTR of Toll-like receptor 7 (TLR7 was associated with elevated transcript expression and increased risk for systemic lupus erythematosus (SLE in 9,274 Eastern Asians [P = 6.5×10(-10, odds ratio (OR (95%CI = 1.27 (1.17-1.36]. Here, we conducted trans-ancestral fine-mapping in 13,339 subjects including European Americans, African Americans, and Amerindian/Hispanics and confirmed rs3853839 as the only variant within the TLR7-TLR8 region exhibiting consistent and independent association with SLE (Pmeta = 7.5×10(-11, OR = 1.24 [1.18-1.34]. The risk G allele was associated with significantly increased levels of TLR7 mRNA and protein in peripheral blood mononuclear cells (PBMCs and elevated luciferase activity of reporter gene in transfected cells. TLR7 3'UTR sequence bearing the non-risk C allele of rs3853839 matches a predicted binding site of microRNA-3148 (miR-3148, suggesting that this microRNA may regulate TLR7 expression. Indeed, miR-3148 levels were inversely correlated with TLR7 transcript levels in PBMCs from SLE patients and controls (R(2 = 0.255, P = 0.001. Overexpression of miR-3148 in HEK-293 cells led to significant dose-dependent decrease in luciferase activity for construct driven by TLR7 3'UTR segment bearing the C allele (P = 0.0003. Compared with the G-allele construct, the C-allele construct showed greater than two-fold reduction of luciferase activity in the presence of miR-3148. Reduced modulation by miR-3148 conferred slower degradation of the risk G-allele containing TLR7 transcripts, resulting in elevated levels of gene products. These data establish rs3853839 of TLR7 as a shared risk variant of SLE in 22,613 subjects of Asian, EA, AA, and Amerindian/Hispanic ancestries (Pmeta  = 2.0×10(-19, OR = 1.25 [1.20-1.32], which confers allelic effect on transcript turnover via differential binding to the epigenetic

  7. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells.

    Science.gov (United States)

    Kim, Yong-Wan; Kim, Eun Young; Jeon, Doin; Liu, Juinn-Lin; Kim, Helena Suhyun; Choi, Jin Woo; Ahn, Woong Shick

    2014-01-01

    Paclitaxel (Taxol) resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs) have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to identify target genes of selected miRNAs. Kaplan-Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the downregulation of the two miRNAs was associated with better survival, perhaps increasing the sensitivity of cancer cells to Taxol. In the chemo-sensitive patient group, only miR-647 could be a prognosis marker. These miRNAs inhibit several interacting genes of p53 networks, especially in TUOS-3 and TUOS-4, and showed cell line-specific inhibition effects. Taken together, the data indicate that the three miRNAs are closely associated with Taxol resistance and potentially better prognosis factors. Our results suggest that these miRNAs were successfully and reliably identified and would be used in the

  8. Inverse relationship between microRNA-155 and -184 expression with increasing conjunctival inflammation during ocular Chlamydia trachomatis infection.

    Science.gov (United States)

    Derrick, Tamsyn; Last, Anna R; Burr, Sarah E; Roberts, Chrissy H; Nabicassa, Meno; Cassama, Eunice; Bailey, Robin L; Mabey, David C W; Burton, Matthew J; Holland, Martin J

    2016-02-03

    Trachoma, a preventable blinding eye disease, is initiated by ocular infection with Chlamydia trachomatis (Ct). We previously showed that microRNAs (miR) -147b and miR-1285 were up-regulated in inflammatory trachomatous scarring. During the initial stage of disease, follicular trachoma with current Ct infection, the differential expression of miR has not yet been investigated. Conjunctival samples were collected from 163 children aged 1-9 years old living in a trachoma-endemic region of Guinea Bissau, West Africa. Small RNA sequencing (RNAseq) was carried out on samples from five children with follicular trachoma and current Ct infection and five children with healthy conjunctivae and no Ct infection. Small RNAseq was also carried out on human epithelial cell lines infected with ocular Ct strains A2497 and isogenic plasmid-free A2497 in vitro. Results were validated by quantitative PCR (qPCR) in 163 clinical samples. Differential expression of RNAseq data identified 12 miR with changes in relative expression during follicular trachoma, of which 9 were confirmed as differentially expressed by qPCR (miR-155, miR-150, miR-142, miR-181b, miR-181a, miR-342, miR-132, miR-4728 and miR-184). MiR-155 and miR-184 expression had a direct relationship with the degree of clinical inflammation. MiR-155 was up-regulated (OR = 2.533 ((95 % CI = 1.291-4.971); P = 0.0069) and miR-184 was down-regulated (OR = 0.416 ((95 % CI = 0.300-0.578); P = 1.61*10(-7)) as the severity of clinical inflammation increased. Differential miR expression was not detected in HEp-2 or HCjE epithelial cells 48 h post infection with Ct in vitro. HCjE cells, a conjunctival epithelial cell line, had a markedly different miR background expression compared to HEp-2 cells. In follicular trachoma, expression of miR-155 and miR-184 is correlated with the severity of inflammation. This likely reflects host regulation of the immune response and a prolonged period of wound healing following the clearance of Ct

  9. Elevated expression of prostate cancer-associated genes is linked to down-regulation of microRNAs

    International Nuclear Information System (INIS)

    Erdmann, Kati; Kaulke, Knut; Thomae, Cathleen; Huebner, Doreen; Sergon, Mildred; Froehner, Michael; Wirth, Manfred P; Fuessel, Susanne

    2014-01-01

    Recent evidence suggests that the prostate cancer (PCa)-specific up-regulation of certain genes such as AMACR, EZH2, PSGR, PSMA and TRPM8 could be associated with an aberrant expression of non-coding microRNAs (miRNA). In silico analyses were used to search for miRNAs being putative regulators of PCa-associated genes. The expression of nine selected miRNAs (hsa-miR-101, -138, -186, -224, -26a, -26b, -374a, -410, -660) as well as of the aforementioned PCa-associated genes was analyzed by quantitative PCR using 50 malignant (Tu) and matched non-malignant (Tf) tissue samples from prostatectomy specimens as well as 30 samples from patients with benign prostatic hyperplasia (BPH). Then, correlations between paired miRNA and target gene expression levels were analyzed. Furthermore, the effect of exogenously administered miR-26a on selected target genes was determined by quantitative PCR and Western Blot in various PCa cell lines. A luciferase reporter assay was used for target validation. The expression of all selected miRNAs was decreased in PCa tissue samples compared to either control group (Tu vs Tf: -1.35 to -5.61-fold; Tu vs BPH: -1.17 to -5.49-fold). The down-regulation of most miRNAs inversely correlated with an up-regulation of their putative target genes with Spearman correlation coefficients ranging from -0.107 to -0.551. MiR-186 showed a significantly diminished expression in patients with non-organ confined PCa and initial metastases. Furthermore, over-expression of miR-26a reduced the mRNA and protein expression of its potential target gene AMACR in vitro. Using the luciferase reporter assay AMACR was validated as new target for miR-26a. The findings of this study indicate that the expression of specific miRNAs is decreased in PCa and inversely correlates with the up-regulation of their putative target genes. Consequently, miRNAs could contribute to oncogenesis and progression of PCa via an altered miRNA-target gene-interaction

  10. Differential microRNA expression signatures and cell type-specific association with Taxol resistance in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Kim YW

    2014-02-01

    Full Text Available Yong-Wan Kim,1 Eun Young Kim,1 Doin Jeon,1 Juinn-Lin Liu,2 Helena Suhyun Kim,3 Jin Woo Choi,4 Woong Shick Ahn5 1Cancer Research Institute of Medical Science, The Catholic University of Korea, Seoul, Republic of Korea; 2Brain Tumor Center, Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, TX, USA; 3Cancer Rehab Laboratory, RH Healthcare Systems Inc, TX, USA; 4Harvard Medical School and Wellman Center for Photomedicine, Cambridge, MA, USA; 5Department of Obstetrics and Gynecology, The Catholic University of Korea, Seoul, Republic of Korea Abstract: Paclitaxel (Taxol resistance remains a major obstacle for the successful treatment of ovarian cancer. MicroRNAs (miRNAs have oncogenic and tumor suppressor activity and are associated with poor prognosis phenotypes. miRNA screenings for this drug resistance are needed to estimate the prognosis of the disease and find better drug targets. miRNAs that were differentially expressed in Taxol-resistant ovarian cancer cells, compared with Taxol-sensitive cells, were screened by Illumina Human MicroRNA Expression BeadChips. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR was used to identify target genes of selected miRNAs. Kaplan–Meier survival analysis was applied to identify dysregulated miRNAs in ovarian cancer patients using data from The Cancer Genome Atlas. A total of 82 miRNAs were identified in ovarian carcinoma cells compared to normal ovarian cells. miR-141, miR-106a, miR-200c, miR-96, and miR-378 were overexpressed, and miR-411, miR-432, miR-494, miR-409-3p, and miR-655 were underexpressed in ovarian cancer cells. Seventeen miRNAs were overexpressed in Taxol-resistant cells, including miR-663, miR-622, and HS_188. Underexpressed miRNAs in Taxol-sensitive cells included miR-497, miR-187, miR-195, and miR-107. We further showed miR-663 and miR-622 as significant prognosis markers of the chemo-resistant patient group. In particular, the

  11. Large-Scale microRNA Expression Profiling Identifies Putative Retinal miRNA-mRNA Signaling Pathways Underlying Form-Deprivation Myopia in Mice.

    Science.gov (United States)

    Tkatchenko, Andrei V; Luo, Xiaoyan; Tkatchenko, Tatiana V; Vaz, Candida; Tanavde, Vivek M; Maurer-Stroh, Sebastian; Zauscher, Stefan; Gonzalez, Pedro; Young, Terri L

    2016-01-01

    Development of myopia is associated with large-scale changes in ocular tissue gene expression. Although differential expression of coding genes underlying development of myopia has been a subject of intense investigation, the role of non-coding genes such as microRNAs in the development of myopia is largely unknown. In this study, we explored myopia-associated miRNA expression profiles in the retina and sclera of C57Bl/6J mice with experimentally induced myopia using microarray technology. We found a total of 53 differentially expressed miRNAs in the retina and no differences in miRNA expression in the sclera of C57BL/6J mice after 10 days of visual form deprivation, which induced -6.93 ± 2.44 D (p myopia. We also identified their putative mRNA targets among mRNAs found to be differentially expressed in myopic retina and potential signaling pathways involved in the development of form-deprivation myopia using miRNA-mRNA interaction network analysis. Analysis of myopia-associated signaling pathways revealed that myopic response to visual form deprivation in the retina is regulated by a small number of highly integrated signaling pathways. Our findings highlighted that changes in microRNA expression are involved in the regulation of refractive eye development and predicted how they may be involved in the development of myopia by regulating retinal gene expression.

  12. Large-Scale microRNA Expression Profiling Identifies Putative Retinal miRNA-mRNA Signaling Pathways Underlying Form-Deprivation Myopia in Mice.

    Directory of Open Access Journals (Sweden)

    Andrei V Tkatchenko

    Full Text Available Development of myopia is associated with large-scale changes in ocular tissue gene expression. Although differential expression of coding genes underlying development of myopia has been a subject of intense investigation, the role of non-coding genes such as microRNAs in the development of myopia is largely unknown. In this study, we explored myopia-associated miRNA expression profiles in the retina and sclera of C57Bl/6J mice with experimentally induced myopia using microarray technology. We found a total of 53 differentially expressed miRNAs in the retina and no differences in miRNA expression in the sclera of C57BL/6J mice after 10 days of visual form deprivation, which induced -6.93 ± 2.44 D (p < 0.000001, n = 12 of myopia. We also identified their putative mRNA targets among mRNAs found to be differentially expressed in myopic retina and potential signaling pathways involved in the development of form-deprivation myopia using miRNA-mRNA interaction network analysis. Analysis of myopia-associated signaling pathways revealed that myopic response to visual form deprivation in the retina is regulated by a small number of highly integrated signaling pathways. Our findings highlighted that changes in microRNA expression are involved in the regulation of refractive eye development and predicted how they may be involved in the development of myopia by regulating retinal gene expression.

  13. MicroRNA gene expression signatures in long-surviving malignant pleural mesothelioma patients

    Directory of Open Access Journals (Sweden)

    Ruby C.Y. Lin

    2016-09-01

    Full Text Available Malignant pleural mesothelioma (MPM is a tumor originating in the mesothelium, the membrane lining the thoracic cavities, and is induced by exposure to asbestos. Australia suffers one of the world's highest rates of MPM and the incidence is yet to peak. The prognosis for patients with MPM is poor and median survival following diagnosis is 4–18 months. Currently, no or few effective therapies exist for MPM. Trials of targeted agents such as antiangiogenic agents (VEGF, EGFR or ribonuclease inhibitors (ranpirnase largely failed to show efficacy in MPM Tsao et al. (2009 [1]. A recent study, however, showed that cisplatin/pemetrexed + bevacizumab (a recombinant humanized monoclonal antibody that inhibit VEGF treatment has a survival benefit of 2.7 months Zalcman et al. (2016 [2]. It remains to be seen if this targeted therapy will be accepted as a new standard for MPM. Thus the unmet needs of MPM patients remain very pronounced and almost every patient will be confronted with drug resistance and recurrence of disease. We have identified unique gene signatures associated with prolonged survival in mesothelioma patients undergoing radical surgery (EPP, extrapleural pneumonectomy, as well as patients who underwent palliative surgery (pleurectomy/decortication. In addition to data published in Molecular Oncology, 2015;9:715-26 (GSE59180 Kirschner et al. (2015 , we describe here additional data using a system-based approach that support our previous observations. This data provides a resource to further explore microRNA dynamics in MPM.

  14. Differential microRNA Expression in Fast- and Slow-Twitch Skeletal Muscle of Piaractus mesopotamicus during Growth.

    Science.gov (United States)

    Duran, Bruno Oliveira da Silva; Fernandez, Geysson Javier; Mareco, Edson Assunção; Moraes, Leonardo Nazario; Salomão, Rondinelle Artur Simões; Gutierrez de Paula, Tassiana; Santos, Vander Bruno; Carvalho, Robson Francisco; Dal-Pai-Silva, Maeli; Dal-Pai-Silvca, Maeli

    2015-01-01

    Pacu (Piaractus mesopotamicus) is a Brazilian fish with a high economic value in pisciculture due to its rusticity and fast growth. Postnatal growth of skeletal muscle in fish occurs by hyperplasia and/or hypertrophy, processes that are dependent on the proliferation and differentiation of myoblasts. A class of small noncoding RNAs, known as microRNAs (miRNAs), represses the expression of target mRNAs, and many studies have demonstrated that miR-1, miR-133, miR-206 and miR-499 regulate different processes in skeletal muscle through the mRNA silencing of hdac4 (histone deacetylase 4), srf (serum response factor), pax7 (paired box 7) and sox6 ((sex determining region Y)-box 6), respectively. The aim of our work was to evaluate the expression of these miRNAs and their putative target mRNAs in fast- and slow-twitch skeletal muscle of pacu during growth. We used pacus in three different development stages: larval (aged 30 days), juvenile (aged 90 days and 150 days) and adult (aged 2 years). To complement our study, we also performed a pacu myoblast cell culture, which allowed us to investigate miRNA expression in the progression from myoblast proliferation to differentiation. Our results revealed an inverse correlation between the expression of the miRNAs and their target mRNAs, and there was evidence that miR-1 and miR-206 may regulate the differentiation of myoblasts, whereas miR-133 may regulate the proliferation of these cells. miR-499 was highly expressed in slow-twitch muscle, which suggests its involvement in the specification of the slow phenotype in muscle fibers. The expression of these miRNAs exhibited variations between different development stages and between distinct muscle twitch phenotypes. This work provides the first identification of miRNA expression profiles in pacu skeletal muscle and suggests an important role of these molecules in muscle growth and in the maintenance of the muscle phenotype.

  15. Global gene expression analysis reveals reduced abundance of putative microRNA targets in human prostate tumours

    Directory of Open Access Journals (Sweden)

    Xie Yi

    2009-02-01

    Full Text Available Abstract Background Recently, microRNAs (miRNAs have taken centre stage in the field of human molecular oncology. Several studies have shown that miRNA profiling analyses offer new possibilities in cancer classification, diagnosis and prognosis. However, the function of miRNAs that are dysregulated in tumours remains largely a mystery. Global analysis of miRNA-target gene expression has helped illuminate the role of miRNAs in developmental gene expression programs, but such an approach has not been reported in cancer transcriptomics. Results In this study, we globally analysed the expression patterns of miRNA target genes in prostate cancer by using several public microarray datasets. Intriguingly, we found that, in contrast to global mRNA transcript levels, putative miRNA targets showed a reduced abundance in prostate tumours relative to benign prostate tissue. Additionally, the down-regulation of these miRNA targets positively correlated with the number of types of miRNA target-sites in the 3' untranslated regions of these targets. Further investigation revealed that the globally low expression was mainly driven by the targets of 36 specific miRNAs that were reported to be up-regulated in prostate cancer by a miRNA expression profiling study. We also found that the transcript levels of miRNA targets were lower in androgen-independent prostate cancer than in androgen-dependent prostate cancer. Moreover, when the global analysis was extended to four other cancers, significant differences in transcript levels between miRNA targets and total mRNA backgrounds were found. Conclusion Global gene expression analysis, along with further investigation, suggests that miRNA targets have a significantly reduced transcript abundance in prostate cancer, when compared with the combined pool of all mRNAs. The abnormal expression pattern of miRNA targets in human cancer could be a common feature of the human cancer transcriptome. Our study may help to shed new

  16. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression.

    Science.gov (United States)

    Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3'-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yanxia [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China); Department of Rehabilitation, Xi' an Children' s Hospital, Xi' an 710003 (China); Liu, Xiaoguai [The 3rd Department of Infectious Diseases, Xi' an Children' s Hospital, Xi' an 710003 (China); Wang, Yaping, E-mail: yapwangyy@163.com [Department of Psychology and Psychiatry, The Second Affiliated Hospital of Xi' an Jiaotong University, Xi' an 710004 (China)

    2015-10-16

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.

  18. Effects of duloxetine on microRNA expression profile in frontal lobe and hippocampus in a mouse model of depression.

    Science.gov (United States)

    Pan, Bing; Liu, Yamei

    2015-01-01

    Depression is a major mood disorder affecting people worldwide. The posttranscriptional gene regulation mediated by microRNAs (miRNAs) which may have critical roles in the pathogenesis of depression. However, to date, little is known about the effects of the antidepressant drug duloxetine on miRNA expression profile in chronic unpredictable mild stress (CUMS)-induced depression model in mice. Healthy adult male Kunming mice were randomly divided into three groups: control group, model group and duloxetine group. Sucrose preference test and open field test were used to represent the behavioral change. MiRNAs levels in frontal lobe and hippocampus of mice were analyzed using miRNA microarrays assay. We observed that long-term treatment with duloxetine significantly ameliorated the CUMS procedure-induced sucrose preference decreases and mice treated with duloxetine demonstrated a reversal of the number of crossings, and rearings reduced by CUMS. A significant upregulation of miR-132 and miR-18a in hippocampus in the duloxetine treatment group compared with model group, whereas the levels of miR-134 and miR-124a were significantly downregulated. Furthermore, miR-18a showed significant upregulation in frontal lobe in the duloxetine treatment group relative to model group. Our data showed that miRNA expression profile in frontal lobe and hippocampus was affected by duloxetine in mice model of depression. The effect was especially pronounced in the hippocampus, suggesting that hippocampus might be the action site of duloxetine, which presumably worked by regulating the expression of miRNA levels.

  19. MicroRNA-661 Enhances TRAIL or STS Induced Osteosarcoma Cell Apoptosis by Modulating the Expression of Cytochrome c1

    Directory of Open Access Journals (Sweden)

    Lin Fan

    2017-04-01

    Full Text Available Aim: Osteosarcoma (OS is an aggressive bone malignancy that affects rapidly growing bones and is associated with a poor prognosis. Our previous study showed that cytochrome c1 (CYC1, a subunit of the cytochrome bc1 complex (complex III of the mitochondrial electron chain, is overexpressed in human OS tissues and cell lines and its silencing induces apoptosis in vitro and inhibits tumor growth in vivo. Here, we investigated the mechanism underlying the modulation of CYC1 expression in OS and its role in the resistance of OS to apoptosis. Methods: qRT-PCR, luciferase reporter assay, western blotting, fow cytometry, and animal experiments were performed in this study. Results: MicroRNA (miR-661 was identified as a downregulated miRNA in OS tissues and cells and shown to directly target CYC1. Ectopically expressed miR-661 inhibited OS cell growth, promoted apoptosis, and reduced the activity of mitochondrial complex III. miR-661 overexpression enhanced TRAIL or STS induced apoptosis and promoted the release of cytochrome c into the cytosol, which induced caspase-9 activation, and these effects were abolished by a caspase-3 inhibitor. Overexpression of CYC1 rescued the effects of miR-661 on sensitizing OS cells to TRAIL or STS induced apoptosis, indicating that the antitumor effect of miR-661 is mediated by the downregulation of CYC1. In vivo, miR-661 overexpression sensitized tumors to TRAIL or STS induced apoptosis in a xenograft mouse model, and these effects were attenuated by co-expression of CYC1. Conclusion: Taken together, our results indicate that miR-661 plays a tumor suppressor role in OS mediated by the downregulation of CYC1, suggesting a potential mechanism underlying cell death resistance in OS.

  20. Hydrostatic Pressure Regulates MicroRNA Expression Levels in Osteoarthritic Chondrocyte Cultures via the Wnt/β-Catenin Pathway

    Directory of Open Access Journals (Sweden)

    Sara Cheleschi

    2017-01-01

    Full Text Available Mechanical loading and hydrostatic pressure (HP regulate chondrocytes’ metabolism; however, how mechanical stimulation acts remain unclear. MicroRNAs (miRNAs play an important role in cartilage homeostasis, mechanotransduction, and in the pathogenesis of osteoarthritis (OA. This study investigated the effects of a cyclic HP (1–5 MPa, in both normal and OA human chondrocytes, on the expression of miR-27a/b, miR-140, miR-146a/b, and miR-365, and of their target genes (MMP-13, ADAMTS-5, IGFBP-5, and HDAC-4. Furthermore, we assessed the possible involvement of Wnt/β-catenin pathway in response to HP. Chondrocytes were exposed to HP for 3h and the evaluations were performed immediately after pressurization, and following 12, 24, and 48 h. Total RNA was extracted and used for real-time PCR. β-catenin was detected by Western blotting analysis and immunofluorescence. In OA chondrocytes, HP induced a significant increase (p < 0.01 of the expression levels of miR-27a/b, miR-140, and miR-146a, and a significant reduction (p < 0.01 of miR-365 at all analyzed time points. MMP-13, ADAMTS-5, and HDAC-4 were significantly downregulated following HP, while no significant modification was found for IGFBP-5. β-catenin levels were significantly increased (p < 0.001 in OA chondrocytes at basal conditions and significantly reduced (p < 0.01 by HP. Pressurization did not cause any significant modification in normal cells. In conclusion, in OA chondrocytes, HP restores the expression levels of some miRNAs, downregulates MMP-13, ADAMTS-5, and HDAC-4, and modulates the Wnt/β-catenin pathway activation.

  1. Hydrostatic Pressure Regulates MicroRNA Expression Levels in Osteoarthritic Chondrocyte Cultures via the Wnt/β-Catenin Pathway

    Science.gov (United States)

    Cheleschi, Sara; De Palma, Anna; Pecorelli, Alessandra; Pascarelli, Nicola Antonio; Valacchi, Giuseppe; Belmonte, Giuseppe; Carta, Serafino; Galeazzi, Mauro; Fioravanti, Antonella

    2017-01-01

    Mechanical loading and hydrostatic pressure (HP) regulate chondrocytes’ metabolism; however, how mechanical stimulation acts remain unclear. MicroRNAs (miRNAs) play an important role in cartilage homeostasis, mechanotransduction, and in the pathogenesis of osteoarthritis (OA). This study investigated the effects of a cyclic HP (1–5 MPa), in both normal and OA human chondrocytes, on the expression of miR-27a/b, miR-140, miR-146a/b, and miR-365, and of their target genes (MMP-13, ADAMTS-5, IGFBP-5, and HDAC-4). Furthermore, we assessed the possible involvement of Wnt/β-catenin pathway in response to HP. Chondrocytes were exposed to HP for 3h and the evaluations were performed immediately after pressurization, and following 12, 24, and 48 h. Total RNA was extracted and used for real-time PCR. β-catenin was detected by Western blotting analysis and immunofluorescence. In OA chondrocytes, HP induced a significant increase (p < 0.01) of the expression levels of miR-27a/b, miR-140, and miR-146a, and a significant reduction (p < 0.01) of miR-365 at all analyzed time points. MMP-13, ADAMTS-5, and HDAC-4 were significantly downregulated following HP, while no significant modification was found for IGFBP-5. β-catenin levels were significantly increased (p < 0.001) in OA chondrocytes at basal conditions and significantly reduced (p < 0.01) by HP. Pressurization did not cause any significant modification in normal cells. In conclusion, in OA chondrocytes, HP restores the expression levels of some miRNAs, downregulates MMP-13, ADAMTS-5, and HDAC-4, and modulates the Wnt/β-catenin pathway activation. PMID:28085114

  2. Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos.

    Science.gov (United States)

    Jelly, Noémie S; Schellenbaum, Paul; Walter, Bernard; Maillot, Pascale

    2012-12-01

    Grapevines are affected worldwide by viruses that compromise fruit yield and quality. Grapevine fanleaf virus (GFLV) causes fanleaf degeneration disease, a major threat to grapevine production. Transgenic approaches exploiting the RNA silencing machinery have proven suitable for engineering viral resistance in several crop species. However, the artificial microRNA (amiRNA)-based strategy has not yet been reported in grapevine. We developed two amiRNA precursors (pre-amiRNAs) targeting the coat protein (CP) gene of GFLV and characterised their functionality in grapevine somatic embryos. To create these pre-amiRNAs, natural pre-miR319a of Arabidopsis thaliana was modified by overlapping PCR in order to replace miR319a with two amiRNAs targeting different regions of the CP gene: amiR(CP)-1 or amiR(CP)-2. Transient expression of these two pre-amiRNA constructs was tested in grapevine somatic embryos after co-cultivation with Agrobacterium tumefaciens. Expression of amiR(CP)-1 and amiR(CP)-2 was detected in plant tissues by an endpoint stem-loop RT-PCR as early as 1 day after a 48-h co-cultivation, indicating active processing of pre-amiRNAs by the plant machinery. In parallel, GUS-sensor constructs (G(CP)-1 and G(CP)-2) were obtained by fusing the target sequence of amiR(CP)-1 or amiR(CP)-2 to the 3' terminus of the GUS gene. Co-transformation assays with GUS-sensors and the pre-amiRNA constructs provided evidence for in vivo recognition and cleavage of the 21-nt target sequence of GUS-sensors by the corresponding amiRNA. This is the first report of amiRNA ectopic expression in grapevine. The constructs we developed could be useful for engineering GFLV-resistant grapes in the future.

  3. MicroRNA-378 regulates neural stem cell proliferation and differentiation in vitro by modulating Tailless expression

    International Nuclear Information System (INIS)

    Huang, Yanxia; Liu, Xiaoguai; Wang, Yaping

    2015-01-01

    Previous studies have suggested that microRNAs (miRNAs) play an important role in regulating neural stem cell (NSC) proliferation and differentiation. However, the precise role of miRNAs in NSC remains largely unexplored. In this study, we showed that miR-378 can target Tailless (TLX), a critical regulator of NSC, to regulate NSC proliferation and differentiation. By bioinformatic algorithms, miR-378 was found to have a predicted target site in the 3′-untranslated region of TLX, which was verified by a dual-luciferase reporter assay. The expression of miR-378 was increased during NSC differentiation and inversely correlated with TLX expression. qPCR and Western blot analysis also showed that miR-378 negatively regulated TLX mRNA and protein expression in neural stem cells (NSCs). Intriguingly, overexpression of miR-378 increased NSC differentiation and reduced NSC proliferation, whereas suppression of miR-378 led to decreased NSC differentiation and increased NSC proliferation. Moreover, the downstream targets of TLX, including p21, PTEN and Wnt/β-catenin were also found to be regulated by miR-378. Additionally, overexpression of TLX rescued the NSC proliferation deficiency induced by miR-378 overexpression and abolished miR-378-promoted NSC differentiation. Taken together, our data suggest that miR-378 is a novel miRNA that regulates NSC proliferation and differentiation via targeting TLX. Therefore, manipulating miR-378 in NSCs could be a novel strategy to develop novel interventions for the treatment of relevant neurological disorders. - Highlights: • miR-378 targeted and regulated TLX. • miR-378 was increased during NSC differentiation. • miR-378 regulated NSC proliferation and differentiation. • miR-378 regulated NSC self-renew through TLX.

  4. Olfactory Discrimination Training Up-Regulates and Reorganizes Expression of MicroRNAs in Adult Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    2010-01-01

    Full Text Available Adult male mice (strain C57Bl/6J were trained to execute nose-poke responses for water reinforcement; then they were randomly assigned to either of two groups: Olfactory discrimination training (exposed to two odours with reward contingent upon correctly responding to one odour or pseudo-training (exposed to two odours with reward not contingent upon response. These were run in yoked fashion and killed when the discrimination-trained mouse reached a learning criterion of 70% correct responses in 20 trials, occurring after three sessions (a total of ~40 min of training. The hippocampus was dissected bilaterally from each mouse (N=7 in each group and profiling of 585 miRNAs (microRNAs was carried out using multiplex RT–PCR (reverse transcription–PCR plates. A significant global up-regulation of miRNA expression was observed in the discrimination training versus pseudo-training comparison; when tested individually, 29 miRNAs achieved significance at P=0.05. miR-10a showed a 2.7-fold increase with training, and is predicted to target several learning-related mRNAs including BDNF (brain-derived neurotrophic factor, CAMK2b (calcium/calmodulin-dependent protein kinase IIβ, CREB1 (cAMP-response-element-binding protein 1 and ELAVL2 [ELAV (embryonic lethal, abnormal vision, Drosophila-like; Hu B]. Analysis of miRNA pairwise correlations revealed the existence of several miRNA co-expression modules that were specific to the training group. These in vivo results indicate that significant, dynamic and co-ordinated changes in miRNA expression accompany early stages of learning.

  5. Differential microRNA expression in the prefrontal cortex of mouse offspring induced by glyphosate exposure during pregnancy and lactation.

    Science.gov (United States)

    Ji, Hua; Xu, Linhao; Wang, Zheng; Fan, Xinli; Wu, Lihui

    2018-03-01

    Glyphosate is the active ingredient in numerous herbicide formulations. The role of glyphosate in neurotoxicity has been reported in human and animal models. However, the detailed mechanism of the role of glyphosate in neuronal development remains unknown. Recently, several studies have reported evidence linking neurodevelopmental disorders (NDDs) with gestational glyphosate exposure. The current group previously identified microRNAs (miRNAs) that are associated with the etiology of NDDs, but their expression levels in the developing brain following glyphosate exposure have not been characterized. In the present study, miRNA expression patterns were evaluated in the prefrontal cortex (PFC) of 28 postnatal day mouse offspring following glyphosate exposure during pregnancy and lactation. An miRNA microarray detected 55 upregulated and 19 downregulated miRNAs in the PFC of mouse offspring, and 20 selected deregulated miRNAs were further evaluated by quantitative polymerase chain reaction (PCR). A total of 11 targets of these selected deregulated miRNAs were analyzed using bioinformatics. Gene Ontology (GO) terms associated with the relevant miRNAs included neurogenesis (GO:0050769), neuron differentiation (GO:0030182) and brain development (GO:0007420). The genes Cdkn1a, Numbl, Notch1, Fosl1 and Lef1 are involved in the Wnt and Notch signaling pathways, which are closely associated with neural development. PCR arrays for the mouse Wnt and Notch signaling pathways were used to validate the effects of glyphosate on the expression pattern of genes involved in the Wnt and Notch pathways. Nr4a2 and Wnt7b were downregulated, while Dkk1, Dixdc1, Runx1, Shh, Lef-1 and Axin2 were upregulated in the PFC of mice offspring following glyphosate exposure during pregnancy and lactation. These results indicated abnormalities of the Wnt/β-catenin and Notch pathways. These findings may be of particular interest for understanding the mechanism of glyphosate-induced neurotoxicity, as

  6. Expression analysis of microRNAs related to the skin ulceration syndrome of sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Sun, Hongjuan; Zhou, Zunchun; Dong, Ying; Yang, Aifu; Jiang, Jingwei; Chen, Zhong; Guan, Xiaoyan; Wang, Bai; Gao, Shan; Jiang, Bei

    2016-02-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are involved in many biological processes. To investigate the miRNAs related to skin ulceration syndrome (SUS) of Apostichopus japonicus, small RNA libraries of body wall, intestine, respiratory tree and coelomocytes from healthy and diseased A. japonicus were sequenced on Illumina Hiseq 2000 platform. A total of 247 conserved and 10 novel miRNAs were identified across all libraries. After pair-wise comparisons, 215 miRNAs in body wall, 36 in intestine, 2 in respiratory tree and 38 in coelomocytes showed significant expression differences. Further analyses were conducted on some tissue-specific differentially expressed miRNAs: miR-8 and miR-486-5p in body wall, miR-200-3p, let-7-5p and miR-125 in intestine, miR-278a-3p and bantam in respiratory, miR-10a and miR-184 in coelomocytes. Notably, these miRNAs in some species were reported to function in various physiological or pathological processes associated with immune regulations. Using stem-loop quantitative real time PCR, six representative miRNAs in four tissues were selected to validate the sequencing results. The Pearson's correlation coefficient (R) of the six miRNAs ranged from 0.777 to 0.948, which confirmed the consistency and accuracy between these two approaches. This study provides comprehensive expression and regulation patterns of functional miRNAs in different tissues and gives insights into the tissue-specific immune response mechanisms in SUS-infected A. japonicus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia

    Directory of Open Access Journals (Sweden)

    Mylène Hervé

    2016-08-01

    Full Text Available Familial dysautonomia (FD is a rare neurodegenerative disease caused by a mutation in intron 20 of the IKBKAP gene (c.2204+6T>C, leading to tissue-specific skipping of exon 20 and a decrease in the synthesis of the encoded protein IKAP (also known as ELP1. Small non-coding RNAs known as microRNAs (miRNAs are important post-transcriptional regulators of gene expression and play an essential role in the nervous system development and function. To better understand the neuronal specificity of IKAP loss, we examined expression of miRNAs in human olfactory ecto-mesenchymal stem cells (hOE-MSCs from five control individuals and five FD patients. We profiled the expression of 373 miRNAs using microfluidics and reverse transcription coupled to quantitative PCR (RT-qPCR on two biological replicate series of hOE-MSC cultures from healthy controls and FD patients. This led to the total identification of 26 dysregulated miRNAs in FD, validating the existence of a miRNA signature in FD. We then selected the nine most discriminant miRNAs for further analysis. The signaling pathways affected by these dysregulated miRNAs were largely within the nervous system. In addition, many targets of these dysregulated miRNAs had been previously demonstrated to be affected in FD models. Moreover, we found that four of our nine candidate miRNAs target the neuron-specific splicing factor NOVA1. We demonstrated that overexpression of miR-203a-3p leads to a decrease of NOVA1, counter-balanced by an increase of IKAP, supporting a potential interaction between NOVA1 and IKAP. Taken together, these results reinforce the choice of miRNAs as potential therapeutic targets and suggest that NOVA1 could be a regulator of FD pathophysiology.

  8. Preliminary Analysis of MicroRNAs Expression Profiling in MC3T3-E1 Cells Exposed to Fluoride.

    Science.gov (United States)

    Wang, Yan; Zhang, Xiuyun; Zhao, Zhitao; Xu, Hui

    2017-04-01

    Overexposure to fluoride from environmental sources can cause serious public health problems. Disrupted osteoblast function and impaired bone formation were found to be associated with excessive fluoride exposure. A massive analysis of microRNAs (miRNAs) was used to figure out the possible pathways in which fluoride affects osteoblast function. MC3T3-E1 cells were treated with 8 mg/L of fluorine for 7 days. Total RNA of cells was extracted, and their integrity and purity were tested. RNA samples were analyzed by using miRNA array, including miRNA labeling, hybridization, scanning, and expression data analysis to compare the profiling of miRNA expression between control and fluoride-treated group. Transcriptome analysis console and enrichment analysis calculated by miRSystem were used to predict target genes and collect miRNAs pathway maps. Forty-five upregulated and 31 downregulated miRNAs expression were found in the fluoride-treated group, and most of the verified miRNAs were mature. The KEGG pathway enrichment analysis searched out 36 pathways that scored more than 0.1. These pathways mainly included intracellular signaling, cytokines, metabolism, and cytoskeleton-related pathways. Among them, the Wnt, insulin, TGF-beta, hedgehog, VEGF, and notch pathways in osteoblasts were those mainly affected by fluoride treatment. These results have shown a number of higher level systemic pathways activated by overexposure of fluoride in osteoblastic cells and verified that fluoride affected the molecular crosstalk in the osteoblasts.

  9. Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment.

    Directory of Open Access Journals (Sweden)

    Brandon Smith

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are short non-coding RNAs predicted to regulate one third of protein coding genes via mRNA targeting. In conjunction with key transcription factors, such as the repressor REST (RE1 silencing transcription factor, miRNAs play crucial roles in neurogenesis, which requires a highly orchestrated program of gene expression to ensure the appropriate development and function of diverse neural cell types. Whilst previous studies have highlighted select groups of miRNAs during neural development, there remains a need for amenable models in which miRNA expression and function can be analyzed over the duration of neurogenesis. PRINCIPAL FINDINGS: We performed large-scale expression profiling of miRNAs in human NTera2/D1 (NT2 cells during retinoic acid (RA-induced transition from progenitors to fully differentiated neural phenotypes. Our results revealed dynamic changes of miRNA patterns, resulting in distinct miRNA subsets that could be linked to specific neurodevelopmental stages. Moreover, the cell-type specific miRNA subsets were very similar in NT2-derived differentiated cells and human primary neurons and astrocytes. Further analysis identified miRNAs as putative regulators of REST, as well as candidate miRNAs targeted by REST. Finally, we confirmed the existence of two predicted miRNAs; pred-MIR191 and pred-MIR222 associated with SLAIN1 and FOXP2, respectively, and provided some evidence of their potential co-regulation. CONCLUSIONS: In the present study, we demonstrate that regulation of miRNAs occurs in precise patterns indicative of their roles in cell fate commitment, progenitor expansion and differentiation into neurons and glia. Furthermore, the similarity between our NT2 system and primary human cells suggests their roles in molecular pathways critical for human in vivo neurogenesis.

  10. Muscular microRNA expressions in healthy and myopathic horses suffering from polysaccharide storage myopathy or recurrent exertional rhabdomyolysis.

    Science.gov (United States)

    Barrey, E; Bonnamy, B; Barrey, E J; Mata, X; Chaffaux, S; Guerin, G

    2010-11-01

    MicroRNAs (miRNA) are small endogenous noncoding interfering RNA molecules (18-25 nucleotides) regarded as major regulators in eukaryotic gene expression. They play a role in developmental timing, cellular differentiation, signalling and apoptosis pathways. Because of the central function of miRNAs in the proliferation and differentiation of the myoblasts demonstrated in mouse and man, it is assumed that they could be present in equine muscles and their expression profile may be related to the muscle status. To identify miRNA candidates in the muscles of control and affected horses suffering from polysaccharide storage myopathy (PSSM) and recurrent exertional rhabdomyolysis (RER). Muscle biopsies were collected in the gluteus medius of horses allocated into 4 groups: French Trotters (3 control-TF vs. 3 RER-TF) and Norman Cob (5 control-Cob vs. 9 PSSM-Cob). Blood samples were collected for miRNA analysis. Total RNA were extracted and real time quantitative RT-QPCR analysis were conducted using 10 miRNA assays (mir-1-23-30-133-181-188-195-206-339-375). All the miRNA candidates were significantly detected in the muscles and some in blood samples. Variance analysis revealed highly significant (P myopathy: a higher expression of mir-1, 133, 23a, 30b, 195 and 339 in RER-TF vs. control-TF (P horses. This first study about muscular miRNA profile in equine myopathies indicated that it is possible to discriminate pathological from control horses according to their miRNA profile. The RER miRNA profile was more specific and contrasted than the PSSM profile. © 2010 EVJ Ltd.

  11. An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression

    OpenAIRE

    Ucar, Olga; Tykocinski, Lars-Oliver; Dooley, James; Liston, Adrian; Kyewski, Bruno

    2013-01-01

    The establishment and maintenance of central tolerance depends to a large extent on the ability of medullary thymic epithelial cells to express a variety of tissue-restricted antigens, the so-called promiscuous gene expression (pGE). Autoimmune regulator (Aire) is to date the best characterised transcriptional regulator known to at least partially coordinate pGE. There is accruing evidence that the expression of Aire-dependent and -independent genes is modulated by higher order chromatin conf...

  12. Source of protein supplementation during in vitro culture does not affect the quality of resulting blastocysts in the domestic cat.

    Science.gov (United States)

    Nestle, E; Graves-Herring, J; Keefer, C; Comizzoli, P

    2012-12-01

    The objective of this study was to assess and compare the quality of cat blastocysts produced in vitro using commercial blastocyst growth media supplemented with different sources of proteins (serum protein substitute from in vitro maturation through embryo development vs 4 mg/ml of bovine serum albumin for maturation and 5% foetal calf serum for fertilization and embryo development). Impact was specifically examined on the proportion of blastocyst formation, total number of blastomeres, proportion of inner cell mass and expression of pluripotency marker proteins NANOG and OCT-4. Blastocyst formation per total cleaved embryos was similar (p > 0.05) regardless of the protein supplementation. There were no differences (p > 0.05) between culture conditions regarding average number of blastomeres and proportion of inner cell mass in each embryo. Presence of OCT-4 protein was detected in nuclei of both trophectoderm and inner cell mass region, with a stronger signal in the latter regardless of the culture medium. NANOG protein also was present in the inner cell mass regardless of the in vitro culture condition. We therefore demonstrated that serum protein substitute was as good as semi-defined protein sources for the production of good-quality blastocysts and embryonic stem cells. In addition, a single defined medium could be successfully used for cat oocyte maturation, in vitro fertilization and embryo development. © 2012 Blackwell Verlag GmbH.

  13. Effect of Hyaluronan on Developmental Competence and Quality of Oocytes and Obtained Blastocysts from In Vitro Maturation of Bovine Oocytes

    Directory of Open Access Journals (Sweden)

    Jolanta Opiela

    2014-01-01

    Full Text Available The objective of the present study was to evaluate the effect of hyaluronan (HA during IVM on meiotic maturation, embryonic development, and the quality of oocytes, granulosa cells (GC, and obtained blastocysts. COCs were matured in vitro in control medium and medium with additional 0.035% or 0.07% of exogenous HA. The meiotic maturity did not differ between the analysed groups. The best rate and the highest quality of obtained blastocysts were observed when 0.07% HA was used. A highly significant difference (P<0.001 was noted in the mean number of apoptotic nuclei per blastocyst and in the DCI between the 0.07% HA and the control blastocysts (P<0.01. Our results suggest that addition of 0.035% HA and 0.07% HA to oocyte maturation media does not affect oocyte nuclear maturation and DNA fragmentation. However, the addition of 0.07% HA during IVM decreases the level of blastocysts DNA fragmentation. Finally, our results suggest that it may be risky to increase the HA concentration during IVM above 0.07% as we found significantly higher Bax mRNA expression levels in GC cultured with 0.07% HA. The final concentration of HA being supplemented to oocyte maturation media is critical for the success of the IVP procedure.

  14. Uncovering robust patterns of microRNA co-expression across cancers using Bayesian Relevance Networks.

    Directory of Open Access Journals (Sweden)

    Parameswaran Ramachandran

    Full Text Available Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing-with its unique statistical properties-became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca.

  15. Uncovering robust patterns of microRNA co-expression across cancers using Bayesian Relevance Networks

    Science.gov (United States)

    2017-01-01

    Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing—with its unique statistical properties—became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca. PMID:28817636

  16. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins.

    Science.gov (United States)

    Chen, Wei-Ming; Sheu, Wayne H-H; Tseng, Pei-Chi; Lee, Tzong-Shyuan; Lee, Wen-Jane; Chang, Pey-Jium; Chiang, An-Na

    2016-01-01

    Metabolic syndrome (MetS) is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR)-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1) regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3'-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes.

  17. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Chen

    Full Text Available Metabolic syndrome (MetS is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1 regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3'-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes.

  18. Decreased expression of microRNA let-7i and its association with chemotherapeutic response in human gastric cancer

    Directory of Open Access Journals (Sweden)

    Liu Kun

    2012-10-01

    Full Text Available Abstract Background MicroRNA let-7i has been proven to be down-regulated in many human malignancies and correlated with tumor progression and anticancer drug resistance. Our study aims to characterize the contribution of miRNA let-7i to the initiation and malignant progression of locally advanced gastric cancer (LAGC, and evaluate its possible value in neoadjuvant chemotherapeutic efficacy prediction. Methods Eighty-six previously untreated LAGC patients who underwent preoperative chemotherapy and radical resection were included in our study. Let-7i expression was examined for pairs of cancer tissues and corresponding normal adjacent tissues (NATs, using quantitative RT-PCR. The relationship of let-7i level to clinicopathological characteristics, pathologic tumor regression grades after chemotherapy, and overall survival (OS was also investigated. Results Let-7i was significantly down-regulated in most tumor tissues (78/86: 91% compared with paired NATs (P P =0.024 independently of other clinicopathological factors, including tumor node metastasis (TNM stage (HR = 3.226, P = 0.013, depth of infiltration (HR = 4.167, P P = 0.037. Conclusions These findings indicate that let-7i may be a good candidate for use a therapeutic target and a potential tissue marker for the prediction of chemotherapeutic sensitivity and prognosis in LAGC patients.

  19. Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection.

    Science.gov (United States)

    Liu, Wenquan; Hao, Zhenhua; Huang, Liyang; Chen, Lingzi; Wei, Qimei; Cai, Liya; Liang, Shaohui

    2017-02-16

    Anopheles anthropophagus is one of the major vectors of malaria in Asia. MicroRNAs (miRNAs) play important roles in cell development and differentiation as well as in the cellular response to stress and infection. In a former study, we have investigated the global miRNA profiles in relation to sex in An. anthropophagus. However, the miRNAs contributing to the blood-feeding and infection with Plasmodium are still unknown. High-throughput sequencing was performed to identify miRNA profiles of An. anthropophagus midguts after blood-feeding and Plasmodium infection. The expression patterns of miRNA in different midgut libraries were compared based on transcripts per million reads (TPM), and further confirmed by Northern blots. Target prediction and pathway analysis were carried out to investigate the role of regulated miRNAs in blood-feeding and Plasmodium infection. We identified 67 known and 21 novel miRNAs in all three libraries (sugar-feeding, blood-feeding and Plasmodium infection) in An. anthropophagus midguts. Comparing with the sugar-feeding, the experssion of nine (6 known and 3 novel) and ten (9 known and 1 novel) miRNAs were significantly upregulated and downregulated respectively after blood-feeding (P anti-parasite immunity.

  20. Regulation of gene expression by microRNA in HCV infection and HCV–mediated hepatocellular carcinoma

    Science.gov (United States)

    2014-01-01

    MicroRNA (miRNA) exert a profound effect on Hepatitis C virus (HCV) replication and on the manifestation of HCV-associated hepatocellular carcinoma (HCC). miR-122 in particular, is highly enriched in liver and has been shown to interact with HCV, suggesting this virus has evolved to subvert and manipulate the host gene silencing machinery in order to support its life cycle. It is therefore likely that miR-122 and other miRNAs play an important role in the pathophysiology of HCV infection. The changes in post-transcriptional gene regulation by the miRNAs may play a key role in the manifestation of chronic liver disease and hepatocellular carcinoma. Understanding of HCV-host miRNA interactions will ultimately lead to the design of therapeutic modalities against HCV infection and HCV-mediated HCC and may also provide important biomarkers that direct treatment options. Here, we review the current knowledge on the role of miRNA and gene expression on HCV infection and hepatocellular carcinoma, in addition to the possible role of miRNA as future therapeutic targets. PMID:24690114

  1. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Ji-Feng Xu

    Full Text Available The physiological role of microRNAs (miRNAs in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84% could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05 when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221 were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation.

  2. MicroRNA expression profiles in chronic epilepsy rats and neuroprotection from seizures by targeting miR-344a

    Directory of Open Access Journals (Sweden)

    Liu XX

    2017-07-01

    Full Text Available Xixia Liu,1,2 Yuhan Liao,1 Xiuxiu Wang,1 Donghua Zou,1 Chun Luo,1 Chongdong Jian,1 Yuan Wu1 1Department of Neurology, First Affiliated Hospital of Guangxi Medical University, 2Department of Rehabilitation, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China Abstract: MicroRNA (miRNA is believed to play a crucial role in the cause and treatment of epilepsy by controlling gene expression. However, it is still unclear how miRNA profiles change after multiple prolonged seizures and aggravation of brain injury in chronic epilepsy (CE. To investigate the role of miRNA in epilepsy, we utilized the CE rat models with pentylenetetrazol (PTZ and miRNA profiles in the hippocampus. miRNA profiles were characterized using miRNA microarray analysis and were compared with the rats in the sham group, which received 0.9% physiological saline treatment at the same dose. Four up-regulated miRNAs (miR-139–3p, -770–5p, -127–5p, -331–3p and 5 down-regulated miRNAs (miR-802–5p, -380–5p, -183–5p, -547–5p, -344a/-344a–5p were found in the CE rats (fold change >1.5, P<0.05. Three of the dysregulated miRNAs were validated by quantitative real-time polymerase chain reaction, which revealed an outcome consistent with the initial results of the miRNA microarray analyses. Then, miR-344a agomir was intracerebroventricularly injected and followed by PTZ induction of CE models to investigate the effect of miR-344a in chronic neocortical epileptogenesis. After miRNA-344a agomir and scramble treatment, results showed a restoration of seizure behavior and a reduction in neuron damage in the cortex in miRNA-334a agomir treated rats. These data suggest that miRNA-344a might have a small modulatory effect on seizure-induced apoptosis signaling pathways in the cortex. Keywords: microRNA, chronic epilepsy, miR-344a, epigenetics, apoptosis

  3. An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma

    Directory of Open Access Journals (Sweden)

    Luo Zhaohui

    2012-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small non-coding RNAs that participate in the spatiotemporal regulation of messenger RNA (mRNA and protein synthesis. Recent studies have shown that some miRNAs are involved in the progression of nasopharyngeal carcinoma (NPC. However, the aberrant miRNAs implicated in different clinical stages of NPC remain unknown and their functions have not been systematically studied. Methods In this study, miRNA microarray assay was performed on biopsies from different clinical stages of NPC. TargetScan was used to predict the target genes of the miRNAs. The target gene list was narrowed down by searching the data from the UniGene database to identify the nasopharyngeal-specific genes. The data reduction strategy was used to overlay with nasopharyngeal-specifically expressed miRNA target genes and complementary DNA (cDNA expression data. The selected target genes were analyzed in the Gene Ontology (GO biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG biological pathway. The microRNA-Gene-Network was build based on the interactions of miRNAs and target genes. miRNA promoters were analyzed for the transcription factor (TF binding sites. UCSC Genome database was used to construct the TF-miRNAs interaction networks. Results Forty-eight miRNAs with significant change were obtained by Multi-Class Dif. The most enriched GO terms in the predicted target genes of miRNA were cell proliferation, cell migration and cell matrix adhesion. KEGG analysis showed that target genes were significantly involved in adherens junction, cell adhesion molecules, p53 signalling pathway et al. Comprehensive analysis of the coordinate expression of miRNAs and mRNAs reveals that miR-29a/c, miR-34b, miR-34c-3p, miR-34c-5p, miR-429, miR-203, miR-222, miR-1/206, miR-141, miR-18a/b, miR-544, miR-205 and miR-149 may play important roles on the development of NPC. We proposed an integrative strategy for identifying the mi

  4. Differential expression of select members of the SLC family of genes and regulation of expression by microRNAs in the chicken oviduct.

    Science.gov (United States)

    Lim, Chul-Hong; Jeong, Wooyoung; Lim, Whasun; Kim, Jinyoung; Song, Gwonhwa; Bazer, Fuller W

    2012-06-01

    The yolk and white of eggs from chickens contain proteins and other molecules either secreted or transported by cells of the reproductive tract, or secreted by the liver and transported to the ovarian follicles of laying hens. Nutrients transported by solute carriers (SLCs) include glucose, electrolytes, and amino acids. Although SLC genes have been investigated in mammals, there are few studies of expression of SLC genes in the chicken oviduct. Therefore, we investigated temporal and cell-specific expression of selected SLC genes at 3 h and 20 h postovulation and regulation of their expression by microRNAs (miRs). Expression of SLC1A4 (glutamate and neutral amino acid transporter), SLC13A2 (dicarboxylate transporter), and SLC35B4 (UDP-xylose: UDP-N-acetylglucosamine transporter) mRNAs was limited to glandular epithelium (GE), while SLC4A5 (sodium bicarbonate cotransporter) and SLC7A3 (cationic amino acid transporter) mRNAs were expressed predominantly in the luminal epithelium of the magnum. Interestingly, SLC1A4, SLC4A5, SLC13A2 and SLC35B4 mRNAs were abundant only in GE of the shell gland, whereas SLC7A3 was not detected in the shell gland. In the magnum, SLC7A3 and SLC4A5 were expressed, but SLC1A4, SLC35B4, and SLC13A2 were not expressed at 20 h postovulation. In the shell gland, all SLC mRNAs were expressed at both time points, except for SLC7A3. The miRNA target validation assay revealed that miR-1764 and miR-1700 bind directly to SLC13A2 and SLC35B4 transcripts, respectively, to regulate expression. Results of this study demonstrate cell-specific and temporal changes in expression of selected SLC genes and regulation of SLC13A2 and SLC35B4 expression by miRs in the oviduct of laying hens.

  5. Human papillomavirus 16 E5 modulates the expression of host microRNAs

    DEFF Research Database (Denmark)

    Greco, Dario; Kivi, Niina; Qian, Kui

    2011-01-01

    on the alteration in the expression of miR-146a, miR-203 and miR-324-5p and their target genes in a time interval of 96 hours of E5 induction. Our results indicate that HPV infection and subsequent transformation take place through complex regulatory patterns of gene expression in the host cells, part of which...

  6. MicroRNA-146a expression as a potential biomarker for rheumatoid arthritis in Egypt

    Directory of Open Access Journals (Sweden)

    Heba Mohamed Abdelkader Elsayed

    2017-04-01

    Conclusion: This study demonstrated that miR-146a expression was highly significantly elevated in whole blood of patients with RA. Its diagnostic performance was better than anti-CCP and RF and its level of expression correlates with disease activity.

  7. MicroRNA Expression Profiling in Clear Cell Renal Cell Carcinoma: Identification and Functional Validation of Key miRNAs.

    Directory of Open Access Journals (Sweden)

    Haowei He

    Full Text Available This study aims to profile dysregulated microRNA (miRNA expression in clear cell renal cell carcinoma (ccRCC and to identify key regulatory miRNAs in ccRCC.miRNA expression profiles in nine pairs of ccRCC tumor samples at three different stages and the adjacent, non-tumorous tissues were investigated using miRNA arrays. Eleven miRNAs were identified to be commonly dysregulated, including three up-regulated (miR-487a, miR-491-3p and miR-452 and eight down-regulated (miR-125b, miR-142-3p, miR-199a-5p, miR-22, miR-299-3p, miR-29a, miR-429, and miR-532-5p in tumor tissues as compared with adjacent normal tissues. The 11 miRNAs and their predicted target genes were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment analysis, and three key miRNAs (miR-199a-5p, miR-22 and miR-429 were identified by microRNA-gene network analysis. Dysregulation of the three key miRNAs were further validated in another cohort of 15 ccRCC samples, and the human kidney carcinoma cell line 786-O, as compared with five normal kidney samples. Further investigation showed that over-expression of miR-199a-5p significantly inhibited the invasion ability of 786-O cells. Luciferase reporter assays indicated that miR-199a-5p regulated expression of TGFBR1 and JunB by directly interacting with their 3' untranslated regions. Transfection of miR-199a-5p successfully suppressed expression of TGFBR1 and JunB in the human embryonic kidney 293T cells, further confirming the direct regulation of miR-199a-5p on these two genes.This study identified 11 commonly dysregulated miRNAs in ccRCC, three of which (miR-199a-5p, miR-22 and miR-429 may represent key miRNAs involved in the pathogenesis of ccRCC. Further studies suggested that miR-199a-5p plays an important role in inhibition of cell invasion of ccRCC cells by suppressing expression of TGFBR1 and JunB.

  8. Splicing-dependent expression of microRNAs of mirtron origin in human digestive and excretory system cancer cells.

    Science.gov (United States)

    Butkytė, Stasė; Čiupas, Laurynas; Jakubauskienė, Eglė; Vilys, Laurynas; Mocevicius, Paulius; Kanopka, Arvydas; Vilkaitis, Giedrius

    2016-01-01

    An abundant class of intronic microRNAs (miRNAs) undergoes atypical Drosha-independent biogenesis in which the spliceosome governs the excision of hairpin miRNA precursors, called mirtrons. Although nearly 500 splicing-dependent miRNA candidates have been recently predicted via bioinformatic analysis of human RNA-Seq datasets, only a few of them have been experimentally validated. The detailed mechanism of miRNA processing by the splicing machinery and the roles of mirtronic miRNAs in cancer are yet to be uncovered. We experimentally examined whether biogenesis of certain miRNAs is under a splicing control by analyzing their expression levels in response to alterations in the 5'- and 3'-splice sites of a series of intron-containing minigenes carrying appropriate miRNAs. The expression levels of the miRNAs processed from mirtrons were determined by quantitative real-time PCR in five digestive tract (pancreas PANC-1, SU.86.86, T3M4, stomach KATOIII, colon HCT116) and two excretory system (kidney CaKi-1, 786-O) carcinoma cell lines as well as in pancreatic, stomach, and colorectal tumors. Transiently expressed SRSF1 and SRSF2 splicing factors were quantified by western blotting in the nuclear fractions of HCT116 cells. We found that biogenesis of the human hsa-miR-1227-3p, hsa-miR-1229-3p, and hsa-miR-1236-3p is splicing-dependent; therefore, these miRNAs can be assigned to the class of miRNAs processed by a non-canonical mirtron pathway. The expression analysis revealed a differential regulation of human mirtronic miRNAs in various cancer cell lines and tumors. In particular, hsa-miR-1229-3p is selectively upregulated in the pancreatic and stomach cancer cell lines derived from metastatic sites. Compared with the healthy controls, the expression of hsa-miR-1226-3p was significantly higher in stomach tumors but extensively downregulated in colorectal tumors. Furthermore, we provided evidence that overexpression of SRSF1 or SRSF2 can upregulate the processing of

  9. MicroRNA-93 controls perfusion recovery after hindlimb ischemia by modulating expression of multiple genes in the cell cycle pathway.

    Science.gov (United States)

    Hazarika, Surovi; Farber, Charles R; Dokun, Ayotunde O; Pitsillides, Achillieas N; Wang, Tao; Lye, R John; Annex, Brian H

    2013-04-30

    MicroRNAs are key regulators of gene expression in response to injury, but there is limited knowledge of their role in ischemia-induced angiogenesis, such as in peripheral arterial disease. Here, we used an unbiased strategy and took advantage of different phenotypic outcomes that follow surgically induced hindlimb ischemia between inbred mouse strains to identify key microRNAs involved in perfusion recovery from hindlimb ischemia. From comparative microRNA profiling between inbred mouse strains that display profound differences in their extent of perfusion recovery after hindlimb ischemia, we found that the mouse strain with higher levels of microRNA-93 (miR-93) in hindlimb muscle before ischemia and the greater ability to upregulate miR-93 in response to ischemia had better perfusion recovery. In vitro, overexpression of miR-93 attenuated hypoxia-induced apoptosis in both endothelial and skeletal muscle cells and enhanced proliferation in both cell types. In addition, miR-93 overexpression enhanced endothelial cell tube formation. In vivo, miR-93 overexpression enhanced capillary density and perfusion recovery from hindlimb ischemia, and antagomirs to miR-93 attenuated perfusion recovery. Both in vitro and in vivo modulation of miR-93 resulted in alterations in the expression of >1 cell cycle pathway gene in 2 different cell types. Our data indicate that miR-93 enhances perfusion recovery from hindlimb ischemia by modulation of multiple genes that coordinate the functional pathways of cell proliferation and apoptosis. Thus, miR-93 is a strong potential target for pharmacological modulation to promote angiogenesis in ischemic tissue.

  10. Locked Nucleic Acid-Based In Situ Hybridization Reveals miR-7a as a Hypothalamus-Enriched MicroRNA with a Distinct Expression Pattern

    DEFF Research Database (Denmark)

    Herzer, S; Silahtaroglu, A; Meister, B

    2012-01-01

    MicroRNAs (miRNAs) are short (22 nucleotides) non-coding ribonucleic acid (RNA) molecules that post-transcriptionally repress expression of protein-coding genes by binding to 3'-untranslated regions of the target mRNAs. In order to identify miRNAs selectively expressed within the hypothalamus...... present in the hypothalamus, miR-7a, was the only miRNA found to be enriched in the hypothalamus, with low or no expression in other parts of the central nervous system (CNS). Within the hypothalamus, strong miR-7a expression was distinct and restricted to some hypothalamic nuclei and adjacent areas. mi......R-7a expression was particularly prominent in the subfornical organ, suprachiasmatic, paraventricular, periventricular, supraoptic, dorsomedial and arcuate nuclei. Identical expression patterns for miR-7a was seen in mouse and rat hypothalamus. By combining LNA-FISH with immunohistochemistry...

  11. Signal transducer and activator of transcription-3 induces microRNA-155 expression in chronic lymphocytic leukemia.

    Directory of Open Access Journals (Sweden)

    Ping Li

    Full Text Available MicroRNA (miR abnormalities play a key role in the pathogenesis of chronic lymphocytic leukemia (CLL. High levels of miR-155 have been detected in human neoplasms, and overexpression of miR-155 has been found to induce lymphoma in mice. High levels of miR-155 were detected in CLL cells and STAT3, which is known to induce miR-21 and miR-181b-1 expression, is constitutively activated in CLL. Given these findings, we hypothesized that STAT3 induces miR-155. Sequence analysis revealed that the miR-155 promoter harbors two putative STAT3 binding sites. Therefore, truncated miR-155 promoter constructs and STAT3 small interfering RNA (siRNA were co-transfected into MM1 cells. Of the two putative binding sites, STAT3-siRNA reduced the luciferase activity of the construct containing the 700-709 bp STAT3 binding site, suggesting that this site is involved in STAT3-induced transcription. Electrophoretic mobility shift assay confirmed that STAT3 bound to the miR-155 promoter in CLL cells, and chromatin immunoprecipitation and luciferase assay confirmed that STAT3 bound to the 700-709 bp but not the 615-624 bp putative STAT3 binding site in CLL cells. Finally, STAT3-small hairpin RNA downregulated miR-155 gene expression, suggesting that constitutively activated STAT3 binds to the miR-155 gene promoter. Together, these results suggest that STAT3 activates miR-155 in CLL cells.

  12. Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: role for miR-499.

    Science.gov (United States)

    Wilson, Kitchener D; Hu, Shijun; Venkatasubrahmanyam, Shivkumar; Fu, Ji-Dong; Sun, Ning; Abilez, Oscar J; Baugh, Joshua J A; Jia, Fangjun; Ghosh, Zhumur; Li, Ronald A; Butte, Atul J; Wu, Joseph C

    2010-10-01

    MicroRNAs (miRNAs) are a newly discovered endogenous class of small, noncoding RNAs that play important posttranscriptional regulatory roles by targeting messenger RNAs for cleavage or translational repression. Human embryonic stem cells are known to express miRNAs that are often undetectable in adult organs, and a growing body of evidence has implicated miRNAs as important arbiters of heart development and disease. To better understand the transition between the human embryonic and cardiac "miRNA-omes," we report here the first miRNA profiling study of cardiomyocytes derived from human embryonic stem cells. Analyzing 711 unique miRNAs, we have identified several interesting miRNAs, including miR-1, -133, and -208, that have been previously reported to be involved in cardiac development and disease and that show surprising patterns of expression across our samples. We also identified novel miRNAs, such as miR-499, that are strongly associated with cardiac differentiation and that share many predicted targets with miR-208. Overexpression of miR-499 and -1 resulted in upregulation of important cardiac myosin heavy-chain genes in embryoid bodies; miR-499 overexpression also caused upregulation of the cardiac transcription factor MEF2C. Taken together, our data give significant insight into the regulatory networks that govern human embryonic stem cell differentiation and highlight the ability of miRNAs to perturb, and even control, the genes that are involved in cardiac specification of human embryonic stem cells.

  13. microRNA expression profiles in human peripheral blood lymphocytes cultured in modeled microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — In the present study we analyzed miRNA and mRNA expression profiles in human peripheral blood lymphocytes (PBLs) incubated in microgravity condition simulated by a...

  14. The microRNA molecular signature of atypic and common acquired melanocytic nevi: differential expression of miR-125b and let-7c

    DEFF Research Database (Denmark)

    Holst, Line Marie Broksø; Kaczkowski, Bogumil; Glud, Martin

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which regulate gene expression through base pairing with mRNA and which are crucially involved in carcinogenesis (the so-called oncomiRs). We compared the miRNA signature between acquired melanocytic nevi showing clinical atypia (atypic nevi, AN......) and common acquired nevi (common nevi, CN). We obtained miRNA profiles from 41 biopsies (22 AN and 19 CN) and showed that AN could be differentiated from CN on the basis of the expression of 36 miRNAs (false discovery rate...

  15. Role of Melt Curve Analysis in Interpretation of Nutrigenomics' MicroRNA Expression Data.

    Science.gov (United States)

    Ahmed, Farid E; Gouda, Mostafa M; Hussein, Laila A; Ahmed, Nancy C; Vos, Paul W; Mohammad, Mahmoud A

    2017-01-01

    This article illustrates the importance of melt curve analysis (MCA) in interpretation of mild nutrogenomic micro(mi)RNA expression data, by measuring the magnitude of the expression of key miRNA molecules in stool of healthy human adults as molecular markers, following the intake of Pomegranate juice (PGJ), functional fermented sobya (FS), rich in potential probiotic lactobacilli, or their combination. Total small RNA was isolated from stool of 25 volunteers before and following a three-week dietary intervention trial. Expression of 88 miRNA genes was evaluated using Qiagen's 96 well plate RT 2 miRNA qPCR arrays. Employing parallel coordinates plots, there was no observed significant separation for the gene expression (Cq) values, using Roche 480® PCR LightCycler instrument used in this study, and none of the miRNAs showed significant statistical expression after controlling for the false discovery rate. On the other hand, melting temperature profiles produced during PCR amplification run, found seven significant genes (miR-184, miR-203, miR-373, miR-124, miR-96, miR-373 and miR-301a), which separated candidate miRNAs that could function as novel molecular markers of relevance to oxidative stress and immunoglobulin function, for the intake of polyphenol (PP)-rich, functional fermented foods rich in lactobacilli (FS), or their combination. We elaborate on these data, and present a detailed review on use of melt curves for analyzing nutigenomic miRNA expression data, which initially appear to show no significant expressions, but are actually more subtle than this simplistic view, necessitating the understanding of the role of MCA for a comprehensive understanding of what the collective expression and MCA data collectively imply. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  16. MicroRNA expression signatures in lungs of mice infected with Mycobacterium tuberculosis.

    Science.gov (United States)

    Malardo, Thiago; Gardinassi, Luiz Gustavo; Moreira, Bernardo Pereira; Padilha, Éverton; Lorenzi, Júlio César Cetrulo; Soares, Luana Silva; Gembre, Ana Flávia; Fontoura, Isabela Cardoso; de Almeida, Luciana Previato; de Miranda Santos, Isabel Kinney Ferreira; Silva, Célio Lopes; Coelho-Castelo, Arlete Aparecida Martins

    2016-12-01

    Tuberculosis (TB) is a major public health concern worldwide; however the factors that account for resistance or susceptibility to disease are not completely understood. Although some studies suggest that the differential expression of miRNAs in peripheral blood of TB patients could be useful as biomarkers of active disease, their involvement during the inflammatory process in lungs of infected individuals is unknown. Here, we evaluated the global expression of miRNAs in the lungs of mice experimentally infected with Mycobacterium tuberculosis on 30 and 60 days post-infection. We observed that several miRNAs were differentially expressed compared to uninfected mice. Furthermore, we verified that the expression of miR-135b, miR-21, miR-155, miR-146a, and miR-146b was significantly altered in distinct leukocyte subsets isolated from lungs of infected mice, while genes potentially targeted by those miRNAs were associated with a diversity of immune related molecular pathways. Importantly, we validated the inhibition of Pellino 1 expression by miR-135b in vitro. Overall, this study contributes to the understanding of the dynamics of miRNA expression in lungs during experimental TB and adds further perspectives into the role of miRNAs on the regulation of immune processes such as leukocyte activation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. MicroRNA-124-3p expression and its prospective functional pathways in hepatocellular carcinoma: A quantitative polymerase chain reaction, gene expression omnibus and bioinformatics study.

    Science.gov (United States)

    He, Rong-Quan; Yang, Xia; Liang, Liang; Chen, Gang; Ma, Jie

    2018-04-01

    The present study aimed to explore the potential clinical significance of microRNA (miR)-124-3p expression in the hepatocarcinogenesis and development of hepatocellular carcinoma (HCC), as well as the potential target genes of functional HCC pathways. Reverse transcription-quantitative polymerase chain reaction was performed to evaluate the expression of miR-124-3p in 101 HCC and adjacent non-cancerous tissue samples. Additionally, the association between miR-124-3p expression and clinical parameters was also analyzed. Differentially expressed genes identified following miR-124-3p transfection, the prospective target genes predicted in silico and the key genes of HCC obtained from Natural Language Processing (NLP) were integrated to obtain potential target genes of miR-124-3p in HCC. Relevant signaling pathways were assessed with protein-protein interaction (PPI) networks, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Protein Annotation Through Evolutionary Relationships (PANTHER) pathway enrichment analysis. miR-124-3p expression was significantly reduced in HCC tissues compared with expression in adjacent non-cancerous liver tissues. In HCC, miR-124-3p was demonstrated to be associated with clinical stage. The mean survival time of the low miR-124-3p expression group was reduced compared with that of the high expression group. A total of 132 genes overlapped from differentially expressed genes, miR-124-3p predicted target genes and NLP identified genes. PPI network construction revealed a total of 109 nodes and 386 edges, and 20 key genes were identified. The major enriched terms of three GO categories included regulation of cell proliferation, positive regulation of cellular biosynthetic processes, cell leading edge, cytosol and cell projection, protein kinase activity, transcription activator activity and enzyme binding. KEGG analysis revealed pancreatic cancer, prostate cancer and non-small cell lung cancer as the

  18. Expression profile of microRNA-146a along HPV-induced multistep carcinogenesis: a study in HPV16 transgenic mice.

    Science.gov (United States)

    Araújo, Rita; Santos, Joana M O; Fernandes, Mara; Dias, Francisca; Sousa, Hugo; Ribeiro, Joana; Bastos, Margarida M S M; Oliveira, Paula A; Carmo, Diogo; Casaca, Fátima; Silva, Sandra; Medeiros, Rui; Gil da Costa, Rui M

    2018-02-01

    Persistent human papillomavirus (HPV) infection is associated with the development of certain types of cancer and the dysregulation of microRNAs has been implicated in HPV-associated carcinogenesis. This is the case of microRNA-146a (miR-146a), which is thought to regulate tumor-associated inflammation. We sought to investigate the expression levels of miR-146a during HPV16-mediated carcinogenesis using skin samples from K14-HPV16 transgenic mice which develop the consecutive phases of the carcinogenesis process. Female transgenic (HPV +/- ) and wild-type (HPV -/- ) mice were sacrificed at 24-26 weeks-old or 28-30 weeks-old. Chest and ear skin samples from HPV +/- and HPV -/- mice were histologically classified and used for microRNA extraction and quantification by qPCR. Chest skin samples from 24 to 26 weeks-old HPV +/- mice presented diffuse epidermal hyperplasia and only 22.5% showed multifocal dysplasia, while at 28-30 weeks-old all (100.0%) HPV +/- animals showed epidermal dysplasia. All HPV +/- ear skin samples showed carcinoma in situ (CIS). MiR-146a expression levels were higher in HPV +/- compared to HPV -/- mice (p = 0.006). There was also an increase in miR-146a expression in dysplastic skin lesions compared with hyperplasic lesions (p = 0.011). Samples showing CIS had a significant decrease in miR-146a expression when compared to samples showing epidermal hyperplasia (p = 0.018) and epidermal dysplasia (p = 0.009). These results suggest that HPV16 induces the overexpression of miR-146a in the initial stages of carcinogenesis (hyperplasia and dysplasia), whereas decreases its expression at later stages (CIS). Taken together, these data implicate and suggest different roles of miR-146a in HPV-mediated carcinogenesis.

  19. MicroRNA-941 Expression in Polymorphonuclear Granulocytes Is Not Related to Granulomatosis with Polyangiitis

    DEFF Research Database (Denmark)

    Svendsen, Jesper Brink; Baslund, Bo; Cramer, Elisabeth Præstekjær

    2016-01-01

    granulomatosis with polyangiitis (GPA) have lower expression of miR-941 than healthy control donors as a biological cause for higher JMJD3 levels. We found no significant difference in the degree of maturation of PMNs from GPA patients (n = 8) and healthy controls (n = 11) as determined from cell surface...... expression of the neutrophil maturation marker CD16 and gene expression profile of FCGR3B. The expression of PRTN3 and KDM6B mRNAs and miR-941 was not significantly different in GPA patients and healthy controls. Transfection of pre-miR-941 into the neutrophil promyelocyte cell line PLB-985 cells did...... not result in reduction of the KDM6B mRNA level as shown previously in a hepatocellular carcinoma cell line. The amount of PR3 in PMNs from GPA patients and healthy controls was comparable. In conclusion, we found that PRTN3 mRNA, KDM6B mRNA, and miR-941 expression levels in PMNs do not differ between GPA...

  20. [Differential expression of colon cancer microRNA in microarry study].

    Science.gov (United States)

    Ma, Qin; Yang, Lie; Wang, Cun; Yu, Yong-Yang; Zhou, Bin; Zhou, Zhong-Guang

    2011-05-01

    To investigate the miRNA expression difference between colon cancer and normal colonic mucosa. Twelve (12) pairs of colorectal cancer tissue and normal colonic mucosa were collected, total RNA was extracted and purified. After fluorescent tags being added, hybridization was carried out on miRNA microarray chip (Affymetrix company). SAM analysis was performed to find out the significant expression difference, then the difference was verified by RT-PCR, finally target gene analysis software was utilized to predict the miRNA function. The up-regulated miRNAs in colon cancer included has-miR-182, has-miR-17, hasmiR-106a, has-miR-93, has-miR-200c, has-miR-92a, has-let-7a, has-miR-20a (FDR value value < 5%). There is significant difference of miRNA expression between colon caner and normal colonic mucosa.

  1. cWords - systematic microRNA regulatory motif discovery from mRNA expression data

    DEFF Research Database (Denmark)

    Rasmussen, Simon Horskjær; Jacobsen, Anders; Krogh, Anders

    2013-01-01

    BACKGROUND:Post-transcriptional regulation of gene expression by small RNAs and RNA binding proteins is of fundamental importance in development of complex organisms, and dysregulation of regulatory RNAs can influence onset, progression and potentially be target for treatment of many diseases. Post...... increasingly important tools for the identification of post-transcriptional regulatory motifs and the inference of the regulators and their targets. RESULTS:cWords is a method designed for regulatory motif discovery in differential case-control mRNA expression datasets. We have improved the algorithms......-transcriptional regulation by small RNAs is mediated through partial complementary binding to messenger RNAs leaving nucleotide signatures or motifs throughout the entire transcriptome. Computational methods for discovery and analysis of sequence motifs in high-throughput mRNA expression profiling experiments are becoming...

  2. Differential microRNA expression in experimental cerebral and noncerebral malaria

    DEFF Research Database (Denmark)

    El-Assaad, Fatima; Hempel, Casper; Combes, Valéry

    2011-01-01

    berghei ANKA (PbA), which causes cerebral malaria (CM), or Plasmodium berghei K173 (PbK), which causes severe malaria but without cerebral complications, termed non-CM. The differential expression profiles of selected miRNAs (let-7i, miR-27a, miR-150, miR-126, miR-210, and miR-155) were analyzed in mouse...... acute malaria. To investigate the involvement of let-7i, miR-27a, and miR-150 in CM-resistant mice, we assessed the expression levels in gamma interferon knockout (IFN-¿(-/-)) mice on a C57BL/6 genetic background. The expression of let-7i, miR-27a, and miR-150 was unchanged in both wild-type (WT...... a regulatory role in the pathogenesis of severe malaria....

  3. Peritoneal fluid modifies the microRNA expression profile in endometrial and endometriotic cells from women with endometriosis.

    Science.gov (United States)

    Braza-Boïls, Aitana; Salloum-Asfar, Salam; Marí-Alexandre, Josep; Arroyo, Ana Belén; González-Conejero, Rocío; Barceló-Molina, Moisés; García-Oms, Javier; Vicente, Vicente; Estellés, Amparo; Gilabert-Estellés, Juan; Martínez, Constantino

    2015-10-01

    Could peritoneal fluid (PF) from patients with endometriosis alter the microRNA (miRNA) expression profile in endometrial and endometriotic cells from patients? PF from patients with endometriosis modifies the miRNA expression profile in endometrial cells from patients. Angiogenesis is a pivotal system in the development of endometriosis, and dysregulated miRNA expression in this disease has been reported. However, to our knowledge, the effect of PF from patients on the miRNA expression profile of patient endometrial cells has not been reported. Moreover, an effect of three miRNAs (miR-16-5p, miR-29c-3p and miR-424-5p) on the regulation of vascular endothelial growth factor (VEGF)-A mRNA translation in endometrial cells from patients with endometriosis has not been demonstrated. Primary cultures of stromal cells from endometrium from 8 control women (control cells) and 11 patients with endometriosis (eutopic cells) and ovarian endometriomas (ectopic cells) were treated with PF from control women (CPF) and patients (EPF) or not treated (0PF) in order to evaluate the effect of PF on miRNA expression in these cells. MiRNA expression arrays (Affymetrix platform) were prepared from cells (control, eutopic, ectopic) treated with CPF, EPF or 0PF. Results from arrays were validated by quantitative reverse transcription-polymerase chain reaction in cultures from 8 control endometrium, 11 eutopic endometrium and 11 ovarian endometriomas. Functional experiments were performed in primary cell cultures using mimics for miRNAs miR-16-5p, miR-29c-3p and miR-424-5p to assess their effect as VEGF-A expression regulators. To confirm a repressive action of miR-29c-3p through forming miRNA:VEGFA duplexes, we performed luciferase expression assays. EPF modified the miRNA expression profile in eutopic cells. A total of 267 miRNAs were modified in response to EPF compared with 0PF in eutopic cells. Nine miRNAs (miR-16-5p, miR-21-5p, miR-29c-3p, miR-106b-5p, miR-130a-5p, miR-149-5p, mi

  4. Hypoxia regulates microRNA expression in the human carotid body

    International Nuclear Information System (INIS)

    Mkrtchian, Souren; Lee, Kian Leong; Kåhlin, Jessica; Ebberyd, Anette; Poellinger, Lorenz; Fagerlund, Malin Jonsson; Eriksson, Lars I.

    2017-01-01

    The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentially regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins. - Highlights: • Hypoxia triggers differential expression of many miRNAs in the human carotid body. • This can lead to the upregulation of proliferation and immune response functions. • CB expression profile in the carotid body resembles the miRNA expression pattern in the brain. • miRNAs are involved in the regulation of carotid body functions including oxygen sensing.

  5. Hypoxia regulates microRNA expression in the human carotid body

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchian, Souren, E-mail: souren.mkrtchian@ki.se [Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Lee, Kian Leong, E-mail: csilkl@nus.edu.sg [Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore (Singapore); Kåhlin, Jessica [Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, SE-171 76 Stockholm (Sweden); Ebberyd, Anette [Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Poellinger, Lorenz [Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore (Singapore); Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Fagerlund, Malin Jonsson; Eriksson, Lars I. [Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institute, SE-171 77 Stockholm (Sweden); Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, SE-171 76 Stockholm (Sweden)

    2017-03-15

    The carotid body (CB) is the key sensing organ for physiological oxygen levels in the body. Under conditions of low oxygen (hypoxia), the CB plays crucial roles in signaling to the cardiorespiratory center in the medulla oblongata for the restoration of oxygen homeostasis. How hypoxia regulates gene expression in the human CB remains poorly understood. While limited information on transcriptional regulation in animal CBs is available, the identity and impact of important post-transcriptional regulators such as non-coding RNAs, and in particular miRNAs are not known. Here we show using ex vivo experiments that indeed a number of miRNAs are differentially regulated in surgically removed human CB slices when acute hypoxic conditions were applied. Analysis of the hypoxia-regulated miRNAs shows that they target biological pathways with upregulation of functions related to cell proliferation and immune response and downregulation of cell differentiation and cell death functions. Comparative analysis of the human CB miRNAome with the global miRNA expression patterns of a large number of different human tissues showed that the CB miRNAome had a unique profile which reflects its highly specialized functional status. Nevertheless, the human CB miRNAome is most closely related to the miRNA expression pattern of brain tissues indicating that they may have the most similar developmental origins. - Highlights: • Hypoxia triggers differential expression of many miRNAs in the human carotid body. • This can lead to the upregulation of proliferation and immune response functions. • CB expression profile in the carotid body resembles the miRNA expression pattern in the brain. • miRNAs are involved in the regulation of carotid body functions including oxygen sensing.

  6. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects.

    Directory of Open Access Journals (Sweden)

    Neil R Smalheiser

    Full Text Available Because of the role played by miRNAs in post-transcriptional regulation of an array of genes, their impact in neuropsychiatric disease pathophysiology has increasingly been evident. In the present study, we assessed microRNA expression in prefrontal cortex (Brodmann area 10 of a well-characterized cohort of major depressed, bipolar, and schizophrenia subjects (obtained from Stanley Neuropathology Consortium; n = 15 in each group, using high throughput RT-PCR plates. Discrete miRNA alterations were observed in all disorders, as well as in suicide subjects (pooled across diagnostic categories compared to all non-suicide subjects. The changes in the schizophrenia group were partially similar to those in the bipolar group, but distinct from changes in depression and suicide. Intriguingly, those miRNAs which were down-regulated in the schizophrenia group tended to be synaptically enriched, whereas up-regulated miRNAs tended not to be. To follow this up, we purified synaptosomes from pooled samples of the schizophrenia vs. control groups and subjected them to Illumina deep sequencing. There was a significant loss of small RNA expression in schizophrenia synaptosomes only for certain sequence lengths within the miRNA range. Moreover, 73 miRNAs were significantly down-regulated whereas only one was up-regulated. Strikingly, across all expressed miRNAs in synaptosomes, there was a significant inverse correlation between the fold-change of a given miRNA seen in schizophrenia and its synaptic enrichment ratio observed in controls. Thus, synaptic miRNAs tended to be down-regulated in schizophrenia, and the more highly synaptically enriched miRNAs tended to show greater down-regulation. These findings point to some deficit in miRNA biogenesis, transport, processing or turnover in schizophrenia that is selective for the synaptic compartment. A novel class of ncRNA-derived small RNAs, shown to be strongly induced during an early phase of learning in mouse

  7. Chromosome 21-derived MicroRNAs Provide an Etiological Basis for Aberrant Protein Expression in Human Down Syndrome Brains*

    Science.gov (United States)

    Kuhn, Donald E.; Nuovo, Gerard J.; Terry, Alvin V.; Martin, Mickey M.; Malana, Geraldine E.; Sansom, Sarah E.; Pleister, Adam P.; Beck, Wayne D.; Head, Elizabeth; Feldman, David S.; Elton, Terry S.

    2010-01-01

    Down syndrome (DS), or Trisomy 21, is the most common genetic cause of cognitive impairment and congenital heart defects in the human population. Bioinformatic annotation has established that human chromosome 21 (Hsa21) harbors five microRNA (miRNAs) genes: miR-99a, let-7c, miR-125b-2, miR-155, and miR-802. Our laboratory recently demonstrated that Hsa21-derived miRNAs are overexpressed in DS brain and heart specimens. The aim of this study was to identify important Hsa21-derived miRNA/mRNA target pairs that may play a role, in part, in mediating the DS phenotype. We demonstrate by luciferase/target mRNA 3′-untranslated region reporter assays, and gain- and loss-of-function experiments that miR-155 and -802 can regulate the expression of the predicted mRNA target, the methyl-CpG-binding protein (MeCP2). We also demonstrate that MeCP2 is underexpressed in DS brain specimens isolated from either humans or mice. We further demonstrate that, as a consequence of attenuated MeCP2 expression, transcriptionally activated and silenced MeCP2 target genes, CREB1/Creb1 and MEF2C/Mef2c, are also aberrantly expressed in these DS brain specimens. Finally, in vivo silencing of endogenous miR-155 or -802, by antagomir intra-ventricular injection, resulted in the normalization of MeCP2 and MeCP2 target gene expression. Taken together, these results suggest that improper repression of MeCP2, secondary to trisomic overexpression of Hsa21-derived miRNAs, may contribute, in part, to the abnormalities in the neurochemistry observed in the brains of DS individuals. Finally these results suggest that selective inactivation of Hsa21-derived miRNAs may provide a novel therapeutic tool in the treatment of DS. PMID:19897480

  8. Proteomic analysis of human blastocoel fluid and blastocyst cells

    DEFF Research Database (Denmark)

    Jensen, Pernille; Beck, Hans Christian; Petersen, Jørgen

    2013-01-01

    Human embryonic stem cells (hESCs) are derived from the inner cell mass (ICM) of the blastocyst and can differentiate into any cell type in the human body. These cells hold a great potential for regenerative medicine, but to obtain enough cells needed for medical treatment, culture is required...... spectrometry, 286 proteins were identified in the blastocoel fluid and 1,307 proteins in the corresponding cells of the blastocyst. Forty-two were previously uncharacterized proteins-8 of these originated from the blastocoel fluid. Furthermore, several heat shock proteins (Hsp27, Hsp60, Hsc70, and Hsp90) were......, the blastocoel fluid, which is in contact with all the cells in the blastocyst, including hESCs. Fifty-three surplus human blastocysts were donated after informed consent, and blastocoel fluid was isolated by micromanipulation. Using highly sensitive nano-high-pressure liquid chromatography-tandem mass...

  9. Regulation of MicroRNA-378 expression in mature human adipose ...

    African Journals Online (AJOL)

    Purpose: To investigate the effects of adiponectin (ADPN), free fatty acids (FFAs), growth hormone (GH), and dexamethasone (DEX) on miR-378 expression in human adipose tissue cells, and their influence on regulation of obesity and insensitivity to insulin. Methods: Human pre-adipocytes were cultured and differentiated.

  10. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available Penile cancer (PeCa is a relatively rare tumor entity but possesses higher morbidity and mortality rates especially in developing countries. To date, the concrete pathogenic signaling pathways and core machineries involved in tumorigenesis and progression of PeCa remain to be elucidated. Several studies suggested miRNAs, which modulate gene expression at posttranscriptional level, were frequently mis-regulated and aberrantly expressed in human cancers. However, the miRNA profile in human PeCa has not been reported before. In this present study, the miRNA profile was obtained from 10 fresh penile cancerous tissues and matched adjacent non-cancerous tissues via next-generation sequencing. As a result, a total of 751 and 806 annotated miRNAs were identified in normal and cancerous penile tissues, respectively. Among which, 56 miRNAs with significantly different expression levels between paired tissues were identified. Subsequently, several annotated miRNAs were selected randomly and validated using quantitative real-time PCR. Compared with the previous publications regarding to the altered miRNAs expression in various cancers and especially genitourinary (prostate, bladder, kidney, testis cancers, the most majority of deregulated miRNAs showed the similar expression pattern in penile cancer. Moreover, the bioinformatics analyses suggested that the putative target genes of differentially expressed miRNAs between cancerous and matched normal penile tissues were tightly associated with cell junction, proliferation, growth as well as genomic instability and so on, by modulating Wnt, MAPK, p53, PI3K-Akt, Notch and TGF-β signaling pathways, which were all well-established to participate in cancer initiation and progression. Our work presents a global view of the differentially expressed miRNAs and potentially regulatory networks of their target genes for clarifying the pathogenic transformation of normal penis to PeCa, which research resource also

  11. MicroRNA 429 Regulates Mucin Gene Expression and Secretion in Murine Model of Colitis.

    Science.gov (United States)

    Mo, Ji-Su; Alam, Khondoker Jahengir; Kim, Hun-Soo; Lee, Young-Mi; Yun, Ki-Jung; Chae, Soo-Cheon

    2016-07-01

    miRNAs are non-coding RNAs that play important roles in the pathogenesis of human diseases by regulating target gene expression in specific cells or tissues. We aimed to detect miRNAs related to ulcerative colitis [UC], identify their target molecules, and analyse the correlation between the miRNAs and their target genes in colorectal cells and dextran sulphate sodium [DSS]-induced mouse colitis. UC-associated miRNAs were identified by miRNA microarray analysis using DSS-induced colitis and normal colon tissues. The results were validated by quantitative real-time polymerase chain reaction [RT-PCR]. We identified target genes of MIR429, a colitis-associated miRNA, from our screen by comparing the mRNA microarray analysis in MIR429-overexpressed cells with predicted candidate target genes. We constructed luciferase reporter plasmids to confirm the effect of MIR429 on target gene expression. The protein expression of the target genes was measured by western blot,enzyme-linked immunosorbent assay [ELISA] analysis, or immunohistochemistry. We identified 37 DSS-induced colitis associated miRNAs. We investigated MIR429 that is down-regulated in DSS-induced colitis, and identified 41 target genes of MIR429. We show that the myristoylated alanine-rich protein kinase C substrate [MARCKS] is a direct target of MIR429. MARCKS mRNA and protein expression levels are down-regulated by MIR429, and MIR429 regulates the expression of MARCKS and MARCKS-mediated mucin secretion in colorectal cells and DSS-induced colitis. In addition, anti-MIR429 up-regulates MARCKS expression in colorectal cell lines. Our findings suggest that MIR429 modulates mucin secretion in human colorectal cells and mouse colitis tissues by up-regulating of MARCKS expression, thereby making MIR429 a candidate for anti-colitis therapy in human UC. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email

  12. H-ferritin-regulated microRNAs modulate gene expression in K562 cells.

    Directory of Open Access Journals (Sweden)

    Flavia Biamonte

    Full Text Available In a previous study, we showed that the silencing of the heavy subunit (FHC offerritin, the central iron storage molecule in the cell, is accompanied by a modification in global gene expression. In this work, we explored whether different FHC amounts might modulate miRNA expression levels in K562 cells and studied the impact of miRNAs in gene expression profile modifications. To this aim, we performed a miRNA-mRNA integrative analysis in K562 silenced for FHC (K562shFHC comparing it with K562 transduced with scrambled RNA (K562shRNA. Four miRNAs, namely hsa-let-7g, hsa-let-7f, hsa-let-7i and hsa-miR-125b, were significantly up-regulated in silenced cells. The remarkable down-regulation of these miRNAs, following FHC expression rescue, supports a specific relation between FHC silencing and miRNA-modulation. The integration of target predictions with miRNA and gene expression profiles led to the identification of a regulatory network which includes the miRNAs up-regulated by FHC silencing, as well as91 down-regulated putative target genes. These genes were further classified in 9 networks; the highest scoring network, "Cell Death and Survival, Hematological System Development and Function, Hematopoiesis", is composed by 18 focus molecules including RAF1 and ERK1/2. We confirmed that, following FHC silencing, ERK1/2 phosphorylation is severely impaired and that RAF1 mRNA is significantly down-regulated. Taken all together, our data indicate that, in our experimental model, FHC silencing may affect RAF1/pERK1/2 levels through the modulation of a specific set of miRNAs and add new insights in to the relationship among iron homeostasis and miRNAs.

  13. Dynamic regulation of uncoupling protein 2 expression by micro