WorldWideScience

Sample records for blast pressure waves

  1. Blast wave parameters at diminished ambient pressure

    Science.gov (United States)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  2. A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves

    OpenAIRE

    Courtney, Amy; Courtney, Michael

    2008-01-01

    The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating b...

  3. Measurement of Blast Waves from Bursting Pressureized Frangible Spheres

    Science.gov (United States)

    Esparza, E. D.; Baker, W. E.

    1977-01-01

    Small-scale experiments were conducted to obtain data on incident overpressure at various distances from bursting pressurized spheres. Complete time histories of blast overpressure generated by rupturing glass spheres under high internal pressure were obtained using eight side-on pressure transducers. A scaling law is presented, and its nondimensional parameters are used to compare peak overpressures, arrival times, impulses, and durations for different initial conditions and sizes of blast source. The nondimensional data are also compared, whenever possible, with results of theoretical calculations and compiled data for Pentolite high explosive. The scaled data are repeatable and show significant differences from blast waves generated by condensed high-explosives.

  4. Relationship between orientation to a blast and pressure wave propagation inside the rat brain.

    Science.gov (United States)

    Chavko, Mikulas; Watanabe, Tomas; Adeeb, Saleena; Lankasky, Jason; Ahlers, Stephen T; McCarron, Richard M

    2011-01-30

    Exposure to a blast wave generated during an explosion may result in brain damage and related neurological impairments. Several mechanisms by which the primary blast wave can damage the brain have been proposed, including: (1) a direct effect of the shock wave on the brain causing tissue damage by skull flexure and propagation of stress and shear forces; and (2) an indirect transfer of kinetic energy from the blast, through large blood vessels and cerebrospinal fluid (CSF), to the central nervous system. To address a basic question related to the mechanisms of blast brain injury, pressure was measured inside the brains of rats exposed to a low level of blast (~35kPa), while positioned in three different orientations with respect to the primary blast wave; head facing blast, right side exposed to blast and head facing away from blast. Data show different patterns and durations of the pressure traces inside the brain, depending on the rat orientation to blast. Frontal exposures (head facing blast) resulted in pressure traces of higher amplitude and longer duration, suggesting direct transmission and reflection of the pressure inside the brain (dynamic pressure transfer). The pattern of the pressure wave inside the brain in the head facing away from blast exposures assumes contribution of the static pressure, similar to hydrodynamic pressure to the pressure wave inside the brain. PMID:21129403

  5. A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves

    CERN Document Server

    Courtney, Amy; 10.1016/j.mehy.2008.08.015

    2008-01-01

    The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating ballistic projectiles or ballistic impacts to body armor, can only reach the brain via an internal mechanism and have been shown to cause cerebral effects. Similar effects have been documented when a blast pressure wave has been applied to the whole body or focused on the thorax in animal models. While vagotomy reduces apnea and bradycardia due to ballistic or blast pressure waves, it does not eliminate neural damage in the brain, suggesting that the pressure wave directly affects the brain cells via a thoracic mechanism. ...

  6. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  7. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves

    International Nuclear Information System (INIS)

    Influence of ambient pressure on energy conversion efficiency from a Nd : glass laser pulse (λ = 1.053 µm) to a laser-induced blast wave was investigated at reduced pressure. Temporal incident and transmission power histories were measured using sets of energy meters and photodetectors. A half-shadowgraph half-self-emission method was applied to visualize laser absorption waves. Results show that the blast energy conversion efficiency ηbw decreased monotonically with the decrease in ambient pressure. The decrease was small, from 40% to 38%, for the pressure change from 101 kPa to 50 kPa, but the decrease was considerable, to 24%, when the pressure was reduced to 30 kPa. Compared with a TEA-CO2-laser-induced blast wave (λ = 10.6 µm), higher fraction absorption in the laser supported detonation regime ηLSD of 90% was observed, which is influenced slightly by the reduction of ambient pressure. The conversion fraction ηbw/ηLSD≈90% was achieved at pressure >50 kPa, which is significantly higher than that in a CO2 laser case. (paper)

  8. Blast wave energy diagnostic.

    Science.gov (United States)

    Tierney, Thomas E; Tierney, Heidi E; Idzorek, George C; Watt, Robert G; Peterson, Robert R; Peterson, Darrell L; Fryer, Christopher L; Lopez, Mike R; Jones, Michael C; Sinars, Daniel; Rochau, Gregory A; Bailey, James E

    2008-10-01

    The distance radiation waves that supersonically propagate in optically thick, diffusive media are energy sensitive. A blast wave can form in a material when the initially diffusive, supersonic radiation wave becomes transonic. Under specific conditions, the blast wave is visible with radiography as a density perturbation. [Peterson et al., Phys. Plasmas 13, 056901 (2006)] showed that the time-integrated drive energy can be measured using blast wave positions with uncertainties less than 10% at the Z Facility. In some cases, direct measurements of energy loss through diagnostic holes are not possible with bolometric and x-ray radiometric diagnostics. Thus, radiography of high compression blast waves can serve as a complementary technique that provides time-integrated energy loss through apertures. In this paper, we use blast waves to characterize the energy emerging through a 2.4 mm aperture and show experimental results in comparison to simulations. PMID:19044574

  9. Curved characteristics behind blast waves.

    Science.gov (United States)

    Laporte, O.; Chang, T. S.

    1972-01-01

    The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.

  10. Measurements of blast waves from bursting frangible spheres pressurized with flash-evaporation vapor or liquid

    Science.gov (United States)

    Esparaza, E. D.; Baker, W. E.

    1977-01-01

    Incident overpressure data from frangible spheres pressurized with a flash-evaporating fluid in liquid and vapor form were obtained in laboratory experiments. Glass spheres under higher than ambient internal pressure of Freon-12 were purposely burst to obtain time histories of overpressure. Nondimensional peak pressures, arrival and duration times, and impulses are presented, and whenever possible plotted and compared with compiled data for Pentolite high-explosive. The data are generally quite repeatable and show differences from blast data produced by condensed high-explosives.

  11. Underwater blast wave pressure sensor based on polymer film fiber Fabry-Perot cavity.

    Science.gov (United States)

    Wang, Junjie; Wang, Meng; Xu, Jian; Peng, Li; Yang, Minghong; Xia, Minghe; Jiang, Desheng

    2014-10-01

    This paper describes the theoretical and experimental aspects of an optical underwater shock wave sensor based on a polymer film optical fiber Fabry-Perot cavity manufactured by vacuum deposition technology. The transduction mechanism of the sensor involves a normally incident acoustic stress wave that changes the thickness of the polymer film, thereby giving rise to a phase shift. This transient interferometric phase is interrogated by a three-phase-step algorithm. Theoretically, the sensor-acoustic-field interaction principle is analyzed, and the phase modulation sensitivity based on the theory of waves in the layered media is calculated. Experimentally, a static calibration test and a dynamic calibration test are conducted using a piston-type pressure calibration machine and a focusing-type electromagnetic shock wave. Results indicate that the repeatability, hysteresis, nonlinearity, and the overall measurement accuracy of the sensor within the full pressure range of 55 MPa are 1.82%, 0.86%, 1.81%, and 4.49%, respectively. The dynamic response time is less than 0.767 μs. Finally, three aspects that need further study for practical use are pointed out. PMID:25322237

  12. Behavior of blast wave in nuclear fuel cycle facility

    International Nuclear Information System (INIS)

    Based on some recent explosion accidents in nuclear fuel cycle facilities, the blast wave propagation in complex path and interactions between blast wave and complex media are ones of the important research topics of the safety. Then, in order to investigate the blast wave propagation in nuclear facility, optical experiment using the micro explosives and pressure measurements are conducted. And, numerical calculation is performed to compare with the experimental results. This paper describes how to conduct the experiments and results are summarized. Finally, behavior of blast wave in complex path will be discussed. (author)

  13. Stability of Relativistic Blast Waves

    OpenAIRE

    OGURA, Jun; Kojima, Yasufumi

    2000-01-01

    A spherical blast wave with relativistic velocity can be described by a similarity solution, that is used for theoretical models of gamma-ray bursts. We consider the linear stability of such a relativistic blast wave propagating into a medium with density gradient. The perturbation can also be expressed by a self-similar form. We show that the shock front is unstable in general, and we evaluate the growth rate.

  14. Blast waves with cosmic rays

    Science.gov (United States)

    Arbutina, B.

    2015-04-01

    Blast waves appear in many astrophysical phenomena, such as supernovae. In this paper we discuss blast waves with cosmic rays, i.e., with a component with a power-law number density distribution function N( p) ∝ p -Γ that may be particulary important in describing the evolution of supernova remnants. We confirm some previous findings that a significant amount of cosmic ray energy is deposited towards the center of a remnant.

  15. Self-similar solutions of laser produced blast waves

    OpenAIRE

    Reddy, KPJ

    1996-01-01

    The aerodynamics of the blast wave produced by laser ablation is studied using the piston analogy. The unsteady one-dimensional gasdynamic equations governing the flow an solved under assumption of self-similarity. The solutions are utilized to obtain analytical expressions for the velocity, density, pressure and temperature distributions. The results predict. all the experimentally observed features of the laser produced blast waves.

  16. Single point methods for determining blast wave injury

    NARCIS (Netherlands)

    Teland, J.A.; Doormaal, J.C.A.M. van; Horst, M.J. van der; Svinsas, E.

    2011-01-01

    Models for calculating human injury from a blast wave are examined. The Axelsson BTD model is able to give injury estimates also for complex shock waves, but is difficult to use in practise since it requires input from four pressure sensors on a BTD (Blast Test Device) in the specific location. To f

  17. An Abridged Review of Blast Wave Parameters

    Directory of Open Access Journals (Sweden)

    Manmohan Dass Goel

    2012-09-01

    Full Text Available In case of blast loading on structures, analysis is carried out in two stages, first the blast loading on a particular structure is determined and second, an evaluation is made for the response of the structure to this loading. In this paper, a review of the first part is presented which includes various empirical relations available for computation of blast load in the form of pressure-time function resulting from the explosion in the air. Different empirical techniques available in the form of charts and equations are reviewed first and then the various blast wave parameters are computed using these equations. This paper is providing various blast computation equations, charts, and references in a concise form at a single place and to serve as base for researchers and designers to understand, compare, and then compute the blast wave parameters. Recommendations are presented to choose the best suitable technique from the available methods to compute the pressure-time function for obtaining structural response.Defence Science Journal, 2012, 62(5, pp.300-306, DOI:http://dx.doi.org/10.14429/dsj.62.1149

  18. On the Interaction and Coalescence if Spherical Blast Waves

    Science.gov (United States)

    Kandula, Max; Freeman, Robert J.

    2005-01-01

    The scaling and similarity laws concerning the propagation of isolated spherical blast waves are briefly reviewed. Both point source explosions and high pressure gas explosions are considered. Test data on blast overpressure from the interaction and coalescence of spherical blast waves emanating from explosives in the form of shaped charges of different strength placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure. The results point out the possibility of detecting source explosions from far-field pressure measurements.

  19. Blast waves in rotating media.

    Science.gov (United States)

    Rossner, L. F.

    1972-01-01

    The model investigated involves a cylindrically symmetric blast wave generated by an infinitely long line explosion in a cold and homogeneous gas rotating rigidly in its self-gravitational field. It is found that within the context of rotation in a gravitational field a blast wave will not adopt the one-zone form familiar from similarity solutions but, rather, a two-zone form. The inner compression zone arises as a response to the presence of the restoring force, which drives a rarefaction wave into the outer compression zone.

  20. Note: Device for underwater laboratory simulation of unconfined blast waves.

    Science.gov (United States)

    Courtney, Elijah; Courtney, Amy; Courtney, Michael

    2015-06-01

    Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest that peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source. PMID:26133878

  1. Note: Device for underwater laboratory simulation of unconfined blast waves

    Science.gov (United States)

    Courtney, Elijah; Courtney, Amy; Courtney, Michael

    2015-06-01

    Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest that peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source.

  2. Device for Underwater Laboratory Simulation of Unconfined Blast Waves

    CERN Document Server

    Courtney, Elijah; Courtney, Michael

    2015-01-01

    Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source.

  3. High-speed measurement of firearm primer blast waves

    OpenAIRE

    Courtney, Michael; Daviscourt, Joshua; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast p...

  4. Blast Wave Characteristics and Equivalency

    OpenAIRE

    Sochet, Isabelle; Schneider, Helmut

    2010-01-01

    The characteristics of blast waves generated by detonation of gas clouds are studies theoretically and validated by both small-scale and large-scale experiments with ethylene-air mixtures of different equivalence ratio. The mixtures were confined in hemispherical or spherical balloons made from thin polyethylene foils of 0.75 m³ and 15 m³ in volume. The detonation of gas mixtures was initiated by a solid explosive. The characteristics of the blast wave in terms of overpressure, impulse and du...

  5. From blast wave to observation

    NARCIS (Netherlands)

    H.J. van Eerten; R.A.M.J. Wijers

    2008-01-01

    Gamma-ray burst (GRB) afterglows are well described by synchrotron emission originating from the interaction between a relativistic blast wave and the external medium surrounding the GRB progenitor. We introduce a code to reconstruct spectra and light curves from arbitrary fluid configurations, maki

  6. Experimental Investigation of a Novel Blast Wave Mitigation Device

    Directory of Open Access Journals (Sweden)

    Zhenbi Su

    2009-01-01

    Full Text Available A novel blast wave mitigation device was investigated experimentally in this paper. The device consists of a piston-cylinder assembly. A shock wave is induced within the cylinder when a blast wave impacts on the piston. The shock wave propagates inside the device and is reflected repeatedly. The shock wave propagation process inside the device lengthens the duration of the force on the base of the device to several orders of magnitude of the duration of the blast wave, while it decreases the maximum pressure over an order of magnitude. Two types of experiments were carried out to study the blast wave mitigation device. The first type of experiments was done with honeycomb structures protected by the blast wave mitigation device. Experimental results show that the device can adequately protect the honeycomb structure. A second type of experiments was done using a Hopkinson bar to measure the pressure transmitted through the blast wave mitigation device. The experimental results agree well with results from a theoretical model.

  7. Significance of blast wave studies to propulsion.

    Science.gov (United States)

    Oppenheim, A. K.

    1971-01-01

    Brief survey of experimental methods currently used for the study of blast wave phenomena with emphasis on high rate exothermic processes. The experimental techniques have used such devices as divergent test sections in shock or detonation tubes, employment of proper test gases, as in marginal detonations, and a variety of explosion systems from finite source explosion apparatus to devices where virtually point explosions are obtained by local breakdown initiated by means of focused laser irradiation. Other methods used are detonation tubes where pressure waves are generated by accelerating flames or by exothermic reactions developed behind reflected shocks, as well as a variety of converging shock and implosion vessels.

  8. Laboratory blast wave driven instabilities

    Science.gov (United States)

    Kuranz, Carolyn

    2008-11-01

    This presentation discusses experiments involving the evolution of hydrodynamic instabilities in the laboratory under high-energy-density (HED) conditions. These instabilities are driven by blast waves, which occur following a sudden, finite release of energy, and consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. Instabilities evolving under HED conditions are relevant to astrophysics. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 μm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses an interface having a 2D or 3D sinusoidal structure that serves as a seed perturbation for hydrodynamic instabilities. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability in the nonlinear regime. We have detected the interface structure under these conditions using x-ray backlighting. Recent advances in our diagnostic techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed or predicted by current simulations. The observed effect is potentially of great importance as a source of mass transport to places not anticipated by current theory and simulation. I will discuss the amount of mass in these spike extensions, the associated uncertainties, and hypotheses regarding their origin We also plan to show comparisons of experiments using single mode and multimode as well as 2D and 3D initial conditions. This work is sponsored by DOE/NNSA Research Grants DE-FG52-07NA28058 (Stewardship Sciences Academic Alliances) and DE-FG52-04NA00064 (National Laser User

  9. From blast wave to observation

    CERN Document Server

    van Eerten, H J

    2009-01-01

    Gamma-ray burst (GRB) afterglows are well described by synchrotron emission originating from the interaction between a relativistic blast wave and the external medium surrounding the GRB progenitor. We introduce a code to reconstruct spectra and light curves from arbitrary fluid configurations, making it especially suited to study the effects of fluid flows beyond those that can be described using analytical approximations. As a check and first application of our code we use it to fit the scaling coefficients of theoretical models of afterglow spectra. We extend earlier results of other authors to general circumburst density profiles. We rederive the physical parameters of GRB 970508 and compare with other authors. We also show the light curves resulting from a relativistic blast wave encountering a wind termination shock. From high resolution calculations we find that the observed transition from a stellar wind type light curve to an interstellar medium type light curve is smooth and without short-time trans...

  10. Simulation of Blast Waves with Headwind

    Science.gov (United States)

    Olsen, Michael E.; Lawrence, Scott W.; Klopfer, Goetz H.; Mathias, Dovan; Onufer, Jeff T.

    2005-01-01

    The blast wave resulting from an explosion was simulated to provide guidance for models estimating risks for human spacecraft flight. Simulations included effects of headwind on blast propagation, Blasts were modelled as an initial value problem with a uniform high energy sphere expanding into an ambient field. Both still air and cases with headwind were calculated.

  11. Blast wave mitigation by liquid foam

    Science.gov (United States)

    Monloubou, Martin; Dollet, Benjamin; Saint-Jalmes, Arnaud; Cantat, Isabelle; Soft Matter Team

    2014-11-01

    Due to their high apparent viscosity, liquid foams are good systems to absorb energy. This property is for instance used in the military domain to mitigate blast waves or explosions [Britan, 2009; Del Prete, 2013]. However, the underlying dissipation mechanisms are still not well understood. We address this issue by resolving in space and time a shock wave impacting a foam sample. We use a shock tube to send a shock wave on a foam with controlled liquid fraction, bubble size and physico-chemistry. The impacting shock creates an expanding cavity in the foam and propagates through the whole sample. The dynamics is recorded with a high speed camera and pressure signals are simultaneously measured. We show the influence of the bubble size and of the shock amplitude on the velocity and on the attenuation of the pressure signal, and on the foam destruction rate. This work is supported by the DGA.

  12. Macro-mechanical modeling of blast-wave mitigation in foams. Part II: reliability of pressure measurements

    Science.gov (United States)

    Britan, A.; Liverts, M.; Shapiro, H.; Ben-Dor, G.

    2013-02-01

    A phenomenological study of the process occurring when a plane shock wave reflected off an aqueous foam column filling the test section of a vertical shock tube has been undertaken. The experiments were conducted with initial shock wave Mach numbers in the range 1.25le {M}_s le 1.7 and foam column heights in the range 100-450 mm. Miniature piezotrone circuit electronic pressure transducers were used to record the pressure histories upstream and alongside the foam column. The aim of these experiments was to find a simple way to eliminate a spatial averaging as an artifact of the pressure history recorded by the side-on transducer. For this purpose, we discuss first the common behaviors of the pressure traces in extended time scales. These observations evidently quantify the low frequency variations of the pressure field within the different flow domains of the shock tube. Thereafter, we focus on the fronts of the pressure signals, which, in turn, characterize the high-frequency response of the foam column to the shock wave impact. Since the front shape and the amplitude of the pressure signal most likely play a significant role in the foam destruction, phase changes and/or other physical factors, such as high capacity, viscosity, etc., the common practice of the data processing is revised and discussed in detail. Generally, side-on pressure measurements must be used with great caution when performed in wet aqueous foams, because the low sound speed is especially prone to this effect. Since the spatial averaged recorded pressure signals do not reproduce well the real behaviors of the pressure rise, the recorded shape of the shock wave front in the foam appears much thicker. It is also found that when a thin liquid film wet the sensing membrane, the transducer sensitivity was changed. As a result, the pressure recorded in the foam could exceed the real amplitude of the post-shock wave flow. A simple procedure, which allows correcting this imperfection, is discussed in

  13. Swift GRBs and the blast wave model

    NARCIS (Netherlands)

    P.A. Curran; A.J. van der Horst; R.L.C. Starling; R.A.M.J. Wijers

    2008-01-01

    The complex structure of the light curves of Swift GRBs has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p, density profile of the circumburst medium, k

  14. Some properties of adiabatic blast waves in preexisting cavities

    Science.gov (United States)

    Cox, D. P.; Franco, J.

    1981-01-01

    Cox and Anderson (1982) have conducted an investigation regarding an adiabatic blast wave in a region of uniform density and finite external pressure. In connection with an application of the results of the investigation to a study of interstellar blast waves in the very hot, low-density matrix, it was found that it would be desirable to examine situations with a positive radial density gradient in the ambient medium. Information concerning such situations is needed to learn about the behavior of blast waves occurring within preexisting, presumably supernova-induced cavities in the interstellar mass distribution. The present investigation is concerned with the first steps of a study conducted to obtain the required information. A review is conducted of Sedov's (1959) similarity solutions for the dynamical structure of any explosion in a medium with negligible pressure and power law density dependence on radius.

  15. Impact of complex blast waves on the human head: a computational study.

    Science.gov (United States)

    Tan, Long Bin; Chew, Fatt Siong; Tse, Kwong Ming; Chye Tan, Vincent Beng; Lee, Heow Pueh

    2014-12-01

    Head injuries due to complex blasts are not well examined because of limited published articles on the subject. Previous studies have analyzed head injuries due to impact from a single planar blast wave. Complex or concomitant blasts refer to impacts usually caused by more than a single blast source, whereby the blast waves may impact the head simultaneously or consecutively, depending on the locations and distances of the blast sources from the subject, their blast intensities, the sequence of detonations, as well as the effect of blast wave reflections from rigid walls. It is expected that such scenarios will result in more serious head injuries as compared to impact from a single blast wave due to the larger effective duration of the blast. In this paper, the utilization of a head-helmet model for blast impact analyses in Abaqus(TM) (Dassault Systemes, Singapore) is demonstrated. The model is validated against studies published in the literature. Results show that the skull is capable of transmitting the blast impact to cause high intracranial pressures (ICPs). In addition, the pressure wave from a frontal blast may enter through the sides of the helmet and wrap around the head to result in a second impact at the rear. This study recommended better protection at the sides and rear of the helmet through the use of foam pads so as to reduce wave entry into the helmet. The consecutive frontal blasts scenario resulted in higher ICPs compared with impact from a single frontal blast. This implied that blast impingement from an immediate subsequent pressure wave would increase severity of brain injury. For the unhelmeted head case, a peak ICP of 330 kPa is registered at the parietal lobe which exceeds the 235 kPa threshold for serious head injuries. The concurrent front and side blasts scenario yielded lower ICPs and skull stresses than the consecutive frontal blasts case. It is also revealed that the additional side blast would only significantly affect ICPs at

  16. Blast wave propagation and the influence of obstacles

    International Nuclear Information System (INIS)

    Pressure characteristics of blast waves simulating unconfined gas explosions are investigated through a series of laboratory-scale experiments and larger scale field tests. Initially, the distance attenuation and the degree of rotational symmetry close to the source was investigated for the gas filled latex balloons used in these experiments, and for the field tests, the influence of different atmospheric condtions has primarily been established by using high-explosives detonators. The interaction between the blast wave and different boundaries and obstacles have been investigated in both laboratory-scale and field tests, and it is shown, that the influence is a very localized effect, leaving the blast wave unaffected at larger distances. The interaction with groups of building-like structures has been investigated in laboratory-scale tests, and it is shown that the pressures measured on the obstacle surfaces apparently are affected by both reflection and diffraction of the incoming blast wave. Pressure distribution and reflection factors for a single wall has been determined in the field tests, and relatively large reflected pressures have been measured. Correspondingly large pressures have been measured at certain locations at a group of buildings. (author)

  17. Cygnus Loop Supernova Blast Wave

    Science.gov (United States)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  18. An Abridged Review of Blast Wave Parameters

    OpenAIRE

    Manmohan Dass Goel; Vasant A. Matsagar; Gupta, Anil K.; Steffen Marburg

    2012-01-01

    In case of blast loading on structures, analysis is carried out in two stages, first the blast loading on a particular structure is determined and second, an evaluation is made for the response of the structure to this loading. In this paper, a review of the first part is presented which includes various empirical relations available for computation of blast load in the form of pressure-time function resulting from the explosion in the air. Different empirical techniques available in th...

  19. Explosively-Driven Blast Waves in Small-Diameter Tubes

    Science.gov (United States)

    Cooper, M. A.; Marinis, R. T.; Oliver, M. S.

    Studies on blast waves are motivated by the need to understand dynamic pressure loadings in accident scenarios associated with rapid energy release in confined geometries. Explosions from fuel-air mixtures, explosives and industrial accidents often occur within a range of length scales associated with ducts, pipes, corridors, and tunnels [1, 2].

  20. Computational study of human head response to primary blast waves of five levels from three directions.

    Science.gov (United States)

    Wang, Chenzhi; Pahk, Jae Bum; Balaban, Carey D; Miller, Mark C; Wood, Adam R; Vipperman, Jeffrey S

    2014-01-01

    Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP) is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts. PMID:25409326

  1. Computational study of human head response to primary blast waves of five levels from three directions.

    Directory of Open Access Journals (Sweden)

    Chenzhi Wang

    Full Text Available Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI. To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and was subjected to the blast waves of five blast intensities from the anterior, right lateral, and posterior directions at a stand-off distance of one meter from the detonation center. Simulation results show that the blast wave directly transmits into the head and causes a pressure wave propagating through the brain tissue. Intracranial pressure (ICP is predicted to have the highest magnitude from a posterior blast wave in comparison with a blast wave from any of the other two directions with same blast intensity. The brain model predicts higher positive pressure at the site proximal to blast wave than that at the distal site. The intracranial pressure wave invariably travels into the posterior fossa and vertebral column, causing high pressures in these regions. The severities of cerebral contusions at different cerebral locations are estimated using an ICP based injury criterion. Von Mises stress prevails in the cortex with a much higher magnitude than in the internal parenchyma. According to an axonal injury criterion based on von Mises stress, axonal injury is not predicted to be a cause of primary brain injury from blasts.

  2. Interactions between Blast Waves and V-Shaped and Cone-Shaped Structures

    Science.gov (United States)

    Peng, W.; Zhang, Z. Y.; Gogos, G.; Gazonas, G.

    2011-09-01

    A 2-D numerical model of interactions between a blast wave and a V-shaped or a cone-shaped structure is developed. The model simulates the blast wave reflection from a V-shaped or a cone-shaped structure, the movement of the structure due to the blast impact and the induced shock wave behind the structure. Elliptic grid generation and coordinate transformation are utilized to solve the flow fields in the irregular physical domain. Different types of blast wave reflections, such as normal reflection, oblique reflection and Mach stem reflection, are captured by the numerical model. It is found that the reflected pressure and impulse transmitted to the structure decrease with the increase of incident angle. On the other hand, with the increase of incident angle, the effects of fluid structure interactions (FSI) in reducing the blast loads decreases. The FSI coupled with oblique or Mach stem reflection improves the blast wave mitigation.

  3. On the Propagation and Interaction of Spherical Blast Waves

    Science.gov (United States)

    Kandula, Max; Freeman, Robert

    2007-01-01

    The characteristics and the scaling laws of isolated spherical blast waves have been briefly reviewed. Both self-similar solutions and numerical solutions of isolated blast waves are discussed. Blast profiles in the near-field (strong shock region) and the far-field (weak shock region) are examined. Particular attention is directed at the blast overpressure and shock propagating speed. Consideration is also given to the interaction of spherical blast waves. Test data for the propagation and interaction of spherical blast waves emanating from explosives placed in the vicinity of a solid propellant stack are presented. These data are discussed with regard to the scaling laws concerning the decay of blast overpressure.

  4. Dynamic Modelling of Fault Slip Induced by Stress Waves due to Stope Production Blasts

    Science.gov (United States)

    Sainoki, Atsushi; Mitri, Hani S.

    2016-01-01

    Seismic events can take place due to the interaction of stress waves induced by stope production blasts with faults located in close proximity to stopes. The occurrence of such seismic events needs to be controlled to ensure the safety of the mine operators and the underground mine workings. This paper presents the results of a dynamic numerical modelling study of fault slip induced by stress waves resulting from stope production blasts. First, the calibration of a numerical model having a single blast hole is performed using a charge weight scaling law to determine blast pressure and damping coefficient of the rockmass. Subsequently, a numerical model of a typical Canadian metal mine encompassing a fault parallel to a tabular ore deposit is constructed, and the simulation of stope extraction sequence is carried out with static analyses until the fault exhibits slip burst conditions. At that point, the dynamic analysis begins by applying the calibrated blast pressure to the stope wall in the form of velocities generated by the blast holes. It is shown from the results obtained from the dynamic analysis that the stress waves reflected on the fault create a drop of normal stresses acting on the fault, which produces a reduction in shear stresses while resulting in fault slip. The influence of blast sequences on the behaviour of the fault is also examined assuming several types of blast sequences. Comparison of the blast sequence simulation results indicates that performing simultaneous blasts symmetrically induces the same level of seismic events as separate blasts, although seismic energy is more rapidly released when blasts are performed symmetrically. On the other hand when nine blast holes are blasted simultaneously, a large seismic event is induced, compared to the other two blasts. It is concluded that the separate blasts might be employed under the adopted geological conditions. The developed methodology and procedure to arrive at an ideal blast sequence can

  5. Blast wave diagnostic for the Petawatt laser system

    International Nuclear Information System (INIS)

    We report on a diagnostic to measure the trajectory of a blast wave propagating through a plastic target 400 μm thick. This blast wave is generated by the irradiation of the front surface of the target with ∼400 J of 1 μm laser radiation in a 20 ps pulse focused to a ∼50 μm diameter spot, which produces an intensity in excess of 1018W/cm2. These conditions approximate a point explosion and a blast wave is predicted to be generated with an initial pressure nearing 1 Gbar which decays as it travels approximately radially outward from the interaction region. We have utilized streaked optical pyrometry of the blast front to determine its time of arrival at the rear surface of the target. Applications of a self-similar Taylor - Sedov blast wave solution allows the amount of energy deposited to be estimated. The experiment, LASNEX design simulations and initial results are discussed. copyright 1999 American Institute of Physics

  6. A $55 Shock Tube for Simulated Blast Waves

    CERN Document Server

    Courtney, Elijah; Courtney, Michael

    2015-01-01

    Shock tubes are commonly employed to test candidate armor materials, validate numerical models, and conduct simulated blast experiments in animal models. As DoD interests desire to field wearable sensors as blast dosimeters, shock tubes may also serve for calibration and testing of these devices. The high blast pressures needed for experimental testing of candidate armors are unnecessary to test these sensors. An inexpensive, efficient, and easily available way of testing these pressure sensors is desirable. It is known that releasing compressed gas suddenly can create a repeatable shock front, and the pressures can be finely tuned by changing the pressure to which the gas is compressed. A Crosman 0.177 caliber air pistol was used (without loading any pellets) to compress and release air in one end of a 24 inch long 3/4 inch diameter standard pipe nipple to simulate a blast wave at the other end of the tube. A variable number of pumps were used to vary the peak blast pressure. As expected, the trials where 10...

  7. A study on impulsive sound attenuation for a high-pressure blast flow field

    International Nuclear Information System (INIS)

    The present work addresses a numerical study on impulsive sound attenuation for a complex high-pressure blast flow field; these characteristics are generated by a supersonic propellant gas flow through a shock tube into an ambient environment. A numerical solver for analyzing the high pressure blast flow field is developed in this study. From numerical simulations, wave dynamic processes (which include a first precursor shock wave, a second main propellant shock wave, and interactions in the muzzle blasts) are simulated and discussed. The pressure variation of the blast flow field is analyzed to evaluate the effect of a silencer. A live firing test is also performed to evaluate four different silencers. The results of this study will be helpful in understanding blast wave and in designing silencers

  8. Review of methods to attenuate shock/blast waves

    Science.gov (United States)

    Igra, O.; Falcovitz, J.; Houas, L.; Jourdan, G.

    2013-04-01

    Quick and reliable shock wave attenuation is the goal of every protection facility and therefore it is not surprising that achieving this has drawn much attention during the past hundred years. Different options have been suggested; their usefulness varying from a reasonable protection to the opposite, a shock enhancement. An example for a suggestion for shock mitigation that turned out to be an enhancement of the impinging shock wave was the idea to cover a protected object with a foam layer. While the pressure behind the reflected shock wave from the foam frontal surface was smaller than that recorded in a similar reflection from a rigid wall [25], the pressure on the “protected” surface, attached to the foam's rear-surface, was significantly higher than that recorded in a similar reflection from a bare, rigid wall [11]. In protecting humans and installations from destructive shock and/or blast waves the prime goal is to reduce the wave amplitude and the rate of pressure increase across the wave front. Both measures result in reducing the wave harmful effects. During the past six decades several approaches for achieving the desired protection have been offered in the open literature. We point out in this review that while some of the suggestions offered are practical, others are impractical. In our discussion we focus on recent schemes for shock/blast wave attenuation, characterized by the availability of reliable measurements (notably pressure and optical diagnostics) as well as high-resolution numerical simulations.

  9. Close-in Blast Waves from Spherical Charges*

    Science.gov (United States)

    Howard, William; Kuhl, Allen

    2011-06-01

    We study the close-in blast waves created by the detonation of spherical high explosives (HE) charges, via numerical simulations with our Arbitrary-Lagrange-Eulerian (ALE3D) code. We used a finely-resolved, fixed Eulerian 2-D mesh (200 μm per cell) to capture the detonation of the charge, the blast wave propagation in air, and the reflection of the blast wave from an ideal surface. The thermodynamic properties of the detonation products and air were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. The results were analyzed to evaluate the: (i) free air pressure-range curves: Δps (R) , (ii) free air impulse curves, (iii) reflected pressure-range curves, and (iv) reflected impulse-range curves. A variety of explosives were studied. Conclusions are: (i) close-in (R Detonation'' of the explosive (because close-in, there is not enough time to fully couple the chemical energy to the air via piston work); (iii) instead they are related to the detonation conditions inside the charge. Scaling laws will be proposed for such close-in blast waves.

  10. Device for Underwater Laboratory Simulation of Unconfined Blast Waves

    OpenAIRE

    Courtney, Elijah; Courtney, Amy; Courtney, Michael

    2015-01-01

    Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast press...

  11. Isothermal blast wave model of supernova remnants

    Science.gov (United States)

    Solinger, A.; Buff, J.; Rappaport, S.

    1975-01-01

    The validity of the 'adiabatic' assumption in supernova-remnant calculations is examined, and the alternative extreme of an isothermal blast wave is explored. It is concluded that, because of thermal conductivity, the large temperature gradients predicted by the adiabatic model probably are not maintained in nature. Self-similar solutions to the hydrodynamic equations for an isothermal blast wave have been found and studied. These solutions are then used to determine the relationship between X-ray observations and inferred parameters of supernova remnants. A comparison of the present results with those for the adiabatic model indicates differences which are less than present observational uncertainties. It is concluded that most parameters of supernova remnants inferred from X-ray measurements are relatively insensitive to the specifics of the blast-wave model.

  12. Computation of blast wave-obstacle interactions

    Science.gov (United States)

    Champney, J. M.; Chaussee, D. S.; Kutler, P.

    1982-01-01

    Numerical simulations of the interaction of a planar blast wave with various obstacles are presented. These obstacles are either ground structures or vehicles flying in the atmosphere. For a structure on the ground, the blast wave encounter is side-on, while for the flying vehicles the encounter is either head-on or oblique. Second-order accurate, finite-difference, and shock-capturing procedures are employed to solve the two-dimensional, axisymmetric, and three-dimensional unsteady Euler equations. Results are presented for the flow field consisting of blast wave striking obstacles that are at rest, moving subsonically and moving supersonically. Comparison of the numerical results with experimental data for a configuration at rest substantiates the validity of this approach and its potential as a flow analysis tool.

  13. Study on Blast Pressure Resistance of Foamed Concrete Material

    Directory of Open Access Journals (Sweden)

    A.M. Ahmad Zaidi

    2009-12-01

    Full Text Available Great demand exist for more efficient design to protect personals and critical components against explosion or blast wave, generated both accidentally and deliberately, in various blast scenarios in both civilian and military activities. Concrete is a common material used in protective design of structures. Recently, the demands on producing the lighter concrete material have become interest in concrete research. Foamed concrete is a possible alternative of lightweight concrete for producing intermediate strength capabilities with excellent thermal insulation, freeze-thaw resistance, high-impact resistance and good shock absorption. This paper explores the role and development of Blast Pressure Resistant Materials (BPRM’s on foamed concrete. The explosive tests were conducted to determine the blast mitigating properties. The results show that when the foamed concrete density is increases the blast energy absorption capability will be decreases due to reduce of cavity volume. This is suggested that cavity plays an important role to dissipate and absorb the shock energy of the blast.

  14. Blast wave mitigation by dry aqueous foams

    Science.gov (United States)

    Del Prete, E.; Chinnayya, A.; Domergue, L.; Hadjadj, A.; Haas, J.-F.

    2013-02-01

    This paper presents results of experiments and numerical modeling on the mitigation of blast waves using dry aqueous foams. The multiphase formalism is used to model the dry aqueous foam as a dense non-equilibrium two-phase medium as well as its interaction with the high explosion detonation products. New experiments have been performed to study the mass scaling effects. The experimental as well as the numerical results, which are in good agreement, show that more than an order of magnitude reduction in the peak overpressure ratio can be achieved. The positive impulse reduction is less marked than the overpressures. The Hopkinson scaling is also found to hold particularly at larger scales for these two blast parameters. Furthermore, momentum and heat transfers, which have the main dominant role in the mitigation process, are shown to modify significantly the classical blast wave profile and thereafter to disperse the energy from the peak overpressure due to the induced relaxation zone. In addition, the velocity of the fireball, which acts as a piston on its environment, is smaller than in air. Moreover, the greater inertia of the liquid phase tends to project the aqueous foam far from the fireball. The created gap tempers the amplitude of the transmitted shock wave to the aqueous foam. As a consequence, this results in a lowering of blast wave parameters of the two-phase spherical decaying shock wave.

  15. Simulation of the Reflected Blast Wave froma C-4 Charge

    Energy Technology Data Exchange (ETDEWEB)

    Howard, W M; Kuhl, A L; Tringe, J W

    2011-08-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 ranges (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.

  16. Swift GRBs and the blast wave model

    CERN Document Server

    Curran, P A; Starling, R L C; Wijers, R A M J

    2009-01-01

    The complex structure of the light curves of Swift GRBs has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p, density profile of the circumburst medium, k, and the continued energy injection index, q. We do so by comparing the observed multi-wavelength light curves and X-ray spectra of a Swift sample to the predictions of the blast wave model. We can successfully interpret all of the bursts in our sample of 10, except two, within the framework of the blast wave model, and we can estimate with confidence the electron energy distribution index for 6 of the sample. Furthermore we identify jet breaks in half of the bursts. A statistical analysis of the distribution of p reveals that, even in the most conservative case of least scatter, the values are not consistent with a single, universal value. The values of k suggest that the circumburst density profiles are not draw...

  17. Surface mine blasting near pressurized transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Siskind, D.E.; Stagg, M.S.; Wiegand, J.E.; Schultz, D.L.

    1994-12-31

    The US Bureau of Mines and the State of Indiana cooperated with AMAX Coal Co. and its consultants to determine the effects of coal mine overburden blasting on nearby pipelines. Five pressurized 76-m pipeline sections were installed on the Minnehaha Mine highwall near Sullivan, IN, for testing to failure. Four 17- to 51-cm-diameter welded steel pipes and one 22-cm PVC pipe were monitored for vibration, strain, and pressure for a period of 6 months while production blasting advanced up to the test pipeline field. In contrast to previous studies of small-scale, close-in blasting for construction, these tests involved overburden blasts of up to 950 kg per delay in 31-cm blastholes. Analyses found low pipe responses, strains, and calculated stresses from even large blasts. Ground vibrations of 120 to 250 mm/s produced worst case strains that were about 25 pcts of the strains resulting from normal pipeline operations and calculated stresses of only about 10 to 18 pct of the ultimate tensile strength. No pressurization failures or permanent strains occurred even at vibration amplitudes of 600 mm/s.

  18. Towards a fast-running method for blast-wave mitigation by a prismatic blast wall

    Science.gov (United States)

    Éveillard, Sébastien; Lardjane, Nicolas; Vinçont, Jean-Yves; Sochet, Isabelle

    A procedure aimed at developing a fast-running method for blast-wave effects characterization behind a protection barrier is presented. Small-scale experiments of a hemispherical gaseous charge (stoichiometric propane-oxygen mixture) without and with a prismatic protective barrier are used to validate the use of an in-house CFD code for gaseous detonation. From numerical experiments, pressure loss of a blast wave at a corner is quantified. These fits, in conjunction with TM5-1300 reflection charts, are used to estimate the maximum overpressure around a protective barrier through geometrical and empirical laws. The results show good agreement with numerical and experimental data from the ANR-BARPPRO research project.

  19. Modeling of aqueous foam blast wave attenuation

    Science.gov (United States)

    Del Prete, E.; Chinnayya, A.; Hadjadj, A.; Domergue, L.; Haas, J.-F.; Imbert, B.

    The use of aqueous foams enables the mitigation of blast waves induced by the explosion of energetic materials. The two-phase confinement gives rise to interphase interactions between the gaseous and liquid phases, which role have been emphasized in shock-tube studies with solid foams [1, 2]. Multifluid formalism enables the thermo-mechanical disequilibria between phases to be taken into account. The flow model ensures the correct estimation of the acoustic impedance of the two-phase media. As for the numerical scheme, Riemann solvers are used to describe the microscopic fluid interactions, the summation of which provides the multiphase flux. The role of the different transfer mechanisms is evaluated in the case where the liquid ligaments of the foam matrix have been shattered into droplets by the shock impingement. Characteristics of blast waves in heterogeneous media leads to a decrease of overpressure. The numerical results have been compared favorably to experimental data [3, 4].

  20. Boundary-layer theory for blast waves

    Science.gov (United States)

    Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.

    1975-01-01

    It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.

  1. An ultra-fast fiber optic pressure sensor for blast event measurements

    International Nuclear Information System (INIS)

    Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry–Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event. (paper)

  2. A SEMI-ANALYTIC FORMULATION FOR RELATIVISTIC BLAST WAVES WITH A LONG-LIVED REVERSE SHOCK

    International Nuclear Information System (INIS)

    This paper performs a semi-analytic study of relativistic blast waves in the context of gamma-ray bursts. Although commonly used in a wide range of analytical and numerical studies, the equation of state (EOS) with a constant adiabatic index is a poor approximation for relativistic hydrodynamics. Adopting a more realistic EOS with a variable adiabatic index, we present a simple form of jump conditions for relativistic hydrodynamical shocks. Then we describe in detail our technique of modeling a very general class of GRB blast waves with a long-lived reverse shock. Our technique admits an arbitrary radial stratification of the ejecta and ambient medium. We use two different methods to find dynamics of the blast wave: (1) customary pressure balance across the blast wave and (2) the 'mechanical model'. Using a simple example model, we demonstrate that the two methods yield significantly different dynamical evolutions of the blast wave. We show that the pressure balance does not satisfy the energy conservation for an adiabatic blast wave while the mechanical model does. We also compare two sets of afterglow light curves obtained with the two different methods.

  3. Experimental Investigation of a Novel Blast Wave Mitigation Device

    OpenAIRE

    Su, Zhenbi; Peng, Wen; Zhang, Zhaoyan; Gogos, George; Skaggs, Reed; Cheeseman, Bryan; Yen, Chian Fong

    2009-01-01

    A novel blast wave mitigation device was investigated experimentally in this paper. The device consists of a piston-cylinder assembly. A shock wave is induced within the cylinder when a blast wave impacts on the piston. The shock wave propagates inside the device and is reflected repeatedly. The shock wave propagation process inside the device lengthens the duration of the force on the base of the device to several orders of magnitude of the duration of the blast wave, while it decreases the ...

  4. Blast Wave Initiation of a Sheet Explosive Covered with Metal Plates.

    Directory of Open Access Journals (Sweden)

    H. S. Yadav

    1996-12-01

    Full Text Available Initiationof RDX-based sheetexplosiveby a normalincident blast wavehas been studied. Explosive sheets : (i bare (ii aluminium foil-covered and (iii sandwiched between different thicknesses of aluminium alloy metal plates, were impacted by the blast wave. The blast wave was produced by detonating a cylindrical plastic explosive charge kept symmetrically over the sheet at different stand-off distances in the air for varying the intensity of the blast wave. The values of critical distances, pressures obtained in the case of bare, foil-covered and aluminium alloy metal plates-covered sheet explosives have beenfitted to exponentialcurves.It is observedthat the sheet explosivesandwichedbetweenthe two metal plates having thicknesses between 4 and 12 rom requires initiating pressures higher than those for bare sheet explosives. If the sheet explosive is, however, covered by thin aluminium foil (0.25 mm then it is initiated by blast wave of pressure lower than that for bare or sandwiched sheet explosive. Initiation of sheet explosiveby a blast waveoccurs after a delay of 2 us when it is covered with thin aluminium foil (0.25 mm and about 7 us when it is covered with 4 mm thick aluminium plates.

  5. Testing the blast wave model with Swift GRBs

    NARCIS (Netherlands)

    P.A. Curran; R.L.C. Starling; A.J. van der Horst; R.A.M.J. Wijers; M. de Pasquale; M. Page

    2011-01-01

    The complex structure of the light curves of Swift GRBs (e.g. superimposed flares and shallow decay) has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p,

  6. Blast Quantification Using Hopkinson Pressure Bars.

    Science.gov (United States)

    Clarke, Samuel D; Fay, Stephen D; Rigby, Samuel E; Tyas, Andrew; Warren, James A; Reay, Jonathan J; Fuller, Benjamin J; Gant, Matthew T A; Elgy, Ian D

    2016-07-05

    Near-field blast load measurement presents an issue to many sensor types as they must endure very aggressive environments and be able to measure pressures up to many hundreds of megapascals. In this respect the simplicity of the Hopkinson pressure bar has a major advantage in that while the measurement end of the Hopkinson bar can endure and be exposed to harsh conditions, the strain gauge mounted to the bar can be affixed some distance away. This allows protective housings to be utilized which protect the strain gauge but do not interfere with the measurement acquisition. The use of an array of pressure bars allows the pressure-time histories at discrete known points to be measured. This article also describes the interpolation routine used to derive pressure-time histories at un-instrumented locations on the plane of interest. Currently the technique has been used to measure loading from high explosives in free air and buried shallowly in various soils.

  7. Computation of viscous blast wave flowfields

    Science.gov (United States)

    Atwood, Christopher A.

    1991-01-01

    A method to determine unsteady solutions of the Navier-Stokes equations was developed and applied. The structural finite-volume, approximately factored implicit scheme uses Newton subiterations to obtain the spatially and temporally second-order accurate time history of the interaction of blast-waves with stationary targets. The inviscid flux is evaluated using MacCormack's modified Steger-Warming flux or Roe flux difference splittings with total variation diminishing limiters, while the viscous flux is computed using central differences. The use of implicit boundary conditions in conjunction with a telescoping in time and space method permitted solutions to this strongly unsteady class of problems. Comparisons of numerical, analytical, and experimental results were made in two and three dimensions. These comparisons revealed accurate wave speed resolution with nonoscillatory discontinuity capturing. The purpose of this effort was to address the three-dimensional, viscous blast-wave problem. Test cases were undertaken to reveal these methods' weaknesses in three regimes: (1) viscous-dominated flow; (2) complex unsteady flow; and (3) three-dimensional flow. Comparisons of these computations to analytic and experimental results provided initial validation of the resultant code. Addition details on the numerical method and on the validation can be found in the appendix. Presently, the code is capable of single zone computations with selection of any permutation of solid wall or flow-through boundaries.

  8. Cosmic Ray Origins in Supernova Blast Waves

    CERN Document Server

    Bell, A R

    2014-01-01

    We extend the self-similar solution derived by Chevalier for a Sedov blast wave accelerating cosmic rays (CR) to show that the Galactic CR population can be divided into: (A) CR with energies above ~200GeV released upstream during CR acceleration by supernova remnants (SNR), (B) CR advected into the interior of the SNR during expansion and then released from the SNR at the end of its life to provide the Galactic CR component below ~200GeV. The intersection between the two populations may correspond to a measured change in the Galactic CR spectral index at this energy.

  9. Non-equilibrium ionized blast wave

    Science.gov (United States)

    Wu, S. T.

    1974-01-01

    The structure of a cylindrical blast wave with ionization at non-LTE conditions was calculated using equations previously developed by Wu and Fu (1970). The degree of ionization was predicted by a modified Saha equation. Temperature profiles show that the temperature at non-LTE conditions is lower than at LTE near the shock front. This corresponds to a higher degree of ionization for the non-LTE limit, which indicates that the neutral gas absorption is much more efficient at non-LTE than at the LTE limit. The decaying velocity under non-LTE is approximately 15% less than under LTE.

  10. Analysis of Blast Wave Propagation Inside Tunnel

    Institute of Scientific and Technical Information of China (English)

    LIU Jingbo; YAN Qiushi; WU Jun

    2008-01-01

    The explosion inside tunnel would generate blast wave which transmits through the longi tudinal tunnel.Because of the close-in effects of the tunnel and the reflection by the confining tunnel structure,blast wave propagation inside tunnel is distinguished from that in air.When the explosion happens inside tunnel,the overpressure peak is higher than that of explosion happening in air.The continuance time of the biast wave also becomes longer.With the help of the numerical simu lation finite element software LS-DYNA.a three-dimensional nonlinear dynamic simulation analysis for an explosion experiment inside tunnel was carried out.LS-DYNA is a fully integrated analysis program specifically designed for nonlinear dynamics and large strain problems.Compared with the experimental results.the simulation results have made the material parameters of numerical simulation model available.By using the model and the same material parameters,many results were adopted by calculating the model under different TNT explosion dynamites.Then the method of dimensional analysis was Used for the Simulation resufts.AS Overpressures of the explosion biast wave are the governing factor in fhe tunnel responses.a formula for the explosion biast wave overpressure at a certain distance from the detonation center point inside the tunnel was de rived by using the dimensional analysis theory.By cornparing the results computed by the fromula with experimental results which were obtained before.the formula was proved to be very applicable at some instance.The research may be helpful to estimate rapidly the effect of internal explosion of tunnel on the structure.

  11. Study of blast wave interactions with structures using a phase-stepped double reference beam holographic interferometer

    NARCIS (Netherlands)

    Booij, S.M.; Absil, L.H.J.; Bruinsma, A.J.A.; Braat, J.J.M.; Brug, H. van

    1999-01-01

    An optical study of blast wave propagation and interaction with multiple structures is presented, as well as a method for obtaining quantitative information on the pressure distribution from a number of phase-stepped images. The blast load distribution on buildings is studied by scaling down the bui

  12. A $55 Shock Tube for Simulated Blast Waves

    OpenAIRE

    Courtney, Elijah; Courtney, Amy; Courtney, Michael

    2015-01-01

    Shock tubes are commonly employed to test candidate armor materials, validate numerical models, and conduct simulated blast experiments in animal models. As DoD interests desire to field wearable sensors as blast dosimeters, shock tubes may also serve for calibration and testing of these devices. The high blast pressures needed for experimental testing of candidate armors are unnecessary to test these sensors. An inexpensive, efficient, and easily available way of testing these pressure senso...

  13. Analytical Solution of the Blast Wave Problem in a Non-Ideal Gas

    Institute of Scientific and Technical Information of China (English)

    L. P. Singh; S. D. Ram; D. B. Singh

    2011-01-01

    An analytical approach is used to construct the exact solution of the blast wave problem with generalized geometries in a non-ideal medium. It is assumed that the density ahead of the shock front varies according to a power of distance from the source of the blast wave. Also, an analytical expression for the total energy in a non-ideal medium is derived.%An analytical approach is used to construct the exact solution of the blast wave problem with generalized geometries in a non-ideal medium.It is assumed that the density ahead of the shock front varies according to a power of distance from the source of the blast wave.Also,an analytical expression for the total energy in a non-ideal medium is derived.Blast waves are common occurrences in the Earth's atmosphere.They result from a sudden release of a relatively large amount of energy.Typical examples are lightening and chemical or nuclear explosions.Assume that we have an explosion,following which there may exist a very small region filled with hot matter at high pressure in a duration,which starts to expand outwards with its front headed by a strong shock.The process generally takes place in a very short time after which a forward-moving shock wave develops,which continuously assimilates the ambient air into the blast wave.Although some of the explosive material may still remain near the center,the amount of the air absorbed increases with time,and the later behavior of the blast wave may well be represented by the model of the shock wave at the front and a purely gasdynamic treatment for the motion of the air inside,which may be assumed to have ideal and non-viscous adiabatic heat exponent.

  14. Modeling of aqueous foam blast wave attenuation

    Directory of Open Access Journals (Sweden)

    Domergue L.

    2011-01-01

    Full Text Available The use of aqueous foams enables the mitigation of blast waves induced by the explosion of energetic materials. The two-phase confinement gives rise to interphase interactions between the gaseous and liquid phases, which role have been emphasized in shock-tube studies with solid foams [1, 2]. Multifluid formalism enables the thermo-mechanical disequilibria between phases to be taken into account. The flow model ensures the correct estimation of the acoustic impedance of the two-phase media. As for the numerical scheme, Riemann solvers are used to describe the microscopic fluid interactions, the summation of which provides the multiphase flux. The role of the different transfer mechanisms is evaluated in the case where the liquid ligaments of the foam matrix have been shattered into droplets by the shock impingement. Characteristics of blast waves in heterogeneous media leads to a decrease of overpressure. The numerical results have been compared favorably to experimental data [3, 4].

  15. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.

    Science.gov (United States)

    Courtney, Amy C; Andrusiv, Lubov P; Courtney, Michael W

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile. PMID:22559580

  16. Relativistic blast waves in two dimensions. I - The adiabatic case

    Science.gov (United States)

    Shapiro, P. R.

    1979-01-01

    Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.

  17. The tank's dynamic response under nuclear explosion blast wave

    International Nuclear Information System (INIS)

    To weapons and equipment, blast wave is the primary destructive factor. In this paper, taken the real model-59 tank as an example, we try to transform the damage estimation problem into computing a fluid structure interaction problem with finite element method. The response of tank under nuclear explosion blast wave is computed with the general-coupling algorithm. Also, the dynamical interaction of blast wave and tank is reflected in real time. The deformation of each part of the tank is worked out and the result corresponds to the real-measured data. (authors)

  18. Investigation of Ultrafast Laser-Driven Radiative Blast Waves

    International Nuclear Information System (INIS)

    We have examined the evolution of cylindrically symmetric blast waves produced by the deposition of femtosecond laser pulses in gas jets. In high-Z gases radiative effects become important. We observe the production of an ionization precursor ahead of the shock front and deceleration parameters below the adiabatic value of 1/2 (for a cylinder), an effect expected when the blast wave loses energy by radiative cooling. Despite significant radiative cooling, the blast waves do not appear to develop thin shell instabilities expected for strongly radiative waves. This is believed to be due to the stabilizing effect of a relatively thick blast wave shell resulting in part from electron thermal conduction effects

  19. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    CERN Document Server

    Courtney, Michael

    2011-01-01

    Instrumentation is needed to produce realistic blast waves in a laboratory setting. This paper describes the development and characterization of oxy-acetylene driven, laboratory scale shock tubes for use in studying blast injury, candidate armor materials, and material properties at blast loading rates. The pressure-time profiles show a true shock front and exponential decay characteristic of blast waves and have relevant durations. The modular design includes shock tube diameters of 27 mm and 41 mm, and a selection of peak pressures from 204 kPa to 920 kPa can be produced by selection of the driver section diameter and placement of the test sample. Characterization studies of several driver/driven section combinations showed consistent results, with peak pressures having 0.8 - 6.9 percent uncertainty in the mean. This shock tube design provides a more realistic blast profile than current air-driven shock tubes. In addition, operation does not require specialized personnel or facilities like most blast-driven...

  20. Testing the blast wave model with Swift GRBs

    NARCIS (Netherlands)

    P.A. Curran; R.L.C. Starling; A.J. van der Horst; R.A.M.J. Wijers

    2009-01-01

    The complex structure of the light curves of Swift Gamma-Ray Bursts (GRBs) has made the identification of breaks, and the interpretation of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to identify breaks, which are possibly hidden, and to constrain the blast w

  1. Shock Tube Design for High Intensity Blast Waves for Laboratory Testing of Armor and Combat Materiel

    CERN Document Server

    Courtney, Elijah; Courtney, Michael

    2015-01-01

    Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ~1 MPa to ~5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods were investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which works by increasing the turbulent flow of the deflagration wave, thus increasing its speed and pressure. This approach increased the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increased the peak pressure from 1.17 MPa to 2.25 MPa. Using a 1...

  2. Characterising the acceleration phase of blast wave formation

    International Nuclear Information System (INIS)

    Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model

  3. BARYON LOADED RELATIVISTIC BLAST WAVES IN SUPERNOVAE

    International Nuclear Information System (INIS)

    We provide a new analytic blast wave solution which generalizes the Blandford-McKee solution to arbitrary ejecta masses and Lorentz factors. Until recently relativistic supernovae have been discovered only through their association with long-duration gamma-ray bursts (GRBs). The blast waves of such explosions are well described by the Blandford-McKee (in the ultra-relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows, as the ejecta mass is negligible in comparison to the swept-up mass. The recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, opens up the possibility of highly baryon loaded, mildly relativistic outflows which remains in nearly free-expansion phase during the radio afterglow. In this work, we consider a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating adiabatically due to its collision with the pre-explosion circumstellar wind profile of the progenitor. We compute the synchrotron emission from relativistic electrons in the shock amplified magnetic field. This models the radio emission from the circumstellar interaction of a CEDEX. We show that this model explains the observed radio evolution of the prototypical SN 2009bb and demonstrate that SN 2009bb had a highly baryon loaded, mildly relativistic outflow. We discuss the effect of baryon loading on the dynamics and observational manifestations of a CEDEX. In particular, our predicted angular size of SN 2009bb is consistent with very long baseline interferometric (VLBI) upper limits on day 85, but is presently resolvable on VLBI angular scales, since the relativistic ejecta is still in the nearly free-expansion phase.

  4. Blast Quantification Using Hopkinson Pressure Bars.

    Science.gov (United States)

    Clarke, Samuel D; Fay, Stephen D; Rigby, Samuel E; Tyas, Andrew; Warren, James A; Reay, Jonathan J; Fuller, Benjamin J; Gant, Matthew T A; Elgy, Ian D

    2016-01-01

    Near-field blast load measurement presents an issue to many sensor types as they must endure very aggressive environments and be able to measure pressures up to many hundreds of megapascals. In this respect the simplicity of the Hopkinson pressure bar has a major advantage in that while the measurement end of the Hopkinson bar can endure and be exposed to harsh conditions, the strain gauge mounted to the bar can be affixed some distance away. This allows protective housings to be utilized which protect the strain gauge but do not interfere with the measurement acquisition. The use of an array of pressure bars allows the pressure-time histories at discrete known points to be measured. This article also describes the interpolation routine used to derive pressure-time histories at un-instrumented locations on the plane of interest. Currently the technique has been used to measure loading from high explosives in free air and buried shallowly in various soils. PMID:27404117

  5. Effects of repetitive low-pressure explosive blast on primary neurons and mixed cultures.

    Science.gov (United States)

    Zander, Nicole E; Piehler, Thuvan; Banton, Rohan; Benjamin, Richard

    2016-09-01

    Repetitive mild traumatic brain injury represents a considerable health concern, particularly for athletes and military personnel. For blast-induced brain injury, threshold shock-impulse levels required to induce such injuries and cumulative effects with single and/or multiple exposures are not well characterized. Currently, there is no established in vitro experimental model with blast pressure waves generated by live explosives. This study presents results of primary neurons and mixed cultures subjected to our unique in vitro indoor experimental platform that uses real military explosive charges to probe the effects of primary explosive blast at the cellular level. The effects of the blast on membrane permeability, generation of reactive oxygen species (ROS), uptake of sodium ions, intracellular calcium, and release of glutamate were probed 2 and 24 hr postblast. Significant changes in membrane permeability and sodium uptake among the sham, single-blast-injured, and triple-blast-injured samples were observed. A significant increase in ROS and glutamate release was observed for the triple-blast-injured samples compared with the sham. Changes in intracellular calcium were not significant. These results suggest that blast exposure disrupts the integrity of the plasma membrane, leading to the upset of ion homeostasis, formation of ROS, and glutamate release. Published 2016. †This article is a U.S. Government work and is in the public domain in the USA. PMID:27317559

  6. Shock tube design for high intensity blast waves for laboratory testing of armor and combat materiel

    Directory of Open Access Journals (Sweden)

    Elijah Courtney

    2014-06-01

    Full Text Available Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ∼1 MPa to ∼5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods are experimentally investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which supports a deflagration to detonation transition. This approach increases the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (near Friedlander waveform. The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increases the peak pressure from 1.17 MPa to 2.25 MPa. A 103 mm driving section is used to increase peak pressure to 2.64 MPa. The third method, adding solid fuel to the driving section with the oxy-acetylene, results in a peak pressure increasing to 1.70 MPa.

  7. Shock tube design for high intensity blast waves for laboratory testing of armor and combat materiel

    Institute of Scientific and Technical Information of China (English)

    Elijah COURTNEY; Amy COURTNEY; Michael COURTNEY

    2014-01-01

    Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from w1 MPa to w5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods are experimentally investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral prim-ing section which supports a deflagration to detonation transition. This approach increases the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (near Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increases the peak pressure from 1.17 MPa to 2.25 MPa. A 103 mm driving section is used to increase peak pressure to 2.64 MPa. The third method, adding solid fuel to the driving section with the oxy-acetylene, results in a peak pressure increasing to 1.70 MPa.

  8. Near-Field Characterization of Radial and Axial Blast Waves From a Cylindrical Explosive Charge

    Science.gov (United States)

    McNesby, Kevin; Homan, Barrie

    This paper uses experiment (high speed imaging) and simulation (ALE-3D) to investigate radial and axial blast waves produced by uncased, cylindrical charges of TNT (trinitrotoluene). Recently there has been work reported on predicting secondary blast waves in the explosive mid-field (approximately 1 meter from charge center of mass) for cylindrical charges of RDX (trimethylenetrinitramine)/binder formulations. The work we will present seeks to provide complementary information in the explosive near-field, including the approach to chemical ``freeze out'', for end-detonated, right circular cylinders of TNT. Additionally, this work attempts to retrieve state variables (temperature, pressure, velocities) from high-definition images of the explosive event. Keywords: cylindrical charges, blast, shock waves

  9. Performance testing of lead free primers: blast waves, velocity variations, and environmental testing

    CERN Document Server

    Courtney, Elya; Summer, Peter David; Courtney, Michael

    2014-01-01

    Results are presented for lead free primers based on diazodinitrophenol (DDNP)compared with tests on lead styphnate based primers. First, barrel friction measurements in 5.56 mm NATO are presented. Second, shot to shot variations in blast waves are presented as determined by detonating primers in a 7.62x51mm rifle chamber with a firing pin, but without any powder or bullet loaded and measuring the blast wave at the muzzle with a high speed pressure transducer. Third, variations in primer blast waves, muzzle velocities, and ignition delay are presented after environmental conditioning (150 days) for two lead based and two DDNP based primers under cold and dry (-25 deg C,0% relative humidity), ambient (20 deg C, 50% relative humidity), and hot & humid (50 deg C, 100% relative humidity) conditions in 5.56 mm NATO. Taken together, these results indicate that DDNP based primers are not sufficiently reliable for service use.

  10. Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory

    Science.gov (United States)

    Jeong, S. H.; Greif, R.; Russo, R. E.

    1998-05-01

    Propagation of the shock wave generated during pulsed laser heating of aluminum targets was measured utilizing a probe beam deflection technique. The transit time of the laser-generated shock wave was compared with that predicted from the Sedov-Taylor solution for an ideal spherical blast wave. It was found that the most important parameters for the laser-generated shock wave to be consistent with the theoretically predicted propagation are the ambient pressure and the laser beam spot size. The prediction for laser energy conversion into the laser-induced vapor flow using the Sedov-Taylor solution overestimated the energy coupling efficiency, indicating a difference between a laser-induced gas-dynamic flow and an ideal blast wave.

  11. Computation of Blast Pressures foam Propellant for Compaction of Soil

    Directory of Open Access Journals (Sweden)

    K. B. Agarwal

    1974-01-01

    Full Text Available The knowledge of blast pressure characteristics is a pre-requisite for a suitable application of foam propellant to emergency military construction such as compacting of the soil from an aircraft using the foam propellant. The foam propellant considered here is a combination of hydrazine and ammonium perchlorate. The blast pressure is found to be a function of the quantity of foam propellant used and the distance of the observation point. This paper attempts to compute the blast pressure versus time characteristics of a foam propellant strip.

  12. Blast wave loading pathways in heterogeneous material systems-experimental and numerical approaches.

    Science.gov (United States)

    Selvan, Veera; Ganpule, Shailesh; Kleinschmit, Nick; Chandra, Namas

    2013-06-01

    Blast waves generated in the field explosions impinge on the head-brain complex and induce mechanical pressure pulses in the brain resulting in traumatic brain injury. Severity of the brain injury (mild to moderate to severe) is dependent upon the magnitude and duration of the pressure pulse, which in turn depends on the intensity and duration of the oncoming blast wave. A fluid-filled cylinder is idealized to represent the head-brain complex in its simplest form; the cylinder is experimentally subjected to an air blast of Friedlander type, and the temporal variations of cylinder surface pressures and strains and fluid pressures are measured. Based on these measured data and results from computational simulations, the mechanical loading pathways from the external blast to the pressure field in the fluid are identified; it is hypothesized that the net loading at a given material point in the fluid comprises direct transmissive loads and deflection-induced indirect loads. Parametric studies show that the acoustic impedance mismatches between the cylinder and the contained fluid as well as the flexural rigidity of the cylinder determine the shape/intensity of pressure pulses in the fluid. PMID:23699714

  13. Study of blast event propagation in different media using a novel ultrafast miniature optical pressure sensor

    Science.gov (United States)

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Hongtao; Niezrecki, Christopher; Wang, Xingwei

    2011-06-01

    Traumatic brain injury (TBI, also called intracranial injury) is a high potential threat to our soldiers. A helmet structural health monitoring system can be effectively used to study the effects of ballistic/blast events on the helmet and human skull to prevent soldiers from TBI. However, one of the biggest challenges lies in that the pressure sensor installed inside the helmet system must be fast enough to capture the blast wave during the transient period. In this paper, an ultrafast optical fiber sensor is presented to measure the blast signal. The sensor is based on a Fabry-Pérot (FP) interferometeric principle. An FP cavity is built between the endface of an etched optical fiber tip and the silica thin diaphragm attached on the end of a multimode optical fiber. The sensor is small enough to be installed in different locations of a helmet to measure blast pressure simultaneously. Several groups of tests regarding multi-layer blast events were conducted to evaluate the sensors' performance. The sensors were mounted in different segments of a shock tube side by side with the reference sensors, to measure a rapidly increasing pressure. The segments of the shock tube were filled with different media. The results demonstrated that our sensors' responses agreed well with those from the electrical reference sensors. In addition, the home-made shock tube could provide a good resource to study the propagation of blast event in different media.

  14. PRESSURE-IMPULSE DIAGRAM OF MULTI-LAYERED ALUMINUM FOAM PANELS UNDER BLAST PRESSURE

    Directory of Open Access Journals (Sweden)

    CHANG-SU SHIM

    2013-06-01

    Full Text Available Anti-terror engineering has increasing demand in construction industry, but basis of design (BOD is normally not clear for designers. Hardening of structures has limitations when design loads are not defined. Sacrificial foam claddings are one of the most efficient methods to protect blast pressure. Aluminum foam can have designed yield strength according to relative density and mitigate the blast pressure below a target transmitted pressure. In this paper, multi-layered aluminum foam panels were proposed to enhance the pressure mitigation by increasing effective range of blast pressure. Through explicit finite element analyses, the performance of blast pressure mitigation by the multi-layered foams was evaluated. Pressure-impulse diagrams for the foam panels were developed from extensive analyses. Combination of low and high strength foams showed better applicability in wider range of blast pressure.

  15. An Analytic Solution to the Propagation of Cylindrical Blast Waves in a Radiative Gas

    Directory of Open Access Journals (Sweden)

    B.G Verma

    1977-01-01

    Full Text Available In this paper, we have obtained a set of non-similarity in closed forms for the propagation of a cylindrical blast wave in a radiative gas. An explosion in a gas of constant density and pressure has been considered by assuming the existence of an initial uniform magnetic field in the axial direction. The disturbance is supposed to be headed by a shock surface of variable strength and the total energy of the wave varies with time.

  16. Experimental Investigation on the Basic Law of the Fracture Spatial Morphology for Water Pressure Blasting in a Drillhole Under True Triaxial Stress

    Science.gov (United States)

    Huang, Bingxiang; Li, Pengfeng

    2015-07-01

    The present literature on the morphology of water pressure blasting fractures in drillholes is not sufficient and does not take triaxial confining stress into account. Because the spatial morphology of water pressure blasting fractures in drillholes is not clear, the operations lack an exact basis. Using a large true triaxial water pressure blasting experimental system and an acoustic emission 3-D positioning system, water pressure blasting experiments on cement mortar test blocks (300 mm × 300 mm × 300 mm) were conducted to study the associated basic law of the fracture spatial morphology. The experimental results show that water pressure blasting does not always generate bubble pulsation. After water pressure blasting under true triaxial stress, a crushed compressive zone and a blasting fracture zone are formed from the inside, with the blasting section of the naked drillhole as the center, to the outside. The shape of the outer edges of the two zones is ellipsoidal. The range of the blasting fracture is large in the radial direction of the drillhole, where the surrounding pressure is large, i.e., the range of the blasting fracture in the drillhole radial cross-section is approximately ellipsoidal. The rock near the drillhole wall is affected by a tensile stress wave caused by the test block boundary reflection, resulting in more flake fractures appearing in the fracturing crack surface in the drillhole axial direction and parallel to the boundary surface. The flake fracture is thin, presenting a small-range flake fracture. The spatial morphology of the water pressure blasting fracture in the drillhole along the axial direction is similar to a wide-mouth Chinese bottle: the crack extent is large near the drillhole orifice, gradually narrows inward along the drillhole axial direction, and then increases into an approximate ellipsoid in the internal naked blasting section. Based on the causes of the crack generation, the blasting cracks are divided into three

  17. Extended adiabatic blast waves and a model of the soft X-ray background. [interstellar matter

    Science.gov (United States)

    Cox, D. P.; Anderson, P. R.

    1981-01-01

    An analytical approximation is generated which follows the development of an adiabatic spherical blast wave in a homogeneous ambient medium of finite pressure. An analytical approximation is also presented for the electron temperature distribution resulting from coulomb collisional heating. The dynamical, thermal, ionization, and spectral structures are calculated for blast waves of energy E sub 0 = 5 x 10 to the 50th power ergs in a hot low-density interstellar environment. A formula is presented for estimating the luminosity evolution of such explosions. The B and C bands of the soft X-ray background, it is shown, are reproduced by such a model explosion if the ambient density is about .000004 cm, the blast radius is roughly 100 pc, and the solar system is located inside the shocked region. Evolution in a pre-existing cavity with a strong density gradient may, it is suggested, remove both the M band and OVI discrepancies.

  18. The Ballistic Pressure Wave Theory of Handgun Bullet Incapacitation

    CERN Document Server

    Courtney, Michael

    2008-01-01

    This paper presents a summary of seven distinct chains of evidence, which, taken together, provide compelling support for the theory that a ballistic pressure wave radiating outward from the penetrating projectile can contribute to wounding and incapacitating effects of handgun bullets. These chains of evidence include the fluid percussion model of traumatic brain injury, observations of remote ballistic pressure wave injury in animal models, observations of rapid incapacitation highly correlated with pressure magnitude in animal models, epidemiological data from human shootings showing that the probability of incapacitation increases with peak pressure magnitude, case studies in humans showing remote pressure wave damage in the brain and spinal cord, and observations of blast waves causing remote brain injury.

  19. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Shushi Kabu

    Full Text Available Blast-associated shock wave-induced traumatic brain injury (bTBI remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB integrity following blast exposure. Reactive oxygen species (ROS levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective

  20. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.

    Science.gov (United States)

    Kabu, Shushi; Jaffer, Hayder; Petro, Marianne; Dudzinski, Dave; Stewart, Desiree; Courtney, Amy; Courtney, Michael; Labhasetwar, Vinod

    2015-01-01

    Blast-associated shock wave-induced traumatic brain injury (bTBI) remains a persistent risk for armed forces worldwide, yet its detailed pathophysiology remains to be fully investigated. In this study, we have designed and characterized a laboratory-scale shock tube to develop a rodent model of bTBI. Our blast tube, driven by a mixture of oxygen and acetylene, effectively generates blast overpressures of 20-130 psi, with pressure-time profiles similar to those of free-field blast waves. We tested our shock tube for brain injury response to various blast wave conditions in rats. The results show that blast waves cause diffuse vascular brain damage, as determined using a sensitive optical imaging method based on the fluorescence signal of Evans Blue dye extravasation developed in our laboratory. Vascular leakage increased with increasing blast overpressures and mapping of the brain slices for optical signal intensity indicated nonhomogeneous damage to the cerebral vasculature. We confirmed vascular leakage due to disruption in the blood-brain barrier (BBB) integrity following blast exposure. Reactive oxygen species (ROS) levels in the brain also increased with increasing blast pressures and with time post-blast wave exposure. Immunohistochemical analysis of the brain sections analyzed at different time points post blast exposure demonstrated astrocytosis and cell apoptosis, confirming sustained neuronal injury response. The main advantages of our shock-tube design are minimal jet effect and no requirement for specialized equipment or facilities, and effectively generate blast-associated shock waves that are relevant to battle-field conditions. Overall data suggest that increased oxidative stress and BBB disruption could be the crucial factors in the propagation and spread of neuronal degeneration following blast injury. Further studies are required to determine the interplay between increased ROS activity and BBB disruption to develop effective therapeutic strategies

  1. Macro-mechanical modelling of blast wave mitigation in foams. Part I: review of available experiments and models

    Science.gov (United States)

    Britan, A.; Shapiro, H.; Liverts, M.; Ben-Dor, G.; Chinnayya, A.; Hadjadj, A.

    2013-02-01

    Multiphase flows, which involve compressible or incompressible fluids with linear or nonlinear dynamics, are found in all areas of technology at all length scales and flow regimes. In this contribution, we discuss application of aqueous-foam barriers against blast wave impact. The first experiments demonstrating this behaviour were conducted in the early 1980s in free-field tests. Based on structural requirements, various foams with different blast energy contents were tested with the aim of characterizing the time history of the blast pressure reduction. A number of consistent methodologies for calculating this pressure reduction in foam are based on the effective gas flow model. For estimating the uncertainties of these methodologies, we briefly demonstrate their comparison with existing experimental data. Thereafter, we present various modifications of modelling approaches and their comparison with new results of blast wave experiments.

  2. Stress Wave Interaction Between Two Adjacent Blast Holes

    Science.gov (United States)

    Yi, Changping; Johansson, Daniel; Nyberg, Ulf; Beyglou, Ali

    2016-05-01

    Rock fragmentation by blasting is determined by the level and state of stress in the rock mass subjected to blasting. With the application of electronic detonators, some researchers stated that it is possible to achieve improved fragmentation through stress wave superposition with very short delay times. This hypothesis was studied through theoretical analysis in the paper. First, the stress in rock mass induced by a single-hole shot was analyzed with the assumptions of infinite velocity of detonation and infinite charge length. Based on the stress analysis of a single-hole shot, the stress history and tensile stress distribution between two adjacent holes were presented for cases of simultaneous initiation and 1 ms delayed initiation via stress superposition. The results indicated that the stress wave interaction is local around the collision point. Then, the tensile stress distribution at the extended line of two adjacent blast holes was analyzed for a case of 2 ms delay. The analytical results showed that the tensile stress on the extended line increases due to the stress wave superposition under the assumption that the influence of neighboring blast hole on the stress wave propagation can be neglected. However, the numerical results indicated that this assumption is unreasonable and yields contrary results. The feasibility of improving fragmentation via stress wave interaction with precise initiation was also discussed. The analysis in this paper does not support that the interaction of stress waves improves the fragmentation.

  3. Triple-layer Absorptive Structures for Shock Wave Blast Protection

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Triple-layer absorptive structure is designed to reinforce a missile silo against shock wave blasts. An energy-absorbing layer and a cushion layer overlay the circular silo cover made of reinforced concrete. The dynamic stress analysis is performed by ABAQUS/Explicit. The mesoscopic structure of the energy absorbing layer is designed as an assembly of ductile tubes containing crushable cellular ceramics. Combined mesoscopic and macroscopic simulations indicate that the structure can enhance the survivability of a missile silo against blast waves.

  4. Simulation of the reflected blast wave from a C-4 charge

    Science.gov (United States)

    Howard, W. Michael; Kuhl, Allen L.; Tringe, Joseph

    2012-03-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 μm per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 7 ranges (GR = 0, 5.08, 10.16, 15.24, 20.32, 25.4, and 30.48 cm) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 5 cm), which were dominated by jetting effects.

  5. Review of Methods for Calculating Pressure Profiles of Explosive Air Blast and its Sample Application

    OpenAIRE

    Chock, Jeffrey Mun Kong

    1999-01-01

    Blast profiles and two primary methods of determining them were reviewed for use in the creation of a computer program for calculating blast pressures which serves as a design tool to aid engineers or analysts in the study of structures subjected to explosive air blast. These methods were integrated into a computer program, BLAST.F, to generate air blast pressure profiles by one of these two differing methods. These two methods were compared after the creation of the program and can conserv...

  6. THE CALCULATION OF INITIAL SHOCK WAVE IN ROCK WITH UNCOUPLING CHARGE BLASTING

    Institute of Scientific and Technical Information of China (English)

    李玉民; 倪芝芳; 黄忆龙

    1997-01-01

    According to the structure of explosive charge in rock blasting, a physical model has been set up in this paper. Based on the model, a methodology for calculating initial shock wave of uncoupling charge has been given. The pressure P3 has been calculated when high explosives act on granite, limestone, marble and shale respectively. Some important conclusions are also gained by the analysis of results.

  7. The time development of a blast wave with shock heated electrons

    Science.gov (United States)

    Edgar, R. J.; Cox, D. P.

    1983-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  8. The time development of a blast wave with shock-heated electrons

    Science.gov (United States)

    Edgar, R. J.; Cox, D. P.

    1984-01-01

    Accurate approximations are presented for the time development of both edge conditions and internal structures of a blast wave with shock heated electrons, and equal ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform ambient density case) and have negligible external pressure. Account is taken of possible saturation of the thermal conduction flux. The structures evolve smoothly to the adiabatic structures.

  9. Blast wave injury prediction models for complex scenarios

    NARCIS (Netherlands)

    Teland, J.A.; Doormaal, J.C.A.M. van

    2012-01-01

    Blast waves from explosions can cause lethal injuries to humans. Development of injury criteria has been ongoing for many years, but with the main focus on free field conditions. However, with terrorist actions as a new threat, explosions in urban areas have become of much more interest. Urban areas

  10. A systematic exposition of the conservation equations for blast waves.

    Science.gov (United States)

    Oppenheim, A. K.; Lundstrom, E. A.; Kuhl, A. L.; Kamel, M. M.

    1971-01-01

    In order to provide a rational background for the analysis of experimental observations of blast wave phenomena, the conservation equations governing their nonsteady flow field are formulated in a general manner, without the usual restrictions imposed by an equation of state, and with proper account taken, by means of source terms, of other effects which, besides the inertial terms that conventionally dominate these equations, can affect the flow. Taking advantage of the fact that a blast wave can be generally considered as a spatially one-dimensional flow field whose nonsteady behavior can be regarded, consequently, as a function of just two independent variables, two generalized blast wave coordinates are introduced, one associated with the front of the blast wave and the other with its flow field. The conservation equations are accordingly transformed into this coordinate system, acquiring thereby a comprehensive character, in that they refer then to any frame of reference, being applicable, in particular, to problems involving either space or time profiles of the gas-dynamic parameters in the Eulerian system, or time profiles in the Lagrangian system.

  11. Gamma-ray burst afterglows from transrelativistic blast wave simulations

    NARCIS (Netherlands)

    van Eerten, H. J.; Leventis, K.; Meliani, Z.; Wijers, Ramj; Keppens, R.

    2010-01-01

    We present a study of the intermediate regime between ultrarelativistic and non-relativistic flow for gamma-ray burst afterglows. The hydrodynamics of spherically symmetric blast waves is numerically calculated using the amrvac adaptive mesh refinement code. Spectra and light curves are calculated u

  12. Gamma-ray burst afterglows from transrelativistic blast wave simulations

    NARCIS (Netherlands)

    van Eerten, H. J.; Leventis, K.; Meliani, Z.; Wijers, R.A.M.J.; Keppens, R.

    2010-01-01

    We present a study of the intermediate regime between ultrarelativistic and non-relativistic flow for gamma-ray burst afterglows. The hydrodynamics of spherically symmetric blast waves is numerically calculated using the AMRVAC adaptive mesh refinement code. Spectra and light curves are calculated u

  13. Modeling of Laser-generated Radiative Blast Waves

    International Nuclear Information System (INIS)

    We simulate experiments performed with the Falcon laser at Lawrence Livermore National Laboratory to generate strong, cylindrically diverging blast waves of relevance to astrophysics. In particular, we are interested in producing and modeling radiative shocks. We compare numerical simulations with the data and with an analytic approximation to blast-wave propagation with a radiative-loss term included. Our goal is to develop a laboratory setting for studying radiative shocks of relevance to supernova remnants, gamma-ray burst afterglows, and other high-energy astrophysics phenomena. We will show that a good degree of agreement exists between the experimental data and the numerical simulations, demonstrating that it is indeed possible to generate radiative shocks in the laboratory using tabletop femtosecond lasers. In addition, we show how we can determine the energy-loss rate from the blast-wave evolution. This analytic method is independent of the exact mechanism of radiative cooling and is scalable to both the laboratory and astrophysical radiative blast waves. (c) 2000 The American Astronomical Society

  14. Simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul Allen; Ford, Corey C. (University of New Mexico, Albuquerque, NM)

    2008-04-01

    U.S. soldiers are surviving blast and impacts due to effective body armor, trauma evacuation and care. Blast injuries are the leading cause of traumatic brain injury (TBI) in military personnel returning from combat. Understanding of Primary Blast Injury may be needed to develop better means of blast mitigation strategies. The objective of this paper is to investigate the effects of blast direction and strength on the resulting mechanical stress and wave energy distributions generated in the brain.

  15. Modeling and simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    Energy Technology Data Exchange (ETDEWEB)

    Ford, Corey C. (University of New Mexico, Albuquerque, NM); Taylor, Paul Allen

    2008-02-01

    The objective of this modeling and simulation study was to establish the role of stress wave interactions in the genesis of traumatic brain injury (TBI) from exposure to explosive blast. A high resolution (1 mm{sup 3} voxels), 5 material model of the human head was created by segmentation of color cryosections from the Visible Human Female dataset. Tissue material properties were assigned from literature values. The model was inserted into the shock physics wave code, CTH, and subjected to a simulated blast wave of 1.3 MPa (13 bars) peak pressure from anterior, posterior and lateral directions. Three dimensional plots of maximum pressure, volumetric tension, and deviatoric (shear) stress demonstrated significant differences related to the incident blast geometry. In particular, the calculations revealed focal brain regions of elevated pressure and deviatoric (shear) stress within the first 2 milliseconds of blast exposure. Calculated maximum levels of 15 KPa deviatoric, 3.3 MPa pressure, and 0.8 MPa volumetric tension were observed before the onset of significant head accelerations. Over a 2 msec time course, the head model moved only 1 mm in response to the blast loading. Doubling the blast strength changed the resulting intracranial stress magnitudes but not their distribution. We conclude that stress localization, due to early time wave interactions, may contribute to the development of multifocal axonal injury underlying TBI. We propose that a contribution to traumatic brain injury from blast exposure, and most likely blunt impact, can occur on a time scale shorter than previous model predictions and before the onset of linear or rotational accelerations traditionally associated with the development of TBI.

  16. Effects of pressure waves

    Science.gov (United States)

    1977-01-01

    Two parameters, side on overpressure and side on impulse loads, and their application to the determination of structural damage to buildings and vehicles in the vicinity of an explosion are investigated. Special consideration was given to what constitutes damage and what level of damage is acceptable. Solutions were sorted through the examination of glass breakage, curve fit to bomb damage, overturning of marginal structures (buses, trucks, mobile homes) subject to toppling, and initiation of yielding in either beam or plate structural components. Three different empirical pressure versus impulse diagrams were presented - the first is for minor structural damage involving wrenched joints and partitions, the second is for major damage structural damage with load bearing members at least partially destroyed, and the third is for 50% to 75% of the building demolished. General guidelines were obtained from the results when the accurate structural details are unknown.

  17. Numerical study of water mitigation effects on blast wave

    Science.gov (United States)

    Cheng, M.; Hung, K. C.; Chong, O. Y.

    2005-11-01

    The mitigating effect of a water wall on the generation and propagation of blast waves of a nearby explosive has been investigated using a numerical approach. A multimaterial Eulerian finite element technique is used to study the influence of the design parameters, such as the water-to-explosive weight ratio, the water wall thickness, the air-gap and the cover area ratio of water on the effectiveness of the water mitigation concept. In the computational model, the detonation gases are modelled with the standard Jones Wilkins Lee (JWL) equation of state. Water, on the other hand, is treated as a compressible fluid with the Mie Gruneisen equation of state model. The validity of the computational model is checked against a limited amount of available experimental data, and the influence of mesh sizes on the convergence of results is also discussed. From the results of the extensive numerical experiments, it is deduced that firstly, the presence of an air-gap reduces the effectiveness of the water mitigator. Secondly, the higher the water-to-explosive weight ratio, the more significant is the reduction in peak pressure of the explosion. Typically, water-to-explosive weight ratios in the range of 1 3 are found to be most practical.

  18. Resonant Amplification of Turbulence by the Blast Waves

    Science.gov (United States)

    Zankovich, A. M.; Kovalenko, I. G.

    2015-02-01

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ~ 1), meso- (l ~ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.

  19. RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Zankovich, A. M.; Kovalenko, I. G., E-mail: ilya.g.kovalenko@gmail.com [Physicotechnical Institute, Volgograd State University, Volgograd 400062 (Russian Federation)

    2015-02-10

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5.

  20. RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES

    International Nuclear Information System (INIS)

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5

  1. Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    OpenAIRE

    Courtney, Amy; Courtney, Michael

    2008-01-01

    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pig...

  2. Instantaneous Rock Blasting Wave and Its Microscopic Characteristics during Interaction with Concrete

    Directory of Open Access Journals (Sweden)

    Shaoqin Huang

    2015-01-01

    Full Text Available This paper uses improved technology for dynamic strain measurement to investigate the dynamic strain signals of blasting wave action tested in the range of 8–16 cm from the central blast. Based on the blasting mechanism and on the analysis of signal characteristics, blasting waves are recognized and divided into three zones, namely, shock wave zone, stress wave zone, and gas-expanding zone. This paper studies the relationships between stress, strain, and time of every zone. The tensile and compressive stresses of stress wave are considered. After the blasting test, four cracks from the borehole center toward the minimum burden appear at the model surface. The relationship between blasting wave and concrete damage is analyzed.

  3. Vorticity deposition, structure generation and the approach to self-similarity in colliding blast wave experiments

    Science.gov (United States)

    Robinson, A. P. L.; Schmitz, H.; Fox, T. E.; Pasley, J.; Symes, D. R.

    2015-03-01

    When strong shocks interact with transverse density gradients, it is well known that vorticity deposition occurs. When two non-planar blast waves interact, a strong shock will propagate through the internal structure of each blast wave where the shock encounters such density gradients. There is therefore the potential for the resulting vorticity to produce pronounced density structures long after the passage of these shocks. If the two blast waves have evolved to the self-similar (Sedov) phase this is not a likely prospect, but for blast waves at a relatively early stage of their evolution this remains possible. We show, using 2D numerical simulations, that the interactions of two 'marginally young' blast waves can lead to strong vorticity deposition which leads to the generation of a strong protrusion and vortex ring as mass is driven into the internal structure of the weaker blast wave.

  4. Study of high Mach number laser driven blast waves in gases

    International Nuclear Information System (INIS)

    A series of experiments were performed examining the evolution of blast waves produced by laser irradiation of a target immersed in gas. Blast waves were produced by illumination of wires by 1 kJ, 1 ns laser pulses from the Z-Beamlet laser at Sandia National Laboratories. The blast waves were imaged by probe laser pulses at various times to examine the trajectory, radiative precursor, and induced perturbations on the blast wave front. Well defined perturbations were induced on the blast wave front with arrays of wires placed in the gas and the results of the experiments are compared to the theoretical predictions for the Vishniac overstability. It is found that the experimental results are in general agreement with these theoretical predictions on thin blast wave shells and are in quantitative agreement in the simplest case.

  5. Approximate cylindrical blast theory: Application to pressure loading

    International Nuclear Information System (INIS)

    SRTC is currently investigating the use of plasma systems for immobilization of mixed low-level waste and transuranic waste. Much of this waste contains organic materials which are unstable in high temperature environments. For plasma technology to be viable for immobilization of these wastes, the breakdown of the organic materials must not pose a safety problem. To support start-up and operational planning for waste vitrification activities at SRS, an analysis has been performed to estimate the pressure load on a vessel wall due to an explosion. If, during routine operation of a waste vitrifier, a container with reactive material is injected, an explosion may result. With this in mind it is important to determine the pressure load on the container wall that results. The analysis performed below is a scoping calculation and is considered an R ampersand D level 2 calculation based on the WSRC manual E-7. The objective of this analysis is to use near-field cylindrical blast theory to estimate the pressure load on a container wall due to an internal explosion. The blast theory result will then be compared to a structural calculation performed using ABAQUS. The ABAQUS calculations are to determine the pressure at which the container wall will fracture. Then, that pressure will be compared to the pressure given by blast theory for several explosive loadings

  6. The physical properties of the blast wave produced by a stoichiometric propane/oxygen explosion

    Science.gov (United States)

    Dewey, M. C.; Dewey, J. M.

    2014-11-01

    The trajectory of the primary shock produced by the explosion of a nominal 18.14 t (20 tn) hemispherical propane/oxygen charge was analysed previously to provide the physical properties immediately behind the shock, but gave no information about the time-resolved properties throughout the blast wave. The present study maps all the physical properties of the wave throughout and beyond the positive durations for a range of distances from about 1.6-18 m scaled to a 1 kg charge at NTP. The physical properties were calculated using a hydro-code to simulate the flow field produced by a spherical piston moving with a specific trajectory. This technique has been used extensively to determine the physical properties of blast waves from a variety of sources for which the piston path was determined by high-speed photography of smoke tracers established close to the charges immediately before detonation. In the case of the propane/oxygen explosion, smoke tracer data were not available to determine the trajectory of the spherical piston. An arbitrary piston path was used and its trajectory iteratively adjusted until it produced a blast wave with a primary shock whose trajectory exactly matched the measured trajectory from the propane/oxygen explosion. Throughout the studied flow field the time histories of hydrostatic pressure, density and particle velocity are well described by fits to the modified Friedlander equation. The properties are presented as functions of scaled radius and are compared with the properties of the blast wave from a 1 kg TNT surface burst explosion, and with other measurements of the same explosion.

  7. Mechanism of Traumatic Brain Injury at Distant Locations After Exposure to Blast Waves: Preliminary Results from Animal and Phantom Experiments.

    Science.gov (United States)

    Nakagawa, Atsuhiro; Ohtani, Kiyonobu; Goda, Keisuke; Kudo, Daisuke; Arafune, Tatsuhiko; Washio, Toshikatsu; Tominaga, Teiji

    2016-01-01

    Purpose Primary blast-induced traumatic brain injury (bTBI) is the least understood of the four phases of blast injury. Distant injury induced by the blast wave, on the opposite side from the wave entry, is not well understood. This study investigated the mechanism of distant injury in bTBI. Materials and Methods Eight 8-week-old male Sprague-Dawley rats were divided into two groups: group 1 served as the control group and did not receive any shock wave (SW) exposure; group 2 was exposed to SWs (12.5 ± 2.5 MPa). Propagation of SWs within a brain phantom was evaluated by visualization, pressure measurement, and numerical simulation. Results Intracerebral hemorrhage near the ignition site and elongation of the distant nucleus were observed, despite no apparent damage between the two locations in the animal experiment. Visualization, pressure measurement, and numerical simulation indicated the presence of complex wave dynamics accompanying a sudden increase in pressure, followed by negative pressure in the phantom experiment. Conclusion A local increase in pressure above the threshold caused by interference of reflection and rarefaction waves in the vicinity of the brain-skull surface may cause distant injury in bTBI. PMID:27165867

  8. Instantaneous Rock Blasting Wave and Its Microscopic Characteristics during Interaction with Concrete

    OpenAIRE

    Shaoqin Huang; Lifeng Luan; Wanli Xing; Qunyi Liu

    2015-01-01

    This paper uses improved technology for dynamic strain measurement to investigate the dynamic strain signals of blasting wave action tested in the range of 8–16 cm from the central blast. Based on the blasting mechanism and on the analysis of signal characteristics, blasting waves are recognized and divided into three zones, namely, shock wave zone, stress wave zone, and gas-expanding zone. This paper studies the relationships between stress, strain, and time of every zone. The tensile and co...

  9. Testing the blast wave model with Swift GRBs

    CERN Document Server

    Curran, P A; Van der Horst, A J; Wijers, R A M J

    2008-01-01

    The complex structure of the light curves of Swift GRBs has made the identification of breaks, and the interpretation of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to identify breaks, which are possibly hidden, and to constrain the blast wave parameters; electron energy distribution, p, density profile of the circumburst medium, k, and the continued energy injection index, q. We do so by comparing the observed multi-wavelength light curves and X-ray spectra of our sample to the predictions of the blast wave model. We can successfully interpret all of the bursts in our sample of 10, except two, within this framework and we can estimate, with confidence, the electron energy distribution index for 6 of the sample. Furthermore we identify jet breaks in a number of the bursts. A statistical analysis of the distribution of p reveals that, even in the most conservative case of least scatter, the values are not consistent with a single, universal value. The values of k sugges...

  10. Self-similar relativistic blast waves with energy injection

    Science.gov (United States)

    van Eerten, Hendrik

    2014-08-01

    A sufficiently powerful astrophysical source with power-law luminosity in time will give rise to a self-similar relativistic blast wave with a reverse shock travelling into the ejecta and a forward shock moving into the surrounding medium. Once energy injection ceases and the last energy is delivered to the shock front, the blast wave will transit into another self-similar stage depending only on the total amount of energy injected. I describe the effect of limited duration energy injection into environments with density depending on radius as a power law, emphasizing optical/X-ray Gamma-ray Burst afterglows as applications. The blast wave during injection is treated analytically, the transition following last energy injection with one-dimensional simulations. Flux equations for synchrotron emission from the forward and reverse shock regions are provided. The reverse shock emission can easily dominate, especially with different magnetizations for both regions. Reverse shock emission is shown to support both the reported X-ray and optical correlations between afterglow plateau duration and end time flux, independently of the luminosity power-law slope. The model is demonstrated by application to bursts 120521A and 090515, and can accommodate their steep post-plateau light-curve slopes.

  11. A parametric study of self-similar blast waves.

    Science.gov (United States)

    Oppenheim, A. K.; Kuhl, A. L.; Lundstrom, E. A.; Kamel, M. M.

    1972-01-01

    Comprehensive examination of self-similar blast waves with respect to two parameters, one describing the front velocity and the other the variation of the ambient density immediately ahead of the front. All possible front trajectories are taken into account, including limiting cases of the exponential and logarithmic form. The structure of the waves is analyzed by means of a phase plane defined in terms of two reduced coordinates. Loci of extrema of the integral curves in the phase plane are traced, and loci of singularities are determined on the basis of their intersections. Boundary conditons are introduced for the case where the medium into which the waves propagate is at rest. Representative solutions, pertaining to all the possible cases of blast waves bounded by shock fronts propagating into an atmosphere of uniform density, are obtained by evaluating the integral curves and determining the corresponding profiles of the gasdynamic parameters. Particular examples of integral curves for waves bounded by detonations are given, and all the degenerate solutions corresponding to cases where the integral curve is reduced to a point are delineated.

  12. Microscopic origin of self-similarity in granular blast waves

    Science.gov (United States)

    Barbier, M.; Villamaina, D.; Trizac, E.

    2016-08-01

    The self-similar expansion of a blast wave, well-studied in air, has peculiar counterparts in dense and dissipative media such as granular gases. Recent results have shown that, while the traditional Taylor-von Neumann-Sedov (TvNS) derivation is not applicable to such granular blasts, they can nevertheless be well understood via a combination of microscopic and hydrodynamic insights. In this article, we provide a detailed analysis of these methods associating molecular dynamics simulations and continuum equations, which successfully predict hydrodynamic profiles, scaling properties, and the instability of the self-similar solution. We also present new results for the energy conserving case, including the particle-level analysis of the classic TvNS solution and its breakdown at higher densities.

  13. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    OpenAIRE

    Yun Chen; Wei Huang; Shlomi Constantini

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the ope...

  14. Dynamics and stability of relativistic gamma-ray-bursts blast waves

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.

    2010-01-01

    Aims. In gamma-ray-bursts (GRBs), ultra-relativistic blast waves are ejected into the circumburst medium. We analyse in unprecedented detail the deceleration of a self-similar Blandford-McKee blast wave from a Lorentz factor 25 to the nonrelativistic Sedov phase. Our goal is to determine the stabili

  15. Fluid/Structure Interaction Computational Investigation of Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet

    Science.gov (United States)

    Grujicic, M.; Bell, W. C.; Pandurangan, B.; Glomski, P. S.

    2011-08-01

    To combat the problem of traumatic brain injury (TBI), a signature injury of the current military conflicts, there is an urgent need to design head protection systems with superior blast/ballistic impact mitigation capabilities. Toward that end, the blast impact mitigation performance of an advanced combat helmet (ACH) head protection system equipped with polyurea suspension pads and subjected to two different blast peak pressure loadings has been investigated computationally. A fairly detailed (Lagrangian) finite-element model of a helmet/skull/brain assembly is first constructed and placed into an Eulerian air domain through which a single planar blast wave propagates. A combined Eulerian/Lagrangian transient nonlinear dynamics computational fluid/solid interaction analysis is next conducted in order to assess the extent of reduction in intra-cranial shock-wave ingress (responsible for TBI). This was done by comparing temporal evolutions of intra-cranial normal and shear stresses for the cases of an unprotected head and the helmet-protected head and by correlating these quantities with the three most common types of mild traumatic brain injury (mTBI), i.e., axonal damage, contusion, and subdural hemorrhage. The results obtained show that the ACH provides some level of protection against all investigated types of mTBI and that the level of protection increases somewhat with an increase in blast peak pressure. In order to rationalize the aforementioned findings, a shockwave propagation/reflection analysis is carried out for the unprotected head and helmet-protected head cases. The analysis qualitatively corroborated the results pertaining to the blast-mitigation efficacy of an ACH, but also suggested that there are additional shockwave energy dissipation phenomena which play an important role in the mechanical response of the unprotected/protected head to blast impact.

  16. VISAR Unfold Analysis of MagLIF Laser Blast Wave Experiments

    Science.gov (United States)

    Hess, Mark; Peterson, Kyle; Harvey-Thompson, Adam

    2015-06-01

    MagLIF (Magnetized Liner Inertial Fusion) is a fusion energy scheme, which utilizes a short laser pulse to preheat a fuel, and a magnetically driven cylindrical liner to compress the fuel to high energy density plasma conditions. Recently, a set of successful experiments have been performed to evaluate the effectiveness of our preheat process in MagLIF using the Z-Beamlet laser at Sandia. The fuel is preheated in the liner, with no compression from the Z-machine, and a VISAR diagnostic was fielded on the outer surface of the liner to measure velocity of the liner due to the pressure of the laser blast wave on the inner surface of the liner. In support of this program, we developed a fast unfold method of the VISAR data using semi-analytical techniques/numerical methods. The method incorporates appropriate boundary conditions at both edges of the VISAR foil, realistic EOS tables, and an additional pressure pulse time-delay feature for accurately unfolding the time-dependent pressure from the VISAR data. Our fully automated method can produce high-quality unfolds of the laser blast wave in under a minute. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  17. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves.

    Science.gov (United States)

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-12-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36-45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups. PMID:26458125

  18. Wave effects on a pressure sensor

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; DeSa, E.J.; Desa, E.; McKeown, J.; Peshwe, V.B.

    Wave flume experiments indicated that for waves propagating on quiescent waters the sensor's performance improved (i.e. the difference Delta P between the average hydrostatic and measured pressures was small and positive) when the inlet...

  19. Self-similar ultra-relativistic jetted blast wave

    CERN Document Server

    Keshet, Uri

    2015-01-01

    Following a suggestion that a directed relativistic explosion may have a universal intermediate asymptotic, we derive a self-similar solution for an ultra-relativistic jetted blast wave. The solution involves three distinct regions: an approximately paraboloid head where the Lorentz factor $\\gamma$ exceeds $\\sim1/2$ of its maximal, nose value; a geometrically self-similar, expanding envelope slightly narrower than a paraboloid; and an axial core in which the radial flow $U$ converges inward towards the axis. Most ($\\sim 80\\%$) of the energy lies well beyond the head. Here, a radial cross section shows a maximal $\\gamma$ (separating the core and the envelope), a sign reversal in $U$, and a minimal $\\gamma$, at respectively $\\sim 1/6$, $\\sim1/4$, and $\\sim3/4$ of the shock radius. The solution is apparently unique, and approximately agrees with previous simulations, of different initial conditions, that resolved the head. This suggests that unlike a spherical relativistic blast wave, our solution is an attracto...

  20. Spike Penetration in Blast-Wave-Driven Instabilities

    Science.gov (United States)

    Drake, R. Paul

    2010-05-01

    Recent experiments by C. Kuranz and collaborators, motivated by structure in supernovae, have studied systems in which planar blast waves encounter interfaces where the density decreases. During the Rayleigh-Taylor (RT) phase of such experiments, they observed greater penetration of the RT spikes than tends to be seen in simulations. Here we seek to employ semi-analytic theory to understand the general nature and regimes of spike penetration for blast-wave-driven instabilities. This problem is not trivial as one must account for the initial vorticity deposition at the interface, for its time-dependent deceleration, for the expansion of the shocked material in time and space, and for the drag on the broadened tips of the spikes. We offer here an improved evaluation of the material expansion in comparison to past work. The goal is to use such models to increase our ability to interpret the behavior of simulations of such systems, in both the laboratory and astrophysics. Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.

  1. Self-similar blast waves incorporating deflagrations of variable speed

    Science.gov (United States)

    Guirguis, R. H.; Kamel, M. M.; Oppenheim, A. K.

    1983-01-01

    The present investigation is concerned with the development of a systematic approach to the problem of self-similar blast waves incorporating nonsteady flames. The regime covered by the presented solutions is bounded on one side by an adiabatic strong explosion and, on the other, by deflagration propagating at an infinite acceleration. Results for a representative set of accelerations are displayed, taking into account the full range of propagation speeds from zero to velocities corresponding to the Chapman-Jouguet deflagration. It is found that the distribution of stored energy in the undisturbed medium determines the acceleration of the deflagration-shock wave system. The obtained results reveal the existence of a simple relation between the location of the deflagration and its Mach number.

  2. Interaction and coalescence of multiple simultaneous and non-simultaneous blast waves

    Science.gov (United States)

    Qiu, S.; Eliasson, V.

    2016-05-01

    Interaction of multiple blast waves can be used to direct energy toward a target while simultaneously reducing collateral damage away from the target area. In this paper, simulations of multiple point source explosives were performed and the resulting shock interaction and coalescence behavior were explored. Three to ten munitions were placed concentrically around the target, and conditions at the target area were monitored and compared to those obtained using a single munition. For each simulation, the energy summed over all munitions was kept constant, while the radial distances between target and munitions and the munition initiation times were varied. Each munition was modeled as a point source explosion. The resulting blast wave propagation and shock front coalescence were solved using the inviscid Euler equations of gas dynamics on overlapping grids employing a finite difference scheme. Results show that multiple munitions can be beneficial for creating extreme conditions at the intended target area; over 20 times higher peak pressure is obtained for ten simultaneous munitions compared to a single munition. Moreover, peak pressure at a point away from the target area is reduced by more than a factor of three.

  3. Another self-similar blast wave: Early time asymptote with shock heated electrons and high thermal conductivity

    Science.gov (United States)

    Cox, D. P.; Edgar, R. J.

    1982-01-01

    Accurate approximations are presented for the self-similar structures of nonradiating blast waves with adiabatic ions, isothermal electrons, and equation ion and electron temperatures at the shock. The cases considered evolve in cavities with power law ambient densities (including the uniform density case) and have negligible external pressure. The results provide the early time asymptote for systems with shock heating of electrons and strong thermal conduction. In addition, they provide analytical results against which two fluid numerical hydrodynamic codes can be checked.

  4. 爆炸冲击波在钢管混凝土柱表面压力分布试验研究及数值模拟%Research on Pressure Distribution of Blast Wave on the Surface of CFST Column Based on Explosion Test and Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    崔莹; 赵均海; 张常光; 孙珊珊

    2014-01-01

    为了解决爆炸荷载下钢管混凝土柱表面冲击波压力实际分布和数值模拟存在偏差的问题,通过开展钢管混凝土柱爆炸试验,研究冲击波在钢管混凝土柱表面的压力分布,并结合试验建立爆炸荷载下钢管混凝土柱有限元模型,分析不同空气和炸药网格尺寸对冲击波传播及数值分析结果的影响.结果表明:在折合距离为1.1 m/ kg1/3试验条件的爆炸荷载作用下,柱顶与柱底的约束条件良好,柱产生的变形属于弹性变形;考察冲击波对构件的损伤程度,应综合考量峰值压力与正压冲量两者的作用效应;不同空气和炸药网格尺寸对爆炸冲击波的压力峰值及压力时程曲线均有较大影响;数值模拟值与试验实测值的误差随着网格尺寸的减小而降低.综合考察数值分析结果与实测值吻合程度,最终确定:空气和炸药网格尺寸为20 mm,符合折合距离不小于1.1 m/ kg1/3试验条件下的爆炸数值模拟要求.%In order to eliminate the deviation between explosion test and numerical simulation, the pressure distribution of blast wave on the surface of concrete filled steel ( CFST) column had been analyzed by executing the explosion test. And by using FEM procedure and considering the condition of explosion test, a FEM model of CFST column had been established. In order to investigate the influence of the different mesh size of air and explosive on the blast wave propagation and pressure value of blast wave, the numerical simulation with the different mesh size of air and explosive had been executed based on explosion test results. Analysis of research results shows that the constraints of column are in good condition and deformation of column belongs to elastic stage when the scale distance is 1. 1 m/ kg1 / 3 in explosion test. Both peak pressure value and positive impulse value should be considered together in evaluation of damage on column. The different mesh sizes of air and

  5. Supratentorial pressures. Part II: Intracerebral pulse waves.

    Science.gov (United States)

    Miller, J D; Peeler, D F; Pattisapu, J; Parent, A D

    1987-09-01

    Intracerebral pulse waves were recorded in cat and monkey while intracranial pressure (ICP) manipulations were performed. The intracerebral pulse waves appeared comparable to cerebrospinal fluid (CSF) pulsations. The wave forms were divided into multiple smaller waves, designated P1 to P4. The P1 component was primarily of arterial origin and was accentuated by increasing ICP unrelated to increased venous pressure, most commonly from a mass lesion. Bilateral carotid occlusion resulted in decreased amplitude of P1. Venous hypertension from jugular venous or sagittal sinus occlusion, on the other hand, accentuated waves P2 and P3 more than P1. This is consistent with a Starling resistor model of the cerebral venous system in which mass lesions may compress low-pressure veins and accentuate the arterial pressure-dependent P1 wave, whereas venous hypertension causes increased prominence of the later P2 and P3 waves. PMID:2891069

  6. Air pressure waves from Mount St. Helens eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Reed, J.W.

    1987-10-20

    Weather station barograph records as well as infrasonic recordings of the pressure wave from the Mount St. Helens eruption of May 18, 1980, have been used to estimate an equivalent explosion airblast yield for this event. Pressure amplitude versus distance patterns in various directions compared with patterns from other large explosions, such as atmospheric nuclear tests, the Krakatoa eruption, and the Tunguska comet impact, indicate that the wave came from an explosion equivalent of a few megatons of TNT. The extent of tree blowdown is considerably greater than could be expected from such an explosion, and the observed forest damage is attributed to outflow of volcanic material. The pressure-time signature obtained at Toledo, Washington, showed a long, 13-min duration negative phase as well as a second, hour-long compression phase, both probably caused by ejacta dynamics rather than standard explosion wave phenomenology. The peculiar audibility pattern, with the blast being heard only at ranges beyond about 100 km, is explicable by finite amplitude propagation effects. Near the source, compression was slow, taking more than a second but probably less than 5 s, so that it went unnoticed by human ears and susceptible buildings were not damaged. There was no damage as Toledo (54 km), where the recorded amplitude would have broken windows with a fast compression. An explanation is that wave emissions at high elevation angles traveled to the upper stratosphere, where low ambient air pressures caused this energetic pressure oscillation to form a shock wave with rapid, nearly instantaneous compression. Atmospheric refraction then returned part of this wave to ground level at long ranges, where the fast compressions were clearly audible. copyright American Geophysical Union 1987

  7. Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

    Science.gov (United States)

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27–0.66 MPa) from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP) in the head ranged from 0.68 to 1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10–35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44%) was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%). The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence “iso-damage” curves for brain injury are likely different than the Bowen

  8. Blast effects of external explosions

    OpenAIRE

    Sochet, Isabelle

    2010-01-01

    International audience Security considerations for industrial production and storage require characterization of the mechanical effects caused by blast waves resulting from a detonation or deflagration. This paper evaluates current analytical methods to determine the characteristic parameters of a blast wave with respect to the pressure, impulse and duration of the positive phase of the blast. In the case of a detonation, the trinitrotoluene (TNT) equivalent-based method determines the mas...

  9. In-Tunnel Blast Pressure Empirical Formulas for Detonations External, Internal and at the Tunnel Entrance

    Institute of Scientific and Technical Information of China (English)

    LI Xiudi; ZHENG Yingren

    2006-01-01

    In order to define the loading on protective doors of an underground tunnel,the exact knowledge of the blast propagation through tunnels is needed.Thirty-three scale high-explosive tests are conducted to obtain in-tunnel blast pressure for detonations external,internal and at the tunnel entrance.The cross section of the concrete model tunnel is 0.67 m2.Explosive charges of TNT,ranging in mass from 400 g to 4 600 g,are detonated at various positions along the central axis of the model tunnel.Blast gages are flush-installed in the interior surface of the tunnel to record side-on blast pressure as it propagates down the tunnel.The engineering empirical formulas for predicting blast peak pressure are evaluated,and are found to be reasonably accurate for in-tunnel pressure prediction.

  10. Dynamics and Afterglow Light Curves of GRB Blast Waves Encountering a Density Bump or Void

    CERN Document Server

    Uhm, Z Lucas

    2014-01-01

    We investigate the dynamics and afterglow light curves of gamma-ray burst (GRB) blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structures in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics, for blast waves with either a long-lived or short-lived RS wave. We show that, when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage), due to adiabatic cooling of blast waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that correct modeling of blast waves needs to satisfy. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that, as a response to density s...

  11. Mitigation of exploding-wire-generated blast-waves by aqueous foam

    Science.gov (United States)

    Liverts, M.; Ram, O.; Sadot, O.; Apazidis, N.; Ben-Dor, G.

    2015-07-01

    In this work, we implement an exploding wire technique to generate small-scale cylindrical blast waves in aqueous foam. The exploding wire system offers an easy to operate and effective tool for studying blast-wave/foam interaction related phenomena in real explosion scenarios. The mitigation of blast waves as a function of the thickness of the foam barrier is discussed and quantified. A fluid mixture pseudo-gas based numerical approach with the aid of the point explosion theory is used to separate the mitigation mechanisms into the near- and the far-field related groups and to analyze the contribution of each group to the overall losses of the blast wave energy.

  12. Supernova-blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    OpenAIRE

    Haid, Sebastian; Walch, Stefanie; Naab, Thorsten; Seifried, Daniel; Mackey, Jonathan; Gatto, Andrea

    2016-01-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media with uniform (and with stellar wind blown bubbles), po...

  13. Effect of Shock Wave on Fabricated Anti-Blast Wall and Distribution Law Around the Wall Under Near Surface Explosion

    Institute of Scientific and Technical Information of China (English)

    WU Jun; LIU Jingbo; YAN Qiushi

    2008-01-01

    The loads of shock wave effect on fabricated anti-blast wall and distribution law around the wall were investigated by using near surface explosion test method and FEM.The pressure-time histories and variety law on the foreside and backside of the anti-blast wall were adopted in the tests of variety of different explosion distances and dynamites,as well as in the comparison between the test and numerical calculation.The test results show that the loads of shock wave effect on the anti-blast wall were essen-tially consistent with calculation results using criterion under surface explosion when explosion distances exceed 2 m,the distribution of overpressure behind wall was gained according to variety law based on small-large-small.It is also demonstrated that the peak overpressure behind wall had commonly appeared in wall height by 1.5--2.5 multiples,and the peak overpressures of protective building behind wall could be reduced effectively by using the fabricated anti-blast wall.

  14. Computational Study of Human Head Response to Primary Blast Waves of Five Levels from Three Directions

    OpenAIRE

    Wang, Chenzhi; Pahk, Jae Bum; Balaban, Carey D.; Miller, Mark C.; Adam R Wood; Jeffrey S Vipperman

    2014-01-01

    Human exposure to blast waves without any fragment impacts can still result in primary blast-induced traumatic brain injury (bTBI). To investigate the mechanical response of human brain to primary blast waves and to identify the injury mechanisms of bTBI, a three-dimensional finite element head model consisting of the scalp, skull, cerebrospinal fluid, nasal cavity, and brain was developed from the imaging data set of a human female. The finite element head model was partially validated and w...

  15. Mesh Size Effect in Numerical Simulation of Blast Wave Propagation and Interaction with Structures

    Institute of Scientific and Technical Information of China (English)

    SHI Yanchao; LI Zhongxian; HAO Hong

    2008-01-01

    Numerical method is popular in analysing the blast wave propagation and interaction with structures.However, because of the extremely short duration of blast wave and energy transmission between different grids, the numerical results are sensitive to the finite element mesh size.Previous numerical simulations show that a mesh size acceptable to one blast scenario might not be proper for another case, even though the difference between the two scenarios is very small,indicating a simple numerical mesh size convergence test might not be enough to guarantee accurate numerical results.Therefore, both coarse mesh and fine mesh were used in different blast scenarios to investigate the mesh size effect on numerical results of blast wave propagation and interaction with structures.Based on the numerical results and their comparison with field test results and the design charts in TM5-1300, a numerical modification method was proposed to correct the influence of the mesh size on the simulated results.It can be easily used to improve the accuracy of the numerical results of blast wave propagation and blast loads on structures.

  16. Mechanical and histological characterization of trachea tissue subjected to blast-type pressures

    Science.gov (United States)

    Butler, B. J.; Bo, C.; Tucker, A. W.; Jardine, A. P.; Proud, W. G.; Williams, A.; Brown, K. A.

    2014-05-01

    Injuries to the respiratory system can be a component of polytrauma in blast-loading injuries. Tissues located at air-liquid interfaces, including such tissues in the respiratory system, are particularly vulnerable to damage by blast overpressures. There is a lack of information about the mechanical and cellular responses that contribute to the damage of this class of tissues subjected to the high strain rates associated with blast loading. Here, we describe the results of dynamic blast-like pressure loading tests at high strain rates on freshly harvested ex vivo trachea tissue specimens.

  17. Disintegration of liquid metals by low pressure water blasting

    International Nuclear Information System (INIS)

    The feasibility of disintegrating metals by a low cost system and subsequently incorporating them into grout mixtures has been demonstrated. A low pressure water blasting technique consisting of multiple nozzles and a converging-line jet stream was developed to disintegrate liquid metals and produce coarse metal powder and shot. Molten iron resulted in spherical shot, while copper, aluminum, and tin produced irregular shaped particles. The particle size was between 0.05 and 3 mm (0.002 and 0.1 in.), and about half the particles were smaller than 1 mm (0.04 in.) in all cases. The water consumption was rather low, while the production rate was relatively high. The method proved to be simple and reliable. The coarse metal powders were suspendable in grout fluids, indicating that they are probably disposable by the shale hydrofracture technique

  18. Blast overpressure waves induce transient anxiety and regional changes in cerebral glucose metabolism and delayed hyperarousal in rats

    Directory of Open Access Journals (Sweden)

    Hibah Omar Awwad

    2015-06-01

    Full Text Available Physiological alterations, anxiety and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI and are common symptoms in service personnel exposed to blasts. Since 2006, 25-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p<0.05; n=8-11. Interestingly, anxiety symptoms were absent at days 22 and 48 post-blast. Instead, blast TBI rats displayed hyperactivity and increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using F-18-fluorodeoxyglucose. Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p<0.05; n=4-6 and returned to sham levels by day 9. Our results indicate a transient increase in cerebral metabolism following a blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p<0.05; n=5-6.

  19. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats.

    Science.gov (United States)

    Awwad, Hibah O; Gonzalez, Larry P; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J; Awasthi, Vibhudutta; Standifer, Kelly M

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000-30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to the head in the absence of thoracic contributions from the periphery were examined, following a single blast wave directed to the head of male Sprague-Dawley rats protected by a lead shield over the torso. An 80 psi head blast produced cognitive deficits that were detected in working memory. Blast TBI rats displayed increased anxiety as determined by elevated plus maze at day 9 post-blast compared to sham rats; blast TBI rats spent significantly more time than the sham controls in the closed arms (p blast. Instead, blast TBI rats displayed increased rearing behavior at day 48 post-blast compared to sham rats. Blast TBI rats also exhibited suppressed acoustic startle responses, but similar pre-pulse inhibition at day 15 post-blast compared to sham rats. Acute physiological alterations in cerebral glucose metabolism were determined by positron emission tomography 1 and 9 days post-blast using (18)F-fluorodeoxyglucose ((18)F-FDG). Global glucose uptake in blast TBI rat brains increased at day 1 post-blast (p blast injury. Markers for reactive astrogliosis and neuronal damage were noted by immunoblotting motor cortex tissue from day 10 post-blast in blast TBI rats compared to sham controls (p < 0.05; n = 5-6). PMID:26136722

  20. Assessment of blast effect open pit,”Ranci’’ of shock waves on constructed facilities and environment

    OpenAIRE

    Trajkovik, Slobodan; Lutovac, Suzana; Ravilik, Marija; Doneva, Nikolinka

    2013-01-01

    The blast effect problem of shock waves is growing in the area surrounding blasting activities. In addition to damage shock waves may cause on buildings and mining site facilities, they also impact badly human force there, namely the environment. Lately considerable research in the world has been dedicated to the examination and numeric modelling of this phenomenon. Specific standards have been established defining the blast effect margin level of shock waves on facilities and human force th...

  1. Full-trajectory diagnosis of laser-driven radiative blast waves in search of thermal plasma instabilities.

    Science.gov (United States)

    Moore, A S; Gumbrell, E T; Lazarus, J; Hohenberger, M; Robinson, J S; Smith, R A; Plant, T J A; Symes, D R; Dunne, M

    2008-02-01

    Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, epsilon, as a function of time for comparison with radiation-hydrodynamics simulations. PMID:18352379

  2. Challenging Some Contemporary Views of Coronal Mass Ejections. I. The Case for Blast Waves

    Science.gov (United States)

    Howard, T. A.; Pizzo, V. J.

    2016-06-01

    Since the closure of the “solar flare myth” debate in the mid-1990s, a specific narrative of the nature of coronal mass ejections (CMEs) has been widely accepted by the solar physics community. This narrative describes structured magnetic flux ropes at the CME core that drive the surrounding field plasma away from the Sun. This narrative replaced the “traditional” view that CMEs were blast waves driven by solar flares. While the flux rope CME narrative is supported by a vast quantity of measurements made over five decades, it does not adequately describe every observation of what have been termed CME-related phenomena. In this paper we present evidence that some large-scale coronal eruptions, particularly those associated with EIT waves, exhibit characteristics that are more consistent with a blast wave originating from a localized region (such as a flare site) rather than a large-scale structure driven by an intrinsic flux rope. We present detailed examples of CMEs that are suspected blast waves and flux ropes, and show that of our small sample of 22 EIT-wave-related CMEs, 91% involve a blast wave as at least part of the eruption, and 50% are probably blast waves exclusively. We conclude with a description of possible signatures to look for in determining the difference between the two types of CMEs and with a discussion on modeling efforts to explore this possibility.

  3. Computation of viscous blast wave solutions with an upwind finite volume method

    Science.gov (United States)

    Molvik, Gregory A.

    1987-01-01

    A fully conservative, viscous, implicit, upwind, finite-volume scheme for the thin-layer Navier-Stokes equations is described with application to blast wave flow fields. In this scheme, shocks are captured without the oscillations typical of central differencing techniques and wave speeds are accurately predicted. The finite volume philosophy ensures conservation and since boundary conditions are also treated conservatively, accurate reflections of waves from surfaces are assured. Viscous terms in the governing equations are treated in a manner consistent with the finite volume philosophy, resulting in very accurate prediction of boundary layer quantities. Numerical results are presented for four viscous problems: a steady boundary layer, a shock-induced boundary layer, a blast wave/cylinder interaction and a blast wave/supersonic missile interaction. Comparisons of the results with an established boundary layer code, similarity solution, and experimental data show excellent agreement.

  4. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  5. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  6. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  7. Pressure diffusion waves in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silin, Dmitry; Korneev, Valeri; Goloshubin, Gennady

    2003-04-08

    Pressure diffusion wave in porous rocks are under consideration. The pressure diffusion mechanism can provide an explanation of the high attenuation of low-frequency signals in fluid-saturated rocks. Both single and dual porosity models are considered. In either case, the attenuation coefficient is a function of the frequency.

  8. Numerical simulation of the fluid-structure interaction between air blast waves and soil structure

    Science.gov (United States)

    Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad

    2014-03-01

    Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.

  9. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  10. Blasting cumulative damage effects of underground engineering rock mass based on sonic wave measurement

    Institute of Scientific and Technical Information of China (English)

    YAN Chang-bin

    2007-01-01

    The principle of sonic wave measurement was introduced, and cumulative damage effects of underground engineering rock mass under blasting load were studied by in situ test, using RSM-SY5 intelligent sonic wave apparatus. The blasting test was carried out for ten times at some tunnels of Changba Lead-Zinc Mine. The damage depth of surrounding rock caused by old blasting excavation (0.8-1.2 m) was confirmed. The relation between the cumulative damage degree and blast times was obtained. The results show that the sonic velocity decreases gradually with increasing blast times, but the damage degree (D) increases. The damage cumulative law is non-linear. The damage degree caused by blast decreases with increasing distance, and damage effects become indistinct. The blasting damage of rock mass is anisotropic. The damage degree of rock mass within charging range is maximal. And the more the charge is, the more severe the damage degree of rock mass is. The test results provide references for researches of mechanical parameters of rock mass and dynamic stability analysis of underground chambers.

  11. Oscillations in the wake of a flare blast wave

    Science.gov (United States)

    Tothova, D.; Innes, D. E.; Stenborg, G.

    2011-04-01

    Context. Oscillations of coronal loops in the Sun have been reported in both imaging and spectral observations at the onset of flares. Images reveal transverse oscillations, whereas spectra detect line-of-sight velocity or Doppler-shift oscillations. The Doppler-shift oscillations are commonly interpreted as longitudinal modes. Aims: Our aim is to investigate the relationship between loop dynamics and flows seen in TRACE 195 Å images and Doppler shifts observed by SUMER in Si iii 1113.2 Å and FeXIX 1118.1 Å at the time of a C.8-class limb flare and an associated CME. Methods: We carefully co-aligned the sequence of TRACE 195 Å images to structures seen in the SUMER Si iii, CaX, and FeXIX emission lines. Additionally, Hα observations of a lifting prominence associated with the flare and the coronal mass ejection (CME) are available in three bands around 6563.3 Å. They give constraints on the timing and geometry. Results: Large-scale Doppler-shift oscillations in FeXIX and transverse oscillations in intensity images were observed over a large region of the corona after the passage of a wide bright extreme-ultraviolet (EUV) disturbance, which suggests ionization, heating, and acceleration of hot plasma in the wake of a blast wave. The online movie associated to Fig. 2 is available at http://www.aanda.org and at http://www.mps.mpg.de/data/outgoing/tothova/movie.gif

  12. Prospects for studying how high-intensity compression waves cause damage in human blast injuries

    Science.gov (United States)

    Brown, Katherine; Bo, Chiara; Ramaswamy, Arul; Masouros, Spiros; Newell, Nicolas; Hill, Adam; Clasper, Jon; Bull, Anthony; Proud, William

    2011-06-01

    Blast injuries arising from improvised explosive devices are often complex leading to long-term disability in survivors. There is an urgent need to mitigate against the effects of blast that lead to these injuries, and to also improve post-traumatic therapeutic treatments related to problems associated with damage and healing processes and infections. We have initiated multidisciplinary studies to develop experimental facilities and strategies for analyzing the effects blast waves upon the human body, from cellular through to skeletal functions. This work is supported by the Atomic Weapons Establishment and the Defence Science and Technology Laboratory, UK.

  13. Interaction between blast wave and reticulated foam: assessing the potential for auditory protection systems

    Science.gov (United States)

    Wilgeroth, J. M.; Nguyen, T.-T. N.; Proud, W. G.

    2014-05-01

    Injuries to the tympanic membrane (ear drum) are particularly common in individuals subjected to blast overpressure such as military personnel engaged in conflict. Here, the interaction between blast wave and reticulated foams of varying density and thickness has been investigated using shock tube apparatus. The degree of mitigation afforded by the foam samples is discussed in relation to an injury threshold which has been suggested by others for the tympanic membrane.

  14. POLYCYCLIC AROMATIC HYDROCARBON PROCESSING IN THE BLAST WAVE OF THE SUPERNOVA REMNANT N132D

    Energy Technology Data Exchange (ETDEWEB)

    Tappe, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-72, Cambridge, MA 02138 (United States); Rho, J. [SOFIA Science Mission Operations/USRA, NASA Ames Research Center, MS 211-3, Moffett Field, CA 94035 (United States); Boersma, C. [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Micelotta, E. R., E-mail: atappe@cfa.harvard.edu [Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada)

    2012-08-01

    We present Spitzer Infrared Spectrograph 14-36 {mu}m mapping observations of the supernova remnant N132D in the Large Magellanic Cloud. This study focuses on the processing of polycyclic aromatic hydrocarbons (PAHs) that we previously identified in the southern blast wave. The mid-infrared spectra show strong continuum emission from shock-heated dust and a unique, nearly featureless plateau in the 15-20 {mu}m region, which we attribute to PAH molecules. The typical PAH emission bands observed in the surrounding interstellar medium ahead of the blast wave disappear, which indicates shock processing of PAH molecules. The PAH plateau appears most strongly at the outer edge of the blast wave and coincides with diffuse X-ray emission that precedes the brightest X-ray and optical filaments. This suggests that PAH molecules in the surrounding medium are swept up and processed in the hot gas of the blast wave shock, where they survive the harsh conditions long enough to be detected. We also observe a broad emission feature at 20 {mu}m appearing with the PAH plateau. We speculate that this feature is either due to FeO dust grains or connected to the processing of PAHs in the supernova blast wave shock.

  15. POLYCYCLIC AROMATIC HYDROCARBON PROCESSING IN THE BLAST WAVE OF THE SUPERNOVA REMNANT N132D

    International Nuclear Information System (INIS)

    We present Spitzer Infrared Spectrograph 14-36 μm mapping observations of the supernova remnant N132D in the Large Magellanic Cloud. This study focuses on the processing of polycyclic aromatic hydrocarbons (PAHs) that we previously identified in the southern blast wave. The mid-infrared spectra show strong continuum emission from shock-heated dust and a unique, nearly featureless plateau in the 15-20 μm region, which we attribute to PAH molecules. The typical PAH emission bands observed in the surrounding interstellar medium ahead of the blast wave disappear, which indicates shock processing of PAH molecules. The PAH plateau appears most strongly at the outer edge of the blast wave and coincides with diffuse X-ray emission that precedes the brightest X-ray and optical filaments. This suggests that PAH molecules in the surrounding medium are swept up and processed in the hot gas of the blast wave shock, where they survive the harsh conditions long enough to be detected. We also observe a broad emission feature at 20 μm appearing with the PAH plateau. We speculate that this feature is either due to FeO dust grains or connected to the processing of PAHs in the supernova blast wave shock.

  16. Energy spectrum analysis of blast waves based on an improved Hilbert-Huang transform

    Science.gov (United States)

    Li, L.; Wang, F.; Shang, F.; Jia, Y.; Zhao, C.; Kong, D.

    2016-07-01

    Using the improved Hilbert-Huang transform (HHT), this paper investigates the problems of analysis and interpretation of the energy spectrum of a blast wave. It has been previously established that the energy spectrum is an effective feature by which to characterize a blast wave. In fact, the higher the energy spectra in a frequency band of a blast wave, the greater the damage to a target in the same frequency band. However, most current research focuses on analyzing wave signals in the time domain or frequency domain rather than considering the energy spectrum. We propose here an improved HHT method combined with a wavelet packet to extract the energy spectrum feature of a blast wave. When applying the HHT, the signal is first roughly decomposed into a series of intrinsic mode functions (IMFs) by empirical mode decomposition. The wavelet packet method is then performed on each IMF to eliminate noise on the energy spectrum. Second, a coefficient is introduced to remove unrelated IMFs. The energy of each instantaneous frequency can be derived through the Hilbert transform. The energy spectrum can then be obtained by adding up all the components after the wavelet packet filters and screens them through a coefficient to obtain the effective IMFs. The effectiveness of the proposed method is demonstrated by 12 groups of experimental data, and an energy attenuation model is established based on the experimental data. The improved HHT is a precise method for blast wave signal analysis. For other shock wave signals from blasting experiments, an energy frequency time distribution and energy spectrum can also be obtained through this method, allowing for more practical applications.

  17. Design Considerations For Blast Loads In Pressure Vessels.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, E. A. (Edward A.); Nickell, Robert E.; Pepin, J. E. (Jason E.)

    2007-01-01

    Los Alamos National Laboratory (LANL), under the auspices of the U.S. Department of Energy (DOE) and the National Nuclear Security Administration (NNSA), conducts confined detonation experiments utilizing large, spherical, steel pressure vessels to contain the reaction products and hazardous materials from high-explosive (HE) events. Structural design and analysis considerations include: (a) Blast loading phase (i.e., impulsive loading); (b) Dynamic structural response; (c) Fragment (i.e., shrapnel) generation and penetration; (d) Ductile and non-ductile fracture; and (e) Design Criteria to ASME Code Sec. VIII, Div. 3, Impulsively Loaded Vessels. These vessels are designed for one-time-use only, efficiently utilizing the significant plastic energy absorption capability of ductile vessel materials. Alternatively, vessels may be designed for multiple-detonation events, in which case the material response is restricted to elastic or near-elastic range. Code of Federal Regulations, Title 10 Part 50 provides requirements for commercial nuclear reactor licensing; specifically dealing with accidental combustible gases in containment structures that might cause extreme loadings. The design philosophy contained herein may be applied to extreme loading events postulated to occur in nuclear reactor and non-nuclear systems or containments.

  18. Experimental Investigation on the Basic Law of Hydraulic Fracturing After Water Pressure Control Blasting

    Science.gov (United States)

    Huang, Bingxiang; Li, Pengfeng; Ma, Jian; Chen, Shuliang

    2014-07-01

    Because of the advantages of integrating water pressure blasting and hydraulic fracturing, the use of hydraulic fracturing after water pressure control blasting is a method that is used to fully transform the structure of a coal-rock mass by increasing the number and range of hydraulic cracks. An experiment to study hydraulic fracturing after water pressure blasting on cement mortar samples (300 × 300 × 300 mm3) was conducted using a large-sized true triaxial hydraulic fracturing experimental system. A traditional hydraulic fracturing experiment was also performed for comparison. The experimental results show that water pressure blasting produces many blasting cracks, and follow-up hydraulic fracturing forces blasting cracks to propagate further and to form numerous multidirectional hydraulic cracks. Four macroscopic main hydraulic cracks in total were noted along the borehole axial and radial directions on the sample surfaces. Axial and radial main failure planes induced by macroscopic main hydraulic cracks split the sample into three big parts. Meanwhile, numerous local hydraulic cracks were formed on the main failure planes, in different directions and of different types. Local hydraulic cracks are mainly of three types: local hydraulic crack bands, local branched hydraulic cracks, and axial layered cracks. Because local hydraulic cracks produce multiple local layered failure planes and lamellar ruptures inside the sample, the integrity of the sample decreases greatly. The formation and propagation process of many multidirectional hydraulic cracks is affected by a combination of water pressure blasting, water pressure of fracturing, and the stress field of the surrounding rock. To a certain degree, the stress field of surrounding rock guides the formation and propagation process of the blasting crack and the follow-up hydraulic crack. Following hydraulic fracturing that has been conducted after water pressure blasting, the integrity of the sample is found to

  19. Pressure measurements of nonplanar stress waves

    International Nuclear Information System (INIS)

    A useful gage has been developed for measuring pressure of nonplanar or obliquely incident stress waves. The measurements made with these gages are not as precise as direct strain gage measurements, but are very good considering the conditions under which these gages are used. We feel a need to further develop our ability to measure nonplanar stress waves in the 0 to 10 kbar range. Carbon or ytterbium will probably be chosen for the sensing element

  20. Modelling of blast wave propagation through the Darlington NGS powerhouse in the event of a nearby accidental explosion

    International Nuclear Information System (INIS)

    The propagation of a blast wave inside the Darlington Nuclear Generating Station NGS) powerhouse following an accidental explosion at a nearby railway line has been studied numerically using two different computer codes. Pressurization of the building interior at various locations in the powerhouse are computed with an Ontario Hydro in-house finite-difference containment code called PATRIC, and in one benchmark case with an Institute for Aerospace Studies code based on the random-choice method, both of which solve unsteady one-dimensional flow problems. Some pertinent results of both codes are presented, and they are also shown to be in good agreement

  1. Surface mine blasting near pressurized transmission pipelines. Report of investigations/1994

    Energy Technology Data Exchange (ETDEWEB)

    Siskind, D.E.; Stagg, M.S.; Wiegand, J.E.; Schulz, D.L.

    1994-12-31

    The mining industry and regulatory agencies have requested guidance on blasting near buried transmission pipelines and safe vibration levels. The U.S. Bureau of Mines and the State of Indiana cooperated with AMAX Coal Company and its consultants to determine the effects of coal mine overburden blasting on nearby pipelines. Five pressurized 76-m pipeline sections were installed on the Minnehaha Mine highwall near Sullivan, IN for testing to failure. Four 17- to 51-cm diameter welded steel pipes and one 20-cm PVC water pipe were monitored for vibration, strain, and pressure for a period of 6 months while production blasting advanced up to the pipeline field. In contrast to previous studies of small-scale close-in blasting for construction, these tests involved overburden blasts of up to 950 kg per delay in 31-cm blast-holes. Analyses found low responses, strains, and calculated stresses from even large blasts. Ground vibrations of 120-250 mm/s produced worst case strains of about 25 pct of those resulting from pipeline operations and calculated stresses of only about 10-18 pct of the ultimate tensile strength.

  2. Blast wave formation of the extended stellar shells surrounding elliptical galaxies

    Science.gov (United States)

    Williams, R. E.; Christiansen, W. A.

    1985-01-01

    The existence of stellar shells at large distances from isolated elliptical galaxies is explained in terms of a blast wave associated with an active nucleus phase early in the history of the galaxy. The blast wave sweeps the initial interstellar medium out of the galaxy into an expanding shell which radiatively cools behind its leading shock front. Cooling of the shell following turnoff of the nucleus activity, which keeps the shell photoionized, leads to a brief epoch of star formation which is terminated by heating of the shell from supernovae and UV radiation from massive stars. The stars so formed follow similar, highly radial, bound orbits, moving in phase with each other and spending much of their time near apogalacteum, thus taking on the appearance of a shell. Multiple shells may be produced when conditions allow repeated episodes of shell cooling and supernovae heating to occur in the blast wave.

  3. Rapid optimization of blast wave mitigation strategies using Quiet Direct Simulation and Genetic Algorithm

    Science.gov (United States)

    Smith, Matthew R.; Kuo, Fang-An; Hsieh, Chih-Wei; Yu, Jen-Perng; Wu, Jong-Shinn; Ferguson, Alex

    2010-06-01

    Presented is a rapid calculation tool for the optimization of blast wave related mitigation strategies. The motion of gas resulting from a blast wave (specified by the user) is solved by the Quiet Direct Simulation (QDS) method - a rapid kinetic theory-based finite volume method. The optimization routine employed is a newly developed Genetic Algorithm (GA) which is demonstrated to be similar to a Differential Evolution (DE) scheme with several modifications. In any Genetic Algorithm, individuals contain genetic information which is passed on to newly created individuals in successive generations. The results from unsteady QDS simulations are used to determine the individual's "genetic fitness" which is employed by the proposed Genetic Algorithm during the reproduction process. The combined QDS/GA algorithm is applied to various test cases and finally the optimization of a non-trivial blast wave mitigation strategy. Both QDS and the proposed GA are demonstrated to perform with minimal computational expense while accurately solving the optimization problems presented.

  4. Analysis and Numerical Simulation on the Reduction Effect of Stress Waves Caused by Water Jet Slotting Near Blasting Source

    Directory of Open Access Journals (Sweden)

    Dengfeng Su

    2016-01-01

    Full Text Available As one of the most serious “side effects” of blast excavation, blast-induced vibration must be controlled for existing buildings and human beings. This paper proposes a method for blast-induced vibration reduction with water jet assistance according to the cutting characters of low-noised, environment-friendly water jet. The mechanism of vibration-isolation with water jet assistance was analyzed, and the stress wave energy attenuation models were established based on blasting theory and stress wave theory. Influence law on shock wave attenuation by vibration-isolation slot was studied by numerical simulation. Simulation results agree with the theoretical analysis roughly. The results of this study put forward a method for blast-induced vibration near blasting source and provide a certain theoretical basis.

  5. Moving shocks through metallic grids: their interaction and potential for blast wave mitigation

    Science.gov (United States)

    Andreopoulos, Y.; Xanthos, S.; Subramaniam, K.

    2007-07-01

    Numerical simulations and laboratory measurements have been used to illuminate the interaction of a moving shock wave impacting on metallic grids at various shock strengths and grid solidities. The experimental work was carried out in a large scale shock tube facility while computational work simulated the flow field with a time-dependent inviscid and a time-dependent viscous model. The pressure drop measured across the grids is a result of two phenomena which are associated with the impact of the shock on the metallic grids. First are the reflection and refraction of the incoming shock on the grid itself. This appears to be the main inviscid mechanism associated with the reduction of the strength of the transmitted shock. Second, viscous phenomena are present during the reflection and refraction of the wave as well as during the passage of the induced flow of the air through the grid. The experimental data of pressure drop across the grid obtained in the present investigation are compared with those obtained from computations. The numerical results slightly overpredict the experimental data of relative pressure drop which increases substantially with grid solidity at fixed flow Mach numbers. The processes of shock reflection and refraction are continuous and they can be extended in duration by using thicker grids that will result in lower compression rates of the structural loading and increase the viscous losses associated with these phenomena which will further attenuate the impacting shock. Preliminary theoretical analysis suggests that the use of a graded porosity/solidity material will result in higher pressure drop than a constant porosity/solidity material and thus provide effective blast mitigation.

  6. Effects of internal heat transfer on the structure of self-similar blast waves

    Science.gov (United States)

    Ghoniem, A. F.; Berger, S. A.; Oppenheim, A. K.; Kamel, M. M.

    1982-01-01

    An analysis of the problem of self-similar, nonadiabatic blast waves, where both conduction and radiation are allowed to take place, show the problem to be reducible to the integration of a system of six coupled nonlinear ordinary differential equations. Consideration of these equations shows that although radiation tends to produce uniform fields through temperature gradient attenuation, all the energy carried by radiation is deposited on the front and the bounding shock becomes increasingly overdriven. When conduction is taken into account, the distribution of gasdynamic parameters in blast waves in the case of Rosseland diffusion radiation is more uniform than in the case of the Planck emission radiation.

  7. Dynamics and Afterglow Light Curves of GRB Blast Waves Encountering a Density Bump or Void

    OpenAIRE

    Uhm, Z. Lucas; Zhang, Bing

    2014-01-01

    We investigate the dynamics and afterglow light curves of gamma-ray burst (GRB) blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structures in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics, for blast waves with either a long-lived or short-lived RS. We show that, when the ambient medium density drops, the b...

  8. Instabilities and the adiabatic and isothermal blast wave models for supernova remnants

    International Nuclear Information System (INIS)

    Isenberg as well as lerche and Vasyliunas proposed the existence of an instability to radial perturbations in adiabatic and isothermal models of self-similar supernova blast waves. Their derivations fail to impose the physical conservation laws at the shock (i.e., the Rankine-Hugoniot jump conditions) as boundary conditions, and their claim of an instability is unsubstantiated. Although as analytic demonstration of the stability of the adiabatic self-similar solution does not presently exist, the cumulative result of three decades of gas dynamic experimentation and numerical simulation provides unmistakable evidence for the stabilty of self-similar blast waves

  9. Blast wave in a nozzle for propulsive applications

    Science.gov (United States)

    Varsi, G.; Back, L. H.; Kim, K.

    1976-01-01

    The reported investigation has been conducted in connection with studies concerning the development of a propulsion system based on the use of a detonating fluid propellant. Measurements have been made of the pressure and shock wave velocity in a conical nozzle at various ambient pressures and at an ambient temperature of 25 C. In the experiments a small amount of explosive was placed at the end wall of a conical aluminum nozzle and detonated by a microdetonator inside the nozzle. Differences regarding the characteristics of conventional chemical propulsion and detonation propulsion are illustrated with the aid of a graph. One- and two-dimensional numerical flow calculations were performed and compared with the experimental data.

  10. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    International Nuclear Information System (INIS)

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics

  11. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, The University of Texas at Austin, C1510, Austin, Texas 78712 (United States)

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  12. Experimental approach to shape field relevant blast wave profiles in compressed gas-driven shock tube

    Directory of Open Access Journals (Sweden)

    Aravind eSundaramurthy

    2014-12-01

    Full Text Available Detonation of a high explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects even at farther distances, which is termed as primary blast injury, which is the theme of this work. The shock-blast profile is characterized with blast overpressure, positive time duration, and impulse as shock-blast wave parameters (SWPs. These parameters in turn are a function of field factors, such as the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (Chandra et al., 2011;Sundaramurthy et al., 2012;Skotak et al., 2013, the profile not only determines the survival of the animal but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, exact replication of shock profile (magnitude and shape can be related to field explosions and can be a standard in comparing results across different laboratories. 40 experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68 to 1209.68 mm, measurement location, and type of driver gas (nitrogen, helium. The relationships between SAPs and the resulting shock-blast profiles are characterized. Finally, shock-blast profiles of a TNT explosion from ConWep software is compared with the profiles obtained

  13. Experimental study on stress of coal blasting influenced by gas pressure%瓦斯压力对煤体爆破应力影响规律试验研究

    Institute of Scientific and Technical Information of China (English)

    郭林杰; 刘健; 姜二龙; 吴海龙

    2014-01-01

    为研究瓦斯压力对煤体爆破应力的影响规律,开展了不同瓦斯压力条件下煤体爆破试验,对煤体爆破应力进行测试与分析,并利用LS-DYNA3D模拟软件对试验结果进行了验证。结果表明:煤体中瓦斯压力的能够增加煤体爆破应力波峰值,应力波的作用时间延长大约200 us;随着瓦斯压力增加,煤体爆破应力波峰值也随之增大,从而更利于煤体爆破裂纹的扩展;煤体中瓦斯压力对煤体爆破中远区影响较大,在爆破近区,瓦斯压力基本可以忽略;当瓦斯压力存在时,煤体爆炸应力波均将出现两个完整的波形。%In order to study the stress of coal blasting with the effect of gas pressure , the coal blasting experiments under the conditions of different gas pressures were conducted , and the coal blasting stress were measured and ana-lyzed.The LS-DYNA3D simulation software was applied to validate the experiment results .It showed that the exist-ence of gas pressure increases the peak of coal blasting stress wave , and the prolonged action duration of the stress wave is about 200us.The greater the gas pressure , the greater peak of coal blasting stress wave , which is more conducive to the expansion of coal blasting crack .In the moderate or far region , the effect of gas pressure will be enhanced and increase the peak of coal blasting stress wave in varying degrees .In blasting near region , the effect of gas pressure can be largely ignored .With the existence of gas pressure , the coal blasting stress wave will appear 2 whole wave forms .

  14. Two step chromospheric Moreton wave excitation in a blast-wave scenario. A case study: Simulation of the December $06$, $2006$ event

    CERN Document Server

    Krause, G; Francile, C; Costa, A; Elaskar, S; Schneiter, M

    2015-01-01

    We examine the capability of a coronal flare ignited blast wave scenario to reproduce the chromospheric phenomenon. We numerically simulate the Moreton event of December 06, 2006 considering both the corona and the chromosphere. To obtain a sufficiently strong coronal shock -able to generate a detectable chromospheric Moreton wave- a relatively low magnetic field intensity is required, in comparison with the active region values. Employing reasonable coronal constraints, we show that the flare ignited blast wave scenario is capable to reproduce the observations.

  15. Stress Wave in Blasting%爆炸过程中的应力波

    Institute of Scientific and Technical Information of China (English)

    贾光辉; 王志军; 张国伟; 裴思行; 王文龙

    2001-01-01

    By analysis of the blasting procedure and using conservation principle of mass and moment,the rule of stress wave propagation in blasting is derived that the stress wave amplification is reduced,the wave form of stress wave is varied and the propagation velocity is reduced as the distance between the medium point and the blasting center become larger.The above rule may also be demonstrated by blasting simulation of a spherical explosive charge in an unlimited me-dium.%通过对爆炸过程进行分析,运用质量和动量守恒原理,导出了爆炸过程中应力波传播规律:随着介质质点距装药中心距离的增大,应力波幅值在衰减,应力波波形在变化,其传播速度也在减小。通过对球形装药爆炸后应力波传播过程的数值模拟,可以形象地说明上述传播规律。

  16. Supernova-blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    CERN Document Server

    Haid, Sebastian; Naab, Thorsten; Seifried, Daniel; Mackey, Jonathan; Gatto, Andrea

    2016-01-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media with uniform (and with stellar wind blown bubbles), power-law, and turbulent density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with $n(r) \\sim$ $r^{-2}$ (for $n(r) > n_{_{\\rm floor}}$) the amount of momentum injection is solely r...

  17. A Numerical Method for Blast Shock Wave Analysis of Missile Launch from Aircraft

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2015-01-01

    Full Text Available An efficient empirical approach was developed to accurately represent the blast shock wave loading resulting from the launch of a missile from a military aircraft to be used in numerical analyses. Based on experimental test series of missile launches in laboratory environment and from a helicopter, equations were derived to predict the time- and position-dependent overpressure. The method was finally applied and validated in a structural analysis of a helicopter tail boom under missile launch shock wave loading.

  18. Links between traumatic brain injury and ballistic pressure waves originating in the thoracic cavity and extremities

    CERN Document Server

    Courtney, Amy

    2007-01-01

    Identifying patients at risk of traumatic brain injury (TBI) is important because research suggests prophylactic treatments to reduce risk of long-term sequelae. Blast pressure waves can cause TBI without penetrating wounds or blunt force trauma. Similarly, bullet impacts distant from the brain can produce pressure waves sufficient to cause mild to moderate TBI. The fluid percussion model of TBI shows that pressure impulses of 15-30 psi cause mild to moderate TBI in laboratory animals. In pigs and dogs, bullet impacts to the thigh produce pressure waves in the brain of 18-45 psi and measurable injury to neurons and neuroglia. Analyses of research in goats and epidemiological data from shooting events involving humans show high correlations (r > 0.9) between rapid incapacitation and pressure wave magnitude in the thoracic cavity. A case study has documented epilepsy resulting from a pressure wave without the bullet directly hitting the brain. Taken together, these results support the hypothesis that bullet imp...

  19. Prospects for studying how high-intensity compression waves cause damage in human blast injuries

    Science.gov (United States)

    Brown, Katherine; Bo, Chiara; Masouros, Spyros; Ramasamy, Arul; Newell, Nicolas; Bonner, Timothy; Balzer, Jens; Hill, Adam; Clasper, Jon; Bull, Anthony; Proud, William

    2012-03-01

    Since World War I, explosions have accounted for over 70% of all injuries in conflict. With the development of improved personnel protection of the torso, improved medical care and faster aeromedical evacuation, casualties are surviving with more severe injuries to the extremities. Understanding the processes involved in the transfer of blast-induced shock waves through biological tissues is essential for supporting efforts aimed at mitigating and treating blast injury. Given the inherent heterogeneities in the human body, we argue that studying these processes demands a highly integrated approach requiring expertise in shock physics, biomechanics and fundamental biological processes. This multidisciplinary systems approach enables one to develop the experimental framework for investigating the material properties of human tissues that are subjected to high compression waves in blast conditions and the fundamental cellular processes altered by this type of stimuli. Ultimately, we hope to use the information gained from these studies in translational research aimed at developing improved protection for those at risk and improved clinical outcomes for those who have been injured from a blast wave.

  20. Trans-Relativistic Blast Waves in Supernovae as Gamma-Ray Burst Progenitors

    CERN Document Server

    Tan, J C; McKee, C F; Tan, Jonathan C.; Matzner, Christopher D.; Kee, Christopher F. Mc

    2000-01-01

    We investigate the acceleration of shock waves to relativistic velocities in the outer layers of exploding stars. By concentrating the explosion energy in the outermost ejecta, such trans-relativistic blast waves can serve as the progenitors of gamma-ray bursts (GRBs); in particular, the ``baryon-loading'' problem that plagues many models of GRBs is circumvented. We present physically motivated and numerically validated analytic expressions to describe trans-relativistic blast waves in supernovae. We find that relativistic ejecta are enhanced in more centrally condensed envelopes, e.g., for radiative envelopes, when the luminosity approaches the Eddington limit. Convenient formulae are presented with which to estimate the production of relativistic ejecta from a given progenitor. We apply our analytic and numerical methods to a model of SN 1998bw, finding significantly enhanced relativistic ejecta compared to previous studies. We propose that GRB 980425 is associated with SN 1998bw and resulted from a spheric...

  1. Indoor propagation and assessment of blast waves from weapons using the alternative image theory

    Science.gov (United States)

    Kong, B.; Lee, K.; Lee, S.; Jung, S.; Song, K. H.

    2016-03-01

    Blast waves generated from the muzzles of various weapons might have significant effects on the human body, and these effects are recognized as being more severe when weapons are fired indoors. The risk can be assessed by various criteria, such as waveform, exposed energy, and model-based types. This study introduces a prediction model of blast wave propagation for estimating waveform parameters related to damage risk assessment. To simulate indoor multiple reflections in a simple way, the model is based on the alternative image theory and discrete wavefront method. The alternative theory is a kind of modified image theory, but it uses the image space concept from a receiver's perspective, so that it shows improved efficiency for indoor problems. Further, the discrete wavefront method interprets wave propagation as the forward movement of a finite number of wavefronts. Even though the predicted results show slight differences from the measured data, the locations of significant shock waves indicate a high degree of correlation between them. Since the disagreement results not from the proposed techniques but from the assumptions used, it is concluded that the model is appropriate for analysis of blast wave propagation in interior spaces.

  2. Relativistic blast-wave model for the rapid flux variations of AO 0235+164 and other compact radio sources

    Science.gov (United States)

    Marscher, A. P.

    1978-01-01

    A relativistic blast-wave version of a signal-screen model is developed which can adequately explain the details of the flux-density and structural variations of compact extragalactic radio sources. The relativistic motion implied by flux variations is analyzed with respect to the synchrotron spectrum of the BL Lac object AO 0235+164 observed during outbursts, and a signal-screen model for rapidly expanding shells produced by ultrarelativistic blast waves is examined. The approximate observed structure of the blast wave at three stages in its evolution is illustrated, each stage is described, and the model is applied to the flux density outburst in AO 0235+164 observed in late 1975. The results show that a relativistic blast-wave model can in general reproduce the main features of the observed flux variations in compact sources. Some problems with the proposed model are briefly discussed.

  3. A study of combined particle and blast wave loading of structures

    Science.gov (United States)

    Elgy, I. D.; Pope, D. J.; Pickup, I. M.

    2006-08-01

    In structural dynamics there are many instances where an appreciation of the combined effect of particulate and air blast loading are essential if an accurate prediction of structural response is to be attained. Examples include: the loading of structures via the detonation of cased munitions; the interaction of blast waves and secondary fragmentation with internal building components after an external contact explosion and the loading of vehicle bellies via the detonation of mines buried in soil. As an analytical simplification, engineers often incorporate the effect of particulate loading by applying a load factor to calculations of the blast component alone. In some cases the fragmentation, can indeed be considered as merely incidental but in others, analysis and experiments have indicated that the presence of inert matter within or in close proximity to a detonated explosive can alter the magnitude, spatial distribution and duration of loading applied to a structure. This paper describes a series of numerical simulations, conducted using the AUTODYN hydrocode, in which the effect of detonating an explosive within a matrix of particles, and the subsequent blast and particulate interaction with a target, was simulated. The total momentum transferred to a target and the spatial momentum distribution is evaluated for both mines buried under soil and confined air blasts. The momentum transferred is investigated as a function of the technique used to model particulation and detonation proximity. These comparisons offer an insight into the mechanisms by which buried blast mines load structures and lead to explanations of differences observed in thin plates deforming under simulated mine blast attacks.

  4. DYNAMIC LOAD ANALYSIS OF UNDERGROUND STRUCTURE UNDER EFFECT OF BLAST WAVE

    Institute of Scientific and Technical Information of China (English)

    REN Yun-yan; ZHANG Li; HAN Feng

    2006-01-01

    A semi-analytical method of solving the problem of dynamic stress concentration of arbitrary underground structure under the effect of blast waves was introduced.Using the Fourier transform theory, the shock waves (in the forms of SH-waves) can be converted into frequency bands. After employing complex functions and conformal mapping, the admittance functions of various underground structures were obtained. Then,the problem of the time domain dynamic stress response of underground structure can be easily solved through the Fourier inverse transform. At last, the results and curves of the dynamic stress for the square, triangle and horseshoe cavity were presented.

  5. Macro-mechanical modeling of blast-wave mitigation in foams. Part III: verification of the models

    Science.gov (United States)

    Britan, A.; Shapiro, H.; Liverts, M.; Ben-Dor, G.

    2014-05-01

    Three different approaches to macro-mechanical modeling of blast-wave mitigation in foam namely: the single-phase effective gas flow model, the two-phase mixture model and the single bubble/shock wave interaction model are critically reviewed. The nature and extent of the approximations inherent in the formulation of the first two models were examined in Part I of this study. In this part, the applicability of the aforementioned approaches is verified based on a comparison of experimental pressure records obtained in shock tube tests with the results of numerical predictions that used the models under consideration. Deficiencies and inconsistencies that are found during this comparison are clarified and possible improvements are suggested. It is emphasized that both the single-phase and the two-phase approaches predict well the refraction of the incident shock at the air/foam interface while they do not uniquely determine the relaxation process and the shape of the transmitted shock wave front. Various flexibilities that are exploited to better describe the inter-phase interactions do not improve the results significantly. The single bubble model is examined with particular attention paid to the manner in which it predicts the shape of the shock wave front. Connections between the flow viscosity and the transient dynamics of the bubble compression that occur at scales of the shock wave front thickness are explored.

  6. Dynamics and Afterglow Light Curves of Gamma-Ray Burst Blast Waves Encountering a Density Bump or Void

    Science.gov (United States)

    Uhm, Z. Lucas; Zhang, Bing

    2014-07-01

    We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blast waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.

  7. Dynamics and afterglow light curves of gamma-ray burst blast waves encountering a density bump or void

    International Nuclear Information System (INIS)

    We investigate the dynamics and afterglow light curves of gamma-ray burst blast waves that encounter various density structures (such as bumps, voids, or steps) in the surrounding ambient medium. We present and explain the characteristic response features that each type of density structure in the medium leaves on the forward shock (FS) and reverse shock (RS) dynamics for blast waves with either a long-lived or short-lived RS. We show that when the ambient medium density drops, the blast waves exhibit in some cases a period of an actual acceleration (even during their deceleration stage) due to adiabatic cooling of blast waves. Comparing numerical examples that have different shapes of bumps or voids, we propose a number of consistency tests that must be satisfied by correct modeling of blast waves. Our model results successfully pass these tests. Employing a Lagrangian description of blast waves, we perform a sophisticated calculation of afterglow emission. We show that as a response to density structures in the ambient medium, the RS light curves produce more significant variations than the FS light curves. Some observed features (such as rebrightenings, dips, or slow wiggles) can be more easily explained within the RS model. We also discuss the origin of these different features imprinted on the FS and RS light curves.

  8. The early blast wave of the 2010 explosion of U Scorpii

    CERN Document Server

    Drake, J J

    2010-01-01

    Three-dimensional hydrodynamic simulations exploring the first 18 hours of the 2010 January 28 outburst of the recurrent nova U Scorpii have been performed. Special emphasis was placed on capturing the enormous range in spatial scales in the blast. The pre-explosion system conditions included the secondary star and a flared accretion disk. These conditions can have a profound influence on the evolving blast wave. The blast itself is shadowed by the secondary star, which itself gives rise to a low-temperature bow-shock. The accretion disk is completely destroyed in the explosion. A model with a disk gas density of 10^{15} cm^{-3} produced a blast wave that is collimated and with clear bipolar structures, including a bipolar X-ray emitting shell. The degree of collimation depends on the initial mass of ejecta, energy of explosion, and circumstellar gas density distribution. It is most pronounced for a model with the lowest explosion energy (10^{43} erg) and mass of ejecta (10^{-8} M_{\\odot}). The X-ray luminosi...

  9. No visible optical variability from a relativistic blast wave encountering a wind-termination shock

    CERN Document Server

    van Eerten, H J; Wijers, R A M J; Keppens, R

    2009-01-01

    Gamma-ray burst afterglow flares and rebrightenings of the optical and X-ray light curve have been attributed to both late time inner engine activity and density changes in the medium surrounding the burster. To test the latter, we study the encounter between the relativistic blast wave from a gamma-ray burster and a stellar wind termination shock. The blast wave is simulated using a high performance adaptive mesh relativistic hydrodynamics code, AMRVAC, and the synchrotron emission is analyzed in detail with a separate radiation code. We find no bump in the resulting light curve, not even for very high density jumps. Furthermore, by analyzing the contributions from the different shock wave regions we are able to establish that it is essential to resolve the blast wave structure in order to make qualitatively correct predictions on the observed output and that the contribution from the reverse shock region will not stand out, even when the magnetic field is increased in this region by repeated shocks. This st...

  10. Blast Valve Design and Related Studies : A Review

    Directory of Open Access Journals (Sweden)

    P. K. Sharma

    2016-04-01

    Full Text Available The protective structures required for performing critical operations are vulnerable to the blast and shock loads of advanced weapons. A blast valve is an important component of such structures for ventilation during normal conditions and for protection from blast/ shock during explosion. In this paper, various aspects of blast valve design and related studies are briefly reviewed. The concept and effects of blast wave, blast impact, numerical modelling and deformation of circular plate (one of the critical components of blast valve have been discussed. The merits and demerits of sensing mechanisms viz. remote and direct sensing are discussed. The leakage of blast pressure during finite closing period of the valve (one of the critical problems and the shock tube as a major experimental facility for testing of blast valves are briefly discussed.

  11. On self-similar blast waves headed by the Chapman-Jouguet detonation.

    Science.gov (United States)

    Oppenheim, A. K.; Kuhl, A. L.; Kamel, M. M.

    1972-01-01

    Consideration of the whole class of self-similar solutions for blast waves bounded by Chapman-Jouguet detonations that propagate into a uniform, quiescent, zero counterpressure atmosphere of a perfect gas with constant specific heats. Since such conditions can be approached quite closely by some actual chemical systems at NTP, this raises the interesting possibility of the existence of Chapman-Jouguet detonations of variable velocity. The principal virtue of the results presented is, however, more of theoretical significance. They represent the limiting case for all the self-similar blast waves headed by gasdynamic discontinuities associated with a deposition of finite amounts of energy, and they exhibit some unique features owing to the singular nature of the Chapman-Jouguet condition.

  12. Beam energy dependence of Hanbury-Brown-Twiss radii from a blast-wave model

    CERN Document Server

    Zhang, S; Chen, J H; Zhong, C

    2016-01-01

    Beam energy dependence of correlation lengths (Hanbury-Brown-Twiss radii) is calculated by using a blast-wave model and the results are comparable with those from RHIC-STAR beam energy scan data as well as the LHC-ALICE measurements. The parameters for the blast-wave model as a function of beam energy are configured by fitting Hanbury-Brown-Twiss radii at each energy point. Transverse momentum dependence of Hanbury-Brown-Twiss radii are presented with the extracted parameters for $\\sqrt{s_{NN}} = $ 200 GeV and 2.76 TeV. From the results it can be found that particle emission duration can not be ignored while calculating Hanbury-Brown-Twiss radii with the same parameters. And tuning kinetic freeze-out temperature in a range will result in system lifetime changing in reverse direction as that in RHIC-STAR measurements.

  13. Kinematics of ICMEs/shocks: blast wave reconstruction using type II emissions

    CERN Document Server

    Corona-Romero, P; Aguilar-Rodriguez, E; de-la-Luz, V; Mejia-Ambriz, J C

    2015-01-01

    We present a physical methodology to reconstruct the trajectory of interplanetary shocks using type II radio emission data. This technique calculates the shock trajectory assuming that the disturbance propagates as a blast wave in the interplanetary medium. We applied this Blast Wave Reconstruction (BWR) technique to analyze eight fast Earth-directed ICMEs/shocks associated with type II emissions. The technique deduces a shock trajectory that reproduces the type II frequency drifts, and calculates shock onset speed, shock transit time and shock speed at 1~AU. There were good agreements comparing the BWR results with the type II spectra, with data from coronagraph images, {\\it in situ} measurements, and interplanetary scintillation (IPS) observations. Perturbations on the type II data affect the accuracy of the BWR technique. This methodology could be applied to track interplanetary shocks causing TII emissions in real-time, to predict the shock arrival time and shock speed at 1~AU.

  14. No flares from GRB afterglow blast waves encountering sudden circumburst density change

    CERN Document Server

    Gat, Ilana; MacFadyen, Andrew

    2013-01-01

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreadin...

  15. GRB Afterglow Blast Wave Encountering Sudden Circumburst Density Change Produces No Flares

    CERN Document Server

    Gat, Ilana; MacFadyen, Andrew

    2013-01-01

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called ram, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreadin...

  16. Impulsive dispersion of a granular layer by a weak blast wave

    Science.gov (United States)

    Rodriguez, V.; Saurel, R.; Jourdan, G.; Houas, L.

    2016-04-01

    The dispersion of particles by blast or shock waves induces the formation of coherent structures taking the shape of particle jets. In the present study, a blast wave, issued from an open shock tube, is generated at the center of a granular ring initially confined in a Hele-Shaw cell. With the present experimental setup, solid particle jet formation is clearly observed in a quasi-two-dimensional configuration. In all instances, the jets are initially generated inside the particle ring and thereafter expelled outward. Furthermore, thanks to the two-dimensional experimental configuration, a general study of the main parameters involved in these types of flows can be performed. Among them, the particle diameter, the density of the particles, the initial size of the ring, the shape of the overpressure generated and the surface friction of the Hele-Shaw cell are investigated. Empirical relationships are deduced from experimental results.

  17. Nonlinear growth of dynamical overstabilities in blast waves. [effects on supernova remnants

    Science.gov (United States)

    Mac Low, Mordecai-Mark; Norman, Michael L.

    1993-01-01

    The numerical gasdynamics code ZEUS-2D is used to directly model the dynamical overstabilities in blast waves. The linear analysis is confirmed by perturbing a blast wave with a low-amplitude eigenfunction of the overstability. The amplitude of the perturbations is increased in order to determine the nonlinear behavior of the overstabilities. The overstability is found to saturate due to weak transverse shocks in the shell. Transverse velocities in the dense shell reach the postshock sound speed, and high-density regions with sizes of the order of the shell thickness form. Transverse oscillations continue even after saturation. This confirms and explains the damping of the overstability experimentally discovered by Grun et al. (1991).

  18. A viscous blast-wave model for relativistic heavy-ion collisions

    CERN Document Server

    Jaiswal, Amaresh

    2015-01-01

    Using a viscosity-based survival scale for geometrical perturbations formed in the early stages of relativistic heavy-ion collisions, we model the radial flow velocity during freeze-out. Subsequently, we employ the Cooper-Frye freeze-out prescription, with first-order viscous corrections to the distribution function, to obtain the transverse momentum distribution of particle yields and flow harmonics. For initial eccentricities, we use the results of Monte Carlo Glauber model. We fix the blast-wave model parameters by fitting the transverse momentum spectra of identified particles at the Large Hadron Collider (LHC) and demonstrate that this leads to a fairly good agreement with transverse momentum distribution of elliptic and triangular flow for various centralities. Within this viscous blast-wave model, we estimate the shear viscosity to entropy density ratio $\\eta/s\\simeq 0.24$ at the LHC.

  19. Calculation of wing response to gusts and blast waves with vortex lift effect

    Science.gov (United States)

    Chao, D. C.; Lan, C. E.

    1983-01-01

    A numerical study of the response of aircraft wings to atmospheric gusts and to nuclear explosions when flying at subsonic speeds is presented. The method is based upon unsteady quasi-vortex-lattice method, unsteady suction analogy, and Pade approximate. The calculated results, showing vortex lag effect, yield reasonable agreement with experimental data for incremental lift on wings in gust penetration and due to nuclear blast waves.

  20. Supernova blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    Science.gov (United States)

    Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.

    2016-08-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm- 3] ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1to100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with lognormal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{turb}/{p_{{0}}} =23.07 (n_{{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2{M}2))^{1.49}(n_{{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.

  1. No flares from Gamma-Ray Burst afterglow blast waves encountering sudden circumburst density change

    OpenAIRE

    Gat, Ilana; van Eerten, Hendrik; MacFadyen, Andrew

    2013-01-01

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refi...

  2. Supernova-blast waves in wind-blown bubbles, turbulent, and power-law ambient media

    Science.gov (United States)

    Haid, S.; Walch, S.; Naab, T.; Seifried, D.; Mackey, J.; Gatto, A.

    2016-05-01

    Supernova (SN) blast waves inject energy and momentum into the interstellar medium (ISM), control its turbulent multiphase structure and the launching of galactic outflows. Accurate modelling of the blast wave evolution is therefore essential for ISM and galaxy formation simulations. We present an efficient method to compute the input of momentum, thermal energy, and the velocity distribution of the shock-accelerated gas for ambient media (densities of 0.1 ≥ n0 [cm-3 ≥ 100) with uniform (and with stellar wind blown bubbles), power-law, and turbulent (Mach numbers M from 1 - 100) density distributions. Assuming solar metallicity cooling, the blast wave evolution is followed to the beginning of the momentum conserving snowplough phase. The model recovers previous results for uniform ambient media. The momentum injection in wind-blown bubbles depend on the swept-up mass and the efficiency of cooling, when the blast wave hits the wind shell. For power-law density distributions with n(r) ˜ r-2 (for n(r) > nfloor) the amount of momentum injection is solely regulated by the background density nfloor and compares to nuni = nfloor. However, in turbulent ambient media with log-normal density distributions the momentum input can increase by a factor of 2 (compared to the homogeneous case) for high Mach numbers. The average momentum boost can be approximated as p_{_turb}/p_{0} =23.07 (n_{_{0,turb}}/1 cm^{-3})^{-0.12} + 0.82 (ln (1+b2M2))^{1.49}(n_{_{0,turb}}/1 cm^{-3})^{-1.6}. The velocity distributions are broad as gas can be accelerated to high velocities in low-density channels. The model values agree with results from recent, computationally expensive, three-dimensional simulations of SN explosions in turbulent media.

  3. Extended adiabatic blast waves and a model of the soft X-ray background

    Science.gov (United States)

    Cox, D. P.; Anderson, P. R.

    1982-01-01

    The suggestion has been made that much of the soft X-ray background observed in X-ray astronomy might arise from being inside a very large supernova blast wave propagating in the hot, low-density component of the interstellar (ISM) medium. An investigation is conducted to study this possibility. An analytic approximation is presented for the nonsimilar time evolution of the dynamic structure of an adiabatic blast wave generated by a point explosion in a homogeneous ambient medium. A scheme is provided for evaluating the electron-temperature distribution for the evolving structure, and a procedure is presented for following the state of a given fluid element through the evolving dynamical and thermal structures. The results of the investigation show that, if the solar system were located within a blast wave, the Wisconsin soft X-ray rocket payload would measure the B and C band count rates that it does measure, provided conditions correspond to the values calculated in the investigation.

  4. NO FLARES FROM GAMMA-RAY BURST AFTERGLOW BLAST WAVES ENCOUNTERING SUDDEN CIRCUMBURST DENSITY CHANGE

    International Nuclear Information System (INIS)

    Afterglows of gamma-ray bursts are observed to produce light curves with the flux following power-law evolution in time. However, recent observations reveal bright flares at times on the order of minutes to days. One proposed explanation for these flares is the interaction of a relativistic blast wave with a circumburst density transition. In this paper, we model this type of interaction computationally in one and two dimensions, using a relativistic hydrodynamics code with adaptive mesh refinement called RAM, and analytically in one dimension. We simulate a blast wave traveling in a stellar wind environment that encounters a sudden change in density, followed by a homogeneous medium, and compute the observed radiation using a synchrotron model. We show that flares are not observable for an encounter with a sudden density increase, such as a wind termination shock, nor for an encounter with a sudden density decrease. Furthermore, by extending our analysis to two dimensions, we are able to resolve the spreading, collimation, and edge effects of the blast wave as it encounters the change in circumburst medium. In all cases considered in this paper, we find that a flare will not be observed for any of the density changes studied

  5. Uplift Pressure of Waves on A Horizontal Plate

    Institute of Scientific and Technical Information of China (English)

    周益人; 陈国平; 黄海龙; 王登婷

    2003-01-01

    Uplift pressures of waves acting on horizontal plates are the important basis for design of maritime hollow-trussed structures. In this paper, an experimental study on the uplift pressures of waves on a horizontal plate is conducted by use of a series of model tests. Detailed analysis has been given to the formation mechanism of uplift pressures of waves. It is considered that the impact pressure intensity is mainly affected by geometrical factors (tangential angle of waves), dynamic factors (wave height, wave velocity, etc.) and air cushion. Based on the test results, an equation for calculation of the maximum uplift pressure intensity of waves on a plate is presented. A large quantity of test data shows good agreement of the present equation with the test results.

  6. A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube.

    Science.gov (United States)

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1-3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68-1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared

  7. Engineering arithmetic for internal blast waves parameters in venting area of building structures%建筑物内爆泄压口冲击波参数工程算法研究

    Institute of Scientific and Technical Information of China (English)

    汪维; 刘瑞朝; 吴飚; 周朝阳

    2015-01-01

    The blast waves parameters in venting area are important in damage assessment of building structures under internal blast.Once the blast waves parameters are certain,the damage level of structures and equipments near the venting area can be assessed.As internal blast wave is the superposition of multi-reflectied waves of initial blast by the inner surfaces of building structure,and the blast waves in venting area is not of the same character as free air blast waves,the traditional engineering arithmetic for blast waves parameters in venting area is not yet applicable.In the paper, based on dimensional analysis,the relationship between venting area blast wave parameters and different structure parameters was analyzed.Then the internal blast shock wave of building structure was simulated by using AUTODYN software.The evolutionary process of internal blast wave was investigated and the blast pressure wave profile in venting area was analyzed.Based on a large number of numerical simulations,the empirical equations for venting area shock waves parameters were summarized,and they can be used as the base of damage assessment of internal building blast.%建筑物内部爆炸泄压口冲击波参数的确定对于建筑物结构毁伤评估具有重要的作用,一旦泄压口冲击波参数确定以后,即可利用相应毁伤判据快速评估泄压口附近结构和设备的毁伤程度。由于内部爆炸波是初始爆炸波经过建筑物内壁面多次反射叠加作用的结果,在泄压口会形成不同于自由场的冲击波,目前还未有泄压口冲击波参数成熟的快速工程算法。为了分析泄压口冲击波参数、总结相应快速经验工程算法,在量纲分析的基础上,提出影响泄压口冲击波峰值压力和冲量相关的无量纲参数。然后利用首先利用 AUTODYN 软件数值仿真研究了特定当量内爆炸作用下冲击波形成的过程,分析了泄压口部冲击波压力波形,并研究了泄压

  8. Velocities and Displacements of Shrapnel and a Shock Wave during Blast

    Institute of Scientific and Technical Information of China (English)

    ZHAO De-hui; TIAN Da-zhan; XU Jin-yu; ZHANG Hai-rong

    2007-01-01

    It is important to minimize the destruction of defense works when blasted. In our opinion,information in the available literature is very deficient. We now present our research results on better and simpler formulas for calculating the velocities and displacements of shrapnel and a shock wave;these formulas are indispensable for understanding the destruction of blast. Formulas now available in China are too complicated. In this paper, we derive Equation (13) as the formula for calculating the velocity of shrapnel and Equation (18) as that for calculating the velocity of a shock wave. We used the test data of Denver Research Institute, as reported in Reference 4, as numerical example and found that our Equations (13) and (18) give calculated results that agree well with their test data in two respects: (1) both test data and our calculations show that at first a shock wave is ahead of shrapnel,then their displacements are equal, and finally shrapnel is ahead of the shock wave; (2) when the displacements of shrapnel and shock wave are equal, the time is 0.34 s according to test data and 0.31 s according to our calculations.

  9. Nineteen-Foot Diameter Explosively Driven Blast Simulator; TOPICAL

    International Nuclear Information System (INIS)

    This report describes the 19-foot diameter blast tunnel at Sandia National Laboratories. The blast tunnel configuration consists of a 6 foot diameter by 200 foot long shock tube, a 6 foot diameter to 19 foot diameter conical expansion section that is 40 feet long, and a 19 foot diameter test section that is 65 feet long. Therefore, the total blast tunnel length is 305 feet. The development of this 19-foot diameter blast tunnel is presented. The small scale research test results using 4 inch by 8 inch diameter and 2 foot by 6 foot diameter shock tube facilities are included. Analytically predicted parameters are compared to experimentally measured blast tunnel parameters in this report. The blast tunnel parameters include distance, time, static, overpressure, stagnation pressure, dynamic pressure, reflected pressure, shock Mach number, flow Mach number, shock velocity, flow velocity, impulse, flow duration, etc. Shadowgraphs of the shock wave are included for the three different size blast tunnels

  10. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    Science.gov (United States)

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  11. Application of blast wave theory to explosive propulsion. [system performance analysis

    Science.gov (United States)

    Back, L. H.

    1975-01-01

    An analysis was carried out by using blast wave theory to delineate the important aspects of detonating explosives in nozzles, such as flow and wave phenomena, characteristic length and time scales, and the parameters on which the specific impulse is dependent. The propulsive system utilizes the momentum of the ambient gas set into motion in the nozzle by the explosion. A somewhat simplified model was considered for the situation where the mass of ambient gas in the nozzle is much greater than the mass of gas produced in the explosion, a condition of interest for dense atmospheres, e.g., near the surface of Venus. Instantaneous detonation and energy release was presumed to occur at the apex of a conical nozzle, and the shock wave generated by the explosion was taken to propagate as a spherical wave, thereby setting the ambient gas in the nozzle into one-dimensional radially outward motion.

  12. Afterglow emission from pair-loaded blast waves in gamma-ray bursts

    CERN Document Server

    Beloborodov, A M

    2005-01-01

    The MeV radiation front of gamma-ray bursts creates copious e+- pairs as it propagates through an ambient medium. The created pairs enrich the leptonic component of the medium by a large factor at distances R < R_load ~ 10^{16} cm from the burst center. The following blast wave sweeps up the pair-rich medium and then emits the observed afterglow radiation. We find that the afterglow has a "memory" of e+- loading outside R_load. The e+- pairs remain in the swept-up material and slowly cool down by emitting synchrotron radiation. They are likely to dominate the blast-wave emission in IR, optical, and UV bands during the first minutes of the observed afterglow. The expected e+- radiation is described by a simple formula, which is derived analytically and checked by numerical integration of synchrotron emission over the blast material; a suitable Lagrangian formalism is developed for such calculations. The main signature of e+- radiation is its flat ("white") spectrum in a broad range of frequencies from IR to...

  13. Examination of the protective roles of helmet/faceshield and directionality for human head under blast waves.

    Science.gov (United States)

    Sarvghad-Moghaddam, Hesam; Jazi, Mehdi Salimi; Rezaei, Asghar; Karami, Ghodrat; Ziejewski, Mariusz

    2015-01-01

    A parametric study was conducted to delineate the efficacy of personal protective equipment (PPE), such as ballistic faceshields and advanced combat helmets, in the case of a blast. The propagations of blast waves and their interactions with an unprotected head, a helmeted one, and a fully protected finite element head model (FEHM) were modeled. The biomechanical parameters of the brain were recorded when the FEHM was exposed to shockwaves from the front, back, top, and bottom. The directional dependent tissue response of the brain and the variable efficiency of PPE with respect to the blast orientation were two major results of this study. PMID:25413615

  14. Measuring Projectile Velocity using Shock Wave Pressure Sensors

    Directory of Open Access Journals (Sweden)

    Sankarsan Padhy

    2014-11-01

    Full Text Available This paper deals with development of velocity measurement methodology based on projectile shock wave pressure measurements. The measurement principle is based on the fact that, whenever a projectile moves with supersonic velocity, shock wave fronts are produced along the trajectory of the projectile. Measurement configuration has been developed for measuring the shock wave pressure associated with projectile in flight, and hence, projectile velocity has been calculated. This paper covers various aspects of shock waves, generation of N Waves, feasibility study for capturing shock wave using dynamic microphone. Finally, suitable piezo-electric sensor has been selected and deployed in the trials and shock wave signature has been captured. From shock wave pressure, the projectile velocity has been computed.Defence Science Journal, Vol. 64, No. 6, November 2014, pp.499-501, DOI:http://dx.doi.org/10.14429/dsj.64.8108

  15. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    Science.gov (United States)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  16. Terminal energy distribution of blast waves from bursting spheres

    Science.gov (United States)

    Adamczyk, A. A.; Strehlow, R. A.

    1977-01-01

    The calculation results for the total energy delivered to the surroundings by the burst of an idealized massless sphere containing an ideal gas are presented. The logic development of various formulas for sphere energy is also presented. For all types of sphere bursts the fraction of the total initial energy available in the sphere that is delivered to the surroundings is shown to lie between that delivered for the constant pressure addition of energy to a source region and that delivered by isentropic expansion of the sphere. The relative value of E sub/Q increases at fixed sphere pressure/surrounding pressure as sphere temperature increases because the velocity of sound increases.

  17. Analysis of microscopic magnitudes of radiative blast waves launched in xenon clusters with collisional-radiative steady-state simulations

    International Nuclear Information System (INIS)

    Radiative shock waves play a pivotal role in the transport energy into the stellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible laboratory conditions and their study has been highlighted as an area requiring further experimental investigations. Low density material with high atomic mass is suitable to achieve radiative regime, and, therefore, low density xenon gas is commonly used for the medium in which the radiative shocks such as radiative blast waves propagate. In this work, by means of collisional-radiative steady-state calculations, a characterization and an analysis of microscopic magnitudes of laboratory blast waves launched in xenon clusters are made. Thus, for example, the average ionization, the charge state distribution, the cooling time or photon mean free paths are studied. Furthermore, for a particular experiment, the effects of the self-absorption and self-emission in the specific intensity emitted by the shock front and that is going through the radiative precursor are investigated. Finally, for that experiment, since the electron temperature is not measured experimentally, an estimation of this magnitude is made both for the shock shell and the radiative precursor. -- Highlights: •We analyze microscopic magnitudes of plasmas for typical conditions found in laboratory blast waves in clusters of gases. •A particular experiment of blast waves launched in xenon is analyzed. •We perform a collisional-radiative steady-state diagnostics of the temperature of the blast wave. •We study the opacity effects in the kinetics calculations and the intensity in the shock shell of the blast wave. •We analyze self-absorption and self-emission in the radiative precursor

  18. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    OpenAIRE

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.; Geddes, James W.

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the diff...

  19. The soft X-ray background as a supernova blast wave viewed from inside: Solar abundance models

    Science.gov (United States)

    Edgar, R. J.

    1984-01-01

    A model of the soft X-ray background is presented in which the Sun is assumed to be inside an active supernova blast wave. The blast wave evolves in a preexisting cavity. The broad band surface brightnesses is explained by such a blast wave with an explosion energy of E sub approx. 5 x 10 to the 50th power ergs and radius 80 to 100 pc, using solar abundances. An approach to treating the problem of large anisotropies in the ambient medium is also explored, accommodating the observed anticorrelation between the soft X-ray surface brightness and the 21 cm column density. It is found that only for post shock temperatures below 10 6 K a shock propagating into a density enhancement will be dimmer than a similar shock in a lower density region.

  20. The soft X-ray background as a supernova blast wave viewed from inside - Solar abundance models

    Science.gov (United States)

    Edgar, R. J.

    1986-01-01

    A model of the soft X-ray background is presented in which the sun is assumed to be inside an active supernova blast wave. The blast wave evolves in a preexisting cavity. The broad band surface brightnesses is explained by such a blast wave with an explosion energy of E sub approximately 5 x 10 to the 50th power ergs and radius 80 to 100 pc, using solar abundances. An approach to treating the problem of large anisotropies in the ambient medium is also explored, accommodating the observed anticorrelation between the soft X-ray surface brightness and the 21 cm column density. It is found that only for post shock temperatures below 10 to the 6 power K a shock propagating into a density enhancement will be dimmer than a similar shock in a lower density region.

  1. Collimation and Asymmetry of the Hot Blast Wave from the Recurrent Nova V745 Sco

    Science.gov (United States)

    Drake, Jeremy J.; Delgado, Laura; Laming, J. Martin; Starrfield, Sumner; Kashyap, Vinay; Orlando, Salvatore; Page, Kim L.; Hernanz, M.; Ness, J.-U.; Gehrz, R. D.; van Rossum, Daan; Woodward, Charles E.

    2016-07-01

    The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended, and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically symmetric blast wave, with a full width at zero intensity of approximately 2400 km s‑1, an FWHM of 1200 ± 30 km s‑1, and an average net blueshift of 165 ± 10 km s‑1. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray-emitting material is aligned close to the plane of the sky and is most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations, and near-infrared line widths indicates that the explosion energy was approximately 1043 erg and confirms an ejected mass of approximately 10‑7 M ⊙. The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating that the white dwarf is gaining mass and is a Type Ia supernova progenitor candidate.

  2. Application of Wavelet Analysis in Signal De-noising of Blast Shock Wave Overpressure

    Institute of Scientific and Technical Information of China (English)

    Jian-wei JIANG; Yu-jun FANG; Li-zhen WAN; Jian-bing MEN

    2010-01-01

    It's a problem to be solved how to de-noise the signal of blast shock wave overpressure.In the conventional methods,the high frequency of the signal is cut directly by some mathematics algorithms,such as Fourier Transform,but some of the useful signal will be cut together.We adopt a new method for the signal de-noising of shock wave overpressure by wavelet analysis.There are four steps in this method.Firstly,the original signal is de-cpmposed.Then the time-frequency features of the signal and noise are analyzed.Thirdly,the noise is separated from the signal by only cutting its frequency while the useful signal frequency is reserved as much as possible.Lastly,the useful signal with least loss of information is recovered by reconstruction process.To verify this method,a blast shock wave signal is de-noised with FFT to make a comparison.The results show that the signal de-noised by wavelet analysis approximates the ideal signal well.

  3. Early GRB Afterglows from Relativistic Blast Waves in General Radiative Regimes

    CERN Document Server

    Böttcher, M

    1999-01-01

    We present simple analytical expressions for the predicted spectral and temporal behavior of the early afterglow radiation from gamma-ray bursts in radiative regimes intermediate between the adiabatic and the fully radiative solutions of the blastwave hydrodynamic equations. Our expressions are valid as long as the relativistic electrons responsible for the observed synchrotron emission are in the fast cooling regime and the blast wave is relativistic. We show that even a slight deviation from a perfectly adiabatic evolution results in significant changes of the temporal characteristics of the afterglow emission.

  4. Afterglow emission from pair-loaded blast waves in gamma-ray bursts

    OpenAIRE

    Beloborodov, Andrei M.

    2005-01-01

    The MeV radiation front of gamma-ray bursts creates copious e+- pairs as it propagates through an ambient medium. The created pairs enrich the leptonic component of the medium by a large factor at distances R < R_load ~ 10^{16} cm from the burst center. The following blast wave sweeps up the pair-rich medium and then emits the observed afterglow radiation. We find that the afterglow has a "memory" of e+- loading outside R_load. The e+- pairs remain in the swept-up material and slowly cool dow...

  5. Mathematical theory of cylindrical isothermal blast waves in a magnetic field. [with application to supernova remnant evolution

    Science.gov (United States)

    Lerche, I.

    1981-01-01

    An analysis is conducted regarding the properties of cylindrically symmetric self-similar blast waves propagating away from a line source into a medium whose density and magnetic field (with components in both the phi and z directions) both vary as r to the -(omega) power (with omega less than 1) ahead of the blast wave. The main results of the analysis can be divided into two classes, related to a zero azimuthal field and a zero longitudinal field. In the case of the zero longitudinal field it is found that there are no physically acceptable solutions with continuous postshock variations of flow speed and gas density.

  6. Cosmic ray acceleration at blast waves from type Ia supernovae

    CERN Document Server

    Kang, H

    2007-01-01

    We have calculated the cosmic ray (CR) acceleration at young remnants from Type Ia supernovae expanding into a uniform interstellar medium (ISM). Adopting quasi-parallel magnetic fields, gasdynamic equations and the diffusion convection equation for the particle distribution function are solved in a comoving spherical grid which expands with the shock. Bohm-type diffusion due to self-excited Alfven waves, drift and dissipation of these waves in the precursor and thermal leakage injection were included. With magnetic fields amplified by the CR streaming instability, the particle energy can reach up to 10^{16}Z eV at young supernova remnants (SNRs) of several thousand years old. The fraction of the explosion energy transferred to the CR component asymptotes to 40-50 % by that time. For a typical SNR in a warm ISM, the accelerated CR energy spectrum should exhibit a concave curvature with the power-law slope flattening from 2 to 1.6 at E>0.1 TeV.

  7. Wave-induced pore water pressure in marine cohesive soils

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Cyclic triaxial tests and numerical analyses were undertaken, in order to evaluate the wave-induced pore water pressure in seabed sediments in the Hangzhou Bay. The cyclic triaxial tests indicate that the rate of pore water pressure generation in cohesive soils decreases with time, and the development of the pore water pressure can be represented by a hyperbolic curve. Numerical analyses, taking into account the generation and dissipation of pore water pressure simultaneously, suggest that the pore water pressure buildup in cohesive soils may increase with time continuously until the pore water pressure ratio approaches to 1, or it may decrease after a certain time, which is controlled by drain conditions. These phenomena are different from those in sands. For waves with a return period of 100 a in the Hangzhou Bay, ifthe wave duration is more than 60 h, then the pore water pressure ratio will be close to 1 and soil fabric failure will take place.

  8. Surface wave propagation characteristics in atmospheric pressure plasma column

    International Nuclear Information System (INIS)

    In the typical experiments of surface wave sustained plasma columns at atmospheric pressure the ratio of collision to wave frequency (ν/ω) is much greater than unity. Therefore, one might expect that the usual analysis of the wave dispersion relation, performed under the assumption ν/ω = 0, cannot give adequate description of the wave propagation characteristics. In order to study these characteristics we have analyzed the wave dispersion relationship for arbitrary ν/ω. Our analysis includes phase and wave dispersion curves, attenuation coefficient, and wave phase and group velocities. The numerical results show that a turning back point appears in the phase diagram, after which a region of backward wave propagation exists. The experimentally observed plasma column is only in a region where wave propagation coefficient is higher than the attenuation coefficient. At the plasma column end the electron density is much higher than that corresponding to the turning back point and the resonance

  9. Numerical Study of Unsteady Supercavitation Perturbed by a Pressure Wave

    Science.gov (United States)

    Zheng, J. G.; Khoo, B. C.

    2016-06-01

    The unsteady features of supercavitation disturbed by an introduced pressure wave are investigated numerically using a one-fluid cavitation model. The supercavitating flow is assumed to be the homogeneous mixture of liquid and vapour which are locally under both kinetic and thermodynamic equilibrium. The compressibility effects of liquid water are taken into account to model the propagation of pressure wave through flow and its interaction with supercavitation bubble. The interaction between supercavity enveloping an underwater flat-nose cylinder and pressure wave is simulated and the resulting unsteady behavior of supercavitation is illustrated. It is observed that the supercavity will become unstable under the impact of the pressure wave and may collapse locally, which depends on the strength of perturbation. The huge pressure surge accompanying the collapse of supercavitation may cause the material erosion, noise, vibration and efficiency loss of operating underwater devices.

  10. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    Science.gov (United States)

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components

  11. Change of guinea pig inner ear pressure by square wave middle ear cavity pressure variation

    NARCIS (Netherlands)

    Feijen, RA; Segenhout, JM; Albers, FWJ; Wit, HP

    2002-01-01

    The inner ear fluid pressure of guinea pigs was measured during square wave middle ear cavity pressure variation. Time constants were derived for the slopes of the inner ear pressure recovery curves after middle ear pressure change. A "single exponential" function did not fit well and therefore more

  12. Geotechnical centrifuge model tests for explosion cratering and propagation laws of blast wave in sand

    Institute of Scientific and Technical Information of China (English)

    Yi-kai FAN; Zu-yu CHEN; Xiang-qian LIANG; Xue-dong ZHANG; Xin HUANG

    2012-01-01

    This paper presents the explosion cratering effects and their propagation laws of blast waves in dry standard sands using a 450 g-t geotechnical centrifuge apparatus.Ten centrifuge model tests were completed with various ranges of explosive mass,burial depth and centrifuge accelerations.Eleven accelerometers were installed to record the acceleration response in sand.The dimensions of the explosion craters were measured after the tests.The results demonstrated that the relationship between the dimensionless parameters of cratering efficiency and gravity scaled yield is a power regression function.Three specific function equations were obtained.The results are in general agreement with those obtained by other studies.A scaling law based on the combination of the r terms was used to fit the results of the ten model tests with a correlation coefficient of 0.931.The relationship can be conveniently used to predict the cratering effects in sand.The results also showed that the peak acceleration is a power increasing function of the acceleration level.An empirical exponent relation between the proportional peak acceleration and distance is proposed.The propagation velocity of blast waves is found to be ranged between 200 and 714 m/s.

  13. The Half Wave Plate Rotator for the BLAST-TNG Balloon-Borne Telescope

    Science.gov (United States)

    Setiawan, Hananiel; Ashton, Peter; Novak, Giles; Angilè, Francesco E.; Devlin, Mark J.; Galitzki, Nicholas; Ade, Peter; Doyle, Simon; Pascale, Enzo; Pisano, Giampaolo; Tucker, Carole E.

    2016-01-01

    The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG) is an experiment designed to map magnetic fields in molecular clouds in order to study their role in the star formation process. The telescope will be launched aboard a high-altitude balloon in December 2016 for a 4-week flight from McMurdo station in Antarctica. BLAST-TNG will measure the polarization of submillimeter thermal emission from magnetically aligned interstellar dust grains, using large format arrays of kinetic inductance detectors operating in three bands centered at 250, 350, and 500 microns, with sub-arcminute angular resolution. The optical system includes an achromatic Half Wave Plate (HWP), mounted in a Half Wave Plate rotator (HWPr). The HWP and HWPr will operate at 4 K temperature to reduce thermal noise in our measurements, so it was crucial to account for the effects of thermal contraction at low temperature in the HWPr design. It was also equally important for the design to meet torque requirements while minimizing the power from friction and conduction dissipated at the 4 K stage. We also discuss our plan for cold testing the HWPr using a repurposed cryostat with a Silicon Diode thermometer read out by an EDAS-CE Ethernet data acquisition system.

  14. Ultra-high-energy cosmic ray acceleration by relativistic blast waves

    Science.gov (United States)

    Gallant, Yves A.; Achterberg, Abraham

    1999-05-01

    We consider the acceleration of charged particles at the ultrarelativistic shocks, with Lorentz factors Gamma_s>>1 relative to the upstream medium, arising in relativistic fireball models of gamma-ray bursts (GRBs). We show that for Fermi-type shock acceleration, particles initially isotropic in the upstream medium can gain a factor of order Gamma_s^2 in energy in the first shock-crossing cycle, but that the energy gain factor for subsequent shock-crossing cycles is only of order 2, because for realistic deflection processes particles do not have time to become isotropic upstream before recrossing the shock. We evaluate the maximum energy attainable and the efficiency of this process, and show that for a GRB fireball expanding into a typical interstellar medium, these exclude the production of ultra-high-energy cosmic rays (UHECRs), with energies in the range 10^18.5-10^20.5 eV, by the blast wave. However, we propose that in the context of neutron-star binaries as the progenitors of GRBs, relativistic ions from the pulsar-wind bubbles produced by these systems could be accelerated by the blast wave. We show that if the known binary pulsars are typical, the maximum energy, efficiency, and spectrum in this case can account for the observed population of UHECRs.

  15. Accelerated dynamics of blast wave driven Rayleigh-Taylor instabilities in high energy density plasmas

    Science.gov (United States)

    Swisher, N.; Kuranz, C.; Drake, R. P.; Abarzhi, S. I.

    2014-10-01

    We report the systematic analysis of experimental data describing the late time evolution of the high Mach number and high Reynolds number Rayleigh-Taylor instability which is driven by a blast wave. The parameter regime is relevant to high energy density plasmas and astrophysics. The experiments have been conducted at the Omega laser facility. By processing the experimental x-ray images, we quantified the delicate features of RT dynamics, including the measurements of the curvature of the transmitted shock and the interface envelopes, the positions of RT bubbles and spikes, and the quantification of statistics of RT mixing. The measurements were performed at four time steps and for three different initial perturbations of the target (single mode and two two-mode). We found that within the noise level the curvatures of the shock and interface envelope evolve steadily and are an imprint of laser imperfections. At late times, the bubble merge does not occur, and the flow keeps significant degree of order. Yet, the blast-wave-driven RT spikes do accelerate with the power-law exponent smaller than that in case of sustained acceleration. We compared the experimental results with the momentum model of RT mixing and stochastic model achieving good agreement. The work is supported by the US National Science Foundation.

  16. Three-dimensional simulations of solar granulation and blast wave using ZEUS-MP code

    Science.gov (United States)

    Nurzaman, M. Z.; Herdiwijaya, D.

    2015-09-01

    Sun is nearest and the only star that can be observed in full disk mode. Meanwhile other stars simply can be observed as dot and cannot be seen in full disk like the Sun. Due to this condition, detail events in the Sun can possibly observable. For example, flare, prominence, granulation and other features can be seen easily compared to other stars. In other word the observational data can be obtained easily. And for better understanding, computational simulation is needed too. In this paper we use ZEUS-MP, a numerical code for the simulation of fluid dynamical flows in astrophysics, to study granulation and blast wave in the Sun. ZEUS-MP allows users to use hydrodynamic (HD) or magneto hydrodynamic (MHD) simulations singly or in concert, in one, two, or three space dimensions. For granulation case, we assume that there is no influence from magnetic field. So, it's enough to just use HD simulations. Physical parameters were analyzed for this case is velocity and density. The result shows that velocity as time function indicated more complex pattern than density. For blast wave case, we use it to study one of the Sun energetic event namely Coronal Mass Ejections (CMEs). In this case, we cannot ignore influence from magnetic field. So we use MHD simulations. Physical parameters were analyzed for this case is velocity and energy. The result shows more complex pattern for both parameters. It is shown too as if they have opposite pattern. When energy is high, velocity is not too fast, conversely.

  17. Absorption Phenomena and a Probable Blast Wave in the 13 July 2004 Eruptive Event

    CERN Document Server

    Grechnev, V V; Slemzin, V A; Chertok, I M; Kuzmenko, I V; Shibasaki, K; 10.1007/s11207-008-9178-8

    2008-01-01

    We present a case study of the 13 July 2004 solar event, in which disturbances caused by eruption of a filament from an active region embraced a quarter of the visible solar surface. Remarkable are absorption phenomena observed in the SOHO/EIT 304 A channel; they were also visible in the EIT 195 A channel, in the H-alpha line, and even in total radio flux records. Coronal and Moreton waves were also observed. Multi-spectral data allowed reconstructing an overall picture of the event. An explosive filament eruption and related impulsive flare produced a CME and blast shock, both of which decelerated and propagated independently. Coronal and Moreton waves were kinematically close and both decelerated in accordance with an expected motion of the coronal blast shock. The CME did not resemble a classical three-component structure, probably, because some part of the ejected mass fell back onto the Sun. Quantitative evaluations from different observations provide close estimates of the falling mass, ~3 10^15 g, whic...

  18. Hydrodynamics of Relativistic Blast Waves in a Density-Jump Medium and Their Emission Signature

    CERN Document Server

    Dai, Z G

    2002-01-01

    We analyze in detail the hydrodynamics and afterglow emission of an ultrarelativistic blast wave when it expands in a density-jump medium. Such a medium is likely to appear in the vicinity of gamma-ray bursts (GRBs) associated with massive stars. The interaction of the blast wave with this medium is described through a reverse shock and a forward shock. We show that the reverse shock is initially relativistic if the factor of a density jump ($\\alpha$) is much larger than 21, and Newtonian if $1<\\alpha\\ll 21$. We also calculate light curves of the afterglow emission during the interaction and find that the optical flux density initially decays abruptly, then rises rapidly, and finally fades down based on a power-law, which could be followed by an abrupt decay when the reverse shock has just crossed the originally swept-up matter. Therefore, one property of an afterglow occurring in a density-jump medium is an abrupt drop followed by a bump in the light curve and thus provides a probing of circumburst enviro...

  19. Collimation and asymmetry of the hot blast wave from the recurrent nova V745 Scorpii

    CERN Document Server

    Drake, Jeremy J; Laming, J Martin; Starrfield, Sumner; Kashyap, Vinay; Orlando, Salvatore; Page, Kim L; Hernanz, M; Ness, J-U; Gehrz, R D; van Rossum, Daan; Woodward, Charles E

    2016-01-01

    The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 10^7K. X-ray line profiles are more sharply peaked than expected for a spherically-symmetric blast wave, with a full width at zero intensity of approximately 2400 km/s, a full width at half maximum of 1200 +/- 30 km/s and an average net blueshift of 165 +/- 10 km/s. The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray emitting material is aligned close to the plane of the sky and most consistent wit...

  20. The Measurement and Analysis of Pressure Square Wave Generator

    International Nuclear Information System (INIS)

    Investigating the dynamic characteristics is a significant study for actual hydraulic pressure system because the dynamic environment is used more often than static one. A dynamic pressure generator is called pressure square wave generator (PSWG) that developed in our team and generate square-like waveform and change testing pressure and frequency form 0.1 to 5 MPa and 12 to 2 KHz, respectively. In this study, dynamic performance of PSWG was investigated under different testing tangent velocity of rotor of PSWG including detailed transient response of a pressure square-like wave, rise time and deviation of magnitude. Results show that the tangent velocity of the rotor of PSWG affects the transient response of pressure square-like wave form. The desired transient response can be obtained when the tangent velocity is larger than 0.5 m/s. Furthermore, the larger the tangent velocity used, the smaller the rise time will be

  1. Analysis on rebound effect of blast door under negative phase pressures%冲击波负压对防护门反弹效应的影响分析

    Institute of Scientific and Technical Information of China (English)

    郭东; 刘晶波; 闫秋实

    2011-01-01

    The rebound effect of blast door was studied under the negative phase of blast loading. The reasonably approximated blast pulse shape was adopted to obtain the exact analytical formulas for rebound force of blast door, taking into account the negative phase effect. The negative phase effect of blast waves on blast door was assessed. It is demonstorated that with the increase of scaled distance, the peak value of negative pressure, relatively to the peak value of positive pressure, increases gradually and in the meantime, negative pressure shows the increasing effects on the rebound of blast door. But the response of this type may emerge only under small overpressure. Due to the small peak values of both positive and negative pressures, the blast door seems to be relatively stiff enough and the blast door would not be damaged by the increased rebound effect. So, the effect of negative pressure might be ignored in the design of protective structures.%对冲击波负压作用下防护门的反弹效应进行了研究,采用合理的荷载假定形式,推导了考虑负压影响的防护门反弹力的精确解析公式,评价了负压对防护门反弹效应的影响规律:即随着比例爆距的增大,负压峰值相对于正压峰值逐渐增大,反弹增大效应也较明显,但这样一个响应可能仅对比较小的超压值才出现,由于正压、负压峰值都较小,防护门刚度较大,故增大的反弹力不足以对防护门造成破坏,设计中可以不考虑负压的影响.

  2. Damping Pressure Pulsations in a Wave-Powered Desalination System

    OpenAIRE

    Padhye, Nikhil; Torres, James, Ph. D. Massachusetts Institute of Technology.; Thomas, Levon; Ljubicic, Dean M.; Kassner, Mortiz P.; Slocum, Alexander H.; Hopkins, Brandon James; Greenlee, Alison S.

    2014-01-01

    Wave-driven reverse osmosis desalination systems can be a cost-effective option for providing a safe and reliable source of drinking water for large coastal communities. Such systems usually require the stabilization of pulsating pressures for desalination purposes. The key challenge is to convert a fluctuating pressure flow into a constant pressure flow. To address this task, stub-filters, accumulators, and radially elastic-pipes are considered for smoothing the pressure fluctuations in the ...

  3. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    Science.gov (United States)

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment. PMID:23145587

  4. Novel wave power analysis linking pressure-flow waves, wave potential, and the forward and backward components of hydraulic power.

    Science.gov (United States)

    Mynard, Jonathan P; Smolich, Joseph J

    2016-04-15

    Wave intensity analysis provides detailed insights into factors influencing hemodynamics. However, wave intensity is not a conserved quantity, so it is sensitive to diameter variations and is not distributed among branches of a junction. Moreover, the fundamental relation between waves and hydraulic power is unclear. We, therefore, propose an alternative to wave intensity called "wave power," calculated via incremental changes in pressure and flow (dPdQ) and a novel time-domain separation of hydraulic pressure power and kinetic power into forward and backward wave-related components (ΠP±and ΠQ±). Wave power has several useful properties:1) it is obtained directly from flow measurements, without requiring further calculation of velocity;2) it is a quasi-conserved quantity that may be used to study the relative distribution of waves at junctions; and3) it has the units of power (Watts). We also uncover a simple relationship between wave power and changes in ΠP±and show that wave reflection reduces transmitted power. Absolute values of ΠP±represent wave potential, a recently introduced concept that unifies steady and pulsatile aspects of hemodynamics. We show that wave potential represents the hydraulic energy potential stored in a compliant pressurized vessel, with spatial gradients producing waves that transfer this energy. These techniques and principles are verified numerically and also experimentally with pressure/flow measurements in all branches of a central bifurcation in sheep, under a wide range of hemodynamic conditions. The proposed "wave power analysis," encompassing wave power, wave potential, and wave separation of hydraulic power provides a potent time-domain approach for analyzing hemodynamics.

  5. Ultrahigh pressure laser-driven shock wave experiments

    International Nuclear Information System (INIS)

    We review recent laser-driven shock wave experiments, with a view toward assessing the prospects of making accurate physical properties measurements at ultrahigh pressures. Recent experimental results on the scaling of shock pressure with laser intensity and wavelength are presented, and preliminary impedance matching experiments are discussed

  6. Development of high-pressure dry ice blasting method for decontamination. 3. Barrel type- and vacuum type- dry ice blasting methods

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichirou; Ishijima, Noboru; Morishita, Yoshitsugu; Tanimoto, Ken-ichi

    1997-05-01

    In order to decrease radioactivity of high-level radioactive wastes to low-level (lower than 500 {mu}Sv/h), the dry-ice blasting method has been developing. This method can decontaminate radioactive wastes up to 10{sup 2} in decontamination factor, and can minimize the secondary generated wastes. However, the method was not applicable to smaller and lighter objects because the objects scatter with the blasting flow. Two types of decontamination method, which are a barrel type- and a vacuum type- dry ice blasting methods, therefore, were planned. The barrel type method can decontaminate smaller solid wastes with preventing the scattering of the wastes by blast pressure. The vacuum type method has advantages to localize and collect the removed contamination from larger wastes. In this work, their basic efficiency on decontamination were investigated experimentally using painted specimens simulating contaminated wastes. Basic characteristics regarding with both barrel type- and the vacuum type- methods were obtained from above experiments. Moreover, items to be improved were clarified. (J.P.N.)

  7. Nonlinear Pressure Wave Analysis by Concentrated Mass Model

    Science.gov (United States)

    Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro

    A pressure wave propagating in a tube often changes to a shock wave because of the nonlinear effect of fluid. Analyzing this phenomenon by the finite difference method requires high computational cost. To lessen the computational cost, a concentrated mass model is proposed. This model consists of masses, connecting nonlinear springs, connecting dampers, and base support dampers. The characteristic of a connecting nonlinear spring is derived from the adiabatic change of fluid, and the equivalent mass and equivalent damping coefficient of the base support damper are derived from the equation of motion of fluid in a cylindrical tube. Pressure waves generated in a hydraulic oil tube, a sound tube and a plane-wave tube are analyzed numerically by the proposed model to confirm the validity of the model. All numerical computational results agree very well with the experimental results carried out by Okamura, Saenger and Kamakura. Especially, the numerical analysis reproduces the phenomena that a pressure wave with large amplitude propagating in a sound tube or in a plane tube changes to a shock wave. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear pressure wave problem.

  8. Cluster merger blast wave and the mystery of ringlike radio-relic formation around some galaxy clusters

    International Nuclear Information System (INIS)

    In this work I studied the nature and important effects of massive galaxy cluster merger phenomena. Due to inherent complexity of such events analytical solution is impossible, so, numerical simulations are performed using ENZO-2.1 hydrodynamic code. It is noticed that the formation of Mega parsec scale merger shocks in such events substantially change the energy distribution of Inter Cluster Medium. A striking similarity is noticed between expanding intra cluster medium during mergers with the blast wave formation in supernovae explosion. The blast wave meets the void/ accretion shocks when propagated out to the virial radius. Particle acceleration at the meeting point produce a significant amount of synchrotron radio emission through which curved shocks are made visible in radio waves. This study thus also sheds some light on the formation of curved and nearly symmetric radio emission found in Abell 3376, Abell 3667, CIZA J2242.8+5301, plck g287.0+32.9 etc. clusters.

  9. Supernovae and Their Expanding Blast Waves during the Early Evolution of Galactic Globular Clusters

    Science.gov (United States)

    Tenorio-Tagle, Guillermo; Muñoz-Tuñón, Casiana; Silich, Sergiy; Cassisi, Santi

    2015-11-01

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 106 M⊙), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centered SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.

  10. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio-Tagle, Guillermo; Silich, Sergiy [Instituto Nacional de Astrofísica Óptica y Electrónica, AP 51, 72000 Puebla, México (Mexico); Muñoz-Tuñón, Casiana [Instituto de Astrofísica de Canarias (Spain); Cassisi, Santi, E-mail: gtt@inaoep.mx, E-mail: cmt@iac.es, E-mail: cassisi@oa-teramo.inaf.it [INAF—Astronomical Observatory of Collurania, via M. Maggini, I-64100 Teramo (Italy)

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centered SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.

  11. Revisiting the emission from relativistic blast waves in a density-jump medium

    Energy Technology Data Exchange (ETDEWEB)

    Geng, J. J.; Huang, Y. F.; Dai, Z. G. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, X. F. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Liang, E-mail: hyf@nju.edu.cn, E-mail: dzg@nju.edu.cn, E-mail: xfwu@pmo.ac.cn [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2014-09-01

    Re-brightening bumps are frequently observed in gamma-ray burst afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps cannot be produced under common conditions, rather only a short plateau may emerge even when the encounter occurs at an early time (<10{sup 4} s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be caused by other scenarios.

  12. Self-generated magnetic fields in blast-wave driven Rayleigh-Taylor experiments

    Science.gov (United States)

    Flaig, Markus; Plewa, Tomasz

    2015-12-01

    We study the effect of self-generated magnetic fields in two-dimensional computer models of blast-wave driven high-energy density Rayleigh-Taylor instability (RTI) experiments. Previous works [1,2] suggested that such fields have the potential to influence the RTI morphology and mixing. When neglecting the friction force between electrons and ions, we do indeed find that dynamically important (β≲103) magnetic fields are generated. However, in the more realistic case where the friction force is accounted for, the resulting fields are much weaker, β≳105 , and can no longer influence the dynamics of the system. Although we find no evidence for dynamically important magnetic fields being created in the two-dimensional case studied here, the situation might be different in a three-dimensional setup, which will be addressed in a future study.

  13. Revisiting the Emission from Relativistic Blast Waves in a Density-Jump Medium

    CERN Document Server

    Geng, J J; Li, Liang; Huang, Y F; Dai, Z G

    2014-01-01

    Re-brightening bumps are frequently observed in gamma-ray burst (GRB) afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. (1999). This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps can not be produced under common conditions, only short plateau may emerge even when the encounter occurs at early time ($< 10^4$ s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be due to other scenarios.

  14. Revisiting the Emission from Relativistic Blast Waves in a Density-jump Medium

    Science.gov (United States)

    Geng, J. J.; Wu, X. F.; Li, Liang; Huang, Y. F.; Dai, Z. G.

    2014-09-01

    Re-brightening bumps are frequently observed in gamma-ray burst afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps cannot be produced under common conditions, rather only a short plateau may emerge even when the encounter occurs at an early time (density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be caused by other scenarios.

  15. Supernovae and their expanding blast waves during the early evolution of Galactic globular clusters

    CERN Document Server

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Cassisi, Santi

    2015-01-01

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae products were retained within globular clusters and only in the most massive cases ($M \\ge 10^6$ Msol), while less massive clusters were not contaminated at all by supernovae. Here we show that supernova blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well centered supernovae, that evolve into a high density medium available for a second stellar generation in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, leading in these cases eventually to an Fe contaminated second stellar generation.

  16. A viscous blast-wave model for high energy heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Jaiswal Amaresh

    2016-01-01

    Full Text Available Employing a viscosity-based survival scale for initial geometrical perturbations formed in relativistic heavy-ion collisions, we model the radial flow velocity at freeze-out. Subsequently, we use the Cooper-Frye freeze-out prescription, with viscous corrections to the distribution function, to extract the transverse momentum dependence of particle yields and flow harmonics. We fit the model parameters for central collisions, by fitting the spectra of identified particles at the Large Hadron Collider (LHC, and estimate them for other centralities using simple hydrodynamic relations. We use the results of Monte Carlo Glauber model for initial eccentricities. We demonstrate that this improved viscous blast-wave model leads to good agreement with transverse momentum distribution of elliptic and triangular flow for all centralities and estimate the shear viscosity to entropy density ratio η/s ≃ 0.24 at the LHC.

  17. Study of radiative blast waves generated on the Z-beamlet laser.

    Energy Technology Data Exchange (ETDEWEB)

    Edens, Aaron D.; Schwarz, Jens

    2012-02-01

    This document describes the original goals of the project to study the Vishniac Overstability on blast waves produced using the Z-Beamlet laser facility as well as the actual results. The proposed work was to build on earlier work on the facility and result in the best characterized set of data for such phenomena in the laboratory. To accomplish the goals it was necessary to modify the existing probe laser at the facility so that it could take multiple images over the course of 1-2 microseconds. Troubles with modifying the probe laser are detailed as well as the work that went into said modifications. The probe laser modification ended up taking the entire length of the project and were the major accomplishment of the research.

  18. A viscous blast-wave model for high energy heavy-ion collisions

    Science.gov (United States)

    Jaiswal, Amaresh; Koch, Volker

    2016-07-01

    Employing a viscosity-based survival scale for initial geometrical perturbations formed in relativistic heavy-ion collisions, we model the radial flow velocity at freeze-out. Subsequently, we use the Cooper-Frye freeze-out prescription, with viscous corrections to the distribution function, to extract the transverse momentum dependence of particle yields and flow harmonics. We fit the model parameters for central collisions, by fitting the spectra of identified particles at the Large Hadron Collider (LHC), and estimate them for other centralities using simple hydrodynamic relations. We use the results of Monte Carlo Glauber model for initial eccentricities. We demonstrate that this improved viscous blast-wave model leads to good agreement with transverse momentum distribution of elliptic and triangular flow for all centralities and estimate the shear viscosity to entropy density ratio η/s ≃ 0.24 at the LHC.

  19. A three-phase soil model for simulating stress wave propagation due to blast loading

    Science.gov (United States)

    Wang, Zhongqi; Hao, Hong; Lu, Yong

    2004-01-01

    A three-phase soil model is proposed to simulate stress wave propagation in soil mass to blast loading. The soil is modelled as a three-phase mass that includes the solid particles, water and air. It is considered as a structure that the solid particles form a skeleton and their voids are filled with water and air. The equation of state (EOS) of the soil is derived. The elastic-plastic theory is adopted to model the constitutive relation of the soil skeleton. The damage of the soil skeleton is also modelled. The Drucker-Prager strength model including the strain rate effect is used to describe the strength of the soil skeleton. The model is implemented into a hydrocode Autodyn. The recorded results obtained by explosion tests in soil are used to validate the proposed model. Copyright

  20. Simulations of Magnetic Field Generation in Laser-Produced Blast Waves

    Science.gov (United States)

    Lamb, D.; Fatenejad, M.; Gregori, G.; Miniati, F.; Park, H.-S.; Remington, B.; Ravasio, A.; Koenig, M.; Murphy, C. D.

    2011-10-01

    Magnetic fields are ubiquitous in the Universe. The origin of these fields and process by which they are amplified are not fully understood, although amplification is thought to involve turbulence. Experiments being conducted at medium-scale laser facilities (such as the LULI laser the Janus laser) can investigate the self-generation of magnetic fields under conditions that resemble astrophysical shocks. In these experiments, two 527 nm, 1.5 ns long laser beams are focused onto a 500 μm diameter graphite rod producing an explosion and asymmetric blast wave into a Helium filled chamber. A variety of diagnostics measure the velocity, electron density, and show that a large scale magnetic field is produced. We report preliminary hydrodynamic and MHD simulations using FLASH of a simplified version of the experiment. The results provide insights into the origin and generation of the magnetic field. This work was partially supported by the US DOE, the European Research Council, and Laserlab Europe.

  1. Modelling of blast loading on aboveground structures - II. Internal blast and ground shock

    Science.gov (United States)

    Beshara, F. B. A.

    1994-06-01

    Recent studies of the nature and structural effects of confined explosions, contact blast and explosion-induced ground shock are presented. High explosive blast is distinguished from that due to a gaseous deflagration. The effects of confinement and venting are considered in the evaluation of dynamic loads. Maxima for the initial internal blast pressure can be estimated from the scaled blast data or theoretical analyses of normal blast wave reflection from a rigid wall. Semi-empirical relations and prediction methods for gas pressures for many types of internal explosions including high explosives, gas mixtures and dust suspensions are given on the basis of pseudo-static character. The loading of a contact explosion and the associated effects on a concrete target are determined as functions of charge weight, concrete strength and member thickness. In the final part, the evaluation of both airblast-induced ground shock and directly transmitted motion are included in simple form without considering the soil-structure interaction.

  2. Dual mode acoustic wave sensor for precise pressure reading

    Science.gov (United States)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  3. DAPSY - a computer program for the pressure wave propagation in reactor cooling systems

    International Nuclear Information System (INIS)

    The computer code DAPSY is developed to calculate pressure wave phenomena in the primary coolant system. For this purpose it is necessary to treat 3-dimensional single-phase and two-phase flow of water and steam. The technique used in DAPSY is the simulation of the real geometry by a pipe network with connected one-dimensional flow paths. The calculation of the unsteady one-dimensional flow is taken from the BLAST code. In this code pressure wave propagation and delayed attainment of thermal equilibrium is taken into consideration. Integration by the method of characteristics in a fixed grid, which is used in this code, is very convenient for the computation of boundary value problems, especially for critical state of flow. In order to determine the boundary conditions of each pipe, calculated by the one-dimensional code, subroutines were developed, which simulate several components of the primary system, e.g. strong cross-section variations with eventual critical flow, valves, pumps, dead ends of pipes, perhaps with a gas bulb, breaking points with critical mass-flow rate and eventual orifices, connection points of several pipes, free surfaces of water with transition to steam phase, and separators in which two-phase mixture is divided in steam and water flow. These components can be composed in any way so that a whole primary system is described. (orig.)

  4. Ultrasonic wave based pressure measurement in small diameter pipeline.

    Science.gov (United States)

    Wang, Dan; Song, Zhengxiang; Wu, Yuan; Jiang, Yuan

    2015-12-01

    An effective non-intrusive method of ultrasound-based technique that allows monitoring liquid pressure in small diameter pipeline (less than 10mm) is presented in this paper. Ultrasonic wave could penetrate medium, through the acquisition of representative information from the echoes, properties of medium can be reflected. This pressure measurement is difficult due to that echoes' information is not easy to obtain in small diameter pipeline. The proposed method is a study on pipeline with Kneser liquid and is based on the principle that the transmission speed of ultrasonic wave in pipeline liquid correlates with liquid pressure and transmission speed of ultrasonic wave in pipeline liquid is reflected through ultrasonic propagation time providing that acoustic distance is fixed. Therefore, variation of ultrasonic propagation time can reflect variation of pressure in pipeline. Ultrasonic propagation time is obtained by electric processing approach and is accurately measured to nanosecond through high resolution time measurement module. We used ultrasonic propagation time difference to reflect actual pressure in this paper to reduce the environmental influences. The corresponding pressure values are finally obtained by acquiring the relationship between variation of ultrasonic propagation time difference and pressure with the use of neural network analysis method, the results show that this method is accurate and can be used in practice.

  5. Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting The Business Operating Model and How-To Manual for 450 Specific Applications

    CERN Document Server

    Maasberg, Wolfgang

    2012-01-01

    Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting is the first proprietary manual for cleaning and rehabilitation through pressure-washing, hydro-blasting and ultra high pressure water jetting (UHP).   It examines the cleaning, restoration and rehabilitation of statuary and historical structures; manufacturing hardware; and application technologies for residential, commercial and industrial areas, structures and buildings. Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting contains over 450 applications from agricultural, marine, municipal, food processing, paper-pulp, pharmaceutical and cosmetic, industrial and power generating maintenance areas. It includes gear lists to help readers easily identify the appropriate tooling and equipment for each specific application and industry.   Commercial-Industrial Cleaning, by Pressure-Washing, Hydro-Blasting and UHP-Jetting supplies readers with the tools to create a successful business model for re...

  6. Influence of ambient air pressure on impact pressure caused by breaking waves

    NARCIS (Netherlands)

    Moutzouris, C.

    1979-01-01

    Engineers are interested in the dynamics of the interface waterstructure. In case of breaking of water waves on a structure high positive and sometimes negative pressures of very short duration occur. Not only the maxima and minima of the pressures on the structure are important to a designing engin

  7. Modeling blast waves, gas and particles dispersion in urban and hilly ground areas.

    Science.gov (United States)

    Hank, S; Saurel, R; Le Métayer, O; Lapébie, E

    2014-09-15

    The numerical simulation of shock and blast waves as well as particles dispersion in highly heterogeneous media such as cities, urban places, industrial plants and part of countries is addressed. Examples of phenomena under study are chemical gas products dispersion from damaged vessels, gas dispersion in urban places under explosion conditions, shock wave propagation in urban environment. A three-dimensional simulation multiphase flow code (HI2LO) is developed in this aim. To simplify the consideration of complex geometries, a heterogeneous discrete formulation is developed. When dealing with large scale domains, such as countries, the topography is considered with the help of elevation data. Meteorological conditions are also considered, in particular regarding complex temperature and wind profiles. Heat and mass transfers on sub-scale objects, such as buildings, trees and other obstacles are considered as well. Particles motion is addressed through a new turbulence model involving a single parameter to describe accurately plumes. Validations against experiments in basic situations are presented as well as examples of industrial and environmental computations. PMID:25199503

  8. Dynamic Wave Pressures on Deeply Embedded Large Cylindrical Structures due to Random Waves

    Institute of Scientific and Technical Information of China (English)

    刘海笑; 唐云; 周锡礽

    2003-01-01

    The response of dynamic wave pressures on structures would be more complicated and bring about new phenomena under the dynamic interaction between soil and structure. In order to better understand the response characteristics on deeply embedded large cylindrical structures under random waves, and accordingly to offer valuable findings for engineering, the authors designed wave flume experiments to investigate comparatively dynamic wave pressures on a single and on continuous cylinders with two different embedment depths in response to two wave spectra.The time histories of the water surface elevation and the corresponding dynamic wave pressures exerted on the cylinder were analyzed in the frequency domain. By calculating the transfer function and spectral density for dynamic wave pressures along the height and around the circumference of the cylinder, experimental results of the single cylinder were compared with the theoretical results based on the linear diffraction theory, and detailed comparisons were also carried out between the single and continuous cylinders. Some new findings and the corresponding analysis are reported in present paper. The investigation on continuous cylinders will be used in particular for reference in engineering applications because information is scarce on studying such kind of problem both analytically and experimentally.

  9. Afterglow emission in Gamma-Ray Bursts: I. Pair-enriched ambient medium and radiative blast waves

    CERN Document Server

    Nava, L; Ghisellini, G; Celotti, A; Ghirlanda, G

    2012-01-01

    Forward shocks caused by the interaction between a relativistic blast wave and the circum-burst medium are thought to be responsible for the afterglow emission in Gamma-Ray Bursts (GRBs). We consider the hydrodynamics of a spherical relativistic blast wave expanding into the surrounding medium and we generalize the standard theory in order to account for several effects that are generally ignored. In particular, we consider the role of adiabatic and radiative losses on the hydrodynamical evolution of the shock, under the assumption that the cooling losses are fast. Our model can describe adiabatic, fully radiative and semi-radiative blast waves, and can describe the effects of a time-varying radiative efficiency. The equations we present are valid for arbitrary density profiles, and also for a circum-burst medium enriched with electron-positron pairs. The presence of pairs enhances the fraction of shock energy gained by the leptons, thus increasing the importance of radiative losses. Our model allows to study...

  10. Pressure induced Superconductivity in the Charge Density Wave Compound Tritelluride

    Energy Technology Data Exchange (ETDEWEB)

    Hamlin, J.J.; Zocco, D.A.; Sayles, T.A.; Maple, M.B.; /UC, Davis; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2010-02-15

    A series of high-pressure electrical resistivity measurements on single crystals of TbTe{sub 3} reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave order. The onset of superconductivity reaches a maximum of almost 4 K (onset) near {approx} 12.4 GPa.

  11. Attenuation characteristics of nonlinear pressure waves propagating in pipes

    Science.gov (United States)

    Shih, C. C.

    1974-01-01

    A series of experiments was conducted to investigate temporal and spatial velocity distributions of fluid flow in 3-in. open-end pipes of various lengths up to 210 ft, produced by the propagation of nonlinear pressure waves of various intensities. Velocity profiles across each of five sections along the pipes were measured as a function of time with the use of hot-film and hot-wire anemometers for two pressure waves produced by a piston. Peculiar configurations of the velocity profiles across the pipe section were noted, which are uncommon for steady pipe flow. Theoretical consideration was given to this phenomenon of higher velocity near the pipe wall for qualitative confirmation. Experimentally time-dependent velocity distributions along the pipe axis were compared with one-dimensional theoretical results obtained by the method of characteristics with or without diffusion term for the purpose of determining the attenuation characteristics of the nonlinear wave propagation in the pipes.

  12. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves

    OpenAIRE

    Shetty, Ashok K.

    2014-01-01

    Mild traumatic brain injury (mTBI) resulting from exposure to blast shock waves (BSWs) is one of the most predominant causes of illnesses among veterans who served in the recent Iraq and Afghanistan wars. Such mTBI can also happen to civilians if exposed to shock waves of bomb attacks by terrorists. While cognitive problems, memory dysfunction, depression, anxiety and diffuse white matter injury have been observed at both early and/or delayed time-points, an initial brain pathology resulting ...

  13. Blast-wave-sphere interaction using a laser-produced plasma: an experiment motivated by supernova 1987A.

    Science.gov (United States)

    Kang, Y G; Nishihara, K; Nishimura, H; Takabe, H; Sunahara, A; Norimatsu, T; Nagai, K; Kim, H; Nakatsuka, M; Kong, H J; Zabusky, N J

    2001-10-01

    We present x-ray shadowgraphs from a high Mach number ( approximately 20) laboratory environment that simulate outward flowing ejecta matter from supernovae that interact with ambient cloud matter. Using a laser-plastic foil interaction, we generate a "complex" blast wave (a supersonic flow containing forward and reverse shock waves and a contact discontinuity between them) that interacts with a high-density (100 times ambient) sphere. The experimental results, including vorticity localization, compare favorably with two-dimensional axisymmetric hydrodynamic simulations. PMID:11690182

  14. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors

    OpenAIRE

    Feddema, Rick Thomas

    2013-01-01

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas...

  15. Evaluation of space radius formed by blasting pressure with linear charges

    Institute of Scientific and Technical Information of China (English)

    LIN Da-neng; CHEN Shou-ru; XIE Sheng-quan

    2005-01-01

    Based on the mechanism analysis of space form caused by blasting with linear charges, elastic-plastic model of space form caused by blasting was established in this paper. In terms of state equation of blasting and the balance of quality, evaluation formula based on elastic-plastic to estimate space diameter caused by blasting with linear charges was given. The procedure structure of evaluation was introduced. We did 18 experiments on situ and compared experiments results with evaluation ones. They are correspondent very well. Then a new method of evaluating underground space diameters caused by blasting with linear charges was given. The method has more great guidance significance to the optimism plan of the new blasting technology that utilizes the explosion effect of the explosive to compact the soil to form the underground space.

  16. Time-dependent and radiation field effects on collisional-radiative simulations of radiative properties of blast waves launched in clusters of xenon

    Science.gov (United States)

    Rodriguez, R.; Espinosa, G.; Gil, J. M.; Rubiano, J. G.; Mendoza, M. A.; Martel, P.; Minguez, E.; Symes, D. R.; Hohenberger, M.; Smith, R. A.

    2015-12-01

    Radiative shock waves are ubiquitous throughout the universe and play a crucial role in the transport of energy into the interstellar medium. This fact has led to many efforts to scale the astrophysical phenomena to accessible conditions. In some laboratory experiments radiative blast waves are launched in clusters of gases by means of the direct deposition of the laser energy. In this work, by using a collisional-radiative model, we perform an analysis of the plasma level populations and radiative properties of a blast wave launched in a xenon cluster. In particular, for both the shocked and unshocked material, we study the influence of different effects such as LTE, steady-state or time-dependent NLTE simulations, plasma self-absorption or external radiation field in the determination of those properties and also in the diagnosis of the electron temperature of the blast wave.

  17. Ultra-high-energy cosmic ray acceleration by relativistic blast waves

    CERN Document Server

    Gallant, Y A; Gallant, Yves A.; Achterberg, Abraham

    1999-01-01

    We consider the acceleration of charged particles at the ultra-relativistic shocks, with Lorentz factors \\Gamma_s >> 1 relative to the upstream medium, arising in relativistic fireball models of gamma-ray bursts (GRBs). We show that for Fermi-type shock acceleration, particles initially isotropic in the upstream medium can gain a factor of order \\Gamma_s^2 in energy in the first shock crossing cycle, but that the energy gain factor for subsequent shock crossing cycles is only of order 2, because for realistic deflection processes particles do not have time to re-isotropise upstream before recrossing the shock. We evaluate the maximum energy attainable and the efficiency of this process, and show that for a GRB fireball expanding into a typical interstellar medium, these exclude the production of ultra-high-energy cosmic rays (UHECRs), with energies in the range 10^{18.5} - 10^{20.5} eV, by the blast wave. We propose, however, that in the context of neutron star binaries as the progenitors of GRBs, relativisti...

  18. Spectral properties of blast-wave models of gamma-ray burst sources

    Science.gov (United States)

    Meszaros, P.; Rees, M. J.; Papathanassiou, H.

    1994-01-01

    We calculate the spectrum of blast-wave models of gamma-ray burst sources, for various assumptions about the magnetic field density and the relativistic particle acceleration efficiency. For a range of physically plausible models we find that the radiation efficiency is high and leads to nonthermal spectra with breaks at various energies comparable to those observed in the gamma-ray range. Radiation is also predicted at other wavebands, in particular at X-ray, optical/UV, and GeV/TeV energies. We discuss the spectra as a function of duration for three basic types of models, and for cosmological, halo, and galactic disk distances. We also evaluate the gamma-ray fluences and the spectral characteristics for a range of external densities. Impulsive burst models at cosmological distances can satisfy the conventional X-ray paucity constraint S(sub x)/S(sub gamma)less than a few percent over a wide range of durations, but galactic models can do so only for bursts shorter than a few seconds, unless additional assumptions are made. The emissivity is generally larger for bursts in a denser external environment, with the efficiency increasing up to the point where all the energy input is radiated away.

  19. Reflection and Diffraction Phenomena of Blast Wave Propagation in Nuclear Fuel Cycle Facility

    Science.gov (United States)

    Miura, Akihiko; Matsuo, Akiko; Mizukaki, Toshiharu; Shiraishi, Takuya; Utsunomiya, Go; Takayama, Kazuyoshi; Nojiri, Ichiro

    This paper presents the results of an optical experiment which is carried out to measure the pressure and to observe the wave propagations when an explosion occurs in a model of a nuclear facility for preventing and mitigating the serious damage of nuclear facility. Numerical simulation is also performed to compare the phenomena in a model of nuclear facility. Nuclear facility is simulated as the several closed rooms in these experiments and simulations, because the nuclear facility is composed of many closed rooms. As a result, typical tendencies of pressure history are obtained, and it is confirmed that the explosion which occurs in a closed space is reflected in the complexity at the walls and interfered mutually with progressing waves. Finally, experimental results are compared with a numerical simulation. It is confirmed that the results of a numerical simulation show a good agreement with experimental results.

  20. Dissipation of Impact Stress Waves within the Artificial Blasting Damage Zone in the Surrounding Rocks of Deep Roadway

    Directory of Open Access Journals (Sweden)

    Jianguo Ning

    2016-01-01

    Full Text Available Artificial explosions are commonly used to prevent rockburst in deep roadways. However, the dissipation of the impact stress wave within the artificial blasting damage zone (ABDZ of the rocks surrounding a deep roadway has not yet been clarified. The surrounding rocks were divided into the elastic zone, blasting damage zone, plastic zone, and anchorage zone in this research. Meanwhile, the ABDZ was divided into the pulverizing area, fractured area, and cracked area from the inside out. Besides, the model of the normal incidence of the impact stress waves in the ABDZ was established; the attenuation coefficient of the amplitude of the impact stress waves was obtained after it passed through the intact rock mass, and ABDZ, to the anchorage zone. In addition, a numerical simulation was used to study the dynamic response of the vertical stress and impact-induced vibration energy in the surrounding rocks. By doing so, the dissipation of the impact stress waves within the ABDZ of the surrounding rocks was revealed. As demonstrated in the field application, the establishment of the ABDZ in the surrounding rocks reduced the effect of the impact-induced vibration energy on the anchorage support system of the roadway.

  1. Effectiveness of eye armor during blast loading.

    Science.gov (United States)

    Bailoor, Shantanu; Bhardwaj, Rajneesh; Nguyen, Thao D

    2015-11-01

    Ocular trauma is one of the most common types of combat injuries resulting from the interaction of military personnel with improvised explosive devices. Ocular blast injury mechanisms are complex, and trauma may occur through various injury mechanisms. However, primary blast injuries (PBI) are an important cause of ocular trauma that may go unnoticed and result in significant damage to internal ocular tissues and visual impairment. Further, the effectiveness of commonly employed eye armor, designed for ballistic and laser protection, in lessening the severity of adverse blast overpressures (BOP) is unknown. In this paper, we employed a three-dimensional (3D) fluid-structure interaction computational model for assessing effectiveness of the eye armor during blast loading on human eyes and validated results against free field blast measurements by Bentz and Grimm (2013). Numerical simulations show that the blast waves focused on the ocular region because of reflections from surrounding facial features and resulted in considerable increase in BOP. We evaluated the effectiveness of spectacles and goggles in mitigating the pressure loading using the computational model. Our results corroborate experimental measurements showing that the goggles were more effective than spectacles in mitigating BOP loading on the eye. Numerical results confirmed that the goggles significantly reduced blast wave penetration in the space between the armor and the eyes and provided larger clearance space for blast wave expansion after penetration than the spectacles. The spectacles as well as the goggles were more effective in reducing reflected BOP at higher charge mass because of the larger decrease in dynamic pressures after the impact. The goggles provided greater benefit of reducing the peak pressure than the spectacles for lower charge mass. However, the goggles resulted in moderate, sustained elevated pressure loading on the eye, that became 50-100% larger than the pressure loading

  2. Development of high-pressure dry ice blasting method for decontamination. 4. Application test for barrel type dry ice blasting method

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichirou; Ishijima, Noboru; Morishita, Yoshitsugu; Tanimoto, Ken-ichi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-07-01

    In order to decrease radioactivity of high-level radioactive wastes to low-level (lower than 500 {mu} Sv/h), the dry-ice blasting method has been developing. This method can decontaminate radioactive wastes up to 10{sup 2} in decontamination factor, and can minimize the secondary generated wastes. The barrel type method can decontaminate smaller solid wastes with preventing the scattering of the wastes due to blast pressure. In this work, application test was conducted to improve the decontamination capability of the barrel type method, with using the improved barrel device. Results are as follows. (1) Stirring ability of the barrel device was improved by installing plates in the barrel. Four plates with 10 mm in height were better for optimal stirring. (2) Reciprocating of the blasting nozzle stabilized decontamination capability of the barrel device. Forty per a minute in reciprocation rate of the nozzle was better. (3) Decontamination capability was examined with using test pieces coated with the cesium molybdate, which was simulating the typical contamination of radioactive waste. As a result, 80% of contamination was removed by the optimized barrel type method. (4) Dust collector was frozen within a few minutes, and exhaust flow rate was decreased by about 15%. However, by exhausting room temperature air, dust collector was unfrozen, and the flow rate could be recovered. (5) Decontamination capabilities of two types of dry ice pellets were compared. They were made by an oil hydraulic pressing or a roller pressing. Former pellet was three times as capable as latter one. (author)

  3. 一种新型防护结构对爆炸冲击波的衰减研究%Research on attenuation characteristic of blast wave for a new projective structure

    Institute of Scientific and Technical Information of China (English)

    边小华; 杨飞

    2011-01-01

    运用大型有限元软件LS-DYNA,在相同爆炸冲击波作用下,对坑道口部普通钢板防护门前面不设置泡沫铝缓冲层和设置泡沫铝缓冲层两种情况分别进行了数值模拟和对比分析,结果表明:泡沫铝缓冲层对爆炸冲击波峰值压力有着良好的衰减特性,对坑道口部抗爆炸冲击波设计有着一定的参考价值。%Using the finite element software LS-DYNA, under the same blast wave loading, numerical simulation is respectively clone for the response of general steel defensive structure and steel defensive structure with aluminum foam buffer before general steel. Comparative analysis is made with numerical simulation' s result of the two defensive structure. The result shows that steel defensive structure with aluminum foam buffer behind general steel has a good attenuation characteristic for peak pressure of blast wave. It is proved that the new defensive structure is worth applying in anti-blast design of the entrance of tunnel.

  4. Shock wave velocity and shock pressure for low density powders : A novel approach

    NARCIS (Netherlands)

    Dijken, D.K.; Hosson, J.Th.M. De

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod

  5. SHOCK-WAVE VELOCITY AND SHOCK PRESSURE FOR LOW-DENSITY POWDERS - A NOVEL-APPROACH

    NARCIS (Netherlands)

    DIJKEN, DK; DEHOSSON, JTM

    1994-01-01

    A novel approach is presented to predict the shock wave velocity as well as the shock wave pressure in powder materials. It is shown that the influence of the specific volume behind the shock wave on shock wave velocity and shock pressure decreases with decreasing initial powder density. The new mod

  6. Evaluation and performance enhancement of a pressure transducer under flows, waves, and a combination of flows and waves

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, J.A.E.; Foden, P.; Taylor, K.; McKeown, J.; Desa, E.

    The performance of a pressure transducer, with its inlet attached to differing hydromechanical front ends, has been evaluated in flow flume and wave flume experiments in which laminar and turbulent flows, and regular progressive gravity waves...

  7. Pressure wave model for action potential propagation in excitable cells

    CERN Document Server

    Rvachev, M M

    2003-01-01

    Speed of propagation of small-amplitude pressure waves through the cytoplasmic interior of myelinated and unmyelinated axons of different diameters is theoretically estimated and is found to generally agree with the action potential (AP) conduction velocities. This remarkable coincidence allows to surmise a model in which AP spread along axon is propelled not by straggling ionic currents as in the widely accepted local circuit theory, but by mechanoactivation of the membrane ion channels by a traveling pressure pulse. Hydraulic pulses propagating in the viscous axoplasm are calculated to decay over ~1 mm distances, and it is further hypothesized that it is the role of influxing during the AP calcium ions to activate membrane skeletal protein network attached to the membrane cytoplasmic side for a brief radial contraction amplifying the pressure pulse and preventing its decay. The model correctly predicts that the AP conduction velocity should vary as the one-half power of axon diameter for large unmyelinated ...

  8. Minimisation of the explosion shock wave load onto the occupants inside the vehicle during trinitrotoluene charge blast.

    Science.gov (United States)

    Krzystała, Edyta; Mężyk, Arkadiusz; Kciuk, Sławomir

    2016-01-01

    The aim of this study was to elaborate identification method of crew overload as a result of trinitrotoluene charge explosion under the military wheeled vehicle. During the study, an experimental military ground research was carried out. The aim of this research was to verify the mine blast resistance of the prototype wheeled vehicle according to STANG 4569 as well as the anti-explosive seat. Within the work, the original methodology was elaborated along with a prototype research statement. This article presents some results of the experimental research, thanks to which there is a possibility to estimate the crew's lives being endangered in an explosion through the measurement of acceleration as well as the pressure on the chest, head and internal organs. On the basis of our acceleration results, both effectiveness and infallibility of crew protective elements along with a blast mitigation seat were verified. PMID:25307173

  9. DYNAMICS AND AFTERGLOW LIGHT CURVES OF GAMMA-RAY BURST BLAST WAVES WITH A LONG-LIVED REVERSE SHOCK

    International Nuclear Information System (INIS)

    We perform a detailed study on the dynamics of a relativistic blast wave with the presence of a long-lived reverse shock (RS). Although a short-lived RS has been widely considered, the RS is believed to be long-lived as a consequence of a stratification expected on the ejecta Lorentz factors. The existence of a long-lived RS causes the forward shock (FS) dynamics to deviate from a self-similar Blandford-McKee solution. Employing the ''mechanical model'' that correctly incorporates the energy conservation, we present an accurate solution for both the FS and RS dynamics. We conduct a sophisticated calculation of the afterglow emission. Adopting a Lagrangian description of the blast wave, we keep track of an adiabatic evolution of numerous shells between the FS and RS. An evolution of the electron spectrum is also followed individually for every shell. We then find the FS and RS light curves by integrating over the entire FS and RS shocked regions, respectively. Exploring a total of 20 different ejecta stratifications, we explain in detail how a stratified ejecta affects its blast wave dynamics and afterglow light curves. We show that, while the FS light curves are not sensitive to the ejecta stratifications, the RS light curves exhibit much richer features, including steep declines, plateaus, bumps, re-brightenings, and a variety of temporal decay indices. These distinctive RS features may be observable if the RS has higher values of the microphysics parameters than the FS. We discuss possible applications of our results in understanding the gamma-ray burst afterglow data.

  10. Prediction of near field overpressure from quarry blasting

    OpenAIRE

    Segarra Catasús, Pablo; Domingo Perlado, Jesus Felix; López Sánchez, Lina María; Sanchidrián Blanco, José Angel; Ortega Romero, Marcelo

    2010-01-01

    This paper investigates the propagation of airblast or pressure waves in air produced by bench blasting (i.e. detonation of the explosive in a row of blastholes, breaking the burden of rock towards the free vertical face of the block). Peak overpressure is calculated as a function of blasting parameters (explosive mass per delay and velocity at which the detonation sequence proceeds along the bench) and the polar coordinates of the position of interest (distance to the source and azimuth with...

  11. Development of a Liquid Blast Tube Facility for Material Testing

    Science.gov (United States)

    Samuelraj, I. Obed; Jagadeesh, G.

    The feasibility of mitigating blast/shock loads using materials such as composites and foams is well known. In order to study their attenuation characteristics and to optimize the mitigation of such loads, use of shock tube to generate an exponentially decaying pressure profile (called blast tube here) is a popular technique. Shock waves in liquids (e.g., water), particularly, are capable of meeting this requirement as they are stronger and also uniform [1].

  12. Shock wave synthesis of γ-Si3[O,N]4 in the new Freiberg blasting facility under different conditions

    Science.gov (United States)

    Renno, A. D.; Schlothauer, T.; Schwarz, M. R.; Heide, G.; Kroke, E.

    2011-12-01

    The new subterranean blasting facility at the TU Bergakademie Freiberg allows experiments at elevated capacities of 20 kg C4-equivalent. The new installation permits the investigation of phase transitions of γ Si3N4 under dynamic loading. We studied the influence of plate thickness (shock duration) and different precursor-pressure powder (Cu, NaCl) mixtures at charge masses between 2000 and 20.000 g C4. Systematic studies showed that the Mach-reflection (so called "upstreaming jetting phenomena") is of vital importance for the synthesis success, due to the fact that the T-p ratio will increase dramatically [Milyavskii et al., 2006]. We synthesized pure γ-Si3[O,N]4 from H-bearing precursors at pressures > 25 GPa [Schlothauer et al., 2011]. The phase transition Si2N2NH into γ-Si3[O,N]4 is completely reconstructive and requires a high temperature-pressure-ratio of 176 K/GPa at pressures up to 35 GPa. Despite the high energy density during the shock wave synthesis process it will be inevitable to prepare the samples under an inert nitrogen atmosphere. References Milyavskii, V. V., V. E. Fortov, A. A. Frolova, K. V. Khishchenko, A. A. Charakhch'yan, and L. V. Shurshalov (2006), Calculation of shock compression of porous media in conical solid-state targets with an outlet hole, Computational Mathematics and Mathematical Physics, 46(5), 873 890. Schlothauer, T., M. R. Schwarz, M. Ovidiu, E. Brendler, R. Moeckel, E. Kroke, and G. Heide (2011), Shock wave synthesis of oxygen-bearing spinel-type silicon nitride (g-Si3(O,N)4 in the pressurerange from 30 to 72 GPa with high purity, in Minerals as Advanced Materials II, edited by S. V. Krivovichev, pp. 389 401, Springer. Berlin Heidelberg.

  13. The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miles, A

    2004-04-27

    In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Aspects of the IC's are shown to have a strong effect on the time to transition to the quasi-self-similar regime. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. We point to recent stellar calculations that predict IC's we find incompatible with self-similarity, and

  14. Skull Flexure from Blast Waves: A New Mechanism for Brain Injury with Implications for Helmet Design

    CERN Document Server

    Moss, William C; Blackman, Eric G

    2008-01-01

    Traumatic brain injury [TBI] has become the signature injury of current military conflicts. The debilitating effects of TBI on society are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various mechanisms, including impacts caused by the blast, have been investigated, but blast-induced deformation of the skull has been neglected. Through the use of hydrodynamical numerical simulations, we have discovered that non-lethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. This mechanism has implications for the diagnosis of TBI in soldiers and the design of protective equipment such as helmets.

  15. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    Energy Technology Data Exchange (ETDEWEB)

    IceCube Collaboration; Klein, Spencer

    2009-06-04

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  16. Characteristics of rocky massif in aspect of intensity from seismic waves associated with blasting

    OpenAIRE

    Dambov, Risto; Mircovski, Vojo

    2014-01-01

    In previous studies carried out on a large number of scientists and experts in these area that connects the physical laws of oscillation of the ground and blasting as the mining operation, it was found that the oscillation of the ground and the intensity of seismic tremors caused by blasting series depend of the physical – mechanical characteristics of the rock massif. This physical – mechanical characteristics are related to their geological structure and the secondary deforma...

  17. Nonlinear Modeling and Analysis of Pressure Wave inside CEUP Fuel Pipeline

    Directory of Open Access Journals (Sweden)

    Qaisar Hayat

    2014-01-01

    Full Text Available Operating conditions dependent large pressure variations are one of the working characteristics of combination electronic unit pump (CEUP fuel injection system for diesel engines. We propose a precise and accurate nonlinear numerical model of pressure inside HP fuel pipeline of CEUP using wave equation (WE including both viscous and frequency dependent frictions. We have proved that developed hyperbolic approximation gives more realistic description of pressure wave as compared to classical viscous damped wave equation. Frictional effects of various frequencies on pressure wave have been averaged out across valid frequencies to represent the combined effect of all frequencies on pressure wave. Dynamic variations of key fuel properties including density, acoustic wave speed, and bulk modulus with varying pressures have also been incorporated. Based on developed model we present analysis on effect of fuel pipeline length on pressure wave propagation and variation of key fuel properties with both conventional diesel and alternate fuel rapeseed methyl ester (RME for CEUP pipeline.

  18. Blast-Induced Damage on Millisecond Blasting Model Test with Multicircle Vertical Blastholes

    OpenAIRE

    Qin-yong Ma; Pu Yuan; Jing-shuang Zhang; Rui-qiu Ma; Bo Han

    2015-01-01

    To investigate the blast-induced damage effect on surrounding rock in vertical shaft excavation, 4 kinds of millisecond blasting model tests with three-circle blastholes were designed and carried out with excavation blasting in vertical shaft as the background. The longitudinal wave velocity on the side of concrete model was also measured before and after blasting. Then blast damage factor was then calculated by measuring longitudinal wave velocity before and after blasting. The test results ...

  19. Impact Pressure of Incident Regular Waves and Irregular Waves on the Subface of Open-Piled Structures

    Institute of Scientific and Technical Information of China (English)

    任冰; 王永学

    2004-01-01

    This paper presents the results of comparison of impact pressures on open-plied structures induced by regular waves and irregular waves in a laboratory channel. Regular waves with wave heights ranging from 0.1 ~ 0.2 m and periods ranging from 1.0 ~ 2.0 s are tested. The target spectrm for the irregular wave is JONSWAP spectrum. Irregular waves with significant wave heights in the range of 0.10 ~ 0.25 m and peak periods in the range of 1.0 ~ 2.0 s are tested. The relative clearance s/H1/3(H) is between - 0.1 and 0.4, s being the subface level of structure model above the still water level. Time series of impact pressure are analyzed to indicate whether the property of impact pressures induced by the regular wave significantly deviates from that by the irregular wave. The distribution of the impact pressure along the underside of the structure is compared for different types of incident waves. The effects of wave parameters, structure dimension and structure clearance on the impact pressure are also discussed.

  20. Microsecond evolution of laser driven blast waves, the influence of shock asymmetries and the resulting development of magnetic fields

    Science.gov (United States)

    Tubman, Eleanor; Crowston, R.; Lam, G.; Dimoline, G.; Alraddadi, R.; Doyle, H.; Meinecke, J.; Cross, J.; Bolis, R.; Lamb, D.; Tzeferacos, P.; Doria, D.; Reville, B.; Ahmed, H.; Borghesi, M.; Gregori, G.; Woolsey, N.

    2015-11-01

    The ability to recreate scaled conditions of a supernova remnant within a laboratory environment is of great interest for informing the understanding of the evolution of galactic magnetic fields. The experiments rely on a near point explosion driven by one sided laser illumination producing a plasma, surrounded by a background gas. The subsequent shock and blast waves emerge following an initial ballistic phase into a self-similar expansion. Studies have been undertaken into the evolution of shock asymmetries which lead to magnetic field generation via the Biermann battery mechanism. Here we use the Vulcan laser facility, with targets such as carbon rods and plastic spheres placed in ambient gases of argon, helium or hydrogen, to produce the blast waves. These conditions allow us to study the asymmetries of the shocks using multi-frame imaging cameras, interferometry, and spectroscopy, while measuring the resulting magnetic fields with B-dot probes. The velocity of the shock and the temporal resolution of the asymmetries can be acquired on a single shot by the multi-framing cameras, and comparison with the measured B-dot fields allow for detailed inferences to be made.

  1. Spalling of concrete walls under blast load

    International Nuclear Information System (INIS)

    A common effect of the detonation of explosives in close proximity of concrete shield walls is the spalling (scabbing) of the back face of the wall. For explosions close-in to the wall, where the reflected blast wave pressures are sufficiently high, multiple spall layers are formed. Successive spall layers are of increasing thickness, at the same time the spall velocities decrease. For a given wall configuration and peak blast wave pressure the spall thickness scales directly with the cube root of the charge weight. The spall velocities on the other hand, which are proportional to the impulse trapped in the spall layer, vary only slightly with charge weight due to minor differences of shock attenuation in the wall. For a given charge weight, the spall thickness increases with stand-off distance from the wall and the spall velocity decreases. For fixed charge stand-off distance the spall thicknesses decrease as the charge weight is increased, at the same time spall velocities increase. This is caused by the steeper pressure decay associated with higher blast wave pressures. Fixing the charge parameters, spall thicknesses increase slightly as the wall thickness is increased. The opposite holds for the spalling velocities. As the angle of incidence for the blast wave increases the spall thicknesses increase also. Again the corresponding spall velocities decrease. Assuming elastic concrete behavior, no spalling will occur for angles of shock wave incidence greater than 450. A phase reversal of the reflection coefficient occurs at this point, thus the longitudinal wave reflected at the free surface becomes a compression wave

  2. Wave-Induced Pressure Under an Internal Solitary Wave and Its Impact at the Bed

    Science.gov (United States)

    Rivera, Gustavo; Diamesis, Peter; Jenkins, James; Berzi, Diego

    2015-11-01

    The bottom boundary layer (BBL) under a mode-1 internal solitary wave (ISW) of depression propagating against an oncoming model barotropic current is examined using 2-D direct numerical simulation based on a spectral multidomain penalty method model. Particular emphasis is placed on the diffusion into the bed of the pressure field driven by the wake and any near-bed instabilities produced under specific conditions. To this end, a spectral nodal Galerkin approach is used for solving the diffusion equation for the wave-induced pressure. At sufficiently high ISW amplitude, the BBL undergoes a global instability which produces intermittent vortex shedding from within the separation bubble in the lee of the wave. The interplay between the bottom shear stress field and pressure perturbations during vortex ejection events and the subsequent evolution of the vortices is examined. The potential for bed failure upon the passage of the ISW trough and implications for resuspension of bottom particulate matter are both discussed in the context of specific sediment transport models.

  3. Surface recrystallization of a Ni_3Al based single crystal superalloy at different annealing temperatures and blasting pressure

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The effects of annealing temperature and grit blasting pressure on the recrystallization behavior of a Ni3Al based single crystal superalloy were studied in this work. The results show that the precipitation of the Y-NiMo phase occurs at 900 and 1000 °C, which precedes recrystallization. The initial recrystallization temperature was between 1000 and 1100 °C. Cellular recrystallization was formed at 1100 and 1200 °C, which consisted of large columnar γ′ and fine γ + γ′. The dendrite arm closed to the interde...

  4. A Comparison of Measured and Predicted Wave-Impact Pressures from Breaking and Non-breaking Waves

    CERN Document Server

    Fullerton, Anne M; Brewton, Susan; Brucker, Kyle A; O'Shea, Thomas T; Dommermuth, Douglas G

    2014-01-01

    Impact loads from waves on vessels and coastal structures are complex and may involve wave breaking, which has made these loads difficult to estimate numerically or empirically. Results from previous experiments have shown a wide range of forces and pressures measured from breaking and nonbreaking waves, with no clear trend between wave characteristics and the localized forces and pressures that they generate. In 2008, a canonical breaking wave impact data set was obtained at the Naval Surface Warfare Center, Carderock Division, by measuring the distribution of impact pressures of incident nonbreaking and breaking waves on one face of a cube. This experimental effort was sponsored by the Office of Naval Research (ONR), under the Dynamics of Interacting Platforms Program, Program Manager Dr. Ron Joslin. The effects of wave height, wavelength, face orientation, face angle, and submergence depth were investigated. Additionally, a limited number of runs were made at low forward speeds, ranging from about 0.5 to 2...

  5. Internal wave pressure, velocity, and energy flux from density perturbations

    Science.gov (United States)

    Allshouse, Michael R.; Lee, Frank M.; Morrison, Philip J.; Swinney, Harry L.

    2016-05-01

    Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field J =p u , which requires simultaneous measurements of the pressure and velocity perturbation fields p and u , respectively. We present a method for obtaining the instantaneous J (x ,z ,t ) from density perturbations alone: A Green's function-based calculation yields p ; u is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: The Green's function method is applied to the density perturbation field from the simulations and the result for J is found to agree typically to within 1% with J computed directly using p and u from the Navier-Stokes simulation. We also apply the Green's function method to density perturbation data from laboratory schlieren measurements of internal waves in a stratified fluid and the result for J agrees to within 6 % with results from Navier-Stokes simulations. Our method for determining the instantaneous velocity, pressure, and energy flux fields applies to any system described by a linear approximation of the density perturbation field, e.g., to small-amplitude lee waves and propagating vertical modes. The method can be applied using our matlab graphical user interface EnergyFlux.

  6. Wave-induced stresses and pore pressures near a mudline

    Directory of Open Access Journals (Sweden)

    Andrzej Sawicki

    2008-12-01

    Full Text Available Conventional methods for the determination of water-wave induced stresses inseabeds composed of granular soils are based on Biot-type models, in which the soilskeleton is treated as an elastic medium. Such methods predict effective stressesin the soil that are unacceptable from the physical point of view, as they permittensile stresses to occur near the upper surface of the seabed. Therefore, in thispaper the granular soil is assumed to behave as an elastic-ideally plastic material,with the Coulomb-Mohr yield criterion adopted to bound admissible stress states inthe seabed. The governing equations are solved numerically by a~finite differencemethod. The results of simulations, carried out for the case of time-harmonicwater waves, illustrate the depth distributions of the excess pore pressures and theeffective stresses in the seabed, and show the shapes of zones of soil in the plastic state.~In particular, the effects on the seabed behaviour of suchparameters as the degree of pore water saturation, the soil permeability, and theearth pressure coefficient, are illustrated.

  7. An Inexpensive Arterial Pressure Wave Sensor and its application in different physiological condition

    CERN Document Server

    Sur, S; Sur, Shantanu

    2005-01-01

    Arterial Blood Pressure wave monitoring is considered to be important in assessment of cardiovascular system. We developed a novel pulse wave detection system using low frequency specific piezoelectric material as pressure wave sensor. The transducer detects the periodic change in the arterial wall diameter produced by pressure wave and the amplified signal after integration represents the pressure wave. The signal before integration is proportional to the rate of change of pressure wave and it not only reproduces the pressure waveform faithfully, but also its sharper nature helps to reliably detect the heart period variability (HPV). We have studied the position-specific (e.g. over carotid or radial artery) nature of change of this pulse wave signal (shape and amplitude) and also the changes at different physiological states.

  8. Mathematical Modeling of the Pressure Field Generated by Ocean Wave at the Bottom of the Ocean

    Institute of Scientific and Technical Information of China (English)

    龚沈光; 唐劲飞; 颜冰

    2002-01-01

    This paper develops a new method for calculating the pressure-tirme processof the pressure field generated by ocean wave at sea bottom based on the surface wavespectrum of the ocean wave. The basic assumptions of modeling are that the surfaceocean wave pressure equals to the atmospheric pressure and that the viscidity of seawater is neglected. The steps of modeling are described below. First the power spectraldensity of ocean wave is discretized and the amplitude spectra of harmonic ocean waveare obtained. Then the amplitude spectra of harmonic pressure are obtained accordingto the amplitude spectrum of surface wave and the depth of the sea. Finally, based onthe oceanographic theory of representing a fixed wave surface by summing up random-phase sinusoids, the pressure-time process of pressure field at sea bottom is obtained bysumming up the amplitude spectrum of pressure. The paper also develops a method ofdetermining the relationship between mean wave period and wave heights undershallow water condition, thus the pressure-time process of pressure field produced bynon-well-developed ocean wave can be directly calculated once the mean wave heightand period are known.

  9. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-14

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts. The debilitating effects of TBI are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various possibilities have been investigated, but blast-induced deformation of the skull has been neglected. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. The possibility that this mechanism may contribute to TBI has implications for the diagnosis of soldiers and the design of protective equipment such as helmets.

  10. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  11. Effect of the initial pressure of multicomponent bubble media on the characteristics of detonation waves

    Science.gov (United States)

    Sychev, A. I.

    2016-05-01

    The effect of the initial pressure of multicomponent bubble media on the conditions of initiation, the structure, the velocity, and the pressure of detonation waves is experimentally studied. The variation of the initial pressure of a bubble medium is found to be an effective method to control the parameters of bubble detonation waves.

  12. Air-Decking Technique in Bench Blasting

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong-bing; LU Wen-bo; WU Liang

    2006-01-01

    The mechanism and the design parameters of blasting with air-decking are studied. The theory of detonation waves is used to investigate the processes of the one-dimensional plane detonation wave within a borehole. The interaction of the rarefaction wave with an interface and reflection on a rigid wall is also analyzed. The same courses of the shock wave are also investigated. This decides the distribution of the pressure of the explosion products changing with time along the borehole. Based on the above theoretical analysis, two conditions should be met for a reasonable range of values of the air-decking ratio in blasting rock. First, the rarefaction wave from the contact interface between detonation products and air reaches the bottom earlier than that of the reflected shock wave from the end of the stemming. Second,the reflected shock wave reaches the contact interface between the detonation products and air earlier than that of the reflected rarefaction wave from the bottom of the borehole. Finally, the reasonable value of the air-decking ratio must be decided theoretically in air-decking blasting. For different explosives, the reasonable range of air-decking ratio varies from 0.15 to 0.4. This result is well consistent with what was obtained by previous researchers.

  13. Blast Overpressure Waves Induce Transient Anxiety and Regional Changes in Cerebral Glucose Metabolism and Delayed Hyperarousal in Rats

    OpenAIRE

    Awwad, Hibah O.; Gonzalez, Larry P.; Tompkins, Paul; Lerner, Megan; Brackett, Daniel J.; Awasthi, Vibhudutta; Standifer, Kelly M.

    2015-01-01

    Physiological alterations, anxiety, and cognitive disorders are strongly associated with blast-induced traumatic brain injury (blast TBI), and are common symptoms in service personnel exposed to blasts. Since 2006, 25,000–30,000 new TBI cases are diagnosed annually in U.S. Service members; increasing evidence confirms that primary blast exposure causes diffuse axonal injury and is often accompanied by altered behavioral outcomes. Behavioral and acute metabolic effects resulting from blast to ...

  14. Seismic source mechanisms for quarry blasts: modelling observed Rayleigh and Love wave radiation patterns from a Texas quarry

    Science.gov (United States)

    McLaughlin, Keith L.; Bonner, Jessie L.; Barker, Terrance

    2004-01-01

    A theoretical understanding of the mechanisms by which quarry blasts excite seismic waves is useful in understanding how quarry blast discriminants may be transported from one region to another. An experiment in Texas with well-placed seismic stations and a cooperative blasting engineer has shed light on some of the physical mechanisms of seismic excitation at short periods (0.1-3 Hz). Azimuthal radiation patterns of the 0.2-3 Hz Rayleigh and Love waves are diagnostic of two proposed mechanisms for non-isotropic radiation from quarry blasts. Observations show that the Love and Rayleigh wave radiation patterns depend upon the orientation of the quarry benches. Two possible mechanisms for non-isotropic radiation are (1) the lateral throw of spalled material and (2) the presence of the topographic bench in the quarry. The spall of material can be modelled by vertical and horizontal forces applied to the free surface with time functions proportional to the derivative of the momentum of the spalled material. We use wavenumber integration synthetics to model the explosion plus spall represented by seismic moment tensor sources plus point forces. The resulting synthetics demonstrate that the magnitude of the SH (Love) compared with the SV (fundamental Rayleigh or Rg) in the short period band (0.5-3 Hz) may be explained by the spall mechanism. Nearly all of the available mass must participate in the spall with an average velocity of 2-5 m s-1 to provide sufficient impulse to generate the observed Love waves. Love wave radiation patterns from such a mechanism are consistent with the spall mechanism. We modelled the effects of the topographic bench using 3-D linear finite-difference calculations to compute progressive elastic wavefields from explosion sources behind the quarry bench. These 3-D calculations show SH radiation patterns consistent with observations while the SV radiation patterns are not consistent with observations. We find that the radiation patterns from the

  15. Versatile gas gun target assembly for studying blast wave mitigation in materials

    Science.gov (United States)

    Bartyczak, S.; Mock, W., Jr.

    2012-03-01

    Traumatic brain injury (TBI) has become a serious problem for military personnel returning from recent conflicts. This has increased interest in investigating blast mitigating materials for use in helmets. In this paper we describe a new versatile target assembly that is used with an existing gas gun for studying these materials.

  16. Spherical Shock-wave-2D Surface Interaction

    Directory of Open Access Journals (Sweden)

    Pavel Viktorovich Bulat

    2015-02-01

    Full Text Available The purpose of research is the study of the transformation of the shock-wave configuration, caused by the reflection of a spherical shock wave from a flat surface. The blast of HE charge heightened over earth surface leads to formation of shock-wave triple configuration. In spite of static pressure equality of gas streams after the different wave sequences, the velocities, densities and other flow parameters are not equal. In view of the fact that flow velocities are sufficiently different, wind loads on objects subjected to blast wave action differ also. So blast shock wave hazard degree (in particular, for human organism at body translation depends on both object and HE charge blast height. The mathematical model to calculate and analyze the propagating shock-wave triple configurations occurring at the heightened blast is provided in this study. The model is useful for calculation and comparison of the velocities and dynamic pressures of the streams behind the different sequences of shock waves in the triple configuration, i.e., it allows us to estimate the basic parameters characterizing the tertiary blast wave hazards.

  17. Viscoelastic Materials Study for the Mitigation of Blast-Related Brain Injury

    Science.gov (United States)

    Bartyczak, Susan; Mock, Willis, Jr.

    2011-06-01

    Recent preliminary research into the causes of blast-related brain injury indicates that exposure to blast pressures, such as from IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficient to protect the warfighter from this danger and the effects are debilitating, costly, and long-lasting. Commercially available viscoelastic materials, designed to dampen vibration caused by shock waves, might be useful as helmet liners to dampen blast waves. The objective of this research is to develop an experimental technique to test these commercially available materials when subject to blast waves and evaluate their blast mitigating behavior. A 40-mm-bore gas gun is being used as a shock tube to generate blast waves (ranging from 1 to 500 psi) in a test fixture at the gun muzzle. A fast opening valve is used to release nitrogen gas from the breech to impact instrumented targets. The targets consist of aluminum/ viscoelastic polymer/ aluminum materials. Blast attenuation is determined through the measurement of pressure and accelerometer data in front of and behind the target. The experimental technique, calibration and checkout procedures, and results will be presented.

  18. The role of stress waves in thoracic visceral injury from blast loading: modification of stress transmission by foams and high-density materials.

    Science.gov (United States)

    Cooper, G J; Townend, D J; Cater, S R; Pearce, B P

    1991-01-01

    Materials have been applied to the thoracic wall of anaesthetised experimental animals exposed to blast overpressure to investigate the coupling of direct stress waves into the thorax and the relative contribution of compressive stress waves and gross thoracic compression to lung injury. The ultimate purpose of the work is to develop effective personal protection from the primary effects of blast overpressure--efficient protection can only be achieved if the injury mechanism is identified and characterized. Foam materials acted as acoustic couplers and resulted in a significant augmentation of the visceral injury; decoupling and elimination of injury were achieved by application of a high acoustic impedance layer on top of the foam. In vitro experiments studying stress wave transmission from air through various layers into an anechoic water chamber showed a significant increase in power transmitted by the foams, principally at high frequencies. Material such as copper or resin bonded Kevlar incorporated as a facing upon the foam achieved substantial decoupling at high frequencies--low frequency transmission was largely unaffected. An acoustic transmission model replicated the coupling of the blast waves into the anechoic water chamber. The studies suggest that direct transmission of stress waves plays a dominant role in lung parenchymal injury from blast loading and that gross thoracic compression is not the primary injury mechanism. Acoustic decoupling principles may therefore be employed to reduce the direct stress coupled into the body and thus reduce the severity of lung injury--the most simple decoupler is a high acoustic impedance material as a facing upon a foam, but decoupling layers may be optimized using acoustic transmission models. Conventional impacts producing high body wall velocities will also lead to stress wave generation and transmission--stress wave effects may dominate the visceral response to the impact with direct compression and shear

  19. Mass Spectrometry of Atmospheric Pressure Surface Wave Discharges

    Science.gov (United States)

    Ridenti, M. A.; Souza-Corrêa, J. A.; Amorim, J.

    2016-05-01

    By applying mass spectrometry techniques, we carried out measurements of ionic mass spectrum and their energy distribution in order to investigate an atmospheric argon discharge by using a surfatron surface-wave device. The mass and energy distribution measurements were performed with fixed flow rate (2.5 SLM) of pure argon gas (99.999%) and different Ar-O2 gas mixture compositions (99-1, 98-2 and 97-3). The mass spectra and energy distributions were recorded for Ar+, O+, O+ 2, N+ and N2 +. The axial distribution profiles of ionic mass and their energy were obtained for different experimental conditions as a function of the plasma length. The results showed that the peak of the positive ion energy distributions shifted to higher energies and also that the distribution width increased as the distance between the sampling orifice and the launcher gap was increased. It was also found that under certain experimental conditions the ion flux of atomic species were higher than the ion flux of their diatomic counterpart. The motivation of this study was to obtain a better understanding of a surface wave discharge in atmospheric pressure that may play a key role on new second generation biofuel technologies.

  20. Distinguishing Realistic Military Blasts from Firecrackers in Mitigation Studies of Blast Induced Traumatic Brain Injury

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2011-01-21

    In their Contributed Article, Nyein et al. (1,2) present numerical simulations of blast waves interacting with a helmeted head and conclude that a face shield may significantly mitigate blast induced traumatic brain injury (TBI). A face shield may indeed be important for future military helmets, but the authors derive their conclusions from a much smaller explosion than typically experienced on the battlefield. The blast from the 3.16 gm TNT charge of (1) has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 10 atm, 0.25 ms, and 3.9 psi-ms at the front of the head (14 cm from charge), and 1.4 atm, 0.32 ms, and 1.7 psi-ms at the back of a typical 20 cm head (34 cm from charge). The peak pressure of the wave decreases by a factor of 7 as it traverses the head. The blast conditions are at the threshold for injury at the front of the head, but well below threshold at the back of the head (4). The blast traverses the head in 0.3 ms, roughly equal to the positive phase duration of the blast. Therefore, when the blast reaches the back of the head, near ambient conditions exist at the front. Because the headform is so close to the charge, it experiences a wave with significant curvature. By contrast, a realistic blast from a 2.2 kg TNT charge ({approx} an uncased 105 mm artillery round) is fatal at an overpressure of 10 atm (4). For an injury level (4) similar to (1), a 2.2 kg charge has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 2.1 atm, 2.3 ms, and 18 psi-ms at the front of the head (250 cm from charge), and 1.8 atm, 2.5 ms, and 16.8 psi-ms at the back of the head (270 cm from charge). The peak pressure decreases by only a factor of 1.2 as it traverses the head. Because the 0.36 ms traversal time is much smaller than the positive phase duration, pressures on the head become relatively uniform when the blast reaches the back of the head. The larger standoff implies

  1. Ballistic pressure wave contributions to rapid incapacitation in the Strasbourg goat tests

    CERN Document Server

    Courtney, M; Courtney, Amy; Courtney, Michael

    2007-01-01

    This article presents empirical models for the relationship between peak ballistic pressure wave magnitude and incapacitation times in the Strasbourg goat test data. Using a model with the expected limiting behavior at large and small pressure wave magnitudes, the average incapacitation times are highly correlated (R = 0.91) with peak pressure wave magnitude. The cumulative incapacitation probability as a function of time reveals both fast (t 5 s) incapacitation mechanisms. The fast incapacitation mechanism can be accurately modeled as a function of peak pressure wave magnitude. The slow incapacitation mechanism is presumably due to blood loss via damaged vascular tissue.

  2. Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms

    CERN Document Server

    Courtney, Michael; 10.1016/j.neuroimage.2010.05.025

    2011-01-01

    Research in blast-induced lung injury resulted in exposure thresholds that are useful in understanding and protecting humans from such injury. Because traumatic brain injury (TBI) due to blast exposure has become a prominent medical and military problem, similar thresholds should be identified that can put available research results in context and guide future research toward protecting warfighters as well as diagnosis and treatment. At least three mechanical mechanisms by which the blast wave may result in brain injury have been proposed - a thoracic mechanism, head acceleration and direct cranial transmission. These mechanisms need not be mutually exclusive. In this study, likely regions of interest for the first two mechanisms based on blast characteristics (positive pulse duration and peak effective overpressure) are developed using available data from blast experiments and related studies, including behind-armor blunt trauma and ballistic pressure wave studies. These related studies are appropriate to in...

  3. 爆炸冲击波在城市地下通道内传播规律的数值模拟%A Numerical Study of the Propagation Laws of the Blast Wave in the Pedestrian Underpass

    Institute of Scientific and Technical Information of China (English)

    梁利平; 李鑫

    2012-01-01

    Pedestrian Underpasses is an essential part of urban transportation system and is often the target of terrorist bomb attack.In order to have a better understanding of the propagation laws of the blast wave in the pedestrian underpasses,this paper employs numerical simulation to analyze the blast wave propagation after the explosion of 13KG TNT in the pedestrian underpass.In the process of analysis,the influences of the initiating position as well as the cover of the underpass on the propagation of the blast wave were taken into account.The result showed that after the detonation of TNT in the pedestrian underpass,the upper corners of the passage will receive stronger impact;when the blast wave transmitted through the exits,obvious jet flow phenomena could be observed.When there were covers over the exit,the explosion near the exits would significantly increase the peak pressure inside the passage as well as on the stairways at the exits.%城市地下过街通道是城市重要的交通系统组成部分,也经常会成为恐怖分子爆炸袭击的对象。为了更好的了解爆炸冲击波在地下过街通道中的传播规律,本文通过数值模拟分析了13KG炸药在通道爆炸后冲击波的传播。分析过程中分别考虑了炸药起爆位置及通道顶盖对冲击波传播的影响。分析结果表明当TNT在通道内起爆后,通道顶部的角落将受到更大的冲击波压力作用,当冲击波从出口向外传播时将发生明显的射流现象;当通道出口有顶盖时,炸药在出口的起爆将明显加强通道内部及出口梯道的压力峰值。

  4. THE EFFECTS OF AREA CONTRACTION ON SHOCK WAVE STRENGTH AND PEAK PRESSURE IN SHOCK TUBE

    Directory of Open Access Journals (Sweden)

    A. M. Mohsen

    2012-06-01

    Full Text Available This paper presents an experimental investigation into the effects of area contraction on shock wave strength and peak pressure in a shock tube. The shock tube is an important component of the short duration, high speed fluid flow test facility, available at the Universiti Tenaga Nasional (UNITEN, Malaysia. The area contraction was facilitated by positioning a bush adjacent to the primary diaphragm section, which separates the driver and driven sections. Experimental measurements were performed with and without the presence of the bush, at various diaphragm pressure ratios, which is the ratio of air pressure between the driver (high pressure and driven (low pressure sections. The instantaneous static pressure variations were measured at two locations close to the driven tube end wall, using high sensitivity pressure sensors, which allow the shock wave strength, shock wave speed and peak pressure to be analysed. The results reveal that the area contraction significantly reduces the shock wave strength, shock wave speed and peak pressure. At a diaphragm pressure ratio of 10, the shock wave strength decreases by 18%, the peak pressure decreases by 30% and the shock wave speed decreases by 8%.

  5. Experimental investigation on the wave-induced pore pressure around shallowly embedded pipelines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of regular wave experiments have been done in a large-scale wave flume to investigate the wave-induced pore pressure around the submarine shallowly embedded pipelines. The model pipelines are buried in three kinds of soils, including gravel, sand and silt with different burial depth. The input waves change with height and period. The results show that the amplitudes of wave-induced pore pressure increase as the wave period increase, and decay from the surface to the bottom of seabed. Higher pore pressures are recorded at the pipeline top and the lower pore pressures at the bottom, especially in the sand seabed. The normalized pressure around pipeline decreases as the relative water depth, burial depth or scattering parameters increase. For the silt seabed, the wavelet transform has been successfully used to analyze the signals of wave-induced pore pressure, and the oscillatory and residual pore pressure can be extracted by wavelet analysis. Higher oscillatory pressures are recorded at the bottom and the lower pressures at the top of the pipeline. However, higher residual pressures are recorded at the top and the lower pressures at the bottom of the pipeline.

  6. Production of Kaon and $\\Lambda$ in nucleus-nucleus collisions at ultra-relativistic energy from a blast wave model

    CERN Document Server

    Zhang, Song; Chen, Jin-Hui; Zhong, Chen

    2014-01-01

    The particle production of Kaon and $\\Lambda$ are studied in nucleus-nucleus collisions at relativistic energy based on a chemical equilibrium blast-wave model. The transverse momentum spectra of Kaon and $\\Lambda$ at the kinetic freeze-out stage from our model are in good agreement with the experimental results. The kinetic freeze-out parameters of temperature ($T_{kin}$) and radial flow parameter $\\rho_{0}$ are presented for the FOPI, RHIC and LHC energies. And the resonance decay effect is also discussed. The systematic study for beam energy dependence of the strangeness particle production will help us to better understand the properties of the matter created in heavy-ion collisions at the kinetic freeze-out stage.

  7. Infrared and X-Ray Evidence for Circumstellar Grain Destruction by the Blast Wave of Supernova 1987A

    Science.gov (United States)

    Dwek, Eliahu; Arendt, Richard G.; Bouchet, Patrice; Burrows, David N.; Challis, Peter; Danziger, John; DeBuizer James M.; Gehrz, Robert D.; Kirshner, Robert P.; McCray, Richard; Park, Sangwok; Polomski, Elisha; Woodward, Charles

    2007-01-01

    Multiwavelength observations of supernova remnant (SNR) 1987A show that its morphology and luminosity are rapidly changing at X-ray, optical, infrared, and radio wavelengths as the blast wave from the explosion expands into the circumstellar equatorial ring, produced by mass loss from the progenitor star. The observed infrared (IR) radiation arises from the interaction of dust grains that formed in mass outflow with the soft X-ray emitting plasma component of the shocked gas. Spitzer IRS spectra at 5 - 30 microns taken on day 6190 since the explosion show that the emission arises from approx. 1.1 x 10(exp -6) solar mass of silicate grains radiating at a temperature of approx. 180+/-(15-20) K. Subsequent observations on day 7137 show that the IR flux had increased by a factor of 2 while maintaining an almost identical spectral shape. The observed IR-to-X-ray flux ratio (IRX) is consistent with that of a dusty plasma with standard LMC dust abundances. This flux ratio has decreased by a factor of approx. 2 between days 6190 and 7137, providing the first direct observation of the ongoing destruction of dust in an expanding SN blast wave on dynamic time scales. Detailed models consistent with the observed dust temperature, the ionization fluence of the soft X-ray emission component, and the evolution of IRX suggest that the radiating si1icate grains are immersed in a 3.5 x 10(exp 6) K plasma with a density of (0.3 - 1) x 10(exp 4)/cu cm, and have a size distribution that is confined to a narrow range of radii between 0.02 and 0.2 microns. Smaller grains may have been evaporated by the initial UV flash from the supernova.

  8. DAMAGE EFFECTS TO ROCK AND ENGINEERING APPLICATIONS OF DIRECTIONAL PRESSURE RELIEF VIBRATION ISOLATION BLASTING%定向卸压隔振爆破对岩石的损伤破坏效应及其工程应用

    Institute of Scientific and Technical Information of China (English)

    张志呈; 廖涛; 陈晓玲

    2015-01-01

    To reduce the destruction damage of conventional blasting on reserved rock,a new blasting method, namely,directional pressure relief vibration isolation blasting,is proposed and its technical principles are introduced. The test results of hopkinson bar,ultra-dynamic,dynamic caustics,dynamic photoelasticity,level one light gas gun and other tests results show that:this method would make explosion pressure reduced by 30% to 60% on the isolation material side;blasting vibration peak decreased by 32% to 67%;detonation wave would be blocked 46.95% and sound velocity reduced 13.48% on the isolation material side. The primary shear stress of the free surface side is 3.5 times of that on the isolation material side;stress intensity factors are 1 to 2.12 times of that on isolation material side. Engineering practices show that it brings a large number of energy together in free surface,geting a good blasting effect,meanwhile it can reduce the cost of the open pit slope excavation and overexcavation in drifting.%为降低常规爆破对保留岩体的破坏损伤,提出了定向卸压隔振爆破方法,并介绍了其技术原理。霍普金森杆、超动态、动焦散、动光弹和一级轻气炮等试验结果表明:采用定向卸压隔振爆破隔振材料一侧爆炸初始压力降低了30%~60%,爆破振动峰值下降了32%~67%;作用于隔振材料一侧爆轰波能量被阻隔46.95%,隔振材料一侧保留岩石的声速降低13.48%;临空面一侧的主剪应力是隔振材料一侧的3.5倍,应力强度因子是隔振材料一侧的1~2.12倍。实践表明,临空面方向汇集了大量能量,获得了好的爆破效果,同时可以减少露天边坡的开挖费用和平巷掘进超欠挖量。

  9. Blast loading of masonry infills: testing and simulation

    OpenAIRE

    Pereira, João Miguel; Campos, José; Lourenço, Paulo B.

    2015-01-01

    This work intends to present a newly developed test setup for dynamic out-of-plane loading using underWater Blast Wave Generators (WBWG) as loading source. Underwater blasting operations have been, during the last decades, subject of research and development of maritime blasting operations (including torpedo studies), aquarium tests for the measurement of blasting energy of industrial explosives and confined underwater blast wave generators. WBWG allow a wide range for the produced blast impu...

  10. 煤层瓦斯抽采爆破卸压的钻孔布置优化分析及应用%OPTIMIZATION ANALYSIS OF DRILLING LAYOUT BASED ON BLASTING RELEASING PRESSURE AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    周声才; 李栋; 张凤舞; 沈大富; 周东平; 郭臣业

    2013-01-01

    To resolve the problems of low gas draining rate in soft coal seam with low permeability,a new technology of improving seam permeability by pre-splitting blasting on floor rock is proposed.The process of increasing permeability is divided into two stages:firstly forms penetrative cranny area in the interaction of blasting stress wave and detonation gas; secondly forms releasing pressure area by coal-rock caving at the top of the blast cavity.Dynamic variation of blasting stress wave of different drilling intervals was researched by numerical simulation; and it is found that the influence sphere of the pre-splitting blasting is divided into smash area and penetrative cranny area.The smash area is 6 times of the diameter of blast hole; and the tensile wave caused by large diameter pores reflection plays the major role to connect fissures.The optimal space of forming unicom fissures and keeping same high destruction scope with the control hole is 0.9 meter,which is applied to gas pre-drainage engineering in a bottom road of a Chongqing coal mine.The application result shows that the gas drainage flow is 2.8 times of the original,and the gas drainage efficiency is improved by 3.75 times of the original.Besides,it is obvious that the much better results was achieved 20-30 days after blasting.%为解决重庆地区低透气性松软煤层瓦斯抽采率低的难题,提出煤层底板预裂爆破卸压增透新技术,指出其增透过程分为爆破应力波与爆生气体共同作用形成裂隙贯通区和爆破空腔顶部煤岩体垮落形成卸压带2个阶段.借助数值模拟对不同孔距爆破应力波的动态演变规律进行研究,发现预裂爆破影响范围分为粉碎区和贯通区,其中粉碎区范围约为爆破孔直径的6倍,而贯通区的形成则主要受大直径控制孔反射形成的拉伸波作用,最终得到预裂爆破形成贯穿裂隙且保持与控制孔同高破坏区间的最优孔距为0.9 m,并将该

  11. A mathematical model and numerical simulation of pressure wave in horizontal gas-liquid bubbly flow

    Institute of Scientific and Technical Information of China (English)

    HUANG Fei; BAI Bofeng; GUO Liejin

    2004-01-01

    By using an ensemble-averaged two-fluid model,with valid closure conditions of interfacial momentum exchange due to virtual mass force,viscous shear stress and drag force,a model for pressure wave propagation in a horizontal gas-liquid bubbly flow is proposed.According to the small perturbation theory and solvable condition of one-order linear uniform equations,a dispersion equation of pressure wave is induced.The pressure wave speed calculated from the model is compared and in good agreement with existing data.According to the dispersion equation,the propagation and attenuation of pressure wave are investigated systemically.The factors affecting pressure wave,such as void fraction,pressure,wall shear stress,perturbation frequency,virtual mass force and drag force,are analyzed.The result shows that the decrease in system pressure,the increase in void fraction and the existence of wall shear stress,will cause a decrease in pressure wave speed and an increase in the attenuation coefficient in the horizontal gas-liquid bubbly flow.The effects of perturbation frequency,virtual mass and drag force on pressure wave in the horizontal gas-liquid bubbly flow at low perturbation frequency are different from that at high perturbation frequency.

  12. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    Science.gov (United States)

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  13. High-low-blasting technology and its application in methane dynamic disaster prevention

    Institute of Scientific and Technical Information of China (English)

    LI Xian-zhong; LIN Bai-quan; YANG Wei; NI Guan-hua; LI Quan-gui

    2011-01-01

    The gas cooperative control model combined local pressure-relief with regional pressure-relief was established,based on the theory of multi-parameters cooperative.For the status of high gas contents,high in-situ stress and low-permeability of Ji-15 seam of No.12 coal mine in Pingmei Group.The law of detonation wave propagation and ground-stress change distribution were simulated by means of the finite element analysis software.The technology of high-low-blasting,composed of high blasting(deep crossing hole controlled hydraulic blasting) and low blasting (special roadway deep hole controlled blasting) were developed.The research shows that around control hole produce maximum tension fracture failure,and result in directional and controlled blasting,when the distance between control hole and blasting hole is 1.2 m.The theory makes blasting force and hydraulic force advantage superimpose,which raises the effect of pressure relief and permeability enhancements compared with general blasting.High blasting influence radius and low blasting influence radius superimposed with each other,that prevents methane dynamic disaster.The result of type approval test shows that the technology can increase gas permeability as high as 22.7~36.2 ratio,decrease gas pressure from 2.85 MPa to 0.30 MPa,increase drilling influence radius to about 9 m.The technology realizes regional overall permeability improvement,that provides a new technical measure for methane dynamic disaster prevention.

  14. Inner ear pressure changes following square wave intracranial or ear canal pressure manipulation in the same guinea pig

    NARCIS (Netherlands)

    Thalen, E; Wit, H; Segenhout, H; Albers, F

    2002-01-01

    Inner ear pressure was measured in scala tympani with a micropipette during square wave pressure manipulation of the intracranial compartment and, subsequently, of the external ear canal (EEC) in the same guinea pig. As expected, the combination of the cochlear aqueduct and the inner ear behaves as

  15. New gunpowder blasting

    International Nuclear Information System (INIS)

    This book introduces gunpowder blasting, which consists of ten chapters. It deals with conception of gunpowder on the history of gunpowder, difference between gunpowder and general materials and classification of gunpowder, reaction of gunpowder, shock wave and detonation, on properties, material velocity and structure, test method on gunpowder and an article processed with heat, gunpowder such as igniter charge, carlit and slurry gunpowder, propellant and an article processed with heat, blasting on basics and Bench cut, blasting operations and security blasting construction and using of gunpowder.

  16. Concerning isothermal self-similar blast waves. I - One-dimensional flow and its stability. II - Two-dimensional flow and its stability. [in stellar atmosphere

    Science.gov (United States)

    Lerche, I.

    1978-01-01

    One-dimensional self-similar isothermal flow behind a blast wave propagating in a medium whose density varies with distance is investigated for the cases of one-dimensional and two-dimensional flow. The isothermal flow model is adopted as an alternative to adiabatic models of self-similar flow, which neglect heat flux. The topology of the one-dimensional flow solutions, the singularities, and the influence of boundary conditions are discussed; the instability of the isothermal blast waves against nonself-similar perturbations is also considered. The number of critical points in the two-dimensional solutions is found to vary from the number in the one-dimensional problem.

  17. Influence of the initial pressure in bubble media on the detonation wave parameters

    Science.gov (United States)

    Sychev, A. I.

    2015-04-01

    The influence of the initial pressure in bubble media on the initiation, structure, velocity, and pressure of detonation waves in single-component bubble media is studied. The test medium (bubbles of a stoichiometric acetylene-oxygen mixture in a hydroglyceric solution) falls under the category of "chemically inactive liquid—bubbles of a chemically active gas." It is found that one can effectively control the parameters of bubble detonation waves by varying the initial pressure in the bubble medium.

  18. Experimental Study of Pore Water Pressure and Bed Profile Change Under Regular Breaking Waves

    Institute of Scientific and Technical Information of China (English)

    CHENG Yong-zhou; JIANG Chang-bo; ZHAO Li-ping; PAN Yun; LI Qing-feng

    2012-01-01

    There lies a close relationship between the seabed destruction and the distribution of pore water pressure under the action of breaking wave.The experiments were carried out in a wave flume with a 1∶30 sloping sandy seabed to study regular breaking wave induced pore water pressure.A wide range of measurements from the regular wave runs were reported,including time series of wave heights,pore pressures.The video records were analysed to measure the time development of the seabed form and the characteristics of the orbital motion of the sand in the wave breaking region.The pore water pressure in the breaker zone showed the time variation depending on the wave phases including wave breaking and bore propagation.The time-averaged pore water pressure was higher near the seabed surface.The peak values of pore water pressure increase significantly at the breaking point.The direction of pore water pressure difference forces in the breaker zone is of fundamental importance for a correct description of the sediment dynamics.The upwardsdirected pressure differences may increase sand transport by reducing the effective weight of the sediment,thereby increasing the bed form evolution.The seabed configuration changed greatly at the wave breaking zone and a sand bar was generated remarkably.The amplitude of the pore water pressure changed with the seabed surface:The results are to improve the understanding of sand transport mechanisms and seabed responses due to breaking regular waves over a sloping sandy bed.

  19. Modeling the 2010 blast wave of the symbiotic-like nova V407 Cygni

    CERN Document Server

    Orlando, S

    2011-01-01

    (Abridged) The symbiotic-like binary Mira and nova V407 Cyg was observed in outburst on March 2010 and monitored in several wavelength bands. Here we report on multi-dimensional hydrodynamic simulations describing the 2010 outburst of V407 Cyg, exploring the first 60 days of evolution. The model takes into account thermal conduction and radiative cooling; the pre-explosion system conditions included the companion star and a circumbinary density enhancement. The simulations showed that the blast and the ejecta distribution are both aspherical due to the inhomogeneous circumstellar medium in which they expand; in particular they are significantly collimated in polar directions (producing a bipolar shock morphology) if the circumstellar envelope is characterized by an equatorial density enhancement. The blast is partially shielded by the Mira companion, producing a wake with dense and hot post-shock plasma on the rear side of the companion star; most of the X-ray emission produced during the evolution of the bla...

  20. Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. II. The Distribution of rho and Structure of the Circumburst Medium

    Science.gov (United States)

    Starling, R. L. C.; vanderHorst, A. J.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Wiersema, K.; Curran, P. A.; Weltervrede, P.

    2008-01-01

    We constrain blast wave parameters and the circumburst media ofa subsample of 10 BeppoSAX gamma-ray bursts (GRBs). For this sample we derive the values of the injected electron energy distribution index, p, and the density structure index of the circumburst medium, k, from simultaneous spectral fits to their X-ray, optical, and NIR afterglow data. The spectral fits have been done in count space and include the effects ofmetallicity, and are compared with the previously reported optical and X-ray temporal behavior. Using the blast wave model and some assumptions which include on-axis viewing and standard jet structure, constant blast wave energy, and no evolution of the microphysical parameters, we find a mean value ofp for the sample as a whole of 9.... oa -0.003.0" 2 a_ statistical analysis of the distribution demonstrates that the p-values in this sample are inconsistent with a single universal value forp at the 3 _ level or greater, which has significant implications for particle acceleration models. This approach provides us with a measured distribution ofcircumburst density structures rather than considering only the cases of k ----0 (homogeneous) and k - 2 (windlike). We find five GRBs for which k can be well constrained, and in four of these cases the circumburst medium is clearly windlike. The fifth source has a value of 0 medium.

  1. Gamma-Ray Burst Afterglows as Probes of Environment and Blast Wave Physics. II. The Distribution of rho and Structure of the Circumburst Medium

    Science.gov (United States)

    Starling, R. L. C.; vanderHorst, A. J.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Wiersema, K.; Curran, P. A.; Weltervrede, P.

    2008-01-01

    We constrain blast wave parameters and the circumburst media ofa subsample of 10 BeppoSAX gamma-ray bursts (GRBs). For this sample we derive the values of the injected electron energy distribution index, p, and the density structure index of the circumburst medium, k, from simultaneous spectral fits to their X-ray, optical, and NIR afterglow data. The spectral fits have been done in count space and include the effects ofmetallicity, and are compared with the previously reported optical and X-ray temporal behavior. Using the blast wave model and some assumptions which include on-axis viewing and standard jet structure, constant blast wave energy, and no evolution of the microphysical parameters, we find a mean value ofp for the sample as a whole of 9.... oa -0.003.0" 2 a_ statistical analysis of the distribution demonstrates that the p-values in this sample are inconsistent with a single universal value forp at the 3 _ level or greater, which has significant implications for particle acceleration models. This approach provides us with a measured distribution ofcircumburst density structures rather than considering only the cases of k ----0 (homogeneous) and k - 2 (windlike). We find five GRBs for which k can be well constrained, and in four of these cases the circumburst medium is clearly windlike. The fifth source has a value of 0 < k < 1, consistent with a homogeneous circumburst medium.

  2. Role of helmet in the mechanics of shock wave propagation under blast loading conditions.

    Science.gov (United States)

    Ganpule, S; Gu, L; Alai, A; Chandra, N

    2012-01-01

    The effectiveness of helmets in extenuating the primary shock waves generated by the explosions of improvised explosive devices is not clearly understood. In this work, the role of helmet on the overpressurisation and impulse experienced by the head were examined. The shock wave-head interactions were studied under three different cases: (i) unprotected head, (ii) head with helmet but with varying head-helmet gaps and (iii) head covered with helmet and tightly fitting foam pads. The intensification effect was discussed by examining the shock wave flow pattern and verified with experiments. A helmet with a better protection against shock wave is suggested. PMID:21806412

  3. A Non-Intrusive Pressure Sensor by Detecting Multiple Longitudinal Waves.

    Science.gov (United States)

    Zhou, Hongliang; Lin, Weibin; Ge, Xiaocheng; Zhou, Jian

    2016-08-05

    Pressure vessels are widely used in industrial fields, and some of them are safety-critical components in the system-for example, those which contain flammable or explosive material. Therefore, the pressure of these vessels becomes one of the critical measurements for operational management. In the paper, we introduce a new approach to the design of non-intrusive pressure sensors, based on ultrasonic waves. The model of this sensor is built based upon the travel-time change of the critically refracted longitudinal wave (LCR wave) and the reflected longitudinal waves with the pressure. To evaluate the model, experiments are carried out to compare the proposed model with other existing models. The results show that the proposed model can improve the accuracy compared to models based on a single wave.

  4. Rogue wave formation under the action of quasi-stationary pressure

    Science.gov (United States)

    Abrashkin, A. A.; Oshmarina, O. E.

    2016-05-01

    The process of rogue wave formation on deep water is considered. A wave of extreme amplitude is born against the background of uniform waves (Gerstner waves) under the action of external pressure on free surface. The pressure distribution has a form of a quasi-stationary "pit". The fluid motion is supposed to be a vortex one and is described by an exact solution of equations of 2D hydrodynamics for an ideal fluid in Lagrangian coordinates. Liquid particles are moving around circumferences of different radii in the absence of drift flow. Values of amplitude and wave steepness optimal for rogue wave formation are found numerically. The influence of vorticity distribution and pressure drop on parameters of the fluid is investigated.

  5. Cardiac output in idiopathic normal pressure hydrocephalus: association with arterial blood pressure and intracranial pressure wave amplitudes and outcome of shunt surgery

    Directory of Open Access Journals (Sweden)

    Eide Per K

    2011-02-01

    Full Text Available Abstract Background In patients with idiopathic normal pressure hydrocephalus (iNPH responding to shunt surgery, we have consistently found elevated intracranial pressure (ICP wave amplitudes during diagnostic ICP monitoring prior to surgery. It remains unknown why ICP wave amplitudes are increased in these patients. Since iNPH is accompanied by a high incidence of vascular co-morbidity, a possible explanation is that there is reduced vascular compliance accompanied by elevated arterial blood pressure (ABP wave amplitudes and even altered cardiac output (CO. To investigate this possibility, the present study was undertaken to continuously monitor CO to determine if it is correlated to ABP and ICP wave amplitudes and the outcome of shunting in iNPH patients. It was specifically addressed whether the increased ICP wave amplitudes seen in iNPH shunt responders were accompanied by elevated CO and/or ABP wave amplitude levels. Methods Prospective iNPH patients (29 were clinically graded using an NPH grading scale. Continuous overnight minimally-invasive monitoring of CO and ABP was done simultaneously with ICP monitoring; the CO, ABP, and ICP parameters were parsed into 6-second time windows. Patients were assessed for shunt surgery on clinical grade, Evan's index, and ICP wave amplitude. Follow-up clinical grading was performed 12 months after surgery. Results ICP wave amplitudes but not CO or ABP wave amplitude, showed good correlation with the response to shunt treatment. The patients with high ICP wave amplitude did not have accompanying high levels of CO or ABP wave amplitude. Correlation analysis between CO and ICP wave amplitudes in individual patients showed different profiles [significantly positive in 10 (35% and significantly negative in 16 (55% of 29 recordings]. This depended on whether there was also a correlation between ABP and ICP wave amplitudes and on the average level of ICP wave amplitude. Conclusions These results gave no

  6. Role of the vertical pressure gradient in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård; Sumer, B. Mutlu; Vittori, Giovanna;

    2014-01-01

    By direct numerical simulation (DNS) of the flow in an oscillatory boundary layer, it is possible to obtain the pressure field. From the latter, the vertical pressure gradient is determined. Turbulent spots are detected by a criterion involving the vertical pressure gradient. The vertical pressure...... gradient is also treated as any other turbulence quantity like velocity fluctuations and statistical properties of the vertical pressure gradient are calculated from the DNS data. The presence of a vertical pressure gradient in the near bed region has significant implications for sediment transport....

  7. The synchrotron-self-Compton spectrum of relativistic blast waves at large Y

    CERN Document Server

    Lemoine, M

    2015-01-01

    Recent analyses of multiwavelength light curves of gamma-ray bursts afterglows point to values of the magnetic turbulence well below the canonical $\\sim1\\,$\\% of equipartition, in agreement with theoretical expectations of a micro-turbulence generated in the shock precursor, which then decays downstream of the shock front through collisionless damping. As a direct consequence, the Compton parameter $Y$ can take large values in the blast. In the presence of decaying micro-turbulence and/or as a result of the Klein-Nishina suppression of inverse Compton cooling, the $Y$ parameter carries a non-trivial dependence on the electron Lorentz factor, which modifies the spectral shape of the synchrotron and inverse Compton components. This paper provides detailed calculations of this synchrotron-self-Compton spectrum in this large $Y$ regime, accounting for the possibility of decaying micro-turbulence. It calculates the expected temporal and spectral indices $\\alpha$ and $\\beta$ customarily defined by $F_\

  8. Hybrid S2/Carbon Epoxy Composite Armours Under Blast Loads

    Science.gov (United States)

    Dolce, F.; Meo, Michele; Wright, A.; French, M.; Bernabei, M.

    2012-06-01

    Civil and military structures, such as helicopters, aircrafts, naval ships, tanks or buildings are susceptible to blast loads as terroristic attacks increases, therefore there is the need to design blast resistant structures. During an explosion the peak pressure produced by shock wave is much greater than the static collapse pressure. Metallic structures usually undergo large plastic deformations absorbing blast energy before reaching equilibrium. Due to their high specific properties, fibre-reinforced polymers are being considered for energy absorption applications in blast resistant armours. A deep insight into the relationship between explosion loads, composite architecture and deformation/fracture behaviour will offer the possibility to design structures with significantly enhanced energy absorption and blast resistance performance. This study presents the results of a numerical investigation aimed at understanding the performance of a hybrid composite (glass/carbon fibre) plate subjected to blast loads using commercial LS-DYNA software. In particular, the paper deals with numerical 3D simulations of damages caused by air blast waves generated by C4 charges on two fully clamped rectangular plates made of steel and hybrid (S2/Carbon) composite, respectively. A Multi Materials Arbitrary Lagrangian Eulerian (MMALE) formulation was used to simulate the shock phenomenon. For the steel plates, the Johnson-Cook material model was employed. For the composite plates both in-plane and out-of-plane failure criteria were employed. In particular, a contact tiebreak formulation with a mixed mode failure criteria was employed to simulate delamination failure. As for the steel plates the results showed that excellent correlation with the experimental data for the two blast load conditions in terms of dynamic and residual deflection for two different C4 charges. For the composite plates the numerical results showed that, as expected, a wider delamination damage was observed

  9. The Importance of Pressure Sampling Frequency in Models for Determination of Critical Wave Loadings on Monolithic Structures

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Meinert, Palle

    2008-01-01

    Wave induced pressures on model scale monolithic structures like caissons and concrete superstructures on rubble mound breakwaters show very peaky variations, even in cases without impacts from slamming waves.......Wave induced pressures on model scale monolithic structures like caissons and concrete superstructures on rubble mound breakwaters show very peaky variations, even in cases without impacts from slamming waves....

  10. Analysis of structural response under blast loads using the coupled SPH-FEM approach

    Institute of Scientific and Technical Information of China (English)

    Jun-xiang XU; Xi-la LIU

    2008-01-01

    A numerical model using the coupled smoothed particle hydrodynamics-finite element method(SPH-FEM)approach is presented for analysis of structures under blast loads.The analyses on two numerical cases,one for free field explosive and the other for structural response under blast loads,are performed to model the whole processes from the propagation of the pressure wave to the response of structures.Based on the simulation,it is concluded that this model can be used for reasonably accurte explosive analysis of structures.The resulting information would be valuable for protecting structures under blast loads.

  11. Discussion on Similarity Law of Blast Wave in Tunnel%坑道内爆炸冲击波相似律问题探讨

    Institute of Scientific and Technical Information of China (English)

    苗朝阳; 李秀地; 杨森; 耿振刚

    2016-01-01

    The blast experiment in tunnel entrance of different explosive charge was conducted to study the simi-larity law of blast wave in tunnel and the shock wave in prototype and the model tunnel was calculated by numerical simulation software ANSYS/LS-DYNA. The results show that the blast wave with different explosive charges in iden-tical tunnel does not fit the similarity law,unlike in free atmosphere. If the geometry of prototype and model tunnel is similar and the ratio of charge to geometric is cubic,the blast wave in prototype tunnel and model tunnel will conform to the similarity law. The numerical simulation results of blast wave conform to the similarity law when the grid size of the prototype tunnel and model tunnel conform to the corresponding geometric similarity ratio. The grid density in tunnel cross-section between 1675 and 2977 meets the precision requirement well.%为研究坑道内爆炸冲击波相似律问题,进行了不同药量坑道堵口爆炸实验,并利用 ANSYS/LS-DYNA软件对原型坑道与模型坑道爆炸冲击波进行数值计算。结果表明:与自由大气中不同,同一坑道内不同药量爆炸产生的冲击波不符合爆炸相似律;若原型坑道与模型坑道几何相似,装药量之比为几何相似比的三次方,则原型坑道与模型坑道内爆炸冲击波符合爆炸相似律;坑道内爆炸冲击波数值模拟时,若原型坑道与模型坑道网格尺寸符合相应的几何相似比,则冲击波计算结果满足相似律,当坑道截面网格密度为1675~2977时可以达到计算精度要求。

  12. Gas cloud explosions and resulting blast effects

    International Nuclear Information System (INIS)

    The design of nuclear power plant structures to resist blast effects due to chemical explosions requires the determination of load-time functions of possible blast waves. Results of recent investigations show that in a free cloud with deflagrative ignition (flame,heat wire, sparks) the occurrence of a gas detonation can practically be excluded. Apparently, free gas clouds can only be induced to detonate by a sufficiently strong detonative initiation. Independently of the initiating event in the practice of damage analysis, it has become customary to describe the consequences of an explosion by means of the so-called TNT equivalent. Therefore, it is attempted to specify this equivalent for hydrocarbons by means of energetic considerations including the propagation functions for the case of spherically symmetric detonations. Analogous to the safety distances required in the handling and storage of high explosives, a mass-distance relation of the form R = k(L)sup(1/3) could be considered where L is the mass of spontaneously released hydrocarbon and k varies only with the structural shape of the blast loaded buildings. With the inclusion of an empirical relation which relates the quasi-static design pressure for a building with the normally reflected blast pressure of a blast wave, it is further attempted to establish a relation between the structural capacity of a building - i.e. the pressure resistance of a building structure for detonative dynamic loading and for quasi-static loading - and the unit-mass distance R/L 1/3. (Auth.)

  13. Harmonics tracking of intracranial and arterial blood pressure waves.

    Science.gov (United States)

    Shahsavari, Sima; McKelvey, Tomas

    2008-01-01

    Considering cardiorespiratory interaction and heart rate variability, a new approach is proposed to decompose intracranial pressure and arterial blood pressure to their different harmonics. The method is based on tracking the amplitudes of the harmonics by a Kalman filter based tracking algorithm. The algorithm takes benefit of combined frequency estimation technique which uses both Fast Fourier Transform and RR-interval detection. The result would be of use in intracranial pressure and arterial blood pressure waveform analysis as well as other investigations which need to estimate contribution of specific harmonic in above mentioned signals such as Pressure-Volume Compensatory Reserve assessment.

  14. Numerical study on maximum rebound ratio in blasting wave propagation along radian direction normal to joints

    Institute of Scientific and Technical Information of China (English)

    LEI Wei-dong; TENG Jun; HEFNY A; ZHAO Jian; GUAN Jiong

    2006-01-01

    In the process of 2-D compressional wave propagation in a rock mass with multiple parallel joints along the radian direction normal to the joints, the maximum possible wave amplitude corresponding to the points between the two adjacent joints in the joint set is controlled by superposition of the multiple transmitted and the reflected waves, measured by the maximum rebound ratio. Parametric studies on the maximum rebound ratio along the radian direction normal to the joints were performed in universal distinct element code. The results show that the maximum rebound ratio is influenced by three factors, i.e., the normalized normal stiffness of joints, the ratio of joint spacing to wavelength and the joint from which the wave rebounds. The relationship between the maximum rebound ratio and the influence factors is generalized into five charts. Those charts can be used as the prediction model for estimating the maximum rebound ratio.

  15. Origin of asymmetries in X-ray emission lines from the blast wave of the 2014 outburst of nova V745 Sco

    CERN Document Server

    Orlando, S; Miceli, M

    2016-01-01

    The symbiotic nova V745 Sco was observed in outburst on 2014 February 6. Its observations by the Chandra X-ray Observatory at days 16 and 17 have revealed a spectrum characterized by asymmetric and blue-shifted emission lines. Here we investigate the origin of these asymmetries through three-dimensional hydrodynamic simulations describing the outburst during the first 20 days of evolution. The model takes into account thermal conduction and radiative cooling and assumes a blast wave propagates through an equatorial density enhancement. From the simulations, we synthesize the X-ray emission and derive the spectra as they would be observed with Chandra. We find that both the blast wave and the ejecta distribution are efficiently collimated in polar directions due to the presence of the equatorial density enhancement. The majority of the X-ray emission originates from the interaction of the blast with the equatorial density enhancement and is concentrated on the equatorial plane as a ring-like structure. Our "be...

  16. Diffusion of Cosmic Rays in a Multiphase Interstellar Medium Swept-Up by a Supernova Remnant Blast Wave

    CERN Document Server

    Roh, Soonyoung; Inoue, Tsuyoshi

    2015-01-01

    Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyse the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the diffusion of CRs at a length scale of order a few pc in our simulated SNR, and find the diffusion of CRs is precisely described by a Bohm diffusion, which is required for efficient acceleration at least for particles with energies above 30 TeV for a realistic int...

  17. Diffusion of cosmic rays in a multiphase interstellar medium swept-up by a supernova remnant blast wave

    Science.gov (United States)

    Roh, Soonyoung; Inutsuka, Shu-ichiro; Inoue, Tsuyoshi

    2016-01-01

    Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations from the Fermi satellite has shown a signature of pion decay in the gamma-ray spectra of SNRs. This provides strong evidence that high-energy protons are accelerated in SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyse the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the diffusion of CRs at a length scale of order a few pc in our simulated SNR, and find the diffusion of CRs is precisely described by a Bohm diffusion, which is required for efficient acceleration at least for particles with energies above 30 TeV for a realistic interstellar medium. Although we find the possibility of a superdiffusive process (travel distance ∝ t0.75) in our simulations, its effect on CR diffusion at the length scale of the turbulence in the SNR is limited.

  18. Infrared and X-Ray Evidence for Circumstellar Grain Destruction by the Blast Wave of Supernova 1987A

    CERN Document Server

    Dwek, E; Bouchet, P; Burrows, D N; Challis, P; Danziger, I J; De Buizer, J M; Gehrz, R D; Kirshner, R P; McCray, R; Park, S; Polomski, E F; Woodward, C E

    2007-01-01

    Multiwavelength observations of supernova remnant (SNR) 1987A show that its morphology and luminosity are rapidly changing at X-ray, optical, infrared, and radio wavelengths as the blast wave from the explosion expands into the circumstellar equatorial ring, produced by mass loss from the progenitor star. The observed infrared (IR) radiation arises from the interaction of dust grains that formed in mass outflow with the soft X-ray emitting plasma component of the shocked gas. Spitzer IRS spectra at 5 - 30 microns taken on day 6190 since the explosion show that the emission arises from ~ 1.1E-6 Msun of silicate grains radiating at a temperature of ~180+20-15 K. Subsequent observations on day 7137 show that the IR flux had increased by a factor of 2 while maintaining an almost identical spectral shape. The observed IR-to-X-ray flux ratio (IRX) is consistent with that of a dusty plasma with standard Large Magellanic Cloud dust abundances. IRX has decreased by a factor of ~ 2 between days 6190 and 7137, providing...

  19. Effects of low-level blast exposure on the nervous system: Is there really a controversy?

    Directory of Open Access Journals (Sweden)

    Gregory A Elder

    2014-12-01

    Full Text Available High-pressure blast waves can cause extensive CNS injury in humans. However, in combat settings such as Iraq and Afghanistan, lower level exposures associated with mild TBI (mTBI or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD. We describe how TBI is defined in humans and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in humans is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments a condition of low-level blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet animal studies show that low-level blast pressure waves are transmitted to the brain. In brain low-level blast exposures cause behavioral, biochemical, pathological and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long-term effects on the nervous system.

  20. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age

    OpenAIRE

    Mohiuddin, Mohammad W.; Rihani, Ryan J.; Laine, Glen A.; Quick, Christopher M.

    2012-01-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (Ctot) and increases in total peripheral resistance (Rtot) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (cph) make the reflected pressure wave arrive earlier, augmenting systol...

  1. Non-invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry

    OpenAIRE

    Naidu, M.U.R; C Prabhakar Reddy

    2012-01-01

    Objective: The aim of the present study was to validate and compare novel methods to determine aortic blood pressure non-invasively based on Oscillometric Pulse Wave Velocity (PWV) measurement using four limb-cuff pressure waveforms and two lead Electrocardiogram (ECG) with a validated tonometric pulse wave analysis system in patients. Materials and Methods: After receiving the consent, in 49 patients with hypertension, coronary artery disease, diabetes mellitus, PWV, and central blood p...

  2. Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves.

    Science.gov (United States)

    Shetty, Ashok K; Mishra, Vikas; Kodali, Maheedhar; Hattiangady, Bharathi

    2014-01-01

    Mild traumatic brain injury (mTBI) resulting from exposure to blast shock waves (BSWs) is one of the most predominant causes of illnesses among veterans who served in the recent Iraq and Afghanistan wars. Such mTBI can also happen to civilians if exposed to shock waves of bomb attacks by terrorists. While cognitive problems, memory dysfunction, depression, anxiety and diffuse white matter injury have been observed at both early and/or delayed time-points, an initial brain pathology resulting from exposure to BSWs appears to be the dysfunction or disruption of the blood-brain barrier (BBB). Studies in animal models suggest that exposure to relatively milder BSWs (123 kPa) initially induces free radical generating enzymes in and around brain capillaries, which enhances oxidative stress resulting in loss of tight junction (TJ) proteins, edema formation, and leakiness of BBB with disruption or loss of its components pericytes and astrocyte end-feet. On the other hand, exposure to more intense BSWs (145-323 kPa) causes acute disruption of the BBB with vascular lesions in the brain. Both of these scenarios lead to apoptosis of endothelial and neural cells and neuroinflammation in and around capillaries, which may progress into chronic traumatic encephalopathy (CTE) and/or a variety of neurological impairments, depending on brain regions that are afflicted with such lesions. This review discusses studies that examined alterations in the brain milieu causing dysfunction or disruption of the BBB and neuroinflammation following exposure to different intensities of BSWs. Furthermore, potential of early intervention strategies capable of easing oxidative stress, repairing the BBB or blocking inflammation for minimizing delayed neurological deficits resulting from exposure to BSWs is conferred. PMID:25165433

  3. Blood Brain Barrier Dysfunction and Delayed Neurological Deficits in Mild Traumatic Brain Injury Induced by Blast Shock Waves

    Directory of Open Access Journals (Sweden)

    Ashok K Shetty

    2014-08-01

    Full Text Available Mild traumatic brain injury (mTBI resulting from exposure to blast shock waves (BSWs is one of the most predominant causes of illnesses among veterans who served in the recent Iraq and Afghanistan wars. Such mTBI can also happen to civilians if exposed to shock waves of bomb attacks by terrorists. While cognitive problems, memory dysfunction, depression, anxiety and diffuse white matter injury have been observed at both early and/or delayed time-points, an initial brain pathology resulting from exposure to BSWs appears to be the dysfunction or disruption of the blood-brain barrier (BBB. Studies in animal models suggest that exposure to relatively milder BSWs (123 kPa initially induces free radical generating enzymes in and around brain capillaries, which enhances oxidative stress resulting in loss of tight junction proteins, edema formation, and leakiness of BBB with disruption or loss of its components pericytes and astrocyte end-feet. On the other hand, exposure to more intense BSWs (145-323 kPa causes acute disruption of the BBB with vascular lesions in the brain. Both of these scenarios lead to apoptosis of endothelial and neural cells and neuroinflammation in and around capillaries, which may progress into chronic traumatic encephalopathy and/or a variety of neurological impairments, depending on brain regions that are afflicted with such lesions. This review discusses studies that examined alterations in the brain milieu causing dysfunction or disruption of the BBB and neuroinflammation following exposure to different intensities of BSWs. Furthermore, potential of early intervention strategies capable of easing oxidative stress, repairing the BBB or blocking inflammation for minimizing delayed neurological deficits resulting from exposure to BSWs is conferred.

  4. Blast Valve Design and Related Studies : A Review

    OpenAIRE

    Sharma, P. K.; Patel, B. P.; Harbans Lal

    2016-01-01

    The protective structures required for performing critical operations are vulnerable to the blast and shock loads of advanced weapons. A blast valve is an important component of such structures for ventilation during normal conditions and for protection from blast/ shock during explosion. In this paper, various aspects of blast valve design and related studies are briefly reviewed. The concept and effects of blast wave, blast impact, numerical modelling and deformation of circular plate (one ...

  5. The synchrotron self-Compton spectrum of relativistic blast waves at large Y

    Science.gov (United States)

    Lemoine, Martin

    2015-11-01

    Recent analyses of multiwavelength light curves of gamma-ray bursts afterglows point to values of the magnetic turbulence well below the canonical ˜1 per cent of equipartition, in agreement with theoretical expectations of a microturbulence generated in the shock precursor, which then decays downstream of the shock front through collisionless damping. As a direct consequence, the Compton parameter Y can take large values in the blast. In the presence of decaying microturbulence and/or as a result of the Klein-Nishina suppression of inverse Compton cooling, the Y parameter carries a non-trivial dependence on the electron Lorentz factor, which modifies the spectral shape of the synchrotron and inverse Compton components. This paper provides detailed calculations of this synchrotron self-Compton spectrum in this large Y regime, accounting for the possibility of decaying microturbulence. It calculates the expected temporal and spectral indices α and β customarily defined by F_ν ∝ t_obs^{-α }ν ^{-β } in various spectral domains. This paper also makes predictions for the very high energy photon flux; in particular, it shows that the large Y regime would imply a detection rate of gamma-ray bursts at >10 GeV several times larger than currently anticipated.

  6. Vascular and inflammatory factors in the pathophysiology of blast-induced brain injury

    Directory of Open Access Journals (Sweden)

    Gregory A Elder

    2015-03-01

    Full Text Available Blast-related traumatic brain injury (TBI has received much recent attention because of its frequency in the conflicts in Iraq and Afghanistan. This renewed interest has led to a rapid expansion of clinical and animal studies related to blast. In humans, high-level blast exposure is associated with a prominent hemorrhagic component. In animal models, blast exerts a variety of effects on the nervous system including vascular and inflammatory effects that can be seen with even low-level blast exposures which produce minimal or no neuronal pathology. Acutely, blast exposure in animals causes prominent vasospasm and decreased cerebral blood flow along with blood-brain barrier breakdown and increased vascular permeability. Besides direct effects on the CNS, evidence supports a role for a thoracically mediated effect of blast whereby pressure waves transmitted through the systemic circulation damage the brain. Chronically, a vascular pathology has been observed that is associated with alterations of the vascular extracellular matrix. Sustained microglial and astroglial reactions occur after blast exposure. Markers of a central and peripheral inflammatory response are found for sustained periods after blast injury and include elevation of inflammatory cytokines and other inflammatory mediators. At low levels of blast exposure, a microvascular pathology has been observed in the presence of an otherwise normal brain parenchyma, suggesting that the vasculature may be selectively vulnerable to blast injury. Chronic immune activation in brain following vascular injury may lead to neurobehavioral changes in the absence of direct neuronal pathology. Strategies aimed at preventing or reversing vascular damage or modulating the immune response may improve the chronic neuropsychiatric symptoms associated with blast-related TBI.

  7. Design of armor for protection against blast and impact

    Science.gov (United States)

    Rahimzadeh, Tanaz; Arruda, Ellen M.; Thouless, M. D.

    2015-12-01

    The features of blast and impact that can damage a delicate target supported by a structure include both the peak pressure and the impulse delivered to the structure. This study examines how layers of elastic and visco-elastic materials may be assembled to mitigate these features. The impedance mismatch between two elastic layers is known to reduce the pressure, but dissipation is required to mitigate the transmitted impulse in light-weight armor. A novel design concept called impact or blast tuning is introduced in which a multi-layered armor is used to tune the stress waves resulting from an impact or blast to specific frequencies that match the damping frequencies of visco-elastic layers. The material and geometrical parameters controlling the viscous dissipation of the energy within the armor are identified for a simplified one-dimensional system, to provide insight into how the optimal design of multi-use armor might be based on this concept.

  8. Research on Propagation Characteristic of Water Shock Wave Induced by Underwater Drilling Blasting in Different Direction%水下炮孔爆破不同方向的水中冲击波传播特性研究

    Institute of Scientific and Technical Information of China (English)

    柴修伟; 梁开水

    2012-01-01

    The water shock wave should induce huge destroy to the structures in water,so the research on its characteristic not only had military significance on weapons and warships, but also on the safety utilization of civil underwater engineering blasting. The simple underwater bench blasting model built by ANSYS/LS-DYNA was used to explore and analyze the propagation and attenuation rule of water shock wave in different direction. The results show that the attenuation of water shock has directionality. The attenuation of water shock pressure is fastest perpendicular to the water bottom,the next is parallel to bench crest line,and the slowest is along to the minimum burden.%水中冲击波对水中的构筑物具有很大破坏作用,研究水击波的特性对水中兵器、舰船等方面具有很大的军事意义,对于民用水下工程爆破的安全使用和推广也具有指导意义.采用ANSYS/LS-DYNA有限元软件建立简化的水下台阶爆破数学模型,探索和分析其在不同方向上的传播衰减特性.结果显示:水中冲击波的衰减规律具有方向性,在垂直水底方向水中冲击波压力衰减最快,其次是平行于坡顶线方向,最小抵抗线方向的水中冲击波压力衰减是最慢的.

  9. Vertical pressure gradient and particle motions in wave boundary layers

    DEFF Research Database (Denmark)

    Jensen, Karsten Lindegård

    The present study covers both a numerical and experimental investigation of the processes in the oscillatory boundary layer. In the first part a direct numerical simulation (DNS) is conducted to study the vertical pressure gradient, and its role in relation to laminar to turbulent transition...... and its role in the fully turbulent boundary layer. The pressure in the flow is obtained from the flow fields of the oscillatory boundary layer. What differs, the vertical pressure gradient, from other turbulent quantities, like e.g. velocity fluctuations is that it can detect newly generated turbulence....... This is in contrast to velocity fluctuations that are diffusive, so they can also contain residual turbulence from the previous half cycle until they are dissipated. Furthermore, the magnitude of the mean value of conditionally averaged vertical pressure gradient (for −∂p∗/∂x∗ 2 > 0) is compared to the submerged...

  10. On the recovery of traveling water waves with vorticity from the pressure at the bed

    CERN Document Server

    Hur, Vera Mikyoung

    2015-01-01

    We propose higher-order approximation formulae recovering the surface elevation from the pressure at the bed and the background shear flow for small-amplitude Stokes and solitary water waves. They offer improvements over the pressure transfer function and the hydrostatic approximation. The formulae compare reasonably well with asymptotic approximations of the exact relation between the pressure at the bed and the surface wave in the zero vorticity case, but they incorporate the effects of vorticity through solutions of the Rayleigh equation. Several examples are discussed.

  11. Rubber-induced uniform laser shock wave pressure for thin metal sheets microforming

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Zongbao, E-mail: szb@ujs.edu.cn; Wang, Xiao; Liu, Huixia; Wang, Yayuan; Wang, Cuntang

    2015-02-01

    Highlights: • The rubber is introduced to smooth laser shock wave pressure. • The mechanism of rubber-induced smoothing effect is proposed. • Smoothing effect is mainly due to the radial expansion of plasma cloud on rubber. • The good surface quality can be obtained under rubber dynamic loading. - Abstract: Laser shock microforming of thin metal sheets is a new high velocity forming technique, which employs laser shock wave to deform the thin metal sheets. The spatial distribution of forming pressure is mainly dependent on the laser beam. A new type of laser shock loading method is introduced which gives a uniform pressure distribution. A low density rubber is inserted between the laser beam and the thin metal sheets. The mechanism of rubber-induced smoothing effect on confined laser shock wave is proposed. Plasticine is used to perform the smoothing effect experiments due to its excellent material flow ability. The influence of rubber on the uniformity of laser shock wave pressure is studied by measuring the surface micro topography of the deformed plasticine. And the four holes forming experiment is used to verify the rubber-induced uniform pressure on thin metal sheets surface. The research results show the possibility of smoothing laser shock wave pressure using rubber. And the good surface quality can be obtained under rubber dynamic loading.

  12. Mechanism of blood-brain barrier impairment after mild traumatic brain injury caused by blast shock waves and its relationship with delayed nerve dysfunction

    Directory of Open Access Journals (Sweden)

    Zhao-xi XU

    2016-06-01

    Full Text Available Mild traumatic brain injury (mTBI caused by blast shock waves (BSWs is one of the most common injuries among soldiers in the war. Such mTBI can also happen in civilians if exposed to shock waves of accidental explosion disasters, bomb attacks by terrorists and so on. This injury often results in cognitive problems, memory dysfunction and emotional disorder, and these neurological deficits are closely related to the dysfunction or disruption of the blood-brain barrier (BBB. The present paper discusses mainly the relationship between dysfunction or disruption of BBB and inflammatory reaction in mild brain injury associated with explosive shock wave and effects of early intervention of oxidative stress injury, repairing the BBB and blocking inflammation on relieving delayed neurological deficits. DOI: 10.11855/j.issn.0577-7402.2016.05.15

  13. Experimental Simulation of Volcanic Steam Blasts and Jets at High Pressure Ratios

    Science.gov (United States)

    Austin, J. M.; Morgenstern, M. S.; Kieffer, S. W.

    2008-12-01

    End-member compositions of plumes from volcanic eruptions range from nearly pure steam to heavily particle-laden gas flows. In all cases, if the plumes erupt from a high-pressure reservoir, they are initially supersonic jets that may have complex internal flow structures not easily documented in the field. In the laboratory, some properties of volcanic jets can be investigated with particle-laden flows, but other properties can only be investigated in optically transparent flows. We examine the relation of unsteady jet structure to reservoir conditions for optically transparent flows. We have developed an experimental shock tube facility capable of achieving pressure ratios up to ~150 with reservoirs of different shapes. Time-resolved schlieren visualization is combined with pitot pressure measurements to interrogate the structure of the underexpanded jet flow. We have done preliminary experiments at a pressure ratio of 40 with air, with two reservoirs that are 12.6 and 20 cm in length. These initially produce well-defined supersonic jets that have properties (shape of the underexpanded jet; barrel shocks, Mach disk shocks) which we have bench-marked against other experiments and simulations. Estimated durations of the supersonic portions of the flow from pressure decay calculations are ~45 and ~75 ms, respectively. On these time-scales, the experimental jets collapse: the plume boundary and internal barrel shocks tighten and the Mach disk shock moves toward the vent, until subsonic conditions occur.

  14. Quantification of wave reflection in the human aorta from pressure alone: a proof of principle.

    Science.gov (United States)

    Westerhof, Berend E; Guelen, Ilja; Westerhof, Nico; Karemaker, John M; Avolio, Alberto

    2006-10-01

    Wave reflections affect the proximal aortic pressure and flow waves and play a role in systolic hypertension. A measure of wave reflection, receiving much attention, is the augmentation index (AI), the ratio of the secondary rise in pressure and pulse pressure. AI can be limiting, because it depends not only on the magnitude of wave reflection but also on wave shapes and timing of incident and reflected waves. More accurate measures are obtainable after separation of pressure in its forward (P(f)) and reflected (P(b)) components. However, this calculation requires measurement of aortic flow. We explore the possibility of replacing the unknown flow by a triangular wave, with duration equal to ejection time, and peak flow at the inflection point of pressure (F(tIP)) and, for a second analysis, at 30% of ejection time (F(t30)). Wave form analysis gave forward and backward pressure waves. Reflection magnitude (RM) and reflection index (RI) were defined as RM=P(b)/P(f) and RI=P(b)/(P(f)+P(b)), respectively. Healthy subjects, including interventions such as exercise and Valsalva maneuvers, and patients with ischemic heart disease and failure were analyzed. RMs and RIs using F(tIP) and F(t30) were compared with those using measured flow (F(m)). Pressure and flow were recorded with high fidelity pressure and velocity sensors. Relations are: RM(tIP)=0.82RM(mf)+0.06 (R(2)=0.79; n=24), RM(t30)=0.79RM(mf)+0.08 (R(2)=0.85; n=29) and RI(tIP)=0.89RI(mf)+0.02 (R(2)=0.81; n=24), RI(t30)=0.83RI(mf)+0.05 (R(2)=0.88; n=29). We suggest that wave reflection can be derived from uncalibrated aortic pressure alone, even when no clear inflection point is distinguishable and AI cannot be obtained. Epidemiological studies should establish its clinical value. PMID:16940207

  15. Application of High Top Pressure Technology in Laigang 1000 m3 Blast Furnace%高顶压技术在莱钢1000m3高炉的应用

    Institute of Scientific and Technical Information of China (English)

    王丰巧

    2015-01-01

    High pressure operation is an important measure to strengthen the blast furnace smelting of blast furnace, can be conducive to the stable operation and the exploitation rate of gas.By improving raw material management, increasing the en-ergy of blast furnace, strengthening management measures to strengthen blast furnace top pressure, remarkable economic benefits has been achieved for Laigang 1000 m3 furnace.%高压操作是强化高炉冶炼的一项重要措施,利于高炉炉况稳定顺行、提高煤气利用率,莱钢1000 m3高炉通过加强原料管理、增加鼓风动能、加强炉前管理等措施提高炉顶压力,取得了显著的经济效益。

  16. Frequency interpretation of tidal peak in intracranial pressure wave.

    Science.gov (United States)

    Shahsavari, Sima; McKelvey, Tomas

    2008-01-01

    A new approach to locate different components of ICP signal for each cardiac induced ICP beat is presented. In this method an initial timing map is used to define the appropriate part of the ICP wave which should be searched for the specific component. In parallel a recently proposed method was used to decompose the ICP wave to its different frequency harmonics. This algorithm, which is based on tracking the amplitude of the harmonic components using Kalman filtering, brings both heart rate variability and cardiorespiratory interaction into account and provides good time and frequency resolution. Comparing the results of two methods for seventeen ICP records, each one hour long, it has been observed that the fundamental cardiac component has the most significant contribution in the construction of the tidal peak in ICP and therefore tracking of this harmonic could be informative of the tidal peak evolution over the time.

  17. The impact of hepatic pressurization on liver shear wave speed estimates in constrained versus unconstrained conditions

    International Nuclear Information System (INIS)

    Increased hepatic venous pressure can be observed in patients with advanced liver disease and congestive heart failure. This elevated portal pressure also leads to variation in acoustic radiation-force-derived shear wave-based liver stiffness estimates. These changes in stiffness metrics with hepatic interstitial pressure may confound stiffness-based predictions of liver fibrosis stage. The underlying mechanism for this observed stiffening behavior with pressurization is not well understood and is not explained with commonly used linear elastic mechanical models. An experiment was designed to determine whether the stiffness increase exhibited with hepatic pressurization results from a strain-dependent hyperelastic behavior. Six excised canine livers were subjected to variations in interstitial pressure through cannulation of the portal vein and closure of the hepatic artery and hepatic vein under constrained conditions (in which the liver was not free to expand) and unconstrained conditions. Radiation-force-derived shear wave speed estimates were obtained and correlated with pressure. Estimates of hepatic shear stiffness increased with changes in interstitial pressure over a physiologically relevant range of pressures (0–35 mmHg) from 1.5 to 3.5 m s−1. These increases were observed only under conditions in which the liver was free to expand while pressurized. This behavior is consistent with hyperelastic nonlinear material models that could be used in the future to explore methods for estimating hepatic interstitial pressure noninvasively. (paper)

  18. Distance safety in blasting

    OpenAIRE

    Dambov, Risto; Karanakova Stefanovska, Radmila; Dambov, Ilija

    2015-01-01

    In blasting performance for any purpose and in any location to implement these safeguards is necessary first to determine (calculated) safety distances in terms of the effect of the explosion from some explosive quantity. Calculation of distance safety in blasting performance are refers to: calculation of safety distances from the influence of air - shock waves, calculation of safety distances (zones) of spraying pieces (fragments action) and calculation of safety distances in action of seis...

  19. Characterization of blasts in medium and low thermosphere from infrasonic wave observations

    International Nuclear Information System (INIS)

    The International Monitoring System (IMS) designed to monitor compliance with the Comprehensive Nuclear Test-Ban Treaty (CTBT) uses four complementary verification methods: seismic, hydro-acoustic, radionuclide and micro-barometric stations spanning the entire globe. Micro-barometric stations record continuously infrasonic waves in the frequency band 0.02-4 Hz. These waves propagate at long-ranges through atmospheric ducts resulting from the natural stratification of atmospheric properties (temperature, density, winds,...) and represent a valuable information to understand atmospheric dynamic until the lower thermosphere. In this thesis, we seek to determine the possible contribution of infra-sound observations for improving current atmospheric specifications. We describe the atmospheric media and its circulation mechanisms as well as the conventional observations used in the development of atmospheric models. A description of the interaction between infrasonic waves and the atmosphere help to understand the interest of micro-barometric measurement compared with conventional observations. To highlight this potential we develop an inverse algorithm in order to estimate atmospheric parameters from infrasonic observations. The forward problem is handled by a ray-tracing algorithm. First-order perturbation equation resulting from perturbation of atmospheric properties, and especially wind parameters, are developed and numerically validated. We then analyse the inverse problem through several numerical experiments in order to show the capabilities and limitations of our algorithm. Results show the suitability of our approach and indicate that infrasonic observations can significantly improve current atmospheric specification at the altitudes of acoustic energy refraction, i.e. around 50 km and between 100 and 120 km. (author)

  20. The importance of systemic response in the pathobiology of blast-induced neurotrauma

    Directory of Open Access Journals (Sweden)

    Ibolja eCernak

    2010-12-01

    Full Text Available Due to complex injurious environment where multiple blast effects interact with the body, parallel blast-induced neurotrauma is a unique clinical entity induced by systemic, local, and cerebral responses. Activation of autonomous nervous system; sudden pressure-increase in vital organs such as lungs and liver; and activation of neuroendocrine-immune system are among the most important mechanisms that contribute significantly to molecular changes and cascading injury mechanisms in the brain. It has been hypothesized that vagally mediated cerebral effects play a vital role in the early response to blast: this assumption has been supported by experiments where bilateral vagotomy mitigated bradycardia, hypotension, and apnea, and also prevented excessive metabolic alterations in the brain of animals exposed to blast. Clinical experience suggests specific blast-body-nervous system interactions such as 1 direct interaction with the head either through direct passage of the blast wave through the skull or by causing acceleration and/or rotation of the head; and 2 via hydraulic interaction, when the blast overpressure compresses the abdomen and chest, and transfers its kinetic energy to the body’s fluid phase, initiating oscillating waves that traverse the body and reach the brain. Accumulating evidence suggests that inflammation plays important role in the pathogenesis of long-term neurological deficits due to blast. These include memory decline, motor function and balance impairments, and behavioral alterations, among others. Experiments using rigid body- or head protection in animals subjected to blast showed that head protection failed to prevent inflammation in the brain or reduce neurological deficits, whereas body protection was successful in alleviating the blast-induced functional and morphological impairments in the brain.

  1. Interaction of a strong blast wave with a free surface. [at ocean surface

    Science.gov (United States)

    Falade, A.; Holt, M.

    1978-01-01

    When a point source explosion is initiated at the ocean surface, the shock propagated into the water is reflected at the surface as a centered expansion wave. The solution in the neighborhood of the interaction point is obtained by writing the equations of motion in the appropriate similarity variables and then changing the independent variables to polar coordinates based at the interaction point. From the zero-order solution of the resulting equations the slopes of boundaries at the interaction point are obtained. A first-order perturbation of this solution provides more accurate representation of the flow variables and the curvature of the shock surface near the interaction point.

  2. A new method to record subglottal pressure waves : potential applications

    NARCIS (Netherlands)

    Neumann, K; Gall, [No Value; Schutte, HK; Miller, DG

    2003-01-01

    Rapid subglottal pressure changes related to the glottal cycles influence the aerodynamics of phonation. Various methods to measure these have been developed, but are not practical for routine phoniatric use. For that reason, a noninvasive measurement tool is necessary. This article presents a techn

  3. Comparative experimental study on several methods for measuring elastic wave velocities in rocks at high pressure

    Institute of Scientific and Technical Information of China (English)

    XIE; Hongsen(谢鸿森); ZHOU; Wenge; 周文戈); LIU; Yonggang; (刘永刚); GUO; Jie; (郭捷); HOU; Wei; (侯渭); ZHAO; Zhidan(赵志丹)

    2002-01-01

    To measure elastic wave velocities in rocks at high temperature and high pressure is an important way to acquire the mechanics and thermodynamics data of rocks in the earth's interior and also a substantial approach to studying the structure and composition of materials there. In recent years, a rapid progress has been made in methodology pertaining to the measurements of elastic wave velocities in rocks at high temperature and high pressure with solids as the pressure-transfer media. However, no strict comparisons have been made of the elastic wave velocity data of rocks measured at high temperature and high pressure by various laboratories. In order to compare the experimental results from various laboratories, we have conducted a comparative experimental study on three measuring methods and made a strict comparison with the results obtained by using the transmission method with fluid as the pressure-transfer medium. Our experimental results have shown that the measurements obtained by the three methods are comparable in the pressure ranges of their application. The cubic sample pulse transmission method used by Kern is applicable to measuring elastic wave velocities in crustal rocks at lower temperature and lower pressure. The prism sample pulse reflection-transmission method has some advantages in pressure range, heating temperature and measuring precision. Although the measurements obtained under relatively low pressure conditions by the prism sample pulse transmission method are relatively low in precision, the samples are large in length and their assemblage is simple. So this method is suitable to the experiments that require large quantities of samples and higher pressures. Therefore, in practical application the latter two methods are usually recommended because their measurements can be mutually corrected and supplemented.

  4. Electromagnetic emissions during rock blasting

    Science.gov (United States)

    O'Keefe, S. G.; Thiel, D. V.

    1991-05-01

    Radio emissions during quarry blasting have been recorded in the audio frequency band. Three distinct mechanisms are suggested to explain the observed results; rock fracture at the time of the explosion, charged rocks discharging on impact with the pit floor and micro-fracture of the remaining rock wall due to pressure adjustment of the bench behind the blast. The last mechanism was evident by a train of discrete impulses recorded for up to one minute after the blast. It is assumed that during this time the rock behind the blast was subjected to a significant change in pressure. This may be related to ELF observations during earthquakes.

  5. The laboratory simulation of unmagnetized supernova remnants Absence of a blast wave

    Science.gov (United States)

    Borovsky, J. E.; Pongratz, M. B.; Roussel-Dupre, R. A.; Tan, T.-H.

    1984-01-01

    Supernova remnants are experimentally simulated by irradiating spherical targets with eight-beam carbon dioxide laser in a chamber containing finite amounts of neutral gas, the gas being ionized by radiation from the hot target. The expansion velocities of the target plasmas are approximately the same as the expansion velocities of supernova ejecta and the experiment is successfully scaled to the case of a supernova remnant in an unmagnetized, low-density, interstellar medium. No sweep-up of the ambient plasma is detected, indicating that no hydrodynamic shock wave is formed to couple the target ejecta to the ambient gas. The experiment implies that if supernova ejecta couple to the interstellar medium, magnetic-field effects may be crucial to the physical description.

  6. Generation and Propagation of Long Waves due to Spatial and Temporal Pressure Distributions

    Science.gov (United States)

    Metin, A. D.; Yalçıner, A. C.; Ozyurt Tarakcıoglu, G.; Zaytsev, A.

    2015-12-01

    An abnormal wave event was observed between 23 and 27 June 2014 in the Mediterranean and Black Seas. First, sea level oscillations began in Ciutadella Inlet (Spain) after midnight of 22 June. The phenomena continued with observation of strong oscillations (up to 3 m wave height) in the Adriatic Sea, Mediterranean Sea and Black Sea on 25-26 June. Finally, at noon on 27 June on a calm and sunny day, the abnormal waves suddenly struck coasts of Odessa with 1-2 m wave height injuring a number of people. This tsunami-like event which is called meteotsunami is generated by different types of meteorological disturbances such as atmospheric gravity waves, pressure jumps and squall lines and the significant consequences necessitates the research to understand, model and simulate such events accurately. Thus, using the 2014 event as a case study, the waves generated by the change of atmospheric pressure distribution is studied. A static water level drop due to high atmospheric pressure in a region and rise due to low atmospheric pressure in another region deform the water level throughout the entire sea area. To compute the sea level change, the relation between the pressure difference and change of water level from normal position (ζ=0.99ΔP) is used where ζ is the change of water level (cm) according to the pressure difference from normal pressure ΔP. This relation gives that 1 hPa (1millibar) depression in air pressure from normal water level position (under 1000millibar) creates almost 1 cm rise in mean sea level. The respective small amplitude long waves propagate along the sea which is continuously excited by the spatial and temporal changes of atmospheric pressure. And, the amplification becomes important to understand the occurrence of unexpected water level changes, especially near the coastal zone. In this study, this long wave propagation due to water surface deformation is modelled by solving nonlinear shallow water equations. The model results are compared

  7. Low-pressure hydro turbines and control equipment for wave energy converters (Wave Dragon). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, H.C.; Hansen, R.

    2001-06-01

    The Wave Dragon is a 4 MW floating offshore wave energy converter of the overtopping type. Through performing tests on a scale 1:50 model of the Wave Dragon, real-time overtopping time series were provided. These allowed the development of a feasible turbine and regulation strategy for handling the varying heads and flows occurring in the reservoir. A model turbine with a runner diameter of 340 mm was designed, and tested in a conventional turbine test stand. The results revealed very high efficiencies (91.3% peak efficiency), and more importantly a very flat performance curve yielding high turbine efficiency for the complete range of heads available at the Wave Dragon. A suitable power take-off and grid connection system was developed, addressing power quality issues, as well as more practical issues of flexible cabling solutions. It was concluded that feasible solutions to the technical barriers envisioned prior to the project had been found. Also means for improving the overtopping characteristics of the device were put forward. The feasibility of the Wave Dragon at original 1st generation design was investigated and key performance figures were given as net annual power production of 5.1-3.1 GWh/year, 2,775-3,150 Euro/kW in construction costs and a power production price of 0.19-0.27 Euro/kWh. The figures includes availability losses, all losses in the power train, and losses from restricted freedom of movement for two of the scenarios, with a wave energy potential of 16 and 24 kW/m wave front respectively. Significant scope for improvement, especially from enhanced overtopping from improved design, mass production and learning effects were also identified. Through implementing the known technical improvements to the Wave Dragon design identified through the project an annual net power production of 8.9 GWh/year and a production price of 0.12 Euro/kWh is foreseen for a 24 kW/m wave potential. With additional technical improvements, mass production benefits and

  8. Experimental Investigation on Propagation Rule of Shock Wave by Emulsion Explosives Underwater Blasting%乳化炸药水中爆炸冲击波传播规律试验研究

    Institute of Scientific and Technical Information of China (English)

    赵根; 季荣; 郑晓宁; 王文辉; 吴从清

    2011-01-01

    In the process of underwater blasting, the adobe blasting method was usually used to cut and demolish underwater metallic structure, sympathatic detonation of suspicious explosive object, etc. When blast area near by the culture area and protection of aquatic wildlife, it needs to consider the factor of water wave. In this paper, the propagation empirical formula of water wave is discussed. Through the blast test and arialysis on the monitored data, the propagation rules of water wave by high-energy and common emulsion explosives underwater blasting are obtained.%在水下工程爆破中,通常采用裸露药包爆破法,进行水下金属构件的切割与拆除、水下可疑爆炸物的诱爆等,当爆破区域附近有养殖区、野生保护水生物时,就需考虑炸药爆炸产生的水中冲击波影响问题.对水中冲击波传播规律的公式形式进行了探讨,通过爆破试验以及对监测资料的分析,得到了高能、普通乳化炸药的水中爆炸冲击波传播规律.

  9. Numerical Simulation of Dynamic Response and Collapse for Steel Frame Structures Subjected to Blast Load

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiuhua; DUAN Zhongdong; ZHANG Chunwei

    2008-01-01

    The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA.The multi-material Eulerian and Lagrangian coupling algorithm was adopted.A fluid-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground,multiple ALE element for simulating air and TNT explosive material.Numerical simulations of the blast pressure wave propagation,structural dynamic responses and deformation,and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed.The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure.The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation.The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic deformation subjected to intensive blast waves,and columns lost carrying capacity,subsequently leading to the collapse of the whole structure.The approach coupling influence between structural deformation and fluid load well simulated the progressive collapse process of structures,and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.

  10. Stone Comminution Correlates with the Average Peak Pressure Incident on a Stone during Shock Wave Lithotripsy

    OpenAIRE

    Smith, N; P Zhong

    2012-01-01

    To investigate the roles of lithotripter shock wave (LSW) parameters and cavitation in stone comminution, a series of in vitro fragmentation experiments have been conducted in water and 1,3-butanediol (a cavitation-suppressive fluid) at a variety of acoustic field positions of an electromagnetic shock wave lithotripter. Using field mapping data and integrated parameters averaged over a circular stone holder area (Rh = 7 mm), close logarithmic correlations between the average peak pressure (P+...

  11. 基于HHT方法的爆炸应变波时频分析%Joint time-frequency analysis of blast strain wave based on Hilbert-Huang transformation

    Institute of Scientific and Technical Information of China (English)

    杨仁树; 高祥涛; 车玉龙; 解北京

    2014-01-01

    In order to investigate blast strain wave signal characteristics,here,Hilbert-Huang Transformation (HHT)was applied to analyze the time-frequency spectra of blast strain wave signals.Empirical mode decomposition and Hilbert spectral analysis for blast strain wave signals were discussed.Comparison between HHT and short time Fourier transformation (STFT)of blast wave signals was done.Multi-frequency interaction of blast wave signals in air and rock was discussed with numerical simulation,and the signal characteristics were studied with dynamic photo-elastic tests.It was demonstrated that the main frequencies of blast strain wave are within a range of few hundreds kHz to few MHzs in a field close to a borehole;HHT method can be used to show the details of the explosion strain wave propagation characteristics;the blast strain wave profile is formed due to the interaction of waves with different frequencies.%为探究固体介质中爆炸应变波信号特征,采用Hilbert-Huang Transform (HHT)方法对爆炸应变波信号进行时频分析;讨论爆炸应变波信号 EMD 分解及时频能分布特征,并将 HHT 分析结果与 Short Time Fourier Transform (STFT)对比;通过分析爆炸波在空气、岩石介质中传播的数值模拟结果与爆炸应变波在有机玻璃中传播的动光弹实验结果,探讨爆炸波信号多频率作用特征。结果表明,爆源近中区爆炸应变波主频率在几百千赫兹到几兆赫兹范围内;HHT方法明显表现出爆炸应变波传播的细节特征;固体介质中爆炸应变波信号波形为由不同频率波动共同作用结果。

  12. Wave pattern in the wake of an arbitrary moving surface pressure disturbance

    Science.gov (United States)

    Miao, Sha; Liu, Yuming

    2015-12-01

    We study the problem of wave pattern in the wake of an arbitrary surface pressure disturbance that moves forward at constant speed U in deep water. We seek the dependence of the location of the maximum amplitude of waves upon the pressure distribution and the Froude number F ≡ U / √{ g L } , where L is the characteristic length of the pressure disturbance and g is the gravitational acceleration. We show by theoretical analysis and direct numerical evaluation that half of the included angle (ϕmax) of the V-shape corresponding to the maximum amplitude of the waves in the wake at large Froude numbers behaves asymptotically as ϕ max = C F - a for F > F c , with the constant a, coefficient C, and threshold value of Froude number F c all being functions of the pressure distribution. It is found that for most pressure disturbances, a equals 1, but a can equal 2 for special non-smooth pressure disturbances. The condition in terms of the order of discontinuity and distribution shape of the pressure disturbance for the result of a = 2 is provided. These findings imply that for ship wakes, ϕmax generally decreases with increasing F at large Froude numbers, while the exact value of ϕmax is dependent on ship geometry and F .

  13. Molecular modeling of high-pressure ramp waves in tantalum

    Science.gov (United States)

    Lane, J. Matthew D.; Lim, Hojun; Brown, Justin L.

    2015-03-01

    Ramp wave compression experiments of bcc metals under extreme conditions have produced differing measurements of material strength response. These variations are often attributed to differing experimental techniques, and varying material factors such as microstructure, and strain-rate. We present non-equilibrium molecular dynamics simulations of tantalum for single crystal and two polycrystalline nanostructures out to 250 GPa, over strain states ranging from 108 to 1011 1/s. Results will be compared to recent Z-machine strength experiments, meso-scale crystal plasticity models and continuum-scale polycrystalline model. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    Science.gov (United States)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  15. Exit from Inflation with a First-Order Phase Transition and a Gravitational Wave Blast

    CERN Document Server

    Ashoorioon, Amjad

    2015-01-01

    In double-field inflation, which exploits two scalar fields, one of the fields rolls slowly during inflation whereas the other field is trapped in a meta-stable vacuum. The nucleation rate from the false vacuum to the true one becomes substantial enough that triggers a first order phase transition and ends inflation. We revisit the question of first order phase transition in an "extended" model of hybrid inflation, realizing the double-field inflationary scenario, and correctly identify the parameter space that leads to a first order phase transition at the end of inflation. We compute the gravitational wave profile which is generated during this first order phase transition. Assuming instant reheating, the peak frequency falls in the $1$ GHz to $10$ GHz frequency band and the amplitude varies in the range $10^{-8}\\lesssim \\Omega_{\\rm GW} h^2 \\lesssim 10^{-11}$, depending on the value of the cosmological constant in the false vacuum. The signature could be observed by the planned Chongqing high frequency grav...

  16. Reconstruction of stratified steady water waves from pressure readings on the ocean bed

    CERN Document Server

    Chen, Robin Ming

    2015-01-01

    Consider a two-dimensional stratified solitary wave propagating through a body of water that is bounded below by an impermeable ocean bed. In this work, we study how such a wave can be reconstructed from data consisting of the wave speed, upstream and downstream density profile, and the trace of the pressure on the bed. First, we prove that this data uniquely determines the wave, both in the (real) analytic and Sobolev regimes. Second, for waves that consist of multiple layers of constant density immiscible fluids, we provide an exact formula describing each of the interfaces in terms of the data. Finally, for continuously stratified fluids, we detail a reconstruction scheme based on approximation by layer-wise constant density flows.

  17. The Oblique Incident Effects of Electromagnetic Wave in Atmospheric Pressure Plasma Layers

    Institute of Scientific and Technical Information of China (English)

    HE Yong; JIANG Zhonghe; HU Xiwei; LIU Minghai

    2008-01-01

    The propagating behaviours, i.e. phase shift, transmissivity, reflectivity and absorptivity, of an electromagnetic (EM) wave in a two-dimensional atmospheric pressure plasma layer are described by the numerical solutions of integral-differential Maxwell's equations through a generalized finite-difference-time-domain (FDTD) algorithm. These propagating behaviours are found to be strongly affected by five factors: two EM wave characteristics relevan.t to the oblique incident and three dimensionless factors. The two EM wave factors are the polarization mode (TM mode or TE mode) and its incident angle. The three dimensionless factors are: the ratio of the maximum electron density to the critical density n0/ncr, the ratio of the plasma layer width to the wave length d/λ, and the ratio of the collision frequency between electrons and neutrals to the incident wave frequency ve0/f.

  18. a New Approach of Dynamic Blood Pressure Measurement Based on the Time Domain Analysis of the Pulse Wave

    Science.gov (United States)

    Zimei, Su; Wei, Xu; Hui, Yu; Fei, Du; Jicun, Wang; Kexin, Xu

    2009-08-01

    In this study the pulse wave characteristics were used as a new approach to measure the human blood pressure. Based the principle of pulse wave and theory of the elastic vascular, the authors analyzed the characteristic of the pulse waveforms and revealed the characteristics points which could be used to represent the blood pressure. In this investigation the relevant mathematical feature was used to identify the relationship between the blood pressure and pulse wave parameters in a more accurate way. It also provided an experimental basis to carry out continuing non-invasive blood pressure monitoring using the pulse wave method.

  19. Experimental Study on Peak Pressure of Shock Waves in Quasi-Shallow Water

    Directory of Open Access Journals (Sweden)

    Zhenxiong Wang

    2015-01-01

    Full Text Available Based on the similarity laws of the explosion, this research develops similarity requirements of the small-scale experiments of underwater explosions and establishes a regression model for peak pressure of underwater shock waves under experimental condition. Small-scale experiments are carried out with two types of media at the bottom of the water and for different water depths. The peak pressure of underwater shock waves at different measuring points is acquired. A formula consistent with the similarity law of explosions is obtained and an analysis of the regression precision of the formula confirms its accuracy. Significance experiment indicates that the influence of distance between measuring points and charge on peak pressure of underwater shock wave is the greatest and that of water depth is the least within the range of geometric parameters. An analysis of data from experiments with different media at the bottom of the water reveals an influence on the peak pressure, as the peak pressure of a shock wave in a body of water with a bottom soft mud and rocks is about 1.33 times that of the case where the bottom material is only soft mud.

  20. Acoustic Pressure Waves in Vibrating 3-D Laminated Beam-Plate Enclosures

    Directory of Open Access Journals (Sweden)

    Charles A. Osheku

    2009-01-01

    Full Text Available The effect of structural vibration on the propagation of acoustic pressure waves through a cantilevered 3-D laminated beam-plate enclosure is investigated analytically. For this problem, a set of well-posed partial differential equations governing the vibroacoustic wave interaction phenomenon are formulated and matched for the various vibrating boundary surfaces. By employing integral transforms, a closed form analytical expression is computed suitable for vibroacoustic modeling, design analysis, and general aerospace defensive applications. The closed-form expression takes the form of a kernel of polynomials for acoustic pressure waves showing the influence of linear interface pressure variation across the axes of vibrating boundary surfaces. Simulated results demonstrate how the mode shapes and the associated natural frequencies can be easily computed. It is shown in this paper that acoustic pressure waves propagation are dynamically stable through laminated enclosures with progressive decrement in interfacial pressure distribution under the influence of high excitation frequencies irrespective of whether the induced flow is subsonic, sonic , supersonic, or hypersonic. Hence, in practice, dynamic stability of hypersonic aircrafts or jet airplanes can be further enhanced by replacing their noise transmission systems with laminated enclosures.

  1. Modeling and simulation of pressure waves generated by nano-thermite reactions

    Science.gov (United States)

    Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; (Yuki) Horie, Yasuyuki

    2012-11-01

    This paper reports the modeling of pressure waves from the explosive reaction of nano-thermites consisting of mixtures of nanosized aluminum and oxidizer granules. Such nanostructured thermites have higher energy density (up to 26 kJ/cm3) and can generate a transient pressure pulse four times larger than that from trinitrotoluene (TNT) based on volume equivalence. A plausible explanation for the high pressure generation is that the reaction times are much shorter than the time for a shock wave to propagate away from the reagents region so that all the reaction energy is dumped into the gaseous products almost instantaneously and thereby a strong shock wave is generated. The goal of the modeling is to characterize the gas dynamic behavior for thermite reactions in a cylindrical reaction chamber and to model the experimentally measured pressure histories. To simplify the details of the initial stage of the explosive reaction, it is assumed that the reaction generates a one dimensional shock wave into an air-filled cylinder and propagates down the tube in a self-similar mode. Experimental data for Al/Bi2O3 mixtures were used to validate the model with attention focused on the ratio of specific heats and the drag coefficient. Model predictions are in good agreement with the measured pressure histories.

  2. Rubber-induced uniform laser shock wave pressure for thin metal sheets microforming

    Science.gov (United States)

    Shen, Zongbao; Wang, Xiao; Liu, Huixia; Wang, Yayuan; Wang, Cuntang

    2015-02-01

    Laser shock microforming of thin metal sheets is a new high velocity forming technique, which employs laser shock wave to deform the thin metal sheets. The spatial distribution of forming pressure is mainly dependent on the laser beam. A new type of laser shock loading method is introduced which gives a uniform pressure distribution. A low density rubber is inserted between the laser beam and the thin metal sheets. The mechanism of rubber-induced smoothing effect on confined laser shock wave is proposed. Plasticine is used to perform the smoothing effect experiments due to its excellent material flow ability. The influence of rubber on the uniformity of laser shock wave pressure is studied by measuring the surface micro topography of the deformed plasticine. And the four holes forming experiment is used to verify the rubber-induced uniform pressure on thin metal sheets surface. The research results show the possibility of smoothing laser shock wave pressure using rubber. And the good surface quality can be obtained under rubber dynamic loading.

  3. Influence of air pressure on mechanical effect of laser plasma shock wave

    Institute of Scientific and Technical Information of China (English)

    Zhang Yu-Zhu; Wang Guang-An; Zhu Jin-Rong; Shen Zhong-Hua; Ni Xiao-Wu; Lu Jian

    2007-01-01

    The influence of air pressure on mechanical effect of laser plasma shock wave in a vacuum chamber produced by a Nd:YAG laser has been studied. The laser pulses with pulse width of 10ns and pulse energy of about 320mJ at 1.06μm wavelength is focused on the aluminium target mounted on a ballistic pendulum, and the air pressure in the chamber changes from 2.8 × 103 to 1.01×105pa. The experimental results show that the impulse coupling coefficient changes as the air pressure and the distance of the target from focus change. The mechanical effects of the plasma shock wave on the target are analysed at different distances from focus and the air pressure.

  4. Exit from inflation with a first-order phase transition and a gravitational wave blast

    Directory of Open Access Journals (Sweden)

    Amjad Ashoorioon

    2015-07-01

    Full Text Available In double-field inflation, which exploits two scalar fields, one of the fields rolls slowly during inflation whereas the other field is trapped in a meta-stable vacuum. The nucleation rate from the false vacuum to the true one becomes substantial enough that triggers a first order phase transition and ends inflation. We revisit the question of first order phase transition in an “extended” model of hybrid inflation, realizing the double-field inflationary scenario, and correctly identify the parameter space that leads to a first order phase transition at the end of inflation. We compute the gravitational wave profile which is generated during this first order phase transition. Assuming instant reheating, the peak frequency falls in the 1 GHz to 10 GHz frequency band and the amplitude varies in the range 10−11≲ΩGWh2≲10−8, depending on the value of the cosmological constant in the false vacuum. For a narrow band of vacuum energies, the first order phase transition can happen after the end of inflation via the violation of slow-roll, with a peak frequency that varies from 1 THz to 100 THz. For smaller values of cosmological constant, even though inflation can end via slow-roll violation, the universe gets trapped in a false vacuum whose energy drives a second phase of eternal inflation. This range of vacuum energies do not lead to viable inflationary models, unless the value of the cosmological constant is compatible with the observed value, M∼10−3 eV.

  5. The Supernova Blast Wave and the Molecular Cloud: an Observational Study of Molecular Shock Emission.

    Science.gov (United States)

    Richter, Matthew Joseph

    1995-01-01

    Shock waves in molecular clouds heat, compress, accelerate, and chemically alter the gas they encounter. Despite their crucial role in determining the physical state of the dense interstellar medium and despite their making possible direct observations of H_2, molecular shocks are still poorly understood, as evidenced by the many discrepancies between theory and observations. In my dissertation, I use the supernova remnant IC 443 as a laboratory to test our understanding of shock -excited H_2 emission. By examining roughly 20 separate 2-4 μm Ha transitions, I find the non-uniform temperature structure essentially reproduces that found in Orion Peak 1, and so is consistent with the partially dissociating J-shock model presented by Brand and collaborators. Subsequent mid-infrared observations of the pure rotational S(2) transition at 12 mu m strengthens these conclusions. Velocity resolved line profiles of the strong 1-0 S(1) transition uncover a relationship between the remnant's large-scale geometry and the line profile's full-width at 10% intensity, centroid, and shape. The relationship contradicts any model requiring local bow geometries to explain broad H_2 line widths. Comparing the 1-0 S(1) data with similar observations of the 2-1 S(1) line, I demonstrate that the excitation temperature in the shocked gas depends primarily on position, not velocity. Taken together, the identical velocity extent of the 1-0 S(1) and the 2-1 S(1) lines and their upper state energy separation of E/k ~ 6000 K proves the H_2 -emitting gas reaches its full velocity dispersion prior to cooling below roughly 1500 K. Finally, I compare, with similar spatial and spectral resolution, H_2 and HCO^+ J = 1 - 0 and find evidence for temperature gradients as a result of both preshock density inhomogeneities and postshock cooling.

  6. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    OpenAIRE

    Vappou, J.; Luo, J; Okajima, K.; Di Tullio, M; Konofagou, E E

    2011-01-01

    The central Blood Pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce Pulse Wave-based Ultrasound Manometry (PWUM) as a simple-touse, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency (RF) ultrasound sig...

  7. Geophysical investigation of the pressure field produced by water guns at a pond site in La Crosse, Wisconsin

    Science.gov (United States)

    Adams, Ryan F.; Morrow, William S.

    2015-09-03

    Three different geophysical sensor types were used to characterize the underwater pressure waves generated by the underwater firing of a seismic water gun and their suitability for establishing a pressure barrier to potentially direct or prevent the movement of the Asian carps. The sensors used to collect the seismic information were blast rated hydrophones and underwater blast sensors. Specific location information for the water guns and the sensors was obtained using either laser rangefinders or differentially corrected global positioning systems (GPS).

  8. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 1. 6, blast measurements. Part 3. Pressure near ground level. Section 4. Blast asymmetry from aerial photographs. Section 5. Ball-crusher-gauge measurements of peak pressure

    Energy Technology Data Exchange (ETDEWEB)

    1985-04-01

    Aerial motion pictures from manned aircraft were taken of the Dog, Easy, and George Shots and from a drone aircraft on Dog Shot to determine whether asymmetries in the blast waves could be detected and measured. Only one film, that taken of Dog Shot from a drone, was considered good enough to warrant detailed analysis, but this failed to yield any positive information on asymmetries. The analysis showed that failure to obtain good arrival-time data arose from a number of cases, but primarily from uncertainities in magnification and timing. Results could only be matched with reliable data from blast-velocity switches by use of large corrections. Asymnetries, if present, were judged to have been too small or to have occurred too early to be detected with the slow-frame speed used. Recommendations for better results include locating the aircraft directly overhead at the time of burst and using a camera having greater frame speed and provided with timing marks.

  9. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= $T_{p, perp}/T_{p, parallel}{-}1$ became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the

  10. Pressure pulse induced-damage in live biological samples

    Directory of Open Access Journals (Sweden)

    Rankin S.M.

    2012-08-01

    Full Text Available Developing a cellular and molecular understanding of the nature of traumatic and post-traumatic effects of blast on live biological samples is critical for improving clinical outcomes. To analyze the effects of blast waves upon the cellular structures and the underlying physiological and biochemical changes, we have constructed an experimental platform capable of delivering compression waves, of amplitudes relevant to blast, to cell suspensions in a contained environment. Initial characterization of the system shows that cell cultures can be subjected to high-intensity compression waves up to 15 MPa in pressure and duration of 80 ± 10μs. Studies of mouse mesenchymal stem cells subjected to two different pressure impulses were analysed by cell counting, cell viability assays and microscopic evaluation: the experiments present evidence suggestive of increased levels of damage and loss of cellular integrity compared to uncompressed cell cultures.

  11. Experimental study on pressure wave propagation through the open end of pipe

    International Nuclear Information System (INIS)

    The steam generators of a double pool type liquid metal fast breeder reactor (LMFBR) are used in a large sodium pool which is formed between the primary vessel and the secondary vessel and accommodates the entire secondary heat transport system. Therefore, if there is a sodium-water reaction event in the steam generator, it becomes important to evaluate the pressure rises at the walls of the primary and secondary vessels as well as those at the other secondary components. An experimental study was performed, focusing on the propagation of the initial pressure spike of the-sodium-water reaction from the bottom end of the steam generator to the sodium pool. Pressure wave propagation from inside of a pipe to an open space through the pipe end was measured. Two kinds of pressure propagation media, water and air, ensured a wide range of experimental conditions. The experimental results revealed that the pressure attenuation at the open end of a pipe can be put in order using the concept of inertial length, and that the dimensionless inertial length, i.e., the inertial length divided by the half wave length of the pressure pulse, is proportional to the square of the dimensionless diameter. These results provide a prediction method for a pressure rise by the initial pressure spike in the secondary sodium pool of the Double Pool LMFBR

  12. Reliable intraocular pressure measurement using automated radio-wave telemetry

    Directory of Open Access Journals (Sweden)

    Paschalis EI

    2014-01-01

    Full Text Available Eleftherios I Paschalis,* Fabiano Cade,* Samir Melki, Louis R Pasquale, Claes H Dohlman, Joseph B CiolinoMassachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA*These authors contributed equally to this workPurpose: To present an autonomous intraocular pressure (IOP measurement technique using a wireless implantable transducer (WIT and a motion sensor.Methods: The WIT optical aid was implanted within the ciliary sulcus of a normotensive rabbit eye after extracapsular clear lens extraction. An autonomous wireless data system (AWDS comprising of a WIT and an external antenna aided by a motion sensor provided continuous IOP readings. The sensitivity of the technique was determined by the ability to detect IOP changes resulting from the administration of latanoprost 0.005% or dorzolamide 2%, while the reliability was determined by the agreement between baseline and vehicle (saline IOP.Results: On average, 12 diurnal and 205 nocturnal IOP measurements were performed with latanoprost, and 26 diurnal and 205 nocturnal measurements with dorzolamide. No difference was found between mean baseline IOP (13.08±2.2 mmHg and mean vehicle IOP (13.27±2.1 mmHg (P=0.45, suggesting good measurement reliability. Both antiglaucoma medications caused significant IOP reduction compared to baseline; latanoprost reduced mean IOP by 10% (1.3±3.54 mmHg; P<0.001, and dorzolamide by 5% (0.62±2.22 mmHg; P<0.001. Use of latanoprost resulted in an overall twofold higher IOP reduction compared to dorzolamide (P<0.001. Repeatability was ±1.8 mmHg, assessed by the variability of consecutive IOP measurements performed in a short period of time (≤1 minute, during which the IOP is not expected to change.Conclusion: IOP measurements in conscious rabbits obtained without the need for human interactions using the AWDS are feasible and provide reproducible results.Keywords: IOP, pressure transducer, wireless, MEMS, implant, intraocular

  13. Internal wave pressure, velocity, and energy flux from density perturbations

    CERN Document Server

    Allshouse, Michael R; Morrison, Philip J; Swinney, Harry L

    2016-01-01

    Determination of energy transport is crucial for understanding the energy budget and fluid circulation in density varying fluids such as the ocean and the atmosphere. However, it is rarely possible to determine the energy flux field $\\mathbf{J} = p \\mathbf{u}$, which requires simultaneous measurements of the pressure and velocity perturbation fields, $p$ and $\\mathbf{u}$. We present a method for obtaining the instantaneous $\\mathbf{J}(x,z,t)$ from density perturbations alone: a Green's function-based calculation yields $p$, and $\\mathbf{u}$ is obtained by integrating the continuity equation and the incompressibility condition. We validate our method with results from Navier-Stokes simulations: the Green's function method is applied to the density perturbation field from the simulations, and the result for $\\mathbf{J}$ is found to agree typically to within $1\\%$ with $\\mathbf{J}$ computed directly using $p$ and $ \\mathbf{u}$ from the Navier-Stokes simulation. We also apply the Green's function method to densit...

  14. Development of microbubble generator for suppression of pressure waves in mercury target of spallation source

    International Nuclear Information System (INIS)

    A MW-class mercury target for the spallation neutron source is subjected to the pressure waves and cavitation erosion induced by high-intense pulsed-proton beam bombardment. Helium-gas microbubbles injection into mercury is one of the effective techniques to suppress the pressure waves. The microbubble injection technique was developed. The selection test of bubble generators indicated that the bubble generator utilizing swirl flow of liquid (swirl-type bubble-generator) will be suitable from the viewpoint of the produced bubble size. However, when single swirl-type bubble-generator was used in flowing mercury, swirl flow of mercury remains at downstream of the generator. The remaining swirl flow causes the coalescence of bubbles which results in ineffective suppression of pressure waves. To solve this concern, a multi-swirl type bubble-generator, which consists of several single swirl-type bubble-generators arraying in the plane perpendicular to mercury flow direction, was invented. The multi-swirl type bubble-generator was tested in mercury and the geometry was optimized to generate small bubble with low flow resistance based on the test results. It is estimated to generate the microbubbles of 65 μm in radius under the operational condition of the Japanese Spallation Neutron Source mercury target, which is the sufficient size to suppress the pressure waves. (author)

  15. Internal combustion engine supercharging: turbocharger vs. pressure wave compressor. Performance comparison

    Science.gov (United States)

    George, Atanasiu; Chiru, Anghel

    2014-06-01

    This paper aims on comparison between a turbocharged engine and a pressure wave charged engine. The comparison was accomplished using the engine simulation software AVL Boost, version 2010. The grahps were extracted using AVL Impress, version 2010. The performance increase is limited by the mechanical side of the simulated engine.

  16. Influence Mechanism of Lamella Joints on Tunnel Blasting Effect

    OpenAIRE

    Shiwei Shen; Lei Nie; Shulin Dai; Yan Xu

    2013-01-01

    In this study, we have a research of the influence mechanism of lamella joints on tunnel blasting effect. During the process of the tunnel blasting construction, primary structural planes make an important role for the effect of smooth blasting. Especially, it is difficult to attain the perfect blasting effect when the lamella joints intersect with the designed contour line. Coupled effect of the explosive stress waves and the explosive gas is deemed to the basic theory, analysis the blasting...

  17. Arterial blood pressure measurement and pulse wave analysis--their role in enhancing cardiovascular assessment.

    Science.gov (United States)

    Avolio, Alberto P; Butlin, Mark; Walsh, Andrew

    2010-01-01

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. PMID:19940350

  18. Arterial blood pressure measurement and pulse wave analysis—their role in enhancing cardiovascular assessment

    International Nuclear Information System (INIS)

    The most common method of clinical measurement of arterial blood pressure is by means of the cuff sphygmomanometer. This instrument has provided fundamental quantitative information on arterial pressure in individual subjects and in populations and facilitated estimation of cardiovascular risk related to levels of blood pressure obtained from the brachial cuff. Although the measurement is taken in a peripheral limb, the values are generally assumed to reflect the pressure throughout the arterial tree in large conduit arteries. Since the arterial pressure pulse becomes modified as it travels away from the heart towards the periphery, this is generally true for mean and diastolic pressure, but not for systolic pressure, and so pulse pressure. The relationship between central and peripheral pulse pressure depends on propagation characteristics of arteries. Hence, while the sphygmomanometer gives values of two single points on the pressure wave (systolic and diastolic pressure), there is additional information that can be obtained from the time-varying pulse waveform that enables an improved quantification of the systolic load on the heart and other central organs. This topical review will assess techniques of pressure measurement that relate to the use of the cuff sphygmomanometer and to the non-invasive registration and analysis of the peripheral and central arterial pressure waveform. Improved assessment of cardiovascular function in relation to treatment and management of high blood pressure will result from future developments in the indirect measurement of arterial blood pressure that involve the conventional cuff sphygmomanometer with the addition of information derived from the peripheral arterial pulse. (topical review)

  19. A coupling of empirical explosive blast loads to ALE air domains in LS-DYNA (registered)

    International Nuclear Information System (INIS)

    A coupling method recently implemented in LS-DYNA (registered) allows empirical explosive blast loads to be applied to air domains treated with the multi-material arbitrary Lagrangian-Eulerian (ALE) formulation. Previously, when simulating structures subjected to blast loads, two methods of analysis were available: a purely Lagrangian approach or one involving the ALE and Lagrangian formulations coupled with a fluid-structure interaction (FSI) algorithm. In the former, air blast pressure is computed with empirical equations and directly applied to Lagrangian elements of the structure. In the latter approach, the explosive as well as the air are explicitly modeled and the blast wave propagating through the ALE air domain impinges on the Lagrangian structure through FSI. Since the purely Lagrangian approach avoids modeling the air between the explosive and structure, a significant computational cost savings can be realized - especially so when large standoff distances are considered. The shortcoming of the empirical blast equations is their inability to account for focusing or shadowing of the blast waves due to their interaction with structures which may intervene between the explosive and primary structure of interest. The new method presented here obviates modeling the explosive and air leading up the structure. Instead, only the air immediately surrounding the Lagrangian structures need be modeled with ALE, while effects of the far-field blast are applied to the outer face of that ALE air domain with the empirical blast equations; thus, focusing and shadowing effects can be accommodated yet computational costs are kept to a minimum. Comparison of the efficiency and accuracy of this new method with other approaches shows that the ability of LS-DYNA (registered) to model a variety of new blast scenarios has been greatly extended.

  20. Acoustoelastic effects on mode waves in a fluid-filled pressurized borehole in triaxially stressed formations

    Institute of Scientific and Technical Information of China (English)

    Ping'en Li; Youquan Yin; Xianyue Su

    2006-01-01

    Based on the nonlinear theory of acoustoelasticity,considering the triaxial terrestrial stress,the fluid static pressure in the borehole and the fluid nonlinear effect jointly,the dispersion curves of the monopole Stoneley wave and dipole flexural wave propagating along the borehole axis in a homogeneous isotropic formation are investigated by using the perturbation method.The relation of the sensitivity coefficient and the velocity-stress coefficient to frequency are also analyzed.The results show that variations of the phase velocity dispersion curve are mainly affected by three sensitivity coefficients related to third-order elastic constant.The borehole stress concentration causes a split of the flexural waves and an intersection of the dispersion curves of the flexural waves polarized in directions parallel and normal to the uniaxial horizontal stress direction.The stress-induced formation anisotropy is only dependent on the horizontal deviatoric terrestrial stress and independent of the horizontal mean terrestrial stress,the superimposed stress and the fluid static pressure.The horizontal terrestrial stress ratio ranging from 0 to 1 reduces the stress-induced formation anisotropy.This makes the intersection of flexural wave dispersion curves not distinguishable.The effect of the fluid nonlinearity on the dispersion curve of the mode wave is small and can be ignored.

  1. Modeling wave-induced pore pressure and effective stress in a granular seabed

    Science.gov (United States)

    Scholtès, Luc; Chareyre, Bruno; Michallet, Hervé; Catalano, Emanuele; Marzougui, Donia

    2015-01-01

    The response of a sandy seabed under wave loading is investigated on the basis of numerical modeling using a multi-scale approach. To that aim, the discrete element method is coupled to a finite volume method specially enhanced to describe compressible fluid flow. Both solid and fluid phase mechanics are upscaled from considerations established at the pore level. Model's predictions are validated against poroelasticity theory and discussed in comparison with experiments where a sediment analog is subjected to wave action in a flume. Special emphasis is put on the mechanisms leading the seabed to liquefy under wave-induced pressure variation on its surface. Liquefaction is observed in both dilative and compactive regimes. It is shown that the instability can be triggered for a well-identified range of hydraulic conditions. Particularly, the results confirm that the gas content, together with the permeability of the medium are key parameters affecting the transmission of pressure inside the soil.

  2. Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Shigeru, E-mail: taniguchi@stat.nitech.ac.jp; Sugiyama, Masaru, E-mail: sugiyama@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Arima, Takashi, E-mail: tks@stat.nitech.ac.jp [Center for Social Contribution and Collaboration, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna, Bologna (Italy)

    2014-01-15

    We study the shock wave structure in a rarefied polyatomic gas based on a simplified model of extended thermodynamics in which the dissipation is due only to the dynamic pressure. In this case the differential system is very simple because it is a variant of Euler system with a new scalar equation for the dynamic pressure [T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Phys. Lett. A 376, 2799–2803 (2012)]. It is shown that this theory is able to describe the three types of the shock wave structure observed in experiments: the nearly symmetric shock wave structure (Type A, small Mach number), the asymmetric structure (Type B, moderate Mach number), and the structure composed of thin and thick layers (Type C, large Mach number)

  3. Effects of Shelves on Amplification of Long Waves Generated by Atmospheric Pressure Differences

    Science.gov (United States)

    Duha Metin, Ayse; Cevdet Yalciner, Ahmet; Ozyurt Tarakcıoglu, Gulizar; Zaytsev, Andrey

    2016-04-01

    Meteotsunami is a type of long period ocean wave generated by different types of meteorological disturbances such as atmospheric gravity waves, spatial and temporal pressure distributions and squall lines. The main idea behind the occurrence of this type of long wave is that low atmospheric pressure leads to static water level rise in a part of the marine area and high atmospheric pressure leads to static water level drop in another zone. Then, it causes deformation of the water level throughout the entire sea area. The relation between the pressure difference and change of water level from normal position (η =0.99Δ P where η is the water level change (cm) according to the pressure difference from normal pressure Δ P) can be used to determine the sea level deformation. The relation represents that 1 hPa decrease in air pressure causes 1 cm rise in mean sea level. Due to the spatial and temporal changes of atmospheric pressure, the respective small amplitude long waves propagate along the entire marine area. This type of tsunami-like waves can propagate through long distances and can also be amplified due to resonant effects in the enclosed basins, offshore shelves, and nearshore/offshore coastal morphology. Therefore, it can result in considerable amplifications and causes unexpected effects in some coastal regions. This study is mainly focused on understanding of amplification of long waves generated by atmospheric pressure differences when they encounter the offshore shelves while it is propagating towards to the shore. The problem is investigated by numerically solving nonlinear shallow water equations by using regular shaped basins with different depth and shelf characteristics. In all cases, the rectangular shape large basin is triggered by spatial and temporal distributions of atmospheric pressure. The water depth and shelf formation is changed for different cases. Initially, a deep flat bottom basin is used in simulations and the reference data of water

  4. THE VERY UNUSUAL INTERPLANETARY CORONAL MASS EJECTION OF 2012 JULY 23: A BLAST WAVE MEDIATED BY SOLAR ENERGETIC PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C. T. [University of California, Los Angeles, CA 90095-1567 (United States); Mewaldt, R. A.; Cohen, C. M. S.; Leske, R. A. [California Institute of Technology, Pasadena, CA 91125 (United States); Luhmann, J. G. [University of California, Berkeley, CA 94720 (United States); Mason, G. M. [Johns Hopkins University, Applied Physics Laboratory, Laurel, MD 20723 (United States); Von Rosenvinge, T. T. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gomez-Herrero, R. [University of Alcala, E-28871 Alcala de Henares (Spain); Klassen, A. [Kiel University, D-24118 Kiel (Germany); Galvin, A. B.; Simunac, K. D. C., E-mail: ctrussell@igpp.ucla.edu [University of New Hampshire, Durham, NH 03824 (United States)

    2013-06-10

    The giant, superfast, interplanetary coronal mass ejection, detected by STEREO A on 2012 July 23, well away from Earth, appears to have reached 1 AU with an unusual set of leading bow waves resembling in some ways a subsonic interaction, possibly due to the high pressures present in the very energetic particles produced in this event. Eventually, a front of record high-speed flow reached STEREO. The unusual behavior of this event is illustrated using the magnetic field, plasma, and energetic ion observations obtained by STEREO. Had the Earth been at the location of STEREO, the large southward-oriented magnetic field component in the event, combined with its high speed, would have produced a record storm.

  5. Experimental Study on a Standing Wave Thermoacoustic Prime Mover with Air Working Gas at Various Pressures

    Science.gov (United States)

    Setiawan, Ikhsan; Achmadin, Wahyu N.; Murti, Prastowo; Nohtomi, Makoto

    2016-04-01

    Thermoacoustic prime mover is an energy conversion device which converts thermal energy into acoustic work (sound wave). The advantages of this machine are that it can work with air as the working gas and does not produce any exhaust gases, so that it is environmentally friendly. This paper describes an experimental study on a standing wave thermoacoustic prime mover with air as the working gas at various pressures from 0.05 MPa to 0.6 MPa. We found that 0.2 MPa is the optimum pressure which gives the lowest onset temperature difference of 355 °C. This pressure value would be more preferable in harnessing low grade heat sources to power the thermoacoustic prime mover. In addition, we find that the lowest onset temperature difference is obtained when rh /δ k ratio is 2.85, where r h is the hydraulic radius of the stack and δ k is the thermal penetration depth of the gas. Moreover, the pressure amplitude of the sound wave is significantly getting larger from 2.0 kPa to 9.0 kPa as the charged pressure increases from 0.05 MPa up to 0.6 MPa.

  6. Pressure transducer used for measuring close-in shock waves of nuclear explosions in the atmosphere

    International Nuclear Information System (INIS)

    This paper introduces a variable reluctance pressure transducer. It has been successfully used for the measurement of close-in shock waves of nuclear explosions in the atmosphere. This transducer's highest pressure range is 100kg/cm2 and its response rise time for all ranges is lms. It uses a specially made oil-filled pressure which allows the transducer to be able to realize underground installation. In this way, it can endure the intense nuclear radiation of nuclear explosions without losing its fast speed response characteristics. This transducer has undergone a series of environmental tests and dynamic standardizations. Therefore, it was used to measure the complete waveform of shock wave overpressure in areas near the fire ball of nuclear explosions. This paper lists the test data of a group of nuclear explosion tests

  7. Neuro-Glial and Systemic Mechanisms of Pathological Responses in Rat Models of Primary Blast Overpressure Compared to “Composite” Blast

    OpenAIRE

    Svetlov, Stanislav I.; Prima, Victor; Glushakova, Olena; Svetlov, Artem; Kirk, Daniel R.; Gutierrez, Hector; Serebruany, Victor L.; Curley, Kenneth C.; Wang, Kevin K. W.; Hayes, Ronald L.

    2012-01-01

    A number of experimental models of blast brain injury have been implemented in rodents and larger animals. However, the variety of blast sources and the complexity of blast wave biophysics have made data on injury mechanisms and biomarkers difficult to analyze and compare. Recently, we showed the importance of rat position toward blast generated by an external shock tube. In this study, we further characterized blast producing moderate traumatic brain injury and defined “composite” blast and ...

  8. Comparison of actinide production in traveling wave and pressurized water reactors

    International Nuclear Information System (INIS)

    The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactor cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of 239Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)

  9. Theory of azimuthally small-scale hydromagnetic waves in the axisymmetric magnetosphere with finite plasma pressure

    Directory of Open Access Journals (Sweden)

    D. Y. Klimushkin

    Full Text Available The structure of monochromatic MHD-waves with large azimuthal wave number m≫1 in a two-dimensional model of the magnetosphere has been investigated. A joint action of the field line curvature, finite plasma pressure, and transversal equilibrium current leads to the phenomenon that waves, standing along the field lines, are travelling across the magnetic shells. The wave propagation region, the transparency region, is bounded by the poloidal magnetic surface on one side and by the resonance surface on the other. In their meaning these surfaces correspond to the usual and singular turning points in the WKB-approximation, respectively. The wave is excited near the poloidal surface and propagates toward the resonance surface where it is totally absorbed due to the ionospheric dissipation. There are two transparency regions in a finite-beta magnetosphere, one of them corresponds to the Alfvén mode and the other to the slow magnetosound mode.

    Key words. Magnetosphere · Azimuthally small-scale waves · MHD waves

  10. Shock Waves Impacting Composite Material Plates: The Mutual Interaction

    Science.gov (United States)

    Andreopoulos, Yiannis

    2013-02-01

    High-performance, fiber-reinforced polymer composites have been extensively used in structural applications in the last 30 years because of their light weight combined with high specific stiffness and strength at a rather low cost. The automotive industry has adopted these materials in new designs of lightweight vehicles. The mechanical response and characterization of such materials under transient dynamic loading caused with shock impact induced by blast is not well understood. Air blast is associated with a fast traveling shock front with high pressure across followed by a decrease in pressure behind due to expansion waves. The time scales associated with the shock front are typically 103 faster than those involved in the expansion waves. Impingement of blast waves on structures can cause a reflection of the wave off the surface of the structure followed by a substantial transient aerodynamic load, which can cause significant deformation and damage of the structure. These can alter the overpressure, which is built behind the reflected shock. In addition, a complex aeroelastic interaction between the blast wave and the structure develops that can induce reverberation within an enclosure, which can cause substantial overpressure through multiple reflections of the wave. Numerical simulations of such interactions are quite challenging. They usually require coupled solvers for the flow and the structure. The present contribution provides a physics-based analysis of the phenomena involved, a critical review of existing computational techniques together with some recent results involving face-on impact of shock waves on thin composite plates.

  11. Water Waves from General, Time-Dependent Surface Pressure Distribution in the Presence of a Shear Current

    CERN Document Server

    Li, Yan

    2015-01-01

    We obtain a general solution for the water waves resulting from a general, time-dependent surface pressure distribution, in the presence of a shear current of uniform vorticity beneath the surface, in three dimensions. Linearized governing equations and boundary conditions including the effects of gravity, a distributed external pressure disturbance, and constant finite depth, are solved analytically, and particular attention is paid to classic initial value problems: an initial pressure impulse and a steady pressure distribution which appears suddenly. In the present paper, good agreement with previous results is demonstrated. We subsequently show both analytically and numerically how transient waves from a suddenly appearing steady pressure distribution vanis for large times, and steady ship waves remain. The transient contribution to wave resistance was derived. The results show that a shear current has significant impact on the transient wave motions, resulting in asymmetry between upstream and downstream...

  12. Five Years of Mid-Infrared Evolution of the Remnant of SN 1987A: The Encounter Between the Blast Wave and the Dusty Equatorial Ring

    Science.gov (United States)

    Dwek, Eli; Arendt, Richard G.; Bouchet, Patrice; Burrows, David N.; Challis, Peter; Danziger, I. John; De Buizer, James M.; Gehrz, Robert D.; Park, Sangwook; Polomski, Elisha F.; Slavin, Jonathan D.; Woodward, Charles E.

    2010-01-01

    We have used the Spitzer satellite to monitor the laid-IR evolution of SN 1987A over a 5 year period spanning the epochs between days 6000 and 8000 since the explosion. The supernova (SN) has evolved into a supernova remnant (SNR) and its radiative output, is dominated by the interaction of the SN blast wave with the pre-existing equatorial ring (ER). The mid-IR spectrum is dominated by emission from approximately 180 K silicate dust, collisionally-heated by the hot X-ray emitting gas with a temperature and density of 5 x 10(exp 6) K and approximately 3 x 10(exp 4) per cubic centimeter, respectively. The mass of the radiating dust is approximately 1.2 x 10(exp -6) solar mass on day 7554, and scales linearly with IR flux. Comparison of the IR data with the soft X-ray flux derived from Chandra observations shows that the IR-to-X-ray flux ratio, IRX, is roughly constant with a value of 2.5. Gas-grain collisions therefore dominate the cooling of the shocked gas. The constancy of IRX is most consistent with the scenario that very little grain processing or gas cooling have occurred throughout this epoch. The shape of the dust spectrum remained unchanged during the observations while the total flux increased by a factor of approximately 5 with a time dependence of t(sup '0.87 plus or minus 0.20), t' being the time since the first encounter between the blast wave and the ER. These observations are consistent with the transitioning of the blast wave from free expansion to a Sedov phase as it propagates into the main body of the ER, as also suggested by X-ray observations. The constant spectral shape of they IR, emission provides strong constraints on the density and temperature of the shocked gas in which the interaction takes place. The IR spectra also suggest the presence of a secondary population of very small, hot (T greater than or equal to 350 K), featureless dust. If these grains spatially coexists with the silicates, then they must have shorter lifetimes. The data

  13. Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows

    Science.gov (United States)

    Beniamini, Paz; Nava, Lara; Duran, Rodolfo Barniol; Piran, Tsvi

    2015-11-01

    We consider a sample of 10 gamma-ray bursts with long-lasting ( ≳ 102 s) emission detected by Fermi/Large Area Telescope and for which X-ray data around 1 d are also available. We assume that both the X-rays and the GeV emission are produced by electrons accelerated at the external forward shock, and show that the X-ray and the GeV fluxes lead to very different estimates of the initial kinetic energy of the blast wave. The energy estimated from GeV is on average ˜50 times larger than the one estimated from X-rays. We model the data (accounting also for optical detections around 1 d, if available) to unveil the reason for this discrepancy and find that good modelling within the forward shock model is always possible and leads to two possibilities: (i) either the X-ray emitting electrons (unlike the GeV emitting electrons) are in the slow-cooling regime or (ii) the X-ray synchrotron flux is strongly suppressed by Compton cooling, whereas, due to the Klein-Nishina suppression, this effect is much smaller at GeV energies. In both cases the X-ray flux is no longer a robust proxy for the blast wave kinetic energy. On average, both cases require weak magnetic fields (10-6 ≲ ɛB ≲ 10-3) and relatively large isotropic kinetic blast wave energies 10^{53} erg<{E}_{0,kin}<10^{55} erg corresponding to large lower limits on the collimated energies, in the range 10^{52} erg<{E}_{θ ,kin}<5× 10^{52} erg for an ISM (interstellar medium) environment with n ˜ 1 cm-3 and 10^{52} erg<{E}_{θ ,kin}<10^{53} erg for a wind environment with A* ˜ 1. These energies are larger than those estimated from the X-ray flux alone, and imply smaller inferred values of the prompt efficiency mechanism, reducing the efficiency requirements on the still uncertain mechanism responsible for prompt emission.

  14. Integrated experimental platforms to study blast injuries: a bottom-up approach

    Science.gov (United States)

    Bo, C.; Williams, A.; Rankin, S.; Proud, W. G.; Brown, K. A.

    2014-05-01

    We are developing experimental models of blast injury using data from live biological samples. An integrated research strategy is followed to study material and biological properties of cells, tissues and organs, that are subjected to dynamic and static pressures, relevant to those of battlefield blast. We have developed a confined Split Hopkinson Pressure Bar (SHPB) system, which allows cells, either in suspension or as a monolayer, to be subjected to compression waves with pressures on the order of a few MPa and durations of hundreds of microseconds. The chamber design enables recovery of biological samples for cellular and molecular analysis. The SHPB platform, coupled with Quasi-Static experiments, is used to determine stress-strain curves of soft biological tissues under compression at low, medium and high strain rates. Tissue samples are examined, using histological techniques, to study macro- and microscopic changes induced by compression waves. In addition, a shock tube enables application of single or multiple air blasts with pressures on the order of kPa and a few milliseconds duration; this platform was used for initial studies on mesenchymal stem cells responses to blast pressures.

  15. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  16. Non-Thermal Radio and Gamma-Ray Emission from a Supernova Remnant by the Blast Wave Breaking Out of the Circumstellar Matter

    CERN Document Server

    Shimizu, Takafumi; Koyama, Katsuji

    2013-01-01

    We calculate synchrotron radio emission and gamma-ray emission due to bremsstrahlung, inverse-Compton scattering and $pi^0$-decay from the remnant of supernova which exploded in the circumstellar matter (CSM) formed by the progenitor's stellar wind. This sort of situation is a possible origin of mixed-morphology supernova remnants (SNRs) like W49B, which exhibit recombination-radiation spectra in X-ray emission. We assume that the CSM of 1.5 $M_{odot}$ exists at 0.07--3 pc away from the supernova in the interstellar medium (ISM) of density 0.016 cm$^{-3}$. When the blast wave breaks out of the CSM into the ISM, its velocity rapidly increases and hence particle acceleration is enhanced. The maximum energy of protons reaches $sim$ 1300 TeV just after the break-out with $sim$ 0.5% of the explosion energy. We consider the non-thermal emission from the blast-shocked ISM shell after the break-out. Synchrotron radio flux at 1 GHz is tens Jy, comparable to the observed from mixed-morphology SNRs. Because of low densi...

  17. Blast-Induced Damage on Millisecond Blasting Model Test with Multicircle Vertical Blastholes

    Directory of Open Access Journals (Sweden)

    Qin-yong Ma

    2015-01-01

    Full Text Available To investigate the blast-induced damage effect on surrounding rock in vertical shaft excavation, 4 kinds of millisecond blasting model tests with three-circle blastholes were designed and carried out with excavation blasting in vertical shaft as the background. The longitudinal wave velocity on the side of concrete model was also measured before and after blasting. Then blast damage factor was then calculated by measuring longitudinal wave velocity before and after blasting. The test results show that the blast-induced damage factor attenuated gradually with the centre of three-circle blastholes as centre. With the threshold value of 0.19 for blast-induced damage factor, blast-induced damage zones for 4 kinds of model tests are described and there is an inverted cone blast-induced damage zone in concrete model. And analyses of cutting effect and blast-induced damage zone indicate that in order to minimize the blast-induced damage effect and ensure the cutting effect the reasonable blasting scheme for three-circle blastholes is the inner two-circle blastholes initiated simultaneously and the outer third circle blastholes initiated in a 25 ms delay.

  18. The dynamics of pressure and form drag on a sloping headland: Internal waves versus eddies

    Science.gov (United States)

    Warner, Sally J.; MacCready, Parker

    2014-03-01

    Topographically generated eddies and internal waves have traditionally been studied separately even though bathymetry that creates both phenomena is abundant in coastal regions. Here a numerical model is used to understand the dynamics of eddy and wave generation as tidal currents flow past Three Tree Point, a 1 km long, 200 m deep, sloping headland in Puget Sound, WA. Bottom pressure anomalies due to vertical perturbations of the sea surface and isopycnals are used to calculate form drag in different regions of the topography to assess the relative importance of eddies versus internal waves. In regions where internal waves dominate, sea surface and isopycnal perturbations tend to work together to create drag, whereas in regions dominated by eddies, sea surface, and isopycnal perturbations tend to counteract each other. Both phenomena are found to produce similar amounts of form drag even though the bottom pressure anomalies from the eddy have much larger magnitudes than those created by the internal waves. Topography like Three Tree Point is common in high latitude, coastal regions, and therefore the findings here have implications for understanding how coastal topography removes energy from tidal currents.

  19. Characterization of a Setup to test the Impact of High-Amplitude Pressure Waves on Living Cells

    Science.gov (United States)

    Schmidt, Mischa; Kahlert, Ulf; Wessolleck, Johanna; Maciaczyk, Donata; Merkt, Benjamin; Maciaczyk, Jaroslaw; Osterholz, Jens; Nikkhah, Guido; Steinhauser, Martin O.

    2014-01-01

    The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction.

  20. Pressure Wave Measurements from Thermal Cook-off of an HMX Based Explosive

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J W; Tarver, C M; Urtiew, P A; Garcia, F; Greenwood, D W; Vandersall, K S

    2001-05-09

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  1. Pressure Wave Measurements from Thermal Cook-Off of an HMX Based High Explosive PBX 9501

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, F; Forbes, J W; Tarver, C M; Urtiew, P A; Greenwood, D W; Vandersall, K S

    2001-05-31

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  2. Pressure wave measurements from thermal cook-off of an HMX based high explosive

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J W; Tarver, C M; Urtiew, P A; Garcia, F; Greenwood, D W; Vandersall, K S

    2000-10-10

    A better understanding of thermal cook-off is important for safe handling and storing explosive devices. A number of safety issues exist about what occurs when a cased explosive thermally cooks off. For example, violence of the events as a function of confinement are important for predictions of collateral damage. This paper demonstrates how adjacent materials can be gauged to measure the resulting pressure wave and how this wave propagates in this adjacent material. The output pulse from the thermal cook-off explosive containing fixture is of obvious interest for assessing many scenarios.

  3. Toxicology of blast overpressure.

    Science.gov (United States)

    Elsayed, N M

    1997-07-25

    Blast overpressure (BOP) or high energy impulse noise, is the sharp instantaneous rise in ambient atmospheric pressure resulting from explosive detonation or firing of weapons. Blasts that were once confined to military and to a lesser extent, occupational settings, are becoming more universal as the civilian population is now increasingly at risk of exposure to BOP from terrorist bombings that are occurring worldwide with greater frequency. Exposure to incident BOP waves can cause auditory and non-auditory damage. The primary targets for BOP damage are the hollow organs, ear, lung and gastrointestinal tract. In addition, solid organs such as heart, spleen and brain can also be injured upon exposure. However, the lung is more sensitive to damage and its injury can lead to death. The pathophysiological responses, and mortality have been extensively studied, but little attention, was given to the biochemical manifestations, and molecular mechanism(s) of injury. The injury from BOP has been, generally, attributed to its external physical impact on the body causing internal mechanical damage. However, a new hypothesis has been proposed based on experiments conducted in the Department of Respiratory Research, Walter Reed Army Institute of Research, and later in the Department of Occupational Health, University of Pittsburgh. This hypothesis suggests that subtle biochemical changes namely, free radical-mediated oxidative stress occur and contribute to BOP-induced injury. Understanding the etiology of these changes may shed new light on the molecular mechanism(s) of injury, and can potentially offer new strategies for treatment. In this symposium. BOP research involving auditory, non-auditory, physiological, pathological, behavioral, and biochemical manifestations as well as predictive modeling and current treatment modalities of BOP-induced injury are discussed.

  4. 爆破冲击波的生物影响效应研究进展%Research Progress of the Effect of Biological on Blasting Shock-wave

    Institute of Scientific and Technical Information of China (English)

    彭蜀君

    2012-01-01

    As the development of recent social, blasting method have widely applied in economic construc- tion, and people paid more and more attention to the follow-up question of blasting. Now Reviewing the effect of biological on blasting shock-wave, and proposing the relevant safety precautions.%随着现代社会的发展,爆破手段已广泛应用于经济建设中,人们对爆破产生的后续问题也越来越重视。综述了爆破产生的冲击波对周围生物的影响效应,并提出了相应的安全防护措施。

  5. Arterial pulse pressure amplification described by means of a nonlinear wave model: characterization of human aging

    Science.gov (United States)

    Alfonso, M.; Cymberknop, L.; Armentano, R.; Pessana, F.; Wray, S.; Legnani, W.

    2016-04-01

    The representation of blood pressure pulse as a combination of solitons captures many of the phenomena observed during its propagation along the systemic circulation. The aim of this work is to analyze the applicability of a compartmental model for propagation regarding the pressure pulse amplification associated with arterial aging. The model was applied to blood pressure waveforms that were synthesized using solitons, and then validated by waveforms obtained from individuals from differentiated age groups. Morphological changes were verified in the blood pressure waveform as a consequence of the aging process (i.e. due to the increase in arterial stiffness). These changes are the result of both a nonlinear interaction and the phenomena present in the propagation of nonlinear mechanic waves.

  6. Central blood pressure assessment using 24-hour brachial pulse wave analysis

    Directory of Open Access Journals (Sweden)

    Muiesan ML

    2014-10-01

    Full Text Available Maria Lorenza Muiesan, Massimo Salvetti, Fabio Bertacchini, Claudia Agabiti-Rosei, Giulia Maruelli, Efrem Colonetti, Anna Paini Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy Abstract: This review describes the use of central blood pressure (BP measurements during ambulatory monitoring, using noninvasive devices. The principles of measuring central BP by applanation tonometry and by oscillometry are reported, and information on device validation studies is described. The pathophysiological basis for the differences between brachial and aortic pressure is discussed. The currently available methods for central aortic pressure measurement are relatively accurate, and their use has important clinical implications, such as improving diagnostic and prognostic stratification of hypertension and providing a more accurate assessment of the effect of treatment on BP. Keywords: aortic blood pressure measurements, ambulatory monitoring, pulse wave analysis

  7. Combined ultrasonic elastic wave velocity and microtomography measurements at high pressures

    International Nuclear Information System (INIS)

    Combined ultrasonic and microtomographic measurements were conducted for simultaneous determination of elastic property and density of noncrystalline materials at high pressures. A Paris-Edinburgh anvil cell was placed in a rotation apparatus, which enabled us to take a series of x-ray radiography images under pressure over a 180 deg. angle range and construct accurately the three-dimensional sample volume using microtomography. In addition, ultrasonic elastic wave velocity measurements were carried out simultaneously using the pulse reflection method with a 10 deg. Y-cut LiNbO3 transducer attached to the end of the lower anvil. Combined ultrasonic and microtomographic measurements were carried out for SiO2 glass up to 2.6 GPa and room temperature. A decrease in elastic wave velocities of the SiO2 glass was observed with increasing pressure, in agreement with previous studies. The simultaneous measurements on elastic wave velocities and density allowed us to derive bulk (Ks) and shear (G) moduli as a function of pressure. Ks and G of the SiO2 glass also decreased with increasing pressure. The negative pressure dependence of Ks is stronger than that of G, and as a result the value of Ks became similar to G at 2.0-2.6 GPa. There is no reason why we cannot apply this new technique to high temperatures as well. Hence the results demonstrate that the combined ultrasonic and microtomography technique is a powerful tool to derive advanced (accurate) P-V-Ks-G-(T) equations of state for noncrystalline materials.

  8. A Multiscale Approach to Blast Neurotrauma Modeling: Part II: Methodology for Inducing Blast Injury to in vitro Models

    Science.gov (United States)

    Effgen, Gwen B.; Hue, Christopher D.; Vogel, Edward; Panzer, Matthew B.; Meaney, David F.; Bass, Cameron R.; Morrison, Barclay

    2012-01-01

    Due to the prominent role of improvised explosive devices (IEDs) in wounding patterns of U.S. war-fighters in Iraq and Afghanistan, blast injury has risen to a new level of importance and is recognized to be a major cause of injuries to the brain. However, an injury risk-function for microscopic, macroscopic, behavioral, and neurological deficits has yet to be defined. While operational blast injuries can be very complex and thus difficult to analyze, a simplified blast injury model would facilitate studies correlating biological outcomes with blast biomechanics to define tolerance criteria. Blast-induced traumatic brain injury (bTBI) results from the translation of a shock wave in-air, such as that produced by an IED, into a pressure wave within the skull–brain complex. Our blast injury methodology recapitulates this phenomenon in vitro, allowing for control of the injury biomechanics via a compressed-gas shock tube used in conjunction with a custom-designed, fluid-filled receiver that contains the living culture. The receiver converts the air shock wave into a fast-rising pressure transient with minimal reflections, mimicking the intracranial pressure history in blast. We have developed an organotypic hippocampal slice culture model that exhibits cell death when exposed to a 530 ± 17.7-kPa peak overpressure with a 1.026 ± 0.017-ms duration and 190 ± 10.7 kPa-ms impulse in-air. We have also injured a simplified in vitro model of the blood–brain barrier, which exhibits disrupted integrity immediately following exposure to 581 ± 10.0 kPa peak overpressure with a 1.067 ± 0.006-ms duration and 222 ± 6.9 kPa-ms impulse in-air. To better prevent and treat bTBI, both the initiating biomechanics and the ensuing pathobiology must be understood in greater detail. A well-characterized, in vitro model of bTBI, in conjunction with animal models, will be a powerful tool for developing strategies to mitigate the risks of bTBI. PMID

  9. A multiscale approach to blast neurotrauma modeling:Part II: Methodology for inducing blast injury to in vitro models

    Directory of Open Access Journals (Sweden)

    Gwen B. Effgen

    2012-02-01

    Full Text Available Due to the prominent role of improvised explosive devices (IEDs in wounding patterns of U.S. war-fighters in Iraq and Afghanistan, blast injury has risen to a new level of importance and is recognized to be a major cause of injuries to the brain. However, an injury risk-function for microscopic, macroscopic, behavioral, and neurological deficits has yet to be defined. While operational blast injuries can be very complex and thus difficult to analyze, a simplified blast injury model would facilitate studies correlating biological outcomes with blast biomechanics to define tolerance criteria. Blast-induced traumatic brain injury (bTBI results from the translation of a shock wave in air, such as that produced by an IED, into a pressure wave within the skull-brain complex. Our blast injury methodology recapitulates this phenomenon in vitro, allowing for control of the injury biomechanics via a compressed-gas shock tube used in conjunction with a custom-designed, fluid-filled receiver that contains the living culture. The receiver converts the air shock wave into a fast-rising pressure transient with minimal reflections, mimicking the intracranial pressure history in blast. We have developed an organotypic hippocampal slice culture model that exhibits cell death when exposed to a 530  17.7 kPa peak overpressure with a 1.026 ± 0.017 ms duration and 190 ± 10.7 kPa-ms impulse in-air. We have also injured a simplified in vitro model of the blood-brain barrier, which exhibits disrupted integrity immediately following exposure to 581  10.0 kPa peak overpressure with a 1.067 ms ± 0.006 ms duration and 222 ± 6.9 kPa-ms impulse in-air. To better prevent and treat bTBI, both the initiating biomechanics and the ensuing pathobiology must be understood in greater detail. A well-characterized, in vitro model of bTBI, in conjunction with animal models, will be a powerful tool for developing strategies to mitigate the risks of bTBI.

  10. 温压弹爆炸冲击波作用下防护门破坏模式研究%Failure mode of a blast door subjected to the explosion wave of a thermobaric bomb

    Institute of Scientific and Technical Information of China (English)

    李秀地; 耿振刚; 苗朝阳; 杨森

    2016-01-01

    为研究温压弹爆炸冲击波作用下防护门的破坏模式,利用 ANSYS /LS-DYNA 软件建立了考虑材料应变率效应的分离式钢筋混凝土防护门数值计算模型。对防护门加载温压弹爆炸冲击波波形,分析了防护门的挠度、转角和剪应力,并与 TNT 的作用结果进行了对比。结果表明:温压弹爆炸冲击波作用下,随着距爆炸源距离的增加,防护门的破坏模式由直剪破坏、弯剪耦合破坏逐渐变为弯曲破坏;防护门的响应与温压弹爆炸冲击波的高冲量有关,温压弹爆炸冲击波作用下防护门的破坏程度大于 TNT 的作用结果;防护门跨中速度值可以用来快速评估防护门的破坏模式。%To reveal the failure mode of a blast door subjected to the explosion wave of a thermobaric bomb,a separate reinforced concrete numerical model considering strain rate effects of a blast door was established with the dynamic finite element software ANSYS /LS-DYNA.The explosion wave of a thermobaric bomb was loaded on the blast door and the deflection and shear stress of the blast door were analyzed and compared with the shock wave of TNT.The results show that with the distance from explosion increasing,the failure mode of blast door under the thermobaric bomb gradually changes from punching shear failure and mixed flexural-shear failure to flexural failure.The dynamic response of the blast door is related to the high impulse of the thermobaric bomb,and the damage of the blast door under the thermobaric bomb is more serious than that under TNT.The velocity of the mid span can be used to estimate the failure mode of the blast door.

  11. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    International Nuclear Information System (INIS)

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20–100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of −50 °C to 300 °C. By using the modified Butterworth–van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications. (paper)

  12. CMOS-compatible ruggedized high-temperature Lamb wave pressure sensor

    Science.gov (United States)

    Kropelnicki, P.; Muckensturm, K.-M.; Mu, X. J.; Randles, A. B.; Cai, H.; Ang, W. C.; Tsai, J. M.; Vogt, H.

    2013-08-01

    This paper describes the development of a novel ruggedized high-temperature pressure sensor operating in lateral field exited (LFE) Lamb wave mode. The comb-like structure electrodes on top of aluminum nitride (AlN) were used to generate the wave. A membrane was fabricated on SOI wafer with a 10 µm thick device layer. The sensor chip was mounted on a pressure test package and pressure was applied to the backside of the membrane, with a range of 20-100 psi. The temperature coefficient of frequency (TCF) was experimentally measured in the temperature range of -50 °C to 300 °C. By using the modified Butterworth-van Dyke model, coupling coefficients and quality factor were extracted. Temperature-dependent Young's modulus of composite structure was determined using resonance frequency and sensor interdigital transducer (IDT) wavelength which is mainly dominated by an AlN layer. Absolute sensor phase noise was measured at resonance to estimate the sensor pressure and temperature sensitivity. This paper demonstrates an AlN-based pressure sensor which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications.

  13. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Science.gov (United States)

    Takahira, Hiroyuki; Ogasawara, Toshiyuki; Mori, Naoto; Tanaka, Moe

    2015-10-01

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t0 to a characteristic time of wave propagation tS, η = t0/ts, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  14. On the pressure wave problem in liquid metal targets for pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    A liquid metal target for a pulsed spallation source was modelled on the computer to investigate the effect of the high instantaneous power deposition (60 KJ in 1 μs) on the pressure in the liquid and the resulting stress on the container. It was found that for the short pulse duration the resulting stress would be likely to exceed the allowable design stress for steels of the HT-9 type with low nickel content. Adding a small volume fraction of gas bubbles might be a way to suppress almost completely the generation of pressure waves. (author) 12 figs., 5 refs

  15. New experimental capabilities and theoretical insights of high pressure compression waves

    Energy Technology Data Exchange (ETDEWEB)

    Orlikowski, D; Nguyen, J; Patterson, J R; Minich, R; Martin, L P; Holmes, N

    2007-07-20

    Currently there are three platforms that offer quasi-isentropic compression or ramp-wave compression (RWC): light-gas gun, magnetic flux (Z-pinch), and laser. We focus here on the light-gas gun technique and on some current theoretical insights from experimental data. A gradient impedance through the length of the impactor provides the pressure pulse upon impactor to the subject material. Applications and results are given concerning high-pressure strength and liquid to solid, phase transition of water plus its associated phase fraction history. We also introduce the Korteweg-deVries-Burgers equation as a means to understand the evolution these RWC waves that propagate through the thickness of the subject material. This equation has the necessary competition between non-linear, dispersion, and dissipation processes, which is shown through observed structures that are manifested in the experimental particle velocity histories. Such methodology points towards a possible quantifiable dissipation, through which RWC experiments may be analyzed.

  16. Pressure broadening measurement of submillimeter-wave lines of O3

    Science.gov (United States)

    Yamada, M. M.; Amano, T.

    2005-10-01

    The pressure broadening coefficients and their temperature dependences for two submillimeter-wave transitions of ozone, one being monitored with Odin and the other to be monitored with JEM/SMILES and EOS-MLS, have been determined by using a BWO based submillimeter-wave spectrometer. The measurements have also been extended to one of the symmetric isotopic species, 16O18O16O. The isotopic species is observed in natural abundance and as a consequence the temperature dependence is not determined due to weak signal intensity. The pressure broadening parameters are determined with better than 1% accuracy, while the temperature dependence exponents are obtained within 1.5 3% accuracy for the normal species transitions.

  17. Pressure broadening measurement of submillimeter-wave lines of O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, M.M. [Institute for Astrophysics and Planetary Sciences, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512 (Japan); Amano, T. [Institute for Astrophysics and Planetary Sciences, Ibaraki University, 2-1-1 Bunkyo, Mito 310-8512 (Japan)]. E-mail: amano@mx.ibaraki.ac.jp

    2005-10-01

    The pressure broadening coefficients and their temperature dependences for two submillimeter-wave transitions of ozone, one being monitored with Odin and the other to be monitored with JEM/SMILES and EOS-MLS, have been determined by using a BWO based submillimeter-wave spectrometer. The measurements have also been extended to one of the symmetric isotopic species, {sup 16}O{sup 18}O{sup 16}O. The isotopic species is observed in natural abundance and as a consequence the temperature dependence is not determined due to weak signal intensity. The pressure broadening parameters are determined with better than 1% accuracy, while the temperature dependence exponents are obtained within 1.5-3% accuracy for the normal species transitions.

  18. Numerical simulation of pressure waves in the cochlea induced by a microwave pulse.

    Science.gov (United States)

    Yitzhak, Nir M; Ruppin, Raphael; Hareuveny, Ronen

    2014-10-01

    The pressure waves developing at the cochlea by the irradiation of the body with a plane wave microwave pulse are obtained by numerical simulation, employing a two-step finite-difference time-domain (FDTD) algorithm. First, the specific absorption rate (SAR) distribution is obtained by solving the Maxwell equations on a FDTD grid. Second, the temperature rise due to this SAR distribution is used to formulate the thermoelastic equations of motion, which are discretized and solved by the FDTD method. The calculations are performed for anatomically based full body human models, as well as for a head model. The dependence of the pressure amplitude at the cochlea on the frequency, the direction of propagation, and the polarization of the incident electromagnetic radiation, as well as on the pulse width, was investigated.

  19. Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder

    Science.gov (United States)

    Wang, Z.; Qi, Y.; Liu, H.; Zhang, P.; He, X.; Wang, J.

    2016-09-01

    Super-knock is one of the major obstacles for improving power density in advanced internal combustion engines (ICE). This work studied the mechanism of super-knock initiation using a rapid compression machine that simulated conditions relevant to ICEs and provided excellent optical accessibility. Based on the high-speed images and pressure traces of the stoichiometric iso-octane/oxygen/nitrogen combustion under high-temperature and high-pressure conditions, it was observed that detonation was first initiated in the near-wall region as a result of shock wave reflection. Before detonation was initiated, the speed of the combustion wave front was less than that of the Chapman-Jouguet (C-J) detonation speed (around 1840 m/s). In the immediate vicinity of the initiation, the detonation speed was much higher than that of the C-J detonation.

  20. Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder

    Science.gov (United States)

    Wang, Z.; Qi, Y.; Liu, H.; Zhang, P.; He, X.; Wang, J.

    2016-07-01

    Super-knock is one of the major obstacles for improving power density in advanced internal combustion engines (ICE). This work studied the mechanism of super-knock initiation using a rapid compression machine that simulated conditions relevant to ICEs and provided excellent optical accessibility. Based on the high-speed images and pressure traces of the stoichiometric iso-octane/oxygen/nitrogen combustion under high-temperature and high-pressure conditions, it was observed that detonation was first initiated in the near-wall region as a result of shock wave reflection. Before detonation was initiated, the speed of the combustion wave front was less than that of the Chapman-Jouguet (C-J) detonation speed (around 1840 m/s). In the immediate vicinity of the initiation, the detonation speed was much higher than that of the C-J detonation.

  1. Relative incapacitation contributions of pressure wave and wound channel in the Marshall and Sanow data set

    CERN Document Server

    Courtney, M; Courtney, Amy; Courtney, Michael

    2007-01-01

    The Marshall and Sanow data set is the largest and most comprehensive data set available quantifying handgun bullet effectiveness in humans. This article presents an empirical model for relative incapacitation probability in humans hit in the thoracic cavity by handgun bullets. The model is constructed by employing the hypothesis that the wound channel and ballistic pressure wave effects each have an associated independent probability of incapacitation. Combining models for these two independent probabilities using the elementary rules of probability and performing a least-squares fit to the Marshall and Sanow data provides an empirical model with only two adjustable parameters for modeling bullet effectiveness with a standard error of 5.6% and a correlation coefficient R = 0.939. This supports the hypothesis that wound channel and pressure wave effects are independent (within the experimental error), and it also allows assignment of the relative contribution of each effect for a given handgun load. This mode...

  2. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age.

    Science.gov (United States)

    Mohiuddin, Mohammad W; Rihani, Ryan J; Laine, Glen A; Quick, Christopher M

    2012-07-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (C(tot)) and increases in total peripheral resistance (R(tot)) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (c(ph)) make the reflected pressure wave arrive earlier, augmenting systolic pressure. It has recently been shown, however, that increases in c(ph) do not have a commensurate effect on the timing of the reflected wave. We therefore used a validated, large-scale, human arterial system model that includes realistic pulse wave transmission to determine whether increases in c(ph) cause increased PP with age. First, we made the realistic arterial system model age dependent by altering cardiac output (CO), R(tot), C(tot), and c(ph) to mimic the reported changes in these parameters from age 30 to 70. Then, c(ph) was theoretically maintained constant, while C(tot), R(tot), and CO were altered. The predicted increase in PP with age was similar to the observed increase in PP. In a complementary approach, C(tot), R(tot), and CO were theoretically maintained constant, and c(ph) was increased. The predicted increase in PP was negligible. We found that increases in c(ph) have a limited effect on the timing of the reflected wave but cause the system to degenerate into a windkessel. Changes in PP can therefore be attributed to a decrease in C(tot). PMID:22561301

  3. Low-frequency pressure wave propagation in liquid-filled, flexible tubes. (A)

    DEFF Research Database (Denmark)

    Bjørnø, Leif; Bjelland, C.

    1992-01-01

    . The complex, frequency-dependent moduli of relevant tube materials have been measured in a series of experiments using three different experimental procedures, and the data obtained are compared. The three procedures were: (1) ultrasonic wave propagation, (2) transversal resonance in bar samples, and (3......A model has been developed for propagation of low-frequency pressure waves in viscoelastic tubes with distensibility of greater importance than compressibility of the liquid. The dispersion and attenuation are shown to be strongly dependent on the viscoelastic properties of the tube wall......) moduli determined by stress wave transfer function measurements in simple extension experiments. The moduli are used in the model to produce realistic dispersion relations and frequency dependent attenuation. Signal transfer functions between positions in the liquid-filled tube can be synthesized from...

  4. The effect of span length to height ratio of reinforced concrete slabs on pressure-impulse diagram with multiple failure modes under blast loading

    Directory of Open Access Journals (Sweden)

    Wang S.C.

    2012-08-01

    Full Text Available In this paper, two loosely coupled single degree of freedom (SDOF systems are used to generate pressure-impulse diagrams (P-I with the flexural and direct shear responses of one-way reinforced concrete slabs subjected to blast loading. The effect of span length to height ratio in P-I diagrams is investigated. The numerical calculation results indicate that a slab tends to fail in a direct shear mode if the blast load amplitude is high but of short duration. It tends to fail in flexural failure mode if load amplitude is relatively low and duration is relatively long. And the failure of the slab might be a combination of shear and flexural damage in the dynamic loading region. Based on numerical results, different failure modes are got with different the span length to height ratio on the P-I diagrams. Results indicate that there is only shear failure mode in the P-I diagrams when L/h 24.89, there are two damage mode in the P-I diagrams with flexure failure mode and flexure-shear failure mode. When 10.9 < L/h < 24.89, there are three damage modes in the P-I diagrams: shear failure mode, flexure failure mode and flexure-shear failure mode.

  5. Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law

    Directory of Open Access Journals (Sweden)

    Wei Cai

    2016-01-01

    Full Text Available We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.

  6. Non-invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry

    Directory of Open Access Journals (Sweden)

    M.U.R. Naidu

    2012-01-01

    Full Text Available Objective: The aim of the present study was to validate and compare novel methods to determine aortic blood pressure non-invasively based on Oscillometric Pulse Wave Velocity (PWV measurement using four limb-cuff pressure waveforms and two lead Electrocardiogram (ECG with a validated tonometric pulse wave analysis system in patients. Materials and Methods: After receiving the consent, in 49 patients with hypertension, coronary artery disease, diabetes mellitus, PWV, and central blood pressures were recorded in a randomised manner using both the oscillometric and tonometric devices. All recordings were performed 10 minutes after the patient lying comfortably in a noise-free temperature-controlled room. The test was performed between 09 am and 10 am after overnight fast. A minimum of three measurements were performed by the same skilled and trained operator. From the raw data obtained with two devices, software calculated the final vascular parameters. Results: A total of 49 patients (8 women and 41 men, of mean age 40.5 years (range: 19-81 years participated in the present study. After transforming the brachial pressures into aortic pressures, the correlation coefficient between the Aortic Systolic Pressure (ASP values obtained with two methods was 0.9796 (P<0.0001. The mean difference between ASP with two methods was 0.3 mm Hg. Similarly, Aortic Diastolic Pressure (ADP values obtained with two methods also correlated significantly with correlation coefficient of 0.9769 (P<0.0001. The mean difference of ADP was 0.2 mm Hg. In case of Aortic Pulse Pressure (APP, the mean difference was 0.1 mm Hg. All parameters of central aortic pressures obtained with two methods correlated significantly. Conclusion: The new method of transforming the Carotid Femoral PWV (cfPWV and brachial blood pressure values into aortic blood pressure values seems to be reasonably good. The significant correlation between the values obtained by tonometric device and

  7. Drift wave excitation in the THETA-pinch high pressure plasma

    International Nuclear Information System (INIS)

    Excitation of low-frequency (LF) drift waves has been experimentally investigated in a high-pressure plasma in a gas discharge of the direct THETA-pinch type. The electrodeless inductive gas discharge is produced in an alundum tube of 150 cm length and 6.5 cm internal diameter filled with hydrogen at the pressure of (1-20).10-3 mm Hg. The discharge magnetic field (MF) has been investigated by a system of five magnetic probes both oriented along the radius and the length of the discharge chamber. The longitudinal temperature of electrons reaches 4 keV at the 6 kV voltage on the coil. Successive development of two types of instability has been observed: HF ''starting'' and LF ones. The LF oscillations observed have been identified as drift waves in a system with large β. The amplitude of the MF oscillations for the given instability may be compared with the value of the main MF, and the transverse wave lengths for these oscillations are of the order of the plasma filament radius. The longitudinal wave lengths are comparable with the magnetic system length

  8. Calculation Analysis of Pressure Wave Velocity in Gas and Drilling Mud Two-Phase Fluid in Annulus during Drilling Operations

    Directory of Open Access Journals (Sweden)

    Yuanhua Lin

    2013-01-01

    Full Text Available Investigation of propagation characteristics of a pressure wave is of great significance to the solution of the transient pressure problem caused by unsteady operations during management pressure drilling operations. With consideration of the important factors such as virtual mass force, drag force, angular frequency, gas influx rate, pressure, temperature, and well depth, a united wave velocity model has been proposed based on pressure gradient equations in drilling operations, gas-liquid two-fluid model, the gas-drilling mud equations of state, and small perturbation theory. Solved by adopting the Runge-Kutta method, calculation results indicate that the wave velocity and void fraction have different values with respect to well depth. In the annulus, the drop of pressure causes an increase in void fraction along the flow direction. The void fraction increases first slightly and then sharply; correspondingly the wave velocity first gradually decreases and then slightly increases. In general, the wave velocity tends to increase with the increase in back pressure and the decrease of gas influx rate and angular frequency, significantly in low range. Taking the virtual mass force into account, the dispersion characteristic of the pressure wave weakens obviously, especially at the position close to the wellhead.

  9. Analytical solutions for dynamic pressures of coupling fluid-solid-porous medium due to P wave incidence

    Institute of Scientific and Technical Information of China (English)

    王进廷; 张楚汉; 金峰

    2004-01-01

    Wave reflection and refraction in layered media is a topic closely related to seismology, acoustics, geophysics and earthquake engineering. Analytical solutions for wave reflection and refraction coefficients in multi-layered media subjected to P wave incidence from the elastic half-space are derived in terms of displacement potentials. The system is composed of ideal fluid, porous medium, and underlying elastic solid. By numerical examples, the effects of porous medium and the incident wave angle on the dynamic pressures of ideal fluid are analyzed. The results show that the existence of the porous medium, especially in the partially saturated case, may significantly affect the dynamic pressures of the overlying fluid.

  10. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    International Nuclear Information System (INIS)

    Central blood pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce pulse wave-based ultrasound manometry (PWUM) as a simple-to-use, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency ultrasound signals acquired at high frame rates and the pulse pressure waveform is estimated using both the distension waveform and the local pulse wave velocity. The method was tested on the abdominal aorta of 11 healthy subjects (age 35.7±16 y.o.). PWUM pulse pressure measurements were compared to those obtained by radial applanation tonometry using a commercial system. The average intra-subject variability of the pulse pressure amplitude was found to be equal to 4.2 mmHg, demonstrating good reproducibility of the method. Excellent correlation was found between the waveforms obtained by PWUM and those obtained by tonometry in all subjects (0.94 < r < 0.98). A significant bias of 4.7 mmHg was found between PWUM and tonometry. PWUM is a highly translational method that can be easily integrated in clinical ultrasound imaging systems. It provides an estimate of the pulse pressure waveform at the imaged location, and may offer therefore the possibility to estimate the pulse pressure at different arterial sites. Future developments include the validation of the method against invasive estimates on patients, as well as its application to other large arteries

  11. Detailed Comparison of Blast Effects in Air and Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J W; Molitoris, J D; Garza, R G; Andreski, H G; Batteux, J D; Lauderbach, L M; Vincent, E R; Wong, B M

    2007-07-26

    Although blast mitigation is most often achieved with solid shielding, ambient gas pressure can also affect the coupling of shock waves to solid targets. In this work the role of air as an energy transfer medium was examined experimentally by subjecting identical large-area rectangular witness plates to short-range blast effects in air and vacuum ({approx}50 mtorr) at 25 C. The expanding reactant front of 3 kg C4 charges was observed by fast camera to be cylindrically symmetric in both air and vacuum. The horizontal component of the reactant cloud velocity (perpendicular to the witness plates) was constant in both cases, with values of 3.0 and 5.9 km/s for air and vacuum, respectively. As a result of the blast, witness plates were plastically deformed into a shallow dish geometry, with local maxima 30 and 20 mm deep for air and vacuum, respectively. The average plate deflection from the air blast was 11 mm, {approx}10% deeper than the average vacuum plate deflection. Shock pressure estimates were made with a simple impedance-matching model, and indicate peak values in the 30-50 MPa range are consistent with the reactant cloud density and velocity. However, more detailed analysis is necessary to definitely establish the mechanisms by which air couples shock energy to the plates.

  12. Experimental animal models for studies on the mechanisms of blast induced neurotrauma

    Directory of Open Access Journals (Sweden)

    Mårten eRisling

    2012-04-01

    Full Text Available A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED in current military conflicts. Blast induced neurotrauma (BINT is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. BINT is characterized by extreme forces and their complex propagation. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the relative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link

  13. Pressure Wave Measurements During Thermal Explosion of HMX-Based High Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, J W; Garcia, F; Tarver, C M; Urtiew, P A; Greenwood, D W; Vandersall, K S

    2002-06-27

    Five different experiments on thermal heating of explosive materials have been performed. Three experiments thermally exploded PBX 9501 (HMX/Estane/BDNPA-F; 9512.512.5 wt %) donor charges while two others thermally exploded LX-04 (HMX/Viton A; 85/15 wt %). These donor charges were encased in 304 stainless steel. The transmitted two-dimensional pressure waves were measured by gauges in acceptor cylinders of Teflon, PBX 9501, or LX-04 that were in contact with the donors' steel case. A fifth experiment measured the pressure in an acceptor charge of PBX 9501 that had a 100 mm stand-off from the top of the steel case of the thermally cooked off PBX 9501 donor charge. Reactive flow hydrodynamic modeling using a rapid deflagration velocity of approximately 500 m/s was able to reproduce the pressure gauge records for both the in contact and stand off experiments that used PBX 9501 donors and acceptors.

  14. Laboratory measurement of longitudinal wave velocity of artificial gas hydrate under different temperatures and pressures

    Institute of Scientific and Technical Information of China (English)

    WANG Dong; LI DongLiang; ZHANG HaiLan; FAN ShuanShi; ZHAO HaiBo

    2008-01-01

    The longitudinal wave velocity and attenuation measurements of artificial gas hy-drate samples at a low temperature are reported.And the temperature and pressure dependence of longitudinal wave velocity is also investigated.In order to under-stand the acoustic properties of gas hydrate,the pure ice,the pure tetrahydrofuran (THF),the pure gas hydrate samples and sand sediment containing gas hydrate are measured at a low temperature between 0℃ and -15℃.For the pure ice,the pure THF and the pure gas hydrate samples,whose density is 898 kg/m3,895 kg/m3 and 475 kg/m3,the velocity of longitudinal wave is respectively 3574 m/s,3428 m/s and 2439 m/s.For synthesized and compacted samples,the velocity of synthesized samples is lower than that of compacted samples.The velocities increase when the densities of the samples increase,while the attenuation decreases.Under the con-dition of low temperature,the results show that the velocity is slightly affected by the temperature.The results also show that wave velocities increase with the in-crease of piston pressures.For example,the velocity of one sample increases from 3049 up to 3337 m/s and the other increases from 2315 up to 2995 m/s.But wave velocity decreases from 3800 to 3546 m/s when the temperature increases from -153 to 53 and changes significantly close to the melting point.Formation con-ditions of the two samples are the same but with different conversion ratios of wa-ter.The results of the experiment are important for exploration of the gas hydrate resources and development of acoustic techniques.

  15. Laboratory measurement of longitudinal wave velocity of artificial gas hydrate under different temperatures and pressures

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The longitudinal wave velocity and attenuation measurements of artificial gas hy- drate samples at a low temperature are reported. And the temperature and pressure dependence of longitudinal wave velocity is also investigated. In order to under- stand the acoustic properties of gas hydrate, the pure ice, the pure tetrahydrofuran (THF), the pure gas hydrate samples and sand sediment containing gas hydrate are measured at a low temperature between 0℃ and –15℃. For the pure ice, the pure THF and the pure gas hydrate samples, whose density is 898 kg/m3, 895 kg/m3 and 475 kg/m3, the velocity of longitudinal wave is respectively 3574 m/s, 3428 m/s and 2439 m/s. For synthesized and compacted samples, the velocity of synthesized samples is lower than that of compacted samples. The velocities increase when the densities of the samples increase, while the attenuation decreases. Under the con- dition of low temperature, the results show that the velocity is slightly affected by the temperature. The results also show that wave velocities increase with the in- crease of piston pressures. For example, the velocity of one sample increases from 3049 up to 3337 m/s and the other increases from 2315 up to 2995 m/s. But wave velocity decreases from 3800 to 3546 m/s when the temperature increases from –15℃ to 5℃ and changes significantly close to the melting point. Formation con- ditions of the two samples are the same but with different conversion ratios of wa- ter. The results of the experiment are important for exploration of the gas hydrate resources and development of acoustic techniques.

  16. BLAST RESPONSE OF INCLINED RIGID WALLS%刚性防爆墙迎爆面荷载计算方法研究

    Institute of Scientific and Technical Information of China (English)

    洪武; 范华林; 金丰年; 徐迎

    2012-01-01

    防爆墙作为一种有效的防护措施在国内外重要工程中得到了广泛应用,研究防爆墙迎爆面荷载计算方法有助于防爆墙的科学设计和合理使用。该文采用数值模拟的方法,对不同倾斜角度刚性墙迎爆面压力荷载的计算方法及不同倾角墙体的抗爆效能进行了研究。分析了冲击波在垂直墙体、迎向以及背向炸药倾斜墙体上的反射、绕流以及荷载分布规律,总结出了不同工况时墙体荷载计算方法。研究发现背向炸药倾斜的墙体与垂直墙体以及迎向炸药倾斜的墙体具有几乎相同的防护效果,但墙体所承受的荷载要低于其他两者,合理的解释了工程中存在的防爆墙后倾现象的力学机制。%To effectively prevent the blast damage of buildings and structural elements through blast walls, an accurate prediction of the blast loads in terms of the peak pressures on blast walls is necessary. Numerical simulations were adopted to study the blast loads on blast walls with inclinations varying from 5°to 30°and their corresponding blast attenuation effects. Reflections and refractions of the blast wave from blast walls with inclinations were analyzed. The distribution and prediction equations of the blast loads on the blast walls were explored from the numerical analysis. It is concluded that the blast wave attenuation effects are similar for blast walls with different inclinations. When the blast wall is anticlockwise inclined, the maximum moment on the wall is much smaller, which reveals the mechanism of the anticlockwise inclined blast wails widely adopted in engineering.

  17. An Improved Negative Pressure Wave Method for Natural Gas Pipeline Leak Location Using FBG Based Strain Sensor and Wavelet Transform

    OpenAIRE

    Qingmin Hou; Liang Ren; Wenling Jiao; Pinghua Zou; Gangbing Song

    2013-01-01

    Methods that more quickly locate leakages in natural gas pipelines are urgently required. In this paper, an improved negative pressure wave method based on FBG based strain sensors and wavelet analysis is proposed. This method takes into account the variation in the negative pressure wave propagation velocity and the gas velocity variation, uses the traditional leak location formula, and employs Compound Simpson and Dichotomy Searching for solving this formula. In addition, a FBG based strain...

  18. Cavitation inception by the backscattering of pressure waves from a bubble interface

    Energy Technology Data Exchange (ETDEWEB)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp; Tanaka, Moe [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531 (Japan)

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble. The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.

  19. First hints of pressure waves in a helical extragalactic jet: S5~0836+710

    CERN Document Server

    Perucho, Manel

    2013-01-01

    One of the open questions in extragalactic jet Astrophysics is related to the nature of the observed radio jet, namely whether it traces a pattern or the flow structure itself. In this paper I summarize the evidence collected for the presence of waves in extragalactic jets. The evidence points towards the peak of emission in helical jets corresponding to pressure-maxima of a wave that is generated within the core region and propagates downstream. Making use of a number of very long baseline interferometry (VLBI) observations of the radio jet in the quasar S5~0836+710 at different frequencies and epochs, Perucho et al. (2012) were able to observe wave-like behavior within the observed radio-jet. The ridge-line of the emission in the jet coincides within the errors at all frequencies. Moreover, small differences between epochs at 15 GHz reveal wave-like motion of the ridge-line transversal to the jet propagation axis. The authors conclude that the helicity is a real, physical structure. I report here on those r...

  20. An Improved Negative Pressure Wave Method for Natural Gas Pipeline Leak Location Using FBG Based Strain Sensor and Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Qingmin Hou

    2013-01-01

    Full Text Available Methods that more quickly locate leakages in natural gas pipelines are urgently required. In this paper, an improved negative pressure wave method based on FBG based strain sensors and wavelet analysis is proposed. This method takes into account the variation in the negative pressure wave propagation velocity and the gas velocity variation, uses the traditional leak location formula, and employs Compound Simpson and Dichotomy Searching for solving this formula. In addition, a FBG based strain sensor instead of a traditional pressure sensor was developed for detecting the negative pressure wave signal produced by leakage. Unlike traditional sensors, FBG sensors can be installed anywhere along the pipeline, thus leading to high positioning accuracy through more frequent installment of the sensors. Finally, a wavelet transform method was employed to locate the pressure drop points within the FBG signals. Experiment results show good positioning accuracy for natural gas pipeline leakage, using this new method.