WorldWideScience

Sample records for blasting machine concrete

  1. Numerical Calculation of Concrete Slab Response to Blast Loading

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiaoqing; HAO Hong; KUZNETSOV Valerian A; WASCHL John

    2006-01-01

    In the present paper,a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading.The interaction between the blast wave and the concrete slab is considered in 3D simulation.In the first stage,the initial detonation and blast wave propagation is modelled in 2D simulation before the blast wave reaches the concrete slab,then the results obtained from 2D calculation are remapped to a 3D model.The calculated blast load is compared with that obtained from TM5-1300.Numerical results of the concrete slab response are compared with the explosive test carried out in the Weapons System Division,Defence Science and Technology Organisation,Department of Defence,Australia.

  2. Study on Blast Pressure Resistance of Foamed Concrete Material

    Directory of Open Access Journals (Sweden)

    A.M. Ahmad Zaidi

    2009-12-01

    Full Text Available Great demand exist for more efficient design to protect personals and critical components against explosion or blast wave, generated both accidentally and deliberately, in various blast scenarios in both civilian and military activities. Concrete is a common material used in protective design of structures. Recently, the demands on producing the lighter concrete material have become interest in concrete research. Foamed concrete is a possible alternative of lightweight concrete for producing intermediate strength capabilities with excellent thermal insulation, freeze-thaw resistance, high-impact resistance and good shock absorption. This paper explores the role and development of Blast Pressure Resistant Materials (BPRM’s on foamed concrete. The explosive tests were conducted to determine the blast mitigating properties. The results show that when the foamed concrete density is increases the blast energy absorption capability will be decreases due to reduce of cavity volume. This is suggested that cavity plays an important role to dissipate and absorb the shock energy of the blast.

  3. CONTACT STRENGTH OF MECHANOACTIVATED FINE CONCRETES FROM GRANULATED BLAST-FURNACE SLAGS

    Directory of Open Access Journals (Sweden)

    V. I. Bolshakov

    2014-10-01

    Full Text Available Purpose. Strengthening of fine concrete contact zone by mechanical processing of all components of the concrete mix in a mixer-activator and aggregate application with rough surface. Methodology. Rotary activator PC-06, developed by Scientific and Research Institute of Construction Technology, was used as a mixer-activator to achieve this purpose. Granulated blast furnace slag, having a more developed rough surface than sand, was used as fine aggregate. This apparatus provides intensive homogeneous mixing of concrete mix components, processing of raw materials (purification of their particles from contaminants, and mechanical destruction of granulated blast furnace slag surface layers and other components of the mix. Findings. During the preparation work, experimental research of new formations composition of fine concretes, using differential thermal and x-ray phase analysis methods, and physical-mechanical properties of fine concretes in accordance with the applicable standards of Ukraine, were carried out. It is established that the phase composition of new formations of fine concretes made from activated and non-activated mixes, is not changed. Their main difference is the size of generated effects and temperature intervals of occurrence of these peaks. Thus, in fine concretes made on the basis of the activated mixes, magnitude of effects is less, indicating a higher hydration degree of its components. Besides, TG curves of concrete specimens show that weight loss of gel calcium hydrosilicate of concrete from a mechanically activated mix is 0.5...0.7 % more than of concrete from a non-activated mix, which indicates a larger number of these formations in concrete from activated mixes. In general, concretes of different composition, made from a mix, processed in the mixer-activator, have higher mechanical strength. Originality. Ideas about the influence of mechanical activation of components of fine concrete mixes with forming humidity in a

  4. Blasted copper slag as fine aggregate in Portland cement concrete.

    Science.gov (United States)

    Dos Anjos, M A G; Sales, A T C; Andrade, N

    2017-07-01

    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Structural concrete elements subjected to air blast loading

    OpenAIRE

    Magnusson, Johan

    2007-01-01

    In the design of structures to resist the effects of air blast loading or other severe dynamic loads it is vital to have large energy absorbing capabilities, and structural elements with large plastic deformation capacities are therefore desirable. Structures need to be designed for ductile response in order to prevent partial or total collapse due to locally failed elements. The research in this thesis considers experimental and theoretical studies on concrete beams of varying concrete stren...

  6. Surface assessment and modification of concrete using abrasive blasting

    Science.gov (United States)

    Millman, Lauren R.

    Composite systems are applied to concrete substrates to strengthen and extend the service life. Successful restoration or rehabilitation requires surface preparation prior to the application of the overlay. Surface coatings, waterproofing systems, and other external surface applications also require surface preparation prior to application. Abrasive blast media is often used to clean and uniformly roughen the substrate. The appropriate surface roughness is necessary to facilitate a strong bond between the existing substrate and overlay. Thus, surface modification using abrasive blast media (sand and dry ice), their respective environmental effects, surface roughness characterization prior to and after blasting, and the adhesion between the substrate and overlay are the focus of this dissertation. This dissertation is comprised of an introduction, a literature review, and four chapters, the first of which addresses the environmental effects due to abrasive blasting using sand, water, and dry ice. The assessment considered four response variables: carbon dioxide (CO2) emissions, fuel and energy consumption, and project duration. The results indicated that for sand blasting and water jetting, the primary factor contributing to environmental detriment was CO22 emissions from vehicular traffic near the construction site. The second chapter is an analysis of the International Concrete Repair Institute's (ICRI) concrete surface profiles (CSPs) using 3-D optical profilometry. The primary objective was to evaluate the suitability of approximating the 3-D surface (areal) parameters with those extracted from 2-D (linear) profiles. Four profile directions were considered: two diagonals, and lines parallel and transverse to the longitudinal direction of the mold. For any CSP mold, the estimation of the 3-D surface roughness using a 2-D linear profile resulted in underestimation and overestimation errors exceeding 50%, demonstrating the inadequacy of 2-D linear profiles to

  7. Bond interface crack propagation of fresh foundation concrete and rock under blasting load

    Institute of Scientific and Technical Information of China (English)

    WU Liang; LU Wen-bo; ZHONG Dong-wang

    2009-01-01

    According to concrete age,the dynamic stress intensity factors of bond inter-face crack of concrete-rock was calculated.Result shows that the propagation of concrete interface crack is mainly caused by tensile stress and shear stress for stress wave reflec-tion.With the growth of concrete age,interface crack fracture toughness increases,and its capacity of resisting blasting load strengthens.Therefore,blasting vibration should be strictly controlled for fresh concrete.

  8. Blast impact behaviour of concrete with different fibre reinforcement

    Directory of Open Access Journals (Sweden)

    Drdlová Martina

    2015-01-01

    Full Text Available The paper summarizes the results of the development of special concrete intended for the explosion resistance applications, with the emphasis on minimal secondary fragments formation at the explosion. The fine-grained concrete matrix has been reinforced by various types of short dispersed fibers (metallic, mineral and polymer of different sizes and by their combination and the effect of the fibre reinforcement on the physico-mechanical properties and blast resistance was observed. The concrete prism specimens have been subjected to the determination of mechanical parameters (compressive and flexural strength at quasi-static load. The blast tests were conducted on the slab specimens prepared from selected mixtures. The material characteristics and explosion test data have been used for numerical investigation, which defined the optimal wall composition and dimensions of the concrete element which should resist the explosion defined by type, size, weight and placement of the blast. In the next step the test elements resistance was verified by real explosion test.

  9. LTC vacuum blasting maching (concrete): Baseline report: Greenbook (Chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjuction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration.

  10. Behaviour of a Blast Loaded Laced Reinforced Concrete Structure

    Directory of Open Access Journals (Sweden)

    N. Anandavalli

    2012-09-01

    Full Text Available Normal 0 MicrosoftInternetExplorer4 According to existing provisions, large separation distance has to be maintained between two conventional explosive storage structures to prevent sympathetic detonation. In this paper, reduction of the separation distance with the use of earth covered laced reinforced concrete (LRC storage structure is demonstrated, which will result in saving of land cost. Details of blast resistant design of 75T (NEC storage structure based on unit risk principle are presented. Performance of the storage structure is evaluated in an actual blast trial. Strain and deflection profiles are obtained from the trial. Based on these, the storage structure is found to be re-usable after the blast trial.Defence Science Journal, 2012, 62(5, pp.284-289, DOI:http://dx.doi.org/10.14429/dsj.62.820

  11. Modelling Blast Effects on a Reinforced Concrete Bridge

    Directory of Open Access Journals (Sweden)

    Markellos Andreou

    2016-01-01

    Full Text Available The detailed investigation of blast phenomena and their catastrophic effects on existing structures are the main objectives of the present paper. It is well known that blast phenomena may be characterized by significant complexity, often involving complicated wave propagation effects as well as distinguishable material behaviors. Considering the above and in an attempt to provide a simplified modelling approach for the simulation of blast effects, a novel procedure is presented herein based on well-established methodologies and common engineering practices. In the above framework, firstly, the “predominant” deformation shape of the structure is estimated based on elastic finite element simulations under blast loads and then the structural response of the system is evaluated as a result of common computational beam-element tools such as displacement-based pushover analysis. The proposed methodology provides an immediate first estimation of the structural behavior under blast loads, based on familiar engineering procedures. A two-span reinforced concrete bridge was thoroughly investigated and the results provide insightful information regarding the damage patterns and localization.

  12. Failure and Ejection Behavior of Concrete Materials under Internal Blast

    Directory of Open Access Journals (Sweden)

    Haifu Wang

    2016-01-01

    Full Text Available In order to investigate the failure and ejection behavior of concrete materials under internal blast, the default Riedel-Hiermaier-Thoma (RHT concrete model in AUTODYN and a meshfree processor called SPH are employed in this numerical simulation. It is shown that the failure mechanisms are significantly different in these damaged zones. Crushed zone is caused by shear failure while fractured zone is induced by tensile failure, and spalled zone is formed by a combination of shear and tensile failure. In addition, the ejection velocity distribution of the fragmented concrete mass on free surface is examined. The results indicate that the ejection velocity declines monotonously with the increase of the distance to symmetry axis of computational model. On the wall of the prefabricated borehole, two types of fragmented concrete mass are analyzed, and bottom initiation is recommended to eject the fragmented concrete mass effectively. Moreover, an algorithm of average ejection speed is developed to effectively estimate the drill capacity of high velocity, energetic (HE projectiles. At last, the validity of numerical simulation is verified by physical experiments.

  13. [Fatal explosion injuries from blasting a cigarette machine].

    Science.gov (United States)

    Madea, Burkhard; Ridwan, Hani; Längin, Volker; Doberentz, Elke

    2016-01-01

    In the last few years, a growing number of cases have been reported in Germany in which vending machines have been blasted by criminals to get at the money. Thus, it was only a question of time for the first fatalities to occur as a consequence of such careless explosions. We report on the death of a 16-year-old boy who died after triggering an explosion by spraying a deodorant into the coin slot of a cigarette machine. Death was caused by severe craniocerebral trauma due to tertiary blast-related injuries when the front plate of the machine hit the victim's cerebral and facial skull.

  14. Methodology of Testing Shot Blasting Machines in Industrial Conditions

    Directory of Open Access Journals (Sweden)

    R. Wrona

    2012-04-01

    Full Text Available Shot blasting machines are widely used for automated surface treatment and finishing of castings. In shot blasting processes the stream of shots is generated and shaped by blasting turbines, making up a kinetic and dynamic system comprising a separating rotor, an adapting sleeve and a propelling rotor provided with blades. The shot blasting performance- i.e. the quality of shot treated surfaces depends on the actual design and operational parameters of the unit whilst the values of relevant parameters are associated with the geometry of turbine components and the level of its integration with the separator system. The circulation of the blasting medium becomes the integrating factor of the process line, starting from the hopper, through the propeller turbine, casting treatment, separation of contaminated abrasive mixture, to its recycling and reuse.Inferior quality of the abrasive agent (shot and insufficient purity of the abrasive mixture are responsible for low effectiveness of shot blasting. However, most practitioners fail to fully recognise the importance of proper diagnostics of the shot blasting process in industrial conditions. The wearing of major machine components and of the blasting agent and quality of shot treated surfaces are often misinterpreted, hence the need to take into account all factors involved in the process within the frame of a comprehensive methodology.This paper is an attempt to formulate and apply the available testing methods to the engineering practice in industrial conditions.

  15. A Concrete Framework for Environment Machines

    DEFF Research Database (Denmark)

    Biernacka, Malgorzata; Danvy, Olivier

    2007-01-01

    calculus with explicit substitutions), we extend it minimally so that it can also express one-step reduction strategies, and we methodically derive a series of environment machines from the specification of two one-step reduction strategies for the lambda-calculus: normal order and applicative order....... The derivation extends Danvy and Nielsen’s refocusing-based construction of abstract machines with two new steps: one for coalescing two successive transitions into one, and the other for unfolding a closure into a term and an environment in the resulting abstract machine. The resulting environment machines...... include both the Krivine machine and the original version of Krivine’s machine, Felleisen et al.’s CEK machine, and Leroy’s Zinc abstract machine....

  16. Research on steel-fibber polymer concrete machine tool structure

    Institute of Scientific and Technical Information of China (English)

    XU Ping; YU Ying-hua

    2008-01-01

    Researched on the design and manufacturing of machine tool bed made by Steel-fibber Polymer Concrete(SFPC),which analyzed the static,dynamic and thermal performances of the bed.The results of study prove that machine tool bed made with SFPC is much more superiority than made in cast iron in dynamic and thermal performances,and is more superiority then made in Polymer Concrete (PC) in static performances.It can be concluded that the static,dynamic and thermal properties of machine tool can be improved by manufacturing machine tool bed with SFPC.Also SFPC machine tool bed posses some other advantages in the following: short development time,simple production process,reducing cost cost,saving energy,iron and steel.

  17. Research on steel-fibber polymer concrete machine tool structure

    Institute of Scientific and Technical Information of China (English)

    XU Ping; YU Ying-hua

    2008-01-01

    Researched on the design and manufacturing of machine tool bed made by Steel-fibber Polymer Concrete(SFPC), which analyzed the static, dynamic and thermal performances of the bed. The results of study prove that machine tool bed made with SFPC is much more superiority than made in cast iron in dynamic and thermal perform-ances, and is more superiority then made in Polymer Concrete (PC) in static perform-ances. It can be concluded that the static, dynamic and thermal properties of machine tool can be improved by manufacturing machine tool bed with SFPC. Also SFPC machine tool bed posses some other advantages in the following: short development time, simple pro-duction process, reducing cost cost, saving energy, iron and steel.

  18. Evaluation of Blast-Resistant Performance Predicted by Damaged Plasticity Model for Concrete

    Institute of Scientific and Technical Information of China (English)

    HUAN Yi; FANG Qin; CHEN Li; ZHANG Yadong

    2008-01-01

    In order to evaluate the capacity of reinforced concrete (RC) structures subjected to blast Ioadings, the damaged plasticity model for concrete was used in the analysis of the dynamic responses of blast-loaded RC structures, and all three failure modes were numerically simulated by the finite element software ABAQUS.Simulation results agree with the experimental observations.It is demonstrated that the damaged plasticity model for concrete in the finite element software ABAQUS can predict dynamic responses and typical flexure, flexure-shear and direct shear failure modes of the blast-loaded RC structures.

  19. Structural Response to Blast Loading: The Effects of Corrosion on Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Hakan Yalciner

    2014-01-01

    Full Text Available Structural blast design has become a necessary part of the design with increasing terrorist attacks. Terrorist attacks are not the one to make the structures important against blast loading where other explosions such as high gas explosions also take an important place in structural safety. The main objective of this study was to verify the structural performance levels under the impact of different blast loading scenarios. The blast loads were represented by using triangular pulse for single degree of freedom system. The effect of blast load on both corroded and uncorroded reinforced concrete buildings was examined for different explosion distances. Modified plastic hinge properties were used to ensure the effects of corrosion. The results indicated that explosion distance and concrete strength were key parameters to define the performance of the structures against blast loading.

  20. Demolition technique of high thin-wall hyperbolic reinforced concrete cool tower by directional controlled blasting

    Institute of Scientific and Technical Information of China (English)

    Luo Yong; Cui Xiaorong; Lu Hua

    2008-01-01

    Based on blasting demolition of high thin-wall hyperbolic reinforced concrete cool tower,by virtue of engi-neering practice of blasting the tube concrete structures,the analysis and research were made on the mechanism of cool tower collapse through selecting blasting parameters and selecting gap form,gap size and gap angle.The cool tower was twisted,collapsed directionally and broken weU according to the design requirements.The expected results and purpo-ses of blasting were obtained with no back blow,total blasted pile approximates to 4 ~ 5 m,no occurrence of flying stones and no damage to fixed buildings and equipment,the large-sized hyperbolic thin-wall reinforced concrete cool towers are twisted during blasting and it collapses well with good breaking.The test and measurement of blasting vibra-ting velocity was carried out during blasting and the measuring results are much less than critical values specified by Safety Regulations for Blasting.The study shows that gap form,gap size and gap angle are the key factors to cool tower collapse and will give beneficial references to related theoretical study and field application.

  1. Dynamic Behaviour of Concrete Sandwich Panel under Blast Loading

    Directory of Open Access Journals (Sweden)

    Dong Yongxiang

    2009-01-01

    Full Text Available Surface contact explosion experiments were performed to study the dynamic behaviour of concrete sandwich panel subjected to blast loading. Experimental results have shown that there are four damage modes explosion cratering, scabbing of the backside, radial cracking induced failure, and circumferential cracking induced failure. It also illustrates that different foam materials sandwiched in the multi-layered medium have an important effect on damage patterns. Due to the foam material, the stress peak decreases one order of magnitude and the duration is more than four times that of the panel without the soft layer by numerical simulation. Additionally, the multi layered medium with concrete foam demonstrates the favourable protective property compared with that of aluminum foam. Meanwhile, the optimal analysis of the thickness of the foam material in the sandwich panel was performed in terms of experimental and numerical analyseis. The proper thickness proportion of soft layer is about 20 percent to the total thickness of sandwich panel under the conditions in this study.Defence Science Journal, 2009, 59(1, pp.22-29, DOI:http://dx.doi.org/10.14429/dsj.59.1480  

  2. Analysis of concrete targets with different kinds of reinforcements subjected to blast loading

    Science.gov (United States)

    Oña, M.; Morales-Alonso, G.; Gálvez, F.; Sánchez-Gálvez, V.; Cendón, D.

    2016-05-01

    In this paper we describe an experimental campaign carried out to study and analyse the behaviour of concrete slabs when subjected to blast loading. Four different types of concrete have been tested: normal strength concrete with steel rebar, normal strength concrete with steel rebar retrofitted with Kevlar coating, steel fibre reinforced concrete (SFRC) and polypropylene fibre reinforced concrete (PFRC). The major asset of the experimental setup used is that it allows to subject up to four specimens to the same blast load what, besides being cost effective, makes possible to have a measure of the experimental scatter. The results of SFRC and PFRC concretes have been analysed by using a previously developed material model for the numerical simulation of concrete elements subjected to blast. The experimental campaign and preliminary results of this numerical analysis show how the high strain rates, in spite of improving the mechanical properties of these kinds of fibre reinforced concretes, lead to an embrittlement of the material, which may be dangerous from the point of view of the structural behaviour.

  3. THE MEASUREMENT AND STUDY OF BLASTING VIBRATION AFFECTING IN SITU CAST CONCRETE LINING OF VERTICAL SHAFT

    Institute of Scientific and Technical Information of China (English)

    黄琦; 李玉民

    1997-01-01

    Vertical shaft is main form of drivage in deep mineral depoist. They also serve as the entrance into and the exit from the underground mine. The main problems in shaft and tunnel engineering is to solve the contradiction between drivage and lining. The measurement of blasting vibration affecting concrete lining strength of vertical shaft is carried out in experiment and theory in this paper.

  4. Innovation based on tradition: Blast furnace slag cement for durable concrete structures in Norway?

    NARCIS (Netherlands)

    Polder, R.B.; Nijland, T.; De Rooij, M.; Larsen, C.K.; Pedersen, B.

    2014-01-01

    Blast furnace slag cement (BFSC) has been used to build reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. The experience is good and structures with long service lives can be obtained, as has been shown by several field studies. This is caused by

  5. Properties and Behavior of Geopolymer Concrete Subjected to Explosive Air Blast Loading: A Review

    Directory of Open Access Journals (Sweden)

    Mohd Mortar Nurul Aida

    2017-01-01

    Full Text Available The severe damage to civilian buildings, public area, jet aircraft impact and defense target under explosive blast loading can cause a huge property loss. Most of researcher discusses the topics on design the concrete material model to sustain againts the explosive detonation. The implementation of modern reinforcement steels and fibres in ordinary Portland cement (OPC concrete matrix can reduce the extreme loading effects. However, most researchers have proved that geopolymer concrete (GPC has better mechanical properties towards high performance concrete, compared to OPC. GPC has the high early compressive strength and high ability to resist the thermal energy from explosive detonation. In addition, OPC production is less environmental friendly than geopolymer cement. Geopolymer used can lead to environmental protection besides being improved in mechanical properties. Thus, this paper highlighted on an experimental, numerical and the analytical studies cause of the explosive detonation impact to concrete structures.

  6. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  7. Ground granulated blast furnace slag efficiency coefficient (k value) in concrete. Applications and limits

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuan, M. A.; Pineiro, A.; Rodriguez, O.

    2011-07-01

    Recently, a k-value for ground granulated blast-furnace slag or k-value has been added to the revision of the European standard EN 206-1:2000. The proposed values during the discussions in the working groups were very different because in most of cases the compressive strength was the only characteristic considered; while only in few cases the concrete durability was taken into account when ground granulated blast-furnace slag is added directly to the mix. Advantages and disadvantages of the k-values found in the literature are discussed in this paper. The final conclusion may be summarised suggesting a logical proposal of addressing to each country the choice of the k-value in function of the concrete application, environment and placing conditions selected according to their own experience. (Author) 15 refs.

  8. The influence of the blast furnace slag replacement on chloride penetration in concrete

    Directory of Open Access Journals (Sweden)

    Juan Lizarazo Marriaga

    2011-05-01

    Full Text Available  Corrosion of steel reinforcement due to chloride penetration is the greatest cause of durability problems in concrete; intense international research has been carried out to understand and avoid this. This paper summarises the results of a theoretical and experimental research programme investigating the influence of blast furnace slag on chloride-related transport properties. The relationship between the apparent chloride diffusion coefficient, electrical resistivity and compressive strength was measured. Chloride, hydroxide, sodium and potassium’s intrinsic diffusion coefficients were obtained by using a computational model and an electrical migration test. The initial hydroxide composition of the pore solution, porosity and chloride binding capacity were also determined from the model. The results showed that blast furnace slag improved chloride penetration resistance, resulting in concrete which was less vulnerable to corrosion. 

  9. The influence of blast furnace slag, fly ash and silica fume on corrosion of reinforced concrete in marine environment

    NARCIS (Netherlands)

    Polder, R.B.

    1996-01-01

    Chloride penetration from sea water may cause corrosion of reinforcement in concrete structures. Adding reactive inorganic materials such as blast furnace slag, fly ash or silica fume to the cement matrix improves the resistance against chloride penetration as compared to Portland cement concrete. A

  10. Effect of Crushed Air-cooled Blast Furnace Slag on Mechanical Properties of Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Aiguo; DENG Min; SUN Daosheng; LI Bing; TANG Mingshu

    2012-01-01

    Morphology characteristics of mix aggregates with crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) with 5-20 mm and 20-40 mm gradation were represented by numerical parameters including angularity number (AN) and index of aggregate particle shape and texture (IAPST).The effect of mix aggregates containing SCR on compressive strength and splitting tensile strength of concrete was investigated.Fracture characteristics of concrete,interfacial structure between aggregates and matrix were analyzed.The experimental results show that porous and rough SCR increases contact area with matrix in concrete,concave holes and micro-pores on the surface of SCR are filled by mortar and hydrated cement paste,which may increase interlocking and mechanical bond between aggregate and matrix in concrete.SCR can be used to produce a high-strength concrete with better mechanical properties than corresponding concrete made with LCR.The increase of AN and IAPST of aggregate may enhance mechanical properties of concrete.

  11. Blast Protection Shelter by Using Hollow Steel Filled with Recycled Concrete

    Institute of Scientific and Technical Information of China (English)

    LI Jianchun; HUANG Xin; MA Guowei

    2008-01-01

    Under extreme loading condition, a shelter will provide a safe place to protect people from injury caused by blast wave and fragments.In order to save resource and reuse waste materials, a new design concept for blast protection shelter was explored.The new construction was composed of I-section steel panel or C-channel steel panel filled with recycled concrete aggregate.The compaction process of the recycled concrete aggregate filled in the steel construction was experimentally investigated.A single storey shelter based on the proposed design concept was numerically simulated by using LS-DYNA software.In the 3D numerical model, three walls were designed using I-section steel and one wall using C-channel steel, and all of the four walls were filled with recycled concrete aggregate.The penetration analysis was done by using ConWep.Some penetration tests were also carried out by using a gas gun.It is found that the proposed shelter based on the design concept is effective for blast protection.

  12. Strength and Toughness of Steel Fibre Reinforced Reactive Powder Concrete Under Blast Loading

    Institute of Scientific and Technical Information of China (English)

    KUZNETSOV Valerian A; REBENTROST Mark; WASCHL John

    2006-01-01

    The blast resistance of structures used in buildings needs to be investigated due to the increased threat of a terrorist attack.The damage done by Composition B or Powergel to steel fibre reinforced reactive powder concrete (SFRPC) panels and ordinary reinforced concrete (RC) panels of equivalent static flexural strength is compared.A 0.5 kg charge was detonated at a distance of 0.1 m from the 1.3 m × 1.0 m × 0.1 m (thick) panels,which were simply supported and spaning 1.3 m.Dynamic displacement measurements,high-speed video recording and visual examination of the panels for spall and breach were undertaken.The SFRPC panels withstood the bare charge blast better than the reinforced ordinary concrete panels.Neither type of panel was breached using a 0.5 kg charge.The RC panel exhibited more spalling when Composition B was used.Under successive Composition B loading conditions,the RC panel was breached.In comparison the SFRPC panel was not breached.Exposure to fragmenting charge loading conditions confirmed these performance differences between the SFRPC panel and the reinforced ordinary concrete panel.

  13. Estimation of minimum detectable concentration of chlorine in the blast furnace slag cement concrete

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A., E-mail: aanaqvi@kfupm.edu.s [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Garwan, M.A.; Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman,; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2011-01-01

    The Prompt Gamma Neutron Activation Analysis technique was used to measure the concentration of chloride in the blast furnace slag (BFS) cement concrete to assess the possibility of reinforcement corrosion. The experimental setup was optimized using Monte Carlo calculations. The BFS concrete specimens containing 0.8-3.5 wt.% chloride were prepared and the concentration of chlorine was evaluated by determining the yield of 6.11, 6.62, 7.41, 7.79 and 8.58 MeV gamma-rays. The Minimum Detectable Concentration (MDC) of chlorine in the BFS cement concrete was estimated. The best value of MDC limit of chlorine in the BFS cement concrete was found to be 0.034 {+-} 0.011 and 0.038 {+-} 0.012 wt.% for 6.11 and 6.62 MeV prompt gamma-rays. Within the statistical uncertainty the lower bound of the measured MDC of chlorine in the BFS cement concrete meets the maximum permissible limit of 0.03 wt.% of chloride set by the American Concrete Institute.

  14. Strength properties of concrete incorporating coal bottom ash and granulated blast furnace slag.

    Science.gov (United States)

    Ozkan, Omer; Yüksel, Isa; Muratoğlu, Ozgür

    2007-01-01

    Coal bottom ash (CBA) and fly ash (FA) are by-products of thermal power plants. Granulated blast-furnace slag (GBFS) is developed during iron production in iron and steel plants. This research was conducted to evaluate the compressive strength property and some durability characteristics of concrete incorporating FA, CBA, and GBFS. FA is used as an effective partial cement replacement; CBA and GBFS are used as partial replacement for fine aggregate without grinding. Water absorption capacity, unit weight and compressive strengths in 7, 28, and 90-day ages were assessed experimentally. For these experiments, concrete specimens were produced in the laboratory in appropriate shapes. The samples are divided into two main categories: M1, which incorporated CBA and GBFS; and M2, which incorporated FA, CBA, and GBFS. Remarkable decreases are observed in compressive strength and water absorption capacity of the concrete; bulk density of the concrete is also decreased. It can be concluded that if the content of CBA and GBFS is limited to a reasonable amount, the small decreases in strength can be accepted for low strength concrete works.

  15. Full scale numerical analysis of high performance concrete columns designed to withstand severe blast impact

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Georgakis, Christos; Stang, Henrik;

    2007-01-01

    Polymer reinforced Compact Reinforced Composite, PCRC, is a Fiber reinforced Densified Small Particle system, FDSP, combined with a high strength longitudinal flexural rebar arrangement laced together with polymer lacing to avoid shock initiated disintegration of the structural element under blast...... load. Scaled experimental and numerical results of PCRC columns (200x200x1600mm) subjected to close-in detonation are presented in this paper. Based on these results and the use of geometrical scaling lows, a full scale column (800x800x6400mm) is designed and verified numerically to withstand 486.5 kg...... of PETN (85/15) High Explosives at stand off 1600 mm. Additionally, a LS-DYNA material model suitable for predicting the response of Polymer reinforced Compact Reinforced Concrete improved for close-in detonation and a description of the LS-DYNA multi-material Eulerian method for modeling the blast event...

  16. Possible Collapse Mode for Slender Reinforced Concrete Plates Subjected to Blast Load

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; DU Xiuli; CHEN Zhen; ZENG Fanna

    2008-01-01

    This paper discusses the collapse mode of thin reinforced concrete (RC) plates subjected to blast load.To extend the well known plastic-mode method to analyze,not only perfectplastic plates,but also RC plates,it is needed to investigate the effect of material cracking on the collapse mode because the plate might have been cracked on both upper and lower surface before the plastic-mode fully develops,creating an unexpected type of collapse mode shape.A new failure mode is proposed and verified by numerical analysis in this paper.The new mode is a result of the material cracking and has an un-negligible effect on the reaction mechanism of the RC plate to the blast load.

  17. The effect of blast furnace slag on the self-compactability of pumice aggregate lightweight concrete

    Indian Academy of Sciences (India)

    Murat Kurt; Türkay Kotan; Muhammed Said Gül; Rüstem Gül; Abdulkadir Cüneyt Aydin

    2016-02-01

    This paper presents the results of an experimental study of the effects of blast furnace slag, different water/(cement+mineral additive) ratios and pumice aggregates on some physical and mechanical properties of self-compacting lightweight aggregate concrete. In this study, pumice was used as lightweight aggregate. Several properties of self-compacting pumice aggregate lightweight concretes, such as unit weight, flow diameter, T50 time, flow diameter after an hour, V-funnel time, and L-box tests, 7, 28, 90 and 180-day compressive strength, 28-day splitting tensile strength, dry unit weight, water absorption, thermal conductivity and ultrasonic pulse velocity tests, were conducted. For this purpose, 18 series of concrete samples were prepared in two groups. In the first group, pumice aggregate at 100% replacement of natural aggregate was used in the production of self-compacting lightweight aggregate concrete with constant w/(c+m) ratios as 0.35, 0.40, and 0.45 by weight. Furthermore, as a second group, pumice aggregate was used as a replacement of natural aggregate, at the levels of 0, 20, 40, 60, 80, and 100% by volume. Flow diameters, T50 times, paste volumes, 28-day compressive strengths, dry unit weights, thermal conductivities and ultrasonic pulse velocity of self-compacting lightweight aggregate concrete were obtained over the range of 600–770 mm, 3–9 s, 435–540 l/m3, 10.6–65.0 MPa, 845–2278 kg/m3, 0.363–1.694 W/mK and 2617–4770 m/s respectively, which satisfies not only the strength requirement of semistructural lightweight concrete but also the flowing ability requirements and thermal conductivity requirements of self-compacting lightweight aggregate concrete.

  18. LTC vacuum blasting machine (metal) baseline report: Greenbook (chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The LTC coating removal technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC coating removal system consisted of several hand tools, a Roto Peen scaler, and a needlegun. They are designed to remove coatings from steel, concrete, brick, and wood. These hand tools are used with the LTC PTC-6 vacuum system to capture dust and debris as removal of the coating takes place. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. The dust exposure was minimal but noise exposure was significant. Further testing for each exposure is recommended because of the environment where the testing demonstration took place. It is feasible that the dust and noise levels will be higher in an enclosed operating environment of different construction. In addition, other areas of concern found were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  19. Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast

    Directory of Open Access Journals (Sweden)

    S. N. Raman

    2012-01-01

    Full Text Available The main distinction of blast load from other types of dynamic loadings is its impulsive nature, where the loads usually act for a very short duration but transmit very high impulsive pressures. This paper presents an overview of the present retrofitting techniques in use to enhance the capacity of structural elements to withstand the effects of blast loads, and introduces an alternative retrofitting approach by utilizing polymer coatings. The authors have demonstrated the positive effects of this approach by conducting a numerical investigation on the behavior of an unretrofitted reinforced concrete panel subjected to the blast load from a 2 kg charge at 1.6 m stand-off distance, and subsequently comparing its performance with several polymer coated panels. The analysis was performed by using an explicit nonlinear finite element (FE code. The results demonstrate the contributions of this technique in terms of panel displacement control and energy dissipation. Considering that the polymer coating can also act as a protective layer in improving the durability of structural materials, this technique can also be optimized favorably to enhance the overall sustainability of structures.

  20. Development of a new concrete pipe molding machine using topology optimization

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong Seok; Dahal, Prakash [School of Mechanical and Automotive Engineering, University of Ulsan, Ulsan (Korea, Republic of); Nguyen, Trung Thanh [Faculty of Mechanical Engineering, Le Quy Don Technical University, Hanoi (Viet Nam)

    2016-08-15

    Sulfur polymer concrete (SPC) is a relatively new material used to replace Portland cement for manufacturing sewer pipes. The objective of this work is to develop an efficient molding machine with an inner rotating die to mix, compress and shape the SPC pipe. First, the alternative concepts were generated based on the TRIZ principles to overcome the drawbacks of existing machines. Then, the concept scoring technique was used to identify the best design in terms of machine structure and product quality. Finally, topology optimization was applied with the support of the density method to reduce mass and to displace the inner die. Results showed that the die volume can be reduced by approximately 9% and the displacement can be decreased by approximately 3% when compared with the initial design. This work is expected to improve the manufacturing efficiency of the concrete pipe molding machine.

  1. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    Science.gov (United States)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  2. Strength development characteristics of concrete produced with blended cement using ground granulated blast furnace slag (GGBS) under various curing conditions

    Indian Academy of Sciences (India)

    SHAHAB SAMAD; ATTAULLAH SHAH; MUKESH C LIMBACHIYA

    2017-07-01

    To reduce the embodied carbon dioxide of structural concrete, Portland cement (PC) in concrete can be partially replaced with ground granulated blast furnace slag (GGBS). In this research effect of partial replacement of cement with GGBS on strength development of concrete and cured under summer and wintercuring environments is established. Three levels of cement substitution i.e., 30%, 40% and 50% have been selected. Early-age strength of GGBS concrete is lower than the normal PC concrete which limits its use in the fast-track construction and post-tensioned beams which are subjected to high early loads. The strength gainunder winter curing condition was observed as slower. By keeping the water cement ratio low as 0.35, concrete containing GGBS up to 50% can achieve high early-age strength. GGBS concrete gains more strength than the PC concrete after the age of 28 day till 56 day. The mechanical properties of blended concrete for various levels of cement replacement have been observed as higher than control concrete mix having no GGBS.

  3. The Mechanical Properties of Foamed Concrete containing Un-processed Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Awang H.

    2014-01-01

    Full Text Available For many years, supplementary cementation materials have been utilized as cement or filler replacements to heighten the properties of concrete. The objective of this paper is to demonstrate the effects of un-processed blast furnace slag (RS on the compressive, splitting tensile and flexural strengths of foam concrete over periods of 7, 14 and 28 days. The introduction of slag to the cement begins at 30% and rises to 70% of the total content. Six mixes, which include the control mix with a similar mix ratio (1:2:0.45 and a dry density of 1300 kg/m3 is generated. Taking into consideration, from the total weight of the cementation material, 1% of super- plasticizer (PS-1 is added to the mixes with slag content. Test results revealed that the most favourable (optimum replacement level of un-processed slag in foam concrete is 30%. This represents a commercial advantage as the cement requirement is reduced from 414 Kg/m3 to 290 Kg/m3. On the 28th day, the optimum mix showed higher values than the control mix by 32% for compressive strength, 46.5% for splitting tensile strength and 61% for flexural strength.

  4. Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts

    Energy Technology Data Exchange (ETDEWEB)

    C. P. Pantelides; T. T. Garfield; W. D. Richins; T. K. Larson; J. E. Blakeley

    2012-03-01

    The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.

  5. Prediction of Splitting Tensile Strength from Cylinder Compressive Strength of Concrete by Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Kezhen Yan

    2013-01-01

    Full Text Available Compressive strength and splitting tensile strength are both important parameters that are utilized for characterization concrete mechanical properties. This paper aims to show a possible applicability of support vector machine (SVM to predict the splitting tensile strength of concrete from compressive strength of concrete, a SVM model was built, trained, and tested using the available experimental data gathered from the literature. All of the results predicted by the SVM model are compared with results obtained from experimental data, and we found that the predicted splitting tensile strength of concrete is in good agreement with the experimental data. The splitting tensile strength results predicted by SVM are also compared to those obtained by using empirical results of the building codes and various models. These comparisons show that SVM has strong potential as a feasible tool for predicting splitting tensile strength from compressive strength.

  6. Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits

    DEFF Research Database (Denmark)

    Gotfredsen, K; Wennerberg, A; Johansson, C

    1995-01-01

    The purpose of this study was to evaluate the histometrical and biomechanical anchorage of TiO2-blasted implants and TiO2-blasted implants coated with hydroxyapatite. The control implants were machined. Twenty-six rabbits had a total of 156 implants placed in the proximal part of the tibia. Each...... rabbit had a machined, a TiO2-blasted, and a TiO2-blasted, HA-coated implant placed in each tibia. After a healing period of 3 and 12 weeks, respectively, the implants placed in the right tibia were used for removal torque test, and the implants placed in the left tibia were used for histomorphometrical...... measurements. Preoperatively, implants from the same batches were examined topographically with a TopScan 3D system. The TiO2-blasted implants demonstrated significantly higher removal torque values than the machined implants, and they also had a significantly more irregular surface. Furthermore, significantly...

  7. Concrete Damage Property of Explosive Internal-blast%装药内爆炸下混凝土损伤特性研究

    Institute of Scientific and Technical Information of China (English)

    宋浦; 王晓鸣; 顾晓辉

    2012-01-01

    为完善炸药混凝土内爆炸理论、提高其做功能力,该文建立混凝土内部炸药爆炸模型.在混凝土内爆过程中及冲击载荷下,对TNT炸药及PBX类炸药对混凝土的毁伤破坏效应,利用混凝土动力学损伤破坏模型和光滑粒子动力学方法进行数值研究.该文定量地给出了混凝土内爆炸损伤的类型为抛掷内爆炸和松动内爆炸.数值分析了混凝土介质的运动特性,确定了混凝土内爆炸的最佳条件.在掩埋情况下,炸药埋深0.45H时,内爆效果较好.%To perfect the theory of explosive internal-blast of concretes and to improve its working, a model is established about the explosive internal-blast of concretes. In the internal-blast process of concretes and under dynamic load of impulsion, the dynamical damage effect of concretes by TNT and PBX explosives is researched numerically using the dynamical damage model of concretes and smoothed particle hydrodynamic method. The quantitative calculation results show that the damage types of internal-blast for concretes are throw internal-blast and loose internal-blast. The motion characteristics of concrete medium are numerically analyzed, and the optimum condition for internal-blast is determined. The effect of internal-blast of concretes is the best when the buried depth of explosives is 0.45/H in the buried condition.

  8. Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    Jing-Kui Zhang

    2016-03-01

    Full Text Available The impact-echo (IE method is a popular non-destructive testing (NDT technique widely used for measuring the thickness of plate-like structures and for detecting certain defects inside concrete elements or structures. However, the IE method is not effective for full condition assessment (i.e., defect detection, defect diagnosis, defect sizing and location, because the simple frequency spectrum analysis involved in the existing IE method is not sufficient to capture the IE signal patterns associated with different conditions. In this paper, we attempt to enhance the IE technique and enable it for full condition assessment of concrete elements by introducing advanced machine learning techniques for performing comprehensive analysis and pattern recognition of IE signals. Specifically, we use wavelet decomposition for extracting signatures or features out of the raw IE signals and apply extreme learning machine, one of the recently developed machine learning techniques, as classification models for full condition assessment. To validate the capabilities of the proposed method, we build a number of specimens with various types, sizes, and locations of defects and perform IE testing on these specimens in a lab environment. Based on analysis of the collected IE signals using the proposed machine learning based IE method, we demonstrate that the proposed method is effective in performing full condition assessment of concrete elements or structures.

  9. Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines.

    Science.gov (United States)

    Zhang, Jing-Kui; Yan, Weizhong; Cui, De-Mi

    2016-03-26

    The impact-echo (IE) method is a popular non-destructive testing (NDT) technique widely used for measuring the thickness of plate-like structures and for detecting certain defects inside concrete elements or structures. However, the IE method is not effective for full condition assessment (i.e., defect detection, defect diagnosis, defect sizing and location), because the simple frequency spectrum analysis involved in the existing IE method is not sufficient to capture the IE signal patterns associated with different conditions. In this paper, we attempt to enhance the IE technique and enable it for full condition assessment of concrete elements by introducing advanced machine learning techniques for performing comprehensive analysis and pattern recognition of IE signals. Specifically, we use wavelet decomposition for extracting signatures or features out of the raw IE signals and apply extreme learning machine, one of the recently developed machine learning techniques, as classification models for full condition assessment. To validate the capabilities of the proposed method, we build a number of specimens with various types, sizes, and locations of defects and perform IE testing on these specimens in a lab environment. Based on analysis of the collected IE signals using the proposed machine learning based IE method, we demonstrate that the proposed method is effective in performing full condition assessment of concrete elements or structures.

  10. Influence of Carbonation on Fatigue of Concrete with High Volume of Ground Granulated Blast-furnace Slag

    Institute of Scientific and Technical Information of China (English)

    YOU Lushen; JIANG Linhua; CHU Hongqiang

    2015-01-01

    The effect of carbonation on fatigue performance of ground granulated blast-furnace slag concrete was investigated. Based on the static compression tests of carbonated GGBS-concrete, the correlation between carbonation depth and compressive strength was analyzed and an equation between carbonation depth and compressive strength was put forward. Meanwhile, fatigue S-N curves of various carbonation depths were fitted, and the influence of carbonation on fatigue life and strength was studied. Carbonation has a dual effect on the fatigue behavior of GGBS-concrete. A fatigue equation based on the depth of carbonation was established. Also, the probabilistic distribution of fatigue life of carbonated concrete at a given stress level was modeled by the two-parameter Weibull distribution.

  11. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview.

    Science.gov (United States)

    Song, Ha-Won; Saraswathy, Velu

    2006-11-16

    The partial replacement of clinker, the main constituent of ordinary Portland cement by pozzolanic or latent hydraulic industrial by-products such as ground granulated blast furnace slag (GGBFS), effectively lowers the cost of cement by saving energy in the production process. It also reduces CO2 emissions from the cement plant and offers a low priced solution to the environmental problem of depositing industrial wastes. The utilization of GGBFS as partial replacement of Portland cement takes advantage of economic, technical and environmental benefits of this material. Recently offshore, coastal and marine concrete structures were constructed using GGBFS concrete because high volume of GGBFS can contribute to the reduction of chloride ingress. In this paper, the influence of using GGBFS in reinforced concrete structures from the durability aspects such as chloride ingress and corrosion resistance, long term durability, microstructure and porosity of GGBFS concrete has been reviewed and discussed.

  12. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines.

    Science.gov (United States)

    Shih, Yi-Fan; Wang, Yu-Ren; Lin, Kuo-Liang; Chen, Chin-Wen

    2015-10-22

    Non-destructive testing (NDT) methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic pulse travelling speed is related to density, uniformity, and homogeneity of the specimen. Both of these two methods have been adopted to estimate the concrete compressive strength. Statistical analysis has been implemented to establish the relationship between hammer rebound values/ultrasonic pulse velocities and concrete compressive strength. However, the estimated results can be unreliable. As a result, this research proposes an Artificial Intelligence model using support vector machines (SVMs) for the estimation. Data from 95 cylinder concrete samples are collected to develop and validate the model. The results show that combined NDT methods (also known as SonReb method) yield better estimations than single NDT methods. The results also show that the SVM model is more accurate than the statistical regression model.

  13. Improving Non-Destructive Concrete Strength Tests Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Yi-Fan Shih

    2015-10-01

    Full Text Available Non-destructive testing (NDT methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic pulse travelling speed is related to density, uniformity, and homogeneity of the specimen. Both of these two methods have been adopted to estimate the concrete compressive strength. Statistical analysis has been implemented to establish the relationship between hammer rebound values/ultrasonic pulse velocities and concrete compressive strength. However, the estimated results can be unreliable. As a result, this research proposes an Artificial Intelligence model using support vector machines (SVMs for the estimation. Data from 95 cylinder concrete samples are collected to develop and validate the model. The results show that combined NDT methods (also known as SonReb method yield better estimations than single NDT methods. The results also show that the SVM model is more accurate than the statistical regression model.

  14. Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting

    Directory of Open Access Journals (Sweden)

    Dong-Sam Park

    2008-02-01

    Full Text Available In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed.

  15. Properties of Concrete Incorporating Bed Ash from Circulating Fluidized Bed Combustion and Ground Granulates Blast-furnace Slag

    Institute of Scientific and Technical Information of China (English)

    CHENG An; HSU Hui-Mi; CHAO Sao-Jeng

    2011-01-01

    The properties of concrete incorporating circulating fluidized bed combustion (CFBC) bed ash and ground granulates blast-furnace slag (GGBS) were studied. Compressive strength,drying shrinkage, mercury intrusion porosimetry (MIP), scanning electronic microscopy (SEM), and X-ray diffraction (XRD) of concrete samples containing CFBC bed ash and GGBS were used. This work used initial surface absorption test (ISAT) and rapid chloride penetration test (RCPT) on concrete to measure the absorption and the ability of concrete to resist chloride ion characteristics for different concrete samples containing CFBC bed ash and GGBS. Open circuit potential (OCP), direct current polarization resistance were obtained to evaluate rebar corrosion. The CFBC bed ash was X-ray amorphous and consist of SiO2, A12O3 and CaO compounds. As the replacement of CFBC for sand increases, the rate of initial surface absorption (ISA) increases but compressive strength decreases.When the content of CFBC bed ash replacement for sand maintains constant, the replacement of GGBS for cement increases, compressive strength increases but the rate of ISA decreases. Chloride and corrosion resistance of rebar significantly improve by utilizing a proper amount of CFBC bed ash and GGBS in concrete.

  16. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.

    Science.gov (United States)

    Gesoğlu, Mehmet; Güneyisi, Erhan; Mahmood, Swara Fuad; Öz, Hatice Öznur; Mermerdaş, Kasım

    2012-10-15

    Ground granulated blast furnace slag (GGBFS), a by-product from iron industry, was recycled as artificial coarse aggregate through cold bonding pelletization process. The artificial slag aggregates (ASA) replaced partially the natural coarse aggregates in production of self-compacting concrete (SCC). Moreover, as being one of the most widely used mineral admixtures in concrete industry, fly ash (FA) was incorporated as a part of total binder content to impart desired fluidity to SCCs. A total of six concrete mixtures having various ASA replacement levels (0%, 20%, 40%, 60%, and 100%) were designed with a water-to-binder (w/b) ratio of 0.32. Fresh properties of self-compacting concretes (SCC) were observed through slump flow time, flow diameter, V-funnel flow time, and L-box filling height ratio. Compressive strength of hardened SCCs was also determined at 28 days of curing. It was observed that increasing the replacement level of ASA resulted in decrease in the amount of superplasticizer to achieve a constant slump flow diameter. Moreover, passing ability and viscosity of SCC's enhanced with increasing the amount of ASA in the concrete. The maximum compressive strength was achieved for the SCC having 60% ASA replacement.

  17. Determination of the Thermal Expansion Coefficient of Concrete at Early Ages by Using Temperature-stress Testing Machine

    Institute of Scientific and Technical Information of China (English)

    HUO Kaicheng; SHUI Zhonghe; LI Yue

    2006-01-01

    By using the uptodate temperatuer-stress testing machine, the thermal expansion coefficient of concrete at early ages was studied and indicative conclusions were achieved: temperature rising due to hydration heat is not directly correlated with cracking, but the temperature and stress evolution process should be taken into consideration in the same time. Proper chemical admixtures and mineral compositions can improve the mechanical properties of concrete such as thermal expansion coefficient, which is very indicative in practice.

  18. Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method

    Science.gov (United States)

    Khandelwal, Manoj; Monjezi, M.

    2013-03-01

    Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.

  19. Characteristics of capillary discharge channel and its effect on concrete splitting-off by electro-blasting method

    Science.gov (United States)

    Kuznetsova, N. S.; Yudin, A. S.; Voitenko, N. V.

    2017-05-01

    The numerical simulation results on fracture of a concrete block due to dynamic explosive loads applied to the walls of a blast hole are presented. The influence of the pulse shape on the shock-wave dynamics is considered. A comparison of mechanical stresses in direct and reflected pressure waves induced in the concrete block by explosion pulses of various durations and amplitudes shows that the shorter pulses with higher amplitudes and steeper rise times provide a higher blasting efficiency. The wire application for the discharge initiation enables the operating voltage of the generator to decrease, the discharge gap to increase, and hence, the channel energy to lead to the demolition build-up at electro burst. The significant dependence of the stress-wave profile on the pressure pulse wave shape at the borehole wall, which is determined by the rate of electrical energy release in the plasma channel, has been shown. An analysis of the stress-wave dynamics has shown that the rapid power deposition into a plasma channel tends to shift an amplitude of the tangential stresses in a reflected wave to the higher values and to extend the region of tensile tangential stresses initiating the main crack propagation from the borehole walls to a free material surface.

  20. Concrete

    OpenAIRE

    2015-01-01

    Concrete is a component of coherent transition between a concrete base and a wooden construction. The structure is based on a quantity of investigations of the design possibilities that arise when combining digital fabrication tools and material capacities.Through tangible experiments the project discusses materiality and digitally controlled fabrications tools as direct expansions of the architect’s digital drawing and workflow. The project sees this expansion as an opportunity to connect th...

  1. Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Directory of Open Access Journals (Sweden)

    Stefan Marr

    2010-02-01

    Full Text Available The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs, which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research.

  2. The Environmental Impact and Cost Analysis of Concrete Mixing Blast Furnace Slag Containing Titanium Gypsum and Sludge in South Korea

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-05-01

    Full Text Available This study assessed the environmental effects and cost of the Industrial Waste addictive Blast Furnace Slag (W-BFS using Life Cycle Assessment (LCA and compared it to general BFS. The environmental impacts of W-BFS were as follows: 1.12 × 10−1 kg-CO2 eq/kg, 3.18 × 10−5 kg-Ethylene eq/kg, 4.79 × 10−4 kg-SO2 eq/kg, 7.15 × 10−4 kg-PO43− eq/kg, 7.15 × 10−4 kg-CFC11 eq/kg and 3.94 × 10−3 kg-Antimony eq/kg. Among the environmental impact category, GWP and AP were 9.28 × 10−2 kg-CO2 eq/kg and 3.33 × 10−4 kg-SO2 eq/kg at a raw material stage, accounting for 80% and 70% of total environmental impact respectively. In EP, POCP and ADP, in addition, raw material stage accounted for a great portion in total environmental impact because of “W” among input materials. In ODP, however, compared to the environmental impact of raw materials, oil, which was used in transporting BFS to the W-BFS manufacturing factory, was more influential. In terms of GWP, POCP and ODP, W-BFS was higher than general BFS. In terms of AP, EP and ADP, in contrast, the former was lower than the latter. In terms of cost, W-BFS (41.7 US$/ton was lower than general BFS by about 17% because of the use of waste additives comprised of industrial wastes instead of natural gypsum ,which has been commonly used in general BFS. In terms of GWP and POCP, the W-BFS mixed (30% concrete was lower than plain concrete by 25%. In terms of AP and EP, the former was lower than the latter by 30%. In terms of ADP, furthermore, W-BFS mixed (30% concrete was lower than plain concrete by 11%. In aggregate-related ODP, however, almost no change was found. In terms of cost, when W-BFS was added by 10% and 30%, it was able to reduce cost by 3% and 7% respectively, compared to plain concrete. Compared to BFS-mixed concrete as well, cost could be saved by 1% additionally because W-BFS (US$41.7/ton is lower than common cement (US$100.3/ton by about 60% in terms of production costs.

  3. Concrete Model Descriptions and Summary of Benchmark Studies for Blast Effects Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Noble, C; Kokko, E; Darnell, I; Dunn, T; Hagler, L; Leininger, L

    2005-07-21

    Concrete is perhaps one of the most widely used construction materials in the world. Engineers use it to build massive concrete dams, concrete waterways, highways, bridges, and even nuclear reactors. The advantages of using concrete is that it can be cast into any desired shape, it is durable, and very economical compared to structural steel. The disadvantages are its low tensile strength, low ductility, and low strength-to-weight ratio. Concrete is a composite material that consists of a coarse granular material, or aggregate, embedded in a hard matrix of material, or cement, which fills the gaps between the aggregates and binds them together. Concrete properties, however, vary widely. The properties depend on the choice of materials used and the proportions for a particular application, as well as differences in fabrication techniques. Table 1 provides a listing of typical engineering properties for structural concrete. Properties also depend on the level of concrete confinement, or hydrostatic pressure, the material is being subjected to. In general, concrete is rarely subjected to a single axial stress. The material may experience a combination of stresses all acting simultaneously. The behavior of concrete under these combined stresses are, however, extremely difficult to characterize. In addition to the type of loading, one must also consider the stress history of the material. Failure is determined not only by the ultimate stresses, but also by the rate of loading and the order in which these stresses were applied. The concrete model described herein accounts for this complex behavior of concrete. It was developed by Javier Malvar, Jim Wesevich, and John Crawford of Karagozian and Case, and Don Simon of Logicon RDA in support of the Defense Threat Reduction Agency's programs. The model is an enhanced version of the Concrete/Geological Material Model 16 in the Lagrangian finite element code DYNA3D. The modifications that were made to the original model

  4. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    Science.gov (United States)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present inBi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely 241Am and 137Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  5. Blast Design of Reinforced Concrete and Masonry Components Retrofitted with FRP

    Science.gov (United States)

    2010-07-01

    ultimate flexural and shear resistance of the upgraded walls. The methodology for estimating the flexural resistance of concrete and masonry components...recommended value not including any environmental effects or debonding The FRP reinforcement is typically applied to a concrete or masonry wall...have enough tensile and shear strength to transfer the force and develop the strength of the bonded FRP reinforcement . The durability of the

  6. Resistance of Concrete Masonry Walls With Membrane Catcher Systems Subjected to Blast Loading

    Science.gov (United States)

    2010-12-01

    effectiveness of systems comprised of polymers, composites, geotextiles , and thin steel and aluminum sheets has been researched extensively over the past...secondary debris resulting from blast pressure, and the effectiveness of systems comprising polymers, composites, geotextiles , and thin steel and aluminum...wall structure undergoes large transient displacements. Initially, relatively stiff composite laminates and geotextiles were investigated, including

  7. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits.

    Science.gov (United States)

    Piattelli, Maurizio; Scarano, Antonio; Paolantonio, Michele; Iezzi, Giovanna; Petrone, Giovanna; Piattelli, Adriano

    2002-01-01

    The aim of the present study was a comparison of implants' responses to a machined surface and to a surface sandblasted with hydroxyapatite (HA) particles (resorbable blast material [RBM]). Threaded machined and RBM, grade 3, commercially pure, titanium, screw-shaped inplants were used in this study. Twenty-four New Zealand white mature male rabbits were used. The inplants were inserted into the articular femoral knee joint according to a previously described technique. Each rabbit received 2 inplants, 1 test (RBM) and 1 control (machined). A total of 48 implants (24 control and 24 test) were inserted. The rabbits were anesthetized with intramuscular injections of fluanisone (0.7 mg/ kg body weight) and diazepam (1.5 mg/kg b.wt.), and local anesthesia was given using 1 mL of 2% lidocaine/adrenalin solution. Two rabbits died in the postoperative course. Four animals were euthanatized with an overdose of intravenous pentobarbital after 1, 2, 3, and 4 weeks; 6 rabbits were euthanatized after 8 weeks. A total of 44 implants were retrieved. The specimens were processed with the Precise 1 Automated System to obtain thin ground sections. A total of 3 slides were obtained for each implant. The slides were stained with acid and basic fuchsin and toluidine blue. The slides were observed in normal transmitted light under a Leitz Laborlux microscope, and histomorphometric analysis was performed. With the machined implants, it was possible to observe the presence of bone trabeculae near the implant surface at low magnification. At higher magnification many actively secreting alkaline phosphatasepositive (ALP+) osteoblasts were observed. In many areas, a not yet mineralized matrix was present. After 4 to 8 weeks, mature bone appeared in direct contact with the implant surface, but in many areas a not yet mineralized osteoid matrix was interposed between the mineralized bone and implant surface. In the RBM implants, many ALP+ osteoblasts were present and in direct contact with

  8. Laboratory Evaluation of Expedient Low-Temperature Concrete Admixtures for Repairing Blast Holes in Cold Weather

    Science.gov (United States)

    2013-01-08

    binder material ( Mindess and Young 1981). The designated values of initial and final set are arbitrarily set at 500 and 4000 psi, respectively. Initial...6th ed. Belmont, CA: Professional Publications, Inc. Mindess , S., and J. F. Young. 1981. Concrete. Englewood Cliffs, NJ: Prentice-Hall. PM-MRAP

  9. Effect of High-Temperature Curing Methods on the Compressive Strength Development of Concrete Containing High Volumes of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Wonsuk Jung

    2017-01-01

    Full Text Available This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS. GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT, peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.

  10. Machine learning techniques in disease forecasting: a case study on rice blast prediction

    Directory of Open Access Journals (Sweden)

    Kapoor Amar S

    2006-11-01

    Full Text Available Abstract Background Diverse modeling approaches viz. neural networks and multiple regression have been followed to date for disease prediction in plant populations. However, due to their inability to predict value of unknown data points and longer training times, there is need for exploiting new prediction softwares for better understanding of plant-pathogen-environment relationships. Further, there is no online tool available which can help the plant researchers or farmers in timely application of control measures. This paper introduces a new prediction approach based on support vector machines for developing weather-based prediction models of plant diseases. Results Six significant weather variables were selected as predictor variables. Two series of models (cross-location and cross-year were developed and validated using a five-fold cross validation procedure. For cross-year models, the conventional multiple regression (REG approach achieved an average correlation coefficient (r of 0.50, which increased to 0.60 and percent mean absolute error (%MAE decreased from 65.42 to 52.24 when back-propagation neural network (BPNN was used. With generalized regression neural network (GRNN, the r increased to 0.70 and %MAE also improved to 46.30, which further increased to r = 0.77 and %MAE = 36.66 when support vector machine (SVM based method was used. Similarly, cross-location validation achieved r = 0.48, 0.56 and 0.66 using REG, BPNN and GRNN respectively, with their corresponding %MAE as 77.54, 66.11 and 58.26. The SVM-based method outperformed all the three approaches by further increasing r to 0.74 with improvement in %MAE to 44.12. Overall, this SVM-based prediction approach will open new vistas in the area of forecasting plant diseases of various crops. Conclusion Our case study demonstrated that SVM is better than existing machine learning techniques and conventional REG approaches in forecasting plant diseases. In this direction, we have also

  11. Effects of Cylindrical Charge Geometry and Secondary Combustion Reactions on the Internal Blast Loading of Reinforced Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Price, Matthew A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2005-05-01

    An understanding of the detonation phenomenon and airblast behavior for cylindrical high-explosive charges is essential in developing predictive capabilities for tests and scenarios involving these charge geometries. Internal tests on reinforced concrete structures allowed for the analysis of cylindrical charges and the effect of secondary reactions occurring in confined structures. The pressure profiles that occur close to a cylindrical explosive charge are strongly dependent on the length-to-diameter ratio (L/D) of the charge. This study presents a comparison of finite-element code models (i.e., AUTODYN) to empirical methods for predicting airblast behavior from cylindrical charges. Current finite element analysis (FEA) and blast prediction codes fail to account for the effects of secondary reactions (fireballs) that occur with underoxidized explosives. Theoretical models were developed for TNT and validated against literature. These models were then applied to PBX 9501 for predictions of the spherical fireball diameter and time duration. The following relationships for PBX 9501 were derived from this analysis (units of ft, lb, s). Comparison of centrally located equivalent weight charges using cylindrical and spherical geometries showed that the average impulse on the interior of the structure is ~3%–5% higher for the spherical charge. Circular regions of high impulse that occur along the axial direction of the cylindrical charge must be considered when analyzing structural response.

  12. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  13. A prospective 5-year study of fixed partial prostheses supported by implants with machined and TiO2-blasted surface

    DEFF Research Database (Denmark)

    Gotfredsen, K; Karlsson, U

    2001-01-01

    PURPOSE: The aim of the present study was to evaluate whether there was a difference between machined and TiO(2)-blasted implants regarding survival rate and marginal bone loss during a 5-year observation period. MATERIALS AND METHODS: A total of 133 implants (Astra Tech Dental Implants; Astra Tech...... and 1 TiO(2)-blasted implant. The implant-supported fixed partial prostheses (ISFPP) were fabricated within 2 months after postoperative healing. A total of 52 ISFPP (17 maxillary, 35 mandibular) were inserted. The patients were clinically examined once a year for 5 years. At the annual follow......-up, biological as well as technical complications were recorded. RESULTS: Of the 133 implants placed, 3 were reported as failed after 5 years of follow-up, resulting in an overall cumulative survival rate of 97.6%. The cumulative implant survival rates were 100% for the TiO(2)-blasted implants and 95...

  14. A prospective 5-year study of fixed partial prostheses supported by implants with machined and TiO2-blasted surface

    DEFF Research Database (Denmark)

    Gotfredsen, K; Karlsson, U

    2001-01-01

    PURPOSE: The aim of the present study was to evaluate whether there was a difference between machined and TiO(2)-blasted implants regarding survival rate and marginal bone loss during a 5-year observation period. MATERIALS AND METHODS: A total of 133 implants (Astra Tech Dental Implants; Astra Tech...... AB, Mölndal, Sweden) were placed in 50 patients at 6 centers in 4 Scandinavian countries. Forty-eight implants were installed in the maxilla and 85 implants in the mandible. A randomization and a stratification were done, so that each fixed partial prosthesis was supported by at least 1 machined...... and 1 TiO(2)-blasted implant. The implant-supported fixed partial prostheses (ISFPP) were fabricated within 2 months after postoperative healing. A total of 52 ISFPP (17 maxillary, 35 mandibular) were inserted. The patients were clinically examined once a year for 5 years. At the annual follow...

  15. 石粉在机制砂混凝土中的应用%Utilization of stone dust in machine-made sand concrete production

    Institute of Scientific and Technical Information of China (English)

    刘秀美; 陈阁谷; 陶珍东

    2013-01-01

    C40 machine-made sand concrete was made with cementing material(P.O 42.5 cement,fly ash,mineral powder), crushed stone,water and three different kinds of machine-made sand. The impact of stone dust rate on working performance, mechanical prop-erty and durability of machine-made sand concrete was studied in this experiment. The result shows that defined amount of stone dust can modify the working performance, increase the compressing strength,and improve the frost resistance and durability of concrete, and the better sophericity of machine-made sand,the more stone dust that can be added into concrete.%  以胶凝材料(P.O42.5水泥,粉煤灰,矿粉)、碎石、水及三种性能不同的机制砂制成了C40机制砂混凝土,试验研究其石粉含量对机制砂混凝土工作性能、力学性能和耐久性能的影响。结果表明,适量的石粉可以改善机制砂混凝土的工作性能,增加其抗压强度,增强其抗冻性和耐久性;另外,球形度越好的机制砂,其石粉在混凝土中的可掺量越大。

  16. AN EXPERIMENTAL STUDY ON GEO-POLYMER CONCRETE INCORPORATING GGBS (GROUND GRANULATED BLAST FURNANCE SLAG) AND METAKAOLIN

    OpenAIRE

    Nallapaneni Madhava*, Madasu Durga Rao, Nekkalapu Divya

    2016-01-01

    The major problem the world is facing today is the environmental pollution. In the construction industry mainly the production of Portland cement will causes the emission of pollutants results in environmental pollution. We can reduce the pollution effect on environment, by increasing the usage of industrial by-products in our construction industry. Geo-polymer concrete is such a one and in the present study, to produce the geo-polymer concrete the Portland cement is fully replaced with GGBS ...

  17. Concrete Cleaning, Inc. centrifugal shot blaster: Baseline report; Greenbook (chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The centrifugal shot blaster technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The centrifugal shot blaster is an electronically operated shot blast machine that has been modified to remove layers of concrete to varying depths. A hardened steel shot propelled at a high rate of speed abrades the surface of the concrete. The depth of material removed is determined by the rate of speed the machine is traveling and the volume of shot being fired into the blast chamber. The steel shot is recycled and used over until it is pulverized into dust, which ends up in the waste container with the concrete being removed. Debris is continually vacuumed by a large dust collection system attached to the shot blaster. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  18. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement; Efecto de la incorporacion de ceniza volante y escoria de horno alto en el comportamiento electroquimico de concretos de cemento comercial

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.

    2015-07-01

    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  19. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  20. The use of blast furnace slag

    OpenAIRE

    V. Václavík; V. Dirner; T. Dvorský; J. Daxner

    2012-01-01

    The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  1. Flow Field Simulation and Machining Experiment of Flank Milling Blasting Erosion Arc Machining%侧铣式高速电弧放电加工的极间流场仿真及加工试验

    Institute of Scientific and Technical Information of China (English)

    洪汉; 顾琳; 徐辉; 赵万生

    2015-01-01

    To extend the application of blasting erosion arc machining, a new arc machining process-flank milling blasting erosion arc machining is proposed, which can process continuous curved surfaces and ruled surfaces. Compared to other processes which utilize arc to machine, flank milling blasting erosion arc machining malnly uses the flank of its electrode to remove workpiece material. It can implement machining of complex surfaces, cavities with large radius of curvature, slots and passages as well. The hole array distributed on the side wall and the rotary motion of the electrode enhance the flushing in the inter electrode gap, combining both mechanisms of hydrodynamic arc breaking mechanism and mechanical moving arc breaking mechanism, thereby obtalning high material removal rate. In order to explore the influence of flushing on machining performance of flank milling blasting erosion arc machining, the inter electrode gap flow models of different electrodes and different inlet pressure are built for simulations. Meanwhile, the machining experiments are conducted. Both simulation and experiments indicate that the increase of number of flushing holes lead to a better machining performance while the inlet pressure kept at 1.6 MPa. It attributes to the improvement of the inter electrode gap flow field, thus malntalning better arcing state. Experiments demonstrate that the material removal rate can reach 4 095 mm3/min and the relative tool wear ratio malntalned below 2.5%while the peak current is 400 A. The passage of turbine is machined to demonstrate the feasibility of flank milling blasting erosion arc machining.%在高速电弧放电加工方法的基础上提出一种用于加工连续曲面、直纹面等的新型加工工艺——侧铣式高速电弧放电加工方法。与其他利用电弧进行加工的工艺方法相比,侧铣式高速电弧放电加工主要利用电极的侧面进行电弧蚀除加工,可用于加工各种复杂曲面和曲率半径较

  2. Finite Element Simulation and Assessment of Single-Degree-of-Freedom Prediction Methodology for Insulated Concrete Sandwich Panels Subjected to Blast Loads

    Science.gov (United States)

    2011-02-01

    can be either conventionally reinforced or prestressed. Reinforcement allows the concrete to reach its full flexural strength and resist lateral...panels each having only one of the shear transfer mechanisms. Research showed that solid concrete sections provided the most strength and stiffness...models, accurately describing the transfer of shear between concrete wythes, incorporating strain rate effects on material behavior, and simulating

  3. 反井钻机联合钻爆法在大断面煤仓施工中的研究与应用%Study and Application of Raise Boring Machine with Drilling and Blasting Method to Construction of Mine Large Cross Section Coal Bunker

    Institute of Scientific and Technical Information of China (English)

    许传峰

    2013-01-01

    According to the large cross section,high difficult construction,low safety coefficient and other features of the coal bunker at the-318m level mine shaft bottom,with the comparison analysis,a raise boring machine combined with the drilling and blasting construction was determined and applied.From the blind shaft construction,reaming of the coal bunker,concrete lining support and others,the paper introduced the rapid construction technology.The results showed that the application of the raise boring machine combined with the drilling and blasting method to the construction of the coal bunker at the mine shaft bottom would have high mechanized degree,low labor intensity,safety,rapid construction speed,high efficiency and series advantages and would be a value to be promoted.%针对-318m水平井底煤仓断面大、施工难度大,安全系数低等特点,通过对比分析,决定采用反井钻机联合钻爆法施工,并从溜矸井施工、煤仓刷大、混凝土砌碹支护等方面介绍了快速施工技术,结果表明,采用反井钻机联合钻爆法施工井底煤仓,具有机械化程度高、劳动强度低、安全、施工速度快、效率高等一系列优点,值得推广应用.

  4. Dynamic Response Analysis of Concrete Rectangular Steel Tube Columns Under Blasting Loading%爆炸荷载作用下方钢管混凝土柱的动力响应分析

    Institute of Scientific and Technical Information of China (English)

    孙宇; 毛毳; 杜欣新

    2015-01-01

    使用 ANSYS/LS-DYNA 软件,建立 TNT 炸药、空气域以及方钢管混凝土柱的三维计算模型,模拟钢管混凝土柱在爆炸荷载作用下的动力响应,得到方钢管混凝土柱的整体响应、柱中部位移、压力以及破坏模式。结果显示:在爆炸荷载作用下,方钢管混凝土柱中部破坏最为严重,为弯曲破坏;柱脚发生剪切破坏;柱顶端出现高应力区,但并未发生严重破坏。说明由于钢管对于核心混凝土的约束作用,柱子的韧性和塑性得到较大幅度的提升。%3D calculation model of TNT explosive,air domain and concrete rectangular steel tubular column are established by software ANSYS/LS-DYNA. To obtain the overall response and central displacement of concrete rectangular steel tubular columns,pressure,and failure mode,the dynamic response of concrete rectangular steel tube columns under blast loading is simulated. The results show:that the explosive destruction in middle part of the steel tube concrete column is most serious, which is bending failure;the root of column shear is failure;the high stress area exists in the column top,but has no serious damage. The results of this study show that,due to the steel tube,concrete filled steel tube has higher toughness andplasticity in three dimensional stress states.

  5. Applied machining technology

    CERN Document Server

    Tschätsch, Heinz

    2010-01-01

    Machining and cutting technologies are still crucial for many manufacturing processes. This reference presents all important machining processes in a comprehensive and coherent way. It includes many examples of concrete calculations, problems and solutions.

  6. Concrete portable handbook

    CERN Document Server

    Woodson, R Dodge

    2011-01-01

    Whether or not, you are on the job site or back in the office, this book will help you to avoid mistakes, code violations, and wasted time and money. The book's four part treatment begins with constituent materials followed by self contained parts on Concrete Properties, Processes, and Concrete Repair and Rehabilitation. Designed to be an ""all in one"" reference, the author includes a wealth information for the most popular types of testing. This includes: Analysis of Fresh Concrete; Testing Machines; Accelerated Testing Methods; Analysis of Hardened Concrete and Mortar; Core Sampl

  7. How Concrete Is Concrete?

    Science.gov (United States)

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  8. Solution to the dynamical equations of reinforced concrete elements under blast loads with the finite difference method%爆炸荷载下混凝土构件动力方程的差分解

    Institute of Scientific and Technical Information of China (English)

    孙文彬

    2011-01-01

    The dynamical equations of the reinforced concrete under blast loads were the non-homogeneous partial differential equations,it was usually investigated numerically by an iterative method, in the meantime, the nonlinear of material behavior and the strain rate effect should be taken into account in the iterative process.A finite difference method was used to solve numerically the dynamical equations of structural concrete elements under blast loads, it can simultaneously accommodate flexural and shear deformations,incorporated the nonlinear of material behavior and the strain rate effects on the strength of the concrete and steel into the each step of the iterative process, utilized the layered analysis model to compute the node moments, took over the nonlinear degradation of crosssectional flexural rigid and the nonlinear variation of deformation caused by concrete crack.These improved procedures up-graded the tightness and accuracy of the numerical investigation.The results from the finite difference method agreed well with the experimental data obtained by other investigators,and had the same accuracy with the results by applying the LS-DYNA.%爆炸荷载下混凝土构件的动力方程为非齐次偏微分方程,通常采用数值法迭代求解,迭代过程需同时考虑材料非线性和应变率效应.采用差分法求解爆炸荷载下构件的动力方程,同时考虑弯曲变形和剪切变形,将材料非线性和应变率效应融入差分迭代过程,应用分层法模型计算节点弯矩,考虑混凝土开裂引起的截面弯曲刚度退化和变形的非线性变化,这些改进步骤,提高了分析的严密性和精确度.差分结果与他人实验数据吻合良好,与LS-DYNA有限元分析具有相当的精度.

  9. Blast-Induced Damage on Millisecond Blasting Model Test with Multicircle Vertical Blastholes

    Directory of Open Access Journals (Sweden)

    Qin-yong Ma

    2015-01-01

    Full Text Available To investigate the blast-induced damage effect on surrounding rock in vertical shaft excavation, 4 kinds of millisecond blasting model tests with three-circle blastholes were designed and carried out with excavation blasting in vertical shaft as the background. The longitudinal wave velocity on the side of concrete model was also measured before and after blasting. Then blast damage factor was then calculated by measuring longitudinal wave velocity before and after blasting. The test results show that the blast-induced damage factor attenuated gradually with the centre of three-circle blastholes as centre. With the threshold value of 0.19 for blast-induced damage factor, blast-induced damage zones for 4 kinds of model tests are described and there is an inverted cone blast-induced damage zone in concrete model. And analyses of cutting effect and blast-induced damage zone indicate that in order to minimize the blast-induced damage effect and ensure the cutting effect the reasonable blasting scheme for three-circle blastholes is the inner two-circle blastholes initiated simultaneously and the outer third circle blastholes initiated in a 25 ms delay.

  10. How Concrete is Concrete

    OpenAIRE

    2010-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these tw...

  11. How Concrete is Concrete

    Directory of Open Access Journals (Sweden)

    Koeno Gravemeijer

    2010-07-01

    Full Text Available If we want to make something concrete in mathematics education, we are inclined introduce, what we call, ‘manipulatives’, in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own, abstract, knowledge; in the latter, we try to find an example that the others will be familiar with. This article first looks at the tension between these two different ways of making things concrete. Next another role of manipulatives, will be discussed, namely that of means for scaffolding and communication. In this role, manipulatives may function as means of support in a process that aims at helping students to build on their own thinking while constructing more sophisticated mathematics

  12. Reduction of sidewall inclination and blast lag of powder blasted channels

    NARCIS (Netherlands)

    Wensink, Henk; Elwenspoek, Miko C.

    2002-01-01

    Powder blasting (abrasive jet machining) is a fast directional machining technique for brittle materials like silicon and glass. The cross-section of a powder blasted channel has a rounded V-shape. These inclined sidewalls are caused by the typical impact angle dependent removal rate for brittle mat

  13. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  14. Resistance of Membrane Retrofit Concrete Masonry Walls to Lateral Pressure

    Science.gov (United States)

    2008-04-01

    determined to be as effective as steel jackets in improving deformation capacity levels of columns subjected to seismic loading. Experimental testing of...for seismic loading were later investigated for their use in strengthening concrete masonry structures against blast. For instance, column- jacketing ... Seismic Investigations ...............................................................................................................6 2.2 Blast Load

  15. Micro Environmental Concrete

    Science.gov (United States)

    Lanez, M.; Oudjit, M. N.; Zenati, A.; Arroudj, K.; Bali, A.

    Reactive powder concretes (RPC) are characterized by a particle diameter not exceeding 600 μm and having very high compressive and tensile strengths. This paper describes a new generation of micro concrete, which has an initial as well as a final high physicomechanical performance. To achieve this, 15% by weight of the Portland cement have been substituted by materials rich in Silica (Slag and Dune Sand). The results obtained from the tests carried out on the RPC show that compressive and tensile strengths increase when incorporating the addition, thus improving the compactness of mixtures through filler and pozzolanic effects. With a reduction in the aggregate phase in the RPC and the abundance of the dune sand (southern of Algeria) and slag (industrial by-product of the blast furnace), the use of the RPC will allow Algeria to fulfil economical as well as ecological requirements.

  16. The Performance of the Machine-made Sand and Its Influence on Concrete Performance%机制砂的性能及其对混凝土性能的影响

    Institute of Scientific and Technical Information of China (English)

    黄鹤; 牛一凡; 潘天久; 刘倩倩; 杨凯

    2011-01-01

    Civil workers pay more attention to mixed material, like cement, water cement ratio, admixture and fly ash and silica fume and so on, in past studies. As an important part of concrete, aggregate occupies a very important position. With the development and perfect of civil construction, the natural sand is increasingly in short supply. So we should re-examine the influence of aggregate for the performance of concrete. This paper studies the influence of machine-made sand on concrete performance instead of river sand.%以往对混凝土的研究,土木工作者把更多的注意力放在了水泥、水灰比、外加剂以及粉煤灰和硅灰等外掺材料上,集料也是混凝土的重要组成部分,在混凝土中占有很重要的地位.随着土木建设的日趋发展和完善,天然砂日益紧缺,我们应重新审视集料对琨凝土性能的影响,本文就着手研究用机制砂取代河砂对混凝土性能的影响.

  17. Pervious Concrete

    OpenAIRE

    2012-01-01

    Pervious concrete is a type of concrete with little or no fines which give a large void. This enables high permeability and because of this it enables water to percolate through the concrete. Pervious concrete have been used in many years both as pavement material and on several other applications in the U.S and in other countries in Western Europe. In Norway pervious concrete is not currently in use. This thesis aims to investigate if pervious concrete can withstand the harsh Norwegian clima...

  18. Rock fragmentation control in opencast blasting

    Directory of Open Access Journals (Sweden)

    P.K. Singh

    2016-04-01

    Full Text Available The blasting operation plays a pivotal role in the overall economics of opencast mines. The blasting sub-system affects all the other associated sub-systems, i.e. loading, transport, crushing and milling operations. Fragmentation control through effective blast design and its effect on productivity are the challenging tasks for practicing blasting engineer due to inadequate knowledge of actual explosive energy released in the borehole, varying initiation practice in blast design and its effect on explosive energy release characteristic. This paper describes the result of a systematic study on the impact of blast design parameters on rock fragmentation at three mines in India. The mines use draglines and shovel–dumper combination for removal of overburden. Despite its pivotal role in controlling the overall economics of a mining operation, the expected blasting performance is often judged almost exclusively on the basis of poorly defined parameters such as powder factor and is often qualitative which results in very subjective assessment of blasting performance. Such an approach is very poor substitutes for accurate assessment of explosive and blasting performance. Ninety one blasts were conducted with varying blast designs and charging patterns, and their impacts on the rock fragmentation were documented. A high-speed camera was deployed to record the detonation sequences of the blasts. The efficiency of the loading machines was also correlated with the mean fragment size obtained from the fragmentation analyses.

  19. Structural Precast Concrete Handbook

    DEFF Research Database (Denmark)

    Kjærbye, Per Oluf H

    Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly.......Structural concept for precast concrete systems. Design og precast reinforced concrete components. Design of precast concrete connections. Illustrations on design of precast concrete buildings. Precast concrete assembly....

  20. Autogeneous healing and chloride ingress in cracked concrete

    NARCIS (Netherlands)

    Savija, B.; Schlangen, E.

    2016-01-01

    An experimental study of the influence of autogeneous healing on chloride ingress in cracked concrete is presented. In the study, two concrete mixtures (a Portland cement mix and a blast furnace slag mix), two healing regimes (submerged and fog room regime), two cracking ages (14 and 28 days), and m

  1. Autogeneous healing and chloride ingress in cracked concrete

    NARCIS (Netherlands)

    Savija, B.; Schlangen, E.

    2016-01-01

    An experimental study of the influence of autogeneous healing on chloride ingress in cracked concrete is presented. In the study, two concrete mixtures (a Portland cement mix and a blast furnace slag mix), two healing regimes (submerged and fog room regime), two cracking ages (14 and 28 days), and m

  2. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  3. Glazed Concrete

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Why glazed concrete? Concrete hardens and finds its strength at room temperature whereas clay products must first be fired before they achieve this strength. They are stronger and three times as durable as clay products, which is a weighty reason for choosing concrete.5 Another reason, which....... If this succeeds, it will be possible to manufacture thin, large-scale glazed concrete panels comparable in size to concrete sandwich construction and larger which, with or without back-casting, can work as load-bearing construction elements....

  4. Concrete Hinges

    DEFF Research Database (Denmark)

    Halding, Philip Skov; Hertz, Kristian Dahl; Schmidt, Jacob Wittrup

    2014-01-01

    In the first part of the 20th century concrete hinges developed by Freyssinet and Mesnager were widely tested and implemented in concrete structures. The concrete hinges were used a great deal in closed-spandrel arch bridges. Since such a bridge type has not been competitive for the past 40 years......, the research in concrete hinges has not evolved significantly in that period. But introducing a new state-of-the-art concrete arch bridge solution (Pearl-Chain arches invented at the Technical University of Denmark) creates a necessity of a concrete hinge research based on modern standards. Back when research...... in concrete hinges was more common different designs were proposed for the geometry and reinforcement. Previous research focused on fatigue, multi-axial stresses around the hinge throat, and the relation between rotation- and moment. But many different test-setups were proposed by different researchers...

  5. Concrete structures

    CERN Document Server

    Setareh, Mehdi

    2017-01-01

    This revised, fully updated second edition covers the analysis, design, and construction of reinforced concrete structures from a real-world perspective. It examines different reinforced concrete elements such as slabs, beams, columns, foundations, basement and retaining walls and pre-stressed concrete incorporating the most up-to-date edition of the American Concrete Institute Code (ACI 318-14) requirements for the design of concrete structures. It includes a chapter on metric system in reinforced concrete design and construction. A new chapter on the design of formworks has been added which is of great value to students in the construction engineering programs along with practicing engineers and architects. This second edition also includes a new appendix with color images illustrating various concrete construction practices, and well-designed buildings. The ACI 318-14 constitutes the most extensive reorganization of the code in the past 40 years. References to the various sections of the ACI 318-14 are pro...

  6. Blast Technologies

    Science.gov (United States)

    2011-06-27

    Team Leader Risa Scherer Blast Mitigation Interior and Laboratory Team Leader Blast Technologies POC’s Government Point Of Contacts (POCs): To...to yield injury assessments at higher fidelities and with higher confidence UNCLASSIFIED UNCLASSIFIED Risa Scherer Blast Mitigation Interior and

  7. Study on healthcare magnetic concrete

    Institute of Scientific and Technical Information of China (English)

    YANG Yushan; DONG Faqin; FENG Jianjun

    2006-01-01

    Magnetic concrete was prepared by adding SrFe12O9 magnetic functional elementary material into concrete, and its magnetism was charged by magnetizing machine. The effect of SrFe12O9 content on magnetic field intensity and the attenuation of magnetic field intensity were investigated in different medium. The blood viscosity of rats kept in magnetic concrete was carried out. The results show that magnetic concrete can be prepared by adding SrFe12O9, and magnetic fields intensity increases with the augment of ferrite content. The attenuation of magnetic fields is mainly related with the density of medium, but it is secondary to the properties of medium. The blood viscosity of rats decreases under magnetic condition, but the blood cells remain the same as before. Experimental results support that magnetic concrete has great healthcare function.

  8. 行星刀盘方顶管全断面切削混凝土试验研究%Experimental Study on Full-Face Concrete Cutting by a Rectangular Pipe-jacking Machine with a Planetary Cutterhead

    Institute of Scientific and Technical Information of China (English)

    魏林春

    2014-01-01

    The mining method with soil reinforcement is now mainly adopted in the construction of cross passages of shield tunnels, which is characterized by high risk and complex working conditions. In this paper, based on the adoption of a specially developed rectangular pipe-jacking machine with a planetary cutterhead, full-face cutting tests are carried out on concrete samples of different strength grades. Research on cutting-tool selection and layout, as well as the machinability of pipe-jacking with a planetary cutterhead, are undertaken, providing a technical reference for future cross-passage construction in shield tunnels adopting pipe-jacking to cut concrete composite segments, thereby refraining from exposing the reinforced soil mass due to segment removal, and greatly reducing the construction risk.%目前盾构隧道联络通道主要采用土体加固暗挖法进行施工,但在复杂工况环境下仍存在极大施工风险。文章通过采用专门研制的行星刀盘方顶管对不同强度等级的混凝土试块进行全断面切削试验,对顶管刀具选型及布置、行星刀盘顶管切削性能等进行了研究,可为今后采用顶管法直接切削混凝土复合管片的盾构隧道联络通道的施工提供相应的技术储备,避免移除管片暴露加固土体,以大大降低盾构隧道联络通道施工风险。

  9. Aspects of blast resistant masonry design

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, D.E.

    1989-01-01

    Blast resistant design should be examined for building code incorporation, due to the potential of explosions occurring in an industrial society. Specifically, public and commercial structures of concrete masonry construction need additional building code criteria, since these buildings have high density populations to protect. Presently, blast resistant design is accomplished by using government published manuals, but these do not address industry standard construction. A design air blast load of 4.54 kg (10 lbs) of TNT, located 0.91 m (3 ft) above ground surface and 30.48 m (100 ft) from a structure should be considered standard criteria. This loading would be sufficient to protect against blast, resist progressive failure, and yet not be an economic impediment. Design details and adequate inspection must be observed to ensure blast resistant integrity. 10 refs., 3 figs., 1 tab.

  10. NANOMODIFIED CONCRETE

    Directory of Open Access Journals (Sweden)

    B. M. Khroustalev

    2015-01-01

    Full Text Available One of the main directions in construction material science is the development of  next generation concrete that is ultra-dense, high-strength, ultra-porous, high heat efficient, extra corrosion-resistant. Selection of such direction is caused by extreme operational impacts on the concrete, namely: continuously increasing load on the concrete and various dynamics of such loads; the necessity in operation of concrete products in a wide temperature range and their exposure to various chemical and physical effects.The next generation concrete represents high-tech concrete mixtures with additives that takes on and retain the required properties when hardening and being used under any operational conditions. A differential characteristic of the next generation concrete is its complexity that presumes usage of various mineral dispersed components, two- and three fractional fine and coarse aggregates, complex chemical additives, combinations of polymer and iron reinforcement.Design strength and performance properties level of the next generation concrete is achieved by high-quality selection of the composition, proper selection of manufacturing techniques, concrete curing, bringing the quality of concrete items to the required level of technical condition during the operational phase. However, directed formation of its structure is necessary in order to obtain high-tech concrete.Along with the traditional methods for regulation of the next generation concrete structure, modification of concrete while using silica nanoparticles is also considered as a perspective one because the concrete patterning occurs due to introduction of a binder in a mineral matrix. Due to this it is possible to obtain nano-modified materials with completely new properties.The main problem with the creation of nano-modified concrete is a uniform distribution of nano-materials in the volume of the cement matrix which is particularly important in the cases of adding a modifier in

  11. Centrifugal shot blasting. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

  12. Mask materials for powder blasting

    NARCIS (Netherlands)

    Wensink, Henk; Jansen, Henri V.; Berenschot, J.W.; Elwenspoek, Miko C.

    2001-01-01

    Powder blasting, or abrasive jet machining (AJM), is a technique in which a particle jet is directed towards a target for mechanical material removal. It is a fast, cheap and accurate directional etch technique for brittle materials such as glass, silicon and ceramics. The particle jet (which expand

  13. Design and Analysis of Single Plate Blast Resistant Door

    Directory of Open Access Journals (Sweden)

    Nilesh S. Aitavade

    2013-06-01

    Full Text Available Blast Resistant Doors are used to withstand high intensity impulsive blast loads. They are designed to prevent the impact of the blast from travelling from one side to the other side of the door. Taking into account the limitations and the growing need of efficient blast resistant doors, a design was developed using ASTM A36 as the material of construction instead of concrete. Analytical calculations for the actual pressure-impulse loading condition were done as per the UFC 3-340-02, and the results of analytical calculations were compared with results of the simulation of the numerical model for the given boundary conditions.

  14. Numerical Analysis of Dynamic Behavior of RC Slabs Under Blast Loading

    Institute of Scientific and Technical Information of China (English)

    DU Hao; LI Zhongxian

    2009-01-01

    In Order to reduce economic and life losses due to terrorism or accidental explosion threats,reinforced concrete(RC)slabs of buildings need to be designed or retrofitted to resist blast loading.In this paper the dynamic behavior Of RC slabs under blast loading and its influencing factors are studied.The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software.Both the strain rate effect and the damage accumulation are taken into account in the material model.The dynamic responses of the RC slab subiected to blast loading are analyzed,and the influence of concrete strength,thickness and reinforcement ratio on the behavior of the RC slab under blast loading iS numerically investigated.Based on the numerical results.some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading.

  15. Effect of Dosage of Fly Ash and Blast Furnace Slag on Performance of Concrete Prepared with Poorly Graded Sand%粉煤灰矿渣掺量对劣级配砂配制混凝土性能的影响

    Institute of Scientific and Technical Information of China (English)

    李茂红; 张雨杰; 陈航; 赵菊梅

    2015-01-01

    为生产优质的劣级配砂配制混凝土,通过调节粉煤灰矿渣掺量配制了6组劣级配砂配制混凝土,用Andreasen方程评价砂石堆积效应,并测试混凝土坍落度和抗压强度,研究粉煤灰矿渣掺量差异对劣级配砂配制混凝土工作性和抗压强度的影响。研究结果发现,劣级配砂与石混合仍可获得较紧密堆积,复掺40%粉煤灰、矿渣的混凝土及单掺30%粉煤灰的混凝土工作性满足泵送要求;各组混凝土56 d抗压强度均满足强度等级要求,且随粉煤灰含量增加混凝土抗压强度减小。可推断矿渣粉煤灰掺量对虽为劣级配砂配制但具有较紧密堆积混凝土工作性和抗压强度的影响,与对正常级配砂配制混凝土工作性和抗压强度的影响一致。%In order to fabricate high quality concrete using poorly graded sand,six groups of concrete with poor sand gradation were prepared with different dosages of fly ash (FA)and blast furnace slag (BFS). The sand and stone compactness of the concrete was evaluated using the Andreasen equation, and the slump and compressive strength of the concrete were tested to study the effect of the dosage of fly ash and blast furnace slag on the workability and compressive strength of the concrete prepared with poor sand gradation. The results showed that the poorly graded sand and crushed stones had an adequately dense packing;both the concrete groups with 40% FA +BFS replacement and 30% FA replacement satisfied the pumping requirement;the concrete compressive strength in each group at 56 d satisfied the requirement of the strength grade,and decreased with the increasing of the dosage of fly ash. Therefore,the effect of the FA and BFS dosage on the workability and compressive strength of the concrete with poor sand gradation and dense packing is similar to that on the concrete with normal sand gradation.

  16. Centrifugal shot blast system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997.

  17. Development of various curing effect of nominal strength Geopolymer concrete

    Directory of Open Access Journals (Sweden)

    S. Kumaravel

    2014-04-01

    Full Text Available Geopolymer concrete is an innovative method and is produced by complete elimination of ordinary Portland cement byproduced in fly ash. This study on different condition of curing in geopolymer concrete suitable for curing at ambient and heat-cured condition of temperature will widen its application to concrete structures. Low lime fly ash is used as the base material, which is reacted by alkaline solution and additional use of ground granulated blast furnace slag. Workability of fresh concrete and compressive strength of geopolymer concrete was investigated. The curing effect of geopolymer concrete is steam, hot air and ambient cubes specimens are tested in different days. Results are compared for various curing and strength of concrete.

  18. Photocatalyticpaving concrete

    OpenAIRE

    2014-01-01

    Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year) and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in t...

  19. Photocatalyticpaving concrete

    Directory of Open Access Journals (Sweden)

    Lyapidevskaya Ol'ga Borisovna

    2014-02-01

    Full Text Available Today bituminous concrete is a conventional paving material. Among its advantages one can name dustlessness and noiselessness, fine wear (up to 1 mm a year and fine maintainability. As the main disadvantages of this material one can name high slipperiness under humidification, low durability and weather resistance. Besides that, during placement of the bituminous concrete a lot of different air pollutants are emitted, which are harmful for environment and human’s health (they are listed in the paper according to the US Environmental Protection Agency materials. As an alternative, one can use cement-concrete pavement, which is in many ways more efficient than the bituminous concrete. It is proposed to enhance environmental performance of the cement-concrete pavement via usage of photocatalysis. The mechanism of different photocatalytic reactions is described in the paper, namely heterogeneous and homogeneous photocatalysis, photo-induces, photoactivated catalysis and catalytical photoreactions. It is pro-posed to use heterogeneous photocatalysis with titanium dioxide as a photocatalyst. The mechanism of photo oxidation of air contaminants, with the usage of titanium dioxide is2described. The paper sets problems, connected with the sensibilization of TiOto thevisible light (it is proposed to use titanium dioxide, doped with the atoms of certain elements to increase its sensibility to the visible light and with the development of a new photocatalytic paving concrete, which will meet the requirements, specified for paving in the climatic and traffic conditions of the Russian Federation.

  20. Numerical Simulation on Explosion in Double-Layer Medium of Concrete and Soil

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The numerical simulation on explosion in concrete and soil is performed by using the three-dimension finite element code LS-DYNA, into which a continuum damage model which can well describe the fracture of concrete is implemented. As a consequence, wave propagation and attenuation in concrete and on soil-concrete interface are obtained respectively. Moreover, the damage regions of concrete at different thicknesses of soil (TOS) and depths of charge (DOC) are procured. The existent soil reduces damage region of concrete. Numerical results provide reference for design of warhead and protective structure and blasting.

  1. Self-Placing Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Certain concrete pours have areas where the congestion of reinforcing bars make placement of concrete almost impossible. Using conventional placing and vibration techniques, the resulting concrete can have considerable honeycombing due to the development of voids. Self-placing concrete is a possible solution to the problem. Also known as self-compactable concrete, self-consolidating concrete, flowable concrete, and non-vibration concrete. These concretes eliminate the need for vibration in a ...

  2. Manufacturing processes of cellular concrete products for the construction

    Directory of Open Access Journals (Sweden)

    Fakhratov Мuhammet

    2017-01-01

    Full Text Available Cellular concrete takes the lead in the world of construction as a structural insulation material used in the construction and reconstruction of buildings and constructions of various purposes. In this artificial stone building material, pores are distributed relatively evenly and occupy from 20 to 90% of the concrete volume, ensuring good thermal qualities, which allows cellular concrete houses to keep warmth well. For production of cellular concrete, Portland cement, “burnt lime”, and fine-pulverized blast furnace slags, with a hardening activator are used as binders. As silica components, quartz sand or “fly ash” obtained by combustion of pulverized fuel in power plants as well as secondary products of different ore dressing treatments are used. The low density and high thermal insulation properties of cellular concrete enables 3 times lighter wall weight than the weight of brick walls and 1.7 times lighter than the walls of ceramsite concrete. Thermal insulation and mechanical properties of cellular concrete make possible to construct of it single-layer protecting structures with the desired thermal resistance. Cellular concrete is divided into aerated concretes and foam concretes, whose physical/mechanical and operational performance is, ceteris paribus, almost identical. By the method of hydrothermal treatment cellular concretes are divided into two groups: concrete of autoclave and non-autoclave curing.

  3. Penetration analysis of projectile with inclined concrete target

    Science.gov (United States)

    Kim, S. B.; Kim, H. W.; Yoo, Y. H.

    2015-09-01

    This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction) and CONCRETE_DAMAGE (K&C concrete) models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  4. Penetration analysis of projectile with inclined concrete target

    Directory of Open Access Journals (Sweden)

    Kim S.B.

    2015-01-01

    Full Text Available This paper presents numerical analysis result of projectile penetration with concrete target. We applied dynamic material properties of 4340 steels, aluminium and explosive for projectile body. Dynamic material properties were measured with static tensile testing machine and Hopkinson pressure bar tests. Moreover, we used three concrete damage models included in LS-DYNA 3D, such as SOIL_CONCRETE, CSCM (cap model with smooth interaction and CONCRETE_DAMAGE (K&C concrete models. Strain rate effect for concrete material is important to predict the fracture deformation and shape of concrete, and penetration depth for projectiles. CONCRETE_DAMAGE model with strain rate effect also applied to penetration analysis. Analysis result with CSCM model shows good agreement with penetration experimental data. The projectile trace and fracture shapes of concrete target were compared with experimental data.

  5. Concrete under severe conditions. Environment and loading

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The objective of the CONSEC Conferences is to focus on concrete infrastructures, either subjected to severe environment or severe loading, or any combination of severe conditions. Experience from the performance of existing concrete structures, and especially under severe environmental conditions, severe accidental loading or extended lifespan, has demonstrated the need for better integration of structural and durability design, new design concepts including reliability-based durability design, performance-based material requirements, structural robustness, and an improved basis for documentation of obtained construction quality and durability properties during concrete construction. An improved basis for operation and preventive maintenance of concrete structures including repairs and retrofitting is also very important. Premature corrosion of reinforcing steel, inadequate structural design for seismic or blast loading, are examples of reduced service life of concrete structures that not only represent technical and economical problems, but also a huge waste of natural resources and hence also, an environmental and ecological problem. Experience of structures effectively submitted to severe conditions represents a unique benchmark for quantifying the actual safety and durability margin of concrete structures. In fact for several reasons, most concrete design codes, job specifications and other requirements for concrete structures have frequently shown to yield insufficient and unsatisfactory results and ability to solve the above problems, as well as issues raised by specific very long-term or very severe requirements for nuclear and industrial waste management, or civil works of strategic relevance. Recently available high to ultra-high performance concrete may find rational and valuable application in such cases. It is very important, therefore, to bring people with different professional backgrounds together to exchange experience and develop multi

  6. Historic Concrete: From Concrete Repair to Concrete Conservation

    NARCIS (Netherlands)

    Heinemann, H.A.

    2013-01-01

    Concrete like materials were already applied during the Roman Empire. After the decline of the Roman Empire, a wide scale application of concrete only reappeared in the 19th century. Here lies also the origin of modern (reinforced) concrete. Since then, both concrete application and composition have

  7. Investigation on the Potentials of Cupola Furnace Slag in Concrete

    Directory of Open Access Journals (Sweden)

    Stephen Adeyemi Alabi

    2013-12-01

    Full Text Available The compressive strength of the concrete designed using blast cupola furnace slag and granulated cupola slag as a coarse aggregate and partial replacement for cement was investigated. A series of experimental studies were conducted involve concrete production in two stages. The first stage comprised of normal aggregate concrete (NAC produced with normal aggregates and 100% ordinary Portland cement (OPC. Meanwhile, the second stage involved production of concrete comprising of cupola furnace slag an aggregates with 100% ordinary Portland cement (OPC and subsequently with 2%, 4%, 6%, 8% and 10% cementitious replacement with granulated cupola furnace slag that had been grounded and milled to less than 75 µm diameter. The outcomes of compressive strength test conducted on the slag aggregate concrete (SAC with and without granulated slag cementitious replacement were satisfactory compared to normal aggregate concretes (NAC.

  8. Comparison on Heat of Hydration between Current Concrete for NPP and High Fluidity Concrete including Pozzolan Powders

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jea Myoung; Cho, Myung Sug [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Nuclear power plant (NPP) concrete structures are exposed to many construction factors that lower the quality of concrete due to densely packed reinforcements and heat of hydration since they are mostly constructed with mass concrete. The concrete currently being used in Korean NPPs is mixed with Type I cement and fly ash. However, there is a demand to improve the performance of concrete with reduced heat of hydration and superior constructability. Many advantages such as improving workability and durability of concrete and decreasing heat of hydration are introduced by replacing cement with pozzolan binders. Therefore, the manufacturing possibility of high fluidity concrete should be investigated through applying multi-component powders blended with pozzolan binders to the concrete structure of NPPs, while the researches on properties, characteristic of hydration, durability and long-term behavior of high fluidity concrete using multi-component cement should be carried out. High fluidity concrete which is made using portland cement and pozzlonan powders such as fly ash and blast furnace slag has better properties on heat of hydration than the concrete currently in use for NPPs

  9. Alkahest NuclearBLAST : a user-friendly BLAST management and analysis system

    Directory of Open Access Journals (Sweden)

    Burke Mark

    2005-06-01

    Full Text Available Abstract Background - Sequencing of EST and BAC end datasets is no longer limited to large research groups. Drops in per-base pricing have made high throughput sequencing accessible to individual investigators. However, there are few options available which provide a free and user-friendly solution to the BLAST result storage and data mining needs of biologists. Results - Here we describe NuclearBLAST, a batch BLAST analysis, storage and management system designed for the biologist. It is a wrapper for NCBI BLAST which provides a user-friendly web interface which includes a request wizard and the ability to view and mine the results. All BLAST results are stored in a MySQL database which allows for more advanced data-mining through supplied command-line utilities or direct database access. NuclearBLAST can be installed on a single machine or clustered amongst a number of machines to improve analysis throughput. NuclearBLAST provides a platform which eases data-mining of multiple BLAST results. With the supplied scripts, the program can export data into a spreadsheet-friendly format, automatically assign Gene Ontology terms to sequences and provide bi-directional best hits between two datasets. Users with SQL experience can use the database to ask even more complex questions and extract any subset of data they require. Conclusion - This tool provides a user-friendly interface for requesting, viewing and mining of BLAST results which makes the management and data-mining of large sets of BLAST analyses tractable to biologists.

  10. High Performance Concrete

    OpenAIRE

    Traian Oneţ

    2009-01-01

    The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  11. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  12. Ultimate deformation capacity of reinforced concrete slabs underblast load

    NARCIS (Netherlands)

    Doormaal, J.C.A.M. van; Weerheijm, J.

    1996-01-01

    In this paper a test method to determine the deformation capacity and the resistance-deformation curve of blast-loaded slabs is described. This method was developed at TNO-PML. The method has been used to determine the ultimate deformation capacity of some simply supported reinforced concrete slabs

  13. Durability of marine concrete structures - field investigations and modelling

    NARCIS (Netherlands)

    Polder, R.B.; Rooij, M.R. de

    2006-01-01

    This article presents a series of investigations on six concrete structures along the North Sea coast in The Netherlands. They had ages between 18 and 41 years and most of them were made using Blast Furnace Slag cement. Visual inspections showed corrosion damage in only one structure, related to rel

  14. Durability of marine concrete structures - field investigations and modelling

    NARCIS (Netherlands)

    Polder, R.B.; Rooij, M.R. de

    2005-01-01

    This article presents a series of investigations on six concrete structures along the North Sea coast in The Netherlands. They had ages between 18 and 41 years and most of them were made using Blast Furnace Slag cement. Visual inspections showed corrosion damage in only one structure, related to rel

  15. Ultimate deformation capacity of reinforced concrete slabs underblast load

    NARCIS (Netherlands)

    Doormaal, J.C.A.M. van; Weerheijm, J.

    1996-01-01

    In this paper a test method to determine the deformation capacity and the resistance-deformation curve of blast-loaded slabs is described. This method was developed at TNO-PML. The method has been used to determine the ultimate deformation capacity of some simply supported reinforced concrete slabs

  16. Concrete spirituality

    OpenAIRE

    2014-01-01

    This article reflects on a number of liturgical innovations in the worship of Melodi ya Tshwane, an inner-city congregation of the Uniting Reformed Church in Southern Africa (URCSA). The focus of the innovations was to implement the understanding of justice in Article 4 of the Confession of Belhar, a confessional standard of the URCSA. The basic contention of the article is that well designed liturgies that facilitate experiences of beauty can nurture a concrete spirituality to mobilise urba...

  17. Performance Study On Ggbs Concrete With Robosand

    Directory of Open Access Journals (Sweden)

    Ramakrishna Samanthula

    2015-02-01

    Full Text Available Abstract Concrete is the most famous and extensively used building material owes to its advantageous properties production and maintenance over steel and timber. Concrete is a matrix consists of basic ingredients namely binding material fine aggregate coarse aggregates and water. Conventional binding material cement has now become expensive and its production involves undesirable environmental consequences such as heavy production of Carbon dioxide CO2. Conventional fine Aggregate River sand has become scarce and its excessive use causes degradation of river bed and reduction in ground water recharge. To offset with these two challenges an attempt has been made to produce concrete with supplementary and alternative materials. Ground granulated blast furnace slag which is byproduct of steel production has been used to partially replace the cement. Robosand is manufacturing sand produced from granite stone has been used as an alternative fine aggregate that completely replaces the river sand which is far superior than river sand in all aspects. Various combination have been made with different proportions of Cement Ground Granulated Blast Furnace Slag Robosand Coarse aggregate and Water. Properties of concrete have been studied in fresh and hardened state for all combinations made and deducted the conclusions.

  18. Influence of Mineral Admixtures on the Permeability of Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Fazhou; HU Shuguang; DING Qingjun; PENG yanzhou

    2005-01-01

    The permeability of lightweight aggregate concrete was studied. Some efforts were taken to increase the resistance of lightweight aggregate concrete (LC) to water penetration by using the mineral admixtures of fly ash, granulated blast furnace slag or silica fume. Accelerated chloride penetrability test and liquid atmosphere press method were used to study the anti-permeability of lightweight aggregate concrete. The experimental results show that fly ash, granulated blast furnace slag and silica fume can decrease the permeability of lightweight aggregate concrete, but the effect of granulated blast furnace slag is poor. According to the SEM and pore structure analyzing results,an interface self-reinforcing effect model was presented and the reinforced mechanism of mineral mixture on LC was discussed according to the model described by authors.

  19. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  20. Feedback experience from a 30 years old concrete using cement with a high content of blast furnace slag; Retour d'experience sur un beton age de 30 ans contenant un ciment riche en laitier

    Energy Technology Data Exchange (ETDEWEB)

    Charron, Ch. [Holcim, Obourg (Belgium); Lion, M.; Jeanpierre, A. [Electricite de France (EDF), Ceidre-TEGG, 13 - Aix en Provence (France); Ammouche, A. [LERM, 13 - Arles (France)

    2009-08-15

    In this study, we analyze the aspect of a slag cement concrete used in the seventies for the construction of the walls of a structure located close to the channel sea. From different characterization tests (chemical, physical, and micro structural), it can be conclude that the concrete is not showing any pathology and any important attack, due to the marine environment. After being exposed during 30 years, the chlorides ions have not reach the steel metal bar reinforcement and the carbonation depth is still low. This study details the results of chloride diffusion coefficient and carbonation depth measurements, sulfates and chloride quantification, XRD analysis, and SEM examination. (authors)

  1. Development of engineered cementitious composites with limestone powder and blast furnace slag

    NARCIS (Netherlands)

    Zhou, J.; Qian, S.; Sierra Beltran, M.G.; Ye, G.; Van Breugel, K.; Li, V.C.

    2009-01-01

    Nowadays limestone powder and blast furnace slag (BFS) are widely used in concrete as blended materials in cement. The replacement of Portland cement by limestone powder and BFS can lower the cost and enhance the greenness of concrete, since the production of these two materials needs less energy an

  2. Proposal for the Evaluation of Eco-Efficient Concrete

    Directory of Open Access Journals (Sweden)

    Taehyoung Kim

    2016-07-01

    Full Text Available The importance of environmental consequences due to diverse substances that are emitted during the production of concrete is recognized, but environmental performance tends to be evaluated separately from the economic performance and durability performance of concrete. In order to evaluate concrete from the perspective of sustainable development, evaluation technologies are required for comprehensive assessment of environmental performance, economic performance, and durability performance based on a concept of sustainable development called the triple bottom line (TBL. Herein, an assessment method for concrete eco-efficiency is developed as a technique to ensure the manufacture of highly durable and eco-friendly concrete, while minimizing both the load on the ecological environment and manufacturing costs. The assessment method is based on environmental impact, manufacturing costs, and the service life of concrete. According to our findings, eco-efficiency increased as the compressive strength of concrete increased from 21 MPa to 40 MPa. The eco-efficiency of 40 MPa concrete was about 50% higher than the eco-efficiency of 24 MPa concrete. Thus eco-efficiency is found to increase with an increasing compressive strength of concrete because the rate of increase in the service life of concrete is larger than the rate of increase in the costs. In addition, eco-efficiency (KRW/year was shown to increase for all concrete strengths as mixing rates of admixtures (Ground Granulated Blast furnace Slag increased to 30% during concrete mix design. However, when the mixing rate of admixtures increased to 40% and 60%, the eco-efficiency dropped due to rapid reduction in the service life values of concrete to 74 (year/m3 and 44 (year/m3, respectively.

  3. Quick concrete

    OpenAIRE

    Olaya Beracasa, Santiago Eduardo; Flórez Gutiérrez, Richard Daniel

    2016-01-01

    QUICK CONCRETE es un emprendimiento el cual se planteó como una empresa prestadora de servicios en el sector de la construcción en la ciudad de Ibagué, Colombia. Con ayuda de empresas ya reconocidas a nivel regional como lo son: la distribuidora de materiales y ferretería La Española, A&C y la ladrillera Ladrillos Roma. Se espera impactar en el mercado con un método diferente y un precio competitivo de servicio. El mayor impulso de la construcción puede estar asociado a una mayor demanda de v...

  4. Valorization of Local Mineral Admixtures in Concretes

    Directory of Open Access Journals (Sweden)

    Boudchicha Abdelaziz

    2014-04-01

    Full Text Available This study is an extension of previous researches on mortars with mineral admixtures and super-plasticizers. In this way, the same methodology was applied to concretes and the use of mineral admixture was limited to low cost materials available in Algeria as limestone, pozzolan and blast furnace slag, with current cement and super-plasticizer. The experimental methodology used was based on the volume substitution of the cement by admixtures in mixtures with the absolute volume of the solid phases and workability preserved constant. The main results achieved showed that the super-plasticizer demand of concretes depends on the nature and the quantity of the incorporated admixture. The combined use of admixtures and super-plasticizer has generally a favourable effect on compressive strengths at 07 and 28 days at low rates of cement substitution, which vary significantly with the nature, fineness and quantity of the used admixtures. At 07 days, limestone admixtures give better improvements and reach more than 20 % of gain to the compressive strength of the reference concrete with no admixtures or super-plasticizer, at 10 % of the cement substitution and still better until 30 %. At 28 days, blast furnace slag admixtures give better improvements at 28 days and reach more than 20 % of gain to the compressive strength of the reference concrete at 20 % of the cement substitution and still better until 30 %. This contribution to the compressive strength is explained on the one hand by the reduction of the quantity of water in the mixtures at the same consistency, by the use of the super-plasticizer and on another hand by the activity of Limestone admixtures at early ages and to the latent hydraulic properties of blast furnace slag at 28 days.

  5. Normal Strength Steel Fiber Reinforced Concrete Subjected to Explosive Loading

    Directory of Open Access Journals (Sweden)

    Mohammed Alias Yusof

    2011-07-01

    Full Text Available This paper presents the results of an experimental investigation on the behavior of plain reinforced concrete and Normal strength steel fiber reinforced concrete panels (SFRC subjected to explosive loading. The experiment were performed by the Blast Research Unit Faculty of Engineering, University Pertahanan Nasional Malaysia A total of 8 reinforced concrete panels of 600mm x 600mm x 100mm were tested. The steel fiber reinforced concrete panels incorporated three different volume fraction, 0.5%, 1.0%, and 1.5% of hooked end steel fibers. The panels were subjected to explosive loading generated by the detonation of 1kg of explosive charge located at a 0.6m standoff. This investigation indicates that the steel fiber reinforced concrete panel containing of 1.5% volume fraction gave the best performance under explosive loading.

  6. Effect of supplementary cementing materials on the concrete corrosion control

    Energy Technology Data Exchange (ETDEWEB)

    Mejia de Gutierrez, R.

    2003-07-01

    Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnaces slag (GGBS), silica fume (SF), meta kaolin (MK), fly ash (FA) and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete: (Author) 11 refs.

  7. Impact resistance of concrete – using slit rubber from tyres

    OpenAIRE

    Coventry, Kathryn; Richardson, Alan; Diaz, Eli

    2015-01-01

    This paper examines recycled tyre rubber, which was machine cut into slits and these were added to Portland cement concrete mixes in different percentages, based on specimen volume. They were then tested to determine the impact performance of each mix in comparison to a plain non-rubberised mix. \\ud The results indicated that concrete samples containing recycled rubber, exhibited a loss in compressive strength when compared to the plain concrete mix, however, the rubber modified samples were ...

  8. Impact resistance of concrete – using slit rubber from tyres

    OpenAIRE

    Coventry, Kathryn; Richardson, Alan; Diaz, Eli

    2015-01-01

    This paper examines recycled tyre rubber, which was machine cut into slits and these were added to Portland cement concrete mixes in different percentages, based on specimen volume. They were then tested to determine the impact performance of each mix in comparison to a plain non-rubberised mix. \\ud The results indicated that concrete samples containing recycled rubber, exhibited a loss in compressive strength when compared to the plain concrete mix, however, the rubber modified samples were ...

  9. Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST

    Directory of Open Access Journals (Sweden)

    Oliver Melvin J

    2005-04-01

    Full Text Available Abstract Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST, which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN. W.ND-BLAST provides intuitive Graphic User Interfaces (GUI for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is

  10. Concrete construction engineering handbook

    CERN Document Server

    Nawy, Edward G

    2008-01-01

    Provides coverage of concrete construction engineering and technology. This work features discussions focusing on: the advances in engineered concrete materials; reinforced concrete construction; specialized construction techniques; and, design recommendations for high performance.

  11. Influence of Charge Shape and Orientation on the Response of Steel-Concrete Composite Panels

    Directory of Open Access Journals (Sweden)

    Abraham Christian

    2016-09-01

    Full Text Available Blast design codes usually generalize the shape of the charge as spherical or hemispherical. However, it was found that the blast overpressure of cylindrical charges differ greatly when compared with relevant analytical results generated with the charges assumed to be spherical. The objective is to use fully coupled 3D multi-material arbitrary Lagrangian Eulerian (MMALE modelling technique in LS Dyna software to simulate the cylindrical charge blast loading. Comparison of spherical and cylindrical charge blast simulation was carried out to show the influence on peak overpressure and total impulse. Two steel-concrete composite specimens were subjected to blast testing under cylinder charges for benchmarking against numerical results. It was found that top detonated, vertical cylinder charge could give much higher blast loading compared to horizontal cylinder charge. The MMALE simulation could generate the pressure loading of various charge shape and orientation to be used for predicting the response of the composite panel.

  12. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    Energy Technology Data Exchange (ETDEWEB)

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1

  13. Concrete durability

    Directory of Open Access Journals (Sweden)

    Gaspar Tébar, Demetrio

    1991-03-01

    Full Text Available The evidence that the concrete is not a material for ever was noticed from the beginning of its industrial use. In the present work, the author describes the studies carried out during the last century and the early ages of the present one, mainly devoted to the study of the durability in sea water. At the present days, and in spite of the numerous papers published from then, the study of the concrete durability continues focusing the research priorities and economical resources of researchers and industries related with this material. Moreover, the new laboratory techniques are allowing to understand old problems and even to open again the discussion on reaction mechanisms which were believed to be completely understood. The article finalizes with a brief description of the numerous studies carried out at the Institute Eduardo Torroja on concrete durability, mainly those related with the resistance against gypsum attack (so abundant in our country land and against sea water attack.

    La realidad de que el hormigón no es un material eterno y es susceptible de sufrir ataques por agentes químicos, fue constatada desde el comienzo mismo de su uso industrial. En el presente trabajo el autor enumera los estudios realizados el siglo pasado y a comienzos del presente sobre la durabilidad del hormigón en agua de mar. En la actualidad y a pesar de los numerosos trabajos desarrollados desde entonces, el estudio de la durabilidad del hormigón sigue centrando la atención prioritaria y los recursos económicos de los investigadores e industrias relacionadas con este material. Además las nuevas técnicas de estudio están permitiendo comprender antiguos problemas e incluso reabrir la discusión sobre mecanismos de reacción que se creían completamente explicados. Finaliza el artículo con una descripción somera de los múltiples trabajos realizados en el Instituto Eduardo Torreja sobre la materia, en especial los estudios realizados sobre

  14. Carbon Dioxide Emission Evaluation of Porous Vegetation Concrete Blocks for Ecological Restoration Projects

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2017-02-01

    Full Text Available The purpose of this study is to determine the mix proportions that can minimize CO2 emissions while satisfying the target performance of porous vegetation concrete. The target performance of porous vegetation concrete was selected as compressive strength (>15 MPa and void ratio (>25%. This study considered the use of reinforcing fiber and styrene butadiene (SB latex to improve the strength of porous vegetation concrete, as well as the use of blast furnace slag aggregate to improve the CO2 emissions-reducing effect, and analyzed and evaluated the influence of fiber reinforcing, SB latex, and blast furnace slag aggregate on the compressive strength and CO2 emissions of porous vegetation concrete. The CO2 emissions of the raw materials were highest for cement, followed by aggregate, SB latex, and fiber. Blast furnace slag aggregate showed a 30% or more CO2 emissions-reducing effect versus crushed aggregate, and blast furnace slag cement showed a 78% CO2 emissions-reducing effect versus Portland cement. The CO2 emissions analyses for each raw material showed that the CO2 emissions during transportation were highest for the aggregate. Regarding CO2 emissions in each production stage, the materials stage produced the highest CO2 emissions, while the proportion of CO2 emissions in the transportation stage for each raw material, excluding fiber, were below 3% of total emissions. Use of blast furnace slag aggregate in porous vegetation concrete produced CO2 emissions-reducing effects, but decreased its compressive strength. Use of latex in porous vegetation concrete improved its compressive strength, but also increased CO2 emissions. Thus, it is appropriate to use latex in porous vegetation concrete to improve its strength and void ratio, and to use a blast furnace slag aggregate replacement ratio of 40% or less.

  15. Influence of Carbonation on Mechanical Properties of Concrete

    Institute of Scientific and Technical Information of China (English)

    梁发云; 陈龙珠; 李检保

    2003-01-01

    As one of the most important factors that determine the lifespan of a reinforced concrete structure, car-bonation not only corrodes the reinforcing steel, but also changes the mechanical properties of concrete. For betterunderstanding the performance of carbonated concrete structure, it is necessary to study the mechanical propertiesof carbonated concrete. The strees-strain relationship of carbonated concrete was analyzed on the basis of experi-ments. The specimens were made by means of accelerated carbonation and then compressed on the testing ma-chine. Some very important characteristics of carbonated concrete were revealed by the testing results. In addition,a useful constitutive model of carbonated concrete, which proved to be suitable for analyzing carbonated concretemembers, was established in this research.

  16. Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2002-01-01

    Concrete prisms were made with four cement types including cements with fly ash and/or blast furnace slag and three waterto- cement (w/c) ratios. Chloride penetration and corrosion of rebars were stimulated by subjecting prisms to cyclic loading with salt solution and drying. Concrete resistivity, s

  17. Characterisation of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity

    NARCIS (Netherlands)

    Polder, R.B.; Peelen, W.H.A.

    2002-01-01

    Concrete prisms were made with four cement types including cements with fly ash and/or blast furnace slag and three waterto- cement (w/c) ratios. Chloride penetration and corrosion of rebars were stimulated by subjecting prisms to cyclic loading with salt solution and drying. Concrete resistivity,

  18. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    Science.gov (United States)

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Concrete as “Green Building” Material

    Directory of Open Access Journals (Sweden)

    ESMERALD FILAJ

    2016-12-01

    Full Text Available Concrete is the most widely used construction material. This is due to its low cost, general availability, and of course quite easy and wide applicability. But concrete also is characterized by great environmental cost. The natural materials mined and processed each year, by their sheer volume, are bound to leave a substantial mark on the environment. Most damaging are the enormous amounts of energy required to produce Portland cement as well as the large quantities of CO2 released into the atmosphere in the process. All enlisted herein, is more than verified in Albania, especially in the territories where cement production factories operate. In order to have a future sustainable development, while in the same time trying to reduce the already noticed negative effects, measures need to be taken urgently. Related to this issue ,a very successful measure is considered the use of suitable substitutes for Portland cement, especially with those that are byproducts of industrial processes, like fly ash, ground granulated blast furnace slag, and silica fume. Suitable recycled materials as substitutes for concrete aggregate are gaining in importance too, such as recycled concrete aggregate, post-consumer glass, tires, etc .This paper summarizes the various efforts underway worldwide, that should be undertaken in Albania also, to improve the environmental friendliness of concrete, to make it suitable as a “Green Building” material.

  20. A Probe into the Design of Test Channel Section of Pore-forming Concrete Cutoff Wall on the Blasting Rockfill Dam%爆破堆石坝体造孔混凝土防渗墙试验槽段设计探讨

    Institute of Scientific and Technical Information of China (English)

    谢庆明; 乔秀笙

    2015-01-01

    爆破堆石坝由于坝体组成颗粒极不均匀,结构松散、复杂,架空现象明显,坝体防渗处理是一个难点;当坝体防渗处理采用混凝土防渗心墙时,造孔槽段直接影响防渗墙的顺利修筑及施工质量。通过合理选取己衣水库混凝土防渗心墙造孔试验槽段,采取两种不同的施工工艺,详细分析槽孔充盈系数、成墙厚度,并针对施工中遇到的特殊情况(孔斜、塌孔、漏浆、卡钻)给出了相应的处理措施,取得了造孔混凝土防渗墙的施工工艺,再大范围施工,效果明显,为今后类似工程的设计与施工提供了丰富的经验。%The particles for composing blasting rockfill dams are quite uneven ,with loose and complex structures .And an obvious o‐verhead phenomenon can also be observed .Therefore ,the seepage control for the dam is a quite difficult task .When the concrete cutoff wall is adopted for the seepage control of the dam ,the pore-forming channel sections directly affect the construction process and the construction quality of cutoff walls .In this paper ,we first select pore-forming test channel section of Jiyi Reservoir concrete cutoff .Then ,a detailed analysis of slot filling coefficient and wall thickness is made under two different construction processes .For some special situation encountered in construction ,such as hole deviation ,hole collapse ,leakage ,and sticking ,we offer some corre‐sponding treatment measures .Finally ,the construction technology of pore-forming concrete cutoff wall is well-achieved ,and a wide range of construction is performed with an obvious effect .The outcome of the paper provides a wealth of experience for future similar project construction .

  1. Cumulative Effect of Crumb Rubber and Steel Fiber on the Flexural Toughness of Concrete

    Directory of Open Access Journals (Sweden)

    B. H. Abu Bakar

    2017-02-01

    Full Text Available Concrete properties, such as toughness and ductility, are enhanced to resist different impacts or blast loads. Rubberized concrete, which could be considered a green material, is produced from recycled waste tires grinded into different crumb rubber particle sizes and mixed with concrete. In this study, the behavior of rubberized steel fiber-reinforced concrete is investigated. Flexural performance of concrete beams (400×100×100 mm manufactured from plain, steel fiber, crumb rubber and combination crumb rubber and steel fiber are also evaluated. Similarly, concrete slabs (500×500×50 mm are also tested under flexural loading. Flexural performance of the SFRRC mixtures was significantly enhanced. The toughness and maximum deflection of specimens with rubber were considerably improved. Steel fiber/crumb rubber-reinforced concrete can be used for practical application, which requires further studies.

  2. Mix design of concrete with high content of mineral additions: Optimisation to improve early age strength

    Energy Technology Data Exchange (ETDEWEB)

    M.I.A. Khokhar; E. Roziere; P. Turcry; F. Grondin; A. Loukili [Institut de Recherche en Genie Civil et Mecanique (GeM), Nantes (France)

    2010-05-15

    The concrete industry is an important source of CO{sub 2} gas emissions. The cement used in the design of concrete is the result of a chemical process linked to the decarbonation of limestone conducted at high temperature and results in a significant release of carbon dioxide. Under the project EcoBeton (Green concrete) funded by the French National Research Agency (ANR), concrete mixtures have been designed with a low cement quantity, by replacing cement by mineral additions i.e., blast-furnace slag, fly ash or limestone fillers. Replacement of cement by other materials at high percentages generally lowers the early age strength of the resulting concrete. To cope with this problem, an optimisation method for mix design of concrete using Bolomey's law has been used. Following the encouraging results obtained from mortar, a series of tests on concretes with various substitution percentages were carried out to validate the optimisation method.

  3. Surface Smoothing of Blasted Glass Micro-Channels Using Abrasive Waterjet

    Energy Technology Data Exchange (ETDEWEB)

    Son, Sunggyun; Han, Solyi; Kim, Wookbae [Korea Polytechnic Univ., Siheung (Korea, Republic of); Sung, Inha [Hannam Univ., Daejeon (Korea, Republic of)

    2013-12-15

    Powder blasting, which is an efficient micromachining method for glass, silicon, and ceramics, has a critical disadvantage in that the surface finish is poor owing to the brittle fracture of materials. Low-pressure waterjet machining can be applied to smoothen the rough surface inside the blasted structure. In this study, the surface roughness and sectional dimension of micro-channels are observed during the repetitive application of a waterjet to blasted micro-channels. The asperities and subsurface cracks created by blasting are removed by waterjet machining. Along with the surface roughness, it is found that the sectional dimension increases and the edges of the finished micro-channel become slightly round. Finally, a microfluidic chip is machined by the blasting-waterjet process and a transparent microfluidic channel is obtained efficiently.

  4. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  5. Self-Compacting Concrete

    OpenAIRE

    Okamura, Hajime; Ouchi, Masahiro

    2003-01-01

    Self-compacting concrete was first developed in 1988 to achieve durable concrete structures. Since then, various investigations have been carried out and this type of concrete has been used in practical structures in Japan, mainly by large construction companies. Investigations for establishing a rational mix-design method and self-compactability testing methods have been carried out from the viewpoint of making self-compacting concrete a standard concrete.

  6. When Machines Design Machines!

    DEFF Research Database (Denmark)

    2011-01-01

    Until recently we were the sole designers, alone in the driving seat making all the decisions. But, we have created a world of complexity way beyond human ability to understand, control, and govern. Machines now do more trades than humans on stock markets, they control our power, water, gas...... and food supplies, manage our elevators, microclimates, automobiles and transport systems, and manufacture almost everything. It should come as no surprise that machines are now designing machines. The chips that power our computers and mobile phones, the robots and commercial processing plants on which we...... depend, all are now largely designed by machines. So what of us - will be totally usurped, or are we looking at a new symbiosis with human and artificial intelligences combined to realise the best outcomes possible. In most respects we have no choice! Human abilities alone cannot solve any of the major...

  7. Comparison of Strength for Concrete with GGBS and Cement Using Accelerated Curing Method

    Directory of Open Access Journals (Sweden)

    K. Shyamala

    2016-10-01

    Full Text Available Ground granulated blast-furnace slag ( GGBS is the granular material formed iron ore is molted. blast furnace slag is by-product of steel manufacture which is sometimes used as a substitute for Portland cement. In steel industry when iron ore is molted, then in the molted state all the impurities come at its surface which are removed called slag. It consists mainly of the silicates and alumino silicates of calcium, which are formed in the blast furnace in molten form simultaneously with the metallic iron. Blast furnace slag is blended with Portland cement clinker to form portland blast furnace slag cement. GGBS is used to make durable concrete structures in combination with ordinary Portland cement and/or other pozzolanic materials. GGBFS has been widely used in Europe, and increasingly in the United States and in Asia (particularly in Japan and Singapore for its superiority in concrete durability, extending the lifespan of buildings from fifty years to a hundred years. This project presents the feasibility of the usage of GGBS as hundred percent substitutes for Ordinary portland cement in concrete. Design mix for M20 and M30 has been calculated using IS 10262-2009 for both accelrated curing in warm water and accelrated curing in boiling water method. Tests were conducted on cubes to study the strength of concrete by using GGBS and Ordinary portland cement

  8. Thin, applied surfacing for improving skid resistance of concrete pavements

    Science.gov (United States)

    Scholer, C. F.

    1980-12-01

    The use of select aggregate in a thin wearing surface of portland cement mortar to prolone or restore a concrete pavement's ability to develop high friction was accomplished. Two fine aggregates, blast furnace slag and lightweight expanded shale were found to exhibit skid resistance greater than the other aggregates evaluated. The British polishing wheel was used in the laboratory evaluation of aggregate to simulate wear. The need for a method of restoring friction to a worn, but otherwise sound concrete pavement led to a field evaluation of several different techniques for placing a very thin overlay. The successful method was a broomed, very thin layer of mortar, 3 mm thick.

  9. Calculation of driling and blasting parameters in blasting performance

    OpenAIRE

    Dambov, Risto; Karanakova Stefanovska, Radmila; Dambov, Ilija

    2015-01-01

    In all mining technology drilling and blasting parameters and works are one of the main production processes at each mine. The parameters of drilling and blasting and explosives consumption per ton of blasting mass are define economic indicators of any blasting no matter for what purpose and where mining is performed. The calculation of rock blasting should always have in mind that the methodology of calculation of all drilling and blasting parameters in blasting performance are performed for...

  10. Effect of Reinforcement on Early-Age Concrete Temperature Stress: Preliminary Experimental Investigation and Analytical Simulation

    Directory of Open Access Journals (Sweden)

    Jianda Xin

    2015-01-01

    Full Text Available For concrete under short-term loading, effect of reinforcement on concrete crack resistance capability is usually negligible; however, recent research results show that extension of this viewpoint to concrete under long-term loading (temperature variation may be unsuitable. In order to investigate this phenomenon, this paper presents the experimental and analytical results of early-age reinforced concrete temperature stress development under uniaxial restraint. The experiments were carried out on a temperature stress testing machine (TSTM. Experimental results show that the coupling of reinforcement and concrete creep behavior influenced the concrete temperature stress development, and nearly 16% of concrete stress was reduced in the current research. Moreover, the cracking time of reinforced concrete was also delayed. Finally, based on the principle of superposition, analytical simulations of effect of reinforcement on concrete temperature stress have been performed.

  11. Recycling of demolished concrete

    Energy Technology Data Exchange (ETDEWEB)

    Nagataki, S. [Niigata Univ., Niigata (Japan). Dept. of Civil Engineering; Iida, K. [Technology Centre of Taisei Corp., Yokohama (Japan)

    2001-07-01

    There is a significant amount of research being conducted in Japan on ways to recycle demolished concrete. The material is already being used for road bases and foundations, but in the future, the concrete will have to be recycled as concrete aggregate. Recycling may also include the cement in the concrete in order to address the issue of global warming and carbon dioxide reductions. This initiative is in response to predictions that in the future there will be tremendous quantities of demolished concrete to deal with. Recycling of cement is also necessary in terms of resolving environmental problems and promoting sustainable development. The properties of concrete made with recycled aggregates were described and were compared with original concrete made of known materials. The paper also proposed an approach that should be taken to recycling concrete in the twenty-first century in which reduced limestone was used to reclaim cement. Recycled concrete with cement requires more energy, but uses less resources and discharges less carbon dioxide. Currently, recycled aggregate does not meet the Japanese Industrial Standard for concrete aggregate. The resistance to freeze/thaw cycles was not adequate. The amount of mortar adhered to the recycled aggregate had little affect on the strength and durability of recycled concrete. It was concluded that the quality of recycled concrete aggregate depends on the quality of original concrete. 11 refs., 12 tabs., 11 figs.

  12. Fracture properties of concrete specimens made from alkali activated binders

    Science.gov (United States)

    Šimonová, Hana; Kucharczyková, Barbara; Topolář, Libor; Bílek, Vlastimil, Jr.; Keršner, Zbyněk

    2017-09-01

    The aim of this paper is to quantify crack initiation and other fracture properties – effective fracture toughness and specific fracture energy – of two types of concrete with an alkali activated binder. The beam specimens with a stress concentrator were tested in a three-point bending test after 28, 90, and 365 days of maturing. Records of fracture tests in the form of load versus deflection (P–d) diagrams were evaluated using effective crack model and work-of-fracture method and load versus mouth crack opening displacement (P–CMOD) diagrams were evaluated using the Double-K fracture model. The initiation of cracks during the fracture tests for all ages was also monitored by the acoustic emission method. The higher value of monitored mechanical fracture parameters of concrete with alkali activated blast furnace slag were achieved with substitution blast furnace slag by low calcium fly ash in comparison with substitution by cement kiln dust.

  13. Experimental research on classified flyash concrete. Part 4. Bunkyu flyash concrete no jikkenteki kenkyu. 4

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K.; Azuma, K.; Mogi, M. (Okumura Corp., Tokyo (Japan))

    1990-10-09

    Nowadays, the high quality concrete is active in RandD. High strength concrete, lowered in water-to-cement ratio, heightens in viscosity however lowers in workability. Then, in order to design high strength concrete to be improved in characteristics by addition with admixture, study was made with experiment by use of silicahume, fine blast furnace slag powder and classified flyash, provided with fine powder characteristics. As a result of characteristically comparing fresh concrete and curing concrete at 25 to 30% in water-to-cement ratio, each of all the kinds of admixture was effective on improvement in characteristics. Particularly among others, it was confirmed that the classified flyash is high in water-reducing property by fine particulates, shaped sherical, small in added quantity of high performance water-reducing agent at the same slump and good in workability. Together with its above and other advantages, the classified flyash, being 900 to 1000kgs/cm {sup 2} in compressive strength, recorded upon a 28-day curing, was finally confirmed to give an effective adoptability. 14 figs., 8 tabs.

  14. Microscopic examination of deteriorated concrete

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.

    2010-01-01

    Concrete petrography is the integrated microscopic and mesoscale (hand specimen size) investigation of hardened concrete, that can provide information on the composition of concrete, the original relationships between the concrete's various constituents, and any changes therein, whether as a result

  15. Special Concrete with Polymers

    National Research Council Canada - National Science Library

    Nicolae Angelescu; Ioana Ion; Darius Stanciu; José Barroso Aguiar; Elena Valentina Stoian; Vasile Bratu

    2016-01-01

    .... They were prepared epoxy resin polymer concrete, Portland cement, coarse and fine aggregate and to evaluate the influence of resin dosage on microstructures and density of such structures reinforced concrete mixtures...

  16. Sustainable Concrete Technology

    Directory of Open Access Journals (Sweden)

    Sim J.

    2015-12-01

    Full Text Available The growing concern over global warming and significant ecological changes requires sustainable development in all fields of science and technology. Concrete not only consumes huge amount of energy and natural sources, but also emits large amount of CO2, mainly due to the production of cement. It is evident that such large amount of concrete production has put significant impact on the energy, resource, environment, and ecology of the society. Hence, how to develop the concrete technology in a sustainable way has become a significant issue. In this paper, some of Korean researches for sustainable development of concrete are presented. These are sustainable strengthening for deteriorated concrete structure, sustainable reinforcement of new concrete structure, sustainable concrete using recycled aggregate and supplementary cementing materials and finally application of each technique to precast concrete.

  17. Concrete Pavement Joint Deterioration

    OpenAIRE

    2016-01-01

    Concrete pavements are an important part of our national infrastructure. In recent years the relatively small number of reported joints deteriorating prematurely in concrete pavements around Indiana has increased. Changes over the past 45 years in INDOT specification, pavement materials, designs and construction practices, and current de-icing materials were examined and related to the durability of concrete at the joints of existing pavements. A survey of concrete pavements across the state ...

  18. Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An Industrial By Product

    Directory of Open Access Journals (Sweden)

    Dr. B. Krishna Rao

    2015-07-01

    Full Text Available The aim of the investigation is to replace natural fine aggregatewith Air Cooled Blast Furnace Slag in OPC concrete. At present, nearly million tons of slag is being produced in the steel plants, in India. The generation of slag would be dual problem in disposal difficulty and environmental pollution. Some strategies should be used to utilize the slag effectively. Considering physical properties of metallurgical slags and a series of possibilities for their use in the field of civil constructions, this report demonstrates the possibilities of using air cooled blast furnace slag as partial replacement of sand in concrete. A total of five concrete mixes, containing 0%, 12.5%, 25%, 37.5% and 50% partial replacement of regular sand with air cooled blast furnace slag are investigated in the laboratory. These mixes were tested to determine axial compressive strength, split tensile strength, and flexural strength for 7days, 28days, 56days and 90days.

  19. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  20. Deterioration of Concrete Structures

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Chloride ingress is a common cause of deterioration of reinforced concrete bridges. Concrete may be exposed to chloride by seawater or de-icing salts. The chloride initiates corrosion of the reinforcement, which through expansion disrupts the concrete. In addition, the corrosion reduces the cross...

  1. concrete5 for developers

    CERN Document Server

    Uzayr, Sufyan bin

    2014-01-01

    Whether you have had some previous experience with concrete5 or are entirely new to it, this book will help you understand all that you need to know in order to get started with concrete5 development. A background in PHP is required; some knowledge of HTML/CSS is needed in order to fully grasp the concepts underlying concrete5 theme development.

  2. Discrete fiber-reinforced polyurea systems for infrastructure strengthening and blast mitigation

    Science.gov (United States)

    Carey, Natalia L.

    The research presented in this dissertation focused on evaluating the effectiveness of various blast mitigation materials and coating technologies to be used for enhancing blast resistance of structural members. Mechanical properties and blast mitigation performance of different discrete fiber-reinforced polyurea (DFRP) systems were investigated through experimental and analytical work. Four technical papers discuss the research efforts conducted within this dissertation. The first paper examined the development and characterization of different DFRP systems for infrastructure strengthening and blast retrofit. The behavior of various systems which consisted of chopped E-glass fibers discretely integrated in with the polyurea matrix was evaluated through coupon tensile testing. The addition of glass fiber to a polymer coating provided improved stiffness and strength to the composite system while the polyurea base material provided ductility. The second paper evaluated the behavior of hybrid, plain, and steel fiber-reinforced concrete panels coated with various polyurea and DFRP systems under blast loading. Hybrid panels demonstrated higher blast mitigation performance compared to plain and steel fiber-reinforced concrete panels due to sacrificial hybrid layer. The addition of plain polyurea or DFRP systems on the tension side improved panel performance by containing fragmentation during a blast event. The third paper presents an analytical investigation conducted using the explicit finite element program LS-DYNA to model panel and coating response under blast loading. Several modeling solutions were undertaken and compared for concrete formulation. Modeling results were analyzed and compared to the experimental work to validate the conclusions. The final paper describes an internal equilibrium mechanics based model developed to predict the flexural capacity of reinforced concrete beams strengthened with various DFRP systems. The developed model was validated using

  3. CORRELATION BETWEEN TECHNOLOGICAL FACTORS AND BASIC PROPERTIES OF MECHANICALLY ACTIVATED FINE CONCRETES

    Directory of Open Access Journals (Sweden)

    V. I. Bolshakov

    2016-02-01

    Full Text Available Purpose. The article highlights research of the influence of fine concrete composition based on blast-furnace slag on general material properties. Time of the concrete treatment in the mixer activator is included to the influence research. Methodology. There was realized full factor experiment of 22 type with following variables: cement versus blast-furnace granulose slag ratio (X1 and time of the treatment in the mixer-activator (X2. Controlled properties are: early concrete strength (Y1=f7 day, normal concrete strength (Y2=f28 day and average density of the concrete (Y3=ρ, hardened in normal conditions. Findings. Regress model analysis showed that decrease of the aggregate volume in concrete and increase of the mixing time grows up the strength and density of concrete. Different composition of the concrete also significantly affects concrete properties. Thus, for the same treatment time normal concrete strength at 28-day-old reduces by about 30% for compositions proportions 1:3 and 1:4, by 22% between a 1:4 and 1:5 and by 13% for 1:5 and 1:6 cases. The same behavior is obtained for early concrete strength. Density of concrete is not influenced and influence curve is almost flat. The difference between density values for different composition proportions 1:3 and 1:9 is 7.6% at equal mixture time. The increment of mixture processing time of 6 s increase normal concrete strength at 28-day-old about 7-8 % for all compositions in the studied range. Early strength values differ by 12-14 % between treatment time 30 and 36 seconds respectively. Every next six second increase step in treatment time reduce this difference by 1% for every mix compositions. There is practically no change of concrete density during the mixture time varying. Total change is 1-2% for 6 s in the entire research range for all compositions. Originality. For the first time the regression equations were determined, linking the duration of the activation of fine-grained concrete

  4. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen.

    Science.gov (United States)

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Khateeb-ur-Rehman; Raashid, M

    2009-09-01

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  5. Prompt gamma analysis of fly ash, silica fume and Superpozz blended cement concrete specimen

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, A.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)], E-mail: aanaqvi@kfupm.edu.sa; Garwan, M.A. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Maslehuddin, M. [Center for Engineering Research, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nagadi, M.M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Al-Amoudi, O.S.B. [Department of Civil Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khateeb-ur-Rehman; Raashid, M. [Department of Physics, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2009-09-15

    Preventive measures against corrosion of reinforcing steel require making the concrete dense by adding pozzolanic materials, such as fly ash, silica fume, Superpozz, blast furnace slag, etc. to Portland cement. In order to obtain the desired strength and durability of concrete, it is desirable to monitor the concentration of the pozzolan in the blended cement concrete. Addition of pozzolan to blended cement changes the overall concentration of calcium and silicon in the blended cement concrete. The resulting variation in calcium and silicon gamma-ray yield ratio from blended cement concrete has found to have an inverse correlation with concentration of fly ash, silica fume, Superpozz, blast furnace slag in the blended cement concrete. For experimental verification of the correlation, intensities of calcium and silicon prompt gamma-ray due to capture of thermal neutrons in blended cement concrete samples containing 5-80% (by weight of cement) silica fume, fly ash and Superpozz were measured. The gamma-ray intensity ratio was measured from 6.42 MeV gamma-rays from calcium and 4.94 MeV gamma-ray from silicon. The experimentally measured values of calcium to silicon gamma-ray yield ratio in the fly ash, silica fume and Superpozz cement concrete specimens agree very well with the results of the Monte Carlo simulations.

  6. Triple-layer Absorptive Structures for Shock Wave Blast Protection

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Triple-layer absorptive structure is designed to reinforce a missile silo against shock wave blasts. An energy-absorbing layer and a cushion layer overlay the circular silo cover made of reinforced concrete. The dynamic stress analysis is performed by ABAQUS/Explicit. The mesoscopic structure of the energy absorbing layer is designed as an assembly of ductile tubes containing crushable cellular ceramics. Combined mesoscopic and macroscopic simulations indicate that the structure can enhance the survivability of a missile silo against blast waves.

  7. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  8. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  9. Remote operated vehicle with carbon dioxide blasting (ROVCO{sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Resnick, A.M. [Oceaneering International, Inc., Upper Marlboro, MD (United States)

    1995-10-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO{sub 2}), as shown in a front view is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO{sub 2} xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. The cryogenesis subsystem performs the actual decontamination work and consists of the dry ice supply unit, the blasting nozzle, the remotely controlled electric and pneumatic valves, and the vacuum work-head. The COYOTEE subsystem positions the blasting work-head within a planar work space and the vacuum subsystem provides filtration and containment of the debris generated by the CO{sub 2} blasting. It employs a High Efficiency Particulate Air (HEPA) filtration unit to separate contaminants for disposal. All of the above systems are attached to the vehicle subsystem via the support structure.

  10. In-Tunnel Blast Pressure Empirical Formulas for Detonations External, Internal and at the Tunnel Entrance

    Institute of Scientific and Technical Information of China (English)

    LI Xiudi; ZHENG Yingren

    2006-01-01

    In order to define the loading on protective doors of an underground tunnel,the exact knowledge of the blast propagation through tunnels is needed.Thirty-three scale high-explosive tests are conducted to obtain in-tunnel blast pressure for detonations external,internal and at the tunnel entrance.The cross section of the concrete model tunnel is 0.67 m2.Explosive charges of TNT,ranging in mass from 400 g to 4 600 g,are detonated at various positions along the central axis of the model tunnel.Blast gages are flush-installed in the interior surface of the tunnel to record side-on blast pressure as it propagates down the tunnel.The engineering empirical formulas for predicting blast peak pressure are evaluated,and are found to be reasonably accurate for in-tunnel pressure prediction.

  11. Lunar concrete: Prospects and challenges

    Science.gov (United States)

    Khitab, Anwar; Anwar, Waqas; Mehmood, Imran; Kazmi, Syed Minhaj Saleem; Munir, Muhammad Junaid

    2016-02-01

    The possibility of using concrete as a construction material at the Moon surface is considered. Dissimilarities between the Earth and the Moon and their possible effects on concrete are also emphasized. Availability of constituent materials for concrete at lunar surface is addressed. An emphasis is given to two types of materials, namely, hydraulic concrete and sulfur concrete. Hydraulic concrete necessitates the use of water and sulfur concrete makes use of molten sulfur in lieu of cement and water.

  12. Effects of slag and fly ash in concrete in chloride environment

    NARCIS (Netherlands)

    Polder, R.B.

    2012-01-01

    This paper addresses experience from The Netherlands with blast furnace slag and fly ash in concrete in chloride contaminated environments, both from the field and the laboratory. Use of slag produced in The Netherlands started in the 1930s and CEM III/B LH HS, with typically 70% slag, became the do

  13. Nanomechanics and Multiscale Modeling of Sustainable Concretes

    Science.gov (United States)

    Zanjani Zadeh, Vahid

    characterization of ITZ with direct mechanical tests confirms that the zone is highly heterogeneous. The heterogeneity seemed to be due to admixture effect, amount of available water, shape, size and type of the aggregate or internal curing agent. The nanoscale mechanical behavior of C-S-H phases in cement paste formed by ordinary portland cement, cements blended with fly ash and blast furnace slag, and cement with kenaf and lightweight aggregate are virtually identical. Nevertheless, the volume fractions of the hydration products were different. Mechanical properties of hydration products for damaged concretes were decreased. Lightweight aggregate can alleviate the thermal degradation in the hydration products, although more degradation was identified in lightweight aggregates' ITZ than in bulk paste. Nanomechanical results were linked to the bulk mechanical properties at the macrosale. A multiscale level model was defined based on morphology and length scale of the structural elements in each material. The ultimate goal of this research is to control the bulk mechanical properties of sustainable cementitious materials from their micromechanical properties so that the concrete composition could be optimized. This will help to produce more geo-friendly concrete, which is the second most used material on earth.

  14. Electromagnetic Shielding Characteristics of Eco-Friendly Foamed Concrete Wall

    Directory of Open Access Journals (Sweden)

    Sung-Sil Cho

    2017-01-01

    Full Text Available The electromagnetic shielding characteristics according to the material composition of foamed concrete, which was manufactured to reduce environmental pollution and to economically apply it in actual building walls, were researched herein. Industrial by-products such as ladle furnace slag (LFS, gypsum, and blast furnace slag (BFS were added to manufacture foamed concrete with enhanced functionalities such as lightweight, heat insulation, and sound insulation. The electrical characteristics such as permittivity and loss tangent according to the foam and BFS content were calculated and measured. Free space measurement was used to measure the electromagnetic shielding characteristics of the actually manufactured foamed concrete. It was confirmed that electromagnetic signals were better blocked when the foam content was low and the BFS content was high in the measured frequency bands (1–8 GHz and that approximately 90% of the electromagnetic signals were blocked over 4 GHz.

  15. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  16. Machine Translation

    Institute of Scientific and Technical Information of China (English)

    张严心

    2015-01-01

    As a kind of ancillary translation tool, Machine Translation has been paid increasing attention to and received different kinds of study by a great deal of researchers and scholars for a long time. To know the definition of Machine Translation and to analyse its benefits and problems are significant for translators in order to make good use of Machine Translation, and helpful to develop and consummate Machine Translation Systems in the future.

  17. Numerical Simulation of Response of SRC Columns Subjected to Blast Loading

    Institute of Scientific and Technical Information of China (English)

    SUN Jianyun; LI Guoqiang; LU Yong

    2006-01-01

    The dynamic characteristics and failure modes of steel reinforced concrete (SRC) columns subjected to blast loading are complicated because of the transient stress wave in the SRC columns and the interaction between steel and concrete.This paper presents a numerical simulation of the response of SRC columns subjected to blast loading using hydrocode LS-DYNA.In the numerical model,a sophisticate concrete material model (the Concrete Damage Model) is employed with consideration of the strain rate effect and the damage accumulation.An erosion technique is adopted to model the spalling process of concrete.The possible failure modes of SRC columns are evaluated.It is observed that the failure of SRC columns subjected to blast load can generally be classified into three modes,namely,a direct failure in concrete body due to the stress wave,a transverse shear failure near the support sections due to the high shear force,and a flexural failure pertaining to large local and global deformation of the reinforcing steel.

  18. Strain Rate Effects in CFRP Used For Blast Mitigation

    Directory of Open Access Journals (Sweden)

    Sarah. L. Orton

    2014-04-01

    Full Text Available The purpose of this research is to gain a better understanding of strain rate effects in carbon fiber reinforced polymer (CFRP laminates exposed to blast loading. The use of CFRP offers an attractive option for mitigating structures exposed to blasts. However, the effect of high strain rates in CFRP composites commonly used in the civil industry is unknown. This research conducted tensile tests of 21 CFRP coupons using a hydraulically powered dynamic loader. The strain rates ranged from 0.0015 s−1 to 7.86 s−1 and are representative of strain rates that CFRP may see in a blast when used to strengthen reinforced concrete structures. The results of the testing showed no increase in the tensile strength or stiffness of the CFRP at the higher strain rates. In addition, the results showed significant scatter in the tensile strengths possibly due to the rate of loading or manufacture of the coupon.

  19. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  20. Blast/Fire Interactions, Asilomar Conference, May 1980,

    Science.gov (United States)

    1981-02-01

    shelter. In reality, there may be large columns that are continuous into the basement. The failure of these columns may also fail the basement roof slab ...expedient shelter after the blast testing at MILL RACE was also suggested. The WES-proposed waffle slab experiment was not recommended for inclusion. An...50-psi range, it is necessary to select a floor system that is initially strong. For this reason, reinforced concrete (R/C) slabs are chosen for

  1. Concrete sustainability with very high amount of fly ash and slag

    Directory of Open Access Journals (Sweden)

    G. C. Isaia

    Full Text Available This article approaches concrete mix designs where cement is replaced by high amounts of slag and fly ash, with the purpose of turning it into a more sustainable construction material, that is, an authentic green concrete. Mix proportions with fly ash, ground-blasted furnace slag, and Portland cement were studied in binary and ternary mixtures for compressive strength levels of 40 MPa and 55 MPa. The replacement of cement with mineral additions ranged from 50% to 90% in mass. Mean decreases of 55% in the energy consumption, 78% in the CO² emissions, and 5% in the cost of the concrete m³, plus an increase of 40% in the mean index of durability were obtained, all ofwhich compared to the 40-MPa reference concrete. This study attests the technical, economical and environmental potentialities for theuse of concrete mixtures with until 90% of fly ash.

  2. Dry ice blasting

    Science.gov (United States)

    Lonergan, Jeffrey M.

    1992-04-01

    As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.

  3. LIGHTWEIGHT CONCRETE BASED GRANSHLAK

    Directory of Open Access Journals (Sweden)

    NETESA M. I.

    2016-02-01

    Full Text Available Raising of problem. Concrete advisable to obtain a low strength with local secondary resources for recycling and reduce the environmental burden on the environment. But it is important to design such concrete compositions with a reduced flow of cement. It is known that the coefficient of efficiency of use of cement in the concrete of the heavy and B10 is less than about 0.5, which is almost two times smaller than in class B15 concrete and above. Even lower coefficient of efficiency in light concrete cement low strength. Therefore, it is important to find patterns determining the composition of lightweight concrete based on local-products industry with more efficient use of cement in them. Purpose.. Based on the analysis of earlier research results, including with the use of methods of mathematical planning of experiments to determine the concrete contents, which can provide the requirements for the underlying layers of the floor, the compressive strength of which should correspond to the class B5. It is important to provide the required strength at minimum flow of the cement, which is the most expensive and energy-intensive part of concrete. Conclusion. Analysis of the test results of control samples of concrete in 28-day-old, the following laws. The required tensile strength of concrete compressive strength of 7.0 MPa can be obtained in the test range when used in formulations as a filler as the Dnieper hydroelectric power station fly ash and tailings Krivoy Rog iron ore YuGOK. To ensure providing the required characteristic strength of the concrete in the underlying layers of the floor is advisable to use a nominal composition per cubic meter of concrete: cement 160 kg granshlaka Plant named after Petrovsky, 675 kg of fly ash Dnieper HPP 390 kg, 400 kg of sand, 230 liters of water. Thus, while ensuring rational grain composition components can obtain the desired strength lightweight concrete based granshlaka plant Petrovsky, using as fillers

  4. Effect of Glass Powder on Chloride Ion Transport and Alkali-aggregate Reaction Expansion of Lightweight Aggregate Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi; SHI Caijun; SONG Jianming

    2009-01-01

    The effects of glass powder on the strength development, chloride permeability and potential alkali-aggregate reaction expansion of lightweight aggregate concrete were investigated.Ground blast furnace slag, coal fly ash and silica fume were used as reference materials. The re-placement of cement with 25% glass powder slightly decreases the strengthes at 7 and 28 d, but shows no effect on 90 d's. Silica fume is very effective in improving both the strength and chloride penetra-tion resistance, while ground glass powder is much more effective than blast furnace slag and fly ash in improving chloride penetration resistance of the concrete. When expanded shale or clay is used as coarse aggregate, the concrete containing glass powder does not exhibit deleterious expansion even if alkali-reactive sand is used as fine aggregate of the concrete.

  5. Blast testing and analysis of composite steel stud wall panels

    Energy Technology Data Exchange (ETDEWEB)

    Wesevich, J.W.; Lowak, M.J.; Hu, W.; Bingham, B.L. [Baker Engineering and Risk Consultants Inc., San Antonio, TX (United States); Hallisy, J. [Fiberwrap Composite Technologies, Calverton, NY (United States); Calcetas, P. [Lafarge North America, Concord, ON (Canada)

    2007-07-01

    This paper described a novel modular blast resistant composite steel stud wall panel system. The system was manufactured by casting steel studs with thin, high-strength concrete. Ten composite panel design specimens were evaluated and tested at a shock tube test facility. Specimens included both 12 and 16 gauge 6 inch cold-formed double or single studs spaced at either 12 or 16 inches on center. Samples also included both steam and ambient cured concretes with steel or organic fibers ranging in thickness between 1 and 2 inches. A welded wire mesh within the concrete layer was used to provide composite action. Results of the blast tests showed that the composite panels achieved minimal damage levels under applied blast loads, which ranged from between 15.9 psi to 205 psi. Peak dynamic reflections ranged from between 2.75 increase to 12 inches. It was concluded that finite element models and single-degree-of-freedom (SDOF) analyses showed good agreement with the experimental studies.

  6. Concrete, hardened: Self desiccation

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard; Persson, Bertil

    1999-01-01

    The test method covers the determination of internal relative humidity (RH) in hardened concrete and cement mortar using RH instruments. The determination of RH is done on crushed samples of concrete or cement motar. This test method is only for measuring equipment which gives off or takes up...

  7. Polymer concrete patching materials

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, J.J.

    1977-09-01

    The increased use of deicing salts is causing rapid deterioration of portland cement concrete bridge decks. Soluble chlorides cause corrosion of the steel reinforcing rods with a corresponding increase in volume of the rods. This expansion causes stresses in the concrete which result in delaminations and surface spalling. The repair of surface spalls with portland cement concrete can only be made if traffic can be avoided for several days. A patching material which would allow traffic to resume over the repaired area in a few hours was needed. Polymer concrete (PC) was developed to repair deteriorated portland cement concrete. Polymer concrete is defined as a composite material in which the aggregate is bound together in a dense matrix with a polymer binder. The aggregate is mixed with a monomer mixture and subsequently cured in place. Polymer concrete combines the premix characteristics of portland cement concrete with high strength, long term durability properties and fast cure times. PC placed at temperatures between 35/sup 0/F and 95/sup 0/F attains strengths greater than 5000 psi in 2 hours. The high early strength of PC is suitable for use in the repair of highway structures where traffic conditions allow closing of the area for only a few hours.

  8. Concrete-Design

    Directory of Open Access Journals (Sweden)

    Leczovics Péter

    2014-12-01

    Full Text Available Present paper introduces a new interpretation of concrete, demonstrating some extreme possibilities of this rigid material such as a design element. In the first part a brief overview of the previous achievements are shown. The second part of this paper focuses on the relationship between concrete and fashion.

  9. concrete5 Beginner's Guide

    CERN Document Server

    Laubacher, Remo

    2011-01-01

    This book is part of Packt's Beginner's Guide series. You will be guided through the set up of a Concrete5 site with step-by-step practical examples. This book is ideal for developers who would like to build their first site with Concrete5. Some k

  10. Tendons Arrangement Effects on Reinforced Concrete Frames

    Directory of Open Access Journals (Sweden)

    Ayad B. Bahnam

    2013-05-01

    Full Text Available  The tendons arrangement effects on the response of reinforced concrete frame experiencing blast loads is investigated in this paper. The structure is modeled using nonlinear finite elements employing a bilinear hysteretic model. So that elements are used so that yielding of the structures could be accurately modeled and captured. The frame is analyzed using a non-linear, elastic-plastic finite element program written in code MATLAB. Six tendon architectures were investigated. A single tendon was placed between different floors and its effects investigated. From the obtained results, the ideal case which causes a reduction in the maximum displacement and the amount of permanent deflection without increase in the maximum structural shear forces greatly is obtained.

  11. Dynamic Response of Concrete and Concrete Structures.

    Science.gov (United States)

    1986-05-30

    Strain Rate Effects on Fracture (ed. S. Mindess and S. P. Shah), Symposium ’- S, Boston, Dec. 1985, Materials Research Society Symp. Proceedings, ". Vol...Reinforced Concrete Subjected to Impact Loading," in Cement-Based Composites: Strain-Rate Effects on Fracture (ed. S. Mindess and S.P. Shah) Materials

  12. Concrete sample point: 304 Concretion Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rollison, M.D.

    1995-03-10

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis.

  13. Reuse of Lathe Waste Steel Scrap in Concrete Pavements

    Directory of Open Access Journals (Sweden)

    Pooja Shrivastavaa

    2014-12-01

    Full Text Available These project works assess on the study of the workability and mechanical strength properties of the concrete reinforced with industrialized waste fibers or the recycled fibers. In each lathe industries wastes are available in form of steel scraps are yield by the lathe machines in process of finishing of different machines parts and dumping of these wastes in the barren soil contaminating the soil and ground water that builds an unhealthy environment. Now a day’s these steel scraps as a waste products used by innovative construction industry and also in transportation and highway industry. In addition to get sustainable progress and environmental remuneration, lathe scrap as worn-recycle fibers with concrete are likely to be used. When the steel scrap reinforced in concrete it acquire a term; fiber reinforced concrete and steel fibers in concrete defined as steel fiber reinforced concrete (SFRC.Different experimental studies are done to identify about fresh and hardened concrete properties of steel scrap fiber reinforced concrete (SSFRC and their mechanical properties are found to be increase due to the addition of steel scrap in concrete i.e. compressive strength, flexural strength, impact strength, fatigue strength and split tensile strength were increased but up to 0.5-2% scrap content . When compared with usual concrete to SSFRC, flexural strength increases by 40% and considerable increases in tensile and compressive strength. These steel scrap also aid to improve the shrinkage reduction, cracking resistance i.e. preventing crack propagation and modulus of elasticity. The workability of fresh SSFRC are carried out by using slump test but it restricted to less scrap contents. This work focuses on the enhancement of structural strength and improvement in fatigue life of concrete pavements by reuse of scrap steel in concrete. These concrete roads with SSFRC promises an appreciably eminent design life, offer superior serviceability and

  14. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  15. Antifouling marine concrete

    Energy Technology Data Exchange (ETDEWEB)

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  16. Antifouling marine concrete

    Energy Technology Data Exchange (ETDEWEB)

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  17. Performance of Waterless Concrete

    Science.gov (United States)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  18. Durability of recycled aggregate concrete using pozzolanic materials.

    Science.gov (United States)

    Ann, K Y; Moon, H Y; Kim, Y B; Ryou, J

    2008-01-01

    In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens.

  19. concrete5 cookbook

    CERN Document Server

    Strack, David

    2013-01-01

    The Cookbook-style recipes allow you to go both directly to your topic of interest or follow topics throughout a chapter to gain in-depth knowledge. This practical Cookbook will cater to the needs of both intermediate and advanced concrete5 developers.This book is geared towards intermediate to advanced PHP developers who would like to learn more about the concrete5 content management system. Developers already familiar with concrete5 will learn new time-saving tricks and will find the book to be a great reference tool.

  20. Two-point concrete resistivity measurements: interfacial phenomena at the electrode-concrete contact zone

    Science.gov (United States)

    McCarter, W. J.; Taha, H. M.; Suryanto, B.; Starrs, G.

    2015-08-01

    Ac impedance spectroscopy measurements are used to critically examine the end-to-end (two-point) testing technique employed in evaluating the bulk electrical resistivity of concrete. In particular, this paper focusses on the interfacial contact region between the electrode and specimen and the influence of contacting medium and measurement frequency on the impedance response. Two-point and four-point electrode configurations were compared and modelling of the impedance response was undertaken to identify and quantify the contribution of the electrode-specimen contact region on the measured impedance. Measurements are presented in both Bode and Nyquist formats to aid interpretation. Concretes mixes conforming to BSEN206-1 and BS8500-1 were investigated which included concretes containing the supplementary cementitious materials fly ash and ground granulated blast-furnace slag. A measurement protocol is presented for the end-to-end technique in terms of test frequency and electrode-specimen contacting medium in order to minimize electrode-specimen interfacial effect and ensure correct measurement of bulk resistivity.

  1. Electrokenitic Corrosion Treatment of Concrete

    Science.gov (United States)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  2. Corrosion-resistant sulfur concretes

    Science.gov (United States)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  3. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  4. Anchorage in concrete construction

    CERN Document Server

    Eligehausen, Rolf; Silva, John F

    2013-01-01

    A comprehensive treatment of current fastening technology using inserts (anchor channels, headed stud), anchors (metal expansion anchor, undercut anchor, bonded anchor, concrete screw and plastic anchor) as well as power actuated fasteners in concrete. It describes in detail the fastening elements as well as their effects and load-bearing capacities in cracked and non-cracked concrete. It further focuses on corrosion behaviour, fire resistance and characteristics with earthquakes and shocks. It finishes off with the design of fastenings according to the European Technical Approval Guideline (ETAG 001), the Final Draft of the CEN Technical Specification 'Design of fastenings for use in concrete' and the American Standards ACI 318-05, Appendix D and ACI 349-01, Appendix B.

  5. Clay and concrete brick

    CSIR Research Space (South Africa)

    Dlamini, MN

    2014-03-01

    Full Text Available are manufactured from raw clay as their primary ingredient. However concrete brick has also become a favoured material in recent times. This review will adumbrate the impact of these building materials on energy use and the environment....

  6. Concrete Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This is a 20,000-sq ft laboratory that supports research on all aspects of concrete and materials technology. The staff of this facility offer wide-ranging expertise...

  7. Stone-hard concrete

    NARCIS (Netherlands)

    Wassink, J.

    2014-01-01

    A polymer prepared from waste water extends the useful life of concrete. It also appears to be suitable as a protective coating for offshore applications. Chemistry professor Stephen Picken predicts that this ‘alginate’ could become huge.

  8. Self-Healing Concrete

    Institute of Scientific and Technical Information of China (English)

    履之

    1994-01-01

    Although concrete is an excellent building material because of its abili-ty to withstand stress and compression, it is susceptible to cracking. Car-olyn Dry, an associate professor of architecture at the University of Illinois

  9. Prestressed concrete design

    CERN Document Server

    Hurst, MK

    1998-01-01

    This edition provides up-to-date guidance on the detailed design of prestressed concrete structures. All major topics are dealt with, including prestressed flat slabs, an important and growing application in the design of buildings.

  10. The Complexity of Abstract Machines

    Directory of Open Access Journals (Sweden)

    Beniamino Accattoli

    2017-01-01

    Full Text Available The lambda-calculus is a peculiar computational model whose definition does not come with a notion of machine. Unsurprisingly, implementations of the lambda-calculus have been studied for decades. Abstract machines are implementations schema for fixed evaluation strategies that are a compromise between theory and practice: they are concrete enough to provide a notion of machine and abstract enough to avoid the many intricacies of actual implementations. There is an extensive literature about abstract machines for the lambda-calculus, and yet—quite mysteriously—the efficiency of these machines with respect to the strategy that they implement has almost never been studied. This paper provides an unusual introduction to abstract machines, based on the complexity of their overhead with respect to the length of the implemented strategies. It is conceived to be a tutorial, focusing on the case study of implementing the weak head (call-by-name strategy, and yet it is an original re-elaboration of known results. Moreover, some of the observation contained here never appeared in print before.

  11. Ogive Nose Hard Missile Penetrating Concrete Slab Numerical Simulation Approach

    Directory of Open Access Journals (Sweden)

    Qadir Bux

    2011-01-01

    Full Text Available Great demand exists for more efficient design to protect delicate and serious structures such as nuclear plants, Power plants, Weapon Industries, weapons storage places, water retaining structures, & etc, against impact of kinetic missiles generated both accidentally and deliberately such as dynamic loading, incident occurs in nuclear plants, terrorist attack, Natural disasters like tsunami and etc., in various impact and blast scenarios for both civilian and military activities. In many cases, projectiles can be treated as rigid bodies when their damage and erosion are not severe. Due to the intricacy of the local impact damages, investigations are generally based on experimental data. Conclusions of the experimental observations are then used to guide engineering models. Local damages studies normally fall into three categories, i.e. empirical formulae based on data fitting, idealised analytical models based on physic laws and numerical simulations based on computational mechanics and material models. In the present study, 2D asymmetrical numerical simulation have done on concrete slab against the impact of  ogive nose hard missile of 26.90mm and 76.20mm diameter with CRH ratio 2.0 and 6.0 respectively, for penetration by using Concrete Damaged Plasticity Model, and ABAQUS/Explicit dynamic analysis in ABAQUS. It is found that the strains/stresses are induced in the concrete slab and a very nicely propagation of the stresses inside the  concrete slab in the form of waves, which is a clear indication for vibrations of the concrete. The lack of failure criterion in concrete damaged plasticity model does not allow the removal of elements during the analyses. This means that spalling, scabbing, and perforation cannot be modelled with the Concrete Damage Plasticity Model. The penetration depth results shows that the deeper penetration requires higher critical impact kinetic energies, and comparison shows the simulation results are more accurate

  12. Non-destructive analysis of chlorine in fly ash cement concrete

    Science.gov (United States)

    Naqvi, A. A.; Garwan, M. A.; Nagadi, M. M.; Maslehuddin, M.; Al-Amoudi, O. S. B.; Khateeb-ur-Rehman

    2009-08-01

    Preventive measures against reinforcement corrosion in concrete require increasing concrete density to prevent the diffusion of chloride ions to the steel surface. Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to concrete to increase its density. Monitoring the chloride concentration in concrete is required to assess the chances of reinforcement corrosion. In this study, FA was added to Portland cement concrete to increase its density. Prompt gamma neutron activation analysis (PGNAA) technique was utilized to analyze the concentration of chlorine in concrete. The chlorine concentration in the FA cement concrete was evaluated by determining the yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV gamma-rays of chlorine from the FA concrete specimen containing 0.4-3.5 wt% chlorine. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the calculated yield obtained through the Monte Carlo simulations. The Minimum Detectable Concentration (MDC) of chlorine in FA cement concrete was also calculated. The best value of MDC limit of chlorine in the FA cement concrete was found to be 0.022±0.007 and 0.038±0.017 wt% for 1.16 and 6.11 MeV prompt gamma-rays, respectively. Within the statistical uncertainty, the lower bound of MDC meets the maximum permissible limit of 0.03 wt% of chlorine in concrete set by American Concrete Institute Committee 318.

  13. Effects of slag and fly ash on reinforcement corrosion in concrete in chloride environment: Research from the Netherlands

    NARCIS (Netherlands)

    Polder, R.B.

    2012-01-01

    A review is given of research on the durability performance of concrete made with blast furnace slag and fly ash related to chloride induced reinforcement corrosion, carried out in the Netherlands, where slag has been used in cement for almost a century. Results are presented from field studies on c

  14. Effects of slag and fly ash on reinforcement corrosion in concrete in chloride environment. Research from the Netherlands

    NARCIS (Netherlands)

    Polder, R.B.

    2012-01-01

    A review is given of research on the durability performance of concrete made with blast furnace slag and fly ash related to chloride induced reinforcement corrosion, carried out in the Netherlands, where slag has been used in cement for almost a century. Results are presented from field studies on c

  15. Performance of "Waterless Concrete"

    Science.gov (United States)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  16. New generation concretes including reactive powder concretes

    Directory of Open Access Journals (Sweden)

    Stefania Grzeszczyk

    2015-09-01

    Full Text Available Based on a broad literature review, this paper presents characteristics of new generation composites on the basis of cements which are applied in engineering structures and in rehabilitation of structures. The role of cement, microfillers, superplasticizers and fibers in the above stated composites i.e. factors which allow for the maximum packing of particles in the cement matrix and a minimum pore volume, and the increase in composite bending strength, have been discussed. Special attention was paid to Reactive Powder Concrete in which coarse aggregate was replaced by ground quartz and sand. Such composites contain active microfillers and the applied new-generation superplasticizers allow us to decrease the water-cement ratio in the composite up to 0.2. Whereas, steel fibre additive allows us to significantly improve the bending strength.The paper presents the properties of the excellent Ductal — a composite from Reactive Powder Concrete, which at compressive strength from 180 to 230 MPa achieves the tensile strength of 30 to 50 MPa. Its application allows us to create slim profiles and tall light and slender, and simultaneously durable and corrosion-resistant structural elements of considerable span. This paper gives a few examples of Ductal application in practice.[b]Keywords[/b]: civil engineering, composite materials, reactive powder concrete

  17. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  18. Study on Properties of Environment-friendly Concrete Containing Large Amount of Industrial by-products

    Science.gov (United States)

    Fujiwara, H.; Maruoka, M.; Sadayama, C.; Nemoto, M.; Yoshikawa, K.; Yamaji, M.

    2015-11-01

    This study aims to reduce CO2 discharged from the cement and concrete industries by effective use of industrial by-products, such as fly ash, blast furnace slag, and so on. In this paper, the properties of concrete containing large amount of industrial by-products and very small amount of alkaline activator including cement or sludge from ready mixed concrete plant are analyzed. As the result, it was confirmed that concretes containing large amount of industrial by-products can achieve sufficient compressive strength. However, these concretes showed poor frost resistance. It was thought that the reason was coarsening of air void system and this caused their poor frost resistance. Therefore, in order to micronize the air void system and improve frost resistance, the combination of air entraining agent and antifoaming agent was applied. By this method, it was confirmed that the frost resistance of some these concrete improved. In this study, other properties of these concretes, such as fresh properties and other durability were evaluated and it was confirmed that these concretes show sufficient properties.

  19. Sulphuric Acid Resistant of Self Compacted Geopolymer Concrete Containing Slag and Ceramic Waste

    Directory of Open Access Journals (Sweden)

    Shafiq I.

    2017-01-01

    Full Text Available Malaysia is a one of the developing countries where the constructions of infrastructure is still ongoing, resulting in a high demand for concrete. In order to gain sustainability factors in the innovations for producing concrete, geopolymer concrete containing granulated blast-furnace slag and ceramics was selected as a cement replacement in concrete for this study. Since Malaysia had many ceramic productions and uses, the increment of the ceramic waste will also be high. Thus, a new idea to reuse this waste in construction materials have been tested by doing research on this waste. Furthermore, a previous research stated that Ordinary Portland Cement concrete has a lower durability compared to the geopolymer concrete. Geopolymer binders have been reported as being acid resistant and thus are a promising and alternative binder for sewer pipe manufacture. Lack of study regarding the durability of the geopolymer self-compacting concrete was also one of the problems. The waste will be undergoing a few processes in the laboratory in order to get it in the best form before undergoing the next process as a binder in geopolymer concrete. This research is very significant in order to apply the concept of sustainability in the construction field. In addition, the impact of this geopolymer binder is that it emits up to nine times less CO2 than Portland Cement.

  20. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    Science.gov (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  1. Resistance to Corrosion of Reinforcement of High Volume Fly Ash Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S. O.; Bae, S. H.; Lee, H. J. [Andong National University, Andong (Korea, Republic of); Lee, K. M. [Sungkyunkwan University, Suwon (Korea, Republic of); Jung, S. H. [Korea Confirmity Laboratories, Seoul (Korea, Republic of)

    2014-12-15

    Due to the increasing of interest about the eco-friendly concrete, it is increased to use concretes containing by-products of industry such as fly ash(FA), ground granulated blast furnace slag(GGBFS), silica fume(SF), and etc. Especially, these are well known for improving the resistances to reinforcement corrosion in concrete and decreasing chloride ion penetration. The purpose of this experimental research is to evaluate the resistance against corrosion of reinforcement of high volume fly ash(HVFA) concrete which is replaced with high volume fly ash for cement volume. For this purpose, the concrete test specimens were made for various strength level and replacement ratio of FA, and then the compressive strength and diffusion coefficient for chloride ion of them were measured for 28, 91, and 182 days, respectively. Also, corrosion monitoring by half cell potential method was carried out for the made lollypop concrete test specimens to detect the time of corrosion initiation for reinforcement in concrete. As a result, it was observed from the test results that the compressive strength of HVFA concrete was decreased with increasing replacement ratio of FA but long-term resistances against reinforcement corrosion and chloride ion penetration of that were increased.

  2. The Machine within the Machine

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Although Virtual Machines are widespread across CERN, you probably won't have heard of them unless you work for an experiment. Virtual machines - known as VMs - allow you to create a separate machine within your own, allowing you to run Linux on your Mac, or Windows on your Linux - whatever combination you need.   Using a CERN Virtual Machine, a Linux analysis software runs on a Macbook. When it comes to LHC data, one of the primary issues collaborations face is the diversity of computing environments among collaborators spread across the world. What if an institute cannot run the analysis software because they use different operating systems? "That's where the CernVM project comes in," says Gerardo Ganis, PH-SFT staff member and leader of the CernVM project. "We were able to respond to experimentalists' concerns by providing a virtual machine package that could be used to run experiment software. This way, no matter what hardware they have ...

  3. Field experiment for blasting crater

    Institute of Scientific and Technical Information of China (English)

    YE Tu-qiang

    2008-01-01

    A series of single hole blasting crater experiments and a variable distance multi-hole simultaneous blasting experiment was carded in the Yunfu Troilite Mine, according to the Livingston blasting crater theory. We introduce in detail, our methodology of data collection and processing from our experiments. Based on the burying depth of the explosives, the blasting crater volume was fitted by the method of least squares and the characteristic curve of the blasting crater was obtained using the MATLAB software. From this third degree polynomial, we have derived the optimal burying depth, the critical burying depth and the optimal explosive specific charge of the blasting crater.

  4. Machine Learning

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  5. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    A K Misra; Renu Mathur

    2007-06-01

    The scope of magnesium oxychloride (MOC) cement in concrete works has been evaluated. MOC cement concrete compositions of varying strengths having good placing and finishing characteristics were prepared and investigated for their compressive and flexural strengths, -values, abrasion resistance etc. The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ratio of compressive to flexural strength varies between 6 and 8. The elastic moduli of the compositions studied are found to be 23–85 GPa and the abrasion losses between 0.11 and 0.20%. While alternate heating–cooling cycles have no adverse effect on MOC concrete, it can be made durable against freezing–thawing and the excessive exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution of the same concentration.

  6. Power Tillers for Demining: Blast Test

    Directory of Open Access Journals (Sweden)

    Emanuela Elisa Cepolina

    2008-11-01

    Full Text Available Power tillers are very simple and versatile machines with large scale diffusion in developing countries, where they are commonly used both for agriculture and for transportation purposes. A new integrated participatory approach that makes use of and improves local end-users knowledge has been used to design a new robotic system for humanitarian demining applications in Sri Lanka, using power tiller as core module. A demining machine composed by a tractor unit, a ground processing tool and a vegetation cutting tool is here presented together with results obtained from the first blast test on the preliminary version of tractor unit armouring. Different breakable connections between wheels and axle have been designed to cause physical detachment and interrupt the transmission of the shock wave released by the explosion of a mine under one wheel. Effects of explosions on different types of wheels and on the chassis have been recorded and commented.

  7. ESF BLAST DESIGN ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    E.F. fitch

    1995-03-13

    The purpose and objective of this design analysis are to develop controls considered necessary and sufficient to implement the requirements for the controlled drilling and blasting excavation of operations support alcoves and test support alcoves in the Exploratory Studies Facility (ESF). The conclusions reached in this analysis will flow down into a construction specification ensuring controlled drilling and blasting excavation will be performed within the bounds established here.

  8. Blast Overpressure Studies.

    Science.gov (United States)

    1998-05-01

    USAARL Contract Report No. CR-98-Ö3 Blast Overpressure Studies By Daniel L. Johnson EG&G Management Systems, Inc. Albuquerque, New Mexico May...Both studies were done at the Blast Overpressure-Kirtland Test Site (BOP-KTS) in New Mexico . Under a contract conducted for the USAMRMC, EG&G was... TDH -4 9 elements mounted in a David Clark 9AN/2 ear muff for added noise isolation. The calibration of the earphones was accomplished using a Bruel

  9. Drying of Concrete

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Geiker, Mette Rica; Nygaard, Peter Vagn;

    2002-01-01

    Estimated and measured relative humidity (RH) change during drying are compared for two concretes, 1: w/c=0.46 and 2: w/(c+0.5fa+2sf)=0.50. The estimations were undertaken by means of the Swedish program TorkaS 1.0. Measurements were performed by RH-sensors type Humi-Guard. Drying of 150 mm thick...... samples from sides at 60% RH and 22 °C took place from 4 to 56 days after casting. At the end of the drying period the measured RH was about 4% lower than the estimated RH at 1/5th depth from the exposed surface for both concretes. In the middle of the samples, the measured RH of concretes 1 and 2 were 2...

  10. Drying of Concrete

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Geiker, Mette Rica; Nygaard, Peter Vagn

    2002-01-01

    Estimated and measured relative humidity (RH) change during drying are compared for two concretes, 1: w/c=0.46 and 2: w/(c+0.5fa+2sf)=0.50. The estimations were undertaken by means of the Swedish program TorkaS 1.0. Measurements were performed by RH-sensors type Humi-Guard. Drying of 150 mm thick...... samples from sides at 60% RH and 22 °C took place from 4 to 56 days after casting. At the end of the drying period the measured RH was about 4% lower than the estimated RH at 1/5th depth from the exposed surface for both concretes. In the middle of the samples, the measured RH of concretes 1 and 2 were 2...

  11. Water Entrainment in Concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben

    This report gives a survey of different techniques for incorporation of designed, water-filled cavities in concrete: Water entrainment. Also an estimate of the optimum size of the water inclusions is given. Water entrainment can be used to avoid self-desiccation and self-desiccation shrinkage...... during hydration [1,26]. What is needed is some sort of container which retains the shape of the water when mixed into the concrete. The container may function based on several different physical or chemical principles. Cells and gels are examples of containers found in nature. A cell membrane provides...... a boundary to water, whereas a polymer network incorporates water in its intersticious space with its affinity due to interaction energy and polymer entropy. Such containers allow water to be stored as an entity. In relation to concrete the water encapsulation may be accomplished either before or after start...

  12. The Demolition of a Reinforced Concrete Building by Using Explosives and Examination of It’s Efficiency

    Directory of Open Access Journals (Sweden)

    Meriç Can ÖZYURT

    2016-08-01

    Full Text Available Within the scope of urban transformation new demolition techniques are seeked due to the old and damaged buildings to be demolished. Considering the advantages, controlled structure destruction by explosives is a remarkable technique that is applied successfully in abroad countries for years.In this study, the controlled demolition of Edirne Kapıkule Customs Building by using explosives was done. For this purpose, the building plan is determined by using tape measure and modelled in PC. Building’s material properties are found as a result of laboratory studies and information about building’s static balance is obtained. To determine charge, trial blasting on columns are done. From these results appropriate firing sequence is determined. The determined firing sequence is performed on the model, generated by using a finite element analyzing software. The behavior of the building, loads on columns during the demolition, are determined. The loads on columns are compared with the column’s carrying capacity. As a result of this, the deformation of the building after demolition is over, is foreseen. After the operation, it could be said that demolition achieved its goal. But the predicted deformation didn’t occur on the structure elements, explosives weren’t placed in. The reasons for this were examined.When the comparison of demolition by using machine cost and demolition by using explosives cost, the demolition by using machine is more advantageous because of less number of floors. It ıs observed that, measured vibration values  are not adequate  to cause damage on reinforced concrete buildings.

  13. Alternative concrete based on alkali-activated slag

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2008-09-01

    Full Text Available This article reports the results of related to on the performance of concrete made with waterglass (Na2SiO3•nH2O + NaOH-activated Colombian granulated blast furnace slag. The mechanical strength and durability properties this alkali-activated slag concrete (AAS were compared to the properties of ordinary Portland cement concrete (OPC with the same proportion of binder, which ranged from 340 to 512 kg per m3 of concrete. The results indicated that increasing the proportion of slag led to improvements in the properties studied.El propósito de este artículo es dar a conocer los resultados de la evaluación del comportamiento de mezclas de hormigón producidas a partir de la activación con waterglass (Na2SiO3•nH2O + NaOH de una escoria siderúrgica granulada de alto horno colombiana. Las propiedades mecánicas y de durabilidad de los hormigones activados alcalinamente (AAS se comparan con las correspondientes mezclas de hormigón de cemento Portland (OPC producidas con igual proporción de ligante. Estas proporciones variaron entre 340 y 512 kg por m3 de hormigón. Los resultados obtenidos indican que incrementos en la proporción de la escoria contribuye a la mejora de las propiedades evaluadas.

  14. Study on durability of high performance concrete with industrial wastes

    Directory of Open Access Journals (Sweden)

    Jeyaraj R

    2010-08-01

    Full Text Available Long-term performance of structures has become vital to the economies of all nations. Concrete has been the major instrument for providing stable and reliable Infrastructure. Deterioration, long term poor performance, and inadequate resistance to hostile environment, coupled with greater demands for more sophisticated architectural form, led to the accelerated research into the microstructure of cements and concretes and more elaborate codes and standards. As a result, innovations of supplementary materials and composites have been developed.In other side, India has an enormous growth in the steel and copper industries. The following are major by products from these industries: copper slag - a by-product of copper refinery, and ground granulated blast furnace slag (GGBS - a by-product in the manufacture of iron in steel industry. If they are not disposed off properly, they may cause environmental hazards to the surrounding area. Considering the long term performance and stability of structures, this study suggests replacing some percentage of fine aggregate with copper slag and some percentage of cement with GGBS to develop high performance concrete. This paper presents an experimental investigation to assess the durability parameters of high performance concrete with the industrial wastes. Durability parameters such as water absorption and chloride penetration are to be studied.

  15. Electrokinetic decontamination of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lomasney, H. [ISOTRON Corp., New Orleans, LA (United States)

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  16. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are devel......This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas...

  17. Ancient concrete works

    CERN Document Server

    Sparavigna, Amelia Carolina

    2011-01-01

    It is commonly believed that the ancient Romans were the first to create and use concrete. This is not true, as we can easily learn from the Latin literature itself. For sure, Romans were able to prepare high-quality hydraulic cements, comparable with the modern Portland cements. In this paper, we will see that the use of concrete is quite older, ranging back to the Homeric times. For instance, it was used for the floors of some courts and galleries of the Mycenaean palace at Tiryns

  18. Concentrated loads on concrete

    DEFF Research Database (Denmark)

    Lorenzen, Karen Grøndahl; Nielsen, Mogens Peter

    1997-01-01

    This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas are devel......This report deals with concentrated loads on concrete.A new upper bound solution in the axisymmetrical case of a point load in the center of the end face of a cylinder is developed.Based on previous work dealing with failure mechanisms and upper bound solutions, new approximate formulas...

  19. Dynamic behaviour of “Collapsible” concrete

    Directory of Open Access Journals (Sweden)

    Caverzan Alessio

    2015-01-01

    Full Text Available In this work a particular cement composite material for protection of structures and infrastructures against accidental actions, such as blast or impact, has been investigated. An experimental procedure has been developed in order to assess static and dynamic behaviour of energy absorbing cementitious composites. The granular cementitious composite has been studied focusing attention to compressive strength, high deformation and energy dissipation capacity which are important characteristics for an absorber material. An experimental characterization of the material behaviour under compressive static and dynamic loadings has been carried out. Different deformation velocities have been studied in order to define the material behaviour in a wide range of strain rates. The velocity range up to 0.1 m/s is investigated by means of a universal servo-hydraulic MTS 50 kN testing machine. Some preliminary results have been reported and discussed in the present work.

  20. Experimental study on workability of alkali activated fly ash and slag-based geopolymer concretes

    NARCIS (Netherlands)

    Arbi, K.A.; Nedeljkovic, M.; Zuo, Y.; Grunewald, S.; Keulen, A.; Ye, G.

    2015-01-01

    This paper presents an investigation on workability and strength of geopolymer concrete made of fly ash (FA), blast furnace slag (BFS) and a multicompound activator of Na2SiO3 and NaOH solutions. The FA/BFS ratios were 100:0, 70:30, 60:40, 50:50, 40:60, 30:70 and 0:100. The workability of geopolymer

  1. Comparison of local stress values obtained by two measuring methods on blast furnace shell

    Directory of Open Access Journals (Sweden)

    P. Bigoš

    2015-01-01

    Full Text Available This paper describes measuring of time behaviour specified for local stress increments on the blast furnace shell that were performed using strain gauge sensors. These results are compared with values obtained by means of the second specific measuring method. There is also presented in this paper a commentary and discussion concerning the measured time behaviour obtained from the both measuring methods. This article presents results from another of experimental analysis series concerning the blast furnace shell in one concrete metallurgical plant.

  2. X-ray studies of the domain formation in rocks under blasting

    Science.gov (United States)

    Sharkov, M. D.; Boiko, M. E.; Boiko, A. M.; Borovikov, V. A.; Grigor'ev, M. N.; Konnikov, S. G.

    2016-11-01

    Quartz plates placed in concrete are used to model the rock blasting procedure. Quartz fragments resulted from blasting are studied by small-angle X-ray scattering. Obtained grains in the quartz fragments are approximately 200-220 nm in size. The samples are discovered to contain low-dimensional (linear) components; the further the sample is from the explosion center, the coarser the grains are in it. Superlattice parameters of the studied fragments are estimated. It is suggested that domain boundaries in the sample quartz fragments are linear objects, such as dislocation walls.

  3. Corrosion Inhibitors for Reinforced Concrete

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Steel corrosion in reinforced concrete structures has been a major problem across the U.S. Steel-reinforced concrete structures are continually subject to attack by corrosion brought on by naturally occurring environmental conditions. FerroGard, a corrosion inhibitor, developed by Sika Corporation, penetrates hardened concrete to dramatically reduce corrosion by 65% and extend the structure's service life.

  4. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  5. Damage Assessment for Buried Structures Against Internal Blast Load

    Institute of Scientific and Technical Information of China (English)

    MA Guowei; HUANG Xin; LI Jianchun

    2008-01-01

    The soil-structure interaction(SSI)decoupling is applied to simplify buried structure against internal blast lpad as spring effect.Shear failure.bending failure and Combined failure modes are considered based on five transverse velocity profiles for the rigid-plastic structural element.The critical equations for shear and bending failure are derived respectively.Pressure impulse diagrams are accordingly developed to assess damage of the buried structures against internal blast lpad.Cornparison is done to show influences of soil-structure interaction and shear to-bending strength ratio of a structural element.A case study is conducted to show the application of damage assessment to a reinforced concrete beam element of buried structure.

  6. Mechanical Characteristics of Hardened Concrete with Different Mineral Admixtures: A Review

    Science.gov (United States)

    2014-01-01

    The available literature identifies that the addition of mineral admixture as partial replacement of cement improves the microstructure of the concrete (i.e., porosity and pore size distribution) as well as increasing the mechanical characteristics such as drying shrinkage and creep, compressive strength, tensile strength, flexural strength, and modulus of elasticity; however, no single document is available in which review and comparison of the influence of the addition of these mineral admixtures on the mechanical characteristics of the hardened pozzolanic concretes are presented. In this paper, based on the reported results in the literature, mechanical characteristics of hardened concrete partially containing mineral admixtures including fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA) are discussed and it is concluded that the content and particle size of mineral admixture are the parameters which significantly influence the mechanical properties of concrete. All mineral admixtures enhance the mechanical properties of concrete except FA and GGBS which do not show a significant effect on the strength of concrete at 28 days; however, gain in strength at later ages is considerable. Moreover, the comparison of the mechanical characteristics of different pozzolanic concretes suggests that RHA and SF are competitive. PMID:24688443

  7. Mechanical Characteristics of Hardened Concrete with Different Mineral Admixtures: A Review

    Directory of Open Access Journals (Sweden)

    Tehmina Ayub

    2014-01-01

    Full Text Available The available literature identifies that the addition of mineral admixture as partial replacement of cement improves the microstructure of the concrete (i.e., porosity and pore size distribution as well as increasing the mechanical characteristics such as drying shrinkage and creep, compressive strength, tensile strength, flexural strength, and modulus of elasticity; however, no single document is available in which review and comparison of the influence of the addition of these mineral admixtures on the mechanical characteristics of the hardened pozzolanic concretes are presented. In this paper, based on the reported results in the literature, mechanical characteristics of hardened concrete partially containing mineral admixtures including fly ash (FA, silica fume (SF, ground granulated blast furnace slag (GGBS, metakaolin (MK, and rice husk ash (RHA are discussed and it is concluded that the content and particle size of mineral admixture are the parameters which significantly influence the mechanical properties of concrete. All mineral admixtures enhance the mechanical properties of concrete except FA and GGBS which do not show a significant effect on the strength of concrete at 28 days; however, gain in strength at later ages is considerable. Moreover, the comparison of the mechanical characteristics of different pozzolanic concretes suggests that RHA and SF are competitive.

  8. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...

  9. Designing concrete for durability

    Directory of Open Access Journals (Sweden)

    Boyd, A. J.

    2001-12-01

    Full Text Available Some of the factors affecting the durability of modern concrete structures are discussed, with an emphasis on the problems caused by modern portland cements. This is followed by a description of some concrete durability issues of current interest, such as plastic shrinkage, seawater attack, and sulfate attack. The strategies for testing for durability are also discussed. It is concluded that, to produce durable concretes, a holistic approach to concrete construction must be adopted.

    Se discuten algunos de los factores que influyen en la durabilidad de las estructuras de hormigón modernas, haciendo énfasis en los problemas causados por el cemento Portland. A esto sigue una descripción de algunas cuestiones de interés general de la durabilidad del hormigón tales como la retracción plástica, el ataque por agua de mar y el ataque por sulfatos. Se discuten también las estrategias de los ensayos de durabilidad. Se concluye que para producir hormigones durables se debe adoptar un enfoque holístico de la construcción con hormigón.

  10. Teaching concrete structures

    DEFF Research Database (Denmark)

    Goltermann, Per

    2014-01-01

    The teaching of concrete structures has been revised and a number of new approaches have been developed, implemented and evaluated. Inductive teaching, E-learning and “patches” have been found to be improvements and may be an inspiration and help for others development of the teaching and learning...

  11. Micromechanics of Concrete.

    Science.gov (United States)

    1988-01-25

    reflects the dispersion of the coarse aggregates on the mesoscale. Specifically, the experimental measure- ments indicate ( Mindess and Young 1981, Zaitsev...Mecanique des Materiaux Solides, Dunod, Paris. Mindess , S. and J. Young (1981), Concrete, Prentice-Hall Inc., Englewood Cliffs, NJ. Mura, T. (1982

  12. Mechanics of Concrete II

    Science.gov (United States)

    1990-10-18

    Mindess (1981) also agrees with the first of the two reactions but allows for transformation of the ettringite to monosulphate in the case when all...Comp. Materials, 23, pp. 163-194. 3 Mindess , S. and J. F. Young (1981), Concrete, Prentice Hall, Englewood Clifs, N.J. * 74 I Moavenzadeh, F.(1971

  13. Structural concrete and sustainability

    CSIR Research Space (South Africa)

    Grieve, G

    2010-04-01

    Full Text Available the typical specific CO2 per ton of cementitious binder is about 765 kg. However, the effect of this is significantly diluted by the addition of aggregates (around 80% of the mass of a cubic meter of concrete) and cement extenders, of which many are industrial...

  14. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...

  15. Forterra Concrete Products, Inc.

    Science.gov (United States)

    The EPA is providing notice of a proposed Administrative Penalty Assessment against Forterra Concrete Products, Inc., a business located at 511 E. John Carpenter Freeway, Irving, TX, 75062, for alleged violations at its facility located at 23600 W. 40th St

  16. Electrical pulses protect concrete

    NARCIS (Netherlands)

    Van Kasteren, J.

    2006-01-01

    Even concrete is not as hard as it looks. Sea water, salt on icy roads, and indirectly even carbon dioxide from the air can corrode the steel of the reinforcing bars and so threaten the strength and integrity of a bridge pier, jetty, or viaduct. Dessi Koleva, a chemical engineer from Bulgaria, spent

  17. Concrete Block Pavements

    Science.gov (United States)

    1983-03-01

    1967, Cedergren 1974, Federal Highway .’,U .. V,47 -’":: 37 Administration 1980). Block pavements have essentially the same prob- lems with moisture...Vicksburg, Miss. Cedergren , H. R. 1974. Drainage of Highway and Airfield Pavements, John Wiley and Sons, New VOk. I Cement and Concrete Association

  18. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In ord

  19. Hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.

    1996-01-01

    As part of the maintenance policy of the Dutch Ministry of Transport, Civil Engineering Division, hydrophobic treatment of concrete was considered as an additional protective measure against penetration of aggressive substances, for instance deicing salts in bridge decks. A set of tests was designed

  20. Hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J.de; Polder, R.B.

    1997-01-01

    As part of the maintenance policy of the dutch Ministry of Transport, Civil Engineering Division, hydrophobic treatment of concrete was considered as an additional protective measure against penetration of aggressive substances, for instance deicing salts in bridge decks. A set of tests was designed

  1. Fracture Mechanics of Concrete

    DEFF Research Database (Denmark)

    Ulfkjær, Jens Peder

    Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high-strength......Chapter 1 Chapter l contains the introduction to this thesis. The scope of the thesis is partly to investigate different numerical and analytical models based on fracture mechanical ideas, which are able to predict size effects, and partly to perform an experimental investigation on high......-strength concrete. Chapter 2 A description of the factors which influence the strength and cracking of concrete and high strength concrete is made. Then basic linear fracture mechanics is outlined followed by a description and evaluation of the models used to describe concrete fracture in tension. The chapter ends...... with a description of the different types of size effects. Three examples which discuss the two terms 'size effect' and 'brittleness' and the importance of a stiff test rig. Finally some brittleness numbers are defined. Chapter 3 In chapter 3 the most well-known numerical methods which use the fictitious crack...

  2. Precast Concrete Pavements

    Science.gov (United States)

    1981-11-01

    Gorsuch 1962, Kruse 1966, Jacoby 1967, and Hargett 1970). The final slab design used in construction is shown in Figure 2. These slabs were 6 ft wide, 24...Experiment Station, CE, Vicksburg, Miss. Gorsuch , R. F. 1962. "Preliminary Investigation of Precast Prestressed Concrete Pavements," MS Thesis, South Dakota

  3. From concrete repair to concrete conservation: How to preserve the heritage values of historic concrete

    NARCIS (Netherlands)

    Heinemann, H.A.; Zijlstra, H.; Hees, R.P.J. van; Nijland, T.G.

    2012-01-01

    The conservation of historic concrete is an increasing task, challenging both concrete repair specialists and conservation specialists. In practice, too often repair strategies are followed where conservation strategies would have been necessary. The application of repair techniques poses two threat

  4. Sulfate resistance of concrete containing high volume of mineral admixtures[ACI SP-234-37

    Energy Technology Data Exchange (ETDEWEB)

    Irassar, E.F. [Buenos Aires Central State Univ., Olavarria (Argentina). Dept. of Civil Engineering; Batic, O.R. [La Plata Univ., (Argentina)]|[Commission of Scientific Research of Buenos Aires (Argentina); Di Maio, A. [La Plata Technilogical Univ. (Argentina)]|[CONICET-LEMIT (Argentina); Ponce, J.M. [LEMIT-CIC (Argentina)]|[La Plata Univ. (Argentina). Faculty of Natural Sciences

    2006-07-01

    Various physical and chemical processes that influence the durability of concrete structures were discussed. For underground or on grade structures, the durability of concrete depends on the chemical composition of concrete and the concentration of ionic species present in the soil or groundwater, the permeability of soil, exposition to water, the flow of water, and the shape and size of structure. It also depends on the quality of concrete in terms of compaction, water to cementitious ratio, cementitious content, type of cementitious materials, and curing process. The rate and course of concrete deterioration also depends on environmental conditions such as low temperature, temperature cycles between day and night, and the relative humidity of ambient air. Durable foundations in a sulfate environment require a low permeability concrete in order to assure good compaction and curing procedures. The type of cementitious material is also important in preventing deterioration. This paper summarized 15 years of results related to the effect of high volume mineral admixtures on the sulfate resistance of concrete. A mechanism of concrete degradation was presented based on macroscopic and microscopic behaviour. The physical and chemical attack produced by sulfate soils was emphasized. The presentation outlined the materials used, mixture proportions, curing, exposure conditions, inspection, compressive strength test methods and microstructural analyses. It was shown that a combination of portland cement with a high volume of appropriate fly ash, natural pozzolan or granulated blast-furnace slag provides an excellent performance for concrete structures buried in harsh alkali sulfate soils. Concretes with high volume of mineral admixtures are more susceptible to the physical salt attack caused by cycles of wetting and drying that produce progressive scaling and mass loss. 21 refs., 3 tabs., 11 figs.

  5. Self-compacting concrete (SCC)

    DEFF Research Database (Denmark)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...

  6. Early Property Development in Concrete

    DEFF Research Database (Denmark)

    Normann, Gitte; Munch-Petersen, Christian

    2014-01-01

    The Freiesleben Maturity function is widely used for planning of execution. We tested if for concrete with and without fly ash. The test showed surprisingly that the maturity function in general is not valid. We found that curing at high temperature gave a significant decrease in strength. Fly ash...... appears to reduce this decrease somewhat. We also examined the resistance against chloride penetration for the different concrete types. The resistance was reduced at high temperatures for concrete without fly ash. For concrete with fly ash, it was the opposite; concrete with fly ash obtained higher...

  7. Improvement of impact-resistance of a nuclear containment building using fiber reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Se-Jin, E-mail: conc@ajou.ac.kr [Ajou University, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16499 (Korea, Republic of); Jin, Byeong-Moo [DAEWOO E& C, Institute of Construction Technology, 20, Suil-ro 123beon-gil, Jangan-gu, Suwon-si, Gyeonggi-do 16297 (Korea, Republic of)

    2016-08-01

    Highlights: • Impact-resistance of a structure can be improved by fiber reinforced concrete (FRC). • Material modeling of FRC is incorporated into finite element analysis of a structure. • A new index for impact-resistance is proposed based on plastic dissipation energy. • A nuclear power plant made of FRC shows improved resistance against aircraft crashes. - Abstract: Since the act of terrorism that occurred in the USA on September 11, 2001, the protection of nuclear power plants against large commercial aircraft crashes has been an emerging issue. Besides the verification of the safety of nuclear power plants in operation or in design, efficient methods for improving the impact-resistance of these structures have been investigated. Fiber reinforced concrete (FRC) has been generally accepted as an effective material for this purpose. In particular, FRC has been developed to improve the tensile behavior of concrete such as tensile strength, ductility and toughness. One of the main fields of application of FRC can be found in blast-protective or blast-resistant concrete structures. It is expected, therefore, that safety-related structures in a nuclear power plant can also be effectively protected from external blast, aircraft crash, etc. by applying FRC. In order to analytically verify the effect on structural behavior of applying FRC, the particular material properties of FRC should be incorporated into the material modeling of a structural analysis program. This study investigates the mathematical modeling of FRC, which represents various aspects of material behavior. Two numerical examples are provided to show the improved impact-resistance of a nuclear containment building that is expected when applying FRC in comparison with ordinary concrete. The analysis results show that the displacement decreases by 43–67% while the impact-resistance increases by 40–82%, depending on a fiber type.

  8. Machine testning

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo

    This document is used in connection with a laboratory exercise of 3 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercise includes a series of tests carried out by the student on a conventional and a numerically controled lathe, respectively. This document...

  9. Representational Machines

    DEFF Research Database (Denmark)

    Petersson, Dag; Dahlgren, Anna; Vestberg, Nina Lager

    to the enterprises of the medium. This is the subject of Representational Machines: How photography enlists the workings of institutional technologies in search of establishing new iconic and social spaces. Together, the contributions to this edited volume span historical epochs, social environments, technological...

  10. Dynamic Tensile Properties of Concrete under Different Environments

    Institute of Scientific and Technical Information of China (English)

    YAN Dongming; LIN Gao

    2006-01-01

    By using an MTS810 hydra-electro-servo universal machine, the effect of moisture content and temperature on the rate sensitivity of concrete was investigated, the range of strain rate was varying from 10-5 /s to 10-0.3/s. It is concluded from the tests that the water content has a significant influence on the rate sensitivity of concrete whereas the temperature has a slight one, and the effects of rate sensitivity are attributed to both the viscosity caused by free water and the transformation of fracture mode when subjected to a high strain rate. The dynamic strength, initial modulus of elasticity , critical strain, Poisson ratio and energy absorption properties were studied systematically. It is found that the strength, initial modulus of elasticity, critical strain, and energy absorption capacity of concrete all increase with the increasing strain rate, whereas Poisson ratio keeps almost unchanged.

  11. Life Cycle Assessment of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Sjunnesson, Jeannette

    2005-09-15

    This is an environmental study on concrete that follows the standard protocol of life cycle assessment (LCA). The study is done for two types of concrete, ordinary and frost-resistant concrete, and has an extra focus on the superplasticizers used as admixtures. The utilization phase is not included in this study since the type of construction for which the concrete is used is not defined and the concrete is assumed to be inert during this phase. The results show that it is the production of the raw material and the transports involved in the life cycle of concrete that are the main contributors to the total environmental load. The one single step in the raw material production that has the highest impact is the production of cement. Within the transportation operations the transportation of concrete is the largest contributor, followed by the transportation of the cement. The environmental impact of frost-resistant concrete is between 24-41 % higher than that of ordinary concrete due to its higher content of cement. Superplasticizers contribute with approximately 0.4-10.4 % of the total environmental impact of concrete, the least to the global warming potential (GWP) and the most to the photochemical ozone creation potential (POCP). Also the toxicity of the superplasticizers is investigated and the conclusion is that the low amount of leakage of superplasticizers from concrete leads to a low risk for the environment and for humans.

  12. Python for probability, statistics, and machine learning

    CERN Document Server

    Unpingco, José

    2016-01-01

    This book covers the key ideas that link probability, statistics, and machine learning illustrated using Python modules in these areas. The entire text, including all the figures and numerical results, is reproducible using the Python codes and their associated Jupyter/IPython notebooks, which are provided as supplementary downloads. The author develops key intuitions in machine learning by working meaningful examples using multiple analytical methods and Python codes, thereby connecting theoretical concepts to concrete implementations. Modern Python modules like Pandas, Sympy, and Scikit-learn are applied to simulate and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, and regularization. Many abstract mathematical ideas, such as convergence in probability theory, are developed and illustrated with numerical examples. This book is suitable for anyone with an undergraduate-level exposure to probability, statistics, or machine learning and with rudimentary knowl...

  13. Numerical Simulation of Dynamic Response and Collapse for Steel Frame Structures Subjected to Blast Load

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiuhua; DUAN Zhongdong; ZHANG Chunwei

    2008-01-01

    The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA.The multi-material Eulerian and Lagrangian coupling algorithm was adopted.A fluid-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground,multiple ALE element for simulating air and TNT explosive material.Numerical simulations of the blast pressure wave propagation,structural dynamic responses and deformation,and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed.The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure.The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation.The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic deformation subjected to intensive blast waves,and columns lost carrying capacity,subsequently leading to the collapse of the whole structure.The approach coupling influence between structural deformation and fluid load well simulated the progressive collapse process of structures,and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.

  14. Effect of shot peening and grit blasting on surface integrity: Influence on residual stresses

    Institute of Scientific and Technical Information of China (English)

    K.TOSHA; LU Jian

    2006-01-01

    The influences of factors such as particle size (0.55-2.2 mm), particle velocity (15-35 m/s) and thickness of work material on the surface integrity were investigated. The residual stresses induced by shot peening or grit blasting were examined. In order to clarify the influences of those factors on residual stress included in the surface integrity, a medium carbon steel (w(C)= 0.45%, 180 HV) was peened by a centrifugal type peening machine using cast steel particles (650-800 HV). The results show that the compressive residual stresses on the peened surface are larger than those of grit blasting; the critical thickness of shot peening is about 50% thicker than that of grit blasting; the high compressive stresses induced by blasting are owing to the wrought or peening effect.

  15. Adding machine and calculating machine

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In 1642 the French mathematician Blaise Pascal(1623-1662) invented a machine;.that could add and subtract. It had.wheels that each had: 1 to 10 marked off along its circumference. When the wheel at the right, representing units, made one complete circle, it engaged the wheel to its left, represents tens, and moved it forward one notch.

  16. Tonsil concretions and tonsilloliths.

    Science.gov (United States)

    Pruet, C W; Duplan, D A

    1987-05-01

    Although infrequently seen in many clinical practices, tonsillar concretions can be the source of both fetor oris and physical and social concern for the patient. Though stones rarely form in the tonsil or peritonsillar area, the findings of calcified objects or stones anywhere within the body has long been a subject of interest. The salient features of these entities and their relevance to clinical practice are discussed in this article.

  17. Alkali-activated concrete with Serbian fly ash and its radiological impact.

    Science.gov (United States)

    Nuccetelli, Cristina; Trevisi, Rosabianca; Ignjatović, Ivan; Dragaš, Jelena

    2017-03-01

    The present paper reports the results of a study on different types of fly ash from Serbian coal burning power plants and their potential use as a binder in alkali-activated concrete (AAC) depending on their radiological and mechanical properties. Five AAC mixtures with different types of coal burning fly ash and one type of blast furnace slag were designed. Measurements of the activity concentrations of (40)K, (226)Ra and (232)Th were done both on concrete constituents (fly ash, blast furnace slag and aggregate) and on the five solid AAC samples. Experimental results were compared by using the activity concentration assessment tool for building materials - the activity concentration index I, as introduced by the EU Basic Safety Standards (CE, 2014). All five designed alkali-activated concretes comply with EU BSS screening requirements for indoor building materials. Finally, index I values were compared with the results of the application of a more accurate index - I(ρd), which accounts for thickness and density of building materials (Nuccetelli et al., 2015a). Considering the actual density and thickness of each concrete sample index - I(ρd) values are lower than index I values. As an appendix, a synthesis of main results concerning mechanical and chemical properties is provided.

  18. Design of ultra-lightweight concrete: towards monolithic concrete structures

    Directory of Open Access Journals (Sweden)

    Yu Qing Liang

    2014-04-01

    Full Text Available This study addresses the development of ultra-lightweight concrete. A moderate strength and an excellent thermal conductivity of the lightweight concrete are set as the design targets. The designed lightweight aggregates concrete is targeted to be used in monolithic concrete façade structure, performing as both load bearing element and thermal insulator. The developed lightweight concrete shows excellent thermal properties, with a low thermal conductivity of about 0.12 W/(m·K; and moderate mechanical properties, with 28-day compressive strengths of about 10-12 N/mm . This combination of values exceeds, to the researchers’ knowledge, the performance of all other lightweight building materials. Furthermore, the developed lightweight concrete possesses excellent durability properties.

  19. Genesis machines

    CERN Document Server

    Amos, Martyn

    2014-01-01

    Silicon chips are out. Today's scientists are using real, wet, squishy, living biology to build the next generation of computers. Cells, gels and DNA strands are the 'wetware' of the twenty-first century. Much smaller and more intelligent, these organic computers open up revolutionary possibilities. Tracing the history of computing and revealing a brave new world to come, Genesis Machines describes how this new technology will change the way we think not just about computers - but about life itself.

  20. Influence of cementitious additions on rheological and mechanical properties of reactive powder concretes

    Science.gov (United States)

    Zenati, A.; Arroudj, K.; Lanez, M.; Oudjit, M. N.

    2009-11-01

    Following needs of concrete market and the economic and ecological needs, several researchers, all over the world, studied the beneficial effect which the incorporation of the mineral additions in Portland cement industry can bring. It was shown that the incorporation of local mineral additions can decrease the consumption of crushing energy of cements, and reduce the CO2 emission. Siliceous additions, moreover their physical role of filling, play a chemical role pozzolanic. They contribute to improving concrete performances and thus their durability. The abundance of dunes sand and blast furnace slag in Algeria led us to study their effect like cementitious additions. The objective of this paper is to study the effect of the incorporation of dunes sand and slag, finely ground on rheological and mechanical properties of reactive powder concretes containing ternary binders.

  1. Recycling of industrial waste and performance of steel slag green concrete

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; YAO Yan; WANG Ling

    2009-01-01

    Workability and mechanical properties of steel slag green concrete with different types of steel slag and different dosages of admixtures were investigated. The effectiveness of steel slag powder on suppressing alkali aggregate reaction (AAR) expansion was assessed using the method of ASTM C441 and accelerated test method. Experimental results show that mechanical properties can be improved further due to the synergistic effect and mutual activation when compound mineral admixtures with steel slag powder and blast-furnace slag powder are mixed into concrete, in addition, about 50% decrease in expansion rate of mortar bars with mineral admixtures can be achieved in AAR tests. Mineral admixtures with steel slag powder as partial replacement for Portland cement in concrete is an effective means for controlling expansion due to AAR.

  2. Early age shrinkage pattern of concrete on replacement of fine aggregate with industrial by-product

    Directory of Open Access Journals (Sweden)

    R.K. Mishra

    2016-10-01

    Full Text Available This is an experimental work carried out to investigate early age shrinkage pattern of concrete, prepared, on 50% replacement of industrial by-product (like pond ash and granulated blast furnace slag as fine aggregate using OPC, PPC and PSC as a binder. This is to observe the effect of pond ash and slag as they are having some cementitious properties and effect of cement type is also discussed. All the mixes were prepared keeping in view of pumpable concrete without any super plasticizers. Higher shrinkage value indicates the presence of more bleed water or internal moisture. It is concluded that slag is the best option for fine aggregate replacement for concrete making and durable structure.

  3. Effect of NGBFS and CBA as fine aggregate on the chloride permeability of concrete

    Directory of Open Access Journals (Sweden)

    İsa Yüksel

    2013-09-01

    Full Text Available This paper presents the results of an investigation which was about influence of non-ground Coal Bottom Ash (CBA and Non-Ground Granulated Blast-Furnace Slag (NGBFS as fine aggregate on rapid chloride permeability of concrete. Series of Rapid Chloride Permeability Test (RCPT were conducted with concrete specimens containing NGBFS and CBA in varying percentages from 10 to 50% with the step of 10% of fine aggregate by weight. Two basic series concrete specimens were prepared in laboratory. The first series (G was contained NGBFS, the second series (B was contained CBA as fine aggregate. Test results indicated that NGBFS or CBA improves the resistance to chloride ion penetration tosome extent. 30% and 10% replacement ratios were selected as optimum replacement ratios for G and B series. It was concluded that GBFS was more impressive then CBA for blocking chloride ion movements.

  4. Dual-durometer soft suction foot robot for concrete inspection

    Science.gov (United States)

    Huston, Dryver; Burns, Dylan; Gardner-Morse, John; Montane, Paul; Angola, Enrique

    2014-03-01

    Climbing on concrete, masonry and brick with automated machines is difficult due to the uneven surfaces that prevent getting a good grip. This paper describes developments in using dual-durometer pneumatic suction feet for gripping onto concrete surfaces as part of a multi-legged robotic climbing system for inspecting concrete structures with vertical walls. The dual durometer technique presents a compliant suction tip to the concrete thereby producing a good seal against an irregular surface, and stiff component to deliver the structural rigidity needed for walking and climbing. Individually actuated pneumatic Venturi vacuum generators provide the suction from positive pneumatic pressure in a manner that is robust against leaks that cause the systemic vacuum collapse that can plague other vacuum configurations. The feet are attached to a six-legged robot that with a nominal floor walking capability and gait. Climbing a wall requires modification to leg actuation and gait, along with suction feet. System design, integration, concrete wall climbing performance and sensor deployment in the form of a lightweight ground penetrating radar system are presented.

  5. Effective dust control systems on concrete dowel drilling machinery.

    Science.gov (United States)

    Echt, Alan S; Sanderson, Wayne T; Mead, Kenneth R; Feng, H Amy; Farwick, Daniel R; Farwick, Dawn Ramsey

    2016-09-01

    Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels.

  6. Let’s Get Concrete!

    DEFF Research Database (Denmark)

    Jones, Candace; Boxenbaum, Eva

    Scholars emphasize the cognitive or ideational aspects of institutional logics. Less clear is the role of materiality, which is a key aspect of institutional logics, and aesthetic responses to material objects. This study focuses on the introduction of a new building material—concrete— during 1890......-legitimated not only concrete but also stone. Concrete was perceived as merely imitative and thus inauthentic. For concrete to become a legitimate and widely adopted material, architects had to theorize concrete as unique material with distinctive aesthetic possibilities, which led to new kinds of buildings and new...... to 1939 in the architectural profession. Our findings reveal that how professional logics were enacted drove different process for incorporating concrete as a legitimate building material: in France professional and state logics combined to create regulations that governed architects’ use of concrete...

  7. Chlorine signal attenuation in concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  8. Performance of High-Strength Concrete Using Palm Oil Fuel Ash as Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    Dr. M. Swaroopa Rani

    2015-04-01

    Full Text Available The advancement in material technology has led to development of concrete with higher strengths. Presence of high cementitious materials contents in high strength concrete mixes increases heat of hydration that causes higher shrinkage and leading it to potential of cracking. However, use of supplementary cementitious materials leads to control in heat of hydration which further avoids higher shrinkage. Materials such as fly ash, silica fume, metakaolin and ground granulated blast furnace slag are largely been used as supplementary cementitious materials in High strength concrete mixes. In the present study use of palm oil fuel ash (POFA as partial cement replacement in high strength concrete mixes is evaluated with an experimental study. High strength concrete mix of M60 grade is taken as a reference and the compressive strength, split tensile strength and flexural strength where performed for 7, 28 and 56 days and analyzed it with results for partial replacement mixes of POFA 5%, 10%, 15%, 20% & 25%. It has been observed that concrete with 15% replacement of POFA gave the highest strength.

  9. Comparative analysis of results from experimental and numerical studies on concrete strength

    Directory of Open Access Journals (Sweden)

    Mkrtychev Oleg

    2017-01-01

    Full Text Available Some results of numerical experiments of testing concrete cubes and prisms on unconfined compression, and the comparison of results obtained with experimental and specified data, are presented in the article. When performing calculations of structures in a nonlinear setting, it is very important to choose adequate deformation diagrams or material models. Because of the fact that there are no instructions how to use the diagrams of concrete and armature deformation in collaboration of steel and concrete, the simulation of reinforced concrete structures by finite elements of the same type without any assumptions is impossible. Numerical experiments have been performed in the LS-DYNA software package. This software package allows simulating the collaboration of concrete and steeling with the help of three-dimensional (for concrete and rod (for the reinforcement finite elements. As samples, a cube and a prism with dimensions of 150×150×150 mm and 150×150×600 mm, respectively, have been taken. The samples are simulated by solid finite elements. For the simulation of concrete, the non-linear CSCM (Continuous Surface Cap Model material is used. The tests were carried out with samples of the following classes of concrete as for cylinder compressive strength: C12, C16, C20, C25, C30, C35. This corresponds to the following classes of cube compression strength: B15, B20, B25, B30, B37, B45. The tests have been carried out considering the friction coefficients between the plates of a testing machine, and a sample. The performed researches have shown that the destruction nature of the samples in a numerical experiment corresponds to the failure nature in real tests. The investigated model of CSCM concrete can be used in the calculation of concrete and reinforced concrete structures with acceptable accuracy for main classes of concrete.

  10. Effect of Coarse Aggregate and Slag Type on the Mechanical Behavior of High and Normal Weight Concrete Used at Barrage Structure

    Directory of Open Access Journals (Sweden)

    Muhammad Sanaullah

    2017-04-01

    Full Text Available Present study is an effort to assess the composite effect of limestone aggregate and blast furnace slag on the mechanical characteristics of normal and high weight concrete at various structural units (barrage girders, main weir and block apron of New Khanki Barrage Project, Punjab. Mix designs for different concrete classes falling under the domain of high and normal weight concrete were prepared after aggregate quality testing. On attaining satisfactory results of quality testing nine concrete mixes were designed (three for each class: A1, A and B by absolute volume method (ACI- 211.1. The required compressive strength of normal and high strength was set at 6200, 5200 and 4200 Psi for the concrete types A1, A and B respectively after 28 days (ACI -318. For compressive strength assessment, a total 27 concrete cylinders were casted (9-cylinders for each mix and were water cured. The achieved average UCS of cylinder concrete specimens at 3, 7 and 28 days are 5170, 6338 and 7320 Psi for A1 – type, 3210, 4187 and 5602 Psi for A-type and 2650, 3360 and 4408 Psi for B- type mix. It has been found that all concrete mixes for suggested classes attained target strength at age of 7-days. The coarse aggregate (Margala Hill limestone and fine aggregates (from Lawrancepur /Qibla Bandi quarries used in all concrete mix designs have demonstrated a sound mechanical suitability for high and normal weight concrete.

  11. Inspection Strategies for Concrete Bridges

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1989-01-01

    In this paper an optimal inspection strategy for concrete bridges based on periodic routine and detailed inspections is presented. The failure mode considered is corrosion of the reinforcement due to chlorides. A simple modelling of the corrosion and of the inspection strategy is presented....... The optimal inspection strategy is determined from an optimization problem, where the design variables are time intervals between detailed inspections and the concrete cover. The strategy is illustrated on a simple structure, namely a reinforced concrete beam....

  12. Inspection Strategies for Concrete Bridges

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1989-01-01

    In this paper an optimal inspection strategy for concrete bridges based on periodic routine and detailed inspections is presented. The failure mode considered is corrosion of the reinforcement due to chlorides. A simple modelling of the corrosion and of the inspection strategy is presented....... The optimal inspection strategy is determined from an optimization problem, where the design variables are time intervals between detailed inspections and the concrete cover. The strategy is illustrated on a simple structure, namely a reinforced concrete beam....

  13. Optimization of reinforced concrete slabs

    Science.gov (United States)

    Ferritto, J. M.

    1979-01-01

    Reinforced concrete cells composed of concrete slabs and used to limit the effects of accidental explosions during hazardous explosives operations are analyzed. An automated design procedure which considers the dynamic nonlinear behavior of the reinforced concrete of arbitrary geometrical and structural configuration subjected to dynamic pressure loading is discussed. The optimum design of the slab is examined using an interior penalty function. The optimization procedure is presented and the results are discussed and compared with finite element analysis.

  14. Optimization of reinforced concrete slabs

    Science.gov (United States)

    Ferritto, J. M.

    1979-01-01

    Reinforced concrete cells composed of concrete slabs and used to limit the effects of accidental explosions during hazardous explosives operations are analyzed. An automated design procedure which considers the dynamic nonlinear behavior of the reinforced concrete of arbitrary geometrical and structural configuration subjected to dynamic pressure loading is discussed. The optimum design of the slab is examined using an interior penalty function. The optimization procedure is presented and the results are discussed and compared with finite element analysis.

  15. CONTROL OF FRAGMENTATION BY BLASTING

    Directory of Open Access Journals (Sweden)

    Branko Božić

    1998-12-01

    Full Text Available The degree of fragmentation influences the economy of the excavation operations. Characteristics of blasted rock such as fragment size, volume and mass are fundamental variables effecting the economics of a mining operation and are in effect the basis for evaluating the quality of a blast. The properties of fragmentation, such as size and shape, are very important information for the optimization of production. Three factors control the fragment size distribution: the rock structure, the quantity of explosive and its distribution within the rock mass. Over the last decade there have been considerable advances in our ability to measure and analyze blasting performance. These can now be combined with the continuing growth in computing power to develop a more effective description of rock fragmentation for use by future blasting practitioners. The paper describes a view of the fragmentation problem by blasting and the need for a new generation of engineering tools to guide the design and implementation of blasting operations.

  16. Simulating Turing machines on Maurer machines

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    In a previous paper, we used Maurer machines to model and analyse micro-architectures. In the current paper, we investigate the connections between Turing machines and Maurer machines with the purpose to gain an insight into computability issues relating to Maurer machines. We introduce ways to

  17. Finite Element Analysis of Composite Hardened Walls Subjected to Blast Loads

    Directory of Open Access Journals (Sweden)

    Girum S. Urgessa

    2009-01-01

    Full Text Available Problem statement: There is currently no standard design guideline to determine the number of composites needed to retrofit masonry walls in order to withstand a given explosion. Past design approaches were mainly based on simplified single-degree-of-freedom analysis. A finite element analysis was conducted for concrete masonry walls hardened with composites and subjected to short duration blast loads. Approach: The analysis focused on displacement time history responses which form the basis for retrofit design guidelines against blast loadings. The blast was determined from 0.5 kg equivalent TNT explosive at 1.83 m stand-off distance to simulate small mailroom bombs. Two and four layered retrofitted walls were investigated. Uncertainties in the finite model analysis of walls such as pressure distributions, effect of mid height explosive bursts versus near the ground explosive bursts and variations in modulus of elasticity of the wall were presented. Results: Uniformly distributed blast loads over the retrofitted wall height produced a small difference in peak displacement results when compared to the non-uniform pressure distribution. Ground explosive burst was shown to produce a 62.7% increase in energy and a higher peak displacement response when compared to mid-height explosive burst. Conclusion: The parametric study on the variation of modulus of elasticity of concrete masonry showed no significant effect on peak displacement affirming the use of the resistance deflection contribution of the composite in retrofit designs.

  18. Finite Element Modeling of Compressive and Splitting Tensile Behavior of Plain Concrete and Steel Fiber Reinforced Concrete Cylinder Specimens

    Directory of Open Access Journals (Sweden)

    Md. Arman Chowdhury

    2016-01-01

    Full Text Available Plain concrete and steel fiber reinforced concrete (SFRC cylinder specimens are modeled in the finite element (FE platform of ANSYS 10.0 and validated with the experimental results and failure patterns. Experimental investigations are conducted to study the increase in compressive and tensile capacity of cylindrical specimens made of stone and brick concrete and SFRC. Satisfactory compressive and tensile capacity improvement is observed by adding steel fibers of 1.5% volumetric ratio. A total of 8 numbers of cylinder specimens are cast and tested in 1000 kN capacity digital universal testing machine (UTM and also modeled in ANSYS. The enhancement of compressive strength and splitting tensile strength of SFRC specimen is achieved up to 17% and 146%, respectively, compared to respective plain concrete specimen. Results gathered from finite element analyses are validated with the experimental test results by identifying as well as optimizing the controlling parameters to make FE models. Modulus of elasticity, Poisson’s ratio, stress-strain behavior, tensile strength, density, and shear transfer coefficients for open and closed cracks are found to be the main governing parameters for successful model of plain concrete and SFRC in FE platform. After proper evaluation and logical optimization of these parameters by extensive analyses, finite element (FE models showed a good correlation with the experimental results.

  19. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  20. Dynamic Analysis of Tunnel in Weathered Rock Subjected to Internal Blast Loading

    Science.gov (United States)

    Tiwari, Rohit; Chakraborty, Tanusree; Matsagar, Vasant

    2016-11-01

    The present study deals with three-dimensional nonlinear finite element (FE) analyses of a tunnel in rock with reinforced concrete (RC) lining subjected to internal blast loading. The analyses have been performed using the coupled Eulerian-Lagrangian analysis tool available in FE software Abaqus/Explicit. Rock and RC lining are modeled using three-dimensional Lagrangian elements. Beam elements have been used to model reinforcement in RC lining. Three different rock types with different weathering conditions have been used to understand the response of rock when subjected to blast load. The trinitrotoluene (TNT) explosive and surrounding air have been modeled using the Eulerian elements. The Drucker-Prager plasticity model with strain rate-dependent material properties has been used to simulate the stress-strain response of rock. The concrete damaged plasticity model and Johnson-Cook plasticity model have been used for the simulation of stress-strain response of concrete and steel, respectively. The explosive (TNT) has been modeled using Jones-Wilkins-Lee (JWL) equation of state. The analysis results have been studied for stresses, deformation and damage of RC lining and the surrounding rock. It is observed that damage in RC lining results in higher stress in rock. Rocks with low modulus and high weathering conditions show higher attenuation of shock wave. Higher amount of ground shock wave propagation is observed in case of less weathered rock. Ground heave is observed under blast loading for tunnel close to ground surface.

  1. Blast effects of external explosions

    OpenAIRE

    Sochet, Isabelle

    2010-01-01

    International audience; Security considerations for industrial production and storage require characterization of the mechanical effects caused by blast waves resulting from a detonation or deflagration. This paper evaluates current analytical methods to determine the characteristic parameters of a blast wave with respect to the pressure, impulse and duration of the positive phase of the blast. In the case of a detonation, the trinitrotoluene (TNT) equivalent-based method determines the mass ...

  2. Machine Transliteration

    CERN Document Server

    Knight, K; Knight, Kevin; Graehl, Jonathan

    1997-01-01

    It is challenging to translate names and technical terms across languages with different alphabets and sound inventories. These items are commonly transliterated, i.e., replaced with approximate phonetic equivalents. For example, "computer" in English comes out as "konpyuutaa" in Japanese. Translating such items from Japanese back to English is even more challenging, and of practical interest, as transliterated items make up the bulk of text phrases not found in bilingual dictionaries. We describe and evaluate a method for performing backwards transliterations by machine. This method uses a generative model, incorporating several distinct stages in the transliteration process.

  3. Rock blasting and explosives engineering

    Energy Technology Data Exchange (ETDEWEB)

    Persson, P.-A.; Holmberg, R.; Lee, J. (New Mexico Institute of Mining and Technology, Socorro, NM (United States). Research Center for Energetic Materials)

    1994-01-01

    The book covers the practical engineering aspects of different kinds of rock blasting. It includes a thorough analysis of the cost of the entire process of tunneling by drilling and blasting compared with full-face boring. It covers the economics of the entire rock blasting operation and its dependence on the size of excavation. The book highlights the fundamentals of rock mechanics, shock waves and detonation, initiation and mechanics of rock motion. It describes the engineering design principles and computational techniques for many separate mining methods and rock blasting operations. 274 refs.

  4. HYDRAULIC AND PHYSICAL PROPERTIES OF SALTSTONE GROUTS AND VAULT CONCRETES

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K; John Harbour, J; Mark Phifer, M

    2008-11-25

    The Saltstone Disposal Facility (SDF), located in the Z-Area of the Savannah River Site (SRS), is used for the disposal of low-level radioactive salt solution. The SDF currently contains two vaults: Vault 1 (6 cells) and Vault 4 (12 cells). Additional disposal cells are currently in the design phase. The individual cells of the saltstone facility are filled with saltstone. Saltstone is produced by mixing the low-level radioactive salt solution, with blast furnace slag, fly ash, and cement (dry premix) to form a dense, micro-porous, monolithic, low-level radioactive waste form. The saltstone is pumped into the disposal cells where it subsequently solidifies. Significant effort has been undertaken to accurately model the movement of water and contaminants through the facility. Key to this effort is an accurate understanding of the hydraulic and physical properties of the solidified saltstone. To date, limited testing has been conducted to characterize the saltstone. The primary focus of this task was to estimate the hydraulic and physical properties of three types of saltstone and two vault concretes. The saltstone formulations included saltstone premix batched with (1) Deliquification, Dissolution, and Adjustment (DDA) salt simulant (w/pm 0.60), (2) Actinide Removal Process (ARP)/Modular Caustic Side Solvent Extraction Unit (MCU) salt simulant (w/pm 0.60), and (3) Salt Waste Processing Facility (SWPF) salt simulant (w/pm 0.60). The vault concrete formulations tested included the Vault 1/4 concrete and two variations of the Vault 2 concrete (Mix 1 and Mix 2). Wet properties measured for the saltstone formulations included yield stress, plastic viscosity, wet unit weight, bleed water volume, gel time, set time, and heat of hydration. Hydraulic and physical properties measured on the cured saltstone and concrete samples included saturated hydraulic conductivity, moisture retention, compressive strength, porosity, particle density, and dry bulk density. These properties

  5. Continuous Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1996-01-01

    This report deals with stress and stiffness estimates of continuous reinforced concrete beams with different stiffnesses for negative and positive moments e.g. corresponding to different reinforcement areas in top and bottom. Such conditions are often met in practice.The moment distribution...... at the limit state of serviceability is in some simple cases determined by setting up the statical and the compatibility conditions.With these moment distributions, the maximum deflection and the reinforcement stresses at the span middle and at a support are calculated.The results are compared with results...

  6. Machine Protection

    CERN Document Server

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an ...

  7. The influence of recycled concrete aggregates in pervious concrete

    Directory of Open Access Journals (Sweden)

    L. M. TAVARES

    Full Text Available The expansion of urban areas under constant changes in the hydrological cycle directly affects the drainage of rainwater. The problems of urban drainage become major engineering problems to be solved in order to avoid negative consequences for local populations. Another urban problem is the excessive production of construction and demolition waste (CDW, in which , even with a increasingly policy of waste management , have been an end up being thrown in inappropriate disposal sites. Alternatively aiming to a minimization of the problems presented, we propose the study of permeable concrete using recycled concrete aggregate. In this study, there were evaluated the performance of concrete by means of permeability, consistency, strength, and interface conditions of the materials . Satisfactory relationships of resistance/permeability of concrete with recycled aggregate in relation to the concrete with natural aggregates was obtained, showing their best potential.

  8. Excavation of the SPS tunnel (view of a section prior to lining by a concrete shell)

    CERN Multimedia

    1974-01-01

    The SPS ring (6911 m in circumference) is housed at a depth of 40 m (average) under the surface. The tunnel with an overall cross-sectional diameter of 4.8 m was drilled by big tunnelling machines (see 7406022X, 7406027X) into the molasse rock present in the Geneva basin. After the passage of the tunnelling machine the tunnel walls were lined with a concrete layer of about 30cm thickness.

  9. PERFORMANCE OF RC AND FRC WALL PANELS REINFORCED WITH MILD STEEL AND GFRP COMPOSITES IN BLAST EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Garfield; William D. Richins; Thomas K. Larson; Chris P. Pantelides; James E. Blakeley

    2011-06-01

    The structural integrity of reinforced concrete structures in blast events is important for critical facilities. This paper presents experimental data generated for calibrating detailed finite element models that predict the performance of reinforced concrete wall panels with a wide range of construction details under blast loading. The test specimens were 1.2 m square wall panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consists of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bar reinforcement (Type A); FRC panels without additional reinforcement (Type B); FRC panels with steel bar reinforcement (Type C); NWC panels with glass fiber reinforced polymer (GFRP) bar reinforcement (Type D); and NWC panels reinforced with steel bar reinforcement and external bidirectional GFRP overlays on both faces (Type E). An additional three Type C panels were used as control specimens (CON). Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. The panels were instrumented with strain gauges, and accelerometers; in addition, pressure sensors and high speed videos were employed during the blast events. Panel types C and E had the best performance, whereas panel type B did not perform well. Preliminary dynamic simulations show crack patterns similar to the experimental results.

  10. 30 CFR 75.1323 - Blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting circuits. 75.1323 Section 75.1323... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1323 Blasting circuits. (a) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made...

  11. 29 CFR 1926.912 - Underwater blasting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Underwater blasting. 1926.912 Section 1926.912 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.912 Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired...

  12. 30 CFR 57.6803 - Blasting lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting lines. 57.6803 Section 57.6803 Mineral... and Underground § 57.6803 Blasting lines. Permanent blasting lines shall be properly supported. All blasting lines shall be insulated and kept in good repair. General Requirements—Surface and Underground...

  13. 30 CFR 56.6312 - Secondary blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting. 56.6312 Section 56.6312... Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from one source. Electric Blasting...

  14. 30 CFR 56.6803 - Blasting lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting lines. 56.6803 Section 56.6803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Blasting lines. Permanent blasting lines shall be properly supported. All blasting lines shall be...

  15. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  16. Identification of blast resistance genes for managing rice blast disease

    Science.gov (United States)

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...

  17. Proportioning of light weight concrete

    DEFF Research Database (Denmark)

    Palmus, Lars

    1996-01-01

    Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory......Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory...

  18. Fatigue of Concrete Armour Units

    DEFF Research Database (Denmark)

    Sørensen, N. B.; Burcharth, H. F.; Liu, Z.

    1995-01-01

    In the present article fatigue as a possible reason for failure of Dolosse armour units made of plain concrete is discussed.......In the present article fatigue as a possible reason for failure of Dolosse armour units made of plain concrete is discussed....

  19. Revised Rules for Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Jensen, F. M.; Middleton, C.;

    This paper is based on research performed for the Highway Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: Concrete Bridges" It contains details of a methodology which can be used to generate Whole Life (WL) reliability profiles....... These WL reliability profiles may be used to establish revised rules for Concrete Bridges....

  20. Seals, Concrete Anchors, and Connections

    Science.gov (United States)

    1989-02-01

    the system the cable sizes can be changed even after concreting work _ is finished. i W The structure is also suitable for modern concrete formwork ...1 ruiinn 0i all 3up-H-Stud is a heavy-duty, all steel, expansion wedge anchor types of equipment. Typical applications: tunnel liner panels, air

  1. Fatigue of Concrete Armour Units

    DEFF Research Database (Denmark)

    Sørensen, N. B.; Burcharth, H. F.; Liu, Z.

    1995-01-01

    In the present article fatigue as a possible reason for failure of Dolosse armour units made of plain concrete is discussed.......In the present article fatigue as a possible reason for failure of Dolosse armour units made of plain concrete is discussed....

  2. The Concrete and Pavement Challenge

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  3. Proportioning of light weight concrete

    DEFF Research Database (Denmark)

    Palmus, Lars

    1996-01-01

    Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory......Development of a method to determine the proportions of the raw materials in light weight concrete made with leight expanded clay aggregate. The method is based on composite theory...

  4. The steel–concrete interface

    DEFF Research Database (Denmark)

    Angst, Ueli M.; Geiker, Mette Rica; Michel, Alexander

    2017-01-01

    Although the steel–concrete interface (SCI) is widely recognized to influence the durability of reinforced concrete, a systematic overview and detailed documentation of the various aspects of the SCI are lacking. In this paper, we compiled a comprehensive list of possible local characteristics...

  5. Molded Concrete Center Mine Wall

    Science.gov (United States)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  6. The Concrete and Pavement Challenge

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  7. Development of testing machine for tunnel inspection using multi-rotor UAV

    Science.gov (United States)

    Iwamoto, Tatsuya; Enaka, Tomoya; Tada, Keijirou

    2017-05-01

    Many concrete structures are deteriorating to dangerous levels throughout Japan. These concrete structures need to be inspected regularly to be sure that they are safe enough to be used. The inspection method for these concrete structures is typically the impact acoustic method. In the impact acoustic method, the worker taps the surface of the concrete with a hammer. Thus, it is necessary to set up scaffolding to access tunnel walls for inspection. Alternatively, aerial work platforms can be used. However, setting up scaffolding and aerial work platforms is not economical with regard to time or money. Therefore, we developed a testing machine using a multirotor UAV for tunnel inspection. This test machine flies by a plurality of rotors, and it is pushed along a concrete wall and moved by using rubber crawlers. The impact acoustic method is used in this testing machine. This testing machine has a hammer to make an impact, and a microphone to acquire the impact sound. The impact sound is converted into an electrical signal and is wirelessly transmitted to the computer. At the same time, the position of the testing machine is measured by image processing using a camera. The weight and dimensions of the testing machine are approximately 1.25 kg and 500 mm by 500 mm by 250 mm, respectively.

  8. Technology Solutions Case Study: Insulating Concrete Forms

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete forms—rigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  9. Shear reinforced beams in autoclaved aerated concrete

    DEFF Research Database (Denmark)

    Cornelius, Thomas

    2010-01-01

    Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different combinat......Shear behaviour in concrete materials is very well documented, for normal density concrete materials. In this paper results of various tests on low density concrete materials like aerated autoclaved concrete (in the following denoted aircrete) will be presented and analyzed for different...

  10. Calculation of dynamic load impact on reinforced concrete arches in the ground

    Directory of Open Access Journals (Sweden)

    Barbashev Nikita Petrovich

    2016-01-01

    Full Text Available Concrete arches are widely used in the construction of underground facilities. The analysis of their work under dynamic loads (blasting, shock, seismic will improve the efficiency of design and application. The article addresses the problems of calculation of reinforced concrete arches in the ground in terms of the action of dynamic load - compression wave. The calculation is made basing on the decision of a closed system of equations that allows performing the calculation of elastic-plastic curved concrete structures under dynamic loads. Keeping in mind the properties of elastic-plastic reinforcement and concrete in the process of design variations, σ-ε diagrams are variable. The calculation is performed by the direct solution of differential equations in partial derivatives. The result is based on a system of ordinary differential equations of the second order (expressing the transverse and longitudinal oscillations of the structure and the system of algebraic equations (continuity condition of deformation. The computer program calculated three-hinged reinforced concrete arches. The structural calculations were produced by selection of the load based on the criteria of reaching the first limit state: ultimate strain of compressed concrete; ultimate strain tensile reinforcement; the ultimate deformation of the structure. The authors defined all the characteristics of the stress-strain state of the structure. The presented graphs show the change of bending moment and shear force in time for the most loaded section of the arch, the dependence of stresses and strains in concrete and reinforcement, stress changes in time for the cross-sectional height. The peculiarity of the problem is that the action of the load provokes the related dynamic forces - bending moment and longitudinal force. The calculations allowed estimating the carrying capacity of the structure using the criteria of settlement limit states. The decisive criterion was the

  11. Novel techniques for concrete curing

    DEFF Research Database (Denmark)

    Kovler, Konstantin; Jensen, Ole Mejlhede

    2005-01-01

    It is known that some high-strength/high-performance concretes (HSC/HPC) are prone to cracking at an early age unless special precautions are taken. The paper deals with the methods of curing as one of the main strategies to ensure good performance of concrete. Curing by both external (conventional......) and internal methods is reviewed and analyzed, among other methods of mitigating shrinkage and cracking of concrete. The focus is on the mitigation of autogenous shrinkage of low water to binder ratio (w/b) concrete by means of internal curing. The concepts of internal curing are based on using lightweight...... aggregate, superabsorbent polymers or water-soluble chemicals, which reduce water evaporation (so called "internal sealing"). These concepts have been intensively researched in the 90s, but still are not widespread among contractors and concrete suppliers. The differences between conventional methods...

  12. The Tectonic Potentials of Concrete

    DEFF Research Database (Denmark)

    Egholm Pedersen, Ole

    2013-01-01

    with the industrial paradigm of standardization, have been put forward. This development is carried forward by computers and digital fabrication, but has yet to find its way into the production of building components. With regards to concrete casting, however, existing research do offer advancement towards...... of geometric forms in concrete. The former was referred to as mould tectonics, the latter concrete tectonics. A study of the concepts of ‘New Production Philosophy’, ‘Mass-customization’, and Digital Tectonics is presented as a basis for investigating their use in concrete casting. Digital modelling....... However, a single concrete casting material, given the use of the right technique that is able to address all these problems, has not been identified, neither in state-of-the-art nor in the case studies. It follows that due to today’s demands for resource optimization and competitiveness it is unlikely...

  13. Basic principles of concrete structures

    CERN Document Server

    Gu, Xianglin; Zhou, Yong

    2016-01-01

    Based on the latest version of designing codes both for buildings and bridges (GB50010-2010 and JTG D62-2004), this book starts from steel and concrete materials, whose properties are very important to the mechanical behavior of concrete structural members. Step by step, analysis of reinforced and prestressed concrete members under basic loading types (tension, compression, flexure, shearing and torsion) and environmental actions are introduced. The characteristic of the book that distinguishes it from other textbooks on concrete structures is that more emphasis has been laid on the basic theories of reinforced concrete and the application of the basic theories in design of new structures and analysis of existing structures. Examples and problems in each chapter are carefully designed to cover every important knowledge point. As a basic course for undergraduates majoring in civil engineering, this course is different from either the previously learnt mechanics courses or the design courses to be learnt. Compa...

  14. Rubberized Concrete Durability Against Abrasion

    Directory of Open Access Journals (Sweden)

    Md Noor Nurazuwa

    2016-01-01

    Full Text Available Durability performance of rubberized concrete against abrasion is presented in this paper. Surface depth loss was measured when abrasion load was constantly applied on concrete surface at each 500 interval rotation. Specimen with water-to cement ratio of 0.50 and 0.35 was prepared and tested at 28 days of curing age. In addition, 10% silica fume, SF was added to provide denser concrete and to understand its effectiveness against wear when added with crumb rubber. Results showed that crumb rubber shows good potential in providing abrasion resistance to concrete mix. However, in the case of rubberized concrete with silica fume, abrasion resistance was found to be slightly decreased with compressive strength more than 50N/mm2 due to the lack of low elastic modulus of CR particles to accommodate with denser cement matrix.

  15. Self-compacting concrete (SCC)

    DEFF Research Database (Denmark)

    Geiker, Mette Rica

    2008-01-01

    In many aspects Self-Compacting Concrete (SCC, “Self-Consolidating Concrete” in North America) can be considered the concrete of the future. SCC is a family of tailored concretes with special engineered properties in the fresh state. SCC flows into the formwork and around even complicated...... reinforcement arrangements under its own weight. Thus, SCC is not vibrated like conventional concrete. This drastically improves the working environment during construction, the productivity, and potentially improves the homogeneity and quality of the concrete. In addition SCC provides larger architectural...... freedom in structural design. The present Chapter describes selected properties of SCC. The properties and use of SCC are illustrated through a few case histories and future trends are briefly described. The Chapter concludes with a list of sources of further information....

  16. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2012-02-01

    Laboratory tests were conducted to determine the fatigue performance of abrasive-waterjet- (AWJ-) machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results of the titanium specimens not only confirmed our previous findings in aluminum dog-bone specimens but in comparison also further enhanced the fatigue performance of the titanium. In addition, titanium is known to be difficult to cut, particularly for thick parts, however AWJs cut the material 34% faster han stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred ombination for processing aircraft titanium that is fatigue critical.

  17. Study of Compressive Strength of Concrete with Coal Power Plant Fly Ash as Partial Replacement of Cement and Fine Aggregate

    Directory of Open Access Journals (Sweden)

    FAREED AHMED MEMON

    2010-10-01

    Full Text Available This research study comprises of concrete cubes made with Ordinary Portland Cement and with different configurations of fly ash by replacing cement and fine aggregate. To achieve the aim of this study, total 81 concrete cubes were cast. Among 81 cubes, 9 cubes were made with normal concrete, 36 cubes were made by replacing 25%, 50%, 75% and 100% of fine aggregate with fly ash and 36 cubes were made by replacing 10%, 25%, 50%, and 75% of cement with fly ash. The cubes were 6\\" x 6\\" in cross-section, and the mix design was aimed for 5000 psi. After proper curing of all 81 cubes, they were tested at 3, 7 and 28 days curing age. The cubes were tested in Forney Universal Testing Machine. By analyzing the test results of all the concrete cubes, the following main findings have been drawn. The compressive strength of concrete cubes made by replacing 100 % fine aggregate by fly ash was higher than the concrete cubes made with Ordinary Portland Cement at all 3, 7 and 28 days curing ages. On the other hand, the compressive strength of concrete cubes made by replacing 10 % and 25 % cement by fly ash was slightly lower than the concrete cubes made with Ordinary Portland Cement at all curing ages, whereas, the compressive strength of concrete cubes made by replacing 50 % and 75 % of cement by fly ash were quite lower than the concrete cubes made with Ordinary Portland Cement at all curing ages.

  18. Application of Granulated Blast Furnace Slag in Cement Composites Exposed to Biogenic Acid Attack

    Science.gov (United States)

    Kovalcikova, M.; Estokova, A.; Luptakova, A.

    2015-11-01

    The deterioration of cement-based materials used for the civil infrastructure has led to the realization that cement-based materials, such as concrete, must be improved in terms of their properties and durability. Leaching of calcium ions increases the porosity of cement- based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing corrosion of concrete. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to deterioration by aggressive chemicals. The paper is focused on the investigation of the influence of biogenic acid attack on the cement composites affected by bacteria Acidithiobacillus thiooxidans. The concrete specimens with 65 wt. % addition of antimicrobial activated granulated blast furnace slag as durability increasing factor as well as without any addition were studied. The experiments proceeded during 150 days under model laboratory conditions. The pH values and chemical composition of leachates were measured after each 30- day cycle. The calcium and silicon contents in leachates were evaluated using X - ray fluorescence method (XRF). Summarizing the results, the 65% wt. addition of antimicrobial activated granulated blast furnace slag was not confirmed to be more resistant.

  19. Shock tubes and blast injury modeling

    Institute of Scientific and Technical Information of China (English)

    Ya-Lei Ning; Yuan-Guo Zhou

    2015-01-01

    Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks.The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments.Therefore,development of stable,reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research.The present review addresses the modeling of blast injury and applications of shock tubes.

  20. NCBI BLAST: a better web interface.

    Science.gov (United States)

    Johnson, Mark; Zaretskaya, Irena; Raytselis, Yan; Merezhuk, Yuri; McGinnis, Scott; Madden, Thomas L

    2008-07-01

    Basic Local Alignment Search Tool (BLAST) is a sequence similarity search program. The public interface of BLAST, http://www.ncbi.nlm.nih.gov/blast, at the NCBI website has recently been reengineered to improve usability and performance. Key new features include simplified search forms, improved navigation, a list of recent BLAST results, saved search strategies and a documentation directory. Here, we describe the BLAST web application's new features, explain design decisions and outline plans for future improvement.

  1. Morphological and animal study of titanium dental implant surface induced by blasting and high intensity pulsed Nd-glass laser

    Energy Technology Data Exchange (ETDEWEB)

    Karacs, A.; Joob Fancsaly, A.; Divinyi, T.; Peto, G.; Kovach, G

    2003-03-03

    Machined dental implants of titanium were blasted with Al{sub 2}O{sub 3} powder of 250 {mu}m particle size. The surface was irradiated in vacuum with a Nd-glass pulsed laser at 1-3 J pulse energies. The morphology of these surfaces was investigated by optical and scanning electron microscopy. The low intensity laser treatment resulted in some new irregularities but we can observe the blasted elements and caves from the original blasted surface too. The blasted elements were washed out and a new surface morphology was induced by the high intensity laser treatment. The osseointegration was determined by measuring the removal torque in the rabbit experiments. The results were referred to the as machined surface. The blasting slightly increased the removal torque. The laser irradiation increased the removal torque significantly, more by a factor of 1.5 compared to the reference at high laser intensity. This shows the influence of the surface morphology on the osseointegration. The combination of the blasting with the laser irradiation is considered a method to determine the morphology optimal for the osseointegration because the pulsed laser irradiation caused modifications of the micrometer sized surface elements and decreases possible surface contamination.

  2. Numerical simulation of muzzle blast

    NARCIS (Netherlands)

    Tyler-Street, M.

    2014-01-01

    Structural design methods for naval ships include environmental, operational and military load cases. One of the operational loads acting on a typical naval vessel is the muzzle blast from a gun. Simulating the muzzle blast load acting on a ship structure with CFD and ALE methods leads to large nume

  3. High performance polymer concrete

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2007-06-01

    Full Text Available This paper studies the performance of concrete whose chief components are natural aggregate and an organic binder —a thermosetting polyester resin— denominated polymer concrete or PC. The material was examined macro- and microscopically and its basic physical and mechanical properties were determined using mercury porosimetry, scanning electron microscopy (SEM-EDAX, X-ray diffraction (XRD and strength tests (modulus of elasticity, stress-strain curves and ultimate strengths. According to the results of these experimental studies, the PC exhibited a low density (4.8%, closed pore system and a concomitantly continuous internal microstructure. This would at least partially explain its mechanical out-performance of traditional concrete, with average compressive and flexural strength values of 100 MPa and over 20 MPa, respectively. In the absence of standard criteria, the bending test was found to be a useful supplement to compressive strength tests for establishing PC strength classes.Este trabajo de investigación aborda el estudio de un hormigón de altas prestaciones, formado por áridos naturales y un aglomerante orgánico constituido por una resina termoestable poliéster, denominado hormigón polimérico HP. Se describe el material a nivel microscópico y macroscópico, presentando sus propiedades físicas y mecánicas fundamentales, mediante diferentes técnicas experimentales, tales como: porosimetría de mercurio, microscopía electrónica (SEM-EDAX, difracción de rayos X (DRX y ensayos mecánicos (módulo de elasticidad, curvas tensión- deformación y resistencias últimas. Como consecuencia del estudio experimental llevado a cabo, se ha podido apreciar cómo el HP está formado por porosidad cerrada del 4,8%, proporcionando una elevada continuidad a su microestructura interna, lo que justifica, en parte, la mejora de propiedades mecánicas respecto al hormigón tradicional, con unos valores medios de resistencia a compresión de 100

  4. BLAST: the Redshift Survey

    CERN Document Server

    Eales, Stephen; Devlin, Mark J; Dye, Simon; Halpern, Mark; Hughes, David H; Marsden, Gaelen; Mauskopf, Philip; Moncelsi, Lorenzo; Netterfield, Calvin B; Pascale, Enzo; Patanchon, Guillaume; Raymond, Gwenifer; Rex, Marie; Scott, Douglas; Semisch, Christopher; Siana, Brian; Truch, Matthew D P; Viero, Marco P

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently surveyed ~=8.7 deg^2 centered on GOODS-South at 250, 350 and 500 microns. In Dye et al. (2009) we presented the catalogue of sources detected at $\\rm 5\\sigma$ in at least one band in this field and the probable counterparts to these sources in other wavebands. In this paper, we present the results of a redshift survey in which we succeeded in measuring redshifts for 83 of these counterparts. We have used the spectroscopic redshifts to carry out a test of the ability of photometric redshift methods to estimate the redshifts of dusty galaxies. We have also investigated the cases where there are two possible counterparts to the BLAST source, finding that in at least half of these there is evidence that the two galaxies are physically associated, either because they are interacting or because they are in the same large-scale structure. Finally, we have made the first direct measurements of the luminosity function in the three BLAST band...

  5. Demystifying blast effects on buildings

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, A.; Carson, D.; Stevens, T. [Halsall Associates Ltd., Toronto, ON (Canada)

    2007-07-01

    This paper presented methods of designing the structures of building structures in such a way that the effects of blast loads can be mitigated. The methods were designed to provide strength and ductility so that kinetic energy delivered by the blast is resisted by strain energy. Fundamental aspects of blast effects were examined, and the design of flexural members subject to blast loading were discussed. An equivalent static load procedure based on the equivalency of kinetic and strain energies was also presented along with a threat independent approach which included principles to prevent progressive collapse, ductile columns, and the addition of upward resistance to floors. Measures to mitigate damage caused by shattered glass and other cladding elements during blasts were also discussed.

  6. Circulation in blast driven instabilities

    Science.gov (United States)

    Henry de Frahan, Marc; Johnsen, Eric

    2016-11-01

    Mixing in many natural phenomena (e.g. supernova collapse) and engineering applications (e.g. inertial confinement fusion) is often initiated through hydrodynamic instabilities. Explosions in these systems give rise to blast waves which can interact with perturbations at interfaces between different fluids. Blast waves are formed by a shock followed by a rarefaction. This wave profile leads to complex time histories of interface acceleration. In addition to the instabilities induced by the acceleration field, the rarefaction from the blast wave decompresses the material at the interface, further increasing the perturbation growth. After the passage of the wave, circulation circulation generated by the blast wave through baroclinic vorticity continues to act upon the interface. In this talk, we provide scaling laws for the circulation and amplitude growth induced by the blast wave. Numerical simulations of the multifluid Euler equations solved using a high-order accurate Discontinuous Galerkin method are used to validate the theoretical results.

  7. Automation of printing machine

    OpenAIRE

    Sušil, David

    2016-01-01

    Bachelor thesis is focused on the automation of the printing machine and comparing the two types of printing machines. The first chapter deals with the history of printing, typesettings, printing techniques and various kinds of bookbinding. The second chapter describes the difference between sheet-fed printing machines and offset printing machines, the difference between two representatives of rotary machines, technological process of the products on these machines, the description of the mac...

  8. Ternary blended cement concrete. Part I: early age properties and mechanical strength

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2006-12-01

    Full Text Available While there is ample information in the literature on the mechanical performance and durability of concrete made with either limestone or granulated blast furnace slag,very little is known about the effect of the combined action of these two additions on concrete properties. The present paper evaluates the early stage properties and mechanical strength of binary and ternary cement concrete containing up to 18% limestone and 20% granulated blast furnace slag. The results show that the use of ternary cements has no substantial effect on concrete setting time, although it does reduce bleeding and enhance mechanical strength with respect to unadditioned Portland and/or binary cement concrete.En la bibliografía existe abundante información acerca del comportamiento mecánico y durable de hormigones elaborados con la incorporación individual de caliza y de escoria granulada de alto horno. Sin embargo, la modificación de las propiedades por la acción conjunta de las mismas es prácticamente desconocida. En este trabajo se evalúan las propiedades en estado fresco y el comportamiento mecánico de hormigones elaborados con cementos compuestos binarios y ternarios conteniendo hasta 18% de caliza y 20% de escoria granulada de alto horno. Los resultados indican que la utilización de cementos ternarios en hormigones no modifican sustancialmente el tiempo de fraguado, disminuyen la exudación y presentan un mejor comportamiento mecánico que los hormigones elaborados con cemento Portland sin adición y/o binarios.

  9. Anti-strike Capability of Steel-fiber Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Pengxian Fan

    2013-07-01

    Full Text Available Penetration and contact explosion tests on reactive powder concrete (RPC containing 5 per cent steel-fiber were carried out to investigate the anti-strike capability of steel-fiber reactive powder concrete (SFRPC. The penetration tests consisted of two sample groups corresponding to hit speeds 308 m/s - 582 m/s and 808 m/s - 887 m/s, respectively. The contact explosion tests were carried out in an explosion test pit using TNT with charges in the range 0.5 kg - 3.0 kg. The tests results show that the anti-strike capability of SFRPC targets is much better than ordinary C30 concrete. The penetration depths of the SFRPC targets were less than half those evaluated values of the C30 concrete targets. The areas of the blasting funnels and the explosion cavity radii in the SFRPC plates are also much less than the calculated results in ordinary C30 concrete, being about one quarter of those of the latter.Defence Science Journal, 2013, 63(4, pp.363-368, DOI:http://dx.doi.org/10.14429/dsj.63.2407

  10. A Microstructure Based Strength Model for Slag Blended Concrete with Various Curing Temperatures

    Directory of Open Access Journals (Sweden)

    Li-Na Zhang

    2016-01-01

    Full Text Available Ground granulated blast furnace slag, which is a byproduct obtained during steel manufacture, has been widely used for concrete structures in order to reduce carbon dioxide emissions and improve durability. This paper presents a numerical model to evaluate compressive strength development of slag blended concrete at isothermal curing temperatures and time varying curing temperatures. First, the numerical model starts with a cement-slag blended hydration model which simulates both cement hydration and slag reaction. The accelerations of cement hydration and slag reaction at elevated temperatures are modeled by Arrhenius law. Second, the gel-space ratios of hardening concrete are calculated using reaction degrees of cement and slag. Using a modified Powers’ gel-space ratio strength theory, the strength of slag blended concrete is evaluated considering both strengthening factors and weakening factors involved in strength development process. The proposed model is verified using experimental results of strength development of slag blended concrete with different slag contents and different curing temperatures.

  11. Effects of Different Mineral Admixtures on the Properties of Fresh Concrete

    Science.gov (United States)

    Nuruddin, Muhammad Fadhil; Shafiq, Nasir

    2014-01-01

    This paper presents a review of the properties of fresh concrete including workability, heat of hydration, setting time, bleeding, and reactivity by using mineral admixtures fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBS), metakaolin (MK), and rice husk ash (RHA). Comparison of normal and high-strength concrete in which cement has been partially supplemented by mineral admixture has been considered. It has been concluded that mineral admixtures may be categorized into two groups: chemically active mineral admixtures and microfiller mineral admixtures. Chemically active mineral admixtures decrease workability and setting time of concrete but increase the heat of hydration and reactivity. On the other hand, microfiller mineral admixtures increase workability and setting time of concrete but decrease the heat of hydration and reactivity. In general, small particle size and higher specific surface area of mineral admixture are favourable to produce highly dense and impermeable concrete; however, they cause low workability and demand more water which may be offset by adding effective superplasticizer. PMID:24701196

  12. Preparation of High Performance Foamed Concrete from Cement, Sand and Mineral Admixtures

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; Fujiwara Hiromi; Wee Tionghuan

    2007-01-01

    The titled high performance foamed concrete was developed from Portland cement, ultra fine granulated blast-furnace slag, pulverized fly ash and condensed silica fume by means of pre-foaming process. The resultant foamed concrete presents its thermal conductivity of about 0.16-0.75 W/(m·℃) and 28 d compressive strength of about 1.1-23.7 MPa when its mix proportion varies in the range of cement content 280 kg-650 kg/m3, fly ash 42-97 kg/m3, slag 64-146 kg/m3, silica fume 34-78 kg/m3, and sand 0-920 kg/m3. The compressive strength of the foamed concrete with oven dried bulk density of 1500 kg/m3 in appropriate mix proportion and with small amount of superplasticizer reached as high as 44.1 MPa. Meanwhile, the fresh foamed concrete behaves like an excellent flow-ability, therefore, is especially suitable for the application in case of massive foamed concrete casting in situ and in the case of filling casting into large volume underground irregular voids, except for pre-casting of building components like blocks, bricks, and wall panels.

  13. STUDIES ON STRENGTH CHARACTERISTICS ON UTILIZATION OF WASTE MATERIALS AS COARSE AGGREGATE IN CONCRETE

    Directory of Open Access Journals (Sweden)

    DR. T. SEKAR

    2011-07-01

    Full Text Available Depletion of natural resources is a common phenomenon in developing countries like India due to rapid urbanization and Industrialization involving construction of Infrastructure and other amenities. In view of this, people have started searching for suitable other viable alternative materials for concrete so that the existing natural resources could be preserved to the possible extent, for the future generation. In this process, different industrial waste materials such as fly ash, blast furnace slag, quarry dust, tile waste, brick bats, broken glass waste, waste aggregate from demolition of structures, ceramic insulator waste, etc. have been tried as a viablesubstitute material to the conventional materials in concrete and has also been succeeded. This paper describes the studies conducted on strength characteristics of concrete made with utilizing waste materials viz: ceramic tiles, ceramic insulator waste, and broken glass pieces. A total number of 24cubes, 24 cylinders and 24 beamswere cast and tested for compressive strength, splitting tensile strength and flexural strength using industrial wastes and the results presented. It was found that, the concrete made of waste ceramic tile aggregate produced more strength in compression, split tensile and flexure than ceramic insulator scrap and broken glass material. This paper recommends that waste ceramic tiles can be used as an alternate construction material to coarse aggregate in concrete.

  14. Pentek concrete scabbling system: Baseline report; Greenbook (chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The Pentek scabbling technology was tested at Florida International University (FIU) and is being evaluated as a baseline technology. This report evaluates it for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek concrete scabbling system consisted of the MOOSE, SQUIRREL-I, and SQUIRREL-III scabblers. The scabblers are designed to scarify concrete floors and slabs using cross-section, tungsten carbide tipped bits. The bits are designed to remove concrete in 318 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation conducted during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure was minimal, but noise exposure was significant. Further testing for each of these exposures is recommended. Because of the outdoor environment where the testing demonstration took place, results may be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed operating environment. Other areas of concern were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  15. Recycled Concrete as Aggregate for Structural Concrete Production

    National Research Council Canada - National Science Library

    Malešev, Mirjana; Radonjanin, Vlastimir; Marinković, Snežana

    2010-01-01

    A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper...

  16. Porosity of Concrete - Morphological Study of Model Concrete

    NARCIS (Netherlands)

    Hu, J.

    2004-01-01

    This study has developed a comprehensive methodological framework for characterizing geometrical and morphological aspects of pore space in cementitious materials and explored its application to actual cement pastes and model concretes for the purpose of predicting mechanical and transport propertie

  17. PCM Concrete. [Phase Change Materials

    Energy Technology Data Exchange (ETDEWEB)

    Juul Andersen, T. [Danish Technological Institute, Taastrup (Denmark); Poulsen, H.-H. [BASF A/S, Roedekro (Denmark); Passov, F. [Spaencom A/S, Hedehusene (Denmark); Heiselberg, P. [Aalborg Univ..Aalborg (Denmark)

    2013-04-01

    PCM-Concrete was a research and development project launched in 2009 and finished in 2012. The project, which was funded by The Danish National Advanced Technology Foundation, had a total budget of 1.7 million Euros and included 4 partners: Danish Technological Institute (project manager), Aalborg University, BASF A/S and Spaencom A/S. The overall vision of the project was to reduce energy consumption for heating and cooling in buildings by developing high-performance concrete structures microencapsulated Phase Change Materials (PCM). The PCM used in the project was Micronal produced by BASF A/S. Micronal is small capsules with an acrylic shell and inside a wax with a melting point at approx. 23 deg. C equal to a comfortable indoor temperature. During the melting process thermal energy is transferred to chemical reaction (melting/solidification) depending on PCM being heated up or cooled down. Adding Micronal to concrete would theoretically increase the thermal mass of the concrete and improve the diurnal heat capacity which is the amount of energy that can be stored and released during 24 hours. Nevertheless, it is a relatively new technology that has not received much attention, yet. In the PCM-Concrete project 5 main investigations were carried out: 1) Development of concrete mix design with PCM. 2) Investigation of thermal properties of the PCM concrete: thermal conductivity, specific heat capacity, density. 3) Up-scaling the research to industrial production of PCM-concrete structures. 4) Testing energy efficiency in full scale. 5) Confronting aesthetic and acoustic barriers to full exploitation of the potential of PCM-concrete structures. The results from the test program showed: 1) That the diurnal heat storage capacity is higher for all 4 hollow core decks with tiles attached compared to the reference hollow core deck. 2) The hollow core decks with concrete tiles without PCM performs slightly better than the tiles with PCM. 3) That is was impossible to

  18. Machine musicianship

    Science.gov (United States)

    Rowe, Robert

    2002-05-01

    The training of musicians begins by teaching basic musical concepts, a collection of knowledge commonly known as musicianship. Computer programs designed to implement musical skills (e.g., to make sense of what they hear, perform music expressively, or compose convincing pieces) can similarly benefit from access to a fundamental level of musicianship. Recent research in music cognition, artificial intelligence, and music theory has produced a repertoire of techniques that can make the behavior of computer programs more musical. Many of these were presented in a recently published book/CD-ROM entitled Machine Musicianship. For use in interactive music systems, we are interested in those which are fast enough to run in real time and that need only make reference to the material as it appears in sequence. This talk will review several applications that are able to identify the tonal center of musical material during performance. Beyond this specific task, the design of real-time algorithmic listening through the concurrent operation of several connected analyzers is examined. The presentation includes discussion of a library of C++ objects that can be combined to perform interactive listening and a demonstration of their capability.

  19. Understanding the tensile properties of concrete

    NARCIS (Netherlands)

    Weerheijm, J.

    2013-01-01

    The response of concrete under tensile loading is crucial for most applications because concrete is much weaker in tension than in compression. Understanding the response mechanisms of concrete under tensile conditions is therefore key to understanding and using concrete in structural applications.

  20. Monitoring water loss form fresh concrete

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2006-01-01

    Desiccation of concrete before or during setting may lead to detrimental plastic shrinkage cracking in the concrete surface zone. Cracking due to plastic shrinkage is a major technological problem for any concrete, however, modern high-performance concretes are especially susceptible to this. Thi...

  1. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  2. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  3. Utilizing of the metallurgical slag for production of cementless concrete mixtures

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-10-01

    Full Text Available In process of pig iron, steel and cast iron production besides main product, also secondary products are formed, that have character of secondary raw materials and industrial wastes. The most abundant secondary product originating in the metallurgical process is furnace slag. Total amount of accured slag, also its chemical, mineralogical, physical – chemical properties and similarity with natural stones predestinate its utilisation in different fields of industry. The contribution deals with production of cementless concrete mixtures, where the main parts were formed by blast furnace granulated slag grinded and different gravel slag from blast furnace, oxygen converter and electric arc furnace. As activators of solidification different kinds of water glass were tested.

  4. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  5. Concrete density estimation by rebound hammer method

    Science.gov (United States)

    Ismail, Mohamad Pauzi bin; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-01

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  6. Concrete density estimation by rebound hammer method

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Mohamad Pauzi bin, E-mail: pauzi@nm.gov.my; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri [NDT Group, Nuclear Malaysia, Bangi, Kajang, Selangor (Malaysia); Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin [Material Technology Program, Faculty of Applied Sciences, UiTM, Shah Alam, Selangor (Malaysia); Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin [Pusat Penyelidikan Mineral, Jabatan Mineral dan Geosains, Ipoh, Perak (Malaysia)

    2016-01-22

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  7. Migrating corrosion inhibitor protection of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Bjegovic, D.; Miksic, B.

    1999-11-01

    Migrating corrosion inhibitors (MCI) were developed to protect steel rebar from corrosion in concrete. They were designed to be incorporated as an admixture during concrete batching or used for surface impregnation of existing concrete structures. Two investigations are summarized. One studied the effectiveness of MCIs as a corrosion inhibitor for steel rebar when used as an admixture in fresh concrete mix. The other is a long-term study of MCI concrete impregnation that chronicles corrosion rates of rebar in concrete specimens. Based on data from each study, it was concluded that migrating corrosion inhibitors are compatible with concrete and effectively delay the onset of corrosion.

  8. Characterization of mixed mode crack opening in concrete

    DEFF Research Database (Denmark)

    Jacobsen, Jonas Sejersbøl; Poulsen, Peter Noe; Olesen, John Forbes

    2012-01-01

    In real concrete structures cracks often open in mixed mode after their initiation. To capture the direct material behavior of a mixed mode crack opening a stiff biaxial testing machine, capable of imposing both normal and shear loads on a given crack area, has been applied. The opening and sliding...... components of the mixed mode displacement are measured using a custom made orthogonal gauge, and the measurements are used directly as the closed loop control signals. A double notch, concrete specimen is used for the crack investigation. The tests are divided into two steps, a pure Mode I opening step......, where a macro crack is initiated in the specimen followed by the mixed mode opening step. The high stiffness of the set-up together with the closed control loop ensures a stable crack initiation followed by a controllable mixed mode opening. The deep notches result in a plane crack, only influenced...

  9. FEATURES OF DRILLING-AND-BLASTING AT CONSTRUCTION OF BESKIDSKIY TUNNEL

    Directory of Open Access Journals (Sweden)

    V. D. Petrenko

    2016-10-01

    Full Text Available Purpose. In this article it is necessary to analyze the possibility of developing technology and increasing its efficiency during the Beskidskiy tunnel construction in difficult engineering and geological conditions. Methodology. The authors have performed analysis of the technological level of mining and construction works, new technique, equipment and production. One of the important issues of blasting operation is to ensure the seismic safety, acting at a distance of 30 m in the axes of single-track tunnel, as the distance to it will be 20 m from the nearest charge in the laying tunnel. This problem was solved by applying the combined blasting of blast-hole charges with delay-action and long-delay ways. Herewith the total mass of charges in the stope was divided into three groups, in which the first group is exploded by short-delay firing with, and the second one is exploded by short-delay firing too with intervals of 200…400 ms, the third is exploded by long-delay blasting at intervals of 500…10000 ms. The combined blasting of short-delay charges and delay action ones let significantly reduce seismic action at a mass explosion of charges when driving of double-track railway tunnel of a large cross-section. Findings. The paper presents the developed technology model, describing dependence of the machines from engineering and geological conditions. The methodology of drilling and blasting works at the construction of the tunnel callote and stross as well as a technique of arrangement determination and intervals of shot-delay and delay blasting of blasthole explosive charges was developed. Maximum permissible concentration of gases and vapours at blasting was presented. The calculations showed that the maximum level of gas contamination of the working area in Beskidskiy tunnel is achieved at blast operations. In accordance with this ventilation of the tunnel when driving is carried out by independent systems with mechanical ventilation by

  10. Prompt gamma ray evaluation for chlorine analysis in blended cement concrete.

    Science.gov (United States)

    Naqvi, A A; Maslehuddin, M; Kalakada, Zameer; Al-Amoudi, O S B

    2014-12-01

    Single prompt gamma ray energy has been evaluated to measure chlorine concentration in fly ash (FA), Super-Pozz (SPZ) and blast furnace slag (BFS) cement concrete specimens using a portable neutron generator-based Prompt Gamma Neutron Activation (PGNAA) setup. The gamma ray yield data from chloride concentration measurement in FA, SPZ and BFS cement concretes for 2.86-3.10, 5.72 and 6.11MeV chlorine gamma rays were analyzed to identify a gamma ray with common slope (gamma ray yield/Cl conc. wt%) for the FA, BFS and SPZ cement concretes. The gamma ray yield data for FA and SPZ cement concretes with varying chloride concentration were measured previously using a portable neutron generator-based PGNAA setup. In the current study, new data have been measured for chlorine detection in the BFS cement concrete using a portable neutron generator-based PGNAA setup for 2.86-3.10, 5.72, and 6.11MeV chlorine gamma rays. The minimum detection limit of chlorine in BFS cement concrete (MDC) was found to be 0.034±0.010, 0.032±0.010, 0.033±0.010 for 2.86-3.10, 5.72 and 6.11MeV gamma ray, respectively. The new BFS cement concrete data, along with the previous measurements for FA and SPZ cement concretes, have been utilized to identify a gamma ray with a common slope to analyze the Cl concentration in all of these blended cement concretes. It has been observed that the 6.11MeV chlorine gamma ray has a common slope of 5295±265 gamma rays/wt % Cl concentration for the portable neutron generator-based PGNAA setup. The minimum detectable concentration (MDC) of chlorine in blended cement concrete was measured to be 0.033±0.010wt % for the portable neutron generator-based PGNAA. Thus, the 6.11MeV chlorine gamma ray can be used for chlorine analysis of blended cement concretes.

  11. Modified virtual internal bond model for concrete subjected to dynamic loading

    Science.gov (United States)

    Patil, Mayuri

    Concrete is often used as a primary material to build protective structures. There is a wide range of research work being performed to simulate the behavior of reinforced concrete under impact and blast loading. This behavior is studied from both material and structural points of view. The research study presented in this thesis focuses on material aspects of modeling. LS-DYNARTM is an effective software for modeling and finite element analysis of structural members. It allows the user to define the material through commercially available or user-defined constitutive material models. Each material model has a distinct set of parameters to define a material which is further assigned to elements and used for simulations. This research study presents a user defined material model called Modified Concrete Virtual Internal Bond Model (MC-VIB). The basic constitutive model of VIB assumes the body as a collection of randomly oriented material points interconnected by a network of internal bonds. The model was modified by several researchers for different purposes. This research presents the MC-VIB for concrete under dynamic loading and studies its implementation into LS-DYNARTM. The modifications include incorporation of shear behavior and accounting for the difference in behavior of concrete in tension and compression. This project includes the calibration of the model based on stress-strain behavior of single element and cylinder model of concrete. The parameters are based on concrete with a uniaxial compressive strength of 27.6 MPa (4 ksi). These numerical curves are compared to those obtained from conventionally used material models for concrete and standard curves obtained by accepted equations to check the accuracy of prediction. The material model available in LS-DYNARTM requires a number of input parameters to define concrete behavior. These properties are normally derived from actual tests performed on the concrete under consideration. Often the properties are

  12. Electrical machines mathematical fundamentals of machine topologies

    CERN Document Server

    Gerling, Dieter

    2015-01-01

    Electrical Machines and Drives play a powerful role in industry with an ever increasing importance. This fact requires the understanding of machine and drive principles by engineers of many different disciplines. Therefore, this book is intended to give a comprehensive deduction of these principles. Special attention is given to the precise mathematical derivation of the necessary formulae to calculate machines and drives and to the discussion of simplifications (if applied) with the associated limits. The book shows how the different machine topologies can be deduced from general fundamentals, and how they are linked together. This book addresses graduate students, researchers, and developers of Electrical Machines and Drives, who are interested in getting knowledge about the principles of machine and drive operation and in detecting the mathematical and engineering specialties of the different machine and drive topologies together with their mutual links. The detailed - but nevertheless compact - mat...

  13. Tests on standard concrete samples

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    Compression and tensile tests on standard concrete samples. The use of centrifugal force in tensile testing has been developed by the SB Division and the instruments were built in the Central workshops.

  14. Laser machining of advanced materials

    CERN Document Server

    Dahotre, Narendra B

    2011-01-01

    Advanced materialsIntroductionApplicationsStructural ceramicsBiomaterials CompositesIntermetallicsMachining of advanced materials IntroductionFabrication techniquesMechanical machiningChemical Machining (CM)Electrical machiningRadiation machining Hybrid machiningLaser machiningIntroductionAbsorption of laser energy and multiple reflectionsThermal effectsLaser machining of structural ceramicsIntrodu

  15. Porous Structure of Road Concrete

    OpenAIRE

    2016-01-01

    Having a great number of concrete structure classifications it is recommended to specify the following three principal types: microstructure – cement stone structure; mesostructure – structure of cement-sand mortar in concrete; macrostucture – two-component system that consists of mortar and coarse aggregate. Every mentioned-above structure has its own specific features which are related to the conditions of their formation. Thus, microstructure of cement stone can be characterized by such st...

  16. Cellular fiber–reinforced concrete

    OpenAIRE

    Isachenko S.; Kodzoev M.

    2016-01-01

    Methods disperse reinforcement of concrete matrix using polypropylene, glass, basalt and metal fibers allows to make the construction of complex configuration, solve the problem of frost products. Dispersed reinforcement reduces the overall weight of the structures. The fiber replaces the secondary reinforcement, reducing the volume of use of structural steel reinforcement. Cellular Fiber concretes are characterized by high-performance properties, especially increased bending strength and...

  17. Experimental Investigation into Pull-Out Strength of Foamed Concrete Using Different Types of Screw

    Directory of Open Access Journals (Sweden)

    Othuman Mydin M.A.

    2014-01-01

    Full Text Available This study focuses on the results of the comprehensive strength test to quantify the mechanical properties of the screw’s pullout strength on foamed concrete. Foamed concrete is classified as lightweight concrete that been produced by cement paste or mortar in which air-voids are entrapped in the mortar by a suitable foaming agent. These days, the use of foamed concrete has been recognized in the construction industry as wall blocks, wall panels and also material floor and roof screeds. Hence, the applications of this material should be maximized as it is multi-functional. As we know, the use of screws on the wall or ceiling is common in a building. The objective of this research is to examine and determine the pullout strength of various properties and types of screws in lightweight foamed concrete with various densities that may depict the best result of the pullout strength on foamed concrete. To visualize the different results of pullout strength, screws with and without wall plug will be used as well. The pullout strength will be tested using the Universal Testing Machine where it shall measure the ultimate load of the screws attached to the foamed concrete may resist.

  18. Impact capacity reduction in railway prestressed concrete sleepers with vertical holes

    Science.gov (United States)

    Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat

    2017-09-01

    Railway prestressed concrete sleepers (or railroad ties) are principally designed in order to carry wheel loads from the rails to the ground as well as to secure rail gauge for dynamic safe movements of trains. In spite of the most common use of the prestressed concrete sleepers in railway tracks, the concrete sleepers are often modified on construction sites to fit in other systems such as cables, signalling gears, drainage pipes, etc. This is because those signalling, fibre optic, equipment cables are often damaged either by ballast corners or by tamping machine. It is thus necessary to modify concrete sleepers to cater cables internally so that the cables or drainage pipes would not experience detrimental or harsh environments. Accordingly, this study will extend from the previous study into the design criteria of holes and web openings. This paper will highlight structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers will be highlighted in this study. The outcome of this study will improve the understanding into dynamic behavior of prestressed concrete sleepers with vertical holes. The insight will enable predictive track maintenance regime in railway industry.

  19. Self Healing in Concrete Materials

    Science.gov (United States)

    Li, Victor C.; Yang, En-Hua

    The phenomenon of self healing in concrete has been known for many years. It has been observed that some cracks in old concrete structures are lined with white crystalline material suggesting the ability of concrete to self-seal the cracks with chemical products by itself, perhaps with the aid of rainwater and carbon dioxide in air. Later, a number of researchers [1, 2] in the study of water flow through cracked concrete under a hydraulic gradient, noted a gradual reduction of permeability over time, again suggesting the ability of the cracked concrete to self-seal itself and slow the rate of water flow. The main cause of self-sealing was attributed to the formation of calcium carbonate, a result of reaction between unhydrated cement and carbon dioxide dissolved in water [1]. Thus, under limited conditions, the phenomenon of self-sealing in concrete is well established. Self-sealing is important to watertight structures and to prolonging service life of infrastructure.

  20. The deleuzian abstract machines

    DEFF Research Database (Denmark)

    Werner Petersen, Erik

    2005-01-01

    production. In Kafka: Toward a Minor Literature, Deleuze and Guatari gave the most comprehensive explanation to the abstract machine in the work of art. Like the war-machines of Virilio, the Kafka-machine operates in three gears or speeds. Furthermore, the machine is connected to spatial diagrams...

  1. 75 FR 56489 - Separation Distances of Ammonium Nitrate and Blasting Agents From Explosives or Blasting Agents...

    Science.gov (United States)

    2010-09-16

    ... Ammonium Nitrate and Blasting Agents From Explosives or Blasting Agents (2002R-226P) AGENCY: Bureau of... CFR 555.220 set forth a table of separation distances of ammonium nitrate and blasting agents from explosives or blasting agents followed by six explanatory notes. Note three (3) states that the...

  2. A study in cost analysis of aggregate production as depending on drilling and blasting design

    Science.gov (United States)

    Bilim, Niyazi; Çelik, Arif; Kekeç, Bilgehan

    2017-10-01

    Since aggregate production has vital importance for many engineering projects-such as construction, highway and plant-mixed concrete production-this study was undertaken to determine how the costs for such production are affected by the design of drilling and blasting processes used. Aggregates are used in the production of concrete and asphalt, which are critical resources for the construction sector. The ongoing population increase and the growth of living standards around the world drive the increasing demand for these products. As demand grows, competition has naturally arisen among producers in the industry. Competition in the market has directly affected prices, which leads to the need for new measures and cost analysis on production costs. The cost calculation is one of the most important parameters in mining activities. Aggregate production operations include drilling, blasting, secondary crushing (if necessary), loading, hauling and crushing-screening, and each of these factors affects cost. In this study, drilling and blasting design parameters (such as hole diameter, hole depth, hole distance and burden) were investigated and evaluated for their effect on the total cost of quarrying these products, based on a particular quarry selected for this research. As the result of evaluation, the parameters actually driving costs have been identified, and their effects on the cost have been determined. In addition, some suggestions are presented regarding production design which may lead to avoiding increased production costs.

  3. A smart-hose for concrete displacing booms

    Science.gov (United States)

    Ripamonti, Francesco; Bucca, Giuseppe; Fava, Victor; Resta, Ferruccio

    2016-04-01

    During the last years, continuum robots have been used in many applications. They are smart structures with continuous curving, similar to a worm or an elephant trunk, characterized by a very high number of sub-actuated degrees of freedom (dof). They need a robust control system, aiming at both positioning the robot and suppressing induced vibrations. The idea is to adopt such a robot on a construction machine for the concrete distribution, substituting the reinforced rubber hose with the robotic smart solution. Particular attention has been paid to a control strategy able to reduce vibrations induced by the pumping procedure.

  4. Research on Progressive Collapse Mechanism and Collapse Modes of High-Rise Reinforced Concrete Structure Under Blast Load%爆炸荷载下高层钢筋混凝土结构连续倒塌机制与模式研究

    Institute of Scientific and Technical Information of China (English)

    丁阳; 刘卫宗

    2015-01-01

    高层建筑结构构件尺寸较大,爆炸荷载作用下应力波传播造成的材料破坏效应不能忽略,需要采用精细化模型来分析其非线性响应行为与连续倒塌过程,计算效率低,实用性差。本文将多尺度建模方法引入到爆炸荷载作用下高层建筑结构的连续倒塌分析中,依据爆炸荷载作用下高层建筑结构非线性破坏与连续倒塌的特点,提出了多尺度模型不同区域的确定方法,使用该方法对某高层建筑结构的连续倒塌机制和倒塌模式进行了研究。结果表明,相同 TNT 当量炸药的爆炸荷载作用下,比例距离较小时,高层钢筋混凝土结构可能发生单柱失效-双向联合倒塌模式;比例距离增大至某一区间时,结构则可能发生多柱失效-竖向倒塌模式。多柱失效-竖向倒塌模式影响范围广,对结构危害大,应通过采取防护措施避免该倒塌模式的发生。%Because of the huge member size of high-rise building structure,material damage effect caused by stress wave propagation under blast load cannot be ignored,but the nonlinear response and progressive collapse processof high-rise buildings can only be well-captured by refined model with low efficiency. Multi-scale modeling method is used in this paper to analyze progressive collapse of high-rise building structure under blast load. The method for de-termining the different regions of multi-scale model is proposed based on the nonlinear structural response and pro-gressive collapse characteristics of high-rise building under blast load. Progressive collapse mechanism and collapse modes of a typical high-rise building structure are studied. Results show that with the same amount of equivalent of TNT charge,vertical and horizontal progressive collapse mode caused by damage of one column tends to occur when scaled distance is small;vertical progressive collapse mode caused by damage of multiple columns may occur when scaled

  5. Retrofitting of Reinforced Concrete Beams using Reactive Powder Concrete (RPC)

    Science.gov (United States)

    Karthik, S.; Sundaravadivelu, Karthik

    2017-07-01

    Strengthening of existing damaged structures is one of the leading studies in civil engineering. The purpose of retrofitting is to structurally treat the member with an aim to restore the structure to its original strength. The focus of this project is to study the behaviour of damaged Reinforced Concrete beam retrofitted with Reactive Powder Concrete (RPC) Overlay. Reinforced concrete beams of length 1200 mm, width 100 mm and depth 200 mm were casted with M30 grade of concrete in the laboratory and cured for 28 days. One beam is taken as control and are tested under two point loading to find out ultimate load. Remaining beams are subjected to 90 % ultimate load of control beams. The partially damaged beams are retrofitted with Reactive Powder Concrete Overlay at the full tension face of the beam and side overlay depends upon the respectable retrofitting techniques with 10 mm and 20 mm thick layer to find optimum. Materials like steel fibres are added to enhance the ductility by eliminating coarse particle for homogeneity of the structure. Finally, the modes of failure for retrofitted beams are analysed experimentally under two point loading & compared the results with Control beam.

  6. Analysis Technique on Water Permeability in Concrete with Cold Joint considering Micro Pore Structure and Mineral Admixture

    Directory of Open Access Journals (Sweden)

    Se-Jin Choi

    2015-01-01

    Full Text Available Cold joint in concrete due to delayed concrete placing may cause a reduced shear resistance and increased water permeation. This study presents an analytical model based on the concept of REV (Representative Element Volume to assess the effect of water permeability in cold joint concrete. Here, OPC (Ordinary Portland Cement concrete samples with cold joint are prepared and WPT (Water Permeability Test is performed on the samples cured for 91 days. In order to account for the effect of GGBFS (Granulated Ground Blast Furnace Slag on water permeability, concrete samples with the same W/B (Water to Binder ratio and 40% replacement ratio of GGBFS are tested as well. Utilizing the previous models handling porosity and saturation, the analysis technique for equivalent water permeability with effective cold joint width is proposed. Water permeability in cold joint increases to 140.7% in control case but it decreases to 120.7% through GGBFS replacement. Simulation results agree reasonably well with experimental data gathered for sound and cold joint concrete.

  7. A study on the calcium chloride resistance of concrete containing an expansive additive[ACI SP-234-26

    Energy Technology Data Exchange (ETDEWEB)

    Akihiro, H.; Hiroyuki, K. [Denki Kagaku Kogyo Co. Ltd., Niigata (Japan); Masanobu, A. [Research Center of Inorganic Materials (Japan); Tsutomu, F. [Toyo Univ., Tokyo (Japan). Dept. of Civil and Environmental Engineering

    2006-07-01

    The addition of expansive additives to concrete helps to prevent cracks resulting from shrinkage and thermal stress. Chloride based deicing chemicals are used on roads during freezing conditions to prevent wheel slipping. This presentation discussed the damaging effects of salts on concrete prepared with a small amount of expansive additives. This experiment tested the chloride resistance of expansive-cement concrete mixtures made of an ordinary portland cement and a blast-furnace slag cement with and without an expansive additive based on a free CaO hydration as well as ettringite formation. Calcium chloride spray was used as a source of chloride ions. The objective was to determine if the addition of expansive additive had any affect on the chloride resistance of concrete. Details of the experiment were provided with reference to materials used, mix proportions, curing, testing for compression strength, depth of neutralization, measuring for change in length of concrete, pore size distribution, and microstructural observations. The study found that there were no adverse effects on the compressive strength, changes in length, or chloride penetration depth after the concrete was subjected to salt spray between 28 and 56 days of curing. 6 refs., 4 tabs., 4 figs.

  8. Reliability of Hydrox explosive blasting

    Energy Technology Data Exchange (ETDEWEB)

    Chikunov, V.I.; Chulkov, O.G.; Domanov, V.P.

    1980-03-01

    The safest method of blasting in coal mines with methane and coal dust hazards is with the flameless Hydrox charges. The results of operational tests on Hydrox BV-A2U charges with a I-43 initiator in underground coal mines are discussed. Efficiency and reliability of blasting using Hydrox BV-A2U compared to BV-48 Hydrox charges is evaluated. Results of blasting and the percentage of charge failures are given in tables. It is suggested that BV-A2U Hydrox charges are superior to BV-48, as no charge failures occur, operational time of BV-A2U is up to 5 seconds and the maximum operational time spread is 1.8 sec (weight of initiator 0.05 kg). Blasting properties of BV-A2U are stable and do not change as a result of long storage. (In Russian)

  9. Source model for blasting vibration

    Institute of Scientific and Technical Information of China (English)

    DING; Hua(丁桦); ZHENG; Zhemin(郑哲敏)

    2002-01-01

    By analyzing and comparing the experimental data, the point source moment theory and the cavity theory, it is concluded that the vibrating signals away from the blasting explosive come mainly from the natural vibrations of the geological structures near the broken blasting area. The source impulses are not spread mainly by the inelastic properties (such as through media damping, as believed to be the case by many researchers) of the medium in the propagation pass, but by this structure. Then an equivalent source model for the blasting vibrations of a fragmenting blasting is proposed, which shows the important role of the impulse of the source's time function under certain conditions. For the purpose of numerical simulation, the model is realized in FEM, The finite element results are in good agreement with the experimental data.

  10. Explosive Blast Neuropathology and Seizures

    Directory of Open Access Journals (Sweden)

    S. Krisztian eKovacs

    2014-04-01

    Full Text Available Traumatic brain injury (TBI due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies.

  11. Effect of supplementary cementing materials on the concrete corrosion control

    Directory of Open Access Journals (Sweden)

    Mejía de Gutiérrez, R.

    2003-12-01

    Full Text Available Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnace slag (GGBS, silica fume (SF, metakaolin (MK, fly ash (FA and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete.

    La falla del concreto en un tiempo inferior a la vida útil para la cual se diseñó puede ser consecuencia del medio ambiente al cual ha estado expuesto o de algunas otras causas de tipo interno. La incorporación de materiales suplementarios al cemento Portland tiene el propósito de mejorar la microestructura del concreto y también de contribuir a la resistencia del concreto a los ataques del medio ambiente. Diferentes minerales y subproductos tales como escorias granuladas de alto horno, humo de sílice, metacaolín, ceniza volante y otros productos han sido usados como materiales suplementarios cementantes. Este documento presenta el comportamiento del hormigón en presencia de diferentes adiciones. Los cementos adicionados, comparados con los cementos Portland muestran bajos calores de hidratación, baja permeabilidad, mayor resistencia a sulfatos y a agua de mar. Estos cementos adicionados encuentran un campo de aplicación importante cuando los requerimientos de durabilidad son

  12. Computation of Modulus of Elasticity of Concrete

    Directory of Open Access Journals (Sweden)

    Onwuka, D.O

    2013-09-01

    Full Text Available - In this presentation, a computer based method which uses a set of algebraic equations and statistical data, were used to compute concrete mixes for prescribeable elastic concrete modulus, and vice versa. The computer programs based on Simplex and Regression theories can be used to predict several mix proportions for obtaining a desired modulus of elasticity of concrete made from crushed granite rock and other materials. The modulus of elasticity of concrete predicted by these programs agreed with experimentally obtained values. The programs are easy and inexpensive to use, and give instant and accurate results. For example, if the modulus of elasticity is specified as input, the computer instantly prints out all possible concrete mix ratios that can yield concrete having the specified elastic modulus. When the concrete mix ratio is specified as input, the computer quickly prints out the elastic modulus of the concrete obtainable from a given concrete mix ratio.

  13. An empirical model to estimate density of sodium hydroxide solution: An activator of geopolymer concretes

    Science.gov (United States)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2016-02-01

    Geopolymer concrete is zero-Portland cement concrete containing alumino-silicate based inorganic polymer as binder. The polymer is obtained by chemical activation of alumina and silica bearing materials, blast furnace slag by highly alkaline solutions such as hydroxide and silicates of alkali metals. Sodium hydroxide solutions of different concentrations are commonly used in making GPC mixes. Often, it is seen that sodium hydroxide solution of very high concentration is diluted with water to obtain SHS of desired concentration. While doing so it was observed that the solute particles of NaOH in SHS tend to occupy lower volumes as the degree of dilution increases. This aspect is discussed in this paper. The observed phenomenon needs to be understood while formulating the GPC mixes since this influences considerably the relationship between concentration and density of SHS. This paper suggests an empirical formula to relate density of SHS directly to concentration expressed by w/w.

  14. Durability and Strength Properties on High Performance Self Compacting Concrete with GGBS and Silica Fumes

    Directory of Open Access Journals (Sweden)

    J. M.Srishaila

    2014-06-01

    Full Text Available This study on the experimental investigation on strength aspects like compressive strength, flexural strength and split tensile strength, and durability aspects like rapid chloride penetration test(RCPT of high performance self-compacting concrete with different mineral admixtures . Initials tests like slump test, L-box test, U-box test and T50 test will be carried out. The methodology adopted here is Ground granulated blast furnace slag (GGBS which is replaced partially by cement at 10%, 20% and 30% and silica fumes(SF by 3%, 6%, 9% in combination with Portland cement and the performance is measured and compared. The influence of mineral admixtures on the workability, mechanical strength and durability aspects of self-compacting concrete are studied. The mix proportion is obtained as per the guidelines given by European Federation of producers and contractors of special products for structure.

  15. Statistical analysis of concrete quality testing results

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica

    2014-01-01

    Full Text Available This paper statistically investigates the testing results of compressive strength and density of control concrete specimens tested in the Laboratory for materials, Faculty of Civil Engineering, University of Belgrade, during 2012. The total number of 4420 concrete specimens were tested, which were sampled on different locations - either on concrete production site (concrete plant, or concrete placement location (construction site. To be exact, these samples were made of concrete which was produced on 15 concrete plants, i.e. placed in at 50 different reinforced concrete structures, built during 2012 by 22 different contractors. It is a known fact that the achieved values of concrete compressive strength are very important, both for quality and durability assessment of concrete inside the structural elements, as well as for calculation of their load-bearing capacity limit. Together with the compressive strength testing results, the data concerning requested (designed concrete class, matching between the designed and the achieved concrete quality, concrete density values and frequency of execution of concrete works during 2012 were analyzed.

  16. Design of Blast Resistant Structure

    Directory of Open Access Journals (Sweden)

    C. K. Gautam

    1997-04-01

    Full Text Available A shock blast resistant structure designed, developed and experimentally evaluated by the authors is described. We structure, capable of with standing dynamic loading (12 psi and a static pressure of 1.5 m earth cover due to blast or any other explosion, also gives protection against radiation, chemical and thermal hazards. Some results and details of analysis and experimentation are presented.

  17. Porcine head response to blast

    Directory of Open Access Journals (Sweden)

    Jay eShridharani

    2012-05-01

    Full Text Available Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposed porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110-740 kPa peak incident overpressure with scaled durations from 1.3-6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. The bulk head acceleration and the pressure at the surface of the head and in the cranial cavity were measured. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within thirty seconds and the remaining two recovered within 8 minutes following bagging and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80-685 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300-2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385-3845 G’s and were well correlated with peak incident overpressure (R2=0.90. One standard deviation corridors for the surface pressure, intracranial pressure, and head acceleration are presented to provide experimental data for

  18. 高速路人行天桥爆破拆除%Blasting Demolition of Highway Footbridge

    Institute of Scientific and Technical Information of China (English)

    支文超; 何健; 刘青; 左余

    2015-01-01

    钢筋混凝土桥梁的爆破拆除,多是破坏其支撑部位后,自然垮塌解体。该天桥横跨高速公路,其上部结构为空心箱梁,要求爆破拆除时,必须对天桥尽可能破碎性拆除,以减小后期清理难度,避免长时间影响高速通行,而水压爆破通过水将爆破能量均匀分布在被爆体的周围,易于使上部箱梁结构充分解体,再结合对桥拱的控制爆破,圆满实现爆破目的。该文中一些现场施工经验和方法,可供类似工程借鉴。%The blasting demolition of reinforced concrete bridge, which occurs mainly for the destruction of much of its support site,naturally collapse. The footbridge across the highway, with a hollow box girder on its superstructure, requires crushing demolition to reduce the post-cleanup difficulty to further avoid the trouble of prolonged high-speed access,but hydraulic blasting through water blasting energy is evenly distributed around blasting, so it's easy to make full disintegration of the upper box girder structure,combined with controlled blasting of the arches,the successful blasting purpose can be achieved. In this paper,some of the on-site construction experience and methods are presented for similar projects in the future.

  19. Blasting Vibration Generated by Breaking-Blasting Large Barriers with EBBLB

    OpenAIRE

    Wang Zhen-xiong; Gu Wen-bin; Liang Ting; Liu Jian-qing; Xu Jing-lin; Liu Xin

    2016-01-01

    Equipment for breaking and blasting large barriers (EBBLB) is new break-blast equipment, which inevitably induces ground vibration and may cause substantial damage to rock mass and nearby structures as well as human beings. The ground vibration induced by break-blast is one of the inevitable outcomes. By monitoring vibration at measuring points at different distances from blasting center, time history curve of vibrating velocity can be obtained; it can be drawn that blasting seismic waves are...

  20. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Concrete Decontamination Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A. Ross, T.L.

    1998-01-01

    Concrete surfaces contaminated with radionuclides present a significant challenge during the decontamination and decommissioning (D and D) process. As structures undergo D and D, coating layers and/or surface layers of the concrete containing the contaminants must be removed for disposal in such a way as to present little to no risk to human health or the environment. The selection of a concrete decontamination technology that is safe, efficient, and cost-effective is critical to the successful D and D of contaminated sites. To support U.S. Department of Energy (DOE) Environmental Management objectives and to assist DOE site managers in the selection of the best-suited concrete floor decontamination technology(s) for a given site, two innovative and three baseline technologies have been assessed under standard, non-nuclear conditions at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The innovative technologies assessed include the Pegasus Coating Removal System and Textron's Electro-Hydraulic Scabbling System. The three baseline technologies assessed include: the Wheelabrator Blastrac model 1-15D, the NELCO Porta Shot Blast{trademark} model GPx-1O-18 HO Rider, and the NELCO Porta Shot Blast{trademark} model EC-7-2. These decontamination technology assessments provide directly comparable performance data that have previously been available for only a limited number of technologies under restrictive site-specific constraints. Some of the performance data collected during these technology assessments include: removal capability, production rate, removal gap, primary and secondary waste volumes, and operation and maintenance requirements. The performance data generated by this project is intended to assist DOE site managers in the selection of the safest, most efficient, and cost-effective decontamination technologies to accomplish their remediation objectives.

  1. FINE CONCRETE CONTAINING WATER, EXPOSED TO MECHANIC AND MAGNETIC TREATMENT, AND FLUIDIFIER

    Directory of Open Access Journals (Sweden)

    Fedosov Sergey Viktorovich

    2012-10-01

    Full Text Available The subject of research is the effect of mechanic and magnetic treatment of different concentrations of the aqueous solution of fluidifier S-3 produced onto the concrete mix rheology, compressive strength and structure formation. Mechanic and magnetic treatment was performed by the pulsed rotor machine equipped with a permanent magnet. It is identified that mechanic and magnetic treatment of the water added into the fluidifier improves the flowability of the concrete mix in comparison with the flowability of the concrete mix prepared absent of treated water, although the amount of the fluidifier meets technical specifications. S-3 fluidifier content in the mix that has treated water is smaller than the same content in a standard mix by several hundreds of times. The concrete mix that has treated water demonstrates highest flowability. The water-to-cement ratio was fixed at 0.4 for all specimens under consideration. In addition, the concrete that has treated water and a minimal amount of S-3 fluidifier (5% of the cement mass demonstrates that its compressive strength is by far higher than the one of the concrete prepared through the application of the conventional approach that contemplates a standard fluidifier consumption rate. Following a thermal analysis, a thermogravimetric analysis and an X-ray diffractometry, it was discovered that the application of treated water accompanied by the minimal consumption of S-3 fluidifier caused the structure of the concrete cement stone to be more compact, while it demonstrated higher crystallization and stronger interphase interaction. Therefore, considerable reduction in the consumption of S-3 fluidifier, coupled with mechanic and magnetic treatment of the water improves concrete strength properties while concrete flowability does not deteriorate.

  2. A study on sodium-concrete reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Heum; Min, Byong Hun [Suwon University, Suwon (Korea, Republic of)

    1997-07-01

    A small sodium-concrete reaction facility was designed, manufactured and installed. this facility has been operated under inert gas(N{sub 2}) with different experimental variables such as sodium injection temperature, injection amount of sodium, aging period of concrete, sodium reservoir temperature. As a result, it was found that sodium injection temperature and injected amount of sodium has little effect on sodium-concrete reaction. However, sodium reservoir temperature and aging period of concrete has relatively high impact on sodium-concrete reaction. Sodium-concrete reaction model has also been developed and compared with experimental results. (Author) 51 refs., 16 tabs., 64 figs.

  3. Machine tool structures

    CERN Document Server

    Koenigsberger, F

    1970-01-01

    Machine Tool Structures, Volume 1 deals with fundamental theories and calculation methods for machine tool structures. Experimental investigations into stiffness are discussed, along with the application of the results to the design of machine tool structures. Topics covered range from static and dynamic stiffness to chatter in metal cutting, stability in machine tools, and deformations of machine tool structures. This volume is divided into three sections and opens with a discussion on stiffness specifications and the effect of stiffness on the behavior of the machine under forced vibration c

  4. 机制变态混凝土在碾压混凝土坝防渗层中的应用--以柬埔寨额勒赛水电站工程为例%Application of machine-processed distorted concrete in impervious layer of RCC dam:case of Lower Stung Russei Chrum Hydropower Station in Cambodia

    Institute of Scientific and Technical Information of China (English)

    傅建; 陈悦; 马源青; 黄骞

    2015-01-01

    柬埔寨王国额勒赛水电站碾压混凝土重力坝防渗层变态混凝土施工厚度达3 m,现场人工加浆不仅工程量大、效率低,而且很难保证其均匀性。根据现场实际并结合国内变态混凝土施工经验,对碾压混凝土大坝上、下游防渗层变态混凝土采用在拌和楼集中拌制,自卸汽车运输,小型挖机配合入仓,再用高频振动棒振捣密实的方式施工,克服了变态混凝土人工加浆不均匀的缺陷。浇筑后的混凝土表面光洁,成型较好,无明显蜂窝麻面,内部密实,层间结合好。%The thickness of distorted concrete of impervious layer of a RCC gravity dam, Lower Stung Russei Chrum Hydro-power Station in Cambodia, is 3 m, which results in large labour intensity and low efficiency of grouting by workers, and the homogeneity can not be ensured. According to the practical situation, in combination of the experiences of distorted concrete con-struction in China, the distorted concrete of upstream and downstream imperious layer was mixed at a mixing plant, transported by dump truck, placed by small excavator and compacted and vibrated by high-frequency vibrating rod, which overcame the de-fect of inhomogeneous grouting. The surface of the concrete after grouting is clean and bright, the shaping is fine, no voids and pits exists, the interior is compacted and the inter-layers are well cohered.

  5. DYNAMIC INFLUENCE CAUSED BY CLOSE BLASTING ON PRIMARY AND SECONDARY SUPPORT SYSTEM IN TUNNEL "SV. ROK"

    Directory of Open Access Journals (Sweden)

    Zvonimir Ester

    2003-12-01

    Full Text Available At the construction site of the road tunnel Sv. Rok, the second, left tunnels tube is being constructed parallel to the unfinished right tunnel. The part of right tunnel tube is supported with primary support system according to NAMT, the second part is supported complete with concrete. Distance between axes of the tunnel tubes is approximately 35 m. Drifting of the left tube is being done by blasting. A potential problem of damaging the surrounding rock and support system was recognized. It is well known that the ground vibration particle velocity due to a blast is a measure of damage on the nearby construction. The three component seismographs were used to measure ground oscillation velocities in the right tunnel tube. Total of 30 measurements were executed and 720 values were processed (including all three component oscillation velocities. Maximum ground oscillation velocity recorded was 232.061 mm/s. This paper brings conclusion derived from monitoring data achieved at close proximity to the blasting area, damage level criteria for the rock mass and support system and discusses how these results could assist further development in the control of blasting technique.

  6. BLEVE blast by expansion-controlled evaporation

    NARCIS (Netherlands)

    Berg, A.C. van den; Voort, M.M. van der; Weerheijm, J.; Versloot, N.H.A.

    2006-01-01

    This report presents a new method to calculate the blast effects originating from an exploding vessel of liquefied gas. Adequate blast calculation requires full knowledge of the blast source characteristics, that is, the release and subsequent evaporation rate of the flashing liquid. Because the

  7. 30 CFR 72.610 - Abrasive blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abrasive blasting. 72.610 Section 72.610... HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.610 Abrasive blasting. (a) Surface and underground mines. When an abrasive blasting operation is performed, all exposed miners shall properly...

  8. BLEVE blast by expansion-controlled evaporation

    NARCIS (Netherlands)

    Berg, A.C. van den; Voort, M.M. van der; Weerheijm, J.; Versloot, N.H.A.

    2006-01-01

    This report presents a new method to calculate the blast effects originating from an exploding vessel of liquefied gas. Adequate blast calculation requires full knowledge of the blast source characteristics, that is, the release and subsequent evaporation rate of the flashing liquid. Because the con

  9. 30 CFR 57.6312 - Secondary blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting. 57.6312 Section 57.6312... Transportation-Surface and Underground § 57.6312 Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from one source. Electric Blasting—Surface and Underground...

  10. 30 CFR 58.610 - Abrasive blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abrasive blasting. 58.610 Section 58.610... SAFETY AND HEALTH HEALTH STANDARDS FOR METAL AND NONMETAL MINES Miscellaneous § 58.610 Abrasive blasting. (a) Surface and underground mines. When an abrasive blasting operation is performed, all...

  11. Behavior of High Water-cement Ratio Concrete under Biaxial Compression after Freeze-thaw Cycles

    Institute of Scientific and Technical Information of China (English)

    SHANG Huaishuai; SONG Yupu; OU Jinping

    2008-01-01

    The high water-cement ratio concrete specimens under biaxial compression that completed in a triaxial testing machine were experimentally studied.Strength and deformations of plain concrete specimens after 0,25,50 cycles of freeze-thaw.Influences of freeze-thaw cycles and stress ratio on the peak stress and deformation of this point were analyzed aecording to the experimental results.Based on the test data,the failure criterion expressed in terms of principal stress after difierent cycles of freeze-thaw,and the failure criterion with consideration of the influence of freeze-thaw cycle and sffess ratio were proposed respectively.

  12. Bending characteristics of resin concretes

    Directory of Open Access Journals (Sweden)

    Ribeiro Maria Cristina Santos

    2003-01-01

    Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.

  13. Large Scale Glazed Concrete Panels

    DEFF Research Database (Denmark)

    Bache, Anja Margrethe

    2010-01-01

    Today, there is a lot of focus on concrete surface’s aesthitic potential, both globally and locally. World famous architects such as Herzog De Meuron, Zaha Hadid, Richard Meyer and David Chippenfield challenge the exposure of concrete in their architecture. At home, this trend can be seen...... existing buildings in and around Copenhagen that are covered with mosaic tiles or glazed tiles; buildings such as Nanna Ditzel’s House in Klareboderne, Arne Jacobsen’s gas station, Erik Møller’s Industriens Hus, Bent Helweg Møller’s Berlingske Hus, Arne Jacobsen’s Stellings Hus and Toms Chocolate Factories...... and finally Lene Tranberg and Bøje Lungård’s Elsinore water purification plant. These buildings have qualities that I would like applied, perhaps transformed or most preferably, if possible, interpreted anew, for the large glazed concrete panels I shall develop. The article is ended and concluded...

  14. HYDRAULIC CONCRETE COMPOSITION AND PROPERTIES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2015-08-01

    Full Text Available Purpose. Scientific work aims at the development and testing of information system to meet the challenges of concrete composition design and control (for railway structures and buildings based on the physico-analytical method algorithm for hydraulic concrete composition calculation. Methodology. The proposed algorithm of hydraulic concrete composition calculation is based on the physicochemical mechanics and in particular on the rheology of elastic–viscous–plastic bodies. The system of canonical equations consists of the equations for concrete strength, absolute volume, concrete mix consistency as well as the equation for optimal concrete saturation with aggregates while minimizing cement content. The joint solution of these four equations related to composition allows determining for the materials the concrete composition of required strength, concrete workability with minimum cement content. The procedure for calculation of hydraulic concrete composition according to the physico-analytical method consists of two parts: 1 physical, which is laboratory testing of concrete mix components in different concrete compositions; 2 analytical, which represents the calculation algorithm for concrete compositions equivalent in concrete strength and workability that comply with the specific conditions of concrete placing. Findings. To solve the problem of designing the concrete composition with the desired properties for railway structures and buildings it was proposed to use the information technology in the form of a developed computer program whose algorithm includes the physico-analytical method for hydraulic concrete composition determination. Originality. The developed concrete composition design method takes into account the basic properties of raw materials, concrete mix and concrete, which are pre-determined. The distinctive feature of physico-analytical method is obtaining of a set of equivalent compositions with a certain concrete mix

  15. A New Microstructure Development Model for the Evaluation of Concrete Setting Time

    Directory of Open Access Journals (Sweden)

    Ho-Jin Cho

    2016-01-01

    Full Text Available Concrete is an exceptionally attractive construction material, with stable material supply, adequate fire resistance, and high durability. Its plasticity can be both an advantage and a disadvantage from an engineering point of view, providing versatile shapes via casting and hardening but also requiring a relatively long period of time to reach its design strength. The setting time, or hardening period, needed before the freshly poured concrete can carry a load, which begins once the hydration reaction has commenced, is a key parameter for durability since it directly affects cracking resistance in early-aged concrete. The new analysis technique for calculating setting time that was developed for this study utilizes both percolation theory and the strength development model. To verify the analytical results obtained using the new model, a critical volume ratio of hydrates was determined and a series of final setting times in concrete were experimentally investigated for different temperatures, mineral admixtures (FA: fly ash; GGBFS: ground granulated blast furnace slag, and a chemical admixture (superplasticizer. The results were found to be in good agreement with the model predictions, confirming its potential utility.

  16. INFLUENCE OF MINERAL ADMIXTURES ON MECHANICAL PROPERTIES OF HIGH-PERFORMANCE CONCRETE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The improvements of the me chanical properties, including bulk density of fresh mixtures, elastic modulus, and compressive strengths of four high-performance concrete mixtures, made with the addition of fly ash, refined ground blast-furnace microslag(microslag) and s ilica fume are studied.The concrete mixtures were determined based on the disper sion testing results.The study indicates that the elastic modulus at 28 and 91 days, an d compressive strengths of the concretes are improved a lot when fl y ash and microslag by 25 percent by weight of cement are added into the mixture s individually.The improvement is especially evident when silica fume by 5 perc e nt and fly ash by 25 percent by weight of cement are added together into the mix ture, while the fresh concrete mixture keeps a good workability.Through the anal ysis of chemically combined water ratios of the four mixtures at various hydrati on ages, it is found that the addition of all these mineral mixtures are benefic ial to the hydration process, especially, at later stages, which might be one of the reasons for the improvement of mechanical properties.

  17. Diffusion Decay Coefficient for Chloride Ions of Concrete Containing Mineral Admixtures

    Directory of Open Access Journals (Sweden)

    Jae-Im Park

    2016-01-01

    Full Text Available The diffusion coefficient for chloride ions and the diffusion decay coefficient for chloride ions are essential variables for a service life evaluation of concrete structures. They are influenced by water-binder ratio, exposure condition, curing temperature, cement type, and the type and use of mineral admixture. Mineral admixtures such as ground granulated blast furnace slag, fly ash, and silica fume have been increasingly used to improve resistance against chloride ions penetration in concrete structures built in an offshore environment. However, there is not enough measured data to identify the statistical properties of diffusion decay coefficient for chloride ions in concrete using mineral admixtures. This paper is aimed at evaluating the diffusion decay coefficient for chloride ions of concrete using ordinary Portland cement or blended cement. NT BUILD 492 method, an electrophoresis experiment, was used to measure the diffusion coefficient for chloride ions with ages. It was revealed from the test results that the diffusion decay coefficient for chloride ions was significantly influenced by W/B and the replacement ratio of mineral admixtures.

  18. Flexural behavior of reinforced concrete beams: Comparative analysis between high-performance concrete and ordinary concrete

    Directory of Open Access Journals (Sweden)

    Hamrat Mostefa

    2014-04-01

    Full Text Available This paper presents an experimental study on the flexural strength of reinforced concrete beams made with high performance concrete (HPC and ordinary concrete (OC. We are carried an experimental campaign aimed comes in three points: 1- the study of the law of behavior of the two materials (OC and HPC, 2- the influence of the compressive strength of concrete and the rate of longitudinal reinforcement on the loaddeflection behavior and ductility index, 3- comparative analysis (ACI318, Eurocode 2 and BS8110 against the crack opening. Test results showed that the capacity of the beams in HPC is higher (6% to 20 % than the beams in OC. The use of HPC is more efficient than the OC to delay the first cracking. The average value of the ductility index for the beams in HPC is 1.30 times those beams in OC. The formula for calculating the crack opening derived of the Eurocode 2 gives the best prediction the crack width of beams (for both types of concrete.

  19. A Failure Criterion for Concrete

    DEFF Research Database (Denmark)

    Ottosen, N. S.

    1977-01-01

    A four-parameter failure criterion containing all the three stress invariants explicitly is proposed for short-time loading of concrete. It corresponds to a smooth convex failure surface with curved meridians, which open in the negative direction of the hydrostatic axis, and the trace in the devi......A four-parameter failure criterion containing all the three stress invariants explicitly is proposed for short-time loading of concrete. It corresponds to a smooth convex failure surface with curved meridians, which open in the negative direction of the hydrostatic axis, and the trace...

  20. Reliability Assessment of Concrete Bridges

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Middleton, C. R.

    This paper is partly based on research performed for the Highways Agency, London, UK under the project DPU/9/44 "Revision of Bridge Assessment Rules Based on Whole Life Performance: concrete bridges". It contains the details of a methodology which can be used to generate Whole Life (WL) reliability...... profiles. These WL reliability profiles may be used to establish revised rules for concrete bridges. This paper is to some extend based on Thoft-Christensen et. al. [1996], Thoft-Christensen [1996] et. al. and Thoft-Christensen [1996]....

  1. Modelling reinforcement corrosion in concrete

    DEFF Research Database (Denmark)

    Michel, Alexander; Geiker, Mette Rica; Stang, Henrik

    2012-01-01

    A physio-chemical model for the simulation of reinforcement corrosion in concrete struc-tures was developed. The model allows for simulation of initiation and subsequent propaga-tion of reinforcement corrosion. Corrosion is assumed to be initiated once a defined critical chloride threshold...... is reached causing the formation of anodic and cathodic regions along the reinforcement. Critical chloride thresholds, randomly distributed along the reinforcement sur-face, link the initiation and propagation phase of reinforcement corrosion. To demonstrate the potential use of the developed model......, a numerical example is pre-sented, that illustrates the formation of corrosion cells as well as propagation of corrosion in a reinforced concrete structure....

  2. Concrete structures under projectile impact

    CERN Document Server

    Fang, Qin

    2017-01-01

    In this book, the authors present their theoretical, experimental and numerical investigations into concrete structures subjected to projectile and aircraft impacts in recent years. Innovative approaches to analyze the rigid, mass abrasive and eroding projectile penetration and perforation are proposed. Damage and failure analyses of nuclear power plant containments impacted by large commercial aircrafts are numerically and experimentally analyzed. Ultra-high performance concrete materials and structures against the projectile impact are developed and their capacities of resisting projectile impact are evaluated. This book is written for the researchers, engineers and graduate students in the fields of protective structures and terminal ballistics.

  3. A Failure Criterion for Concrete

    DEFF Research Database (Denmark)

    Ottosen, N. S.

    1977-01-01

    A four-parameter failure criterion containing all the three stress invariants explicitly is proposed for short-time loading of concrete. It corresponds to a smooth convex failure surface with curved meridians, which open in the negative direction of the hydrostatic axis, and the trace in the devi......A four-parameter failure criterion containing all the three stress invariants explicitly is proposed for short-time loading of concrete. It corresponds to a smooth convex failure surface with curved meridians, which open in the negative direction of the hydrostatic axis, and the trace...

  4. An Experimental Study on the Fabrication of Glass-based Acceleration Sensor Body Using Micro Powder Blasting Method

    Directory of Open Access Journals (Sweden)

    Bong-Cheol Shin

    2007-05-01

    Full Text Available This study investigated the feasibility of the micro powder blasting technique for the micro fabrication of sensor structures using the Pyrex glass to replace the existing silicon-based acceleration sensor fabrication processes. As the preliminary experiments, the effects of the blasting pressure, the mass flow rate of abrasive and the number of nozzle scanning times on erosion depth of the Pyrex and the soda lime glasses were examined. From the experimental results, optimal blasting conditions were selected for the Pyrex glass machining. The dimensions of the designed glass sensor was 1.7×1.7×0.6mm for the vibrating mass, and 2.9×0.7×0.2mm for the cantilever beam. The machining results showed that the dimensional errors of the machined glass sensor ranged from 3 μm in minimum to 20 μm in maximum. These results imply that the micro powder blasting method can be applied for the micromachining of glass-based acceleration sensors to replace the exiting method.

  5. 30 CFR 77.1300 - Explosives and blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting. 77.1300 Section 77... Explosives and Blasting § 77.1300 Explosives and blasting. (a) No explosives, blasting agent, detonator, or any other related blasting device or material shall be stored, transported, carried, handled,...

  6. 30 CFR 75.1326 - Examination after blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Examination after blasting. 75.1326 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1326 Examination after blasting. (a) After blasting, the blasting area shall not be entered until it is clear of...

  7. Numerical simulation of stress for the blasting of foundation pit

    Institute of Scientific and Technical Information of China (English)

    FEI Hong-lu; ZHAO Xin-pu

    2008-01-01

    Through the simulation of explicit dynamic analysis software LS-DYNA, made an analysis to the particle velocity and the stress distribution of surrounding rock when the explosives blasting. Explicated the mechanical character of surrounding rock in the foun-dation pit blasting, provided a basis to set of blasting parameters and optimized the blast-ing construction.

  8. 30 CFR 780.13 - Operation plan: Blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: Blasting. 780.13 Section 780.13... Operation plan: Blasting. (a) Blasting plan. Each application shall contain a blasting plan for the proposed... methods to be applied in controlling the adverse effects of blasting operations. (b) Monitoring...

  9. Toxicology of blast overpressure.

    Science.gov (United States)

    Elsayed, N M

    1997-07-25

    Blast overpressure (BOP) or high energy impulse noise, is the sharp instantaneous rise in ambient atmospheric pressure resulting from explosive detonation or firing of weapons. Blasts that were once confined to military and to a lesser extent, occupational settings, are becoming more universal as the civilian population is now increasingly at risk of exposure to BOP from terrorist bombings that are occurring worldwide with greater frequency. Exposure to incident BOP waves can cause auditory and non-auditory damage. The primary targets for BOP damage are the hollow organs, ear, lung and gastrointestinal tract. In addition, solid organs such as heart, spleen and brain can also be injured upon exposure. However, the lung is more sensitive to damage and its injury can lead to death. The pathophysiological responses, and mortality have been extensively studied, but little attention, was given to the biochemical manifestations, and molecular mechanism(s) of injury. The injury from BOP has been, generally, attributed to its external physical impact on the body causing internal mechanical damage. However, a new hypothesis has been proposed based on experiments conducted in the Department of Respiratory Research, Walter Reed Army Institute of Research, and later in the Department of Occupational Health, University of Pittsburgh. This hypothesis suggests that subtle biochemical changes namely, free radical-mediated oxidative stress occur and contribute to BOP-induced injury. Understanding the etiology of these changes may shed new light on the molecular mechanism(s) of injury, and can potentially offer new strategies for treatment. In this symposium. BOP research involving auditory, non-auditory, physiological, pathological, behavioral, and biochemical manifestations as well as predictive modeling and current treatment modalities of BOP-induced injury are discussed.

  10. Design of Demining Machines

    CERN Document Server

    Mikulic, Dinko

    2013-01-01

    In constant effort to eliminate mine danger, international mine action community has been developing safety, efficiency and cost-effectiveness of clearance methods. Demining machines have become necessary when conducting humanitarian demining where the mechanization of demining provides greater safety and productivity. Design of Demining Machines describes the development and testing of modern demining machines in humanitarian demining.   Relevant data for design of demining machines are included to explain the machinery implemented and some innovative and inspiring development solutions. Development technologies, companies and projects are discussed to provide a comprehensive estimate of the effects of various design factors and to proper selection of optimal parameters for designing the demining machines.   Covering the dynamic processes occurring in machine assemblies and their components to a broader understanding of demining machine as a whole, Design of Demining Machines is primarily tailored as a tex...

  11. Machining with abrasives

    CERN Document Server

    Jackson, Mark J

    2011-01-01

    Abrasive machining is key to obtaining the desired geometry and surface quality in manufacturing. This book discusses the fundamentals and advances in the abrasive machining processes. It provides a complete overview of developing areas in the field.

  12. Women, Men, and Machines.

    Science.gov (United States)

    Form, William; McMillen, David Byron

    1983-01-01

    Data from the first national study of technological change show that proportionately more women than men operate machines, are more exposed to machines that have alienating effects, and suffer more from the negative effects of technological change. (Author/SSH)

  13. Machine medical ethics

    CERN Document Server

    Pontier, Matthijs

    2015-01-01

    The essays in this book, written by researchers from both humanities and sciences, describe various theoretical and experimental approaches to adding medical ethics to a machine in medical settings. Medical machines are in close proximity with human beings, and getting closer: with patients who are in vulnerable states of health, who have disabilities of various kinds, with the very young or very old, and with medical professionals. In such contexts, machines are undertaking important medical tasks that require emotional sensitivity, knowledge of medical codes, human dignity, and privacy. As machine technology advances, ethical concerns become more urgent: should medical machines be programmed to follow a code of medical ethics? What theory or theories should constrain medical machine conduct? What design features are required? Should machines share responsibility with humans for the ethical consequences of medical actions? How ought clinical relationships involving machines to be modeled? Is a capacity for e...

  14. Brain versus Machine Control.

    Directory of Open Access Journals (Sweden)

    Jose M Carmena

    2004-12-01

    Full Text Available Dr. Octopus, the villain of the movie "Spiderman 2", is a fusion of man and machine. Neuroscientist Jose Carmena examines the facts behind this fictional account of a brain- machine interface

  15. Topology optimization of reinforced concrete structures

    DEFF Research Database (Denmark)

    Amir, Oded

    Recent advances regarding topology optimization procedures of reinforced concrete structures are presented. We discuss several approaches to the challenging problem of optimizing the distribution of concrete and steel reinforcement. In particular, the consideration of complex nonlinear constitutive...

  16. Concrete with Highly Active Rice Husk Ash

    Institute of Scientific and Technical Information of China (English)

    FENG Qing-ge; LIN Qing-yu; YU Qi-jun; ZHAO San-ying; YANG Lu-feng; Shuichi Sugita

    2004-01-01

    The overall aim was to investigate the effect of highly active rice husk ash (RHA) produced by an industrial furnace on some properties of concrete. The strength, pore volume and pore distribution of concrete and the Ca(OH)2 content in concrete were investigated by JIS A 1108 (Method of test for compressive strength of concrete), a mercury instrument porosimeter, and the thermogravimetric analysis, respectively. The results show that,with RHA replacement of cement,the compressive strength of concrete is increased evidently;the average pore radius of concrete is greatly decreased, especially the portion of the pores greater than 20nm in radius is decreased while the amount of smaller pores is increased, and the more the RHA replacement, the less the amount of Ca(OH)2 in concrete. The latter two results are the main reasons for the strength enhancement of concrete.

  17. Optimization for blast furnace slag dry cooling granulation device

    Science.gov (United States)

    Dazhan, Sheng; Yali, Wang; Ruiyun, Wang; Suping, Cui; Xiaoyu, Ma

    2017-03-01

    Since the large accumulation amount of blast furnace slag (BFS) with recycling value, it has become a hot topic for recovery utilization. Compared with the existing various BFS granulation process, the dry granulation process can promote the use of blast furnace granulated slag as cement substitute and concrete admixtures. Our research group developed a novel dry cooling granulation experiment device to treat BFS. However, there are still some problems to be solved. The purpose of this research is to improve the cooling and granulation efficiency of the existing dry type cooling equipment. This topic uses the FLUENT simulation software to study the impact of the number of air inlet on the cooling effect of the device. The simulation result is that the device possessing eight air inlets can increase the number of hot and cold gas exchanged, resulting in a better cooling effect. According to the power consumption, LCA analysis was carried out on the cooling granulation process. The results show that the device equipped eight air inlets not only improved the original equipment cooling granulation effect, but also increased resource utilization ratio, realized energy-saving and emission reduction.

  18. Application of Cu-Al-Mn superelastic alloy bars as reinforcement elements in concrete beams

    Science.gov (United States)

    Shrestha, Kshitij C.; Araki, Yoshikazu; Nagae, Takuya; Yano, Hayato; Koetaka, Yuji; Omori, Toshihiro; Sutou, Yuji; Kainuma, Ryosuke; Ishida, Kiyohito

    2012-04-01

    Experimental works are done to assess the seismic behavior of concrete beams reinforced with superelastic alloy (SEA) bars. Applicability of newly developed Cu-Al-Mn SEA bars, characterized by large recovery strain, low material cost, and high machinability, have been proposed as partial replacements for conventional steel bars in order to reduce residual deformations in structures during and after intense earthquakes. Four-point reverse-cyclic bending tests were done on 1/3 scale concrete beams comprising three different types of specimens - conventional steel reinforced concrete (ST-RC), SEA reinforced concrete (SEA-RC), and SEA reinforced concrete with pre-tensioning (SEA-PC). The results showed that SEA reinforced concrete beams demonstrated significant enhancement in crack recovery capacity in comparison to steel reinforced beam. Average recovery of cracks for each of the specimens was 21% for ST-RC, 84% for SEA-RC, and 86% for SEA-PC. In addition, SEA-RC and SEA-PC beams demonstrated strong capability of recentering with comparable normalized strength and ductility relative to conventional ST-RC beam specimen. ST-RC beam, on the other hand, showed large residual cracks due to progressive reduction in its re-centering capability with each cycle. Both the SEA-RC and SEA-PC specimens demonstrated superiority of Cu-Al-Mn SEA bars to conventional steel reinforcing bars as reinforcement elements.

  19. Compressive mechanical of high strength concrete (HSC) after different high temperature history

    Science.gov (United States)

    Zhao, Dongfu; Liu, Yuchen; Gao, Haijing; Han, Xiao

    2017-08-01

    The compression strength test of high strength concrete under different high-temperature conditions was carried out by universal testing machine. The friction surface of the pressure bearing surface of the specimen was composed of three layers of plastic film and glycerol. The high temperature working conditions were the combination of different heating temperature and different constant temperature time. The characteristics of failure modes and the developments of cracks were observed; the residual compressive strength and stress-strain curves were measured; the effect of different temperature and heating time on the strength and deformation of high strength concrete under uniaxial compression were analyzed; the failure criterion formula of the high strength concrete after high temperature under uniaxial compression was established. The formula of the residual compressive strength of high strength concrete under the influence of heating temperature and constant temperature time was put forward. The relationship between the residual elastic modulus and the peak strain and residual compressive strength of high strength concrete and different high temperature conditions is established. The quantitative relationship that the residual compressive strength decreases the residual elastic modulus decreases and the peak strain increases with the increase of heating temperature and the constant temperature time was given, which provides a reference for the detection and evaluation of high strength concrete structures after fire.

  20. Modelling the Loss of Steel-Concrete Bonds in Corroded Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2007-01-01

    The existing stochastic models for deterioration of reinforced concrete structures is extended by adding modelling of "loss of bond" due to corrosion between the reinforcement bars and the surrounding concrete.......The existing stochastic models for deterioration of reinforced concrete structures is extended by adding modelling of "loss of bond" due to corrosion between the reinforcement bars and the surrounding concrete....

  1. CONCRETE MIX DESIGN FOR STRUCTURES SUBJECTED TO EXPOSURE CLASS XC1 DEPENDING ON CONCRETE COVER

    Directory of Open Access Journals (Sweden)

    O. Yu. Cherniakevich

    2016-01-01

    Full Text Available The reinforced steel corrosion which is the most important problem of reinforced concrete structures durability is generally stipulated for carbonization of concrete surrounding it. Concrete cover calculation at the design stage is predicated one because of the differences in manufacturing conditions and use of constructions. The applying of the probabilistic approaches to the carbonation process modeling allows to get predicated grade of the depth of carbonization of concrete and, thus, to settle minimum concrete cover thickness for a given projected service life of a construction. The procedures for concrete mix design for different strength classes of concrete are described in the article. Current recommendations on assignment of concrete strength class as well as concrete cover are presented. The European Standard EN 206:2013 defines the content requirements for the concrete structures operated in the exposure class XC1, including the minimum values of water-cement ratio, minimum cement content, and minimum strength class of concrete. Since the standard does not include any basis or explanations of the requirements, we made an effort to develop a scientific justification for the mentioned requirements. We developed the probabilistic models for the process of carbonation of concrete based on the concrete mix which was designed using the software VTK-Korroziya. The reinforced concrete structures with concrete cover 20–35 mm operated in the most unfavorable conditions within the exposure class XC1 were analyzed. The corresponding probabilistic calculations of the depth of carbonated concrete are described in the article. 

  2. Enhanced radiation shielding with galena concrete

    OpenAIRE

    Hadad Kamal; Majidi Hosein; Sarshough Samira

    2015-01-01

    A new concrete, containing galena mineral, with enhanced shielding properties for gamma sources is developed. To achieve optimized shielding properties, ten types of galena concrete containing different mixing ratios and a reference normal concrete of 2300 kg/m3 density are studied experimentally and numerically using Monte Carlo and XCOM codes. For building galena concrete, in addition to the main composition, micro-silica and water, galena mineral (contai...

  3. Critical Study of Corrosion Damaged Concrete Structures

    OpenAIRE

    Sallehuddin Shah Ayop; John Cairns

    2013-01-01

    Corrosion of steel reinforcement in concrete is one of the major problems with respect to the durability of reinforced concrete structures. The degradation of the structure strength due to reinforcement corrosion decreases its design life. This paper presents the literature study on the influence of the corrosion on concrete structure starting from the mechanism of the corrosion until the deterioration stage and the structural effects of corrosion on concrete structures.

  4. VISCOELASTIC STRUCTURAL MODEL OF ASPHALT CONCRETE

    Directory of Open Access Journals (Sweden)

    V. Bogomolov

    2016-06-01

    Full Text Available The viscoelastic rheological model of asphalt concrete based on the generalized Kelvin model is offered. The mathematical model of asphalt concrete viscoelastic behavior that can be used for calculation of asphalt concrete upper layers of non-rigid pavements for strength and rutting has been developed. It has been proved that the structural model of Burgers does not fully meet all the requirements of the asphalt-concrete.

  5. Modelling localised fracture of reinforced concrete structures

    OpenAIRE

    Liao, F; Huang, Z.

    2015-01-01

    This paper presents a robust finite element procedure for simulating the localised fracture of reinforced concrete members. In this new model the concrete member is modelled as an assembly of plain concrete, reinforcing steel bar and bond-link elements. The 4-node quadrilateral elements are used for 2D modelling of plain concrete elements, in which the extended finite element method is adopted to simulate the formation and growth of individual cracks. The reinforcing steel bars are modelled b...

  6. Analysis of laboratory compaction methods of roller compacted concrete

    Science.gov (United States)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  7. The AA disappearing under concrete shielding

    CERN Multimedia

    CERN PhotoLab

    1982-01-01

    When the AA started up in July 1980, the machine stood freely in its hall, providing visitors with a view through the large window in the AA Control Room. The target area, in which the high-intensity 26 GeV/c proton beam from the PS hit the production target, was heavily shielded, not only towards the outside but also towards the AA-Hall. However, electrons and pions emanating from the target with the same momentum as the antiprotons, but much more numerous, accompanied these through the injection line into the AA ring. The pions decayed with a half-time corresponding to approximately a revolution period (540 ns), whereas the electrons lost energy through synchrotron radiation and ended up on the vacuum chamber wall. Electrons and pions produced the dominant component of the radiation level in the hall and the control room. With operation times far exceeding original expectations, the AA had to be buried under concrete shielding in order to reduce the radiation level by an order of magnitude.

  8. A Universal Reactive Machine

    DEFF Research Database (Denmark)

    Andersen, Henrik Reif; Mørk, Simon; Sørensen, Morten U.

    1997-01-01

    Turing showed the existence of a model universal for the set of Turing machines in the sense that given an encoding of any Turing machine asinput the universal Turing machine simulates it. We introduce the concept of universality for reactive systems and construct a CCS processuniversal...

  9. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Science.gov (United States)

    2010-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Blasting agent Minimum thickness of artificial barricades (in.) 100 3 11 12 100 300 4 14 12 300 600 5 18...

  10. Small size machines for transportation of concrete mixes and shotcrete operations МАЛОГАБАРИТНОЕ ОБОРУДОВАНИЕ ДЛЯ ТРАНСПОР-ТИРОВАНИЯ БЕТОННЫХ СМЕСЕЙ И ВЫПОЛНЕНИЯ ТОРКРЕТ-РАБОТ

    Directory of Open Access Journals (Sweden)

    Emel’yanova Inga Anatol’evna

    2013-05-01

    Full Text Available The article represents a summary of findings of various research projects aimed at the optimization of specific items of small size machines developed and pilot tested at different stages of construction operations.For 15 years, Department of Mechanization of Construction Processes, Kharkiv National University of Civil Engineering and Architecture has been engaged in design, pilot testing and monitoring of practical application of small size construction machinery. All machines and items of equipment have adsorbed numerous research findings, and no similar products are available in Ukraine and worldwide.The authors analyze different items of construction machines that have already been tested in the course of construction operations. They include a twin-piston coun- terflow mortar-and-concrete pump, two-piston direct-flow mortar-and-concrete pumps equipped with ball valves, spring valves and disk valves, advanced cascade concrete mixing machines. Each of the above machines can operate in pursuance of a pre-set pattern of shotcrete operations.All machines are universal, as twin-piston concrete pumps may pump concrete mixes having different workability rates; they can also be used to transport building mixes in horizontal and vertical directions; they are applied for shotcrete operations. They are efficiently used in the preparation of different mixes.All machines and items of equipment are protected by Ukraine-wide patents. They are recommended for wide-scale use due to sophisticated structural solutions invested into their design.Представлены различные виды апробированного в условиях строительства малогабаритного оборудования: двухпоршевой противоточный растворобетононасос, двухпоршневые прямоточные растворобетононасосы с шаровыми, конусными подпр

  11. Limits of Spalling of Fire Exposed Concrete

    DEFF Research Database (Denmark)

    Hertz, Kristian Dahl

    1998-01-01

    The supporting document describes the present knowledge about explosive spalling of traditional concrete and dense concrete based on 36 references and the authors own tests and observations.The document concludes that the risk of spalling is limited for traditional concretes within 3-4 percent mo...

  12. 9 CFR 91.26 - Concrete flooring.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000 psi...

  13. Lightweight concrete with enhanced neutron shielding

    Energy Technology Data Exchange (ETDEWEB)

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2016-09-13

    A lightweight concrete containing polyethylene terephthalate in an amount of 20% by total volume. The concrete is enriched with hydrogen and is therefore highly effective at thermalizing neutrons. The concrete can be used independently or as a component of an advanced neutron radiation shielding system.

  14. Microencapsulation of Self-healing Concrete Properties

    Science.gov (United States)

    2012-08-01

    Smith, D. Performance Related Specifications for Concrete Pavements . FHWA-RD-93-042. Federal Highway Administration, Washington, D.C, 1993...application of self-healing concrete, the wall must be rigid and strong enough to endure an aqueous condition as well as the concrete environment

  15. Significance of tests and properties of concrete and concrete-making materials

    CERN Document Server

    Pielert, James H

    2006-01-01

    Reflects a decade of technological changes in concrete industry! The newest edition of this popular ASTM publication reflects the latest technology in concrete and concrete-making materials. Six sections cover: (1) General information on the nature of concrete, sampling, variability, and testing laboratories. A new chapter deals with modeling cement and concrete properties. (2) Properties of freshly mixed concrete. (3) Properties of hardened concrete. (4) Concrete aggregates—this section has been revised and the chapters are presented in the order that most concerns concrete users: grading, density, soundness, degradation resistance, petrographic examination, reactivity, and thermal properties. (5) Materials other than aggregates—the chapter on curing materials now reflects the current technology of materials applied to new concrete surfaces. The chapter on mineral admixtures has been separated into two chapters: supplementary cementitious materials and ground slag. (6) Specialized concretes—contains a ...

  16. Identification of Bacteria and the Effect on Compressive Strength of Concrete

    Directory of Open Access Journals (Sweden)

    Anneza L. H.

    2016-01-01

    Full Text Available This paper presents the species of bacteria used in this study as well as the effect of the bacteria on compressive strength of bioconcrete. Bioconcrete is not only more environmentally friendly but it is easy to procure. The objective of this research is to identify the ureolytic bacteria and sulphate reduction bacteria that have been isolated and further use the bacteria in concrete to determine the effect of bacteria on compressive strength. Identification of bacteria is conducted through Polymerase chain reaction (PCR method and DNA sequencing. The DNA of the bacteria was run through BLAST algorithm to determine the bacterial species.The bacteria were added into the concrete mix as a partial replacement of water. 3% of water is replaced by ureolytic bacteria and 5% of water is replaced by sulphate reduction bacteria. After running BLAST algorithm the bacteria were identified as Enterococcus faecalis (ureolytic bacteria and Bacillus sp (sulphate reduction bacteria. The result of the compressive strength for control is 36.0 Mpa. Partial replacement of 3% water by ureolytic bacteria has strength of 38.2Mpa while partial replacement of 5% of water by sulphate reduction bacteria has strength of 42.5Mpa. The significant increase of compressive strength with the addition of bacteria shows that bacteria play a significant role in the improvement of compressive strength.

  17. Simulating geometrically complex blast scenarios

    Directory of Open Access Journals (Sweden)

    Ian G. Cullis

    2016-04-01

    Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  18. Simulating geometrically complex blast scenarios

    Institute of Scientific and Technical Information of China (English)

    Ian G. CULLIS; Nikos NIKIFORAKIS; Peter FRANKL; Philip BLAKELY; Paul BENNETT; Paul GREENWOOD

    2016-01-01

    The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs) often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length-and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  19. Quality Improvement of Concrete Articles

    Directory of Open Access Journals (Sweden)

    Svatovskaya Larisa

    2016-01-01

    Full Text Available In the paper it is shown that quality of concrete articles and structures may be significantly improved by silica sol solution absorption. Improvements include increase of compressive strength, resistance to low temperatures, coefficient of constructive quality, decrease of water sorption, contraction. The reason of improvement is discussed.

  20. Computational modeling of concrete flow

    DEFF Research Database (Denmark)

    Roussel, Nicolas; Geiker, Mette Rica; Dufour, Frederic

    2007-01-01

    This paper provides a general overview of the present status regarding computational modeling of the flow of fresh concrete. The computational modeling techniques that can be found in the literature may be divided into three main families: single fluid simulations, numerical modeling of discrete...

  1. Concrete: Too young for conservation

    NARCIS (Netherlands)

    Heineman, H.A.; Hees, R.P.J. van; Nijland, T.G.

    2008-01-01

    The 20th century built heritage is one of the new conservation challenges, due to its architectural differences from the traditional heritage and new materials. One major new material is concrete; its quantity and importance for the new heritage requires a tailored conservation approach. Until now,

  2. Timber floors strengthened with concrete

    NARCIS (Netherlands)

    Blass, H.J.; Linden, M.L.R. van der; Schlager, M.

    1998-01-01

    Timber-concrete composite (tcc) beams may be used for the renovation of old timber floors. Although these systems are not new (Pokulka, 1997) and form a simple and practical solution, they are not widely adopted. One of the reasons for this is the Jack of uniform design rules. In this research progr

  3. Annotated Bibliography: Polymers in Concrete.

    Science.gov (United States)

    1982-10-01

    rheology of the plastic mix, development of strength and properties of hardened concrete, including performance history, are discussed and an extensive...additives consisting of alum, alk. metal sulfates, alginates , bentonite, diatomaceous earth, and carrageenates. C196 Naus, D. J., et al., "Cost

  4. Concrete: Too young for conservation

    NARCIS (Netherlands)

    Heineman, H.A.; Hees, R.P.J. van; Nijland, T.G.

    2008-01-01

    The 20th century built heritage is one of the new conservation challenges, due to its architectural differences from the traditional heritage and new materials. One major new material is concrete; its quantity and importance for the new heritage requires a tailored conservation approach. Until now,

  5. Timber floors strengthened with concrete

    NARCIS (Netherlands)

    Blass, H.J.; Linden, M.L.R. van der; Schlager, M.

    1998-01-01

    Timber-concrete composite (tcc) beams may be used for the renovation of old timber floors. Although these systems are not new (Pokulka, 1997) and form a simple and practical solution, they are not widely adopted. One of the reasons for this is the Jack of uniform design rules. In this research

  6. Assessment of Concrete Strength Using Partial Replacement of Coarse Aggregate for Wast Tiles and Cement for Rice Husk Ash in Concrete

    Directory of Open Access Journals (Sweden)

    Umapathy U

    2014-05-01

    Full Text Available Conservation of natural resources and preservation of environment is the essence of any development. The problem arising from continuous technological and industrial development is the disposal of waste material. If some of the waste materials are found suitable in concrete making, not only cost of construction can be cut down, but also safe disposal of waste materials can be achieved. So in our project, an attempt has been made to assess the suitability of stone with waste tills in concrete making. In the laboratory tiles has been tried as coarse aggregate has been used as partial substitute to conventional coarse aggregate concrete making and today many researches are ongoing into the use of Portland cement replacements, using many waste materials like pulverized fly ash (PFA and ground granulated blast furnace slag (GGBS. Like PFA and GGBS a waste glass powder (GLP is also used as a binder with partial replacement of cement which takes some part of reaction at the time of hydration. In this study, rice husk ash have been used as partially replacements to the cement Cubes were cast and tested for compressive strength, and modulus of rupture after a curing period of 7,17,28 days.

  7. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  8. Quantum machine learning.

    Science.gov (United States)

    Biamonte, Jacob; Wittek, Peter; Pancotti, Nicola; Rebentrost, Patrick; Wiebe, Nathan; Lloyd, Seth

    2017-09-13

    Fuelled by increasing computer power and algorithmic advances, machine learning techniques have become powerful tools for finding patterns in data. Quantum systems produce atypical patterns that classical systems are thought not to produce efficiently, so it is reasonable to postulate that quantum computers may outperform classical computers on machine learning tasks. The field of quantum machine learning explores how to devise and implement quantum software that could enable machine learning that is faster than that of classical computers. Recent work has produced quantum algorithms that could act as the building blocks of machine learning programs, but the hardware and software challenges are still considerable.

  9. Precision machine design

    CERN Document Server

    Slocum, Alexander H

    1992-01-01

    This book is a comprehensive engineering exploration of all the aspects of precision machine design - both component and system design considerations for precision machines. It addresses both theoretical analysis and practical implementation providing many real-world design case studies as well as numerous examples of existing components and their characteristics. Fast becoming a classic, this book includes examples of analysis techniques, along with the philosophy of the solution method. It explores the physics of errors in machines and how such knowledge can be used to build an error budget for a machine, how error budgets can be used to design more accurate machines.

  10. Phase 3 Final Topical Report for the Remote Operated Vehicle with C02 Blasting (ROVCO2)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-04-14

    This report documents the third and final phase of the Remote Operated Vehicle with CO2 Blasting (ROVCO2) Program. The Program=s goal is to develop and demonstrate a tool to improve the productivity of concrete floor decontamination. In Phase 3 of the ROVCO2 program, the workhead and the COYOTEE end-effector were redesigned, and effectiveness and productivity tests were performed. This report documents the development activities. The results show that the ROVCO2 system is an efficient decontamination tool, but with relatively slow production rates.

  11. Response of Box-Type Structures Under Internal-Blast Loading

    Institute of Scientific and Technical Information of China (English)

    WANG Zhongqi; WU Jianguo; BAI Chunhua; LU Yong

    2006-01-01

    The tests of box-type structures under internal-blast loading are carried out.Then a numerical analysis of the test structures is done using a fully coupled numerical finite element model.The break-up process of the structure is simulated.The failure modes of the simulated structure agree well with the experimental results.The effects of the size of the reinforcing bars and the detailing of connections among the rebars in the concrete on the throw velocity of the fragments are discussed.

  12. 30 CFR 57.20031 - Blasting underground in hazardous areas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting underground in hazardous areas. 57... MINES Miscellaneous § 57.20031 Blasting underground in hazardous areas. In underground areas where... removed to safe places before blasting....

  13. Improved BLAST for wireless communications

    Institute of Scientific and Technical Information of China (English)

    Li Yongzhao; Liao Guisheng; Wang Feng

    2006-01-01

    Bell layered space-time architecture (BLAST) is a multi-antenna communication structure with high spectrum efficiency, and it has found wide applications in LANs and WLANs. However, its performance is much poorer than those of other space-time coding approaches. In order to improve its performance, an improved BLAST based on RAKE receiving is investigated. The new system introduces orthogonal spreading sequences (OSS) into the transmitter while retains the basic structure of BLAST. The proposed receiver suppresses interferences from other antennas by the orthogonality contained in the received signals, and extracts information from each receiving antenna by using RAKE receiving principle to construct efficient statistic decision. Simulation results show that the improved system performs well over both frequency-flat and frequency-selective fading channels.

  14. Strength of Concrete Containing Basalt Fibre

    Directory of Open Access Journals (Sweden)

    Parvez Imraan Ansari

    2015-04-01

    Full Text Available This paper presents the comparative study of effect of basalt fibre on compressive and split tensile strength of M40 grade concrete. The basalt fibre was mixed in concrete by (0.5%, 1%, and 1.5% of its total weight of cement in concrete. Results indicated that the strength increases with increase of basalt fibre content up to 1.0% beyond that there is a reduction in strength on increasing basalt fibre. The results show that the concrete specimen with 1.0% of basalt fibre gives better performance when it compared with 0.5%and 1.5% basalt fibre mix in concrete specimens.

  15. Concrete structures protection, repair and rehabilitation

    CERN Document Server

    Woodson, R Dodge

    2009-01-01

    The success of a repair or rehabilitation project depends on the specific plans designed for it. Concrete Structures: Protection, Repair and Rehabilitation provides guidance on evaluating the condition of the concrete in a structure, relating the condition of the concrete to the underlying cause or causes of that condition, selecting an appropriate repair material and method for any deficiency found, and using the selected materials and methods to repair or rehabilitate the structure. Guidance is also provided for engineers focused on maintaining concrete and preparing concrete investigation r

  16. Durability of cracked fibre reinforced concrete structures

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place

    1998-01-01

    Durability studies are carried out at BKM as part of the research project "Design Methods for Fibre Reinforced Concrete" (FRC) involving BKM, The Concrete Research Center at DTI, Building Technology at Aalborg University, Rambøll, 4K-Beton and Rasmussen & Schiøtz. Concrete beams with or without...... structure are made on specimens drilled or sawed from beams after unloading (mechanical load). The pore structure of the concretes will be studied by microscopy, sorption and suction curves. The test programme involves three different concrete qualities (water-cement ratios). Both steel fibres (ZP...

  17. Microbiologically induced deterioration of concrete: a review

    Directory of Open Access Journals (Sweden)

    Shiping Wei

    2013-12-01

    Full Text Available Microbiologically induced deterioration (MID causes corrosion of concrete by producing acids (including organic and inorganic acids that degrade concrete components and thus compromise the integrity of sewer pipelines and other structures, creating significant problems worldwide. Understanding of the fundamental corrosion process and the causal agents will help us develop an appropriate strategy to minimize the costs in repairs. This review presents how microorganisms induce the deterioration of concrete, including the organisms involved and their colonization and succession on concrete, the microbial deterioration mechanism, the approaches of studying MID and safeguards against concrete biodeterioration. In addition, the uninvestigated research area of MID is also proposed.

  18. Microbiologically induced deterioration of concrete - A Review

    Science.gov (United States)

    Wei, Shiping; Jiang, Zhenglong; Liu, Hao; Zhou, Dongsheng; Sanchez-Silva, Mauricio

    2013-01-01

    Microbiologically induced deterioration (MID) causes corrosion of concrete by producing acids (including organic and inorganic acids) that degrade concrete components and thus compromise the integrity of sewer pipelines and other structures, creating significant problems worldwide. Understanding of the fundamental corrosion process and the causal agents will help us develop an appropriate strategy to minimize the costs in repairs. This review presents how microorganisms induce the deterioration of concrete, including the organisms involved and their colonization and succession on concrete, the microbial deterioration mechanism, the approaches of studying MID and safeguards against concrete biodeterioration. In addition, the uninvestigated research area of MID is also proposed. PMID:24688488

  19. Mechanical characterization of fiber reinforced Polymer Concrete

    Directory of Open Access Journals (Sweden)

    João Marciano Laredo dos Reis

    2005-09-01

    Full Text Available A comparative study between epoxy Polymer Concrete plain, reinforced with carbon and glass fibers and commercial concrete mixes was made. The fibers are 6 mm long and the fiber content was 2% and 1%, respectively, in mass. Compressive tests were performed at room temperature and load vs. displacement curves were plotted up to failure. The carbon and glass fibers reinforcement were randomly dispersed into the matrix of polymer concrete. An increase in compressive properties was observed as function of reinforcement. The comparison also showed that Polymer Concrete, plain and reinforced, has a better performance than regular market concrete, suggesting that PC is a reliable alternative for construction industry.

  20. MATHEMATICAL MODELING OF THE OPTIMUM MODES OF CONCRETING WITH THE USE OF PNEUMATIC FORMWORK

    Directory of Open Access Journals (Sweden)

    A. N. Tkachenko

    2010-12-01

    Full Text Available Problem statement. The construction of a sufficient theoretical model of pneumatic formwork work and description of the dependence of strength properties of the concrete obtained on various parameters of the process of shotcreting is an urgent problem.Results and conclusions. Experimental-theoretical model of the technological process of fine-grained concrete mix shotcreting on horizontally located pneumatic formwork is presented. Recoil indicator and concrete strength dependence on such parameters, as the productive capacity of shotcrete-machine, the nozzle diameter, the distance from the nozzle to the formwork surface and tension of pneumatic formwork material. The comparison of theoretical dependences and experimental ones has shown their qualitative correspondence.