WorldWideScience

Sample records for blast furnace slag

  1. Slag wool manufacturing from blast furnace slag

    Directory of Open Access Journals (Sweden)

    Володимир Петрович Руських

    2016-11-01

    Full Text Available Slag wool is the most expensive and valuable product of blast furnace slag processing. Slag wool is in great demand nowadays. The article highlights the factors influencing the mineral wool quality: chemical composition that determines the acidity of the module, the temperature of the molten slag and the required slag jet thickness consistency. Mineral wool is produced by blowing air or steam into a jet of molten slag. As a result of it the slag crushes into droplets stretching. The resulting wool contains 5% slag and 95% air. The quality of the obtained slag wool depends on the module acidity of the slag. The blast furnace slags of «Ilyich iron and steel works of Mariupol» and «Azovstal iron & steel works» are the main (short slags – they give short fibers. To obtain high-quality long fiber wool it is necessary to add admixtures into basic blast furnace slag to reduce its basicity. As a result of the fuel and energy rising prices and the necessity to reduce the slag wool cost it is necessary to develop a new technology with fiery-liquid slag, with the removal of iron compounds and sulphur from the melts and the introduction of corrective additives to improve the quality of slag wool. Good thermal conductivity (about 0,03 kcal/m∙h∙°C and other indicators (resistance, volume weight make it possible to use the materials from slag wool (pads, rigid and semi-rigid plates as heat and sound insulating materials

  2. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  3. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Tervola, K. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  4. Chloride ingress of carbonated blast furnace slag cement mortars

    NARCIS (Netherlands)

    Holthuizen, P.E.; Çopuroglu, O.; Polder, R.B.

    2017-01-01

    In the Netherlands civil engineering structures, such as overpasses, bridges and tunnels are generally built using blast furnace slag cement (BFSC, CEM III/B) concrete, because of its high resistance against chloride penetration. Although the Dutch experience regarding durability performance of BFSC

  5. A research on ceramsite obtained from blast furnace slag and ...

    African Journals Online (AJOL)

    In order to solve disposal problem of solid waste, blast furnace slag (BFS) and sewage sludge (SS) were tested as components for producing ceramsite. This study investigated the feasibility of that at different preheating and sintering temperature and duration and different mass ratios (BFS: SS: clay). The results show that ...

  6. Granulated blast furnace slag – A boon for foundry industry

    African Journals Online (AJOL)

    In the present investigation efforts have been put together to employ Granulated Blast furnace (GBF) slag as mould material for replacement of existing silica sand either full or partial in foundry industry. Nishiyama procedure was assumed for appraising the same. The process factors reflected on for this were the % of ...

  7. Soil Stabilisation Using Ground Granulated Blast Furnace Slag

    OpenAIRE

    Ashish Kumar Pathak; Dr. V. Pandey

    2014-01-01

    Stabilisation is a broad sense for the various methods employed and modifying the properties of a soil to improve its engineering performance and used for a variety of engineering works. In today‟s day soil stabilisation is the major problem for civil engineers, either for construction of road and also for increasing the strength or stability of soil and reduces the construction cost. In this thesis the soil are stabilised by ground granulated blast furnace slag (GGBS) and this material is ob...

  8. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements

    International Nuclear Information System (INIS)

    Camarini, G.; Djanikian, J.G.

    1994-01-01

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95 0 C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab

  9. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  10. Greener durable concretes through geopolymerisation of blast furnace slag

    Science.gov (United States)

    Rajamane, N. P.; Nataraja, M. C.; Jeyalakshmi, R.; Nithiyanantham, S.

    2015-05-01

    The eco-friendliness of concrete is quantified by parameters such as ‘embodied energy’ (EE) and ‘embodied CO2 emission’ (ECO2e), besides duration of designed ‘service life’. It may be noted that ECO2e is also referred as carbon footprint (CF) in the literature. Geopolymer (GP) is an inorganic polymeric gel, a type of amorphous alumino-silicate product, which can be synthesised by polycondensation reactions. The concrete reported in this paper was prepared using industrial wastes in the form of blast furnace slag, fly ash as geopolymeric source materials and sodium silicate and sodium hydroxide as activators. Many mechanical properties such as compressive strength, chloride diffusion, steel corrosion, rapid chloride permeability test and rapid migration test are compared with Portland cement.

  11. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  12. Composite cements containing natural pozzolan and granulated blast furnace slag

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2006-09-01

    Full Text Available For reasons of market demand and Portland cement production,the manufacture of cements with two or more separately ground additions to produce customized cements is becoming common practice.When pozzolan or slag content in this type of cements is high, however, the initial strength of the resulting product may be adversely impacted. This problem can be minimized by activating one or both of the replacement materials. The present study analyzes the effect of Portland cement additions such as physically activated natural pozzolan(up to 20% and/or granulated blast furnace slag (up to 35% on mortar flexural and compressive strength. The results show that higher strength is attained in ternary than binary cements. Initially (2 and 7 days, the highest compressive strengths are reached by mortars with up to 13% natural pozzolan and 5% slag, whereas at later ages mortars with larger proportions of additions are found to perform best.Debido a las exigencias del mercado y de la producción de cemento Portland, es cada vez más frecuente la elaboración de cementos con dos o más adiciones a partir de la molienda separada de sus constituyentes, dando origen a la formulación de los cementos a medida.Cuando el contenido de adiciones es alto, la utilización de puzolana y escoria en este tipo de cementos presenta la peculiaridad de disminuir la resistencia inicial del cemento resultante. Sin embargo, si algunas o ambas adiciones se activan, este problema puede minimizarse. En este trabajo se analiza la influencia de la incorporación al cemento Portland de puzolana natural (hasta 20% activada físicamente y/o escoria granulada de alto horno (hasta 35% sobre la resistencia a flexión y a compresión de morteros. Los resultados indican que los cementos ternarios presentan un mejor comportamiento resistente que los cementos binarios. Las máximas resistencias a compresión en las primeras edades (2 y 7 díasse alcanzan con hasta 13% de puzolana natural y 5% de

  13. EFFECTS OF BLAST-FURNACE SLAG ON NATURAL POZZOLAN-BASED GEOPOLYMER CEMENT

    Directory of Open Access Journals (Sweden)

    MAHSHAD YAZDANIPOUR

    2011-03-01

    Full Text Available A number of geopolymer cement mixes were designed and produced by alkali-activation of a pumice-type natural pozzolan. Effects of blast-furnace slag on basic engineering properties of the mixes were studied. Different engineering properties of the mixes such as setting times and 28-day compressive strength were studied at different amounts of blast-furnace slag, sodium oxide content, and water-to-cement ratio. The mix comprising of 5 wt.% blast-furnace slag and 8 wt.% Na2O with a water-to-dry binder ratio of 0.30 exhibits the highest 28-day compressive strength, i.e. 36 MPa. Mixes containing 5 wt.% of ground granulated blast furnace slag showed the least efflorescence or best soundness. Laboratory techniques of X-ray diffractometry (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM were utilized for characterizing a number of mixes and studying their molecular and micro-structure. Investigations done by scanning electron microscopy confirm that smaller blast-furnace slag particles react totally while the larger ones react partially with alkaline activators and contribute to the formation of a composite microstructure.

  14. Effect of air-cooled slag and granulated blast furnace slag addition as substitutor on fly ash based geopolymer

    Science.gov (United States)

    Harmaji, Andrie; Imran, Aishah Mahyarni; Sunendar, Bambang; Lazuardi, Muhammad Sofyan; Khairunnasari, Ikhsan; Sobandi, Ahmad

    2017-09-01

    Air Cooled Slag and Granulated Blast Furnace Slag is a waste material from steelmaking process that not utilized, even though it rich in silica and CaO that can increase mechanical properties of building materials. Therefore, this material is potential as substitutor for geopolymer. Geopolymer is an alkali activated material consists of aluminosilicate precursor activated by NaOH and waterglass as activator. One of the common aluminosilicate binder used is fly ash. Geopolymer was made by mixing fly ash and air cooled slag or granulated blast furnace slag in certain ratio with alkali activator solution. The aim for this study is to obtain the best ratio of slag to fly ash binder that produces the highest compressive strength. The best compressive strength was 29.80 MPa achieved in fly ash:air cooled slag 40:60 ratio and 31.33 MPa achieved in fly ash:granulated blast furnace slag 40:60 ratio. X-Ray Diffraction test showed the appearance of anorthite (Ca, Na (Al, Si)4 O8). FTIR characterization showed the appearance of siloxo and sialate bonding which commonly found in geopolymerization.

  15. Characteristics and propierties of oil-well cements additioned with blast furnace slag

    OpenAIRE

    Sánchez, R.; Palacios, M.; Puertas, F.

    2011-01-01

    The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% of the cement by weight) with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activating solution partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. D...

  16. Innovation based on tradition : Blast furnace slag cement for durable concrete structures in Norway?

    NARCIS (Netherlands)

    Polder, R.B.; Nijland, T.; De Rooij, M.; Larsen, C.K.; Pedersen, B.

    2014-01-01

    Blast furnace slag cement (BFSC) has been used to build reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. The experience is good and structures with long service lives can be obtained, as has been shown by several field studies. This is caused by

  17. Development of engineered cementitious composites with limestone powder and blast furnace slag

    NARCIS (Netherlands)

    Zhou, J.; Qian, S.; Sierra Beltran, M.G.; Ye, G.; Van Breugel, K.; Li, V.C.

    2009-01-01

    Nowadays limestone powder and blast furnace slag (BFS) are widely used in concrete as blended materials in cement. The replacement of Portland cement by limestone powder and BFS can lower the cost and enhance the greenness of concrete, since the production of these two materials needs less energy

  18. The effect of blast furnace slag on the self-compactability of pumice ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents the results of an experimental study of the effects of blast furnace slag, different water/(cement+mineral additive) ratios and pumice aggregates on some physical and mechanical properties of self-compacting lightweight aggregate concrete. In this study, pumice was used as lightweight ...

  19. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NARCIS (Netherlands)

    Zemskov, S.V.; Ahmad, B.; Copuroglu, O.; Vermolen, F.J.

    2013-01-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate,

  20. Chloride-binding Effect of Blast Furnace Slag in Cement Pastes ...

    African Journals Online (AJOL)

    Unlike previous investigations, this study attempted to make a clear distinction between the contributions of the two components in a blended cement consisting of ordinary Portland cement (OPC) and ground blast furnace slag (BFS). These contributions of each component have been quantified. Relationships between the ...

  1. Granulated blast furnace slag – A boon for foundry industry | Murthy ...

    African Journals Online (AJOL)

    In the present investigation efforts have been put together to employ Granulated Blast furnace (GBF) slag as mould material for replacement of existing silica sand either full or partial in foundry industry. Nishiyama procedure was assumed for appraising the same. The process factors reflected on for this were the % of ...

  2. Carbothermic Reduction Reactions at the Metal-Slag Interface in Ti-Bearing Slag from a Blast Furnace

    Science.gov (United States)

    Wang, Yao-Zu; Zhang, Jian-Liang; Liu, Zheng-Jian; Du, Cheng-Bo

    2017-11-01

    Carbothermic reduction reactions at the metal-slag interface and the mechanisms of iron loss during the smelting of vanadium-bearing titanomagnetite in a blast furnace are still not clear as a result of the limited ability to observe the high-temperature zone of a blast furnace. The chemical composition of a Ti-bearing slag was determined by x-ray fluorescence and x-ray diffraction. The interfaces were characterized by scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy. The interfacial chemical reactions were deduced based on the characterization results and on the thermodynamic calculations performed using Factsage 6.4. The results indicated that the forms of iron in the slag were iron droplets wetted by Ti(C x , N1- x ), mechanically separated by iron and iron oxide. The different forms possessed unique characteristics and were formed by different mechanisms. Iron droplets wetted by Ti(C x , N1- x ) were generated through a series of interfacial reactions between TiO2 in the slag and [C] and [N] in the metal. Iron droplets without attached Ti(C x , N1- x ) were mainly located on the edges of pores and were attributed to the reduction of Fe x O in the slag. Insufficient reduction of iron-bearing minerals made it difficult for iron droplets to aggregate and separate from the slag, which created an Fe x O-enriched zone.

  3. Ground granulated blast furnace slag efficiency coefficient (k value) in concrete. Applications and limits

    International Nuclear Information System (INIS)

    Sanjuan, M. A.; Pineiro, A.; Rodriguez, O.

    2011-01-01

    Recently, a k-value for ground granulated blast-furnace slag or k-value has been added to the revision of the European standard EN 206-1:2000. The proposed values during the discussions in the working groups were very different because in most of cases the compressive strength was the only characteristic considered; while only in few cases the concrete durability was taken into account when ground granulated blast-furnace slag is added directly to the mix. Advantages and disadvantages of the k-values found in the literature are discussed in this paper. The final conclusion may be summarised suggesting a logical proposal of addressing to each country the choice of the k-value in function of the concrete application, environment and placing conditions selected according to their own experience. (Author) 15 refs.

  4. Ground granulated blast furnace slag efficiency coefficient (k value) in concrete. Applications and limits

    Energy Technology Data Exchange (ETDEWEB)

    Sanjuan, M. A.; Pineiro, A.; Rodriguez, O.

    2011-07-01

    Recently, a k-value for ground granulated blast-furnace slag or k-value has been added to the revision of the European standard EN 206-1:2000. The proposed values during the discussions in the working groups were very different because in most of cases the compressive strength was the only characteristic considered; while only in few cases the concrete durability was taken into account when ground granulated blast-furnace slag is added directly to the mix. Advantages and disadvantages of the k-values found in the literature are discussed in this paper. The final conclusion may be summarised suggesting a logical proposal of addressing to each country the choice of the k-value in function of the concrete application, environment and placing conditions selected according to their own experience. (Author) 15 refs.

  5. Potential modification of hydration of alkali activated mixtures from granulated blast furnace slag and fly ash

    Czech Academy of Sciences Publication Activity Database

    Tomková, V.; Ovčačík, F.; Vlček, J.; Ovčačíková, H.; Topinková, M.; Vavro, M.; Martinec, Petr

    2012-01-01

    Roč. 56, č. 2 (2012), s. 168-176 ISSN 0862-5468 R&D Projects: GA ČR GA106/09/0588 Institutional support: RVO:68145535 Keywords : alkali-activated materials * blast furnace slag * mechanical activation * fly ash Subject RIV: DD - Geochemistry Impact factor: 0.418, year: 2012 http://www.ceramics-silikaty.cz/2012/pdf/2012_02_168.pdf

  6. Characteristics and properties of oil-well cements auditioned with blast furnace slag

    International Nuclear Information System (INIS)

    Sanchez, R.; Palacios, M.; Puertas, F.

    2011-01-01

    The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% by cement weight) with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activator partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. 2 9Si and 2 7Al MAS NMR and BSE/EDX studies, in turn, showed that the CSH gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios. (Author) 29 refs.

  7. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    International Nuclear Information System (INIS)

    Huang, Haoliang; Ye, Guang; Damidot, Denis

    2014-01-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH) 2 solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO 4 2− ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. - Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation

  8. Static Holdup of Liquid Slag in Simulated Packed Coke Bed Under Oxygen Blast Furnace Ironmaking Conditions

    Science.gov (United States)

    Wang, Guang; Liu, Yingli; Zhou, Zhenfeng; Wang, Jingsong; Xue, Qingguo

    2018-01-01

    The liquid-phase flow behavior of slag in the lower zone of a blast furnace affects the furnace permeability, performance, and productivity. The effects of pulverized coal injection (PCI) on the behavior of simulated primary slag flow were investigated by quantifying the effect of key variables including Al/Si ratio [Al2O3 (wt.%) to SiO2 (wt.%)] and the amount of unburnt pulverized coal (UPC) at 1500°C. Viscosity analysis demonstrated that the slag fluidity decreased as the Al/Si ratio was increased (from 0.35 to 0.50), resulting in gradual increase of the static holdup. Increasing the amount of UPC resulted in a significant increase of the static holdup. Flooding analysis was applied to determine the maximum static holdup, which was found to be 11.5%. It was inferred that the burnout rates of pulverized coal should exceed 78.6% and 83.9% in traditional and oxygen blast furnaces, respectively.

  9. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Maxim, E-mail: max.kovtun@up.ac.za; Kearsley, Elsabe P., E-mail: elsabe.kearsley@up.ac.za; Shekhovtsova, Julia, E-mail: j.shekhovtsova@gmail.com

    2015-06-15

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator.

  10. Repulsion forces of superplasticizers on ground granulated blast furnace slag in alkaline media, from AFM measurements to rheological properties

    OpenAIRE

    Palacios, M.; Bowen, P.; Kappl, M.; Butt, H. J.; Stuer, M.; Pecharromán, C.; Aschauer, U.; Puertas, F.

    2012-01-01

    The electrostatic and steric repulsion induced by different superplasticizers on ground granulated blast furnace slag in alkaline media have been studied. The superplasticizers were sulfonated naphthalene, sulfonated melamine, vinyl copolymer, and polycarboxylate- based admixtures. With these superplasticizers the slag suspensions had negative zeta potentials, ranging from -3 to -10 mV. For the first time the adsorbed layer thicknesses for superplasticizers on slag using colloidal probe atomi...

  11. Effect of the Basicity on the Crystallization Behavior of Titanium Bearing Blast Furnace Slag

    Science.gov (United States)

    Meilong, Hu; Ruirui, Wei; Leizhang, Gao; Lu, Liu; Chenguang, Bai

    2018-03-01

    Basicity of titanium bearing blast furnace (BF) slag is critical for its crystallization behavior. Thermodynamics calculation indicates that rutile is the main phase after crystallization (or at room temperature). It precipitates during the cooling when the basicity of the slag is lower than 0.7. With increasing basicity, perovskite appears and becomes the main phase instead which contains titanium. Crystallization temperature of perovskite is higher than that of rutile and the other phases. Namely, perovskite crystallizes firstly from the molten slag during decreasing temperature. XRD analysis shows that CaTi21O38 is the main phase with a basicity of 0.6. CaMg0.39Al0.87Ti0.48Si1.26O6, CaTiSiO5 and CaMgSi2O6 are the main crystallization phases with a basicity of 0.8. The difference between experimental and thermodynamics calculation is due to the complicate crystallization behavior of the multiple slag under super cooling rate. When the slag basicity increases to 1.1, the main precipitatied phase is perovskite, which agrees well with theory calculation. In addition, the crystal structure of the synthesized titanium bearing slag is basically similar regardless of the basicity.

  12. Calcium Extraction from Blast-Furnace-Slag-Based Mortars in Sulphate Bacterial Medium

    Directory of Open Access Journals (Sweden)

    Adriana Estokova

    2018-01-01

    Full Text Available Wastewater structures, such as treatment plants or sewers can be easily affected by bio-corrosion influenced by microorganisms living in waste water. The activity of these microbes results in deterioration and can cause the reduction in structural performance of such structures. In order to improve the durability of mortar and concrete, different admixtures are being used and the best impact is observed in cement based materials combined with blast furnace slag. In this study, mortar samples with blast furnace slag were exposed to bacterial sulphate attack for 90 and 180 days. The leaching of calcium ions from the cement matrix and equivalent damaged depths of studied mortar samples were evaluated. The results showed more significant leaching of samples placed in bacterial environment, compared to the samples placed in non-bacterial environment. Similarly, the equivalent damaged depths of mortars were much higher for the bacteria-influenced samples. The slag-based cement mortars did not clearly show improved resistance in bacterial medium in terms of calcium leaching.

  13. Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO2 Mineralization

    OpenAIRE

    Jun-Hwan Bang; Seung-Woo Lee; Chiwan Jeon; Sangwon Park; Kyungsun Song; Whan Joo Jo; Soochun Chae

    2016-01-01

    Blast furnace slag (BFS) was selected as the source of Ca for CO2 mineralization purposes to store CO2 as CaCO3. BFS was dissolved using aqua regia (AR) for leaching metal ions for CO2 mineralization and rejecting metal ions that were not useful to obtain pure CaCO3 (as confirmed by XRD analysis). The AR concentration, as well as the weight of BFS in an AR solution, was varied. Increasing the AR concentration resulted in increased metal ion leaching efficiencies. An optimum concentration of 2...

  14. Stabilisation of erodible soil by fly ash and blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Indraratna, B.; Salim, W. [Civil Engineering Division, University of Wollongong, N.S.W., Wollongong (Australia)

    2000-07-01

    Residual soils are found on large terrains which are often subjected to considerable erosion. This paper presents a detailed laboratory evaluation of the effect of fly ash and blast furnace slag on two different soils: (a) culluvium (sandy loam) from New South Wales, Australia and (b) erodible dispersive clay from northeast Thailand. Geotechnical tests were conducted to determine the compaction characteristics and the compressive and shear strength properties of the blended and natural soil specimens. The effect of the above mentioned industrial wastes on the rate of erosion and on the associated pH levels is also investigated. Fine grained fly ash is found to be useful as a void filler if used in substantial quantities, whereas selfhardening milled slag is more effective in terms of improving the internal friction angle of the treated soil. 18 refs.

  15. Analysis of the Rheological Behaviour of Selected Semi-Solid Slag Systems in Blast Furnace Flow Conditions

    Directory of Open Access Journals (Sweden)

    Migas P.

    2015-04-01

    Full Text Available The rheological properties of liquid and semi-solid systems of slag and hot metal in a blast furnace are extremely important from the perspective of their dripping in the unit. The rheological nature and the values of the dynamic viscosity coefficient of liquid and semi-solid phases - slag and hot metal - determine the permeability of the zones in which those systems exist. The modelling of dripping processes and e.g. static and dynamic holding/retention of liquid in the bed, requires an accurate description of the rheological behaviour of slag and iron systems. Determining the liquid flow through the lump bed of the blast furnace is based on the assumption that liquids in the unit in the whole range of their occurrence are similar to a Newtonian ideal liquid. This study presents an analysis of the findings of high-temperature rheometric measurements of CaO-SiO2-Al2O3-MgO systems, liquid, semi-solid slags of the blast furnace type doped with TiO2 and solids in the form of TiN. The tests were performed within a temperature range of 1310-1490°C. Also measurement results for glycerol solutions with concentrations of 86% and 100% at the ambient temperature, simulating blast furnace slags with various contents of solids - PC, anthracite - are presented.

  16. Sulphate removal over barium-modified blast-furnace-slag geopolymer.

    Science.gov (United States)

    Runtti, Hanna; Luukkonen, Tero; Niskanen, Mikko; Tuomikoski, Sari; Kangas, Teija; Tynjälä, Pekka; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla

    2016-11-05

    Blast-furnace slag and metakaolin were geopolymerised, modified with barium or treated with a combination of these methods in order to obtain an efficient SO4(2-) sorbent for mine water treatment. Of prepared materials, barium-modified blast-furnace slag geopolymer (Ba-BFS-GP) exhibited the highest SO4(2-) maximum sorption capacity (up to 119mgg(-1)) and it compared also favourably to materials reported in the literature. Therefore, Ba-BFS-GP was selected for further studies and the factors affecting to the sorption efficiency were assessed. Several isotherms were applied to describe the experimental results of Ba-BFS-GP and the Sips model showed the best fit. Kinetic studies showed that the sorption process follows the pseudo-second-order kinetics. In the dynamic removal experiments with columns, total SO4(2-) removal was observed initially when treating mine effluent. The novel modification method of geopolymer material proved to be technically suitable in achieving extremely low concentrations of SO4(2-) (<2mgL(-1)) in mine effluents. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Use of blast-furnace slag in making durable concrete for waste management repositories

    International Nuclear Information System (INIS)

    Feldman, R.F.; Beaudoin, J.J.; Philipose, K.E.

    1991-02-01

    Waste repositories for the belowground disposal of low-level radioactive waste rely greatly on the durability of concrete for their required 500-year service life. A research program is in progress based on laboratory testing of concretes containing either Type 1 cement or cements containing 65 and 75 percent of blast-furnace slag, each at 4 water-cement ratios. It has been established that the degradation of the concrete will depend on the rate of ingress of corrosive agents - chlorides, sulphate ions and CO 2 . The ionic profiles and the kinetics of diffusion of these ions in the concretes have been measured by Secondary Electron Microscope (SEM) and Energy Dispersive X-ray Analysis (EDXA) techniques, and the results plotted according to a mathematical model. Predictions for service life of the concrete have been made from this model. These predictions have been correlated with properties of the concrete obtained from micro-structural, thermochemical and permeability measurements. The improvements in concrete durability due to blast-furnace slag additions are illustrated and discussed

  18. The Mechanical Properties of Foamed Concrete containing Un-processed Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Awang H.

    2014-01-01

    Full Text Available For many years, supplementary cementation materials have been utilized as cement or filler replacements to heighten the properties of concrete. The objective of this paper is to demonstrate the effects of un-processed blast furnace slag (RS on the compressive, splitting tensile and flexural strengths of foam concrete over periods of 7, 14 and 28 days. The introduction of slag to the cement begins at 30% and rises to 70% of the total content. Six mixes, which include the control mix with a similar mix ratio (1:2:0.45 and a dry density of 1300 kg/m3 is generated. Taking into consideration, from the total weight of the cementation material, 1% of super- plasticizer (PS-1 is added to the mixes with slag content. Test results revealed that the most favourable (optimum replacement level of un-processed slag in foam concrete is 30%. This represents a commercial advantage as the cement requirement is reduced from 414 Kg/m3 to 290 Kg/m3. On the 28th day, the optimum mix showed higher values than the control mix by 32% for compressive strength, 46.5% for splitting tensile strength and 61% for flexural strength.

  19. Green binding material using alkali activated blast furnace slag with silica fume

    Directory of Open Access Journals (Sweden)

    Mohamad Sayed

    2012-12-01

    Full Text Available Recently million tons of cement is produced in Egypt accompanied with million tons of CO2 emission which causes annually negative impact on the environment. Granulated blast furnace slag and silica fume are produced as by-product from iron and chemical industries with limited recycling facility. This paper represents an experimental study aimed to safe ferrosilicon alloy of slag and silica fume to produce cementless binding material using both of Sodium Hydroxide and water glass liquid (Sodium Silicate as alkaline activator. Experimental program was designed to study silica/slag ratio, percentage of alkali activator, water/binding ratio, incorporation of superplasticizer, and curing condition on the properties of the produced binding material. Compressive strength and mineralogical analysis were conducted on the polymeric binding material to asses the effectiveness of the main variables. The tests were divided into two stages; in the first stage compressive strength was conducted for all mixes while X-ray, microscopic scan (SEM, and infrared analysis (IR were carried out for the most pronounced promising mixes. The results showed that ratio of 25% of silica/slag is the most effective ratio and 5% of each of Sodium Hydroxide and Sodium Silicate was the optimum percentage of the alkaline activator. Additionally the use of superplasticizer is essential as it positively reduces the mixing water and maintains the binding material with acceptable workability.

  20. Thermodynamic Analysis of Blast Furnace Slag Waste Heat-Recovery System Integrated with Coal Gasification

    Science.gov (United States)

    Duan, W. J.; Li, P.; Lei, W.; Chen, W.; Yu, Q. B.; Wang, K.; Qin, Q.

    2015-05-01

    The blast furnace (BF) slag waste heat was recovered by an integrated system stage by stage, which combined a physical and chemical method. The water and coal gasification reactions were used to recover the heat in the system. Based on the first and second law of thermodynamics, the thermodynamic analysis of the system was carried out by the enthalpy-exergy diagram. The results showed that the concept of the "recovery-temperature countercurrent, energy cascade utilization" was realized by this system to recover and use the high-quality BF slag waste heat. In this system, the high-temperature waste heat was recovered by coal gasification and the relatively low-temperature waste heat was used to produce steam. The system's exergy and thermal recycling efficiency were 52.6% and 75.4%, respectively. The exergy loss of the integrated system was only 620.0 MJ/tslag. Compared with the traditional physical recycling method producing steam, the exergy and thermal efficiencies of the integrated system were improved significantly. Meanwhile, approximately 182.0 m3/tslag syngas was produced by coal gasification. The BF slag waste heat will be used integrally and efficiently by the integrated system. The results provide the theoretical reference for recycling and using the BF slag waste heat.

  1. Application of encapsulated lightweight aggregate impregnated with sodium monofluorophosphate as a self-healing agent in blast furnace slag mortar

    NARCIS (Netherlands)

    Sisomphon, K.; Copuroglu, O.; Fraaij, A.

    2011-01-01

    This paper studies the potential of using expanded clay lightweight aggregate impregnated with sodium monofluorophosphate (Na2FPO3) solution which is eventually encapsulated by a cement paste layer to produce a self-healing system in blast furnace slag cement mortars. It was found that the technique

  2. The influence of blast furnace slag, fly ash and silica fume on corrosion of reinforced concrete in marine environment

    NARCIS (Netherlands)

    Polder, R.B.

    1996-01-01

    Chloride penetration from sea water may cause corrosion of reinforcement in concrete structures. Adding reactive inorganic materials such as blast furnace slag, fly ash or silica fume to the cement matrix improves the resistance against chloride penetration as compared to Portland cement concrete. A

  3. The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Hanzlíček, Tomáš

    112, Part 1, JAN 20 (2016), s. 1150-1155 ISSN 0959-6526 Institutional support: RVO:67985891 Keywords : blast-furnace slag * geopolymer * setting time * mixing method * solidification * recycling Subject RIV: DM - Solid Waste and Recycling Impact factor: 5.715, year: 2016

  4. Preparation of glass-forming materials from granulated blast furnace slag

    Science.gov (United States)

    Alonso, M.; Sáinz, E.; Lopez, F. A.

    1996-10-01

    Glass precursor materials, to be used for the vitrification of hazardous wastes, have been prepared from blast furnace slag powder through a sol-gel route. The slag is initially reacted with a mixture of alcohol (ethanol or methanol) and mineral acid (HNO3 or H2SO4) to give a sol principally consisting of Si, Ca, Al, and Mg alkoxides. Gelation is carried out with variable amounts of either ammonia or water. The gelation rate can be made as fast as desired by adding excess hydrolizing agent or else by distilling the excess alcohol out of the alkoxide solution. The resulting gel is first dried at low temperature and ground. The powder thus obtained is then heat treated at several temperatures. The intermediate and final materials are characterized by thermal analysis, infrared (IR) spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and chemical analysis. From the results, the operating conditions yielding a variety of glass precursors differing in their composition are established. The method, in comparison with direct vitrification of slag, presents a number of advantages: (1) the glass precursor obtained devitrifies at higher temperatures; (2) it enables the adjustment, to a certain extent, of the chemical composition of the glass precursor; and (3) it permits recovering marketable materials at different stages of the process.

  5. Kinetics and physico-chemical properties of alkali activated blast-furnace slag/basalt pastes

    Directory of Open Access Journals (Sweden)

    H. El Didamony

    2012-12-01

    Full Text Available Granulated blast-furnace slag (GBFS is a by-product of the metallurgical industry and consists mainly of lime and calcium–magnesium aluminosilicates that defined as the glassy granular material formed by rapid cooling of molten slag with excess water resulting in an amorphous structure. Alkali-activated slag (AAS binders have taken a great interest from researchers due to its manufacturing process which has important benefits from the point of view of the lower energy requirements and lower emission of greenhouse gases with respect to the manufacturing of Portland cement. In this study, GBFS was replaced by 20, 40 and 60 wt.% of basalt activated by 6 wt.% of alkali mixture composed of 1:1 sodium hydroxide (SH and liquid sodium silicate (LSS mixed with sea water and cured in 100% relative humidity up to 90 days. The physic-chemical parameters were studied by determination of setting time, combined water content, bulk density and compressive strength. As the amount of basalt increases the setting time as well as compressive strength decreases while the bulk density increases. The compressive strength values of dried pastes are greater than those of saturated pastes. The hydrated products are identified by TGA/DTG analysis, IR spectroscopy and scanning electron microscopy (SEM.

  6. Effect of Na3PO4 on the Hydration Process of Alkali-Activated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Lukáš Kalina

    2016-05-01

    Full Text Available In recent years, the utilization of different non-traditional cements and composites has been increasing. Alkali-activated cementitious materials, especially those based on the alkali activation of blast furnace slag, have considerable potential for utilization in the building industry. However, alkali-slag cements exhibit very rapid setting times, which are too short in some circumstances, and these materials cannot be used for some applications. Therefore, it is necessary to find a suitable retarding admixture. It was shown that the sodium phosphate additive has a strong effect on the heat evolution during alkali activation and effectively retards the hydration reaction of alkali-activated blast furnace slag. The aim of the work is the suggestion of a reaction mechanism of retardation mainly based on Raman and X‑ray photoelectron spectroscopy.

  7. Correlation of the Processing Parameters in the Formation of Granulated Ground Blast Furnace Slag Geopolymer

    Science.gov (United States)

    Aziz, I. H.; Abdullah, M. M. A. B.; Yong, H. C.; Ming, L. Y.; Panias, D.; Sakkas, K.

    2017-06-01

    Geopolymers are inorganic materials with huge potential applications including building material, fire resistant materials, and agricultural construction materials. Various parameters influenced the final properties of these geopolymer concretes. This study developed the effects of several factors such as solid-to-liquid ratio, NaOH concentration, and Na2SiO3/NaOH ratio on the compressive strength of granulated ground blast furnace slag (GGBFS) by statistical design of experiment (DOE) approach. Analysis of the experimental results through ANOVA exhibited that the specimen with NaOH concentration of 10M, Na2SiO3/NaOH ratio equals to 2.5, and solid-to-liquid ratio of 3.0 curing at room temperatures for 28 days was potential of highest strength (168.705 MPa) in the considered procedure. Besides, the relationship between compressive strength and influential factors could be suitably by fraction factorial design method.

  8. Drying shrinkage of mortars with limestone filler and blast-furnace slag

    Directory of Open Access Journals (Sweden)

    Carrasco, M. F.

    2003-12-01

    Full Text Available During the 1990's the use of cements made with port land clinker and two mineral admixtures, called ternary or blended cements, has grown considerably. Nowadays, cements containing several combinations of fly ash and silica fume, blast-furnace slag and silica fume or blast-furnace slag and limestone filler are commonly used. There are numerous works on the influence of blended cements on the fresh state and mechanical properties of mortar and concrete, but the their deformations due to drying shrinkage are not so well described. Analysis of drying shrinkage is relevant because this property influences the possibility of cracking occurrence and, hence, the deterioration of mechanical and durable properties of concrete structures. This paper evaluates the influence on the drying shrinkage of mortars of variable contents of limestone filler and/or blast-furnace slag in Portland cement. Additionally, flexion strength and non evaporable water content were evaluated. Test results show that the inclusion of these mineral admixtures, Joint or separately, increments drying shrinkage of mortars at early ages. Despite this fact, mortars made with limestone filler cement are less susceptible to cracking than mortars made with cements incorporating blast-furnace slag or both admixtures.

    Durante los años 90 el uso de cementos fabricados con clínker Portland y dos adiciones suplementarias (cementos ternarios o compuestos se ha incrementado en forma considerable. En la práctica, es cada vez más común el empleo de estos cementos conteniendo combinaciones de ceniza volante y humo de sílice, escoria y humo de sílice o escoria y filler calcáreo. En la actualidad existen numerosos estudios sobre la influencia de los cementos compuestos en las características en estado fresco y las propiedades mecánicas de morteros y hormigones, pero las deformaciones que estos materiales sufren debido a la retracción por secado no son tan conocidas. El análisis de

  9. Interactions of Various types between Rock and Alkali-Activated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Mec Pavel

    2017-03-01

    Full Text Available Alkali-activated binders (AAB are very intensively studied materials nowadays. Because of possible usage as secondary raw materials, they can be environmentally efficient. Intensive research is focused especially on binder matrix, composition and its structure. For industrial usage, it is necessary to work with some aggregate for the preparation of mortars and concretes. Due to different structures of alkali-activated binders, the interaction with the aggregate will be different in comparison to an ordinary Portland cement binder. This paper deals with the study of interactions between several types of rocks used as aggregate and alkali-activated blast furnace slag. The research was focused especially on mechanical properties of prepared mortars.

  10. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  11. Physical, chemical, and mineralogical characteristics of blast furnace slag on durability of concrete

    Directory of Open Access Journals (Sweden)

    Yogarajah Elakneswaran

    2018-01-01

    Full Text Available A partial replacement of Portland cement (PC by ground granulated blast furnace slag (GGBFS is an effective method to improve the durability of concrete due to its lower diffusivity and higher chemical resistance compared to PC. Further, the microstructure of GGBFS blended cementitious materials controls the physicochemical properties and performance of the materials in concrete. Therefore, understanding of cement hydration and cementing behavior of GGBFS is essential to establish microstructure property relationship for predicting performance. In this study, hydration, microstructure development, and chloride ingress into GGBFS-blended cement have been investigated. Solid-phase assemblage and pore solution chemistry of hydrating PC and cement blended with GGBFS were predicted using thermodynamic model and compared with experimental data. A mathematical model integrating PC hydration, GGBFS reaction, thermodynamic equilibrium between hydration products and pore solution, ionic adsorption on C-S-H, multi-component diffusion, and microstructural changes was developed to predict chloride ingress into GGBFS blended cementitious materials. The simulation results on chloride profiles for hydrated slag cement paste, which was prepared with 50% of replacement of PC with GGBFS, were compared with experimental results. The model quantitively predicts the states of chloride such as free, adsorbed on C-S-H, and chemically bound as Friedel’s salt.

  12. Ternary Blends of High Aluminate Cement, Fly ash and Blast-furnace slag for Sewerage Lining Mortar

    Science.gov (United States)

    Chao, L. C.; Kuo, C. P.

    2018-01-01

    High aluminate cement (HAC), fly ash (FA) and blast-furnace slag (BFS) have been treated sustainable materials for the use of cement products for wastewater infrastructure due to their capabilities of corrosion resistance. The purpose of this study is to optimize a ternary blend of above mentioned materials for a special type of mortar for sewerage lining. By the using of Taguchi method, four control parameters including water/cementitious material ratio, mix water content, fly ash content and blast-furnace slag content were considered in nine trial mix designs in this study. By evaluating target properties including (1) maximization of compressive strength, (2) maximization of electricity resistance and (3) minimization of water absorption rate, the best possible levels for each control parameter were determined and the optimal mix proportions were verified. Through the implementation of the study, a practical and completed idea for designing corrosion resistive mortar comprising HAC, FA and BSF is provided.

  13. CONTACT STRENGTH OF MECHANOACTIVATED FINE CONCRETES FROM GRANULATED BLAST-FURNACE SLAGS

    Directory of Open Access Journals (Sweden)

    V. I. Bolshakov

    2014-10-01

    Full Text Available Purpose. Strengthening of fine concrete contact zone by mechanical processing of all components of the concrete mix in a mixer-activator and aggregate application with rough surface. Methodology. Rotary activator PC-06, developed by Scientific and Research Institute of Construction Technology, was used as a mixer-activator to achieve this purpose. Granulated blast furnace slag, having a more developed rough surface than sand, was used as fine aggregate. This apparatus provides intensive homogeneous mixing of concrete mix components, processing of raw materials (purification of their particles from contaminants, and mechanical destruction of granulated blast furnace slag surface layers and other components of the mix. Findings. During the preparation work, experimental research of new formations composition of fine concretes, using differential thermal and x-ray phase analysis methods, and physical-mechanical properties of fine concretes in accordance with the applicable standards of Ukraine, were carried out. It is established that the phase composition of new formations of fine concretes made from activated and non-activated mixes, is not changed. Their main difference is the size of generated effects and temperature intervals of occurrence of these peaks. Thus, in fine concretes made on the basis of the activated mixes, magnitude of effects is less, indicating a higher hydration degree of its components. Besides, TG curves of concrete specimens show that weight loss of gel calcium hydrosilicate of concrete from a mechanically activated mix is 0.5...0.7 % more than of concrete from a non-activated mix, which indicates a larger number of these formations in concrete from activated mixes. In general, concretes of different composition, made from a mix, processed in the mixer-activator, have higher mechanical strength. Originality. Ideas about the influence of mechanical activation of components of fine concrete mixes with forming humidity in a

  14. Characteristics and propierties of oil-well cements additioned with blast furnace slag

    Directory of Open Access Journals (Sweden)

    Sánchez, R.

    2011-06-01

    Full Text Available The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% of the cement by weight with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activating solution partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. 29Si and 27Al MAS NMR and BSE/EDX studies, in turn, showed that the C-S-H gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios.

    En el presente trabajo se ha estudiado la activación alcalina de cementos Pórtland con incorporación de escoria de horno alto (20% y 30% con respecto al peso de cemento para su posible aplicación en la construcción de pozos petrolíferos. Los estudios de hidratación realizados indican que en mezclas cemento/escoria, la disolución activadora de silicato sódico inhibe parcialmente la disolución de las fases silicato del cemento Pórtland originando un retraso de su hidratación así como la menor precipitación de productos de reacción. Dicha parcial inhibición de los procesos reactivos en las mezclas cemento/escoria originan resistencias mecánicas significativamente inferiores a las pastas de cemento Portland hidratadas con agua. Finalmente, los estudios de 29Si y 27Al RMN MAS y BSE/EDX indican que el gel C-S-H formado en pastas de mezcla cemento/escoria activadas alcalinamente presenta Al en posiciones tetraédricas y bajas relaciones Ca/Si.

  15. Durability and compressive strength of blast furnace slag-based cement grout for special geotechnical applications

    Directory of Open Access Journals (Sweden)

    Ortega, J. M.

    2014-03-01

    Full Text Available Special foundations, most prominently micropiles and soil anchors, are frequently used in construction today. In Spain, the grout for these special technical applications is generally prepared with portland cement, although the codes and standards in place stipulate only the minimum compressive strength required, with no mention of cement type. Those texts also establish a range of acceptable water:cement ratios. In the present study, durability and compressive strength in cement grout prepared with blast furnace slag cement at different w/c ratios are characterised and compared to the findings for a reference portland cement grout. The results show that slag grout exhibits greater durability than the portland cement material and complies with the compressive strength requirements laid down in the respective codes.Actualmente es muy frecuente el empleo de cimentaciones especiales, entre las que destacan los micropilotes y los anclajes. En España, las lechadas de cemento para estos trabajos geotécnicos especiales se preparan habitualmente con cemento Portland, aunque las diferentes normativas al respecto no restringen el tipo de cemento a emplear, siempre que se alcance una determinada resistencia a compresión. Respecto a la dosificación de las lechadas, la normativa permite emplear diferentes relaciones agua/cemento dentro de un determinado rango. En vista de ello, en este trabajo se han caracterizado las propiedades de durabilidad y resistencia a compresión de lechadas de cemento preparadas con un cemento con escoria de alto horno y con diferentes relaciones a/c, tomando como referencia de comportamiento lechadas de cemento Portland. El uso de un cemento con escoria conlleva una mejora en la durabilidad de las lechadas, cumpliendo los requisitos de resistencia a compresión establecidos por la normativa.

  16. The interaction of pH, pore solution composition and solid phase composition of carbonated blast furnace slag cement paste activated with aqueous sodium monofluorophosphate

    NARCIS (Netherlands)

    Kempl, J.; Copuroglu, O.

    2015-01-01

    Blast Furnace Slag (BFS) is a waste product of industrial steel production and a common additive in the cement industry in Northern European countries. However, cementitious materials made from slag-rich cement, particularly CEM III /B, are very susceptible to carbonation. Recent investigations have

  17. Characterisation of magnesium potassium phosphate cements blended with fly ash and ground granulated blast furnace slag

    International Nuclear Information System (INIS)

    Gardner, Laura J.; Bernal, Susan A.; Walling, Samuel A.; Corkhill, Claire L.; Provis, John L.; Hyatt, Neil C.

    2015-01-01

    Magnesium potassium phosphate cements (MKPCs), blended with 50 wt.% fly ash (FA) or ground granulated blast furnace slag (GBFS) to reduce heat evolution, water demand and cost, were assessed using compressive strength, X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy on 25 Mg, 27 Al, 29 Si, 31 P and 39 K nuclei. We present the first definitive evidence that dissolution of the glassy aluminosilicate phases of both FA and GBFS occurred under the pH conditions of MKPC. In addition to the main binder phase, struvite-K, an amorphous orthophosphate phase was detected in FA/MKPC and GBFS/MKPC systems. It was postulated that an aluminium phosphate phase was formed, however, no significant Al–O–P interactions were identified. High-field NMR analysis of the GBFS/MKPC system indicated the potential formation of a potassium-aluminosilicate phase. This study demonstrates the need for further research on these binders, as both FA and GBFS are generally regarded as inert fillers within MKPC

  18. Characteristics of Portland blast-furnace slag cement containing cement kiln dust and active silica

    Directory of Open Access Journals (Sweden)

    A. Abdel Rahman

    2016-09-01

    Full Text Available This investigation dealt with the effect of active silica, silica fume (SF or rice husk ash (RHA, on the mechanical and physico-chemical characteristics of the hardened blended cement pastes made of Portland blast-furnace slag cement (PSC containing cement kiln dust (CKD cured under normal conditions. Two blends made of PSC and CKD, improved by SF and two blends made of PSC and CKD improved by RHA were investigated. Hardened blended cement pastes were prepared from each cement blend by using water/cement ratio (W/C of 0.30 by weight and hydrated for various curing ages of 1, 3, 7, 28 and 90 days at the normal curing conditions under tap water at room temperature. Each cement paste was tested for its physico-chemical and mechanical characteristics; these characteristics include: compressive strength and kinetics of hydration. The phase composition of the formed hydration products was identified using X-ray diffraction (XRD and differential thermal analysis (DTA. It was found that the partial substitution of PSC by 10% and 15% of CKD is associated with an increase in the rate of hydration and a subsequent improvement of compressive strength of hardened PSC–CKD pastes. In addition, the replacement of PSC, in PSC–CKD blends, by 5% active silica was accompanied by further improvement of the physico-mechanical characteristics of the hardened PSC–CKD pastes.

  19. Removal of Hexavalent Chromium in Portland Cement Using Ground Granulated Blast-Furnace Slag Powder

    Directory of Open Access Journals (Sweden)

    Sungchul Bae

    2017-12-01

    Full Text Available Using ground granulated blast-furnace slag (GGBS under different alkaline conditions, we studied the mechanisms and extents of Cr(VI reduction and sorption and compared them to reactions with Portland cement (PC. We also investigated the effects of mixing PC/GGBS ratios on Cr(VI dissolution after carbonating the substrates. We observed a complete sorption and reduction of Cr(VI to Cr(III in a GGBS-in-Ca(OH2 solution (pH > ~12.5 after 10 h, whereas in distilled water (pH = ~11.5 GGBS exhibited only marginal sorption and reduction (20%. Cr reactions with dissolved ions in supernatants derived from GGBS indicated that the anions dissolved from GGBS act as a reducing agent for Cr(VI in a Ca(OH2 solution. Soft X-ray absorption microscopy identified a partial reduction of Cr(VI to Cr(III on the GGBS surface. The carbonation of pure PC paste substantially increased the amount of dissolved Cr(VI in a solution phase whereas a 5 wt % replacement of PC with GGBS significantly reduced the amount of dissolved Cr(VI. We concluded that in the mixed paste during the early curing stage GGBS reduced a significant fraction of Cr(VI to Cr(III and that the Cr(III adsorbed in the GGBS-PC mixture’s hydration products does not readily dissolve, even under carbonation conditions.

  20. Blast furnace dust and phosphorous slag, new materials for use in road engineering

    Science.gov (United States)

    Ochoa Díaz, R.

    2017-12-01

    This article proposes an alternative to the use of phosphorus slag and blast furnace dust, by-products of the steel industry, due to the negative environmental impact caused by its accumulation. Taking into account the above, the pertinence of the use of these by-products in asphalt mixtures for the construction of roads is studied. In this way, the origin and its properties are presented, as well as their physical and chemical characteristics. Once the tests have been carried out, it is determined that these by-products have adequate characteristics for their use since they do not present toxicity problems. Following this, the design of the mixtures is carried out to determine the mechanical and dynamic properties and thus determine the proportion to be replaced with the conventional materials. Taking into account the results it is concluded that its use is feasible since the mixture with these by-products presents acceptable resilient modulus parameters and improvement in some verification parameters.

  1. Alkaline-sulphate activation processes of a Spanish blast furnace slag

    Directory of Open Access Journals (Sweden)

    Fernández Jiménez, A.

    1996-03-01

    Full Text Available Alkaline-sulphate activation processes of a Spanish granulated blast furnace slag (Avilés, Ensidesa have been studied. Activator solutions used were: deionized water (as reference solution, Ca(OH2 (3,5∙10-3N, NaOH (1N, Na2CO3 (2N, CaSO4∙2H2O (3,0∙10-3N at 25ºC. The influence of the nature of alkaline or sulphate solution cation on slag activation process was verified. Sodium solutions decrease the induction period while calcium solutions increase it. Slag reaction degree was also determined, likewise the nature of the different reaction products formed as a function of the activator solution nature.

    Se han estudiado los procesos de activación alcalinosulfáticos de una escoria granulada de alto horno española (Avilés, Ensidesa. Las disoluciones activantes utilizadas fueron: H2O desionizada (como disolución de referencia, Ca(OH2 (3,5∙10-3N, NaOH (1N, Na2CO3 (2N, CaSO4∙2H2O (3,0∙10-3N a 25ºC. Se ha comprobado la influencia de la naturaleza del catión de la disolución alcalina o sulfática sobre el proceso de activación de la escoria. Las disoluciones sódicas disminuyen el período de inducción, mientras que las disoluciones cálcicas lo incrementan. También se determinó el grado de reacción de la escoria, así como la naturaleza de los distintos productos de reacción formados, en función de la naturaleza de la disolución activante.

  2. Mechanical behaviour of alkali-activated blast furnace slag-activated metakaolin blended pastes. Statistical study

    Directory of Open Access Journals (Sweden)

    Higuera, I.

    2012-06-01

    Full Text Available The study and development of alternative, more ecoefficient binders than portland cement are attracting a good deal of scientific and technological interest. Binders obtained from the chemical interaction between calcium silico-aluminous materials and highly alkaline solutions are one of several types of such possible cements. The present paper discusses the mechanical behaviour and mineralogical composition of blended pastes made from NaOH-activated vitreous blast furnace slag and metakaolin. The aim of the study was to determine how parameters such as the slag/metakaolin ratio, activating solution concentration and curing temperature affect strength development in these binders. A statistical study was conducted to establish the impact of each variable and model strength behaviour in these alkaline cements. The conclusion drawn is that activator concentration and the slag/metakaolin ratio are both determinant parameters.

    El estudio y desarrollo de cementos alternativos y más eco-eficientes que el cemento Portland es un tema de gran impacto a nivel científico y tecnológico. Entre esos posibles cementos se encuentran los cementos alcalinos que son materiales conglomerantes obtenidos por la interacción química de materiales silico-aluminosos cálcicos y disoluciones fuertemente alcalinas. En el presente trabajo se estudia el comportamiento mecánico y la composición mineralógica de mezclas de escoria vítrea de horno alto y metacaolín activadas alcalinamente con disoluciones de NaOH. El objetivo de este estudio es conocer cómo afectan parámetros tales como la relación escoria/metacaolín, la concentración de la disolución activadora y la temperatura de curado, al desarrollo resistente de las mezclas. A través del estudio estadístico realizado se ha podido establecer la influencia de cada variable y modelizar el comportamiento resistente de estos cementos alcalinos. Se concluye que la concentración del activador y la relaci

  3. Influence of B2O3 and Basicity on Viscosity and Structure of Medium Titanium Bearing Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Lingtao Bian

    2016-01-01

    Full Text Available The effects of B2O3 and basicity (CaO/SiO2 on the viscous behavior and structure of medium titanium bearing blast furnace slag (MTBBFS were investigated. High temperature viscosimeter was applied to measure the viscosities of CaO-SiO2-MgO-TiO2-Al2O3-B2O3 slag system and X-ray diffraction (XRD, NBO/T ratio, and structure parameter Q were employed to analyze its network structure. The results showed that the viscosity decreased and break point temperature increased with increasing basicity to 1.20. However B2O3 addition gave rise to a decrease in slag viscosity and break point temperature inspite of basicity. The more B2O3 content leads to the more pronounced variation, especially for the slag with larger basicity. The conventional NBO/T formula was revised to predict the structure variation of relatively complicated medium Ti bearing slag based on the work of Yanhong Gao and other researchers. The increase of B2O3 content in slag made parameter Q turn from Q2 to Q1, suggesting that network structure became simpler. It was also noticed that the addition of B2O3 could suppress the formation of perovskite.

  4. Application of Ground Granulate Blast Furnace Slag-Steel Slag Composite Binder in a Massive Concrete Structure under Severe Sulphate Attack

    Directory of Open Access Journals (Sweden)

    Jin Liu

    2017-01-01

    Full Text Available A composite mineral binder was prepared by mixing ground granulate blast furnace slag (GGBS and steel slag (GGBS/steel slag ratios are 1 : 1 or 3 : 2 by mass. The application of a composite binder in a massive concrete structure under severe sulphate attack is discussed by determining the hydration heat, adiabatic temperature increase, compressive strength, elastic modulus, chloride ion permeability, and sulphate attack resistance. The results show that the hydration heat of the composite binder decreases greatly when the cement replacement ratio increases to 50% at 45°C. The adiabatic temperature rise of the concrete containing the composite mineral admixture decreases significantly. Concrete containing the composite mineral admixture has a lower early elastic modulus and satisfactory late-age compressive strength. The composite mineral admixture can improve the resistance to chloride ion permeability and sulphate attack resistance of concrete, especially during temperature match curing.

  5. Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum

    Directory of Open Access Journals (Sweden)

    Bazaldúa-Medellín, M. E.

    2015-03-01

    Full Text Available The hydration, strength development and composition of hydration products of supersulphated cements were characterized from the first 48 hours up to 360 days. Two compositions of 80% Blast furnace slag, 10–15% Fluorgypsum and 10–5% Portland cement were cured in dry and wet conditions. The main hydration products were ettringite and C-S-H since the first hours and up to 360 days as evidenced by X-ray diffraction, thermal analysis and electron microscopy. The strength was favored by higher fluorgypsum contents and lower Portland cement contents. These cements generated heats of hydration of 40–57 KJ/Kg after 28 hours, which are lower than portland cement.Se realizó la caracterización de la hidratación, desarrollo de resistencia y la composición de los productos de hidratación de los cementos supersulfatados durante las primeras 48 horas y hasta 360 días. Se estudiaron dos composiciones de 80% de Escoria de alto horno, 10–15% de Fluoryeso y 10–5% de Cemento portland, se curaron en condiciones secas y húmedas. Los principales productos de hidratación fueron etringita y C-S-H desde las primeras horas y hasta 360 días, como se evidenció por difracción de rayos X, análisis térmico y microscopía electrónica de barrido. La resistencia se favoreció con mayor contenido de fluoryeso y bajos contenidos de cemento portland. Estos cementos generaron calores de hidratación de 40–57 KJ/Kg después de 28 horas, los cuales resultan más bajos que los generados por el cemento portland.

  6. Natural pozzolan-and granulated blast furnace slag-based binary geopolymers

    Directory of Open Access Journals (Sweden)

    Robayo, R. A.

    2016-03-01

    Full Text Available This study describes the synthesis at ambient temperature (25±3 °C of binary geopolymer systems based on natural volcanic pozzolan and granulated blast furnace slag. Na2SiO3 and NaOH were used as alkaline activators. The effects of the SiO2/Al2O3, Na2O/Al2O3 ratio and the amount of slag added (from 0 to 30% on the reaction kinetics, compressive strength and microstructure of the final product were studied. To characterise the geopolymer pastes, techniques such as X-ray diffraction (XRD, infrared spectroscopy (FTIR and scanning electron microscopy (SEM were used. The results indicate the possibility of obtaining a geopolymer cement with a compressive strength of up to 48.11 MPa after 28 days of curing at ambient temperature whose characteristics are comparable to those of commercial portland cement.Este trabajo describe la síntesis a temperatura ambiente (25±3 °C de sistemas geopoliméricos de tipo binario basados en una puzolana natural de origen volcánico y escoria siderúrgica de alto horno usando activadores alcalinos basados en la combinación de Na2SiO3 y NaOH. Se estudió el efecto de la relación SiO2/Al2O3, Na2O/Al2O3 y la cantidad de escoria adicionada en niveles entre el 0 y 30% sobre la cinética de reacción, la resistencia a la compresión y la microestructura del producto final. Para la caracterización de las pastas geopoliméricas se utilizaron técnicas como difracción de rayos X (DRX, espectroscopia infrarroja (FTIR y microscopia electrónica de barrido (MEB. Los resultados conseguidos revelan la posibilidad de obtener un cementante geopolimérico con una resistencia a la compresión de hasta 48,11 MPa a los 28 días de curado a temperatura ambiente cuyas características son comparables a las de un cemento portland comercial.

  7. Thermal treatment of simulant plutonium contaminated materials from the Sellafield site by vitrification in a blast-furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Hyatt, N.C., E-mail: n.c.hyatt@sheffield.ac.uk [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Schwarz, R.R.; Bingham, P.A.; Stennett, M.C.; Corkhill, C.L.; Heath, P.G.; Hand, R.J. [Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); James, M.; Pearson, A. [Sellafield Ltd., Sellafield, Seascale, Cumbria CA20 1PG (United Kingdom); Morgan, S. [Sellafield Ltd., Hinton House, Risley, Warrington WA3 6GR (United Kingdom)

    2014-01-15

    Graphical abstract: Storage of 200 L drums of PCM waste at the Sellafield site, UK. Abstract: Four waste simulants, representative of Plutonium Contaminated Materials (PCMs) at the Sellafield site, were vitrified through additions of Ground Granulated Blast-furnace Slag (GGBS). Ce (as a Pu surrogate) was effectively partitioned into the slag product, enriched in an amorphous CaO–Fe{sub 2}O{sub 3}–Al{sub 2}O{sub 3}–SiO{sub 2} phase when other crystalline phases were also present. Ce L{sub 3} edge XANES data demonstrated Ce to be present as trivalent species in the slag fraction, irrespective of the waste type. Estimated volume reductions of ca. 80–95% were demonstrated, against a baseline of uncompacted 200 L PCM waste drums. The dissolution behaviour of PCM slag wasteforms was investigated at 50 °C in saturated Ca(OH){sub 2} solution under N{sub 2} atmosphere, to simulate the hyperalkaline anoxic environment of a cementitious UK Geological Disposal Facility for Intermediate Level Waste (ILW). These experiments demonstrated the performance of the slag wasteforms to be comparable to that of other vitrified ILW materials considered potentially suitable for geological disposal.

  8. The Use of Blast Furnace Slag for Removal of Phosphorus from Wastewater in Sweden—A Review

    Directory of Open Access Journals (Sweden)

    Lena Johansson Westholm

    2010-10-01

    Full Text Available Research on Phosphorus (P removal capacity by blast furnace slags (BFS has been undertaken in Sweden for the last decade. Both laboratory experiments and field trials have been carried out. While laboratory investigations revealed that BFS has a high P-sorption capacity (95–100%, P removal in field trials was much lower, ranging from 40 to 53%. In addition, a number of problems have been observed in BFS field testing including clogging, sulfuric odor and environmental (regulatory concerns about possible leaching of heavy metals from the slag. In spite of these problems, and questioning by the environmental regulatory authorities, research continues to provide evidence that BFS can be regarded as a suitable filter media, and attempts have also been undertaken in order to further improve the P-removal capacity of this adsorbing material.

  9. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    International Nuclear Information System (INIS)

    Chartier, D.; Muzeau, B.; Stefan, L.; Sanchez-Canet, J.; Monguillon, C.

    2017-01-01

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  10. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D., E-mail: david.chartier@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Muzeau, B. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Stefan, L. [AREVA NC/D& S - France/Technical Department, 1 place Jean Millier 92084 Paris La Défense (France); Sanchez-Canet, J. [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Monguillon, C. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-03-15

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  11. Chloride transport testing of blast furnace slag cement for durable concrete structures in Norway : From 2 days to one year age

    NARCIS (Netherlands)

    Polder, R.B.; de Rooij, M.R.; Larsen, CK; Pedersen, B; Beushausen, H.

    2016-01-01

    Blast furnace slag cement (BFSC) has been used in reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. Experience is good and long service lives can be obtained. In Norway experience with BFSC is scarce. In The Netherlands, a high resistance against

  12. Chloride transport testing of blast furnace slag cement for durable concrete structires in Norway: From 2 days to one year age

    NARCIS (Netherlands)

    Polder, R.B.; Rooij, M.R. de; Larsen, C.K.; Pedersen, B.

    2016-01-01

    Blast furnace slag cement (BFSC) has been used in reinforced concrete structures in marine and road environment in The Netherlands for nearly a century. Experience is good and long service lives can be obtained. In Norway experience with BFSC is scarce. In The Netherlands, a high resistance against

  13. Carbonation Characteristics of Alkali-Activated Blast-Furnace Slag Mortar

    Directory of Open Access Journals (Sweden)

    Keum-Il Song

    2014-01-01

    Full Text Available Alkali-activated ground granulated blast-slag (AAS is the most obvious alternative material for ordinary Portland cement (OPC. However, to use it as a structural material requires the assessment and verification of its durability. The most important factor for a durability evaluation is the degree of carbonation resistance, and AAS is known to show lower performance than OPC. A series of experiments was conducted with a view to investigate the carbonation characteristics of AAS binder. As a consequence, it was found that the major hydration product of AAS was calcium silicate hydrate (CSH, with almost no portlandite, unlike the products of OPC. After carbonation, the CSH of AAS turned into amorphous silica gel which was most likely why the compressive strength of AAS became weaker after carbonation. An increase of the activator dosage leads AAS to react more quickly and produce more CSH, increasing the compaction, compressive strength, and carbonation resistance of the microstructure.

  14. Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete.

    Science.gov (United States)

    Gesoğlu, Mehmet; Güneyisi, Erhan; Mahmood, Swara Fuad; Öz, Hatice Öznur; Mermerdaş, Kasım

    2012-10-15

    Ground granulated blast furnace slag (GGBFS), a by-product from iron industry, was recycled as artificial coarse aggregate through cold bonding pelletization process. The artificial slag aggregates (ASA) replaced partially the natural coarse aggregates in production of self-compacting concrete (SCC). Moreover, as being one of the most widely used mineral admixtures in concrete industry, fly ash (FA) was incorporated as a part of total binder content to impart desired fluidity to SCCs. A total of six concrete mixtures having various ASA replacement levels (0%, 20%, 40%, 60%, and 100%) were designed with a water-to-binder (w/b) ratio of 0.32. Fresh properties of self-compacting concretes (SCC) were observed through slump flow time, flow diameter, V-funnel flow time, and L-box filling height ratio. Compressive strength of hardened SCCs was also determined at 28 days of curing. It was observed that increasing the replacement level of ASA resulted in decrease in the amount of superplasticizer to achieve a constant slump flow diameter. Moreover, passing ability and viscosity of SCC's enhanced with increasing the amount of ASA in the concrete. The maximum compressive strength was achieved for the SCC having 60% ASA replacement. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effect of γ-irradiation on the electrical conductivity of some soda lime silicate glass containing blast furnace slag

    International Nuclear Information System (INIS)

    Elalaily, N.A.; Khalil, Magda M.I.; Ahmed, L.S.

    2007-01-01

    The effect of electric field strength on conduction in soda lime silicate glass doped with blast furnace slag with different concentration was studied and the value of jump distance was calculated. The structure and the mixed anion effect in the conductivity have been examined by measuring the electrical conductivity of glass samples at temperature ranging between 20 and 250 deg. C. The results showed that the electrical conductivity of the examined glasses are divided into three ranges depending on the temperature range. The first is from room temperature to about 49.5 deg. C, the second is at a temperature range of 60.3-104 deg. C where the glass shows a decrease in its conductivity with the increase in temperature. This was followed by another increase in the electrical conductivity with the increase in temperature. The results also showed that the glass becomes more insulating as the slag content increased. The effect of irradiation was also studied by exposing glass samples to two different irradiation doses. It can be noticed that irradiation causes an increase in the electrical conductivity, especially at high temperature. The results were discussed and correlated according to the molecular structure of the prepared glass

  16. Characteristics and properties of oil-well cements auditioned with blast furnace slag; Cementos petroleros con adicion de escoria de horno alto. Caracteristicas y propiedades

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Palacios, M.; Puertas, F.

    2011-07-01

    The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% by cement weight) with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activator partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. {sup 2}9Si and {sup 2}7Al MAS NMR and BSE/EDX studies, in turn, showed that the CSH gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios. (Author) 29 refs.

  17. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  18. Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers.

    Science.gov (United States)

    Luukkonen, Tero; Runtti, Hanna; Niskanen, Mikko; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla

    2016-01-15

    The mining industry is a major contributor of various toxic metals and metalloids to the aquatic environment. Efficient and economical water treatment methods are therefore of paramount importance. The application of natural or low-cost sorbents has attracted a great deal of interest due to the simplicity of its process and its potential effectiveness. Geopolymers represent an emerging group of sorbents. In this study, blast-furnace-slag and metakaolin geopolymers and their raw materials were tested for simultaneous removal of Ni(II), As(III) and Sb(III) from spiked mine effluent. Blast-furnace-slag geopolymer proved to be the most efficient of the studied materials: the experimental maximum sorption capacities for Ni, As and, Sb were 3.74 mg/g, 0.52 mg/g, and 0.34 mg/g, respectively. Although the capacities were relatively low due to the difficult water matrix, 90-100% removal of Ni, As, and Sb was achieved when the dose of sorbent was increased appropriately. Removal kinetics fitted well with the pseudo-second-order model. Our results indicate that geopolymer technology could offer a simple and effective way to turn blast-furnace slag to an effective sorbent with a specific utilization prospect in the mining industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Repulsion forces of superplasticizers on ground granulated blast furnace slag in alkaline media, from AFM measurements to rheological properties

    Directory of Open Access Journals (Sweden)

    Palacios, M.

    2012-12-01

    Full Text Available The electrostatic and steric repulsion induced by different superplasticizers on ground granulated blast furnace slag in alkaline media have been studied. The superplasticizers were sulfonated naphthalene, sulfonated melamine, vinyl copolymer, and polycarboxylate- based admixtures. With these superplasticizers the slag suspensions had negative zeta potentials, ranging from -3 to -10 mV. For the first time the adsorbed layer thicknesses for superplasticizers on slag using colloidal probe atomic force microscopy has been measured. To model the interparticle force interactions an effective Hamaker constant was computed from dielectric properties measured on a dense slag sample produced by spark plasma sintering. The obtained results conclude that the dispersion mechanism for all the superplasticizers studied in the present work is mainly dominated by the steric repulsion. Results were then used in a yield stress model, YODEL, to predict the yield stress with and without the superplasticizers. Predictions of the yield stress agreed well with experimental results.

    En este trabajo se ha estudiado la repulsión electrostática y estérica inducida por diferentes aditivos superplastificantes en sistemas de escoria de horno alto en medios alcalinos. Se han estudiado aditivos superplastificantes basados en naftaleno, melamina, copolímeros vinílicos y basados en policarboxilato. Estos aditivos inducen en la escoria un potencial zeta negativo, entre -3 y -10 mV. Por primera vez, se ha determinado el grosor de la capa de aditivo adsorbido sobre la escoria mediante microscopía de fuerzas atómicas (AFM. Para modelizar las fuerzas de interacción entre partículas, se ha determinado la constante efectiva de Hamaker de la escoria a partir de las propiedades dieléctricas de una muestra de escoria obtenida mediante sinterización spark plasma sintering. Los resultados obtenidos concluyen que el mecanismo de dispersión de los superplastificantes

  20. Forensic Investigation of AC and PCC Pavements with Extended Service Life : Volume 3 : Petrographic Examination of Blast Furnace Slag Aggregate Concrete Cores taken from PCC Pavements in Cuyahoga County , Ohio : Executive Summary Report

    Science.gov (United States)

    2010-09-01

    Air-cooled blast furnace slag has been used as a coarse : aggregate in portland cement-based pavement concretes : since at least the early 1900s. Many of these concretes : have performed satisfactorily. In recent times a number : of PCC slag aggre...

  1. Influence of seawater mixing and curing on strength characteristics and porosity of ground granulated blast-furnace slag concrete

    Science.gov (United States)

    Adiwijaya; Hamada, H.; Sagawa, Y.; Yamamoto, D.

    2017-11-01

    Generally, in the concrete industry, several billion tons of fresh water are annually used for mixing water, curing water and cleaning water. Nevertheless, the utilization of seawater in the concrete industry is prohibited, because it increases the risk of corrosion of steel bars in concrete. This study presents strength characteristics and porosity of seawater mixed concrete and tap water mixed concrete incorporating Ground Granulated Blast-Furnace Slag (GGBS) with water-binder ratio (W/B) of 40%, 50% and 60%. The influence of seawater mixing, GGBS and curing conditions such as tap water curing (TC), seawater curing (SC) and air curing (AC) on the strength and porosity of concrete were evaluated. Based on investigation result, it was shown that there is no significant influence of seawater mixing in improving strength of GGBS concrete up to 365 days in TC and SC. Effectiveness of seawater-mixing on strength enhancement of GGBS concrete is larger in air curing than in water curing. Porosity of seawater-mixed concrete is decreased compared to tap water-mixed concrete in all curing conditions.

  2. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material.

    Science.gov (United States)

    Phummiphan, Itthikorn; Horpibulsuk, Suksun; Rachan, Runglawan; Arulrajah, Arul; Shen, Shui-Long; Chindaprasirt, Prinya

    2018-01-05

    Granulated Blast Furnace Slag (GBFS) was used as a replacement material in marginal lateritic soil (LS) while class C Fly Ash (FA) was used as a precursor for the geopolymerization process to develop a low-carbon pavement base material at ambient temperature. Unconfined Compression Strength (UCS) tests were performed to investigate the strength development of geopolymer stabilized LS/GBFS blends. Scanning Electron Microscopy and X-ray Diffraction analysis were undertaken to examine the role of the various influencing factors on UCS development. The influencing factors studied included GBFS content, Na 2 SiO 3 :NaOH ratio (NS:NH) and curing time. The 7-day soaked UCS of FA geopolymer stabilized LS/GBFS blends at various NS:NH ratios tested was found to satisfy the specifications of the Thailand national road authorities. The GBFS replacement was found to be insignificant for the improvement of the UCS of FA geopolymer stabilized LS/GBFS blends at low NS:NH ratio of 50:50. Microstructural analysis indicated the coexistence of Calcium Silicate Hydrate (CSH) and Sodium Alumino Silicate Hydrate products in FA geopolymer stabilized LS/GBFS blends. This research enables GBFS, which is traditionally considered as a waste material, to be used as a replacement and partially reactive material in FA geopolymer pavement applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Performance and Behaviour of Ground Granulated Blast Furnace Slag Imparted to Geopolymer Concrete Structural Elements and Analyzed with ANSYS

    Directory of Open Access Journals (Sweden)

    Maria Rajesh Antonyamaladhas

    2016-01-01

    Full Text Available This paper deals with the behaviour of geopolymer concrete using ground granulated blast furnace slag and steel fibre to compare with M40 grade cement concrete. The cast GPC specimens were placed in a hot curing chamber at 60∘C temperature for 24 hours and tested after 1, 7, 14, and 28 days of ambient curing to find the strength and durability of hardened concrete. The optimum value of compressive strength was attained at 12 Molarities. Fly ash was replaced by GGBS in GPC with different proportions such as 0% to 60% at 5% interval; the optimum strength value was obtained on 40% replacement. From the test results, the compressive, split-tensile, and flexural strength of GPC specimens were 20%, 43%, and 53% higher than those of the control specimens. Based on the optimum strength mix proportion, the structural elements were cast to investigate the stress-strain relations. The GPC beam and L-section showed 33% and 16% higher value. From the results of acid and sulphate resistance tests, it was found that the strength and weight ratio of GPC were higher than the control specimens. From the simulations, it was found that the experimental test results were approximately equal to the ANSYS.

  4. Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag.

    Science.gov (United States)

    Zhou, Xian; Zhou, Min; Wu, Xian; Han, Yi; Geng, Junjun; Wang, Teng; Wan, Sha; Hou, Haobo

    2017-09-01

    Fly ash is a hazardous byproduct of municipal solid waste incineration (MSWI). Cementitious material that is based on ground-granulated blast furnace slag (GGBFS) has been tested and proposed as a binder to stabilize Pb, Cd, and Zn in MSWI fly ash (FA). Cr, however, still easily leaches from MSWI FA. Different reagents, such as ascorbic acid (VC), NaAlO 2 , and trisodium salt nonahydrate, were investigated as potential Cr stabilizers. The results of the toxicity characteristic leaching procedure (TCLP) showed that VC significantly improved the stabilization of Cr via the reduction of Cr(VI) to Cr(III). VC, however, could interfere with the hydration process. Most available Cr was transformed into stable Cr forms at the optimum VC content of 2 wt%. Cr leaching was strongly pH dependent and could be represented by a quintic polynomial model. The results of X-ray diffraction and scanning electron microscopy-energy dispersive analysis revealed that hollow spheres in raw FA were partially filled with hydration products, resulting in the dense and homogeneous microstructure of the solidified samples. The crystal structures of C-S-H and ettringite retained Zn and Cr ions. In summary, GGBFS-based cementitious material with the low addition of 2 wt% VC effectively immobilizes Cr-bearing MSWI FA. Copyright © 2017. Published by Elsevier Ltd.

  5. The Characterization of Fixation of Ba, Pb, and Cu in Alkali-Activated Fly Ash/Blast Furnace Slag Matrix

    Directory of Open Access Journals (Sweden)

    Jan Koplík

    2016-06-01

    Full Text Available The fixation of heavy metals (Ba, Cu, Pb in an alkali-activated matrix was investigated. The matrix consisted of fly ash and blast furnace slag (BFS. The mixture of NaOH and Na-silicate was used as alkaline activator. Three analytical techniques were used to describe the fixation of heavy metals—X-ray photoelectron spectroscopy (XPS, scanning electron microscopy (SEM equipped with energy dispersive X-ray spectroscopy (EDS, and X-ray powder diffraction (XRD. All heavy metals formed insoluble salts after alkaline activation. Ba was fixed as BaSO4, and only this product was crystalline. EDS mapping showed that Ba was cumulated in some regions and formed clusters. Pb was present in the form of Pb(OH2 and was dispersed throughout the matrix on the edges of BFS grains. Cu was fixed as Cu(OH2 and also was cumulated in some regions and formed clusters. Cu was present in two different chemical states; apart from Cu(OH2, a Cu–O bond was also identified.

  6. Influence of the soluble fraction of blast furnace slag on the growth of some algae

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, H.

    1977-01-01

    The sea water-soluble fraction of the pulverized slag was prepared in anaerobic condition, and mixed with a basal medium in various ratios for preparation of a culture medium, on which the growth of a diatom, Skeletonema costatum, was suppressed. The inhibitory effect of the soluble fraction to this alga was reduced to a certain degree when the culture medium had been aerated with nitrogen preceding inoculation. The growth of Skel. costatum was also inhibited on the basal medium containing the untreated slag powder in various amounts, while it was stimulated when the slag powder was washed for several days before addition to the basal medium. The soluble fraction of the slag affected unfavorably the growth of a laver, Porphyra yezoensis, also. A diatom, Nitzschia closterium, was able to grow closely adhering to the slag powder. The inhibitory effect of the soluble fraction of the slag to algae seems to be caused largely by potassium or sodium sulfide, and slightly by sulfur oxides and some heavy metals dissolved in trace amounts.

  7. Use of Cement Kiln Dust, Blast Furnace Slag and Marble Sludge in the Manufacture of Sustainable Artificial Aggregates by Means of Cold Bonding Pelletization

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-07-01

    Full Text Available In this work, three different samples of solid industrial wastes cement kiln dust (CKD, granulated blast furnace slag and marble sludge were employed in a cold bonding pelletization process for the sustainable production of artificial aggregates. The activating action of CKD components on the hydraulic behavior of the slag was explored by evaluating the neo-formed phases present in several hydrated pastes. Particularly, the influence of free CaO and sulfates amount in the two CKD samples on slag reactivity was evaluated. Cold bonded artificial aggregates were characterized by determining physical and mechanical properties of two selected size fractions of the granules for each studied mixture. Eighteen types of granules were employed in C28/35 concrete manufacture where coarser natural aggregate were substituted with the artificial ones. Finally, lightweight concretes were obtained, proving the suitability of the cold bonding pelletization process in artificial aggregate sustainable production.

  8. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder.

    Science.gov (United States)

    Zhong, Shiyun; Ni, Kun; Li, Jinmei

    2012-07-01

    A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO(4)(2-) from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO(4)(2-) releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO(4)(2-) from the mortar with 20% FGD gypsum is 9200 mg·m(-2), which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Rheology and zeta potential of cement pastes containing calcined silt and ground granulated blast-furnace slag

    Directory of Open Access Journals (Sweden)

    Safi, B.

    2011-09-01

    Full Text Available This study aimed to analyse the re-use of dam silt as a supplementary binder for self-compacting concrete (SCC. When burnt, silt becomes more reactive because the kaolin it contains is converted into metakaolin. Portland cement, calcined or burnt silt and ground granulated blast furnace slag were used in this research. Cement pastes were prepared with blends containing two or three of these materials. The replacement ratio for burnt silt in both cases was 10 % and 20 % by cement weight and the ratio for the slag was a constant 30 % by weight of the blend. Rheological and zeta potential tests were conducted to evaluate paste electrokinetics and rheological behaviour. The findings showed that burnt silt is apt for use as an addition to cement for SCC manufacture.

    En el presente trabajo se ha analizado la posibilidad de utilizar los lodos procedentes de embalses como adición en la fabricación del hormigón autocompactante (HAC. Con la calcinación, estos materiales se vuelven más reactivos debido a la transformación en metacaolín, del caolín que forma parte de su composición. Las materias primas empleadas en esta investigación son: cemento Pórtland, lodos de embalse calcinados y escorias granuladas de horno alto. Se prepararon pastas de cemento con mezclas que contenían dos o tres de estos materiales. El porcentaje de reemplazo de los lodos calcinados osciló entre el 10 y el 20 % en peso del cemento, mientras que el de la escoria fue del 30 % en peso de la mezcla. Se llevaron a cabo ensayos reológicos y de potencial zeta para evaluar el comportamiento electrocinético y reológico de las distintas pastas. De acuerdo con los resultados obtenidos, una vez calcinados, los lodos de embalse son aprovechables como adición al cemento con destino a la preparación de HAC.

  10. Two-stage high temperature sludge gasification using the waste heat from hot blast furnace slags.

    Science.gov (United States)

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-12-01

    Nowadays, disposal of sewage sludge from wastewater treatment plants and recovery of waste heat from steel industry, become two important environmental issues and to integrate these two problems, a two-stage high temperature sludge gasification approach was investigated using the waste heat in hot slags herein. The whole process was divided into two stages, i.e., the low temperature sludge pyrolysis at ⩽ 900°C in argon agent and the high temperature char gasification at ⩾ 900°C in CO2 agent, during which the heat required was supplied by hot slags in different temperature ranges. Both the thermodynamic and kinetic mechanisms were identified and it was indicated that an Avrami-Erofeev model could best interpret the stage of char gasification. Furthermore, a schematic concept of this strategy was portrayed, based on which the potential CO yield and CO2 emission reduction achieved in China could be ∼1.92∗10(9)m(3) and 1.93∗10(6)t, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Study on the durability of concrete using granulated blast furnace slag as fine aggregate

    Science.gov (United States)

    Shi, Dongsheng; Liu, Qiang; Xue, Xinxin; He, Peiyuan

    2018-03-01

    In order to assessing the durability of concrete using granulated blastfurnace slag (GBS) as fine aggregate and compare it with natural river sand concrete, three different size of specimen were produced by using the same mix proportion with 3 different water cement ratios and 3 replacement ratios, and using it to measure the three aspects on the durability of concrete including freeze-thaw performance, dry-shrinkage performance and anti-chloride-permeability performance. In this paper. The test results show that using GBS as fine aggregate can slightly improve anti-chloride-permeability performance and dry-shrinkage performance of concrete in the condition of low water cement ratio, on the other hand, using GBS or natural river sand as fine aggregate has almost similar durability of concrete.

  12. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder

    International Nuclear Information System (INIS)

    Zhong Shiyun; Ni Kun; Li Jinmei

    2012-01-01

    Highlights: ► The mortar with uncalcined FGD gypsum has suitable workability. ► The strength of mortar with uncalcined FGD gypsum is higher than that of mortar without uncalcined FGD gypsum. ► The dry shrinkage of mortar with uncalcined FGD gypsum is lower than that of mortar without uncalcined FGD gypsum. ► The leaching of sulfate ion of mortar is studied. - Abstract: A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C–S–H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563–938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO 4 2- from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO 4 2- releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO 4 2- from the mortar with 20% FGD gypsum is 9200 mg·m −2 , which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.

  13. The Environmental Impact and Cost Analysis of Concrete Mixing Blast Furnace Slag Containing Titanium Gypsum and Sludge in South Korea

    Directory of Open Access Journals (Sweden)

    Tae Hyoung Kim

    2016-05-01

    Full Text Available This study assessed the environmental effects and cost of the Industrial Waste addictive Blast Furnace Slag (W-BFS using Life Cycle Assessment (LCA and compared it to general BFS. The environmental impacts of W-BFS were as follows: 1.12 × 10−1 kg-CO2 eq/kg, 3.18 × 10−5 kg-Ethylene eq/kg, 4.79 × 10−4 kg-SO2 eq/kg, 7.15 × 10−4 kg-PO43− eq/kg, 7.15 × 10−4 kg-CFC11 eq/kg and 3.94 × 10−3 kg-Antimony eq/kg. Among the environmental impact category, GWP and AP were 9.28 × 10−2 kg-CO2 eq/kg and 3.33 × 10−4 kg-SO2 eq/kg at a raw material stage, accounting for 80% and 70% of total environmental impact respectively. In EP, POCP and ADP, in addition, raw material stage accounted for a great portion in total environmental impact because of “W” among input materials. In ODP, however, compared to the environmental impact of raw materials, oil, which was used in transporting BFS to the W-BFS manufacturing factory, was more influential. In terms of GWP, POCP and ODP, W-BFS was higher than general BFS. In terms of AP, EP and ADP, in contrast, the former was lower than the latter. In terms of cost, W-BFS (41.7 US$/ton was lower than general BFS by about 17% because of the use of waste additives comprised of industrial wastes instead of natural gypsum ,which has been commonly used in general BFS. In terms of GWP and POCP, the W-BFS mixed (30% concrete was lower than plain concrete by 25%. In terms of AP and EP, the former was lower than the latter by 30%. In terms of ADP, furthermore, W-BFS mixed (30% concrete was lower than plain concrete by 11%. In aggregate-related ODP, however, almost no change was found. In terms of cost, when W-BFS was added by 10% and 30%, it was able to reduce cost by 3% and 7% respectively, compared to plain concrete. Compared to BFS-mixed concrete as well, cost could be saved by 1% additionally because W-BFS (US$41.7/ton is lower than common cement (US$100.3/ton by about 60% in terms of production costs.

  14. Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems

    Directory of Open Access Journals (Sweden)

    Mejía, J. M.

    2013-09-01

    Full Text Available This study assesses the viability of using an agro-industrial by-product, rice husk ash (RHA from a Colombian rice company’s combustion facility, as a total replacement for the commercial sodium silicate ordinarily used in alkaliactivated binders. Fly ash (FA, granulated blast furnace slag (GBFS and binary 50FA:50GBFS blended pastes were activated with a mix of sodium hydroxide and either sodium silicate or one of two types of RHA. The pastes were characterised for strength, mineralogy and microstructure. The findings showed that the agro-industrial by-product can be used to yield alkali-activated materials with 7-day mechanical strengths on the order of 42 MPa. The study confirmed that both amorphous silica and part of the crystalline silica present in RHA participate in the alkaline activation process, providing the alkalinity is suitably adjusted.Este estudio evalúa la viabilidad de utilizar un subproducto agroindustrial, la ceniza de cascarilla de arroz (RHA proveniente de un equipo combustor de una empresa Arrocera en Colombia, como reemplazo total de la sílice aportada por el silicato de sodio comercial en sistemas cementicios activados alcalinamente. Se prepararon pastas de ceniza volante (FA, de escoria de alto horno (GBFS y un sistema binario 50FA:50GBFS, que fueron activadas por una mezcla de silicato de sodio e hidróxido de sodio, y por dos tipos de RHA. Las mezclas se caracterizaron mecánica, mineralógica y microestructuralmente. Los resultados demuestran que es posible obtener materiales activados alcalinamente con resistencias mecánicas del orden de 42 MPa, a 7 días de curado, utilizando el subproducto agroindustrial. Este estudio corrobora que tanto la sílice amorfa como parte de la sílice cristalina presente en RHA tienen la posibilidad de participar en el proceso de activación alcalina, siempre y cuando las condiciones de alcalinidad estén adecuadamente ajustadas.

  15. Influence of the activator concentration on the kinetics of the alkaline activation process of a blast furnace slag

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez, A.

    1997-06-01

    Full Text Available The influence of activator solution concentration on hydration kinetics of an alkaline activated blast furnace slag has been studied. The alkaline activator used was a mix of waterglass (Na2SiO3∙nH2O and NaOH solution (of variable concentration. Final activator concentrations were 3,4 and 5 % Na2O wt. with respect to the slag total weight. Degree of reaction (α was determined from hydration heat values obtained through isothermal conduction calorimetry. From the results obtained it is deduced that a treshold value of 4 % Na2O wt. exists. For those concentrations and at test temperatures (except for 25ºC and 3 % Na2O wt., the mechanism controlling hydration reaction for a values higher than 0.5, is a diffusion process. This process is described by .Jander equation [D3=(1-(1-α1/32=(k/r2t=0,0426(t/t0,5]. The activation energy obtained for that process is of approximately 50-58 Kj/mol.

    Se ha estudiado la influencia de la concentración de la disolución activante en la cinética de hidratación de una escoria granulada de alto horno, activada alcalinamente a distintas temperaturas. El activador alcalino utilizado fue una mezcla de water glass (Na2SiO3∙nH2O con una disolución de NaOH (de concentración variable. Las concentraciones finales del activador alcalino fueron: 3, 4 y 5 % en peso de Na2O respecto a la masa total de escoria. El grado de reacción (α se determinó a partir de valores de calor de hidratación obtenidos por calorimetría de conducción isotérmica. De los resultados obtenidos se deduce que existe un valor umbral de concentraciones en torno al 4 % en peso de Na2O. También para dichas concentraciones y a las temperaturas de ensayo (excepto a 25ºC con un 3 % en peso de Na2O, el mecanismo que controla la reacción de hidrataci

  16. Improving the properties of geopolymer containing oil-contaminated clay, metakaolin, and blast furnace slag by applying nano-SiO2.

    Science.gov (United States)

    Luo, Huan-Lin; Lin, Deng-Fong; Chen, Shih-Chieh

    2017-07-01

    In this study, geopolymer specimens based on calcined oil-contaminated clays (OCCs), metakaolin replacements of OCCs, and blast furnace slag were manufactured by the addition of nano-SiO 2 to improve their properties. The effects of adding 0, 1, 2, or 3% nano-SiO 2 on the properties and microstructures of the geopolymer specimens were determined using compressive strength tests, flow tests, setting time tests, scanning electron microscopy (SEM), and silicon nuclear magnetic resonance spectroscopy (Si-NMR). The results showed that the setting time and flowability of the geopolymer specimens decreased and the compressive strength increased as the amount of nano-SiO 2 increased. These results were supported by the SEM and Si-NMR assays. This study suggests that the addition of nano-SiO 2 was beneficial and improved the properties of the geopolymer specimens containing calcined OCC.

  17. Effect of High-Temperature Curing Methods on the Compressive Strength Development of Concrete Containing High Volumes of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Wonsuk Jung

    2017-01-01

    Full Text Available This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS. GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT, peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.

  18. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    Science.gov (United States)

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  19. Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500°C

    Science.gov (United States)

    Yue, Hong-rui; Jiang, Tao; Zhang, Qiao-yi; Duan, Pei-ning; Xue, Xiang-xin

    2017-07-01

    The electrorheological properties of CaO-SiO2-Al2O3-MgO-TiO2-TiC slags were investigated to enhance understanding of the effect of TiC addition on the viscosity, yield stress, and fluid pattern of Ti-bearing slags in a direct-current electric field. The viscosities and shear stresses of 4wt% and 8wt% TiC slags were found to increase substantially with increasing electric field intensity, whereas virtually no rheological changes were observed in the 0wt% TiC slag. The Herschel-Bulkley model was applied to demonstrate that the fluid pattern of the 4wt% TiC slag was converted from that of a Newtonian fluid to that of a Bingham fluid in response to the applied electric field; and the static yield stress increased linearly with the square of the electric field intensity.

  20. Blast furnace hearth lining: post mortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando, E-mail: bva@usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Neves; Elton Silva; Silva, Sidiney Nascimento [Companhia Siderugica Nacional (CSN), Rio de Janeiro, RJ (Brazil)

    2017-05-15

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10{sup 6} ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  1. Estimation of Corrosion-Free Life for Concrete Containing Ground Granulated Blast-Furnace Slag under a Chloride-Bearing Environment

    Directory of Open Access Journals (Sweden)

    Sung In Hong

    2017-01-01

    Full Text Available The rate of chloride transport by diffusion in concrete containing ground granulated blast-furnace slag (GGBS was mathematically estimated to predict the corrosion-free service life of concrete structures exposed to seawater environment. As a factor to corrosiveness of steel embedment, replacement ratio of GGBS was selected, accounting for 25 and 50% to total binder. As a result, it was found that an increase in the GGBS content resulted in an increase in the chloride binding capacity, which would give rise to a lower chloride diffusion rate, thereby reducing the risk of chloride-induced corrosion. When it comes to the sensitivity of parameters to service life, the effective diffusivity showed a marginal influence on serviceability, irrespective of GGBS contents while surface chloride content and critical threshold concentration revealed more crucial factors to long term chloride diffusion. As the GGBS replacement increased, the variation in service life has become less influential with changing parameters. Substantially, GGBS concrete at high replacement ratio enhanced the service life due to a combination of dense pore structure and enhanced chloride binding capacity.

  2. Effects of Experimental Parameters on the Extraction of Silica and Carbonation of Blast Furnace Slag at Atmospheric Pressure in Low-Concentration Acetic Acid

    Directory of Open Access Journals (Sweden)

    Kyungsun Song

    2017-05-01

    Full Text Available Blast furnace slag (BFS, a calcium-rich industrial byproduct, has been utilized since 2005 as a mineral carbonation feedstock for CO2 sequestration, producing calcium carbonate precipitates. In this study, the conditions for the dissolution of Ca and Si in acetic acid, and subsequent carbonation, were elaborated. For this purpose, the retardation of the polymerization of silicon was attempted by varying the concentration of acetic acid, temperature, and leaching time. An inductively coupled plasma (ICP analysis revealed that both the Ca and Si dissolved completely within 30 min in 5% acetic acid at room temperature. This high dissolution value can be attributed to the fact that Ca was bound to O rather than to Si, as determined by X-ray photoelectron spectroscopy (XPS. The use of CO2-absorbed monoethanolamine enabled the complete carbonation of BFS at ambient conditions without the need for a pH swing. The presence of dissolved silica was found to affect the polymorphs of the precipitated CaCO3. We believe that this process offers a simple method for manipulating the composites of products obtained by mineral carbonation diminishing the leaching residues.

  3. EVALUATION OF THE THIXOTROPY OF OIL-WELL CEMENTS USED FOR CEMENTING LOST CIRCULATION ZONES: EFFECT OF PLASTER AND BLAST FURNACE SLAG

    Directory of Open Access Journals (Sweden)

    T. Bouziani

    2015-08-01

    Full Text Available Cementing of oil and gas wells can be a very delicate operation. Among the concerns of service companies, during this operation are the nature and conditions of the formations in well. This is the case of cementing operations in southern Algeria, specifically on the fields of In-Amen, where the formations in lost zones are naturally weak and highly permeable. In these areas, drilling fluids (muds and cements pumped will be, completely or partially lost, what we call "lost circulation". Thixotropic cements are useful to overcome lost circulation problems. They are characterized by a special rheological behavior, allowing it to plug lost zones when they are pumped.Our work aims to assess the thixotropy of cements perapred with two types of cement (class G Asland cement and CEM I 42.5 portland cement with the plaster, using a viscometer with coaxial cylinder (couette type. Moreover, the effect of blast furnace slag (LHF on the properties and thixotropic mixtures prepared was also studied. The results show that portland cement (available locally can produce mixes with higher and more stable thixotropy than the class G cement (from importation, which is a practical and economical for cementing job operations in wells with loss zones. The results also show that the effect of LHF is positive, since in addition to his contribution to long term performances, especially the durability of hardened concrete, it improves the thixotropy of cement made of plaster.

  4. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO

    International Nuclear Information System (INIS)

    Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F.

    2011-01-01

    The hydration and the microstructure of three alkali activated slags (AAS) with MgO contents between 8 and 13 wt.% are investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na 2 SiO 3 .5H 2 O (WG). Higher MgO content of the slag resulted in a faster reaction and higher compressive strengths during the first days. The formation of C(- A)-S-H and of a hydrotalcite-like phase was observed in all samples by X-ray diffraction (XRD), thermal analysis (TGA) and scanning electron microscopy (SEM) techniques. Increasing the MgO content of the slag from 8 to 13% increased the amount of hydrotalcite and lowered the Al uptake by C-S-H resulting in 9% higher volume of the hydrates and a 50 to 80% increase of the compressive strength after 28 days and longer for WG activated slag pastes. For NaOH activated slags only a slight increase of the compressive strength was measured.

  5. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3

    International Nuclear Information System (INIS)

    Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F.

    2012-01-01

    The hydration and microstructural evolution of three alkali activated slags (AAS) with Al 2 O 3 contents between 7 and 17% wt.% have been investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na 2 SiO 3 ·5H 2 O. The formation of C(-A)–S–H and hydrotalcite was observed in all samples by X-ray diffraction, thermal analysis and scanning electron microscopy. Higher Al 2 O 3 content of the slag decreased the Mg/Al ratio of hydrotalcite, increased the Al incorporation in the C(-A)-S-H and led to the formation of strätlingite. Increasing Al 2 O 3 content of the slag slowed down the early hydration and a lower compressive strength during the first days was observed. At 28 days and longer, no significant effects of slag Al 2 O 3 content on the degree of hydration, the volume of the hydrates, the coarse porosity or on the compressive strengths were observed.

  6. CFD‐DEM modelling of blast furnace tapping

    OpenAIRE

    Vango, Mathias; Pirker, Stefan; Lichtenegger, Thomas

    2017-01-01

    The campaign length of a blast furnace is limited by the hearth inner lining lifetime. In order to maximize the campaign length and ensure a good draining of hot metal and slag, a good understanding of the flow in the hearth is essential. Challenges in modelling the flow involve several continuous phases (hot metal, slag and hot blast) as well as the presence of the deadman, a dense bed of coke particles. The shape and position of the deadman depend on the weight of the burden column above an...

  7. The influence of chemical composition and fineness on the performance of alkali activated cements obtained from blast furnace slags; A influencia da composicao quimica e da finura no desempenho de cimentos alcali ativados obtidos com escorias de alto forno

    Energy Technology Data Exchange (ETDEWEB)

    Langaro, Eloise Aparecida; Matoski, Adalberto, E-mail: elolangaro@hotmail.com, E-mail: adalberto@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba (Brazil); Luz, Caroline Angulski da; Buth, Islas Stein; Moraes, Maryah Costa de; Pereira Filho, Jose Ilo, E-mail: angulski@utfpr.edu.br, E-mail: islas_sb@hotmail.com, E-mail: maryah_moraes@hotmail.com, E-mail: ilofilho@yahoo.com.br [Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco, PR (Brazil)

    2017-01-15

    New binders are being developed for concrete in order to reduce the environmental impact mainly related to CO{sub 2} emissions. Alkali -activated cements (CATs) are obtained from lime-aluminosilicate materials and an alkali activator and can reduce by 80% the emission of CO{sub 2} compared to Portland Cement (PC). Papers have also shown physical and mechanical properties similar or higher than those presented by the PC, however, the activation of raw material is complex. Recent papers have also have showed a strong influence of the characteristics of raw material on the performance of CAT, however, little mentioned in the literature.. Therefore, this paper aimed to analyze the influence of characteristics of blast furnace slag (fineness and chemical composition) on the behavior of activated alkali cements. For this purpose, two slags were used, A and B, which were submitted to different milling times; and activated using 5% of NaOH. Mortars and pastes were prepared for compressive strength testing (7 and 28 days), measurements of heat of hydration and investigation of microstructure (XRD and DSC) were made. The results showed that the mortar made with slag A reached a very good mechanical performance, close to 48MPa at 28 days, and higher formation of CSH, in opposite of slag B. The probable hypothesis of this study is that the system formed in CAT made with slag A (containing more Al{sub 2}O{sub 3}) could provide CSH with a greater incorporation of Al and a lower crystallinity, increasing the mechanical strength. (author)

  8. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  9. Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2

    Science.gov (United States)

    Li, Shangshu; Zou, Xingli; Zheng, Kai; Lu, Xionggang; Chen, Chaoyi; Li, Xin; Xu, Qian; Zhou, Zhongfu

    2018-04-01

    Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.

  10. Utilization of steel melting electric arc furnace slag for development ...

    Indian Academy of Sciences (India)

    Administrator

    road construction are the only utilization. This slag has been tried to be value added and utilized to ... aggregate in road constructions (Fallman and Kartlen. 1997; Lind et al 2000; Nagataki et al 2000). ..... furnace steel slag in road construction, in Characterization of residues release of contaminants from slag ash ashes (ed.).

  11. Suitability of Electric Arc Furnace (Eaf) Slag as Partial Replacement ...

    African Journals Online (AJOL)

    The use of Electric Arc Furnace (EAF) Slag which is a by-product solid waste in Steel Production was investigated for use as a partial replacement for cement in sandcrete blocks. The tests carried out on cement and finely ground slag to determine their compositions and physico-chemical properties as well as the evaluation ...

  12. Optimizing of Work Arc Furnace to Decopperisation of Flash Slag

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.

    2015-09-01

    Full Text Available Discusses an attempt to optimize the operation of an electric furnace slag to be decopperisation suspension of the internal recycling process for the production of copper. The paper presents a new method to recover copper from metallurgical slags in arc-resistance electric furnace. It involves the use of alternating current for a first period reduction, constant or pulsed DC in the final stage of processing. Even distribution of the electric field density in the final phase of melting caused to achieve an extremely low content of metallic copper in the slag phase. They achieved by including the economic effects by reducing the time reduction.

  13. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T.; Jaeaeskelaeinen, K.; Oeini, J.; Koskiahde, A.; Jokiniemi, J.; Pyykkoenen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  14. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Jae Eun Oh; Paulo J.M. Monteiro; Ssang Sun Jun; Sejin Choi; Simon M. Clark [University of California, Berkeley, CA (United States). Department of Civil and Environmental Engineering

    2010-02-15

    The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80{sup o}C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na.

  15. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers

    KAUST Repository

    Oh, Jae Eun

    2010-02-01

    The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 °C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na. © 2009 Elsevier Ltd.

  16. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers

    International Nuclear Information System (INIS)

    Oh, Jae Eun; Monteiro, Paulo J.M.; Jun, Ssang Sun; Choi, Sejin; Clark, Simon M.

    2010-01-01

    The increase in strength and evolution of crystalline phases in inorganic polymer cement, made by the alkali activation of slag, Class C and Class F fly ashes, was followed using compressive strength test and synchrotron X-ray diffraction. In order to increase the crystallinity of the product the reactions were carried out at 80 deg. C. We found that hydrotalcite formed in both the alkali-activated slag cements and the fly ash-based geopolymers. Hydroxycancrinite, one member of the ABC-6 family of zeolites, was found only in the fly ash geopolymers. Assuming that the predominantly amorphous geopolymer formed under ambient conditions relates to the crystalline phases found when the mixture is cured at high temperature, we propose that the structure of this zeolitic precursor formed in Na-based high alkaline environment can be regarded as a disordered form of the basic building unit of the ABC-6 group of zeolites which includes poly-types such as hydroxycancrinite, hydroxysodalite and chabazite-Na.

  17. The electrical characteristics of copper slags in a 270 kVA DC arc furnace

    International Nuclear Information System (INIS)

    Derin, Bora; Sahin, Filiz Cinar; Yucel, Onuralp

    2003-01-01

    The electrical resistance of slags is the main criteria to determine the design and the operation conditions of slag resistance furnace (SRF) depending on temperature and composition. In this study, a 270 kVA DC electric arc furnace were used to determine the electrical characteristic of molten ancient copper slags. The specific conductivity of the slag was estimated by using furnace geometric factor given in the literature as an empirical formula and by using furnace resistance measured during smelting of the copper slag with or without different additives such as coke, CaO and Al 2 O 3 . (Original)

  18. Desempenho de telhas de escória de alto forno e fibras vegetais em protótipos de galpões Performance of tiles composed of blast furnace slag and vegetable fiber in prototype barns

    Directory of Open Access Journals (Sweden)

    Maristela N. da Conceição

    2008-10-01

    Full Text Available Busca-se, em todo o mundo, a substituição do cimento amianto por alternativas seguras para o ambiente e para a saúde do trabalhador, além de econômicas, razão por que o uso de fibras vegetais como aglomerado em países tropicais onde estes resíduos são abundantes, tem-se mostrado bastante viável. No presente experimento foram comparadas telhas de cimento amianto pintadas com tinta reflexiva, telhas cerâmicas e telhas compostas de uma matriz à base de cimento Portland CPII 32Z (ABNT NBR-5735, escória de alto-forno (EAF e sílica ativa, reforçadas com fibras de polpa celulósica de sisal (Agave sisalana. Utilizaram-se protótipos de galpões avícolas nos quais o calor produzido pelas aves foi simulado por lâmpadas incandescentes. Para caracterização do ambiente térmico lançou-se mão dos índices de conforto: ITU (índice de temperatura e umidade, ITGU (índice de temperatura de globo e umidade, CTR (carga térmica radiante e entalpia (H em que os resultados demonstraram que as telhas compostas apresentaram comportamento térmico semelhante ao das telhas cerâmicas, podendo ser utilizadas em substituição às telhas de cimento amianto.The substitution of cement asbestos by safer and equally economical alternatives has being searched for throughout the world. The usage of vegetal staple fiber as agglomerate in tropical countries where these residues are abundant has shown it self to be viable. In this study, roofing tiles fabricated with cement base Portland CPII 32Z (ABNT NBR-5735, blast furnace slag (EAF, active silica reinforced with cellulose pulp staple fibers of sisal (Agave sisalana were compared with cement asbestos roofing tiles with white paint and ceramic roofing tiles. Prototypes of poultry facilities were used and lamps simulated the heat produced by the birds. Indices ITU, ITGU, CTR and entalpy (H were employed for the characterization of the thermal atmospheric comfort and the results showed that the alternative

  19. Avaliação das possibilidades de escórias de siderurgia como corretivos da acidez do solo Evaluation of blast furnace slags as correctives for soil acidity

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Pimentel Wutke

    1962-01-01

    .This paper presents preliminary results obtained in a greenhouse test in which blast furnace slags and other lime materials were compared as soil correctives. Comparisons were made between dolomitic limestone, calcitic limestone, oyster-shell lime, slag from iron production and slag from steel production by the Martin-Siemens basic procedure. These materials were compared at two different rates. General application of NPK fertilizers was made and the control treatment received no lime. The soybean variety Abura (Glycine max (L. Merril was utilized as an indicator plant; four plants were grown in each pot. Final grain production was measured and soil samples were collected, from the pots, in order to check the pH and exchangeable acidity (H+ + Al+3. The results obtained showed that under the conditions of the test, the dolomitic limestone, the calcitic limestone and the oyster-shell lime were all equally efficient in their corrective effect. The slag from steel production showed an intermediary effect, while the slag from iron prodution appeared to be the least efficient. The grain yield from these treatments did not presente any statistically significant difference. The actual grinding of the materials used in the experiment seemed satisfactory. A finer grinding is not deemed necessary unless it is required by the legislation covering the commerce of soil correctives.

  20. Experimental processing of salt slags from an aluminum dross furnace

    Energy Technology Data Exchange (ETDEWEB)

    Magyar, M.J.; Kaplan, R.S.; Makar, H.V.

    1980-01-01

    The Federal Bureau of Mines has developed a hydrometallurgical method to recover aluminum, aluminum oxide, and fluxing salts from aluminum salt slags. The slag is leached with water at room temperature to produce a saturated brine slurry. Screening of the slurry yields an aluminum-rich fraction that can be returned to the dross furnace. The remaining slurry is vacuum filtered, yielding a clear brine solution and an aluminum oxide filter cake. Evaporation of the clear filtrate produces a high-purity fluxing salt for reuse in the dross furnace. Over 80 pct of the metallic aluminum is recovered in the aluminum-rich oversize fraction, while essentially all the fluxing salts are recovered by evaporation. This report contains the final results of an investigation on a process research unit scale, an economic evaluation of the method, and recommendations to further improve the process.

  1. Automated information system for analysis and prediction of production situations in blast furnace plant

    Science.gov (United States)

    Lavrov, V. V.; Spirin, N. A.

    2016-09-01

    Advances in modern science and technology are inherently connected with the development, implementation, and widespread use of computer systems based on mathematical modeling. Algorithms and computer systems are gaining practical significance solving a range of process tasks in metallurgy of MES-level (Manufacturing Execution Systems - systems controlling industrial process) of modern automated information systems at the largest iron and steel enterprises in Russia. This fact determines the necessity to develop information-modeling systems based on mathematical models that will take into account the physics of the process, the basics of heat and mass exchange, the laws of energy conservation, and also the peculiarities of the impact of technological and standard characteristics of raw materials on the manufacturing process data. Special attention in this set of operations for metallurgic production is devoted to blast-furnace production, as it consumes the greatest amount of energy, up to 50% of the fuel used in ferrous metallurgy. The paper deals with the requirements, structure and architecture of BF Process Engineer's Automated Workstation (AWS), a computer decision support system of MES Level implemented in the ICS of the Blast Furnace Plant at Magnitogorsk Iron and Steel Works. It presents a brief description of main model subsystems as well as assumptions made in the process of mathematical modelling. Application of the developed system allows the engineering and process staff to analyze online production situations in the blast furnace plant, to solve a number of process tasks related to control of heat, gas dynamics and slag conditions of blast-furnace smelting as well as to calculate the optimal composition of blast-furnace slag, which eventually results in increasing technical and economic performance of blast-furnace production.

  2. Characterization of Ladle Furnace Slag from Carbon Steel Production as a Potential Adsorbent

    Directory of Open Access Journals (Sweden)

    Ankica Rađenović

    2013-01-01

    Full Text Available A promising type of steel slag for applications is the ladle furnace (LF slag, which is also known as the basic slag, the reducing slag, the white slag, and the secondary refining slag. The LF slag is a byproduct from further refining molten steel after coming out of a basic oxygen furnace (BOF or an electric arc furnace (EAF. The use of the LF slag in further applications requires knowledge of its characteristics. The LF slag characterization in this paper has been performed using the following analytical methods: chemical analysis by energy dispersive spectrometry (EDS, mineralogical composition by X-ray diffraction (XRD, surface area properties by the Brunauer-Emmett-Teller (BET and the Barrett-Joyner-Halenda (BJH methods, surface chemistry by infrared absorption (FTIR spectroscopy, and morphological analysis by scanning electron microscopy (SEM. The results showed that the main compounds are calcium, silicon, magnesium, and aluminium oxides, and calcium silicates under their various allotropic forms are the major compounds in the LF slag. Surface area properties have shown that the LF slag is a mesoporous material with relatively great BET surface area. The ladle furnace slag is a nonhazardous industrial waste because the ecotoxicity evaluation by its eluate has shown that the LF slag does not contain constituents which might in any way affect the environment harmfully.

  3. Constructal design of a blast furnace iron-making process based on multi-objective optimization

    International Nuclear Information System (INIS)

    Liu, Xiong; Chen, Lingen; Feng, Huijun; Qin, Xiaoyong; Sun, Fengrui

    2016-01-01

    For the fixed total raw material cost and based on constructal theory and finite time thermodynamics, a BFIM (blast furnace iron-making) process is optimized by taking a complex function as optimization objective. The complex function is integrated with HM (hot metal) yield and useful energy of the BF (blast furnace). The optimal cost distribution of raw materials (namely “generalized optimal construct”) is obtained. The effects of some parameters, such as oxygen enrichment, blast temperature and pulverized coal dosage, on the optimization results are analyzed. The results show that the HM yield, useful energy and complex function are, respectively, increased by 3.13%, 2.66% and 2.90% after generalized constructal optimization. The utilization efficiencies of the BFG (blast furnace gas) and slag are 41.3% and 57.1%, respectively, which means that the utilization potentials of the BFG and slag can be further exploited. Increasing pulverized coal dosage and decreasing the agglomerate ratio can increase the complex function. The performance the BFIM process can be improved by adjusting the oxygen enrichment, blast temperature, blast dosage, pressure ratio of the Brayton cycle's air compressor and relative pressure drop of the air compressor inlet to their optimal values, respectively, which are new findings of this paper. - Highlights: • Constructal optimization of a blast furnace iron-making process is performed. • Finite time thermodynamic model of open Brayton cycle is adopted. • Weighting function is taken as optimization objective. • Optimal cost distribution of the raw materials is obtained.

  4. Orgin of Slag from Early Medieval Age Furnaces in Nitra

    Directory of Open Access Journals (Sweden)

    Julius Dekan

    2005-01-01

    Full Text Available Two types of archaeological artefacts from remains of Early Medieval Age furnaces excavated in Nitra are analysed. They are supposed to originate from slag of glass and iron production. Employing Mossbauer spectrometry, iron crystallographic sites are identified and compared. In all samples, Fe2+ and Fe3+ structural positions were revealed. Some of the archeological artefacts including those that were supposed to originate from glass production show a presence of metallic iron and/or magnetic oxides. Based on the results of Mossbauer effect measurements performed at room temperature as well as 77 K (liquid nitrogen temperature analytical evidence is provided that the iron sites identified are not as those usually encountered in glasses. Consequently, a conclusion is proposed that neither of the investigated furnaces was used for glass production.

  5. Carbon Tubular Morphologies in Blast Furnace Coke

    Directory of Open Access Journals (Sweden)

    Stanislav S. Gornostayev

    2008-01-01

    Full Text Available The paper reports on the first occurrence of microscale carbon tubular morphologies (CMTs in a blast furnace (BF coke. The CMTs were probably formed as a result of the conversion of solid disordered carbon via liquid phase metal particles involving a gas phase containing a substantial amount of N2 and O2. The presence of CMTs may lie behind the generation of the smallest fraction of fines in BF exhaust dust. If the amount of CMTs present in the BF exhausts gases at any particular metallurgical site proves to be substantial, it could become a subject of environmental concern.

  6. Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA

    Science.gov (United States)

    Piatak, Nadine; Seal, Robert

    2012-01-01

    The Hopewell Furnace National Historic Site in southeastern Pennsylvania, which features an Fe smelter that was operational in the 18th and 19th centuries, is dominated by three slag piles. Pile 1 slag, from the Hopewell Furnace, and pile 2 slag, likely from the nearby Cornwall Furnace, were both produced in cold-blast charcoal-fired smelters. In contrast, pile 3 slag was produced in an anthracite furnace. Ore samples from the nearby Jones and Hopewell mines that fed the smelter are mainly magnetite-rich with some sulfides (pyrite, chalcopyrite, sphalerite) and accessory silicates (quartz, garnet, feldspar, and clay minerals). Slag piles 1 and 2 are similar mineralogically containing predominantly skeletal and dendritic aluminian diopside and augite, skeletal forsteritic olivine, glass, rounded blebs of metallic Fe, and exotic quartz. Olivine is a major phase in all samples from pile 2, whereas it occurs in only a few samples from pile 1. Samples of the <2 mm-size fraction of surface composite slag material or crushed slag from at depth in piles 1 and 2 are mineralogically similar to the large surface slag fragments from those piles with the addition of phases such as feldspars, Fe oxides, and clay minerals that are either secondary weathering products or entrained from the underlying bedrock. Pile 3 slag contains mostly skeletal forsteritic olivine and Ti-bearing aluminian diopside, dendritic or fine-grained subhedral melilite, glass, euhedral spinel, metallic Fe, alabandite–oldhamite solid solution, as well as a sparse Ti carbonitride phase. The bulk chemistry of the slag is dominated by Al2O3 (8.5–16.2 wt.%), CaO (8.2–26.2 wt.%), MgO (4.2–24.7 wt.%), and SiO2 (36.4–59.8 wt.%), constituting between 81% and 97% of the mass of the samples. Piles 1 and 2 are chemically similar; pile 1 slag overall contains the highest Fe2O3, K2O and MnO, and the lowest MgO concentrations. Pile 3 slag is high in Al2O3, CaO and S, and low in Fe2O3, K2O and SiO2

  7. Mathematical model and software for control of commissioning blast furnace

    Science.gov (United States)

    Spirin, N. A.; Onorin, O. P.; Shchipanov, K. A.; Lavrov, V. V.

    2016-09-01

    Blowing-in is a starting period of blast furnace operation after construction or major repair. The current approximation methods of blowing-in burden analysis are based on blowing-in practice of previously commissioned blast furnaces. This area is theoretically underexplored; there are no common scientifically based methods for selection of the burden composition and blast parameters. The purpose of this paper is development and scientific substantiation of the methods for selection of the burden composition and blast parameters in the blast furnace during the blowing-in period. Research methods are based on physical regularities of main processes running in the blast furnace, system analysis, and application of modern principles for development and construction of mathematical models, algorithms and software designed for automated control of complex production processes in metallurgy. As consequence of the research made by the authors the following results have been achieved: 1. A set of mathematical models for analysis of burden arrangement throughout the height of the blast furnace and for selection of optimal blast and gas dynamic parameters has been developed. 2. General principles for selection of the blowing-in burden composition and blast and gas dynamic parameters have been set up. 3. The software for the engineering and process staff of the blast furnace has been developed and introduced in the industry.

  8. Pellet reduction properties under different blast furnace operating conditions

    OpenAIRE

    Leimalm, Ulrika

    2006-01-01

    One of the aims of modern blast furnace (BF) ironmaking is to reduce coke consumption. One way is to increase the injection of reduction agents, such as pulverized coal. An increase in pulverized coal injection rate (PCR) will affect the blast furnace process and the conditions for iron oxide reduction. Changes in PCR influence the composition of the ascending gases and the in-furnace temperature isotherms. The performed tests involve full-scale, pilot and laboratory investigations. Raw mater...

  9. Phosphorus removal by electric arc furnace steel slag adsorption

    Science.gov (United States)

    Lim, J. W.; Lee, K. F.; Chong, Thomas S. Y.; Abdullah, L. C.; Razak, M. A.; Tezara, C.

    2017-10-01

    As to overcome the eutrophication in lakes and reservoirs which is resulted from excessive input of phosphorus due to rapid urbanization or uncontrolled agricultural activities, Electric Arc Furnace steel slag (EAFS), a steelmaking by-product, in which the disposal of this industrial waste considered economically unfavourable yet it’s physical and chemical properties exhibits high potential to be great P adsorbent. The objective of this study was to identify most suitable mathematical model in description of adsorption by using traditional batch experiment and to investigate the effect on Phosphorus removal efficiency and Phosphorus removal capacity by EAFS adsorption through variation of parameters such as pH, size of slag and initial concentration of Phosphorus. Result demonstrated that, Langmuir is suitable in describing Phosphorus removal mechanisms with the Maximum Adsorption Capacity, Q m of 0.166 mg/g and Langmuir Constant, KL of 0.03519 L/mg. As for effect studies, smaller size of adsorbent shows higher percentage (up to 37.8%) of Phosphorus removal compared to the larger size. Besides that, the experiment indicated a more acidic environment is favourable for Phosphorus removal and the amount of Phosphorus adsorbed at pH 3.0 was the highest. In addition, the adsorption capacity increases steadily as the initial Phosphorus concentration increases but it remained steady at 100mg P/L. Eventually, this study serves as better understanding on preliminary studies of P removal mechanisms by EAFS.

  10. Mineralogy and environmental geochemistry of historical iron slag, Hopewell Furnace National Historic Site, Pennsylvania, USA

    International Nuclear Information System (INIS)

    Piatak, Nadine M.; Seal, Robert R.

    2012-01-01

    The Hopewell Furnace National Historic Site in southeastern Pennsylvania, which features an Fe smelter that was operational in the 18th and 19th centuries, is dominated by three slag piles. Pile 1 slag, from the Hopewell Furnace, and pile 2 slag, likely from the nearby Cornwall Furnace, were both produced in cold-blast charcoal-fired smelters. In contrast, pile 3 slag was produced in an anthracite furnace. Ore samples from the nearby Jones and Hopewell mines that fed the smelter are mainly magnetite-rich with some sulfides (pyrite, chalcopyrite, sphalerite) and accessory silicates (quartz, garnet, feldspar, and clay minerals). Slag piles 1 and 2 are similar mineralogically containing predominantly skeletal and dendritic aluminian diopside and augite, skeletal forsteritic olivine, glass, rounded blebs of metallic Fe, and exotic quartz. Olivine is a major phase in all samples from pile 2, whereas it occurs in only a few samples from pile 1. Samples of the 2 O 3 (8.5–16.2 wt.%), CaO (8.2–26.2 wt.%), MgO (4.2–24.7 wt.%), and SiO 2 (36.4–59.8 wt.%), constituting between 81% and 97% of the mass of the samples. Piles 1 and 2 are chemically similar; pile 1 slag overall contains the highest Fe 2 O 3 , K 2 O and MnO, and the lowest MgO concentrations. Pile 3 slag is high in Al 2 O 3 , CaO and S, and low in Fe 2 O 3 , K 2 O and SiO 2 compared to the other piles. In general, piles 1 and 2 are chemically similar to each other, whereas pile 3 is distinct – a conclusion that reflects their mineralogy. The similarities and differences among piles in terms of mineralogy and major element chemistry result from the different smelting conditions under which the slag formed and include the fuel source, the composition of the ore and flux, the type of blast (cold versus hot), which affects the furnace temperature, and other beneficiation methods. The three distinct slag piles at Hopewell are enriched in numerous trace elements, such as As (up to 12 mg/kg), Cd (up to 0.4 mg

  11. Properties and application of carbon composite brick for blast furnace hearth

    Directory of Open Access Journals (Sweden)

    Jiao K.X.

    2015-01-01

    Full Text Available A type of carbon composite brick was produced via the microporous technique using natural flack graphite, α-Al2O3 and high-quality bauxite chamotte (Al2O3≥87 mass% as raw materials with fine silicon powder as additive. The composition and microstructure of the obtained carbon composite were characterized using chemical analysis, XRD and SEM with EDS. The high temperature properties of thermal conductivity, oxidization and corrosion by molten slag and hot metal of the composite were analyzed. Based on these, the type of carbon composite brick worked in a blast furnace hearth for six years was further sampled at different positions. The protective layer was found and its chemical composition and microscopic morphology were investigated. It is found that the carbon composite brick combines the good properties of both the conventional carbon block and ceramic cup refractory. The protective layer near the hot face consists of two separated sublayers, i.e. the slag layer and the carbon layer. A certain amount of slag phase is contained in the carbon layer, which is caused by the reaction of coke ash with the refractory. No obvious change in the chemical composition of the protective layer along the depth of the sidewall is found. This work provides a useful guidance for the extension of the lifetime of blast furnace hearths.

  12. suitability of electric arc furnace (eaf) slag as partial replacement for ...

    African Journals Online (AJOL)

    Administrator

    The use of Electric Arc Furnace (EAF) Slag which is a by-product solid waste in Steel Production was investigated for use as a partial replacement for cement in sandcrete blocks. The tests carried out on cement and finely ground slag to determine their compositions and physico-chemical properties as well as the evaluation ...

  13. Suitability of electric arc furnace (eaf) slag as partial replacement for ...

    African Journals Online (AJOL)

    The use of Electric Arc Furnace (EAF) Slag which is a by-product solid waste in Steel Production was investigated for use as a partial replacement for cement in sandcrete blocks. The tests carried out on cement and finely ground slag to determine their compositions and physico-chemical properties as well as the evaluation ...

  14. Blasted copper slag as fine aggregate in Portland cement concrete.

    Science.gov (United States)

    Dos Anjos, M A G; Sales, A T C; Andrade, N

    2017-07-01

    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement

    International Nuclear Information System (INIS)

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.

    2015-01-01

    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  16. Investigation of accretion formation in a blast furnace shaft

    Energy Technology Data Exchange (ETDEWEB)

    Klima, R.; Hoefer, O.; Chiarotti, U.; Fredman, T.; Hillmann, C.; Raipala, K.; Eriksson, J. (eds.) [BFI Duesseldorf (Germany)

    2005-07-01

    Accretions in the bosh, belly and shaft have a significant influence on blast furnace performance and on the service life of the refractory lining and the cooling system. To analyse the mechanisms of formation and dislodging of accretions, investigations were carried out at four different blast furnaces. Three blast furnaces were equipped with additional measurements to investigate the accretion formation process and to provide information for the development of accretion estimation models. Installation activities included thermocouples, heat-flux meters, staves with instrumentation for heat-flux measurement and a small horizontal lance. The distribution of accretions in the shaft was documented. Samples were taken out of accretions during blast furnace stoppages. Their acquisition was simplified with newly developed sampling devices. The samples were analysed to determine chemical and mineralogical properties and thermal conductivity. Samples were mainly made up of reduced iron or of coke and sinter structures glued together by zinc or alkali compounds. Together with a newly developed offline model for the simulation of accretion formation, different parameters influencing the formation process were identified. The main parameters are: burden material composition, blast furnace operating conditions; and the cooling system. Countermeasures to prevent excessive accretion growth were determined. They offer a better operational control of accretions. Different models to identify accretion formation were developed and an overview was presented. Different models were necessary to distinguish between the various measurement, cooling-system and blast-furnace setups. Most of the models are already implemented and in operational use. For some of them application at other blast furnaces was already realised or is possible. 9 refs., 18 figs., 20 tab.

  17. Influence of Mechanically Activated Electric Arc Furnace Slag on Compressive Strength of Mortars Incorporating Curing Moisture and Temperature Effects

    Directory of Open Access Journals (Sweden)

    Muhammad Nasir Amin

    2017-07-01

    Full Text Available In this study, the influence of mechanically activated electric arc furnace slag (EAFS was investigated through compressive strength tests on 50 mm mortar cubes. The objective was to convert the wasteful EAFS into a useful binding material to reduce the cement content in concrete without compromising strength and economy. Four different groups of mortar were cast which include control mortar, reference fly ash mortar, mortar containing EAFS to determine its optimum fineness and replacement with cement, mortar blend containing fly ash and EAFS of optimum fineness. EAFS were identified with respect to its fineness as slag ground (SG, slag-fine (SF 100% passing 75 µm sieve, and slag-super-fine (SSF 100% passing 45 µm sieve. Compressive strength was measured according to ASTM C109. Specimens were cured under different temperatures and moisture to incorporate the effects of normal and hot environmental conditions. Compressive strength of mortars increases with fineness of EAFS and its strength activity index matches the ASTM C989 blast furnace slag (BFS Grade 80 up to 30% cement substitution and Grade 100 when 10% cement substituted with SSF. The influence of curing temperatures was also significant in mortars containing SG or 10% SF where strength decreased with increasing curing temperature. However, a 20–30% and 20% cement substitution with SF produced strength comparable to control and reference fly ash mortars under moderate (40 °C and high curing temperature (60 °C, respectively. The utilization of EAFS as binder in concrete may reduce needs for cement, as well as save environment and natural resources from depletion.

  18. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    Science.gov (United States)

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa

    2002-01-01

    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results.

  19. Radiometric report for a blast furnace tracing with radioactive isotopes

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, M.

    1995-01-01

    One of the methods to monitor refractory wall of blast furnace is its tracing with radioactive isotopes. The tracer isotope can be detected by two ways: the external dosimetric measurement at the armour of the blast furnace and/or the radiometric measurement of the iron sample charge by charge. Any change in radiometric situation of tracer radioisotope is recorded in a radiometric report. This paper presents an original concept of radiometric report based upon PARADOX and CORELDRAW soft kits. Their advantage are: quick and easy changes, easy recording of current radioactivity of tracer isotope, short history of changes, visual mapping of the tracer isotope and others. In this way we monitored 6 blast furnaces and more than 180 radioactive sources

  20. Effect of Ladle Furnace Slag Composition in Si-Mn Killed Steel Transient Inclusion Changes

    Science.gov (United States)

    Piva, Stephano P. T.; Pistorius, P. Chris

    This work investigates the effect of slag composition in steel-slag and steel-inclusion reaction kinetics in silicon-manganese killed steels by using FactSage macros to simulate and predict inclusion composition and morphology changes during ladle treatment. Two different conditions of ladle treatment were simulated in regard to alumina and silica content in a basic slag. The simulated changes in inclusion chemical composition and phases, as well as total oxygen and dissolved aluminum in steel were compared. One experimental trial was made to simulate ladle steel-slag and steel-inclusion reactions using an induction furnace to simulate deoxidation and slag addition. The average steel mass transfer coefficient for the experimental setup was calculated from the analyzed aluminium pick-up by steel. Average inclusion composition was measured using Scanning Electron Microscopy and Energy-Dispersive X-Ray Spectroscopy. The chemical compositions of the inclusions and the steel agreed with the FactSage macro simulations.

  1. Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching

    Science.gov (United States)

    Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza

    2018-03-01

    Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.

  2. Studying and improving blast furnace cast iron quality

    Directory of Open Access Journals (Sweden)

    Т. К. Balgabekov

    2014-10-01

    Full Text Available In the article there are presented the results of studies to improve the quality of blast furnace cast iron. It was established that using fire clay suspension for increasing the mould covering heat conductivity improves significantly pig iron salable condition and filtration refining method decreases iron contamination by nonmetallic inclusions by 50 – 70 %.

  3. Determination of the coke bed voidage in the blast furnace hearth

    Energy Technology Data Exchange (ETDEWEB)

    Havelange, O.; Danloy, G.; Venturini, M.J. [and others] [CRM, Liege (Belgium)

    2004-07-01

    The objectives of the research were to develop and apply techniques and model tools allowing an online evaluation of the blast furnace hearth conditions and its permeability, in order to guarantee a stable furnace operation and to control the refractory wear through early corrective actions. CRM determined the coke bed voidage in the hearth of BFB of Cockerill-Sambre by two techniques: one based on pressure measurement inside the taphole and the other based on electromotive force measurement. A mathematicalmodel was developed taking into account the movements of the deadman. ln order to continuously determine the hot metal flow rate, BFI measured the filling level in the runner at BF 2 of TKS. A statistical wear model evaluated the cross-sectional runner geometry. The data have been fed into a model to calculate the coke bed voidage on multiple taphole blast furnaces. To control the wear caused by preferential liquid flow, Corus IJmuiden developed a monitoring of temperature and heat flux information from purpose-installed duplex thermocouples. This information has been correlated over time to identify any persistent trends and used to evaluate control measures such as blocked tuyeres and process shutdowns. Industrial trials at Fos BF1 enabled IRSID to propose a picture to describe the effects of the central coke charging practice. IRSID used the Fluent code to describe the liquid flow in the hearth with regard to the deadman conditions and to simulate tracer experiments. From studies of the behaviour of the hearth skull, Corus UK proposed a method for its monitoring. The iron flow rate was measured by using strain gauges attached to the torpedo ladles, and the slag flow rate was estimated from the slag pelletiser current. Data from tuyere core drilling samples were examined to estimate the voidage in the hearth. 38 refs., 127 figs.

  4. Design and properties of plaster mortars manufactured with ladle furnace slag

    International Nuclear Information System (INIS)

    Rodríguez, A.; Gutiérrez-González, S.; Horgnies, M.; Calderón, V.

    2013-01-01

    Highlights: • This study analyses plaster with ladle furnace slag as a mineral aggregate. • Tests are completed by characterizing the influences of two admixtures. • Microstructure, physical and mechanical results confirm the feasibility of these materials. • These new materials are potentially useful as plaster mortars for use in masonry. - Abstract: This study deals with the properties of a series of plasters containing different proportions of ladle furnace slag used as mineral aggregate. The tests characterise the influences of two admixtures: a superfluidifier to reduce the water absorption (SikaMix®) of mortar plaster and an adhesive emulsion to improve the surface adherence (SikaLatex®). The physical and mechanical results confirm the feasibility of employing ladle furnace slag as a mineral aggregate, which induces an increase in density, in vapour permeability and in porosity. The results highlight also a decrease of adherence, durability and mechanical strength, proportionally to the amount of plaster substituted by slag. Scanning electron microscopy imaging and elemental mapping show good interaction between the various constituents. The thermal degradation of the mixtures reflects an improvement in strength resistance in relation to temperature, as further slag is incorporated. The economical study suggests that these recycled materials are cost-effectively viable and may be applied as plaster mortars for use in masonry

  5. Reaction of iron and steel slags with refractories

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Anderson, M.W. [Magneco/Metrel, Inc., Addison, IL (United States); Singh, J.P.; Poeppel, R.B. [Argonne National Lab., IL (United States)

    1993-04-01

    Slag corrosion and erosion has been a major wear factor for refractories wear in contact with molten iron and steel. In blast furnace ironmaking, the slag/iron interface plays a more important role than does the slag/refractory interface. On the other hand in steelmaking, the slag in the ladles and tundish predominantly affect refractory wear. This paper presents the results of a detailed microstructural evaluation of (a) slag and slag/iron interactions with A1{sub 2}O{sub 3}-SiC-C refractories for ironmaking in blast furnaces, (b) basic oxygen furnace and ladle slag interactions with alumina spinel refractories for steelmaking, and (c) slag interactions with working refractory lining for continuous casting tundishes. Results will also be presented on refractory wear/failure due to simultaneous corrosion and penetration by the slag.

  6. Reduction of electrical arc furnace oxidizing slag by coke under microwave irradiation

    Science.gov (United States)

    An, Sung Beom; Shin, Minsoo; Sim, Ki Joo; Lee, Joonho

    2014-03-01

    The reduction of iron from electrical arc furnace oxidizing slag by coke was investigated under microwave irradiation (1.7 kW, 2.45 GHz). The heating behavior of cokes of different sizes were examined and a maximum heating rate of 550 K/min and a maximum temperature of 1783 K were obtained with coke particles smaller than 75 m. In the reduction of the oxidizing slag (15 g) by coke (1.45˜1.65 g) under microwave irradiation for 25 min, the maximum recovery ratio of iron was 0.87, obtained when the amount of coke addition was 1.55 g. In addition, the reduced slag composition was modified by adding 5.9 g of CaO. With the addition of 1.55 g coke or more, free CaO in the slag was effectively reduced.

  7. Blast furnace coke substitutes from Victorian brown coal

    OpenAIRE

    Mollah, Mamun

    2017-01-01

    Iron is usually produced from its ores using coke in a blast furnace (BF). Coke, a hard and macroporous carbon material, is produced from special coals (coking coals) and acts as fuel, smelting agent, and the permeable support for the charge to the BF. No material can completely replace coke in a BF. Coking coals are becoming harder (and more expensive) to obtain. Victorian brown coal (VBC) is accessible, cheap, with low mineral concentrations, which is favourable for iron production in a BF....

  8. Incorporation of ladle furnace slag in ceramic formulations: study of extrusion zones

    International Nuclear Information System (INIS)

    Feitosa, E.F.; Santana, C.M.; Luna, D.S.; Santos, D.M.S.; Silva, G.S.; Noleto, L.T.; Almeida, N.C.; Rabelo, A.A.; Fagury Neto, E.

    2016-01-01

    This study aimed to investigate the effect of incorporation of ladle furnace slag (LFS) in two clays with higher and lower plasticity, used for the manufacture of structural ceramics. The LFS from a local steel making plant was added to ceramic compositions in proportions of 8 %, 14 % and 16 %. The formulations were tested in appropriate equipment that measures the liquid limit and plastic limit. The property examined was the plasticity index, in order to make a study of the extrusion zones. Results showed that the addition of slag into clay mixtures alters the plasticity; however, the extrusion process was not hampered. (author)

  9. The effect of blast furnace coke quality on the possibility of its use

    Directory of Open Access Journals (Sweden)

    A. Konstanciak

    2013-04-01

    Full Text Available In the paper behavior of the blast-furnace coke in the high temperature was presented. Comparative analysis of the chemical composition of the blast-furnace coke and the heat treatment of it were done. Coefficients M10 and M40 with the thermo-abrasiveness for chosen cokes were compared. The influence of ash content of the coke on the blast-furnace bed permeability was defined. Usefulness of the coke to blast-furnace process was also defined.

  10. Surface tension of expanded slag from steel manufacturing in electrical furnace

    Directory of Open Access Journals (Sweden)

    J. Łabaj

    2011-07-01

    Full Text Available In the article a research on the surface tension of slag was conducted from the process of obtaining steel in the electric furnace. Melting in the graphite melting crucible caused the slag to foam. The measurement of the surface tension is being conducted with method of rejection. They make the measurement of maximum power needed for the liquid to reject the working element of the apparatus from the surface. The research was conducted in the temperature of 1 673 – 1 723 K. The results of the measurements allowed to determine the surface tension of slag, which in the analysed scope of the temperature is being changed from 454 to 345 mN•m-1.

  11. Modelling of turbulent combustion in the blast furnace raceway

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R.; Maekiranta, R. [Tampere Univ. (Finland). Energy and Process Engineering

    1996-12-31

    The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.

  12. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  13. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  14. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  15. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  16. Simulation of blast furnace operation during the substitution of coke and pulverized coal with granulated waste plastic

    Directory of Open Access Journals (Sweden)

    Kovačević Tihomir M.

    2014-01-01

    Full Text Available The possibility of using the waste plastic as reducing agent in blast furnace for obtaining pig iron is in focus for the past couple year. The simulation of blast furnace process in BFC software has been performed in order to analyze the coke and coals saving, CO2 emission and determining the economic benefits. Three different batches were made for comparative analysis, depending on the batch composition and input of batch components into the blast furnace: case 1 (C1, case 2 (C2 and case 3 (C3. The base case, C1 contains sinter (bulk material which is needed for obtaining 1 tone of pig iron, quartz which provides slag alkalinity and coke as reducing and energy agent. C2 has the same components as C1, but contains pulverized coal instead one part of coke and C3 contains granulated waste plastic instead coke in an approximately the same amount as pulverized coal. The substitution of coke with pulverized coal and waste plastic is 18.6 % and 25.2 %, respectively. The economic, productivity and ecologic aspects have been analyzed. The consumption of each tone of waste plastic in blast furnace saves 360 $, which is 18 times more than its price, bearing in mind that the market price of coke is 380 $/t % and waste plastic 20 $/t. Regarding the specific productivity, it decreases from 2.13 for C1 to 1.87 for C3. From an environmental aspect there are two main benefits: reduction of CO2 emission and impossibility of dioxin formation. The CO2 emission was 20.18, 19.46 and 17.21 for C1, C2 and C3, respectively.

  17. A research on ceramsite obtained from blast furnace slag and ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... This study investigated the feasibility of that at different preheating and sintering temperature ... 2002), lime (Guozhuo et al., 2009), fly ash (Gengying and. Xiaohua, 2003; Halit et al., 2008) to produce ... BFS in this study was obtained from the energy factory of MA. STEEL GROUP, MaAnShan, China. BFS is ...

  18. Granulated blast furnace slag – A boon for foundry industry

    African Journals Online (AJOL)

    Predetermined quantities of sodium silicate and Fe-Si powder were added to the mould ingredients; blending was conducted in a timeframe of five ... were analyzed and same was reported. Figure 2 ... particles with foaming action around it, which can be clearly visible from the obtained SEM images of the moulds under.

  19. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)

    1997-12-31

    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  20. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    Science.gov (United States)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  1. Influence of blast furnace gas flow speed on dust deposition characteristics in butterfly valve region

    Directory of Open Access Journals (Sweden)

    Lixin WANG

    2016-02-01

    Full Text Available The blast furnace gas contains plenty of dust, which deposits easily on the bottom of seat sealing surface of the tri-eccentric butterfly valve in the pipeline, causing stuck and damage to the valve plate, thereby affects the production of the blast furnace and brings great economic loss. To derive the influence mechanism of effects of the blast furnace gas flow speed within the pipeline on the dust deposition laws in the butterfly valve region, a 3D model of the butterfly valve and its regional flow field is built with Pro/E software. Based on FLUENT module of ANSYS Workbench, along with standard k-ε turbulence model and DPM model, simulation analysis of moving trajectories of dust particles in butterfly valve region under 3 blast furnace gas flow speeds is conducted. Results show that the deposition mass of dust particles decreases firstly, then increases with the enlargement of valve plate opening angle under the blast furnace gas flow speed of 8 m/s, while decreases with the enlargement of valve plate opening under the blast furnace gas flow speeds of 12 m/s and 16 m/s. In the case of the valve plate opening angle of 15°, the deposition rate of dust particles increases with the growing of blast furnace gas flow speed, while decreases with the growing of blast furnace gas flow speed under the cases of valve plate opening angle of 45° and 75°. The research results provide a theoretical reference for the development of automatic dust removal system in the butterfly valve region of the blast furnace gas pipeline.

  2. Nodal wear model: corrosion in carbon blast furnace hearths

    Directory of Open Access Journals (Sweden)

    Verdeja, L. F.

    2003-06-01

    Full Text Available Criterions developed for the Nodal Wear Model (NWM were applied to estimate the shape of the corrosion profiles that a blast furnace hearth may acquire during its campaign. Taking into account design of the hearth, the boundary conditions, the characteristics of the refractory materials used and the operation conditions of the blast furnace, simulation of wear profiles with central well, mushroom and elephant foot shape were accomplished. The foundations of the NWM are constructed considering that the corrosion of the refractory is a function of the temperature present at each point (node of the liquid metal-refractory interface and the corresponding physical and chemical characteristics of the corrosive fluid.

    Se aplican los criterios del Modelo de Desgaste Nodal (MDN para la estimación de los perfiles de corrosión que podría ir adquiriendo el crisol de un homo alto durante su campaña. Atendiendo al propio diseño del crisol, a las condiciones límites de contorno, a las características del material refractario utilizado y a las condiciones de operación del horno, se consiguen simular perfiles de desgaste con "pozo central", con "forma de seta" ó de "pie de elefante". Los fundamentos del MDN se apoyan en la idea de considerar que la corrosión del refractario es función de la temperatura que el sistema pueda presentar en cada punto (nodo de la intercara refractario-fundido y de las correspondientes características físico-químicas del fluido corrosivo.

  3. Slags in steel making; Kuonat teraeksen valmistuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Paeaetalo, M.; Karhu, P.; Jauhiainen, A.; Alamaeki, P.; Koski-Laine, S.; Ollila, J. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    At the first step of the project all stages of the steelmaking processes were viewed from the blast furnace to the continuous casting. Slag knowledge of each processes were collected into a guide, which is meant to help both production and research. At the same time the essential problems caused by slags in steelmaking were focused. At the second step the focus of this slag-project were transferred into the desulphurization, converter, ladle and tundish slags. Wide slag knowledge has been divided into smaller parts and applied versatile into the steelmaking process taking into account the metallurgical, economical and qualitative aspects. (orig.) SULA 2 Research Programme; 13 refs.

  4. Feasibility and economic analysis of solid desiccant wheel used for dehumidification and preheating in blast furnace: A case study of steel plant, Nanjing, China

    International Nuclear Information System (INIS)

    Guan, Yipeng; Zhang, Yufeng; Sheng, Ying; Kong, Xiangrui; Du, Song

    2015-01-01

    To overcome the shortcomings of huge energy consumption from conventional dehumidification using lithium bromide adsorption refrigerating (LBARD) system, a novel desiccant wheel dehumidification and preheating (DWDP) system using two-stage desiccant wheel for blast furnace is brought forward. The DWDP system was designed for dehumidification and preheating in blast furnace of steel plant. It takes waste heat in the slag flushing water as desiccant regeneration and preheating energy. To validate the feasibility of the new DWDP system, experimental studies were conducted based on a steel plant in Nanjing, China. The experiment was designed to use DWDP system in humid outdoor climates e.g. summer seasons. The experimental results indicate that the moisture removal capacity of DWDP system can reach 8.7 g/kg which will lead to the improvement of steel production by 0.9% and the coal is saved of about 2100 tons per year. With the DWDP system, the energy consumed by cooling tower of slag flushing water can decrease 7.3%. All of these energy saved equates to 10.3 million CNY annually. A comparison of initial investment and operating cost between DWDP system and LBRAD system was then carried out. The results show that the initial investment and operating cost of DWDP system is 37% and 57% of present LBARD system, and the payback period is shortened 66%. - Highlights: • A novel two-stage desiccant wheel dehumidification system for blast furnace is proposed. • Average moisture removal of 8.7 g/kg is achieved and dehumidification efficiency is 47%. • Outlet humidity ratio is less than 10 g/kg that satisfies the requirement of blast air. • Waste heat in slag flushing water is utilized and 61.4 million kJ is saved annually. • The investment and operating cost is 37% and 57% of former dehumidification system

  5. Coal-oil mixture combustion program: injection into a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Jansto, S.G.; Mertdogan, A.; Marlin, L.A.; Beaucaire, V.D.

    1982-04-30

    A chemically stabilized coal-oil mixture (COM) was made and used as an auxiliary fuel in a blast furnace for 44 days. Approximately 485,000 gallons of COM were produced at an on-site COM plant. Composition was 47.9% coal, 47.6% No. 6 oil, 4.0% water, and 0.5% emulsifier. Average injection rates were 3.8 to 13.0 gpm during different periods of the trial. Coal handling equipment, mixing and processing equipment, pumps, piping, fuel lances, and instrumentation are discussed. The blast furnace performance during the trial is compared to a Base Period of injecting No. 6 oil. Blast furnace performance was satisfactory, with one pound of COM replacing one pound of coke or 0.8 pound of No. 6 oil. The production of COM and its usage in a blast furnace is economical and feasible.

  6. BLAST FURNACE GRANULAR COAL INJECTION SYSTEM. Final Report Volume 2: Project Performance and Economics

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-10-01

    Bethlehem Steel Corporation (BSC) requested financial assistance from the Department of Energy (DOE), for the design, construction and operation of a 2,800-ton-per-day blast furnace granulated coal injection (BFGCI) system for two existing iron-making blast furnaces. The blast furnaces are located at BSC's facilities in Burns Harbor, Indiana. The demonstration project proposal was selected by the DOE and awarded to Bethlehem in November 1990. The design of the project was completed in December 1993 and construction was completed in January 1995. The equipment startup period continued to November 1995 at which time the operating and testing program began. The blast furnace test program with different injected coals was completed in December 1998.

  7. Characterization of dust from blast furnace cast house de-dusting.

    Science.gov (United States)

    Lanzerstorfer, Christof

    2017-10-01

    During casting of liquid iron and slag, a considerable amount of dust is emitted into the cast house of a blast furnace (BF). Usually, this dust is extracted via exhaust hoods and subsequently separated from the ventilation air. In most BFs the cast house dust is recycled. In this study a sample of cast house dust was split by air classification into five size fractions, which were then analysed. Micrographs showed that the dominating particle type in all size fractions is that of single spherical-shaped particles. However, some irregular-shaped particles were also found and in the finest size fraction also some agglomerates were present. Almost spherical particles consisted of Fe and O, while highly irregular-shaped particles consisted of C. The most abundant element was Fe, followed by Ca and C. These elements were distributed relatively uniformly in the size fractions. As, Cd, Cu, K, Pb, S, Sb and Zn were enriched significantly in the fine size fractions. Thus, air classification would be an effective method for improved recycling. By separating a small fraction of fines (about 10-20%), a reduction of the mass of Zn in the coarse dust recycled in the range of 40-55% would be possible.

  8. Influence of thermal charge preparation on coke comminution under blast-furnace operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-09-01

    Reactions of coke in the blast furnace are determined mainly by the nature of the coke itself which depends on the coal properties, its preparation and the coking conditions. In the blast furnace the coke reacts with alkali and alkaline earth metals in the burden. Preheated coal charges were found to absorb far less sodium and potassium carbonates than a conventional moist charge over an equivalent period, due to the smaller pore volume available.

  9. The design of system for operative planning of blast furnace production process

    Directory of Open Access Journals (Sweden)

    Malindžák Dušan

    1996-12-01

    Full Text Available A system for operative planning of blast furnace production process is described in the paper. The suggested system is based on the use of a new hierarchy of operative plans, consisting of one-month plan, (7+3 days plan, and 24-hour plan. The system allows smoothing of production process at the blast furnace plant, and at the same time satisfies all requirements of the steel plant regarding to the amount of pig iron.

  10. A Laboratory Study of the Treatability of Synthetic Stormwater Under Varying Conditions Using Electric Arc Furnace Steel Slag

    Directory of Open Access Journals (Sweden)

    Nnaemeka C. Okochi

    2012-03-01

    Full Text Available The investigation of electric arc furnace (EAF steel slag as a viable add-on technology to existing stormwater systems for the removal of dissolved phosphorus (P was extended to explore the effects of varying environmental and treatment system conditions. Parameters such as stormwater composition, P concentration, metal concentration, pH, temperature, slag mass and slag particle size were varied. Observations relating to the method of P removal via EAF slag were also carefully considered to explain removal mechanisms involved. Results demonstrated that, although physisorption contributed to P reduction, it was not the key P removal mechanism. Instead, precipitation was observed to be a key removal pathway as evidenced by the correlation between the loss of iron (Fe from slag and the amount of P removed from solution. The reduced removal of P by slag in a copper-dominant stormwater solution was attributed to the formation of a stable complex formed by the interaction of copper with the slag via the ion-exchange surface model. The stability of this complex inhibits the loss of Fe from the EAF slag and, consequently, P removal by means of precipitation. In terms of the effect of changing environmental and treatment system conditions on the P removal process, stormwater composition, P concentration, metal concentration, pH, temperature, slag mass and slag particle size were found to significantly influence the effectiveness of EAF slag in removing P from a given stormwater system. It was also established that a number of combinations of these factors influence P uptake differently.

  11. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    Science.gov (United States)

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Processing and utilization of metallurgical slag

    Directory of Open Access Journals (Sweden)

    Alena Pribulová

    2016-06-01

    Full Text Available Metallurgy and foundry industry create a huge amount of slags that are by-products in production of pig iron, steel and cast iron. Slag is produced in a very large amount in pyrometallurgical processes, and is a huge source of waste if not properly recycled and utilized. With rapid growth of industrialization, land available for land-filling of large quantity of metallurgical slag is being reduced all over the world and disposal cost is becoming increasingly higher. Metallurgical slag from different metallurgical processes treated and utilized in different ways based on different slag characteristics. The most economic and efficient option for reducing metallurgical waste is through recycling, which is a significant contribution to saving natural resources and reducing CO2 emissions. Characteristic of slags as well as its treatment and utilization are given in the paper. Slag from pig iron and steel production is used most frequently in building industry. From experiments using blast furnace slag and granulated blast furnace slag as gravel, and water glass as binder it can be concluded that that the best results – the best values of compression strength and tensile strength were reached by using of 18% of water glass as a solidification activating agent. According to cubic compression strength, mixture from 50% blast furnace gravel, 50% granulated blast furnace slag and 18% water glass falls into C35/45 class of concrete. Such concrete also fulfils strength requirements for road concrete, moreover, it even exceeds them considerably and, therefore, it can find an application in construction of road communications or in production of concrete slabs.

  13. Characterization of an ecological binder for mortars obtained from recycling of ladle furnace slag

    International Nuclear Information System (INIS)

    Marinho, A.B.; Santos, C.M.; Fontes, W.C.; Matias, A.C.P.; Brigolini, G.J.; Peixoto, R.A.F.; Carvalho, J.F.

    2016-01-01

    A sustainable binder obtained from recycling of a ladle furnace slag from Piracicaba, Sao Paulo, was produced in Laboratory of Construction Materials of Federal University of Ouro Preto (UFOP). A characterization work was performed and the results are presented. The physical, chemical and mineralogical properties was obtained using, among others, the following techniques: X-ray fluorescence (XRF), X-ray diffraction (XRD) with Rietveld refining method, optical microscopy and Scanning electronic microscopy (SEM) with energy dispersive spectroscopy (EDS). The chemical analysis showed predominance of CaO and SiO 3 ; the mineralogical analysis pointed the predominant presence of calcium-olivine, merwinite and pyroxene and; the images showed predominance of angulous and elongated grains. According to results, the material was classified as a hydraulic binder, with characteristics comparable to hydraulic limes. (author)

  14. Analysis of arc emission spectra of stainless steel electric arc furnace slag affected by fluctuating arc voltage.

    Science.gov (United States)

    Aula, Matti; Mäkinen, Ari; Fabritius, Timo

    2014-01-01

    Control of chromium oxidation in the electric arc furnace (EAF) is a significant problem in stainless steel production due to variations of the chemical compositions in the EAF charge. One potential method to control chromium oxidation is to analyze the emission spectrum of the electric arc in order to find indicators of rising chromium content in slag. The purpose of this study was to determine if slag composition can be gained by utilizing electric arc emission spectra in the laboratory environment, despite electric arc voltage fluctuations and varying slag composition. The purpose of inducing voltage fluctuation was to simulate changes in the industrial EAF process. The slag samples were obtained from Outokumpu Stainless Oy Tornio Works, and three different arc currents were used. The correlation analysis showed that the emission spectra offer numerous peak ratios with high correlations to the X-ray fluorescence-measured slag CrO(x)/FeO(x) and MnO/SiO2 ratios. These ratios are useful in determining if the reduction agents have been depleted in the EAF. The results suggest that analysis of laboratory-scale electric arc emission spectra is suitable for indicating the high CrO(x) or MnO content of the slag despite the arc fluctuations. Reliable analysis of other slag components was not successful.

  15. Numerical investigation of waste plastic: Injection in a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Goto, A.; Morozumi, Y.; Hagiya, H.; Aoki, H.; Miura, T. [Tohoku University, Sendai (Japan). Dept. of Chemical Engineering

    2008-03-15

    In the present study, waste plastic injection in blast furnace processes is investigated numerically. A mathematical model developed in this study describes turbulent flows, heat and mass transfer, chemical reactions in gas, particle and coke-bed phases, and particle trajectories. In the simulation, pulverized particles of coal or plastics are injected into a blowpipe with a nitrogen gas stream, and are then supplied to the raceway region in the coke particle bed. The difference in the gasification behaviors between coal and plastic particles are discussed. The effects of the diameter of plastic particles on the gasification behavior are also investigated. Coal particles are rapidly gasified in the blowpipe because of their small size. In contrast, the gasification of plastic particles rarely occurs in the blowpipe, even if small plastic particles are injected. In addition, the flows of plastic particles are biased in the blowpipe, and consequently the reaction zone of gasification is narrow. In the raceway of the coke bed, the pulverized coal particles exit the raceway due to their small diameter, and are then discharged from the coke bed without sufficient gasification. On the other hand, the plastic particles circulate in the raceway until the diameters thereof decrease below a critical diameter. As a result, since the gasification reaction progresses during the circulation, the combustion efficiency of plastic particles remains high even though the initial diameter of the plastic particles is large.

  16. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement; Efecto de la incorporacion de ceniza volante y escoria de horno alto en el comportamiento electroquimico de concretos de cemento comercial

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.

    2015-07-01

    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  17. Hot metal temperature prediction and simulation by fuzzy logic in a blast furnace

    International Nuclear Information System (INIS)

    Romero, M. A.; Jimenez, J.; Mochon, J.; Formoso, A.; Bueno, F.; Menendez, J. L.

    2000-01-01

    This work describes the development and further validation of a model devoted to blast furnace hot metal temperature forecast, based on Fuzzy logic principles. The model employs as input variables, the control variables of an actual blast furnace: Blast volume, moisture, coal injection, oxygen addition, etc. and it yields as a result the hot metal temperature with a forecast horizon of forty minutes. As far as the variables used to develop the model have been obtained from data supplied by an actual blast furnaces sensors, it is necessary to properly analyse and handle such data. Especial attention was paid to data temporal correlation, fitting by interpolation the different sampling rates. In the training stage of the model the ANFIS (Adaptive Neuro-Fuzzy Inference System) and the Subtractive Clustering algorithms have been used. (Author) 9 refs

  18. A theoretical study using the multiphase numerical simulation technique for effective use of H2 as blast furnaces fuel

    Directory of Open Access Journals (Sweden)

    Jose Adilson de Castro

    2017-07-01

    Full Text Available We present a numerical simulation procedure for analyzing hydrogen, oxygen and carbon dioxide gases injections mixed with pulverized coals within the tuyeres of blast furnaces. Effective use of H2 rich gas is highly attractive into the steelmaking blast furnace, considering the possibility of increasing the productivity and decreasing the specific emissions of carbon dioxide becoming the process less intensive in carbon utilization. However, the mixed gas and coal injection is a complex technology since significant changes on the inner temperature and gas flow patterns are expected, beyond to their effects on the chemical reactions and heat exchanges. Focusing on the evaluation of inner furnace status under such complex operation a comprehensive mathematical model has been developed using the multi interaction multiple phase theory. The BF, considered as a multiphase reactor, treats the lump solids (sinter, small coke, pellets, granular coke and iron ores, gas, liquids metal and slag and pulverized coal phases. The governing conservation equations are formulated for momentum, mass, chemical species and energy and simultaneously discretized using the numerical method of finite volumes. We verified the model with a reference operational condition using pulverized coal of 215 kg per ton of hot metal (kg thm−1. Thus, combined injections of varying concentrations of gaseous fuels with H2, O2 and CO2 are simulated with 220 kg thm−1 and 250 kg thm−1 coals injection. Theoretical analysis showed that stable operations conditions could be achieved with productivity increase of 60%. Finally, we demonstrated that the net carbon utilization per ton of hot metal decreased 12%.

  19. Recovery Act: ArcelorMittal USA Blast Furnace Gas Flare Capture

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, John

    2013-01-14

    The U.S. Department of Energy (DOE) awarded a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (Recovery Act) to ArcelorMittal USA, Inc. (ArcelorMittal) for a project to construct and operate a blast furnace gas recovery boiler and supporting infrastructure at ArcelorMittal’s Indiana Harbor Steel Mill in East Chicago, Indiana. Blast furnace gas (BFG) is a by-product of blast furnaces that is generated when iron ore is reduced with coke to create metallic iron. BFG has a very low heating value, about 1/10th the heating value of natural gas. BFG is commonly used as a boiler fuel; however, before installation of the gas recovery boiler, ArcelorMittal flared 22 percent of the blast furnace gas produced at the No. 7 Blast Furnace at Indiana Harbor. The project uses the previously flared BFG to power a new high efficiency boiler which produces 350,000 pounds of steam per hour. The steam produced is used to drive existing turbines to generate electricity and for other requirements at the facility. The goals of the project included job creation and preservation, reduced energy consumption, reduced energy costs, environmental improvement, and sustainability.

  20. A Feasibility Study on the Application of Basic Oxygen Furnace (BOF Steel Slag for Railway Ballast Material

    Directory of Open Access Journals (Sweden)

    Taehoon Koh

    2018-01-01

    Full Text Available Railway ballast, for which natural crushed stone aggregates have been generally used, is an essential track component for the distribution of train loads along the rails and sleepers to the roadbed. However, the use of natural crushed stone aggregate causes environmental destruction as well as dust production in train service. This paper evaluates the feasibility of using the basic oxygen furnace (BOF steel slag as railway ballast material. A series of physical and chemical quality tests are performed to investigate the characteristics of the materials associated with the effect of aging period due to the remaining free CaO and MgO in the BOF steel slag. Three different aging periods (i.e., 0, 3, and 6 months are used to compare with various standards and the properties of the crushed stone aggregates. It is demonstrated that the physical and chemical properties of the BOF steel slag with different aging periods satisfy all requirements of standards sufficiently. Especially, the BOF steel slag without aging (i.e., 0 month provides the similar physical and chemical properties, when compared to the BOF steel slag with aging (i.e., 3 and 6 months. Thus, it is possible to apply the BOF steel slag regardless of aging periods to the railway ballast materials instead of natural crushed stone aggregates.

  1. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality

    Directory of Open Access Journals (Sweden)

    Bölükbaşı Ö.S.

    2014-01-01

    Full Text Available Basic oxygen furnaces (BOF slag is the main problem at all iron and steel factories. About more than 6 million tons/year of BOF slag has been accumulated from the waste stockyards in Turkey. Dumps slags can be revaluated by a processing technology which makes it possible to obtain products that meet the requirements of sintering and blast furnace production. The slags with particle size of -10 mm were enriched by the magnetic separator resulting and increase in Fe grade from 18% to 33%. The use of BOF slag in sinter blend provided additional Mn, CaO, MgO and introduced a good solution to environmental problems.

  2. suitability of electric arc furnace (eaf) slag as partial replacement for ...

    African Journals Online (AJOL)

    Administrator

    (BF) slag, EAF slag and Cupola slag etc. Finding appropriate application for slag not only offers an economic incentive but also an opportunity to dispose of this high tonnage difficult - to - handle solid waste in line with the concept of steel production and environmental best practice for sustainable development (IISI, 2005).

  3. Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags.

    Science.gov (United States)

    Pasetto, Marco; Baldo, Nicola

    2010-09-15

    The paper presents the results of a laboratory study aimed at verifying the use of two types of electric arc furnace (EAF) steel slags as substitutes for natural aggregates, in the composition of base course and road base asphalt concrete (BBAC) for flexible pavements. The trial was composed of a preliminary study of the chemical, physical, mechanical and leaching properties of the EAF steel slags, followed by the mix design and performance characterization of the bituminous mixes, through gyratory compaction tests, permanent deformation tests, stiffness modulus tests at various temperatures, fatigue tests and indirect tensile strength tests. All the mixtures with EAF slags presented better mechanical characteristics than those of the corresponding asphalts with natural aggregate and satisfied the requisites for acceptance in the Italian road sector technical standards, thus resulting as suitable for use in road construction. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Evaluation of effectiveness of raw materials and materials use in a blast furnace department of a steelworks

    Directory of Open Access Journals (Sweden)

    E. Kardas

    2017-01-01

    Full Text Available The paper analyses the quality of raw materials used in the production of blast furnace pig iron. The ferruginous sinter and pellets are the basic raw materials used in the process. The paper presents the impact of those raw materials quality on the effectiveness of the blast furnace process. The process effectiveness will be specified by means of selected process parameters.

  5. Reduction disintegration mechanism of cold briquettes from blast furnace dust and sludge

    Directory of Open Access Journals (Sweden)

    Leandro Rocha Lemos

    2015-07-01

    Full Text Available It is important to understand the reduction disintegration mechanism in ferriferous burden that is used in blast furnaces. The behavior of this burden in the granular zone of this metallurgical reactor is important for smooth operation. The objective of this work was to prepare cold self-reducing briquettes using blast furnace dust and sludge and binders and compare the reduction disintegration index (RDI of these agglomerates with conventional ferriferous burdens such as pellets, sinter and iron ore. In the present work, 25 different mixtures were prepared to produce briquettes in two geometries: pillow and cylindrical. The RDI value was determined for the briquettes that passed the tumbling test.

  6. Comparison of CO2 emission between COREX and blast furnace iron-making system.

    Science.gov (United States)

    Hu, Changqing; Han, Xiaowei; Li, Zhihong; Zhang, Chunxia

    2009-01-01

    Steel works faced increasing demand to minimize the emission of GHGs. The CO2 emissions of COREX and blast furnace iron-making system were compared. It is point out that COREX contribute little to CO2 emission reduction. Comparing to conventional blast furnace iron-making system, direct CO2 emissions of COREX is higher. Considering the credits of export gases for power generation, the total CO2 emission of COREX have advantages only when the COREX is joined with high-efficiency generating units which efficiency is greater than 45% and CO2 emission factor of the grid is higher than 0.9 kgCO2/kWh.

  7. The effect of soaking time on properties of blast furnace coke

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.; Dash, P.S.; Krishnan, S.H.; Kumar, D. [Tata Steel, Jamshedpur (India)

    2004-07-01

    Attempts were made to study the effect of soaking time on properties of blast furnace coke at Tata Steel. Plant trial indicated that when soaking time was increased the +50 mm size coke, mean size, and M{sub 40} indices improved. The CSR value exhibited no significant improvement after a certain limit. This may be due to stability of coke structure improvement in coke quality by increasing soaking time. To achieve the maximum improvement in coke cost, loss of output and heat consumption may be compensated by decreasing coke rate and improving productivity in the blast furnace. 6 refs., 8 figs., 3 tabs.

  8. Production analysis of methanol and hydrogen of a modificated blast furnace gas using nuclear energy of the high temperature reactor

    International Nuclear Information System (INIS)

    Peschel, W.

    1985-12-01

    Modern blast furnaces are operated with a coke ration of 500 kg/t pig iron. The increase of the coke ratio to 1000 kg/t pig iron raises the content of carbon monoxide and hydrogen in the blast furnace gas. On the basis of a blast furnace gas modificated in such a way, the production of methanol and hydrogen is investigated under the coupling of current and process heat from the high temperature reactor. Moreover the different variants are discussed, for which respectively a material and energetic balance as well as an estimation of the production costs is performed. Regarding the subsequent treatment of the blast furnace gas it turns out favourably in principle to operate the blast furnace with a nitrogen-free wind consisting only of oxygen and steam. The production costs show a strong dependence on the raw material costs, whose influence is shown in a nomograph. (orig.) [de

  9. Optimization of a Steel Plant with Multiple Blast Furnaces Under Biomass Injection

    Science.gov (United States)

    Wiklund, Carl-Mikael; Pettersson, Frank; Saxén, Henrik

    2013-04-01

    The allocation of resources between several blast furnaces in an integrated steelmaking plant is studied with the aim of finding the lowest specific operation cost for steel production. In order to reduce the use of fossil fuels, biomass was considered as an auxiliary reductant in the furnace after partial pyrolysis in an external unit, as a complement to heavy fuel oil. The optimization considers raw material, energy, and emission costs and a possible credit for sold power and heat. To decrease computational requirements and to guarantee that the global optimum is found, a piecewise linearized model of the blast furnace was used in combination with linear models of the sinter-, coke-, and power plants, hot stoves, and basic oxygen furnace. The optimization was carried out under different constraints on the availability of some raw materials as well as for different efficiencies of the hot stoves of the blast furnaces. The results indicate that a non-uniform distribution of the production between the furnaces can be advantageous, and some surprising findings concerning the optimal resource allocation under constrained operation are reported.

  10. Durability and acoustics of concrete with slag of cupola furnace as fine aggregate replacement

    Directory of Open Access Journals (Sweden)

    Ricardo Alfredo Cruz Hernández

    2015-01-01

    Full Text Available In this paper, it was evaluated the performance of concrete with crushed slag of cupola furnace (SCF as sand replacement in percentages of 0 %, 10 %, 15 % and 20 %, subjected to accelerated chemical attacks of carbonation, sulfation and alkali-aggregate reaction (AAR. The sound absorption characteristics of the material were determined through the sound absorption coefficient (α, and the noise reduction coefficient (NRC. Carbonation was evaluated through a closed camera with the 70 % concentration of carbon dioxide and conditions of relative humidity between 50 % and 70 %. The results indicated that the penetration depth of CO2 is lower when greater the percentage of substitution is. To accelerate the attack by sulfates, specimens were immersed in aqueous solution of sodium sulfate anhydrous (Na2SO4 1N with cycles of wetting and drying. It determined that the impairment presented in concrete paste is directly proportional to the percentage of sand replacement. The acceleration of the AAR in the concrete was carried out by immersing specimens in an aqueous solution of sodium hydroxide (NaOH for 16 days. The test concluded that the inclusion of SCF is not favorable for AAR. The measurement of sound absorption coefficient was taken by the method of impedance tube, relating minimum and maximum values of stationary wave amplitude. The results showed that SCF with higher sand replacement are favorable for the noise absorption in buildings.

  11. Preparation of concrete mixtures with electric arc furnace slag and recycled ground glass

    Science.gov (United States)

    Pérez Rojas, Y.; López, E. Vera; López Rodríguez, M.; Díaz Pita, J.

    2017-12-01

    The present work includes the first advances in the development of investigations that seek to include Ground Grinding Glass (GRR) and the Electric Arc Furnace Slag (EAFS) in the production of mixtures of hydraulic concrete mixing them simultaneously, so that it satisfies the specifications techniques to be used in the construction of rigid pavements. Firstly, we cite the tests carried out on the different materials to obtain their physical, chemical and mechanical characterization and determine their compliance, as well as the measurement of certain characteristics that may be somewhat empirical to standardize their control. Technique such as X-Ray Diffraction (XRD), X-ray Fluorescence Spectrometry (XFR) and Scanning Electron Microscopy (SEM) have been used. Once the results of the characterization tests and their correspondence with the Colombian technical standards have been obtained, it has become possible to select the use of the Transparent Recycled Ground Glass (TRGG) as the most suitable for the replacement of the sand in the dosage of new mixtures modified concrete.

  12. Effect of nut coke on the performance of the ironmaking blast furnace

    NARCIS (Netherlands)

    Song, Q.

    2013-01-01

    The blast furnace consumes a large amount of high quality metallurgy coke (size 35-80 mm) in addition to ore in the form of pellets and sinter. This coke is the coarse fraction, derived from the coke plant. The fine fraction (8 -35 mm), arise after sieving, named nut coke, can’t be directly used in

  13. Improvement in blast furnace reaction efficiency through the use of highly reactive calcium rich coke

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, S.; Ayukawa, H.; Kitaguchi, H.; Tahara, T.; Matsuzaki, S.; Naito, M.; Koizumi, S.; Ogata, Y.; Nakayama, T.; Abe, T. [Nippon Steel Corp. Ltd., Chiba (Japan)

    2005-07-01

    A method to produce coke in 'lump' form with high strength and reactivity through the addition of a catalyst was investigated in order to improve blast furnace reaction efficiency. The addition of Ca compounds to coal before carbonization was found to considerably increase the reactivity of the coke at a low temperature range in the thermal reserve zone of a blast furnace. Furthermore it was proved that strong, highly reactive 'lump' form coke could be produced by adding a Ca-rich non-caking coal and adjusting the coal blend composition. Based on this fundamental study, the Ca-rich coke was successfully produced in coke ovens on a commercial scale, both at Kimitsu and Muroran works. The use of the Ca-rich coke in the Muroran No. 2 blast furnace was found to cause a decrease in the reducing agent rate by 10kg/t-p. This technology, producing coke of high reactivity and strength through catalyst addition, is promising as a means of improving the reaction efficiency of a blast furnace.

  14. Improvement in blast furnace reaction efficiency through the use of highly reactive calcium rich coke

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, S.; Ayukawa, H.; Kitaguchi, H.; Tahara, T.; Matsuzaki, S.; Naito, M.; Koizumi, S.; Ogata, Y.; Nakayama, T.; Abe, T. [Nippon Steel Corporation Ltd, Futtsu (Japan). Environmental & Processing Technology Centre

    2006-03-15

    A method to produce coke in 'lump' form with high strength and reactivity through the addition of a catalyst was investigated in order to improve blast furnace reaction efficiency. The addition of Ca compounds to coal before carbonization was found to considerably increase the reactivity of the coke at a low temperature range equivalent to the thermal reserve zone temperature of a blast furnace. Furthermore it was proved that strong, highly reactive 'lump' form coke could be produced by adding a Ca-rich non-caking coal and adjusting the coal blend composition. Based on this fundamental study, the Ca-rich coke was successfully produced in coke ovens on a commercial scale, both at Kimitsu and Muroran works. The use of the Ca-rich coke in the Muroran No. 2 blast furnace was found to cause a decrease in the reducing agent rate by 10 kg/t-p. This technology, producing coke of high reactivity and strength through catalyst addition, is promising as a means of improving the reaction efficiency of a blast furnace.

  15. High-Temperatures Rheometric Analysis Of Selected Heterogeneous Slag Systems

    Directory of Open Access Journals (Sweden)

    Migas P.

    2015-06-01

    Full Text Available It is known that the dynamic viscosity coefficient of slag – with an increased titanium compounds content in the reducing conditions of the blast furnace - may rapidly change. The products of the reduction reaction, precipitation and separation of titanium compounds are responsible for the thickening effect of the slag and the problems of permeability of blast furnace, causing anomalies in the dipping zone. The presence of solid components (particles in the melts determines the rheological character of the entire system. Identifying the rheological character of semi-solid slag systems provides opportunities for the development of mathematical modeling of liquid phase flows in a dripping zone of the blast furnace, allowing e.g to indentify the unstable parts of a metallurgical aggregate.

  16. Evaluation of portland cement concrete pavement with high slag content cement.

    Science.gov (United States)

    2013-10-01

    The performance of a section of concrete pavement built with 30 percent Ground Granulated Blast Furnace Slag (GGBFS) is compared to a control section of concrete pavement built with 25 percent GGBFS to determine if the higher slag content pavement is...

  17. A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

    2002-01-21

    This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

  18. Slag melt granulation and factors affecting the quality of Granulated slag

    Directory of Open Access Journals (Sweden)

    Володимир Петрович Кравченко

    2015-10-01

    Full Text Available An analysis of the state of slags recycling in foreign countries was carried out. A modern principle was put forward in the article: blast furnace is an apparatus for manufacturing of two basic types of products : cast iron and slag. Granulation, as the primary recycling of slag melt fixes the structure with certain properties at rapid cooling. An analysis of the existing methods of granulation was carried out and factors influencing the quality of granular slag were determined, as well as the ways of obtaining granular slag with the required physical and mechanical characteristics. The main factors of granulated slags quality, employed for manufacturing of binding materials are chemical composition and the structure of fine granulated particles. All wet methods of granulation are characterized by high humidity of granulated slag, its value reaching 24,5%, due to increase in granules’ porosity. Real options for reducing humidity of granulated slag may include: development of the process of granulation, ensuring manufacturing of products with increased density and low content of fine fractions, dehydration of slag in high bunkers and stacks at sufficient soaking time and slag blowdown with a stream moving downwards. Using mechanical granulators and gaseous energy carriers (air for melt’s dispersion is an efficient way of reducing water consumption for granulation (semi-dry or dry methods of granulation. It also makes it possible to reduce r consumption of water, supplied for granulation from 3,0 to 0,7-1,5m3/min. Application of air blast for melt’s dispersion influences its fractional composition and grain shape in the slag: the content of the fraction less than 1,25mm reduces to 49,1%, as compared to conventional 92,8%. The content of spherical grains is with tough surface is 33%, it promoting reduction of residual humidity of granulated slag. Thus, application of air blast for granulation of slags is an efficient way of obtaining high

  19. Utilizing of the metallurgical slag for production of cementless concrete mixtures

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-10-01

    Full Text Available In process of pig iron, steel and cast iron production besides main product, also secondary products are formed, that have character of secondary raw materials and industrial wastes. The most abundant secondary product originating in the metallurgical process is furnace slag. Total amount of accured slag, also its chemical, mineralogical, physical – chemical properties and similarity with natural stones predestinate its utilisation in different fields of industry. The contribution deals with production of cementless concrete mixtures, where the main parts were formed by blast furnace granulated slag grinded and different gravel slag from blast furnace, oxygen converter and electric arc furnace. As activators of solidification different kinds of water glass were tested.

  20. The Iron Blast Furnace: A Study in Chemical Thermodynamics.

    Science.gov (United States)

    Treptow, Richard S.; Jean, Luckner

    1998-01-01

    Discusses the furnace from a chemical thermodynamics perspective. Examines the enthalpy, entropy, and free energy change for each reaction of importance. These properties are interpreted on the molecular level then used to deduce the conditions necessary for each reaction to occur in its intended direction. Chemical kinetics is also discussed.…

  1. Modelling and prediction of pig iron variables in the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Saxen, H.; Laaksonen, M.; Waller, M. [Aabo Akademi, Turku (Finland). Heat Engineering Lab.

    1996-12-31

    The blast furnace, where pig iron for steelmaking is produced, is an extremely complicated process, with heat and mass transfer and chemical reactions between several phases. Very few direct measurements on the internal state are available in the operation of the process. A main problem in on-line analysis and modelling is that the state of the furnace may undergo spontaneous changes, which alter the dynamic behaviour of the process. Moreover, large internal disturbances frequently occur, which affect the product quality. The work in this research project focuses on a central problem in the control of the blast furnace process, i.e., short-term prediction of pig iron variables. The problem is of considerable importance for fuel economy, product quality, and for an optimal decision making in integrated steel plants. The operation of the blast furnace aims at producing a product (hot metal) with variables maintained on a stable level (close to their setpoints) without waste of expensive fuel (metallurgical coke). The hot metal temperature and composition affect the downstream (steelmaking) processes, so fluctuations in the pig iron quality must be `corrected` in the steel plant. The goal is to develop a system which predicts the evolution of the hot metal variables (temperature, chemical composition) during the next few taps, and that can be used for decision-making in the operation of the blast furnace. Because of the complicated behaviour of the process, it is considered important to include both deterministic and stochastic components in the modelling: Mathematical models, which on the basis of measurements describe the physical state of the process, and statistical (black-box) models will be combined in the system. Moreover, different models will be applied in different domains in order to capture structural changes in the dynamics of the process SULA 2 Research Programme; 17 refs.

  2. Evaluation of recycled MgO-C bricks and dead-burned dolomite fines in setting slag foaming in the electric arc furnace

    Directory of Open Access Journals (Sweden)

    Thiago da Costa Avelar

    Full Text Available Abstract Production cost reduction for the Electric Arc Furnace (EAF technology is strongly dependent on the efficiency of the electrical energy being introduced into the metal bath. Besides EAF technology, the slag foaming process is currently applied to some other equipment for steel production aiming to save energy, productivity improvements, enhance the refractory service life and inhibit steel re-oxidation. In this way, this study involved the recycling options of Crushed MgO-C spent refractories removed from the EAF without complex and costly beneficiation, with emphasis on its application as a slag conditioner, since its composition presents high MgO content. The experiments were performed in a laboratory induction furnace and the temperature was controlled at 1700°C.The initial height of the slag was recorded and foaming briquettes added into the furnace. The experiments were carried out for 30 minutes. When the foaming process was finalized, an aliquot from the slag was collected to be analyzed by chemical analysis. Then, the metal with slag was tapped into a mold. The results indicated that the best viscosity was 0.39poise. The maximum height of foam formation was observed for a binary basicity greater than 1.2. The concentration of MgO in the slag is close to the saturation point.

  3. Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.D.; Obeso, F.; Mochon, J.; Barea, R.; Jimenez, J.

    2007-05-15

    The present work presents a model based on fuzzy logic tools to predict and simulate the hot metal temperature in a blast furnace (BF). As input variables this model uses the control variables of a current BF such as moisture, pulverised coal injection, oxygen addition, mineral/coke ratio and blast volume, and it yields as a result of the hot metal temperature. The variables employed to develop the model have been obtained from data supplied by current sensors of a Spanish BF In the model training stage the adaptive neurofuzzy inference system and the subtractive clustering algorithms have been used.

  4. High temperature coke characteristics in the blast furnace:evaluation of coke properties in the raceway area

    OpenAIRE

    Lundgren, Maria; Sundqvist Ökvist, Lena; Hyllander, Gunilla; Jansson, Björn; Björkman, Bo

    2012-01-01

    Core-drilling into the coke bed of raceway and hearth has been performed in the LKAB Experimental Blast Furnace (EBF®) during short stoppages aiming to characterize raceway conditions corresponding to different operational conditions. All coke operation, injection of pulverized coal and injection of a mixture of coal and blast furnace flue dust (BFD) were evaluated and compared. The samples have been studied regarding particle size and distribution, coke have been evaluated with chemical comp...

  5. A theoretical study using the multiphase numerical simulation technique for effective use of H2 as blast furnaces fuel

    OpenAIRE

    Jose Adilson de Castro; Cyro Takano; Jun-ichiro Yagi

    2017-01-01

    We present a numerical simulation procedure for analyzing hydrogen, oxygen and carbon dioxide gases injections mixed with pulverized coals within the tuyeres of blast furnaces. Effective use of H2 rich gas is highly attractive into the steelmaking blast furnace, considering the possibility of increasing the productivity and decreasing the specific emissions of carbon dioxide becoming the process less intensive in carbon utilization. However, the mixed gas and coal injection is a complex techn...

  6. Study of the instability of black slags from electric arc furnace steel industry

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2002-09-01

    Full Text Available In Spain, the steel manufacture produces important quantities of by-products, representing between 15 and 20 % of total steel production. Most by-products are deposited on open air spaces causing serious economical and environmental problems, internationally, different recycling wais are studied, being the main alternative for these by-products as recycled aggregate. The possibility of recycling these by-products in construction sector depends on its possible volume instability because of the presence of some undesirable compounds. In current paper, two different black slags from electric arc furnace steel industry were chemically characterized, paying attention to some well-known compounds by theirs expansion effects, such as: free CaO, free MgO, chlorides and sulphates. The analytical results carried out in the current research detected the presence of insignificant or null amounts of harmful compounds. Therefore, they should not have any negative incidence on phenomena of volume instability.

    En España la fabricación de acero produce grandes cantidades de residuos industriales, las cuales representan entre el 15-20 % de la producción total de acero, en su mayor parte se depositan en vertederos, causando serios problemas económicos y medioambientales a todos los sectores implicados. A nivel internacional, se están estudiando diferentes vías de reutilización, siendo su uso principal como árido de reciclado. La posibilidad de reutilizar estos subproductos industriales en el sector de la construcción se basa en su posible inestabilidad volumétrica, debido a la presencia de ciertos compuestos no deseados. En este trabajo se caracterizan químicamente 2 escorias negras de horno de arco eléctrico con diferente procedencia y se cuantifican algunos de los principales compuestos conocidos por sus efectos expansivos, como: cal libre, magnesia libre, cloruros y sulfatos. Los resultados analíticos de estas dos escorias negras muestran

  7. Effects of slag and fly ash on reinforcement corrosion in concrete in chloride environment : Research from the Netherlands

    NARCIS (Netherlands)

    Polder, R.B.

    2012-01-01

    A review is given of research on the durability performance of concrete made with blast furnace slag and fly ash related to chloride induced reinforcement corrosion, carried out in the Netherlands, where slag has been used in cement for almost a century. Results are presented from field studies on

  8. The characterisation, improvement and modelling aspects of Frost Salt Scaling of Cement-Based Materials with a High Slag Content

    NARCIS (Netherlands)

    Copuroglu, O.

    2006-01-01

    Blast furnace slag cement concrete is used extensively in a number of countries. In comparison with OPC, it is particularly well known for its excellent performance in marine environments. One dis-advantage of slag cement is its vulnerability to scaling under the combined load of freezing-thawing

  9. Effects of slag and fly ash on reinforcement corrosion in concrete in chloride environment. Research from the Netherlands

    NARCIS (Netherlands)

    Polder, R.B.

    2012-01-01

    A review is given of research on the durability performance of concrete made with blast furnace slag and fly ash related to chloride induced reinforcement corrosion, carried out in the Netherlands, where slag has been used in cement for almost a century. Results are presented from field studies on

  10. Passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material: experimental and modelling.

    Science.gov (United States)

    Zvimba, John N; Siyakatshana, Njabulo; Mathye, Matlhodi

    2017-03-01

    This study investigated passive neutralization of acid mine drainage using basic oxygen furnace slag as neutralization material over 90 days, with monitoring of the parameters' quality and assessment of their removal kinetics. The quality was observed to significantly improve over time with most parameters removed from the influent during the first 10 days. In this regard, removal of acidity, Fe(II), Mn, Co, Ni and Zn was characterized by fast kinetics while removal kinetics for Mg and SO 4 2- were observed to proceed slowly. The fast removal kinetics of acidity was attributed to fast release of alkalinity from slag minerals under mildly acidic conditions of the influent water. The removal of acidity through generation of alkalinity from the passive treatment system was also observed to generally govern the removal of metallic parameters through hydroxide formation, with overall percentage removals of 88-100% achieved. The removal kinetics for SO 4 2- was modelled using two approaches, yielding rate constant values of 1.56 and 1.53 L/(day mol) respectively, thereby confirming authenticity of SO 4 2- removal kinetics experimental data. The study findings provide insights into better understanding of the potential use of slags and their limitations, particularly in mine closure, as part of addressing this challenge in South Africa.

  11. Productivity and performance of small scale blast furnaces; Produtividade e performance de altos fornos de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Vamberto Ferreira de; Grandin, Friedrich Hans G.; Lanna, Pitagoras Gomes de; Castello Branco, Marco Antonio S.C. [Mannesmann SA, Belo Horizonte, MG (Brazil)

    1994-05-01

    This work presents some data concerning the re-start of the blast furnace number 2 of Mannesmann siderurgic company. The main characteristics concerning the operation with 100% coke fuel and the measurements adopted to increase the furnace productivity are described 2 refs., 6 figs., 5 tabs

  12. Characteristics and environmental aspects of slag: a review

    Science.gov (United States)

    Piatak, Nadine M.; Parsons, Michael B.; Seal, Robert R.

    2015-01-01

    Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of mineralogical and geochemical characteristics of different types of slag and their environmental consequences, particularly from the release of potentially toxic elements to water. This chapter reviews the characteristics of both ferrous (steel and blast furnace Fe) and non-ferrous (Ag, Cu, Ni, Pb, Sn, Zn) slag. Interest in slag has been increasing steadily as large volumes, on the order of hundreds of millions of tonnes, are produced annually worldwide. Research on slag generally focuses on potential environmental issues related to the weathering of slag dumps or on its utility as a construction material or reprocessing for secondary metal recovery. The chemistry and mineralogy of slag depend on the metallurgical processes that create the material and will influence its fate as waste or as a reusable product.

  13. Análise fluido-dinâmica do escoamento em ensaio de permeabilidade ao ar de argamassas preparadas com cimento Portland de alto-forno Fluid-dynamic analysis of the flow in air permeability measurement of mortars prepared with blast-slag furnace Portland cement

    Directory of Open Access Journals (Sweden)

    V. M. Pereira

    2008-06-01

    . These studies not only have evaluated the permeability of porous media, but also to analyze the behavior of the fluid during the flow. Being about to the cement based materials, the measuring of the permeability becomes basic so that the durability of these can be estimate, therefore is the permeability that controls the rate of ingression and movement of deleterious agents inside these materials. Thus, diverse methodologies and mathematical equations have been used to foresee the permeability of cementitious materials, however, some discrepancies and nonsense in the results have been found. Amongst the used methodologies to measure the permeability of porous media, one meets developed it by Thenoz, which it has demonstrated good results in cement based materials. Thus, this work aims at, by means of assay of permeability to air, carried through in accordance with the methodology of Thenoz, to evaluate the fluid-dynamic behavior of air during the assay of permeability in mortars. For this, mortars prepared with two types of Portland cement of blast furnace (CP IIE-32 and CP III - 32, two relations water/cement (0.5 and 0.6 and ages of 14 and 28 days were used. By means of the gotten results it was possible to observe that during the draining the compressibility of air can be ignored, the regimen of draining can be considered as to plate, demonstrating that the methodology proposal for Thenoz and used mathematical equations can result in coefficients of trustworthy air permeability, therefore phenomena and considerations that could influence in this type of flow can be neglected, in accordance with what it is considered by literature.

  14. The use of the bottom ashes and of the steelmaking slags in the manufacturing technologies of the building materials

    Directory of Open Access Journals (Sweden)

    L. G. Popescu

    2016-07-01

    Full Text Available The energetic and metallurgy industries of Romania represent the main waste sources significant from the point of quantitative view: the bottom ashes and the blast furnace and secondary metallurgical slags. Starting from the knowledge of the main chemical-physical properties of these two types of industrial wastes, there were inquired the exploitation possibilities in the technological practice, by using in the manufacturing of some building materials, for which these wastes represent the exclusive raw material source. The experiments considered the granular aggregate properties of the bottom ash and of the blast furnace slag, completed by the hydraulic binder of the secondary metallurgical slag, after the fine crushing.

  15. Short review on the origin and countermeasure of biomass slagging in grate furnace

    Directory of Open Access Journals (Sweden)

    Yiming eZhu

    2014-02-01

    Full Text Available Given the increasing demand for energy consumption, biomass has been more and more important as a new type of clean renewable energy source. Biomass direct firing is the most mature and promising utilization method to date, while it allows a timely solution to slagging problems. Alkali metal elements in the biomass fuel and the ash fusion behavior, as the two major origins contributing to slagging during biomass combustion, are analyzed in this paper. The slag presents various layered structures affected by the different compositions of ash particles. Besides, the high-temperature molten material which provides a supporting effect on the skeletal structure in biomass ash was proposed to evaluate the ash fusion characteristics. In addition, numerous solutions to biomass slagging, such as additives, fuel pretreatment and biomass co-firing, were also discussed.

  16. Oxygen blast furnace and combined cycle (OBF-CC) - an efficient iron-making and power generation process

    International Nuclear Information System (INIS)

    Jianwei, Y.; Guolong, S.; Cunjiang, K.; Tianjun, Y.

    2003-01-01

    A new iron and power generating process, oxygen blast furnace and combined cycle (OBF-CC), is presented. In order to support the opinion, the features of the oxygen blast furnace and integrated coal gasification and combined cycle (IGCC) are summarized. The relation between the blasting parameters and the output gas quantity, as well as caloric value is calculated based on mass and energy balance. Analysis and calculation indicate that the OBF-CC will be an efficient iron-making and power generation process with higher energy efficiency and less pollution

  17. Thermal analysis evaluation of the reactivity of coal mixtures for injection in the blast furnace

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Ilha Gomes

    2006-03-01

    Full Text Available Pulverized Coal Injection (PCI is an important standard technology replacing coke partially by pulverized coal into the blast furnace that allows a significant reduction of hot metal costs and environmental impact, contributing to a decrease of coke requirements for ironmaking. Coals typically used in this process in Brazil are, at current time, exclusively imported from many countries, although economic important coal-measures occur in the southern part of the country. The Brazilian coals have a low rank, higher contents of inert components, proportioning nocoking properties and an expected high reactivity. Due to these caractheristics, these coals could be used for injection in the blast furnaces in order to decrease the dependency on high cost imported coals. The efficiency in the combustion and the coal reactivity are considered important parameters in the blast furnace, since a larger amount of char (unburned coal causes severe problems to the furnace operation. The aim of the present work is to compare the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones. The reactivity of these coals and their blends were evaluated in a thermogravimetric analyzer. In the experiments, various mass ratios of Faxinal coal and the imported coals were used to compose the blends. The gasification reaction with pure CO2 was conducted under isothermal conditions at 1050 °C and atmospheric pressure. The experimental results show the greater reactivity of the Faxinal coal. The additive behavior was confirmed. The blends with a composition of up to 50% Faxinal coal have parameters according to the usual limits used for PCI.

  18. Competição entre materiais corretivos (escórias de siderurgia x calcário em solos de várzea do Vale do Paraíba Utilization of two types of blast furnace slag as a soil corrective in the Paraíba Valley

    Directory of Open Access Journals (Sweden)

    A. Gentil Gomes

    1962-01-01

    Full Text Available Embora apresentando os solos do Vale do Rio Paraíba, com poucas exceções, acidez de média a elevada, muito pouco uso de corretivos de solos tem sido feito. Êste fato se deve principalmente ao pequeno número de jazidas de calcário existente na região, insuficiente para atender à demanda desse material para a agricultura. Visando colaborar na solução do problema, foram estudadas em seis experimentos instalados em solos de várzea, as possibilidades de utilização de dois tipos de escórias, provenientes da Usina Siderúrgica Nacional de Volta Redonda e da produção de aço em São Caetano e Moji das Cruzes. Nesses ensaios, em culturas de batata e tomate, foram comparados os dois tipos de escórias e um de calcário, em três níveis, tendo como testemunha um tratamento que recebeu apenas a adubação básica, NPK. Os resultados obtidos autorizam a recomendação do emprêgo das escorias. Para sua comercialização, entretanto, necessário se torna alterar o grau de moagem, para que sua granulometria satisfaça às exigências legais.Although the soil in the Paraiba Valley generally presents medium to high acidity, the practice of liming is not yet widespread there. One of the reasons for this is the lack of enough lime sources in its vicinity. As a contribution to the study of the liming problem in the Paraiba Valley, six experiments were carried out on various types of soils in the area, comparing two types of slags with limestone as soil correctives. The slags were obtained from the Usina Siderúrgica Nacional, Volta Redonda and from the São Caetano Steel Plant, São Caetano. They were conducted with the tomato and potato crops. Three levels of each type of slag or limestone, plus a complete fertilizer, were compared. Control plots received only the fertilizer. The results from these experiments indicated that the two types of slag compared favorably with limestone as a calcium source. Both can be recommended as a corrective for

  19. An intervention for noise control of blast furnace in steel industry.

    Science.gov (United States)

    Golmohammadi, Rostam; Giahi, Omid; Aliabadi, Mohsen; Darvishi, Ebrahim

    2014-01-01

    Noise pollution is currently a major health risk factor for workers in industries. The aim of this study was to investigate noise pollution and implement a control intervention plan for blast furnace in a steel industry. The measurement of sound pressure level (SPL) along with frequency analysis was done with the sound-level-meter Cell-450. Personal noise exposure was performed using dosimeter TES-1345 calibrated with CEL-282. Before planning noise controls, acoustic insulation properties of the furnace control unit and workers' rest room were assessed. Control room and workers' rest room were redesigned in order to improve acoustical condition. The SPL before intervention around the Blast Furnace was 90.3 dB (L) and its dominant frequency was 4000 Hz. Besides, noise transmission loss of the control and rest rooms were 10.3 dB and 4.2 dB, respectively. After intervention, noise reduction rates in the control and rest rooms were 27.4 dB and 27.7 dB, respectively. The workers' noise dose before and after the intervention was 240% and less than 100%, respectively. Improvement the workroom acoustic conditions through noise insulation can be considered effective method for preventing workers exposure to harmful noise.

  20. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) to Blast Furnaces

    International Nuclear Information System (INIS)

    Zhou, Chenn

    2008-01-01

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process

  1. Computational Fluid Dynamics (CFD) Modeling for High Rate Pulverized Coal Injection (PCI) into the Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chenn Zhou

    2008-10-15

    Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.

  2. Soot formation in a blast furnace - Prediction via a parametric study, using detailed kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Nordstroem, T.; Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Group

    1996-12-31

    The objective of this work has been to investigate the soot formation in a blast furnace fired with heavy fuel oil, using detailed kinetic modelling. This work has been concentrated on parameter studies that could explain under which conditions soot is formed and how that formation could be avoided. The parameters investigated were temperature, pressure, stoichiometric ratio, pyrolysis gas composition and reactor model. The calculations were based on a reaction mechanism that consists of 100 species and 446 reactions including polyaromatic hydrocarbons (PAM) up to 7 aromatic rings SULA 2 Research Programme; 4 refs.

  3. Choice of technological regimes of a blast furnace operation with injection of hot reducing gases

    Directory of Open Access Journals (Sweden)

    Babich, A. I.

    2002-08-01

    Full Text Available Injection rate of fossil fuels is limited because of drop in the flame temperature in the raceway and problems in the deadman region and the cohesive zone. The next step for obtaining a considerable coke saving, a better operation in the deadman as an well as increase in blast furnace productivity and minimizing the environmental impact due to a decrease in carbon dioxide emmision would be injection by tuyeres of hot reducing gases (HRG which are produced by low grade coal gasification or top gas regenerating. Use of HRG in combination with high pulverized coal inyection PCI rate and oxigen enrichment in the blast could allow to keep and to increase the competitiveness of the blast furnace process. Calculations using a mathematical model show that the HRG injection in combination with pulverized coal (PC and enriching blast with oxigen can provide an increase in PC rate up to 300-400 kg/tHM and a rise in the furnace productivity by 40-50 %. Blast furnace operation with full oxigen blast (100 % of process oxigen with the exception for the hot blast is possible when HRG is injected.

    La tasa de inyección de combustibles fósiles está limitada a causa de la caída de la temperatura de llama en el raceway (cavidad frente a las toberas y a problemas en la región del "hombre muerto" y en la zona cohesiva. La inyección por tobera de gases reductores calientes (GRC, que se producen por gasificación de carbón de bajo grado o generación de gas de tragante, será la próxima etapa para lograr un considerable ahorro adicional de coque, una zona del "hombre muerto" bien definida, además de un aumento en la productividad del horno alto y para minimizar el impacto ambiental debido a una disminución de la emisión de dióxido de carbono. El uso de GRC en combinación con una tasa elevada de inyección de carbón pulverizado (ICP con viento enriquecido en oxígeno, podrá permitir mantener y aumentar la competitividad del proceso del horno

  4. Continual Measuring of Local Stress Values on Shell of the Blast Furnace Hearth and of Total Shell Expansion

    Directory of Open Access Journals (Sweden)

    P. Bigoš

    2012-01-01

    Full Text Available This paper deals with installation of strain gauges on the external surface of the blast furnace shell in two rows, whereas there will be defi ned 8 measuring points in every row. The fi nal result is evaluation of data obtained during up to 45 days of the operation. In this papers are commentary and discussions to measured time behaviours. The main purpose of this measuring was investigation of impact of salamander on blast furnace shell expansion after its lay off , cooling and next starting of operation.

  5. Off-gas dust in an experimental blast furnace:Part 1: Characterization of flue dust, sludge and shaft fines

    OpenAIRE

    Leimalm, Ulrika; Lundgren, Maria; Sundqvist Ökvist, Lena; Björkman, Bo

    2010-01-01

    In blast furnace (BF) ironmaking, efforts are made to decrease coke consumption, which can be done by increasing the pulverized coal injection rate (PCR). This will cause changes in in-furnace reduction conditions, burden distribution, demands on raw material strength, etc. In order to maintain stable operation, but also to obtain low amounts of material losses through the off-gas, it is important to understand fines generation and behaviour in the BF. Off-gas dust and shaft fines generated i...

  6. Effects of heat treatments of coal on coke destruction under blast furnace conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-09-01

    This paper discusses results of investigations on effects of chemical reactions in a blast furnace on coke disintegration and destruction. The investigations were carried out by the VUKhIN Institute branch in Kuznetsk. Effects of silicates and carbonates of sodium, potassium and zinc on mechanical coke properties were investigated under laboratory conditions. Coke samples were placed in a reactor and were treated by vapors of metal compounds. Coke produced from a coal mixture with conventional moisture content and from preheated coal mixture was used. Coal properties are given in a table. Design of laboratory equipment used for tests is shown in 2 schemes. Heat treatments influenced coke porosity and its structural strength. Proportion of large pores accessible to sodium and potassium in coke from preheated coal was 4.5 times lower than in coke from a conventional mixture. Adsorption of sodium and potassium on coke from preheated charge was lower (from 0.22% to 0.24%) than on coke from a conventional mixture (from 2.5% to 2.9%). Adsorption of alkali metals on coke reduced its structural strength and increased coke oxidation rate by carbon dioxide. Use of heat treatments of coal for coking reduced adsorption of alkali metals on coke in a blast furnace, increased coke structural strength and reduced coke oxidation rate by carbon dioxide. (16 refs.) (In Russian)

  7. A Novel Technique for Making Cold Briquettes for Charging in Blast Furnace

    International Nuclear Information System (INIS)

    Mohanty, M K; Mishra, S; Sarkar, S; Samal, S K; Mishra, B

    2016-01-01

    Different metallurgical wastes are generated during pyro processing of iron ore, which is used for making sponge iron or hot metal and for producing steel. Apart from these wastes, coke fines are generated during the coke making, and iron ore fines are generated during mining of iron ore. Although iron ore fines are used for making pellet after beneficiation still, it generates a huge quantity of iron ore waste during beneficiation with comparatively lower iron content. In the present study, briquettes are made by a stiff extrusion process from metallurgical waste like iron ore fines and coke fines with the addition of Portland cement as a binder and clay as a rheology modifier. Physical properties of the briquettes are evaluated, and reducibility of the briquettes is studied in comparison to lumpy iron ore. Phase analysis and microstructural analysis of the briquettes and lumpy iron ore are carried out after firing at different temperatures in the simulated blast furnace condition. Physical and mineralogical properties are correlated with the reducibility of the briquettes and lumpy iron ore. Briquettes made by a stiff extrusion process show a better mechanical strength fired at a different temperature to take the load of burden and better reducibility than lumpy iron ore. The briquettes after self-curing are charged to a 23 mt3 blast furnace which shows encouraging results. (paper)

  8. A new concept of auxiliary fuel injection through tuyeres in blast furnaces developed by numerical simulations

    Directory of Open Access Journals (Sweden)

    Bruno Orlando de Almeida Santos

    2014-04-01

    Full Text Available The Injection of powdered materials in blast furnaces is a great option for reducing costs, increasing productivity and satisfy the environmental norms. Thus, this paper presents a study on the use of a flame stabilization system with rotation, designed to promote greater coal injection in the combustion zone, reducing losses and increasing the efficiency of the equipment. A physical model was used to evaluate scattering of pulverized fuel and is compared with numerical results in the same scale. In the second step, a combustion model was added to the numerical simulation, using dimensions of a real blast furnace. Fields like temperature, velocity and behavior of chemical reactions were analyzed. The results showed that double lances promote better particle injection when compared with simple lance for reduced material injection. The new injection system proposed, with swirl numbers of 0.12 and 0.24, promoted a better injection of both reduced material and temperature in the raceway zone. The swirl 0.24 showed superior performance when compared to other injection systems.

  9. Multi-parameter measurements in a blast furnace using interactions of neutrons and γ-rays

    International Nuclear Information System (INIS)

    Shirakawa, Yoshiyuki; Horikoshi, Kiyomi

    1998-01-01

    This paper describes the possibility of multi-parameter measurements to meet the requirements for more precise and stable control of a blast furnace. A basic concept of such measurements is to make use of multi-radiations of neutrons and γ-rays, and to obtain multi-types of information on conditions of materials (iron ore and coke) inside the blast furnace. A prototype gauge was assembled and examined which consisted of a radiation source of 252 Cf, a neutron moderator, a lead shield, a bismuth germanate detector, a stainless casing and a control unit. Laboratory experiments showed that the gauge could measure the quantities to be essential to estimate material conditions. In practice, it clearly distinguished between iron ore and coke layers, and at the same time measured bulk density of iron contained in iron ore by counting thermal neutron capture γ-rays from iron. It also gave the information on material bulk density by detecting Compton scattered γ-rays from material, i.e. iron ore and coke. Finally, reducibility of iron ore was calculated by using both bulk densities. Relative accuracy of measurements was reasonable in practical use. The possibility of realization of the gauge has been proved and the on-line trial will be expected in the near future. (author)

  10. A Novel Technique for Making Cold Briquettes for Charging in Blast Furnace

    Science.gov (United States)

    Mohanty, M. K.; Mishra, S.; Mishra, B.; Sarkar, S.; Samal, S. K.

    2016-02-01

    Different metallurgical wastes are generated during pyro processing of iron ore, which is used for making sponge iron or hot metal and for producing steel. Apart from these wastes, coke fines are generated during the coke making, and iron ore fines are generated during mining of iron ore. Although iron ore fines are used for making pellet after beneficiation still, it generates a huge quantity of iron ore waste during beneficiation with comparatively lower iron content. In the present study, briquettes are made by a stiff extrusion process from metallurgical waste like iron ore fines and coke fines with the addition of Portland cement as a binder and clay as a rheology modifier. Physical properties of the briquettes are evaluated, and reducibility of the briquettes is studied in comparison to lumpy iron ore. Phase analysis and microstructural analysis of the briquettes and lumpy iron ore are carried out after firing at different temperatures in the simulated blast furnace condition. Physical and mineralogical properties are correlated with the reducibility of the briquettes and lumpy iron ore. Briquettes made by a stiff extrusion process show a better mechanical strength fired at a different temperature to take the load of burden and better reducibility than lumpy iron ore. The briquettes after self-curing are charged to a 23 mt3 blast furnace which shows encouraging results.

  11. Effect of recycling blast furnace flue dust as pellets on the sintering performance

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2010-01-01

    Full Text Available The Egyptian Iron and Steel Company generates a great amount of blast furnace flue dust. The recovery of metals and carbon from this flue dust becomes a very important demand due to the increase of the price of coke breeze and the decrease of the primary source of metals. At the same time, it make the environment more safe by decreasing pollution. Introducing these dust fines in the sintering process proves to be very harmful for different operating parameters. Thus, this study aims at investigating the production of pellets resulting from these fines, using molasses as organic binder and its application in sintering of iron ore. The sintering experiments were performed using flue dust as pellets as a substitute of coke breeze. The results revealed that, sintering properties such as inter strength increases with using the flue dust pellets, while productivity of both the sinter machine and sinter machine at blast furnace yard decreases. Also the vertical velocity of the sinter machine and the weight loss during the reduction of produced the sinter by hydrogen decrease.

  12. Exergo-Ecological Assessment Of Auxiliary Fuel Injection Into Blast-Furnace

    Directory of Open Access Journals (Sweden)

    Stanek W.

    2015-06-01

    Full Text Available Metallurgy represents complex technological chain supplied with different kinds of primary resources. Iron metallurgy based on blast-furnace process, dominates in world steel production. Metallurgical coke is the basic fuel in this case. Its production is connected with several environmental disadvantageous impacts. One of them is the extended production chain from primary energy to final energy. The reduction of coke consumption in the process can be achieved e.g. by injection of auxiliary fuels or increasing the thermal parameters in the process. In present injection of pulverised coal dominates while recirculation of top-gas seems to be future technology. However, the latter one requires the CO2 removal that additionally extended the production chain. The evaluation of resources management in complex energy-technological systems required application of advanced method based on thermodynamics. In the paper the system exergo-ecological assessment of pulverised coal injection into blast-furnace and top-gas recirculation has been applied. As a comparative criterion the thermo-ecological cost has been proposed.

  13. Effects of Basicity and MgO in Slag on the Behaviors of Smelting Vanadium Titanomagnetite in the Direct Reduction-Electric Furnace Process

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2016-05-01

    Full Text Available The effects of basicity and MgO content on reduction behavior and separation of iron and slag during smelting vanadium titanomagnetite by electric furnace were investigated. The reduction behaviors affect the separation of iron and slag in the direct reduction-electric furnace process. The recovery rates of Fe, V, and Ti grades in iron were analyzed to determine the effects of basicity and MgO content on the reduction of iron oxides, vanadium oxides, and titanium oxides. The chemical compositions of vanadium-bearing iron and main phases of titanium slag were detected by XRF and XRD, respectively. The results show that the higher level of basicity is beneficial to the reduction ofiron oxides and vanadium oxides, and titanium content dropped in molten iron with the increasing basicity. As the content of MgO increased, the recovery rate of Fe increased slightly but the recovery rate of V increased considerably. The grades of Ti in molten iron were at a low level without significant change when MgO content was below 11%, but increased as MgO content increased to 12.75%. The optimum conditions for smelting vanadium titanomagnetite were about 11.38% content of MgO and quaternary basicity was about 1.10. The product, vanadium-bearing iron, can be applied in the converter steelmaking process, and titanium slag containing 50.34% TiO2 can be used by the acid leaching method.

  14. Research on Reasonable Particle Size of Coal Blends for Blast Furnace Injection: Semi Coke and Bituminous Coal

    Science.gov (United States)

    Wang, Haiyang; Xu, Runsheng; Song, Tengfei; Zhang, Pengcheng

    Semi coke, a byproduct in the chemical industry, is a new fuel for blast furnace injection in China. In this study, semi coke and bitumite were milled into different size, ranged from 0.147mm to under 0.074mm. The content of volatile matter and ash, which affect the combustibility of semi coke, were measured using muffle furnace. The mixture, in which the proportion of coal in different sizes changed, was blend by semi coke and bitumite with different size. Activation energy calculation and the comprehensive combustion characteristic index of all kinds of blends was also discussed. The result obtained by Thermogravimetry -Derivative Thermogravimetry curves indicates that the smaller the size of mixture is, the lower for the characteristic temperature, and the better for its combustibility, Semi coke can be a substitute for anthracite in blast furnace injection.

  15. Influence of thermal charge preparation on coke comminution under blast-furnace operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-01-01

    An investigation is described for the study of structural breakdown of coke by thermochemical action of alkali and alkaline-earth metal vapors under blast furnace operating conditions. Bench-scale test facilities are described in which a pair of coke samples are exposed to the metal vapors then subjected to gasification. Structural strength tests were performed before and after each experiment. Coke samples were obtained in either moist or thermally prepared condition. The value of thermal charge preparation (heat treatment of the coal at 150/sup 0/C in a fluidized bed) was established, since it shifts the pore size distribution to the smaller size, thereby retarding adsorption of the metal vapors. 16 references, 4 figures, 2 tables.

  16. Solid-fluid characteristics at the blast furnace hearth according to the nodal wear model (NWM)

    International Nuclear Information System (INIS)

    Martin, R.; Barbes, M. A.; Barbes, M. F.; Marinas, E.; Ayala, N.; Mochon, J.; Verdeja, L. F.; Garcia, F.

    2009-01-01

    The coke porosity is one of the most important variables that can affect the pig iron production and the lining corrosion. Up to now, the existing bibliography about lining corrosion always connects a deeper wear to an increase in the fluid flow (pig iron) at the blast furnace hearth. However, there is no evidence of any deterministic model that could link, from the theoretical point of view, the following variables: lining corrosion, porosity of dead coke and flow of pig iron at the hearth. Besides justifying the lining corrosion profiles, the Nodal Wear Model (NWM) can be an effective instrument to interpret the coke porosity and the pig iron speed rates that are generated inside the hearth. (Author) 23 refs

  17. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    Science.gov (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  18. Visualisation of a mathematical model of blast furnace operation for distance learning purposes

    Directory of Open Access Journals (Sweden)

    Babich, A.

    2005-12-01

    Full Text Available Advanced educational technologies like Virtual Laboratories are being developed and launched in order to equip customers from higher education institutions, research and industry with efficient tools, supporting their work and operating new skills-training methods. Visual Model "Blast Furnace" based on a mathematical balance model of the blast furnace process has been developed for distance learning (DL purposes. It processes entered parameters and outputs both operating and learning results. The model simulates also sinter and pellets manufacture as well as operation of hot stove. The teacher and learners can interact with each other using software interface which allows to monitor the activity of the learners, answer their questions, and analyse the learning results. The model is an ingredient of the "Virtual Lab Ironmaking".

    Se desarrollan y presentan tecnologías avanzadas de educación, como los Laboratorios Virtuales, para suministrar a los clientes de las instituciones de educación superior, investigación e industria, en apoyo de su trabajo, nuevos y eficientes métodos de operación y técnicas especiales de adiestramiento. Se ha desarrollado el Modelo Visual de "Horno Alto" basado en un modelo matemático del balance del proceso del horno alto, para fines de educación a distancia. Procesa los parámetros de entrada y salida en operación y los resultados de la enseñanza. El modelo también simula la fabricación de sinter y pelets, además de la operación de las estufas. El profesor y alumnos pueden interactuar entre sí usando un software que permite seguir la marcha de la actividad de los alumnos, responder a sus preguntas y analizar los resultados del aprendizaje. El modelo es parte del "Laboratorio Virtual de Fabricación de Arrabio".

  19. Study of the reduction mechanism of ironsands with addition of blast furnace bag dust

    Science.gov (United States)

    Xing, Xiangdong; Chen, Yunfei; Liu, Yiran

    2018-02-01

    To improve the reduction properties of ironsands carbon-containing briquettes, the behavior of ironsand during reduction by the addition of blast furnace bag dust (BFBD) is studied using a high temperature resistance furnace, X-ray diffraction (XRD) analysis and scanning electron microscopy. Additionally, the reduction mechanism is discussed in this study. The results showed that the reduction level and compressive strength of ironsand carbon-containing briquettes could be promoted by increasing the proportion of BFBD. When the addition rate of BFBD was 31.25%, the metallization rate and compressive strength increased from 82.1% and 21.5 N/a to 91.4% and 172.5 N/a, respectively. Metallic iron reduced from BFBD particles favored the carbon gasification reaction, which enhanced the internal CO concentration, and then promoted the FeTiO3 reduction to Fe in ironsand. Meanwhile, a large amount of the liquid phase generated during the reduction process also favored Fe2+ diffusion, spread of iron joined crystals and the growth of crystals, which resulted in the improvement of the compressive strength of the ironsand carbon-containing briquettes.

  20. Compare pilot-scale and industry-scale models of pulverized coal combustion in an ironmaking blast furnace

    Science.gov (United States)

    Shen, Yansong; Yu, Aibing; Zulli, Paul

    2013-07-01

    In order to understand the complex phenomena of pulverized coal injection (PCI) process in blast furnace (BF), mathematical models have been developed at different scales: pilot-scale model of coal combustion and industry-scale model (in-furnace model) of coal/coke combustion in a real BF respectively. This paper compares these PCI models in aspects of model developments and model capability. The model development is discussed in terms of model formulation, their new features and geometry/regions considered. The model capability is then discussed in terms of main findings followed by the model evaluation on their advantages and limitations. It is indicated that these PCI models are all able to describe PCI operation qualitatively. The in-furnace model is more reliable for simulating in-furnace phenomena of PCI operation qualitatively and quantitatively. These models are useful for understanding the flow-thermo-chemical behaviors and then optimizing the PCI operation in practice.

  1. Slag-based saltstone formulations

    International Nuclear Information System (INIS)

    Langton, C.A.

    1987-01-01

    Approximately 400 x 10 6 liters of low-level alkaline salt solution will be treated at the Savannah River Plant (SRP) Defense Waste Processing Facility (DWPF) prior to disposal in concrete vaults at SRP. Treatment involves removal of CS + and Sr +2 followed by solidification and stabilization of potential contaminants in saltstone, a hydrated ceramic waste form. Chromium, technetium, and nitrate releases from saltstone can be significantly reduced by substituting hydraulic blast furnace slag for portland cement in the formulation designs. Slag-based mixes are also compatible with Class F fly ash used in saltstone as a functional extender to control heat of hydration and reduce permeability. A monolithic waste form is produced by the hydration of the slag and fly ash. Soluble ion release (NO 3 - ) is controlled by the saltstone microstructure. Chromium and technetium are less leachable from slag mixes compared to cement-based waste forms because these species are chemically reduced to a lower valence state by ferrous iron in the slag and precipitated as relatively insoluble phases, such as CR(OH) 3 and TcO 2 . 5 refs., 4 figs., 4 tabs

  2. The effect of blast furnace slag on the self-compactability of pumice ...

    Indian Academy of Sciences (India)

    2018-04-02

    Apr 2, 2018 ... So far, the use of pumice was dependent on the availability and limited in the countries where it is locally .... admixture was used to reduce the risk of segregation and to increase the cohesion in some cases. ..... diameter of 50 cm is related to flow rate and plastic viscosity of concrete. The shear stress and ...

  3. The effect of blast furnace slag on the self-compactability of pumice ...

    Indian Academy of Sciences (India)

    Faculty of Architecture & Design, Department of Architecture, Atatürk University, 25240 Erzurum, Turkey; Engineering & Architecture Faculty, Department of Civil Engineering, Erzurum Technical University, 25070 Erzurum, Turkey; Engineering Faculty, Department of Civil Engineering, Atatürk University, 25240 Erzurum, ...

  4. Chloride-binding Effect of Blast Furnace Slag in Cement Pastes ...

    African Journals Online (AJOL)

    The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

  5. Granulated blast furnace slag – A boon for foundry industry | Murthy ...

    African Journals Online (AJOL)

    The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

  6. Chloride-binding Effect of Blast Furnace Slag in Cement Pastes ...

    African Journals Online (AJOL)

    NICO

    2017-05-16

    May 16, 2017 ... which chloride can be bound as Friedel's salt. The work of. Brown and Bothe1 and Siegwartet al.2 indicated that both the C3A and the C4AF phases contribute to chloride binding, although. C4AF to a lesser extent than the C3A.3 Birnin-Yauri and Glasser4 also suggested the formation of oxychloride ...

  7. Innovation based on tradition: blast furnace slag cement for durable concrete structures in Norway

    NARCIS (Netherlands)

    Polder, R.B.; Nijland, T.G.; Rooij, M.R. de; Larsen, C.K.; Pedersen, B.

    2014-01-01

    road environment in The Netherlands for nearly a century. The experience is good and structures with long service lives can be obtained, as has been shown by several field studies. This is caused by a high resistance against chloride penetration and a high electrical resistivity, demonstrated both

  8. Study of some health physics parameters of bismuth-ground granulated blast furnace slag shielding concretes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sandeep, E-mail: sandeep0078monu@gmail.com [Department of Physics, Punjabi University, Patiala (India); Singh, Sukhpal, E-mail: sukhpal-78@rediffmail.com [Department of Basic and Applied Sciences, Punjabi University, Patiala (India)

    2016-05-06

    The Bismuth-ground granulated blastfurnace slang (Bi-GGBFS) concrete samples were prepared. The weight percentage of different elements present in Bi-GGBFS Shielding concretewas evaluated by Energy Dispersive X-ray Microanalysis (EDX). The exposure rate and absorbed dose rate characteristics were calculated theoretically for radioactive sources namely {sup 241}Am and {sup 137}Cs. Our calculations reveal that the Bi-GGBFS concretes are effective in shielding material for gamma radiations.

  9. Mixture of industrial waste oxidized titanium and reduced slag from electric furnace used as hydraulic material. Denkiro kangen slug to sanka titan kogyo haikibutsu no kongobutsu no suinan zairyo to shiteno riyo

    Energy Technology Data Exchange (ETDEWEB)

    Honda, A. (Osaka City University, Osaka (Japan). Faculty of Engineering); Kuwayama, T. (Daido Institute of Technology, Nagoya (Japan)); Yamada, M.; Ikezaki, H. (Osaka City University, Osaka (Japan). Faculty of Engineering)

    1990-10-29

    Slag released from an electric furnace consists mainly of waste steel. There are two types of slag, namely, oxidized slag and reduced slag. Reduced slag, which is generally in the form of powder, is difficult to recycle as compared with oxidized slag. However, with a hydraulicity, some reduced slag is expected to be useful as hydraulic material. Test results obtained here show that the hydraulic properties of reduced slag powder can be improved by mixing it with gypsum and that the resultant mixture can serve to improve the prooperties of soft clay. Another study is made to determine the potential, as hydraulic material, of mixtures of reduced slag powder and waste gypsum material with a high gypsum content released from an oxidized titanium production process. The hydraulicity is found to develop as a result of the formation of a hydrate of calcium aluminate which is contained in the slag. Addition of water to the hydrate and gypsum cause the formation of ettringite, leading to an increased uniaxial compressive strength. These findings indicate that the above-mentioned mixture can be useful to improve the hydraulic properties of coal ash to be disposed of at landfill sites. 5 refs., 5 figs., 1 tab.

  10. Similarities between pinch analysis and classical blast furnace analysis methods. Possible improvement by synthesis. Paper no. IGEC-1-004

    International Nuclear Information System (INIS)

    Ryman, C.; Grip, C.-E.; Franck, P.-A.; Wikstrom, J.-O.

    2005-01-01

    Pinch analysis originated at UMIST in the 1970's. It has since then been used as a method for energy analysis and optimisation of industrial systems. The blast furnace process for reducing iron oxide to molten iron is a very important process unit in the metallurgical industry. It is a counter-current shaft process with a wide temperature range and gaseous, solid and liquid phases present in different zones. Because of this the blast furnace acts as a system of different sub-processes rather than a single process. The analysis tools developed to describe the process are in some respects similar to the tools of pinch analysis. The exchange between the two fields of knowledge has yet been negligible. In this paper the methods are described and compared. Problems, possibilities and advantages with an exchange and synthesis of knowledge are discussed. (author)

  11. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    OpenAIRE

    Jovanović Filip P.; Berić Ivana M.; Jovanović Petar M.; Jovanović Aca D.

    2016-01-01

    This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reductio...

  12. Results of tuyere coke sampling with regard to application of appropriate coke strength after reaction (CSR) for a blast furnace

    OpenAIRE

    Shiau J-S.; Ko Y-C.; Ho C-K.; Hung M-T.

    2017-01-01

    Raising pulverized coal injection (PCI) will decrease coke rate, but increase the residence time of coke and abrasion in the blast furnace (BF). Thus, insufficient coke strength will generate more coke fines in the lower BF and result in lower permeability and production of hot metal (HM). For understanding the behavior of coke at various HM productivities, a tuyere coke sampler was used to collect the coke samples for measuring the coke strength. Firstly, ...

  13. Modelling of Coke Layer Collapse during Ore Charging in Ironmaking Blast Furnace by DEM

    Science.gov (United States)

    Narita, Yoichi; Mio, Hiroshi; Orimoto, Takashi; Nomura, Seiji

    2017-06-01

    A technical issue in an ironmaking blast furnace operation is to realize the optimum layer thickness and the radial distribution of burden (ore and coke) to enhance its efficiency and productivity. When ore particles are charged onto the already-embedded coke layer, the coke layer-collapse phenomenon occurs. The coke layer-collapse phenomenon has a significant effect on the distribution of ore and coke layer thickness in the radial direction. In this paper, the mechanical properties of coke packed bed under ore charging were investigated by the impact-loading test and the large-scale direct shear test. Experimental results show that the coke particle is broken by the impact force of ore charging, and the particle breakage leads to weaken of coke-layer strength. The expression of contact force for coke in Discrete Element Method (DEM) was modified based on the measured data, and it followed by the 1/3-scaled experiment on coke's collapse phenomena. Comparing a simulation by modified model to the 1/3-scaled experiment, they agreed well in the burden distribution.

  14. Modelling of Coke Layer Collapse during Ore Charging in Ironmaking Blast Furnace by DEM

    Directory of Open Access Journals (Sweden)

    Narita Yoichi

    2017-01-01

    Full Text Available A technical issue in an ironmaking blast furnace operation is to realize the optimum layer thickness and the radial distribution of burden (ore and coke to enhance its efficiency and productivity. When ore particles are charged onto the already-embedded coke layer, the coke layer-collapse phenomenon occurs. The coke layer-collapse phenomenon has a significant effect on the distribution of ore and coke layer thickness in the radial direction. In this paper, the mechanical properties of coke packed bed under ore charging were investigated by the impact-loading test and the large-scale direct shear test. Experimental results show that the coke particle is broken by the impact force of ore charging, and the particle breakage leads to weaken of coke-layer strength. The expression of contact force for coke in Discrete Element Method (DEM was modified based on the measured data, and it followed by the 1/3-scaled experiment on coke’s collapse phenomena. Comparing a simulation by modified model to the 1/3-scaled experiment, they agreed well in the burden distribution.

  15. A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH4HF2-HF leaching and hydrolyzing process.

    Science.gov (United States)

    Zheng, Fuqiang; Guo, Yufeng; Qiu, Guanzhou; Chen, Feng; Wang, Shuai; Sui, Yulei; Jiang, Tao; Yang, Lingzhi

    2018-02-15

    A novel process to prepare titanium dioxide from Ti-bearing electric furnace slag by NH 4 HF 2 -HF leaching and hydrolyzing process has been developed. In this present study, the effects of [NH 4 + ]/[F] mXolar ratio, leaching temperature, [F] concentration, liquid/solid mass ratio, leaching time on the Ti extraction, and the phase transformations have been investigated to reveal the leaching mechanism of Ti-bearing electric furnace slag in NH 4 HF 2 -HF solution. In the NH 4 HF 2 -HF leaching process, the MgTi 2 O 5 and Al 2 TiO 5 are converted to TiF 6 2- and Mg-Al-bearing precipitate. Ti extraction rate reached 98.84% under the optimal conditions. In addition, 98.25% iron ions can be removed in the presence of NaCl prior to hydrolysis process. The effects of pH and temperature on the selective hydrolysis of TiF 6 2- during hydrolysis process were also studied. In the hydrolysis process, the TiF 6 2- is converted to (NH 4 ) 2 TiOF 4 . By calcination, high grade TiO 2 powder with its purity of 99.88% was obtained, using which the products, well crystallized anatase and rutile, were obtained through roasting at 800°C and 1000°C, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Synthesis of TiO2 visible light catalysts with controllable crystalline phase and morphology from Ti-bearing electric arc furnace molten slag.

    Science.gov (United States)

    Li, Yang; Liu, Lulu; Guo, Min; Zhang, Mei

    2016-09-01

    TiO2 visible light catalysts with different crystalline phases and morphologies were synthesized from titanium-bearing electric arc furnace molten slag (Ti-bearing EAF slag) by using a simple acidolysis process. The effects of the pH of the HCl solution, liquid to solid ratio (RL/S, HCl solution to the residue ratio, mL/g) and acidolysis time on the micro-morphology and crystalline phase of as-prepared TiO2 photocatalysts were systematically investigated. The results indicated that with decreasing pH in the HCl solution and increasing RL/S, the crystalline phase and micro-morphology of the obtained TiO2 nanostructures tended to transform from anatase type TiO2 with spherical nanoparticle structures to rutile type TiO2 with needle-like nanorod structures. The acidolysis time had little influence on the crystalline phase but great impact on the size of the obtained TiO2. The growth mechanism of TiO2 from Ti-bearing EAF slag during the acidolysis process was also discussed. In addition, the influence of RL/S on the photocatalytic properties of the synthesized nanostructured TiO2 was studied. The results showed that the photodegradation efficiency for Rhodamine B solution could reach 91.00% in 120min when the RL/S was controlled at 50:1. Copyright © 2016. Published by Elsevier B.V.

  17. Application of a clay-slag geopolymer matrix for repairing damaged concrete: Laboratory and industrial-scale experiments

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Hanzlíček, Tomáš; Boura, P.; Lučaník, A.

    2017-01-01

    Roč. 59, č. 10 (2017), s. 929-937 ISSN 0025-5300 Institutional support: RVO:67985891 Keywords : blast-furnace slag * geopolymer * scanning electron microscopy (SEM) * damaged concrete repair * long-term monitoring Subject RIV: JJ - Other Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 0.418, year: 2016

  18. Investigations on steel slag re-utilization in developing countries; Hatten tojokoku ni okeru tekko slag sairiyo ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In order to promote steel slag re-utilization in developing countries, a possibility was presented for technical cooperation to India, Indonesia and Thailand upon putting the status of slag utilization in Japan into order. Blast furnace slag produced in Japan (having a re-utilization rate of 95%) is re-utilized and processed as cement aggregates and road beds, and converter slag as civil engineering materials and ores. Steel making slag (having a re-utilization rate of 80%) is re-utilized as road, processing and civil engineering materials. Since the steel making slag faces intensifying competition with ash made by incinerating construction and general wastes, it is important to improve its price competitiveness or mixed utilization with other materials. Re-utilization has not advanced to a recognizable level in developing countries because of having no difficulty for availability of lands for wastes. However, growth of full-scale steel industries and elevation in tendency of environment preservation now urge increase in the slag re-utilization rate. Required to achieve the goal would include wider use of re-utilization technologies, quality control on slag, joint use of facilities to produce re-utilization products, and governmental assistance on burdens of transportation cost. Assistance from Japan is expected to help meet these requirements. 25 figs., 31 tabs.

  19. Charcoal injection in blast furnaces (Bio-PCI: CO2 reduction potential and economic prospects

    Directory of Open Access Journals (Sweden)

    Cristobal Feliciano-Bruzual

    2014-07-01

    Full Text Available The steel industry is under pressure to reduce its CO2 emissions, which arise from the use of coal. In the long-term, the injection of pulverized particles of charcoal from biomass through blast furnace tuyeres, in this case called Bio-PCI, is an attractive method from both an environmental and metallurgical viewpoint. The potential of Bio-PCI has been assessed in terms of its CO2 abatement potential and economic viewpoint. A cost objective function has been used to measure the impact of biochar substitution in highly fuel-efficient BF among the top nine hot metal producers; estimations are based on the relevant cost determinants of ironmaking. This contribution aims to shed light on two strategic questions: Under what conditions is the implementation of Bio-PCI economically attractive? Additionally, where is such a techno-economic innovation likely to be taken up the earliest? The results indicate the potential for an 18–40% mitigation of CO2. Findings from the economic assessment show that biochar cannot compete with fossil coal on price alone; therefore, a lower cost of biochar or the introduction of carbon taxes will be necessary to increase the competitiveness of Bio-PCI. Based on the current prices of raw materials, electricity and carbon taxes, biochar should be between 130.1 and 236.4 USD/t and carbon taxes should be between 47.1 and 198.7 USD/t CO2 to facilitate the substitution of Bio-PCI in the examined countries. In regard to implementation, Brazil, followed by India, China and the USA appeared to be in a better position to deploy Bio-PCI.

  20. Thermodynamic analysis of the partial oxidation of coke oven gas for indirect reduction of iron oxides in a blast furnace

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Hsu, Chih-Liang; Du, Shan-Wen

    2015-01-01

    The partial oxidation of a COG (coke oven gas) in a blast furnace is examined in this work using thermodynamic analysis. LTIR and HTIR (Low-temperature and high-temperature indirect reduction) of iron oxides in a blast furnace are also studied. The influences of the reaction temperature, M/H (methane-to-hematite) ratio, and O/F (oxygen-to-fuel) ratio on CH 4 conversion and iron oxide reduction are examined. Within the investigated ranges of the parameters, a higher reaction temperature is conducive to CH 4 conversion, while at least 97.64% of Fe 2 O 3 is reduced. In LTIR, Fe 3 O 4 is the prime product, with a high level of solid carbon formation. The entire LTIR reaction is characterized by exothermic behavior, so that no additional heat is required to trigger COG partial oxidation and IR. In HTIR, increasing the reaction temperature facilitates CO-based IR and suppresses H 2 -based IR. A higher temperature produces more Fe, so as to enhance the iron oxide reduction reactions; meanwhile, the FeO reduction is governed by H 2 and CH 4 . When the reaction temperature is higher than 800 °C and the M/H ratio is lower than unity, a heat supply is required to drive HTIR. The O/F ratio in LTIR and HTIR should be controlled below 2 to retard carbon formation and drive iron oxide reduction. - Highlights: • Direct partial oxidation of coke oven gas in blast furnace is analyzed thermodynamically. • A higher reaction temperature is conducive to CH 4 conversion and syngas production. • At least 97.64% of Fe 2 O 3 is converted. • The low-temperature indirect reduction is characterized by exothermic behavior. • The oxygen-to-fuel molar ratio in indirect reduction should be controlled below 2

  1. Simultaneous utilization of neutrons and γ-rays from 252Cf for condition measurement inside a blast furnace

    International Nuclear Information System (INIS)

    Shirakawa, Yoshiyuki; Tominaga, Hiroshi.

    1997-01-01

    This paper describes the possibility of the realization of a multi-function radiation gauge to meet the requirement for more precise and stable control of a blast furnace. A basic concept of the gauge is to measure some quantities with simultaneous use of multi-radiations of neutrons and γ-rays, and to obtain multi-types of information on material flow and gas flow representing the conditions inside the blast furnace. The prototype gauge was assembled and examined which consisted of a radiation source of 252 Cf (3.7 MBq), neutron moderator, lead shield, a bismuth germanate detector, stainless casing and a control unit. Laboratory experiments showed that the gauge could measure the quantities to be essential to estimate the blast furnace conditions. In practice, it clearly distinguished between iron ore and coke layers, and at the same time measured bulk density (1.0-1.5 g/cm 3 ) of iron contained in iron ore by counting thermal neutron capture γ-rays (6.5-8.5 MeV) from iron. It also gave the information on material bulk density (0.5-2.5 g/cm 3 ) by detecting Compton scattered γ-rays (1.0-1.5 MeV) from material, i.e. iron ore and coke. The relative accuracies in the measurement of iron bulk density and material bulk density were estimated to be within 1 and 4% in 300 s counting time, respectively. The possibility of the gauge has been proved and the on-line trial will be expected in the near future. (author)

  2. Study of effect of electric arc furnace slag on expansion of mortars subjected to alkali-aggregate reaction

    Directory of Open Access Journals (Sweden)

    L. SOUZA

    Full Text Available Abstract Alkali-aggregate reaction is a chemical reaction between cement alkalis and some reactive mineral present in some aggregates, leading to concrete expansion and cracking. One kind usually observed and studied in Brazil is the alkali-silica reaction, due to its fast development. There are several methods that are effective to control and mitigate this reaction, and one of them is the partial replacement of cement by mineral additions such as pozzolans like fly-ash, silica fume and slag. In this study, we propose the use of electrical steel slag as a partial replacement of cement, evaluating its effectiveness by NBR 15577:2008, employing different proportions as replacement. It seems that the electrical steel slag, despite its expansive behavior, has been effective in the control of the ASR.

  3. Distinctive microstructural features of aged sodium silicate-activated slag concretes

    Energy Technology Data Exchange (ETDEWEB)

    San Nicolas, Rackel [Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010 (Australia); Bernal, Susan A. [Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield S1 3JD (United Kingdom); School of Materials Engineering, Composite Materials Group, Universidad del Valle, Cali (Colombia); Mejía de Gutiérrez, Ruby [School of Materials Engineering, Composite Materials Group, Universidad del Valle, Cali (Colombia); Deventer, Jannie S.J. van [Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010 (Australia); Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012 (Australia); Provis, John L., E-mail: j.provis@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin St, Sheffield S1 3JD (United Kingdom)

    2014-11-15

    Electron microscopic characterisation of 7-year old alkali-activated blast-furnace slag concretes enabled the identification of distinct microstructural features, providing insight into the mechanisms by which these materials evolve over time. Backscattered electron images show the formation of Liesegang-type ring formations, suggesting that the reaction at advanced age is likely to follow an Oswald supersaturation–nucleation–depletion cycle. Segregation of Ca-rich veins, related to the formation of Ca(OH){sub 2}, is observed in microcracked regions due to the ongoing reaction between the pore solution and available calcium from remnant slag grains. A highly dense and uniform interfacial transition zone is identified between siliceous aggregate particles and the alkali activated slag binders, across the concretes assessed. Alkali-activated slag concretes retain a highly dense and stable microstructure at advanced ages, where any microcracks induced at early ages seem to be partially closing, and the remnant slag grains continue reacting.

  4. Iron making technology with fuels and other materials injection in blast furnace tuyeres. Part 1. Auxiliary fuels characteristics and its influence in the blast furnace process; Tecnologia de fabricacion de arrabio con la inyeccion de combustibles y otros materiales por toberas en el horno alto. I parte. Caracteristicas de los combustibles auxiliares y su influencia en el proceso del horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L. [Union de Empresas de Recuperacion de Materias Primas. Ciudad de La Habana (Cuba); Cores, A.; Formoso, A. [Centro Nacional de Investigaciones Metalurgicas. Madrid (Spain); Babich, A.; Yaroshevskii, S. [Universidad Estatal Tecnologica de Donetsk. Ucrania (Ukraine)

    1998-06-01

    The injection of fuels by tuyeres in the blast furnace is a used practice in most furnaces with the principal aim to reduce the coke consumption by ton of pig iron produced. The nature of these fuels is very diverse and depends on the resources of each country and of the fuel price. At this moment the coal injection (pulverized and granular) is the most extended practice, and the number of furnaces with facilities for coal injection increases continuously. (Author) 14 refs.

  5. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    Science.gov (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  6. Obtaining in an electric arc furnace alloys of the Fe-Mn-Cr-C system and slag destined to the development of welding consumables

    Directory of Open Access Journals (Sweden)

    Lorenzo Perdomo-González

    2018-01-01

    Full Text Available The production of chromium manganese ferroalloys for the use in the development of alloying loads of welding consumables is presented. On the basis of variations in the proportions of the chromium and manganese minerals in the loads, different combinations are established, which allow obtaining multicomponent ferroalloys with composition ranging from 9 to 32 % chromium and from 24 to 65 % manganese. The melting-reduction process is carried out in an electric arc furnace with a graphite crucible and with the presence of coke as a reducing component which guarantees the obtaining of high carbon alloys (5–6 %. The use of the multicomponent ferroalloy in the formulation of welding consumables simplifies and makes cheaper the obtaining of these materials. As result of metallurgical processing, slag formed by the silicon, aluminum, magnesium, manganese and calcium oxides are obtained, which are feasible to use in the production of flux matrices for submerged arc welding process.

  7. Characterisation and treatment of roads covered with zinc ashes, muffle furnace fragments and lead slags from former non-ferrous metal industries in Belgium.

    Science.gov (United States)

    Vandecasteele, C; Van den Broeck, K; Van Gerven, T; Dutré, V; Seuntjens, P; Berghmans, P; Cornelis, C; Nouwen, J

    2002-08-01

    Zinc ashes, muffle furnace fragments and lead slags from non-ferrous industries were applied to pave roads in the North of Belgium. From an inventory it appeared that there are at least 490 km of such roads. In our survey the materials on these roads were characterised. The total metal concentration, the availability and the leaching as a function of time were determined. It appeared that these materials contain high concentrations of heavy metals, some of which are readily available. The high leaching of some metals makes them as such unsuitable as secondary construction material. Methods for the application of these materials for road construction were examined where the materials replaced part of the sand and gravel fraction in lean concrete and in bituminous mixtures, or where they replaced the sand in sand-cement mixtures, all these to be used for road foundations, cycle tracks, etc. When lead slags were applied in lean concrete, a material was obtained complying with the standards for secondary construction materials and with sufficient compressive strength for road foundations. When zinc ashes or muffle fragments were used to replace sand in sand-cement mixtures, again a suitable construction material was obtained. The other combinations tried out were rather unsuccessful, because of high metal leaching and/or poor compressive strength.

  8. Characterization of Iron and Steel Industry Slags to be Recycled under Ecological Aspects as a Recycling Concept for Waste Treatment

    International Nuclear Information System (INIS)

    Khalil, T.K.; Aly, H.F.; Bossert, J.

    1999-01-01

    The recycling and final disposal of different types of industrial waste play an important role in decreasing environmental pollution all over the world. Three different solid waste slags from steel industries situated in the Helwan area (Cairo-Egypt), namely blast furnace slags, oxygen converter slags arc furnace slags were studied. The morphology of the collected slag powders was examined using scanning electron microscopy (SEM). Surface characteristics of the slag powders were measured through nitrogen gas adsorption and application of the BET equation at 77 K. The thermal behaviour of the slag powders was studied with the help of differential thermal analysis (DTA) and thermogravimetry(TG)> Due to the presence of some changes in the DTA base lines, possibly as a result of phase transformations, X-ray diffraction was applied to identify these phases. The sintering behaviour of the compact slag powders after isostatic pressing was evaluated using dilatometry. The sintering and melting temperature of the studied samples were determined using heating microscopy. The effect of changing sintering temperature and of applying different isostatic pressures on the density and porosity of the slag powder compacts was investigated

  9. Effect of natural carbonation on the pore structure and elastic modulus of the alkali-activated fly ash and slag pastes

    NARCIS (Netherlands)

    Nedeljkovic, M.; Šavija, B.; Zuo, Y.; Lukovic, M.; Ye, G.

    2018-01-01

    The aim of this paper was to investigate the effect of natural carbonation on the pore structure, and elastic modulus (E-m) of alkali-activated fly ash (FA) and ground granulated blast furnace slag (GBFS) pastes after one year of exposure in the natural laboratory conditions. The chemical changes

  10. Effect of natural carbonation on the pore structure and elastic modulus of the alkali-activated fly ash and slag pastes

    NARCIS (Netherlands)

    Nedeljkovic, M.; Šavija, B.; Zuo, Y.; Lukovic, M.; Ye, G.

    2018-01-01

    The aim of this paper was to investigate the effect of natural carbonation on the pore structure, and elastic modulus (Em) of alkali-activated fly ash (FA) and ground granulated blast furnace slag (GBFS) pastes after one year of exposure in the natural laboratory conditions. The

  11. BIO-PCI, Charcoal injection in Blast Furnaces: State of the art and economic perspectives

    Directory of Open Access Journals (Sweden)

    Feliciano-Bruzual, C.

    2013-12-01

    Full Text Available The injection of grinded particles of charcoal through the tuyeres in Blast Furnaces, here coined Bio-PCI, presents as an attractive and plausible alternative to significantly reduce the CO2 emissions generated during hot metal production. In this contribution a summary of the technological fundaments, benefits and limitations of the incorporation of Bio-PCI is presented. Additionally the principal economic challenges of renewables fuel in ironmaking are exposed, with especial interest in the main productions costs of charcoal making. In this sense, a strategic question arises: can the residual biomass drive the emergence of Bio-PCI?, our analysis leads to conclude that the use of residual biomass (e.g. agricultural and forestry residues may significantly reduce the production cost in 120-180 USD/t in comparison to primary woods sources, this naturally increment the economical attractiveness of Bio-PCI substitution.La inyección de carbón vegetal por toberas en Altos Hornos, aqui denominada Bio-PCI, se presenta como una forma atractiva y realista de reducir significativamente las emisiones de CO2 generadas durante la producción de arrabio. En esta contribución se presenta un resumen de los fundamentos tecnológicos, los beneficios y las limitaciones de la incorporación de la tecnología del Bio-PCI. Adicionalmente se exponen los retos económicos que enfrentan los combustibles renovables a los fósiles, con especial interés en los principales costos de producción del carbón vegetal. En este sentido se plantea una pregunta estratégica: ¿puede la biomasa residual impulsar el desarrollo de la Bio-PCI?. Nuestro análisis conlleva a concluir que la utilización de biomasa residual (residuos forestales y agrícolas puede reducir sensiblemente el costo del carbón vegetal entre 120-180 USD/t en comparación con biomasa primaria, incrementando su competitividad frente al carbón mineral.

  12. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  13. Products of steel slags an opportunity to save natural resources.

    Science.gov (United States)

    Motz, H; Geiseler, J

    2001-01-01

    In Germany, and in the most industrial countries, the use of blast furnace and steel slags as an aggregate for civil engineering, for metallurgical use and as fertiliser has a very long tradition. Since the introduction of the basic oxygen steel making furnace (BOF) process and the electric arc furnace (EAF) process the German steel industry started extensive research on the development of fields of application for BOF and EAF slags. These investigations have been mainly performed by Forschungsgemeinschaft Eisenhüttenschlacken e. V. (FEhS), the Research Association for blast furnace and steel slags. Today steel slags are well characterised and long-term experienced materials mainly used as aggregates for road construction (e.g. asphaltic or unbound layers), as armour-stones for hydraulic engineering constructions (e.g. stabilisation of shores), and as fertiliser for agriculture purposes. These multifarious fields of application could only be achieved because the steelworks influence the quality of slags by a careful selection of raw materials and a suitable process route. Furthermore, subsequent procedures like a treatment of the liquid slag, an appropriate heat treatment and a suitable processing have been developed to ensure that the quality of steel slags is always adequate for the end use. Depending on the respective field of application, the suitability of steel slags has to be proven by determining the technical properties, as well as the environmental compatibility. For this reason test methods have been developed to evaluate the technical properties especially the volume stability and the environmental behaviour. To evaluate the volume stability a suitable test (steam test) has been developed and the results from laboratory tests were compared with the behaviour of steel slags under practical conditions, e.g. in a road. To determine the environmental behaviour leaching tests have been developed. In the meanwhile most of these test methods are drafted or

  14. A Microstructure Based Strength Model for Slag Blended Concrete with Various Curing Temperatures

    Directory of Open Access Journals (Sweden)

    Li-Na Zhang

    2016-01-01

    Full Text Available Ground granulated blast furnace slag, which is a byproduct obtained during steel manufacture, has been widely used for concrete structures in order to reduce carbon dioxide emissions and improve durability. This paper presents a numerical model to evaluate compressive strength development of slag blended concrete at isothermal curing temperatures and time varying curing temperatures. First, the numerical model starts with a cement-slag blended hydration model which simulates both cement hydration and slag reaction. The accelerations of cement hydration and slag reaction at elevated temperatures are modeled by Arrhenius law. Second, the gel-space ratios of hardening concrete are calculated using reaction degrees of cement and slag. Using a modified Powers’ gel-space ratio strength theory, the strength of slag blended concrete is evaluated considering both strengthening factors and weakening factors involved in strength development process. The proposed model is verified using experimental results of strength development of slag blended concrete with different slag contents and different curing temperatures.

  15. Reference materials for ratio of moisture content and bulk density of blast furnace coke for neutron moisture and density meters: development and use experience

    Directory of Open Access Journals (Sweden)

    V. D. Savelov

    2016-01-01

    Full Text Available The article deals with reference materials for moisture and bulk density of blast furnace coke for graduation of neutron moisture and density meters. Reference materials are produced from substances and materials which element content is identical to coke elemental content coke.

  16. Using a Mathematical Model of Counter-Current Flow in a Blast Furnace to Evaluate Reducibility of Iron-Ore-Bearing Raw Materials

    Czech Academy of Sciences Publication Activity Database

    Pustějovská, P.; Tůma, J.; Staněk, Vladimír; Křišťál, Jiří; Jursová, s.; Bilík, J.

    2015-01-01

    Roč. 86, č. 4 (2015), s. 320-328 ISSN 1611-3683 Institutional support: RVO:67985858 Keywords : blast furnace * ore burden reducibility * kinetic model Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.021, year: 2015

  17. TRP0033 - PCI Coal Combustion Behavior and Residual Coal Char Carryover in the Blast Furnace of 3 American Steel Companies during Pulverized Coal Injection (PCI) at High Rates

    Energy Technology Data Exchange (ETDEWEB)

    Veena Sahajwalla; Sushil Gupta

    2005-04-15

    Combustion behavior of pulverized coals (PC), gasification and thermal annealing of cokes were investigated under controlled environments. Physical and chemical properties of PCI, coke and carbon residues of blast furnace dust/sludge samples were characterized. The strong influence of carbon structure and minerals on PCI reactivity was demonstrated. A technique to characterize char carryover in off gas emissions was established.

  18. Coke, char and organic waste behaviour in the blast furnace with high injection rate

    Directory of Open Access Journals (Sweden)

    Gudenau, H. W.

    2003-10-01

    Full Text Available Blast furnace operation with low coke rate, high amount of auxiliary hydrocarbons and use of nut coke causes a change in coke quality requirements. In particular, not burned in the raceway residues of injected substances (char and ash can influence the coke behaviour. Therefore combustion efficiency of various organic wastes with and without pulverized coal injection (PCI and coal char has been investigated under the raceway simulation conditions. Mixing of various substances improves their combustion efficiency. Study on coke gasification by carbon dioxide in the presence of char showed that with the increase of char concentration, coke strength reduction becomes smaller. The reactivity of char with CO2 is higher than that of coke. Therefore char is consumed preferentially. In presence of injected char, total pore volume in coke and its wear resistance were increased. Coke reactivity and microstructure in the presence of various kinds of ash has been studied. Many ash spheres were observed on the surface of coke matrix and its size was dependent on ash properties.

    La operación del horno alto con una tasa baja de coque, una cantidad elevada de hidrocarburos auxiliares y el empleo de coque calibrado, origina un cambio en las necesidades de calidad del coque. En particular, pueden influir en el comportamiento del coque los residuos inquemados en el raceway (cavidad enfrente a las toberas del horno de las sustancias que se inyectan (char y cenizas. El char es el residuo de carbón que se origina después que el carbón libera sus sustancias volátiles. Por tanto, se ha investigado la eficiencia de la combustión de varios residuos orgánicos con y sin inyección de carbón pulverizado (ICP y char, bajo las condiciones de simulación del raceway. La mezcla de varias sustancias mejora la eficiencia a la combustión. El estudio de la gasificación del coque por el dióxido de carbono en la

  19. Injection of natural gas in the blast furnace tuyeres three of the Usiminas, Ipatinga Plant; Injecao de gas natural nas ventaneiras do alto-forno 3 da Usiminas, Usina de Ipatinga

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Murilo Alves Tito de; Rosa, Ericson Rimen Ribeiro; Oliveira, Claudiney Freitas de; Hostt, Helton [USIMINAS, Ipatinga, MG (Brazil). Gerencia Geral de Reducao

    2011-12-21

    The reduction in production costs is a major strategic objectives of Usiminas and the use of natural gas in the Blast Furnace 3 (BF 3) contribute to achieve this goal. The use of natural gas as fuel in the BF 3 to reduce the use of metallurgical coke (main fuel) and reduces production losses during periods of maintenance in the pulverized coal injection system and improving operational control of the Blast Furnace. The work presents the deployment of the natural gas injection and the performance obtained by the BF 3 from the start of injection, with a focus on reducing consumption of metallurgical coke and stable operation of blast furnace (author)

  20. Experimental study on workability of alkali activated fly ash and slag-based geopolymer concretes

    NARCIS (Netherlands)

    Arbi, K.A.; Nedeljkovic, M.; Zuo, Y.; Grunewald, S.; Keulen, A.; Ye, G.

    2015-01-01

    This paper presents an investigation on workability and strength of geopolymer concrete made of fly ash (FA), blast furnace slag (BFS) and a multicompound activator of Na2SiO3 and NaOH solutions. The FA/BFS ratios were 100:0, 70:30, 60:40, 50:50, 40:60, 30:70 and 0:100. The workability of geopolymer

  1. Results of tuyere coke sampling with regard to application of appropriate coke strength after reaction (CSR for a blast furnace

    Directory of Open Access Journals (Sweden)

    Shiau J-S.

    2017-01-01

    Full Text Available Raising pulverized coal injection (PCI will decrease coke rate, but increase the residence time of coke and abrasion in the blast furnace (BF. Thus, insufficient coke strength will generate more coke fines in the lower BF and result in lower permeability and production of hot metal (HM. For understanding the behavior of coke at various HM productivities, a tuyere coke sampler was used to collect the coke samples for measuring the coke strength. Firstly, the difference of sampled coke under the conditions of various HM productivities was explored. Secondly, the BF operating conditions and causes of generating more coke fines was correlated by testing the coke reaction rate after reaction. Finally, according to the above analysis results, the relative regression equations had been obtained for sampling coke properties, BF operation conditions and BF permeability. Furthermore, the coke strength after reaction (CSR quantitative target and its online system at various blast conditions were set to provide some reference for coke and HM production.

  2. Use of blastfurnace slag, a by-product of the steel industry, for road construction purposes

    Energy Technology Data Exchange (ETDEWEB)

    Matinheikki, J. [Finnish National Road Administration, Oulu Region Oulu (Finland)

    2000-07-01

    The development of blast furnace slag sand stabilisation began in the middle of the 1980's. The objective was to develop a method to prevent the damage of the load-bearing layers top part (rock materials pulverisation). With cooperation of Rautaruukki Oy and SKI Company a method was developed which fulfills the given edge conditions. At the same time an environment friendly method was achieved which makes good use of industrial by-product, blast furnace slag. The new method clearly increase the lifetime of the structure. The use of blast furnace slag sand stabilisation expanded in 1991 when more powerful rotavators for stabilisation work were available. The compression strength of the stabilised material, soil cement, at the age of 90 days is 3,0 MPa. The bearing values at the age on one year have been from 700-800 MN/m{sup 2}. Another good property is its ability to reset if the stabilised structure is damaged (cracked). The method has been used mainly in the Northern Finland area, but nowadays the economic range of use is the whole country. (orig.)

  3. Effect of Slag Content and Hardening Accelerator Dosage on the Physico Mechanical Properties of Cement and Concrete

    International Nuclear Information System (INIS)

    Derabla, R.; Mokrani, I.; Benmalek, M.L.

    2011-01-01

    Our contribution consists at the study of the effect of (0 %, 0.2 % and 0.34 %) dosage of an hardening accelerating plasticizer (Plastocrete 160, produced by Sika Aldjazair) on the properties of normal mortar and concretes prepared with portland cement artificial of Hadjar Soud cement factory (Skikda - Algeria) with addition of (10 % and 20 %) of granulated blast furnace slag finely crushed of the El Hadjar blast furnace (Annaba - Algeria). The tests are focused to the physical and mechanical characteristics of elaborated materials to knowing: setting time, porosity, water absorption capacity and the test of compressive strength at 2, 7 and 28 days. The results obtained show clearly the reliability of the additive used to accelerate the hardening and to obtain high strengths at early age, which increase by increasing of the additive dosage. For the slag, its low hydraulic capacity does not make it profitable than at the long term (beyond 28 days). (author)

  4. The Balance of Titanium and Vanadium in the Blast Furnace with the Use of Sinter Containing a Titanium-Vanadium-Magnetite Concentrate

    Directory of Open Access Journals (Sweden)

    Budzik, R.

    2007-01-01

    Full Text Available The investigation concerned the use of sinter containing a titanium-vanadium-magnetite concentrate for the production of pig iron. Sinter containing 0,46 to 0,51 % TiO2 and 0,056 to 0,060 % vanadium was used for pig iron production in the blast furnace. Introducing 200 kg of this concentrate to the1 Mg sinter mix did not cause any deterioration of sinter quality.

  5. Development of aluminium free castable for blast furnace trough materials. Koro toiyo Al mutenka nagashikomizai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yaoi, H.; Tsutsui, N.; Suzuki, T. (Nippon Steel Corp., Tokyo (Japan)); Yoshino, H.; Sugiyama, K.; Yasuda, N.; Ninomiya, H.; Itose, S. (Harima Co. Ltd., Hyogo (Japan))

    1992-09-10

    In recent years a densification of castable materials is being developed in order to elongate a life of the blast furnace trough. As a risk of dry expansion in the drying process becomes to be higher due to it, the castable materials added the metallic Al are being used as a countermeasure against it. Since the metallic Al generates the hydrogen gas by a reaction with the water and forms the vent holes, it is superior in an explosion resistance. When the hydrogen gas generated by a reaction of this metallic Al retains during a period from the execution to the curing, there is a danger to generate an explosion by catching a fire. Accordingly in this repost, the organic foaming agent was added as the castable materials free from the metallic Al. As a result, an explosion resistance could be raised substantially. This is thought due to generation of N2 gas because the hydrolysis occurs in an alumina cement-water system. The microporess caused by a generation of N2 gas are a size of about 10[mu]m, or many of them are bigger than it. Although the effect of the added organic foaming agent on the various material property values is a little, an appropriate quantity is thought to be within 0.2%. 1 ref., 8 figs., 3 tabs.

  6. Thermostrengthening modes in getting heat-strengthened pellets in weak oxidizing atmosphere with residual carbon for blast furnace melting

    Directory of Open Access Journals (Sweden)

    Євген Валерійович Чупринов

    2016-11-01

    Full Text Available In the course of the laboratory tests, that are close to industrial modes of bowl pelletizers and roasting bowl operations, thermostrengthening modes of raw pellets have been worked out and selected, the main technological feature of the pellets being the presence of rolled up solid fuel. The results, obtained in the tests, showed that the selected modes make it possible to get heat-strengthened pellets with the maximum amount of residual carbon in the final product. The results, demonstrating the effect of the heating rate on the process parameters, in particular, on the content of residual carbon in the obtained heat-strengthened pellets are important. It has been shown that increasing the heating rate of raw pellets from 100 to 500°C/min, and cooling rate of the heat-strengthened pellets from 100 to 600°C/min with decreasing oxygen content in the heat-carrying agent for gas burning in the burners and cooling gas from 21% to 10,3-5,1% make it possible to increase the content of residual carbon in the heat-strengthened pellets from 0,8-1,9% to 3,5-3,7%. The obtained heat-strengthened pellets with the residual carbon not only satisfy all the requirements of the blast furnace melting, but also possess better metallurgical characteristics than oxidized heat-strengthened pellets

  7. Reatividade de escórias silicatadas da indústria siderúrgica Reactivity of silicate slags of the iron and steel industry

    Directory of Open Access Journals (Sweden)

    Hamilton Seron Pereira

    2010-04-01

    Full Text Available As escórias siderúrgicas são usadas na agricultura, mas são poucos os trabalhos sobre sua reatividade. Neste trabalho, objetivou-se avaliar escórias siderúrgicas em diferentes frações granulométricas quanto à correção do pH e liberação de Ca, Mg e Si para o solo. O delineamento foi inteiramente casualizado com 4 repetições em esquema fatorial com 6 fontes (escória de alto-forno 1, escória de fosfato, escória de alto-forno 2, escória de aciaria de forno AOD, escória de aço inox e escória de forno LD e 5 distribuições granulométricas (2 - 1,41; 1,41 - 0,85; 0,85 - 0,50; 0,50 - 0,30 mm e The slags are used in the agriculture as soil acidity correctives in same rates of lime, but there are few studies about its reactivity in soils. The objective was to compare slag reactivity to soil acidity correction and calcium, magnesium, and silicon liberation. A completely randomized experimental design was used, with 4 repetitions in factorial with 6 sources (blast furnace slag 1, phosphate slag, blast furnace slag 2, AOD furnace steel slag, stainless steel slag and LD furnace steel slag and 5 particle sizes (2-1.41; 1.41-0.85; 0.85-0.50; 0.50-0.30 mm and < 0,30 mm and two additional treatments (control and CaCO3. The CaCO3 was used as a pattern for the determination of the reactivity index of each source. All treatments received 1500 mg kg-1 of equivalent CaCO3 and each rate of slags was calculated by its determined neutralization power. The pH-value increased with reduction of particle size in all slags. The phosphate slag showed best efficiency on the liberation of Ca + Mg compared to the calcium carbonate in the granulometrics inferior to 0.5 mm. There was low efficiency in soil acidity correction and liberation of the Ca and Mg in soil to slag of blast furnace. It is necessary to use particles smaller than 0.3 mm to improve silicon availability of phosphate slag and particles between 0.85 and 1.41mm to stainless steel slag. The

  8. Electromelt furnace evaluation

    International Nuclear Information System (INIS)

    Reimann, G.A.; Welch, J.M.

    1981-09-01

    An electromelt furnace was designed, built, and operated at the Idaho National Engineering Laboratory to demonstrate the suitability of this equipment for large-scale processing of radioactive wastes in iron-enriched basalt. Several typical waste compositions were melted and cast. The furnace was disassembled and the components evaluated. Calcines and fluorides attacked the furnace lining, unoxidized metals accumulated under the slag, and electrode attrition was high

  9. Utilización de las escorias de los hornos de arco eléctrico y de cuchara como materiales de construcción. // Use of slags from ladle and electric arc furnaces as construction materials.

    Directory of Open Access Journals (Sweden)

    R. Zaragoza Valdés

    2001-01-01

    Full Text Available La necesidad que tiene la humanidad de que las producciones sean cada día mas limpias, así como la que tiene el país del aumento dela rentabilidad de las empresas, hace necesario el estudio del uso de las escorias que se obtienen en la producción de acero, principalresidual de este tipo de producción. En el trabajo se estudia la utilización de la escoria del Horno de Arco Eléctrico (HAE comomaterial de relleno en la confección de bloques de hormigón para la construcción de edificaciones, sustituyendo la grava de granito.Se estudia, además, el uso de la escoria de los hornos cuchara (HC como sustituto del clinquer en la fabricación de cementosportland. Se obtienen resultados positivos para la protección del medio ambiente y la economía de la empresa metalúrgica.Palabras claves: producción de acero, escorias, medio ambiente, cementos, materiales para la construcción.________________________________________________________________________________Abstract:The existing necessity of clean productions as welll as the profitability of enterprises that the Cuban economy is demanding makes itnecessary to carry out a study of slags that constitute t he main residue of the steel production. This paper presents the use of slags comingfrom electric arc furnaces (EAF as a substitute for gravel in the production of concrete bricks. The use of slags coming from ladle furnaces(LF to replace clinker in the production of Portland Cement is also shown. Positive results are obtained such as the protection of theenvironment and the economic growth of the enterperise.Key words:Steel making, slags, environment protection, cement, construction materials.

  10. Application of Iranian natural zeolite and blast furnace slag as slow sand filters media for water softening

    Directory of Open Access Journals (Sweden)

    Ali Abdolahnejad

    2014-01-01

    Conclusions: It is concluded from this study that modified filter media, SMF and ZMF, are very good options for total hardness and turbidity removals in communities that have some problem with this parameter.

  11. Mechanical Properties of High Strength Mortars Made withFine Waste Concrete Aggregates and Ground Granulated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Ali Hassoon Nahhab

    2018-01-01

    Full Text Available The mechanical properties of high strength mortars produced with fine waste concrete aggregate (FWCA and GGBFS were investigated. The natural sand was replaced by FWCA with different levels, namely 0, 25, 50, 75, and 100%. The ordinary Portland cement (OPC was substituted by GGBFS with 0, 30, and 60% by weight. To satisfy the requirements of high strength, all the mortar mixes were made with a 0.25 w/bratio. The hardened mortars were tested for compressive strength, splitting tension, and fracture parametersat different ages.The experimental findings showed that the mixtures with FWCA showed lower strength, fracture energy and toughness compared to the corresponding reference mixes at a given age and GGBFS content. The 30% replacement of OPC by GGBFS improved the strengths of all mixes at 28 and 90 days. Moreover, the use of 30% GGBFS counterbalanced the strength decrement due to the use of the FWCA such that the mixtures with FWCA and GGBFS showed strengths comparable to or even exceeded the strengths of the mixtures made with natural sand only.

  12. Influence of nucleation seeding on the compressive strength of ordinary Portland cement and alkali activated blast-furnace slag

    Science.gov (United States)

    2011-05-10

    The Intelligent Transportation Systems (ITS) Joint Program Office (JPO) of the U.S. Department of Transportation (USDOT) has been collecting the benefits, costs, lessons learned, and deployment status information of ITS. Such information, intended to...

  13. Identification of Phase Composition of Binders from Alkali-Activated Mixtures of Granulated Blast Furnace Slag and Fly Ash

    Czech Academy of Sciences Publication Activity Database

    Vlček, J.; Drongová, L.; Topinková, M.; Matějka, V.; Kukutschová, J.; Vavro, Martin; Tomková, V.

    2014-01-01

    Roč. 58, č. 1 (2014), s. 79-88 ISSN 0862-5468 Institutional support: RVO:68145535 Keywords : binders * alkali activation * hydration products Subject RIV: JM - Building Engineering Impact factor: 0.435, year: 2014 http://www.ceramics-silikaty.cz/2014/pdf/2014_01_079.pdf

  14. Hot metal temperature prediction and simulation by fuzzy logic in a blast furnace; Prediccion y simulacion, mediante logica difusa, de la temperatura de salida del arrabio en un horno alto

    Energy Technology Data Exchange (ETDEWEB)

    Romero, M. A.; Jimenez, J.; Mochon, J.; Formoso, A.; Bueno, F. [Centro Nacional de Investigaciones Metalurgicas CENIM. Madrid (Spain); Menendez, J. L. [ACERALIA. Gijon Asturias (Spain)

    2000-07-01

    This work describes the development and further validation of a model devoted to blast furnace hot metal temperature forecast, based on Fuzzy logic principles. The model employs as input variables, the control variables of an actual blast furnace: Blast volume, moisture, coal injection, oxygen addition, etc. and it yields as a result the hot metal temperature with a forecast horizon of forty minutes. As far as the variables used to develop the model have been obtained from data supplied by an actual blast furnaces sensors, it is necessary to properly analyse and handle such data. Especial attention was paid to data temporal correlation, fitting by interpolation the different sampling rates. In the training stage of the model the ANFIS (Adaptive Neuro-Fuzzy Inference System) and the Subtractive Clustering algorithms have been used. (Author) 9 refs.

  15. Electrical properties of alkali-activated slag composite with combined graphite/CNT filler

    Science.gov (United States)

    Rovnaník, P.; Míková, M.; Kusák, I.

    2017-10-01

    Alkali-activated industrial by-products such as blast furnace slag are known to possess properties which are comparable to or even better than those observed for ordinary Portland cement. The combination of alkali-activated slag matrix with conductive filler introduces new functionalities which are commonly known for self-sensing or self-heating concrete. The present paper discusses the effect of the mixture of two different conductive fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-activated slag mortars. Prepared samples were also tested for their mechanical properties and microstructure was investigated by means of mercury intrusion porosimetry and scanning electron microscopy. The percolation threshold for the resistance was reached for the mixture containing 0.1% CNTs and 8% graphite powder.

  16. Development of Composite Materials Under Ecological Aspects as Recycling Concept For Borosilicate Glass Containing Iron Slags

    International Nuclear Information System (INIS)

    Khalil, T.K.; Bossert, J.; Aly, H.F.; Bossert, J.

    1999-01-01

    Composite concept in materials science can be conveniently applied in the waste treatment technology to construct specific t ailor made c omposite materials, in which at least one of the phases is built by the waste material. In this work the applicability of this concept for the fixation and recycling of slags wastes is done, whereby different mixtures of blast furnace slags are mixed with two different borosilicate glasses, which serve as matrix material. Thermal behaviour of the produced compacts were studied. Both melting and powder technology are applied for the fabrication of dense products. The microstructure of sintered samples is investigated by electron microscopy. The mechanical properties such as hardness and fracture toughness are determined by a Vickers technique. An improvement of the fracture toughness of more than 50% over the value for the original glass VG 98 is achieved by slag addition

  17. Data-Driven Nonlinear Subspace Modeling for Prediction and Control of Molten Iron Quality Indices in Blast Furnace Ironmaking

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping; Song, Heda; Wang, Hong; Chai, Tianyou

    2017-09-01

    Blast furnace (BF) in ironmaking is a nonlinear dynamic process with complicated physical-chemical reactions, where multi-phase and multi-field coupling and large time delay occur during its operation. In BF operation, the molten iron temperature (MIT) as well as Si, P and S contents of molten iron are the most essential molten iron quality (MIQ) indices, whose measurement, modeling and control have always been important issues in metallurgic engineering and automation field. This paper develops a novel data-driven nonlinear state space modeling for the prediction and control of multivariate MIQ indices by integrating hybrid modeling and control techniques. First, to improve modeling efficiency, a data-driven hybrid method combining canonical correlation analysis and correlation analysis is proposed to identify the most influential controllable variables as the modeling inputs from multitudinous factors would affect the MIQ indices. Then, a Hammerstein model for the prediction of MIQ indices is established using the LS-SVM based nonlinear subspace identification method. Such a model is further simplified by using piecewise cubic Hermite interpolating polynomial method to fit the complex nonlinear kernel function. Compared to the original Hammerstein model, this simplified model can not only significantly reduce the computational complexity, but also has almost the same reliability and accuracy for a stable prediction of MIQ indices. Last, in order to verify the practicability of the developed model, it is applied in designing a genetic algorithm based nonlinear predictive controller for multivariate MIQ indices by directly taking the established model as a predictor. Industrial experiments show the advantages and effectiveness of the proposed approach.

  18. Fate of pollutants post treatment of acid mine drainage with basic oxygen furnace slag: Validation of experimental results with a geochemical model

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2017-01-01

    Full Text Available by the water quality guideline. Gypsum and magnetite were also recovered from mine water treatment process using BOF slag hence depicting that there is commercial value from the treatment process....

  19. Energy saving in the pig iron production in the blast furnace no. 5; Ahorro de energia en la produccion de arrabio en el alto horno No. 5

    Energy Technology Data Exchange (ETDEWEB)

    Gil Diaz, Ricardo A.; J Quiroz, Francisco; Rodriguez, Rita Patricia; Banuelos Garza, Yolanda [Altos Hornos de Mexico, S. A., Coahuila (Mexico)

    1993-12-31

    Altos Hornos de Mexico (AHMSA) is an iron and steel industry integrated to Grupo Acereros del Norte in Monclova, in the Coahuila state. With an a installed capacity of 3.1 millions of tons per annum o liquid steel. In its installations, AHMSA has the highest capacity blast furnace installed in Mexico, blast furnace No. 5, that has a useful volume of 2,163 cubic meters, designed to produce 4,800 tons of pig iron per day. The basic goal to achieve in the operations involved in the production of steel through the pig iron production in the blast furnace, is the hot metal production at the lowest attainable cost within the quality requirements specified by the steel makers. The most important criterion for the recognition of the attained success is the fuel consumption per ton of pig iron produced, with coke as the main fuel fed to the blast furnace and therefore of the greatest impact on the final product cost. AHMSA contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently it is pending the shortage of coke for productions higher than 2.6 MMT of liquid iron. In response to this, and faced to the true need of diminishing the production costs in the process of making pig iron, new practices have been implemented in the use of complementary fuels to partially substitute the metallurgical coke as an energy source for the blast furnace process. The use of natural gas, fuel oil and the gradual increase of the temperature of hot blow, have strongly impacted the metallurgical coke consumption, lowering it considerably and diminishing the costs per ton of pig iron in blast furnace No. 5. Another important issue, is the utilization of coke fines resulting form the sieving of the same, directly fed to the furnace load. This practice reduced the coke consumption, and most of all, the output of our coking plants was increased on being utilized at the maximum coke production

  20. Resistance of Alkali Activated Water-Cooled Slag Geopolymer to Sulphate Attack

    Directory of Open Access Journals (Sweden)

    S. A. Hasanein

    2011-06-01

    Full Text Available Ground granulated blast furnace slag is a finely ground, rapidly chilled aluminosilicate melt material that is separated from molten iron in the blast furnace as a by-product. Rapid cooling results in an amorphous or a glassy phase known as GGBFS or water cooled slag (WCS. Alkaline activation of latent hydraulic WCS by sodium hydroxide and/or sodium silicate in different ratios was studied. Curing was performed under 100 % relative humidity and at a temperature of 38°C. The results showed that mixing of both sodium hydroxide and sodium silicate in ratio of 3:3 wt.,% is the optimum one giving better mechanical as well as microstructural characteristics as compared with cement mortar that has various cement content (cement : sand were 1:3 and 1:2. Durability of the water cooled slag in 5 % MgSO4 as revealed by better microstructure and high resistivity-clarifying that activation by 3:3 sodium hydroxide and sodium silicate, respectively is better than using 2 and 6 % of sodium hydroxide.

  1. Changes in water absorptivity of slag based cement mortars exposed to sulphur-oxidising A. thiooxidans bacteria

    Science.gov (United States)

    Estokova, A.; Smolakova, M.; Luptakova, A.; Strigac, J.

    2017-10-01

    Water absorptivity is heavily influenced by the volume and connectivity of pores in the pore network of cement composites and has been used as an important parameter for quantifying their durability. To improve the durability and permeability of mortars, various mineral admixtures such as furnace slag, silica fume or fly ash are added into the mortar and concrete mixtures. These admixtures provide numerous important advantages such as corrosion control, improvement of mechanical and physical properties and better workability. This study investigated the changes in absorptivity of cement mortars with different amounts of mineral admixture, represented by granulated blast furnace slag, under aggressive bacterial influence. The water absorptivity of mortars specimens exposed to sulphur-oxidising bacteria A. thiooxidans for the period of 3 and 6 months has changed due to bio-corrosion-based degradation process. The differences in water absorptivity in dependence on the mortars composition have been observed.

  2. Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag.

    Science.gov (United States)

    Stewart, Douglas I; Bray, Andrew W; Udoma, Gideon; Hobson, Andrew J; Mayes, William M; Rogerson, Mike; Burke, Ian T

    2018-01-25

    Alkalinity generation and toxic trace metal (such as vanadium) leaching from basic oxygen furnace (BOF) steel slag particles must be properly understood and managed by pre-conditioning if beneficial reuse of slag is to be maximised. Water leaching under aerated conditions was investigated using fresh BOF slag at three different particle sizes (0.5-1.0, 2-5 and 10 × 10 × 20 mm blocks) and a 6-month pre-weathered block. There were several distinct leaching stages observed over time associated with different phases controlling the solution chemistry: (1) free-lime (CaO) dissolution (days 0-2); (2) dicalcium silicate (Ca 2 SiO 4 ) dissolution (days 2-14) and (3) Ca-Si-H and CaCO 3 formation and subsequent dissolution (days 14-73). Experiments with the smallest size fraction resulted in the highest Ca, Si and V concentrations, highlighting the role of surface area in controlling initial leaching. After ~2 weeks, the solution Ca/Si ratio (0.7-0.9) evolved to equal those found within a Ca-Si-H phase that replaced dicalcium silicate and free-lime phases in a 30- to 150-μm altered surface region. V release was a two-stage process; initially, V was released by dicalcium silicate dissolution, but V also isomorphically substituted for Si into the neo-formed Ca-Si-H in the alteration zone. Therefore, on longer timescales, the release of V to solution was primarily controlled by considerably slower Ca-Si-H dissolution rates, which decreased the rate of V release by an order of magnitude. Overall, the results indicate that the BOF slag leaching mechanism evolves from a situation initially dominated by rapid hydration and dissolution of primary dicalcium silicate/free-lime phases, to a slow diffusion limited process controlled by the solubility of secondary Ca-Si-H and CaCO 3 phases that replace and cover more reactive primary slag phases at particle surfaces.

  3. Slag viscosity prediction and characterisation Al{sub 2}O{sub 3}-CaO- 'FeO'-SiO{sub 2} and Al{sub 2}O{sub 3}-CaO-'FeO'-MgO-SiO{sub 2} systems

    Energy Technology Data Exchange (ETDEWEB)

    A. Kondratiev; E. Jak; P. Hayes

    2006-02-15

    An integrated research program is being conducted to provide the necessary technical information required to understand the development status of, and reduce the risks associated with, the implementation of advanced, high-efficiency power generation technologies based on coal gasification systems. The melting and flow behaviour of the mineral matter (slag) present in the entrained flow gasifier and iron blast furnace is regarded as a key issue in process design, operation and in coal selection. A comprehensive slag viscosity model is required to accurately predict coal slagging behaviour in the gasifier. A number of the slag viscosity models have been developed over past 20 years. The major constraint of these models is their validity over relatively limited compositional range that does not cover all possible compositions of slags originating from different coals.

  4. Characterization of an ecological binder for mortars obtained from recycling of ladle furnace slag; Caracterizacao de aglomerante ecologico para argamassas obtido a partir da reciclagem de escoria de forno panela

    Energy Technology Data Exchange (ETDEWEB)

    Marinho, A.B.; Santos, C.M.; Fontes, W.C.; Matias, A.C.P.; Brigolini, G.J.; Peixoto, R.A.F. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Departamento de Engenhaira Civil; Carvalho, J.F., E-mail: josemaria.carvalho@ufv.br [Universidade Federal de Vicosa (UFV), MG (Brazil). Departamento de Engenharia Civil

    2016-07-01

    A sustainable binder obtained from recycling of a ladle furnace slag from Piracicaba, Sao Paulo, was produced in Laboratory of Construction Materials of Federal University of Ouro Preto (UFOP). A characterization work was performed and the results are presented. The physical, chemical and mineralogical properties was obtained using, among others, the following techniques: X-ray fluorescence (XRF), X-ray diffraction (XRD) with Rietveld refining method, optical microscopy and Scanning electronic microscopy (SEM) with energy dispersive spectroscopy (EDS). The chemical analysis showed predominance of CaO and SiO{sub 3}; the mineralogical analysis pointed the predominant presence of calcium-olivine, merwinite and pyroxene and; the images showed predominance of angulous and elongated grains. According to results, the material was classified as a hydraulic binder, with characteristics comparable to hydraulic limes. (author)

  5. Design and implementation of a navigation control system for slag ...

    Indian Academy of Sciences (India)

    Masoud Gholami

    2018-03-10

    Mar 10, 2018 ... ment. In Mobarakeh Steel Company which is located in Iran, the produced slag at electric arc furnaces was transported using slag pot carriers. In the absence of a control system to supervise the performance of these vehicles, managing replacement of slag pots was a challenging and difficult task. Although ...

  6. Integrated carbon dioxide/sludge gasification using waste heat from hot slags: syngas production and sulfur dioxide fixation.

    Science.gov (United States)

    Sun, Yongqi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2015-04-01

    The integrated CO2/sludge gasification using the waste heat in hot slags, was explored with the aim of syngas production, waste heat recovery and sewage sludge disposal. The results demonstrated that hot slags presented multiple roles on sludge gasification, i.e., not only a good heat carrier (500-950 °C) but also an effective desulfurizer (800-900 °C). The total gas yields increased from 0.022 kg/kgsludge at 500 °C to 0.422 kg/kgsludge at 900 °C; meanwhile, the SO2 concentration at 900 °C remarkably reduced from 164 ppm to 114 ppm by blast furnace slags (BFS) and 93 ppm by steel slags (SS), respectively. A three-stage reaction was clarified including volatile release, char transformation and fixed carbon using Gaussian fittings and the kinetic model was analyzed. Accordingly, a decline process using the integrated method was designed and the optimum slag/sludge ratio was deduced. These deciphered results appealed potential ways of reasonable disposal of sewage sludge and efficient recovery of waste heat from hot slags. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Immobilization of antimony waste slag by applying geopolymerization and stabilization/solidification technologies.

    Science.gov (United States)

    Salihoglu, Güray

    2014-11-01

    During the processing of antimony ore by pyrometallurgical methods, a considerable amount of slag is formed. This antimony waste slag is listed by the European Union as absolutely hazardous waste with a European Waste Catalogue code of 10 08 08. Since the levels of antimony and arsenic in the leachate of the antimony waste slag are generally higher than the landfilling limits, it is necessary to treat the slag before landfilling. In this study, stabilization/solidification and geopolymerization technologies were both applied in order to limit the leaching potential of antimony and arsenic. Different combinations ofpastes by using Portland cement, fly ash, clay, gypsum, and blast furnace slag were prepared as stabilization/solidification or geopoljymer matrixes. Sodium silicate-sodium hydroxide solution and sodium hydroxide solution at 8 M were used as activators for geopolymer samples. Efficiencies of the combinations were evaluated in terms of leaching and unconfined compressive strength. None of the geopolymer samples prepared with the activators yielded arsenic and antimony leaching below the regulatory limit at the same time, although they yielded high unconfined compressive strength levels. On the other hand, the stabilization/solidification samples prepared by using water showed low leaching results meeting the landfilling criteria. Use of gypsum as an additive was found to be successful in immobilizing the arsenic and antimony.

  8. The Influence of Allocation on the Carbon Footprint of Electricity Production from Waste Gas, a Case Study for Blast Furnace Gas

    Directory of Open Access Journals (Sweden)

    Joeri Van Mierlo

    2013-03-01

    Full Text Available Producing electricity from waste gas is an after treatment for waste gas while recovering the energy content. This paper addresses the methodology to calculate the effect that waste gas energy recovery has on lowering the impact of climate change. Greenhouse gases are emitted while burning the waste gas. However, a thorough study should include the production of the feedstock as well as the production of the infrastructure. A framework is developed to calculate the environmental impact of electricity production from waste gas with a life cycle approach. The present paper has a twofold purpose: to assess the climate change impact of generating electricity with blast furnace gas (BFG as a waste gas from the steel industry; and to establish a sensitivity assessment of the environmental implications of different allocation rules.

  9. Moessbauer study of ancient iron smelting slag in Japan

    International Nuclear Information System (INIS)

    Nakanishi, A.

    2008-01-01

    For an investigation of the ancient iron manufacturing technique, a reproducing experiment was carried out by archaeologists, where ancient type of iron smelting furnace was built and iron sand with high titanium contents was used as the raw material. During the operation of furnace, a large amount of slag flowed away from the furnace. In order to investigate the possibility for the estimation about the operative condition of furnace and the raw material, 57 Fe Moessbauer spectroscopy was applied for characterizing these slags and it was found that these slags mainly consisted of ferropseudobrookite (FeTi 2 O 5 ).

  10. Phase equilibria between iron and slag in carbon monoxide/carbon dioxide/water atmospheres relevant to a novel flash ironmaking technology

    Science.gov (United States)

    Mohassab Ahmed, Mohassab Yousef

    In an effort to develop a novel flash ironmaking process, to be called the Sohn process in this dissertation, with the potential of steelmaking in a single continuous process, the phase equilibria involved and the chemistry of selected slag systems were investigated. The Sohn process is an ecofriendly flash ironmaking process for producing iron from iron oxide concentrates in a flash reactor using fuels and reductants that help reduce energy consumption and minimize greenhouse gas emissions. Amongst the proposed reductants and fuels are H2, natural gas, and coal gas. The molten bath (iron-slag bath) is expected to equilibrate with gas atmospheres of mainly H2/H 2O, CO/CO2/H2/H2O, and CO/CO2 corresponding to H2, natural gas/coal gas (NG/CG), and coke/coal (blast furnace, BF), respectively. The latter was investigated to allow comparison with the blast-furnace conditions. The slag composition was selected to resemble that of the blast furnace, which consisted of the CaO-MgO-SiO2-Al 2O2-FeO-MnO-P2O5 system with CaO/SiO 2 in the range 0.8 to 1.4. The temperature range was 1550 to 1650°C encompassing a wide range of expected ironmaking temperatures for the Sohn process. The oxygen partial pressure was maintained in the reducing range 10-10 to 10-9 atm in the three gas atmospheres. It was found that H2O dramatically affects the chemistry of the slag and strongly affects the phase equilibria in the slag as well as the equilibrium distribution of elements between slag and molten metal. It was found that the slags under H2O-containing (H2 and NG/CG) atmospheres had a moderately higher degree of polymerization as compared to that under the blast furnace conditions. H2O in the gas atmosphere also increased the activity coefficient of FeO in the slag and accordingly lowered the FeO content. The FeO content in the slag of H 2 (FeO wt% = 10) and NG/CG (11) was significantly less than under the BF (16) conditions. On the other hand, the average MgO solubility (22 wt%) under the

  11. Properties of slag concrete for low-level waste containment

    International Nuclear Information System (INIS)

    Langton, C.A.; Wong, P.B.

    1991-01-01

    Ground granulated blast furnace slag was incorporated in the concrete mix used for construction of low-level radioactive waste disposal vaults. The vaults were constructed as six 100 x 100 x 25 ft cells with each cell sharing internal walls with the two adjacent cells. The vaults were designed to contain a low-level radioactive wasteform called saltstone and to isolate the saltstone from the environment until the landfill is closed. Closure involves backfilling with native soil, installation of clay cap, and run-off control. The design criteria for the slag-substituted concrete included compressive strength, 4000 psi after 28 days; slump, 6 inch; permeability, less than 10 -7 cm/sec; and effective nitrate, chromium and technetium diffusivities of 10 -8 , 10 -12 and 10 -12 cm 2 /sec, respectively. The reducing capacity of the slag resulted in chemically reducing Cr +6 to Cr +3 and Tc +7 to Tc +4 and subsequent precipitation of the respective hydroxides in the alkaline pore solution. Consequently, the concrete vault enhances containment of otherwise mobile waste ions and contributes to the overall protection of the groundwater at the disposal site

  12. Research on the use of Ferro-Chrome slag in civil engineering applications

    Directory of Open Access Journals (Sweden)

    Al-Jabri Khalifa S.

    2018-01-01

    Full Text Available Over recent decades there has been rapid increase in the industrial waste materials and by-products yields due to the progressive growth rate of population, development of industry and technology and the growth of consumerism. With the growing environmental pressures to reduce waste and pollution, Intensive research studies have been conducted to explore all suitable reuse methods. Wastes such as construction waste, blast furnace, steel slag, coal fly ash and bottom ash have been approved in many places as alternative materials in bridges, roads, pavements, foundations and building construction. The use of industrial solid waste as a partial replacement of raw materials in construction activities not only saves landfill space but also reduces the demand for extraction of natural raw materials. Ferrochrome slag is a by-product from the production of chrome. There are environmental and economic advantages in seeing slags as a potentially useful resource rather than as waste products. Slag management at ferrochrome producing companies has been influenced by the limited space available and financial cost implications of the slag dumps. Internationally, e.g. South Africa, India, Norway, Turkey, East Europe, China, Sweden and USA, ferrochrome slag is used commercially in the road and construction Industries. This material is being used for road construction, as aggregates in concrete industry, brick manufacturing, and in pavement construction as engineering fill and has recently been tried in cement. This paper presents an overview of the recent advances of the use of ferrochrome slag in various civil engineering applications such as road construction, and cement and concrete industries.

  13. Study of the mineral matter distribution in pulverized fuel coals with respect to slag deposit formation in boiler furnaces. Phase 1. Final report, 1 April 1976-30 June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Austin, L.G..; Moza, A.K.; Abbott, M.F.; Singh, S.N.; Trimarchi, T.J.

    1980-07-01

    The work reported here is aimed at understanding the initiation of upper wall slag deposits in pulverized coal fired utility boilers, and characterizing pulverized coals for the mineral elements of significance. A scanning electron microscope with x-ray fluorescence capability, under computer control, has been used to analyze individual coal particles for the elements Si, Al, Ca, Fe and S. The required software for these analyses has been developed, as have suitable sample preparation techniques. The results show many different types of particles to exist in pulverized coal, some of which are likely to be bad-acting in terms of slagging. A test has been developed to study the sticking of melted pellets of ash or mineral matter dropped onto a metal substrate held at a controlled temperature. It was found that for a given drop composition and substrate material there is a substrate temperature below which the drop will not adhere. At higher substrate temperatures the strength of adhesion increases logarithmically. Sticking appears to be a function of the oxidation of the surface or of alkalies deposited on the surface. If the drop composition is such that material absorbed from the substrate fluxes the drop-substrate interface, then the apparent contact angle is reduced and sticking is enhanced, and vice-versa. A small-scale pulverized coal furnace designed to give a uniform temperature-time history for each particle was reconstructed and tested. Water-cooled probes were found to give the most accurate control of initial probe temperature. Deposits initiate on the probe in a few minutes, and the fall of probe temperature can be used to indicate the growth of deposit. Systematic investigation of the particles initiating the deposit have not yet been performed.

  14. Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases

    International Nuclear Information System (INIS)

    Sun, Yongqi; Seetharaman, Seshadri; Liu, Qianyi; Zhang, Zuotai; Liu, Lili; Wang, Xidong

    2016-01-01

    In this study, the thermodynamics of a novel strategy, i.e., biomass/CO 2 gasification integrated with heat recovery from hot slags in the steel industry, were systemically investigated. Both the target syngas yield and the polluting gas release were considered where the effect of gasifying conditions including temperature, pressure and CO 2 reacted was analyzed and then the roles of hot slags were further clarified. The results indicated that there existed an optimum temperature for the maximization of H 2 production. Compared to blast furnace slags, steel slags remarkably increased the CO yield at 600–1400 °C due to the existence of iron oxides and decreased the S-containing gas releases at 400–700 °C, indicating potential desulfurizing ability. The identification of biomass/CO 2 gasification thermodynamics in presence of slags could thus provide important clues not only for the deep understanding of biomass gasification but also for the industrial application of this emerging strategy from the viewpoint of syngas optimization and pollution control. - Highlights: • Biomass/CO 2 gasification was integrated with the heat recovery from hot slags. • Both syngas yield and polluting gas release during gasification were determined. • There existed an optimum temperature for the maximization of H 2 production. • Steel slags increased CO yield at 600–1400 °C due to the existence of iron oxides. • Steel slags remarkably decreased the releases of S-containing gas at 400–700 °C.

  15. PRODUCTION OF PAVING BLOCK AND KERB INCORPORATING BLASTFURNACE SLAG

    Directory of Open Access Journals (Sweden)

    İsa YÜKSEL

    2007-02-01

    Full Text Available This paper presents results of an experimental study about partial substitution of granulated blast-furnace slag (GBFS as fine aggregate in production of concrete paving blocks and kerbs. GBFS is replaced sand for different GBFS/sand ratios in concrete during production of kerb and paving block specimens. Some tests orienting towards strength and durability were applied on these specimens including control specimens that are produced with normal concrete. Then, the results of tested properties of GBFS-replaced specimens and control specimens were compared. GBFS decreases the compressive strength of paving blocks and kerbs according to the results. However, some durability properties which are more important than strength for these elements are improved with GBFS replacement. The most improved property was abrasion resistance. It is concluded that it is feasible to use GBFS in paving block and kerb production with an optimum replacement ratio for these specimens.

  16. Treatment of LF slag to prevent powdering during cooling

    Directory of Open Access Journals (Sweden)

    Ghorai S.

    2017-01-01

    Full Text Available The polymorphic transformation of the monoclinic β-polymorph to the orthorhombic γ-polymorph of di-calcium silicate at around 500°C during cooling results in disintegration of slag. The slag generated, during the production of thermo mechanically treated steel in ladle furnace at M/s Tata Steel Limited, Jamshedpur, India, behaves in similar manner. An attempt has been made to prevent the crumbling of ladle furnace slag. The experiments were conducted in 10 kg air induction furnace. Various types of silica source were used to prevent the disintegration of ladle furnace slag by reducing the basicity and optimizing the additives amount. Apart from silica sources, other additives like borax and barium carbonate were also used to stabilize the β phase. Present investigation reveals that disintegration of ladle furnace slag can be prevented either by addition of 0.2% boarx or 2% barium carbonate. Dust formation can also be prevented by decreasing the ladle furnace slag basicity to about 1.7. Toxicity Characteristic Leaching Procedure test, of the borax and barium carbonate treated slag samples, indicates that barium carbonate treated slag cannot be used for the dusting prevention as it contains high level of barium.

  17. THE IMPACT OF DISSOLVED SALTS ON PASTES CONTAINING FLY ASH, CEMENT AND SLAG

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, J.; Edwards, T.; Williams, V.

    2009-09-21

    The degree of hydration of a mixture of cementitious materials (Class F fly ash, blast furnace slag and portland cement) in highly concentrated alkaline salt solutions is enhanced by the addition of aluminate to the salt solution. This increase in the degree of hydration, as monitored with isothermal calorimetry, leads to higher values of dynamic Young's modulus and compressive strength and lower values of total porosity. This enhancement in performance properties of these cementitious waste forms by increased hydration is beneficial to the retention of the radionuclides that are also present in the salt solution. The aluminate ions in the solution act first to retard the set time of the mix but then enhance the hydration reactions following the induction period. In fact, the aluminate ions increase the degree of hydration by {approx}35% over the degree of hydration for the same mix with a lower aluminate concentration. An increase in the blast furnace slag concentration and a decrease in the water to cementitious materials ratio produced mixes with higher values of Young's modulus and lower values of total porosity. Therefore, these operational factors can be fine tuned to enhance performance properties of cementitious waste form. Empirical models for Young modulus, heat of hydration and total porosity were developed to predict the values of these properties. These linear models used only statistically significant compositional and operational factors and provided insight into those factors that control these properties.

  18. Use of plastics in blast furnace processes: A contribution to ecologically and economically acceptable recycling of plastic waste; Kunststoffverwertung im Hochofen - ein Beitrag zum oekologischen und oekonomischen Recycling von Altkunststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Janz, J. [Stahlwerke Bremen GmbH (Germany)

    1996-12-31

    The use of plastics in blast furnace processes has a number of advantages. For one thing, existing facilities can be used with only slight reconstruction measures. Next, the blast furnace process does not necessarily require plastics and therefore is independent of the available plastics volume. Further, it has a high utilisation potential. For example, the Bremen blast furnace No. II has only 8 nozzles out of 32 which are suited for plastics, but it can utilize 70,000 t/a, which is more than 13 percent of the total plastics volume collected by DSD. Indepenent eco-balances have shown that there is no better technology on the market at the moment. (orig) [Deutsch] Mit der Kunststoffverwertung im Hochofen steht ein Verfahren zur Verfuegung, das sich gleich in mehrfacher Hinsicht vor der Konkurrenz auszeichnet. Im Gegensatz zu anderen Verwertungen wird eine bereits vorhandene Anlage genutzt, an der lediglich zusatzeinrichtungen benoetigt werden. Gleichzeitig wird abfallpolitische Flexibilitaet dadurch erreicht, dass der Hochofen nicht auf das Reduktionsmittel Kunststoff angewiesen ist. Von wesentlicher Bedeutung ist auch die hohe Verwertungskapazitaet eines Hochofens. Unabhaengige Oekobilanzen und eigene Messungen haben zweifelsfrei gezeigt, dass ein besseres Verfahren zur Zeit nicht auf dem Markt ist. (orig)

  19. Data-Driven Robust RVFLNs Modeling of a Blast Furnace Iron-Making Process Using Cauchy Distribution Weighted M-Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ping; Lv, Youbin; Wang, Hong; Chai, Tianyou

    2017-09-01

    Optimal operation of a practical blast furnace (BF) ironmaking process depends largely on a good measurement of molten iron quality (MIQ) indices. However, measuring the MIQ online is not feasible using the available techniques. In this paper, a novel data-driven robust modeling is proposed for online estimation of MIQ using improved random vector functional-link networks (RVFLNs). Since the output weights of traditional RVFLNs are obtained by the least squares approach, a robustness problem may occur when the training dataset is contaminated with outliers. This affects the modeling accuracy of RVFLNs. To solve this problem, a Cauchy distribution weighted M-estimation based robust RFVLNs is proposed. Since the weights of different outlier data are properly determined by the Cauchy distribution, their corresponding contribution on modeling can be properly distinguished. Thus robust and better modeling results can be achieved. Moreover, given that the BF is a complex nonlinear system with numerous coupling variables, the data-driven canonical correlation analysis is employed to identify the most influential components from multitudinous factors that affect the MIQ indices to reduce the model dimension. Finally, experiments using industrial data and comparative studies have demonstrated that the obtained model produces a better modeling and estimating accuracy and stronger robustness than other modeling methods.

  20. Method of operating a centrifugal plasma arc furnace

    International Nuclear Information System (INIS)

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe 3 O 4 . Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe 2 O 3 . Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs

  1. Data-Driven Robust M-LS-SVR-Based NARX Modeling for Estimation and Control of Molten Iron Quality Indices in Blast Furnace Ironmaking.

    Science.gov (United States)

    Zhou, Ping; Guo, Dongwei; Wang, Hong; Chai, Tianyou

    2017-09-29

    Optimal operation of an industrial blast furnace (BF) ironmaking process largely depends on a reliable measurement of molten iron quality (MIQ) indices, which are not feasible using the conventional sensors. This paper proposes a novel data-driven robust modeling method for the online estimation and control of MIQ indices. First, a nonlinear autoregressive exogenous (NARX) model is constructed for the MIQ indices to completely capture the nonlinear dynamics of the BF process. Then, considering that the standard least-squares support vector regression (LS-SVR) cannot directly cope with the multioutput problem, a multitask transfer learning is proposed to design a novel multioutput LS-SVR (M-LS-SVR) for the learning of the NARX model. Furthermore, a novel M-estimator is proposed to reduce the interference of outliers and improve the robustness of the M-LS-SVR model. Since the weights of different outlier data are properly given by the weight function, their corresponding contributions on modeling can properly be distinguished, thus a robust modeling result can be achieved. Finally, a novel multiobjective evaluation index on the modeling performance is developed by comprehensively considering the root-mean-square error of modeling and the correlation coefficient on trend fitting, based on which the nondominated sorting genetic algorithm II is used to globally optimize the model parameters. Both experiments using industrial data and industrial applications illustrate that the proposed method can eliminate the adverse effect caused by the fluctuation of data in BF process efficiently. This indicates its stronger robustness and higher accuracy. Moreover, control testing shows that the developed model can be well applied to realize data-driven control of the BF process.

  2. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Ivan, E-mail: ivan.mikhailov@misis.ru [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation); Komarov, Sergey [Tohoku University, 6-6-02 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8576 (Japan); Levina, Vera; Gusev, Alexander; Issi, Jean-Paul; Kuznetsov, Denis [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation)

    2017-01-05

    Highlights: • nZVI is used as Fenton-like reagent for activation of Zn leaching from the BFS. • nZVI has positive effect on kinetics of Zn leaching though with some loss of efficiency. • A complex ultrasonic-assisted method for BFS recycling is proposed. - Abstract: Ultrasonic-assisted sulphuric acid leaching combined with a Fenton-like process, utilizing nanoscale zero-valent iron (nZVI), was investigated to enhance the leaching of zinc from the blast furnace sludge (BFS). The leaching of iron (Fe) and zinc (Zn) from the sludge was investigated using Milli-Q water/BFS ratio of 10 and varying the concentration of hydrogen peroxide, sulphuric acid, the temperature, the input energy for ultrasound irradiation, and the presence or absence of nZVI as a Fenton reagent. The results showed that with 1 g/l addition of nZVI and 0.05 M of hydrogen peroxide, the kinetic rate of Zn leaching increased with a maximum dissolution degree of 80.2%, after 5 min treatment. In the absence of nZVI, the maximum dissolution degree of Zn was 99.2%, after 15 min treatment with 0.1 M of hydrogen peroxide. The rate of Zn leaching at several concentrations of hydrogen peroxide is accelerated in the presence of nZVI although a reduction in efficiency was observed. The loss of Fe was no more than 3%. On the basis of these results, the possible route for BFS recycling has been proposed (BFS slurry mixed with sulphuric acid and hydrogen peroxide is recirculated under ultrasonic irradiation then separated).

  3. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  4. Verification of Steelmaking Slags Iron Content Final Technical Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    J.Y. Hwang

    2006-10-04

    The steel industry in the United States generates about 30 million tons of by-products each year, including 6 million tons of desulfurization and BOF/BOP slag. The recycling of BF (blast furnace) slag has made significant progress in past years with much of the material being utilized as construction aggregate and in cementitious applications. However, the recycling of desulfurization and BOF/BOP slags still faces many technical, economic, and environmental challenges. Previous efforts have focused on in-plant recycling of the by-products, achieving only limited success. As a result, large amounts of by-products of various qualities have been stockpiled at steel mills or disposed into landfills. After more than 50 years of stockpiling and landfilling, available mill site space has diminished and environmental constraints have increased. The prospect of conventionally landfilling of the material is a high cost option, a waste of true national resources, and an eternal material liability issue. The research effort has demonstrated that major inroads have been made in establishing the viability of recycling and reuse of the steelmaking slags. The research identified key components in the slags, developed technologies to separate the iron units and produce marketable products from the separation processes. Three products are generated from the technology developed in this research, including a high grade iron product containing about 90%Fe, a medium grade iron product containing about 60% Fe, and a low grade iron product containing less than 10% Fe. The high grade iron product contains primarily metallic iron and can be marketed as a replacement of pig iron or DRI (Direct Reduced Iron) for steel mills. The medium grade iron product contains both iron oxide and metallic iron and can be utilized as a substitute for the iron ore in the blast furnace. The low grade iron product is rich in calcium, magnesium and iron oxides and silicates. It has a sufficient lime value and

  5. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Na; Li, Hongxu [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Yazhao [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xiaoming, E-mail: liuxm@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-04-05

    Highlights: • Cementitious material was designed according to [SiO{sub 4}] polymerization degree of raw materials. • The cementitious material composed of calcium silicate slag yields excellent physical and mechanical properties. • Amorphous C–A–S–H gel and rod-like ettringite are predominantly responsible for the strength development. • Leaching toxicity and radioactivity tests show the cementitious material is environmentally acceptable. - Abstract: Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al{sub 2}O{sub 3} from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C–A–S–H gel, rod-like ettringite and hexagonal-sheet Ca(OH){sub 2} with small amount of zeolite-like minerals such as CaAl{sub 2}Si{sub 2}O{sub 8}·4H{sub 2}O and Na{sub 2}Al{sub 2}Si{sub 2}O{sub 8}·H{sub 2}O. As the predominant hydration products, rod-like ettringite and amorphous C–A–S–H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  6. Studying the effect of thermal and acid exposure on alkali activated slag Geopolymer

    Directory of Open Access Journals (Sweden)

    Khater H.M.

    2014-04-01

    Full Text Available This article reports a study about thermal stability as well as acid resistance of geopolymer materials prepared from Ground Granulated Blast Furnace Slag (GGBFS, Air Cooled Slag (ACS, Silica fume (SF and cement kiln dust (CKD using 6% (weight of equal mix from alkaline sodium hydroxide and sodium silicate activators. Study of addition of ACS, SF and CKD as partial replacement of GGBFS is investigated so as to improve the mechanical and microstructural properties of geopolymer mixes. Compressive strength and SEM were utilized in these studies. Materials were prepared using water/binder of 0.30 at 38°C and 100% RH. Results showed that geopolymer materials prepared using alkali activated slag exhibit large changes in compressive strength with increasing the firing temperature from 300 to 1000°C and exhibit an enhancement in thermal stability as compared to concrete specimens. Materials prepared by replacing GGBFS by 15% ACS resist thermal deterioration up to 1000°C. It was suggested to be suitable for refractory insulation applications as well as for production of nuclear concrete reactors. On the other hand, geopolymer mixes exhibit low stability upon subjecting to different concentration from the mix of nitric and hydrochloric acid in equal ratio (1:1. Current studies of geopolymer microstructure were focused on the morphology as well as the relationship between compositions and mechanical properties.

  7. The influence of metakaolin substitution by slag in alkali-activated inorganic binders for civil engineering

    Science.gov (United States)

    Kadlec, J.; Rieger, D.; Kovářík, T.; Novotný, P.; Franče, P.; Pola, M.

    2017-02-01

    In this study the effect of metakaolin replacement by milled blast furnace slag in alkali-activated geopolymeric binder was investigated in accordance to their rheological and mechanical properties. It was demonstrated that slag addition into the metakaolin binder can improve mechanical properties of final products. Our investigation was focused on broad interval of metakaolin substitution in the range from 100 to 40 volume per cents of metakaolin so that the volume content of solids in final binder was maintained constant. Prepared binders were activated by alkaline solution of potassium silicate with silicate module of 1.61. The particle size analyses were performed for determination of particle size distribution. The rheological properties were determined in accordance to flow properties by measurements on Ford viscosity cup and by oscillatory measurements of hardening process. For the investigation of hardening process, the strain controlled small amplitude oscillatory rheometry was used in plane-plate geometry. For determination of applied mechanical properties were binders filled by ceramic grog in the granularity range 0-1 mm. The filling was maintained constant at 275 volume per cents in accordance to ratio of solids in dry binder. The mechanical properties were investigated after 1, 7 and 28 days and microstructure was documented by scanning electron microscopy. The results indicate that slag addition have beneficial effect not only on mechanical properties of hardened binder but also on flow properties of fresh geopolymer paste and subsequent hardening kinetics of alkali-activated binders.

  8. Mechanical and leaching behaviour of slag-cement and lime-activated slag stabilised/solidified contaminated soil.

    Science.gov (United States)

    Kogbara, Reginald B; Al-Tabbaa, Abir

    2011-05-01

    Stabilisation/solidification (S/S) is an effective technique for reducing the leachability of contaminants in soils. Very few studies have investigated the use of ground granulated blast furnace slag (GGBS) for S/S treatment of contaminated soils, although it has been shown to be effective in ground improvement. This study sought to investigate the potential of GGBS activated by cement and lime for S/S treatment of a mixed contaminated soil. A sandy soil spiked with 3000mg/kg each of a cocktail of heavy metals (Cd, Ni, Zn, Cu and Pb) and 10,000mg/kg of diesel was treated with binder blends of one part hydrated lime to four parts GGBS (lime-slag), and one part cement to nine parts GGBS (slag-cement). Three binder dosages, 5, 10 and 20% (m/m) were used and contaminated soil-cement samples were compacted to their optimum water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability and acid neutralisation capacity (ANC) tests with determination of contaminant leachability at the different acid additions. UCS values of up to 800kPa were recorded at 28days. The lowest coefficient of permeability recorded was 5×10(-9)m/s. With up to 20% binder dosage, the leachability of the contaminants was reduced to meet relevant environmental quality standards and landfill waste acceptance criteria. The pH-dependent leachability of the metals decreased over time. The results show that GGBS activated by cement and lime would be effective in reducing the leachability of contaminants in contaminated soils. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Glassy slags for minimum additive waste stabilization

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Dietz, N.L.; Gong, M.; Emery, J.W.

    1994-05-01

    Glassy slag waste forms are being developed to complement glass waste forms in implementing Minimum Additive Waste Stabilization (MAWS) for supporting DOE's environmental restoration efforts. The glassy slag waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. The MAWS approach was adopted by blending multiple waste streams to achieve up to 100% waste loadings. The crystalline phases, such as spinels, are very durable and contain hazardous and radioactive elements in their lattice structures. These crystalline phases may account for up to 80% of the total volume of slags having over 80% metal loading. The structural bond strength model was used to quantify the correlation between glassy slag composition and chemical durability so that optimized slag compositions were obtained with limited crucible melting and testing. Slag compositions developed through crucible melts were also successfully generated in a pilot-scale Retech plasma centrifugal furnace at Ukiah, California. Utilization of glassy slag waste forms allows the MAWS approach to be applied to a much wider range of waste streams than glass waste forms. The initial work at ANL has indicated that glassy slags are good final waste forms because of (1) their high chemical durability; (2) their ability to incorporate large amounts of metal oxides; (3) their ability to incorporate waste streams having low contents of flux components; (4) their less stringent requirements on processing parameters, compared to glass waste forms; and (5) their low requirements for purchased additives, which means greater waste volume reduction and treatment cost savings

  10. COAL SLAGGING AND REACTIVITY TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

    2003-10-01

    conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

  11. Comparison of Hexavalent Chromium Leaching Levels of Zeoliteand Slag-based Concretes

    Science.gov (United States)

    Oravec, Jozef; Eštoková, Adriana

    2017-06-01

    In this experiment, the reference concrete samples containing Portland cement as binder and the concrete samples with the addition of ground granulated blast furnace slag (85% and 95%, respectively as replacement of Portland cement) and other samples containing ground zeolite (8% and 13%, respectively as replacement of Portland cement) were analyzed regarding the leachability of chromium. The prepared concrete samples were subjected to long-term leaching test for 300 days in three different leaching agents (distilled water, rainwater and Britton-Robinson buffer). Subsequently, the concentration of hexavalent chromium in the various leachates spectrophotometrically was measured. The leaching parameters as values of the pH and the conductivity were also studied. This experiment clearly shows the need for the regulation and control of the waste addition to the construction materials and the need for long-term study in relation to the leaching of heavy metals into the environment.

  12. Tracer tests on furnaces at Metalloys Limited

    International Nuclear Information System (INIS)

    Smith, D.J.; Wedepohl, A.

    1983-01-01

    During 1980, thirteen double tests were carried out with five radioactive isotopes on three furnaces at Metalloys Limited, near Meyerton. Each double test involved the introduction of a sample of coke impregnated with lanthanum and a sample of irradiated manganese ore ( 54 Mn or 59 Fe), irradiated quartzite ( 46 Sc), or irradiated coal ( 46 Sc, 59 Fe, and 60 Co). The tests were conducted on the three large furnaces for the production of high-carbon ferromanganese, viz M10, M11, and M12. The radioactivity of samples of the metal and the slag leaving the furnace was measured by the Isotopes and Activation Division of the Atomic Energy Board (AEB). Response curves and computer analyses are presented on the elution of the tracers from the furnaces. The response curves for the tracers, which were inserted close to the electrodes, are discussed so that the salient differences between their passage through the three furnaces can be established. The results obtained give support to the findings of a dig-out carried out on furnace M10 during 1977. The metal and slag products of furnace M12 were subjected to mineralogical investigation so that the major phases in the furnace products could be determined. Details of the calculation of the mean residence time for material in furnace M12 are given in an appendix

  13. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  14. INFLUENCE OF THE MODERN SYSTEMS OF THE BLAST STEEL-FURNACE ELECTRICAL PARAMETERS CONTROL ON CAPACITY AND TECHNICAL AND ECONOMICAL INDICES OF MELTING

    Directory of Open Access Journals (Sweden)

    D. N. Andrianov

    2006-01-01

    Full Text Available The reduction of time under the current, electric energy rate, electrodes rate at working of arc steel-furnace with new transformer of capacity 95 MBA and with regulating system SIMELT-AC-NEC are noted.

  15. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    Hopewell Furnace, located approximately 50 miles northwest of Philadelphia, was a cold-blast, charcoal iron furnace that operated for 113 years (1771 to 1883). The purpose of this study by the U.S. Geological Survey, in cooperation with the National Park Service, was to determine the distribution of trace metals released to the environment from an historical iron smelter at Hopewell Furnace National Historic Site (NHS). Hopewell Furnace used iron ore from local mines that contained abundant magnetite and accessory sulfide minerals enriched in arsenic, cobalt, copper, and other metals. Ore, slag, cast iron furnace products, soil, groundwater, stream base flow, streambed sediment, and benthic macroinvertebrates were sampled for this study. Soil samples analyzed in the laboratory had concentrations of trace metals low enough to meet Pennsylvania Department of Environmental Protection standards for non-residential use. Groundwater samples from the supply well met U.S. Environmental Protection Agency drinking-water regulations. Concentrations of metals in surface-water base flow at the five stream sampling sites were below continuous concentration criteria for protection of aquatic organisms. Concentrations of metals in sediment at the five stream sites were below probable effects level guidelines for protection of aquatic organisms except for copper at site HF-3. Arsenic, copper, lead, zinc, and possibly cobalt were incorporated into the cast iron produced by Hopewell Furnace. Manganese was concentrated in slag along with iron, nickel, and zinc. The soil near the furnace has elevated concentrations of chromium, copper, iron, lead, and zinc compared to background soil concentrations. Concentrations of toxic elements were not present at concentrations of concern in water, soil, or stream sediments, despite being elevated in ore, slag, and cast iron furnace products. The base-flow surface-water samples indicated good overall quality. The five sampled sites generally had

  16. Finite element modelling of electric currents in AC submerged arc furnaces

    CSIR Research Space (South Africa)

    Mc Dougall, I

    2007-01-01

    Full Text Available Finite element models were generated of two submerged arc furnaces of different geometries. A 48MW circular furnace and a 68MW 6-in-line rectangular furnace were studied. The electrodes, raw material, slag and molten metal were included in the model...

  17. Uranium casting furnace automatic temperature control development

    International Nuclear Information System (INIS)

    Lind, R.F.

    1992-01-01

    Development of an automatic molten uranium temperature control system for use on batch-type induction casting furnaces is described. Implementation of a two-color optical pyrometer, development of an optical scanner for the pyrometer, determination of furnace thermal dynamics, and design of control systems are addressed. The optical scanning system is shown to greatly improve pyrometer measurement repeatability, particularly where heavy floating slag accumulations cause surface temperature gradients. Thermal dynamics of the furnaces were determined by applying least-squares system identification techniques to actual production data. A unity feedback control system utilizing a proportional-integral-derivative compensator is designed by using frequency-domain techniques. 14 refs

  18. Immobilisation of lead smelting slag within spent aluminate-fly ash based geopolymers.

    Science.gov (United States)

    Ogundiran, M B; Nugteren, H W; Witkamp, G J

    2013-03-15

    This study presents the solidification/stabilisation and immobilisation of lead smelting slag (LSS) by its incorporation in coal fly ash - blast furnace slag based geopolymers. It also explores the use of a spent aluminium etching solution (AES) as geopolymer activator instead of the commonly used silicate solutions. The compressive strength of the geopolymers produced with the AES was lower than when applying a K-silicate solution as activator (100MPa versus 80MPa after 28 days). Compressive strength was not affected when up to 10% of the FA was replaced by LSS. NEN 12457-4, TCLP, SPLP and NEN 7375 leaching tests indicated that mobile Pb from LSS was highly immobilised. The diffusion leaching test NEN 7375 revealed exceeding of the Dutch Soil Quality Regulation threshold limits only for Se and Sb. On the condition that the remaining excess leaching can be reduced by further refinement of the mixture recipes, the proposed process will have the potential of producing waste-based construction materials that may be applied under controlled conditions in specific situations. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Treatment of radioactive metallic waste by the electro-slag melting method

    International Nuclear Information System (INIS)

    Ochiai, Atsuhiro; Nagura, Kanetake; Noura, Tsuyoshi

    1983-01-01

    The applicability of the electro-slag melting method for treating plutonuim contaminated metallic waste was studied. A 100kg test furnace was built and simulated metallic waste was melted and solidified in this furnace. Waste volume was reduced to 1/25 with a decontamination factor of 25 and the slag and the copper mold are repeatedly usable. The process is expected to be employed in the project of PWTF (Plutonium contaminated Wate Treatment Facilities). (author)

  20. A Review on the Dissection of Quenched Blast Furnaces—Spanning from the Early 1950s to the 1970s

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-10-01

    Full Text Available Since its invention until the 1950s, the iron blast furnace was viewed as a strange ‘black box’. Its operation was largely empirical and much of the information needed for monitoring and control of the process was yet to be known. More complete information was needed concerning the process such as the reduction of iron-bearing raw materials, the distribution of materials throughout the stack, the size, location, and structure of the fusion zone, and the transfer of silicon, sulfur, and carbon to the slag and metal. Hence, to obtain a better understanding of the blast furnace process, some iron-makers came up with the idea of quenching the contents of the furnace following normal operations. This was done in a neutral nitrogen atmosphere. The quenched contents were then sampled for analysis. Thus, this paper was written to discuss such works, spanning from the early 1950s to the 1970s. Care has been taken to include most of their findings and readers who have a fair amount of iron-making knowledge should be able to see and understand the in-furnace phenomena as the ‘black box’ unfolds itself. Most of the text will be focused on two important studies into the matter, the first being the U.S. Bureau of Mines case in 1959 and the next being the Iron and Steel Institute of Japan (ISIJ studies in the 1970s. The contribution of these works to modern day blast furnace operation is also discussed in the paper.

  1. STUDY OF OPERATION OF ARC STEEL FURNACE WITH CONOID BAY FLUSHING OF STEEL

    Directory of Open Access Journals (Sweden)

    M. A. Murikov

    2008-01-01

    Full Text Available The construction of the arc steel-furnace bay, the application of which allows to increase the speed of flush outflow, to provide reduction of the slag carry-over with metal, is offered.

  2. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Kao [McMaster Univ., Hamilton, ON (Canada); Debski, Paul [Andritz Metals Inc.,Canonsburg, PA (United States)

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  3. Disintegration and size reduction of slags and metals after melt refining of contaminated metallic wastes

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-04-01

    Melting under an oxidizing slag is an attractive method of decontaminating and reducing the volume of radioactively contaminated metal scrap. The contaminants are concentrated in a relatively small volume of slag, which leaves the metal essentially clean. A potential method of permanently disposing of the resulting slags (and metals if necessary) is emplacing them into deep shale by grout hydrofracture. Suspension in grout mixtures requires that the slag and metal be granular. The feasibility of size-reducing slags and disintegrating metals and subsequently incorporating both into grout mixtures was demonstrated. Various types of slags were crushed with a small jaw crusher into particles smaller than 3 mm. Several metals were also melted and water-blasted into coarse metal powder or shot ranging in size from 0.05 to 3 mm. A simple low-pressure water atomizer having a multiple nozzle with a converging-line jet stream was developed and used for this purpose. No significant slag dust and steam were generated during slag crushing and liquid-metal water-blasting tests, indicating that contamination can be well contained within the system. The crushed slags and the coarse metal powders were suspendable in group fluids, which indicates probable disposability by shale hydrofracture. The granulation of slags and metals facilitates their containment, transport, and storage

  4. Energetic analysis versus exergetic analysis of charcoal blast furnace of V and M do Brazil; Analise energetica versus analise exergetica do alto forno a carvao vegetal da V and M do Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Lis Nunes; Silva, Ricardo Junqueira [V e M do BRASIL S.A., Belo Horizonte, MG (Brazil); Franca, Geraldo Augusto Campolina; Lemos, Ricardo Jose Fernandes [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2011-12-21

    The energetic analysis is the traditional method of quantification of the energy used in an operation involving physical and chemical processes and transference and/or conversion of energy. Generally used through energetic balance that is based on the first law of thermodynamics to evaluate the energetic efficiency. This balance is used to determine and reduce the loss of energy. Although an energy balance does not provide information about the energy degradation or resources during a process and do not quantify the potential or quality of the energy fluxes and material that flow in a system and come out as products and losses. The exergetic analysis goes beyond the limitations of the first law of thermodynamics. The concept of exergy is based in the second law of thermodynamics. The objective of this paper is to compare the more suitable analysis method aiming the identification of the energy economy potentials and consequently the reduction in the emissions of the greenhouse gases, through the balance of mass, energy and exergy of the blast furnace 1 of V and M do Brazil. (author)

  5. Effects of cooling methods on the occurrence of sulfur in the low-titanium slag

    Science.gov (United States)

    Wang, Baohua; Zhang, Mingbo; Gong, Yongyu; Huang, Shiping; Qiu, Shengtao; Zhu, Rong

    2018-01-01

    The distribution of sulfur existence in the mineral phase and occurrence in the low-titanium slag with different cooling methods (water cooling, air cooling, crucible cooling, and furnace cooling) were studied by XRD, EPMA and XPS. The results show that with the cooling rate decrease, the distribution of S changes from clustering dots to large sheet or surface, and the occurrence of S in the mineral phase transfers gradually from the vitreous, perovskite, merwinite and the intertwined phase of some mineral phases to the gehlenite. During the transfer, the velocity decreases with the increasing of the cooling rate. The S in the water cooling slag only exists in the form of SO32- and SO42-, while the occurrences of S in the air cooling slag, crucible cooling slag, and furnace cooling slag are S2-, SO32- and SO42-.

  6. Pragmatic analysis of the electric submerged arc furnace continuum

    Science.gov (United States)

    Karalis, K.; Karkalos, N.; Antipas, G. S. E.; Xenidis, A.

    2017-09-01

    A transient mathematical model was developed for the description of fluid flow, heat transfer and electromagnetic phenomena involved in the production of ferronickel in electric arc furnaces. The key operating variables considered were the thermal and electrical conductivity of the slag and the shape, immersion depth and applied electric potential of the electrodes. It was established that the principal stimuli of the velocities in the slag bath were the electric potential and immersion depth of the electrodes and the thermal and electrical conductivities of the slag. Additionally, it was determined that, under the set of operating conditions examined, the maximum slag temperature ranged between 1756 and 1825 K, which is in accordance with industrial measurements. Moreover, it was affirmed that contributions to slag stirring due to Lorentz forces and momentum forces due to the release of carbon monoxide bubbles from the electrode surface were negligible.

  7. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  8. Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers

    Energy Technology Data Exchange (ETDEWEB)

    C. Fernandez Pereira; Y. Luna; X. Querol; D. Antenucci; J. Vale [University of Seville, Seville (Spain). School of Industrial Engineering

    2009-07-15

    The stabilization/solidification (S/S) of a carbon steel electric arc furnace (EAF) dust containing hazardous metals such as Pb, Cd, Cr or Zn using geopolymerization technology is described in this paper. Different reagents such as sodium hydroxide, potassium hydroxide, sodium silicate, potassium silicate, kaolinite, metakaolinite and blast furnace slag have been used. Mixtures of EAF waste with these geopolymeric materials and class F fly ash have been processed for studying the potential of geopolymers as waste immobilizing agents. Compressive strength tests and leaching tests for determining the efficiency of heavy metal immobilisation have been carried out. Comparison of fly ash-based geopolymer systems with classic Portland cement stabilization methods has also been accomplished. Compressive strength values far better than those achieved by hydraulic S/S methods were easily obtained by geopolymer solids at 28 days. Regarding leachability, the geopolymer S/S solids also manifested in general a better behaviour, showing very promising results. 40 refs., 1 fig., 9 tabs.

  9. Low CO{sub 2} emission technologies for iron and steelmaking as well as titania slag production

    Energy Technology Data Exchange (ETDEWEB)

    Orth, A.; Anastasijevic, N.; Eichberger, H. [Outokumpu Technol GmbH, Oberursel (Germany)

    2007-08-15

    Outokumpu Technology has developed direct reduction technologies that allow in combination with smelting reduction processes or electric arc furnaces a substantial lowering of CO{sub 2} emissions. In this paper three examples are given: The Circofer process, already demonstrated in pilot plant scale, uses coal as reductant in a two stage CFB (circulating fluidized bed)/FB (fluidized bed) reactor configuration to obtain a highly metallized product suitable for charging into smelting processes. One possible application of Circofer is, in a single stage configuration, as prereduction unit in combination with HIsmelt a smelting reduction technology to produce hot metal using iron ore and coal fines. Using Circofer as prereduction step, the capacity of a given HIsmelt installation can be increased by the factor three to four compared to cold feed and CO, emission can be lowered to values about 20% below the standard of a modern blast furnace, as this combination of technologies requires no agglomeration plant or coke ovens. A second application of Circofer is the combination with an electric arc furnace (EAF) to produce steel directly from direct reduced iron (DRI). Charging hot DRI into an EAF decreases drastically electric power consumption and thus further lowers CO, emission. Applying Circosmelt, the combination of a single stage Circofer system with an electric reduction furnace for ilmenite processing, only half of the electric power consumption required today for titania slag production using cold, unreduced feed material is required. A common additional advantage of all Circofer based routes is that a 99% pure CO{sub 2} stream is removed for process reasons from the process gas and can be used for enhanced crude oil production or sequestration methods.

  10. Investigation of some slagging problems at the rigs

    Energy Technology Data Exchange (ETDEWEB)

    Alekhnovich, A.N.; Bogomolov, V.V.; Artemjeva, N.V. [Ural Heat Engineering Inst., Chelyabinsk (Russian Federation)

    1996-12-31

    It is not possible to simulate deposition processes exactly on small rigs. However, slagging simulation and imitation have sense. It helps to pick out separate aspects, to extend the range of variables and so to achieve the exaggerated results that help to understand the process. It is also possible to achieve reliable results to solve certain practical problems. Different rigs are used by URALVTI for the problems. The investigations of the slagging of the upper part of a furnace have been carried out on an isothermal air rig with captive transparent walls. The slagging of the lower part of the furnace has been studied on a gas fired rig. The fly ash here is synthetic (a mixture of real fly ash and glass powder) and it is injected into a furnace through burners. The effect of a gas velocity, the viscosity of the sticking agent and the percentage of the agent has been studied on the special rig. The low heated air and the mixture of colophony, a common salt, a fine silicate powder were used on the rig. Such a composition of the mixture helps to disclose the effect of various ash particles and it offers an easy way to analyze the deposits. Slagging and fouling properties of coals are explored on the coal fired rig with 50 kg/h input.

  11. Characterization of fly ash, slag and glass hull for the obtaining of vitreous materials

    Science.gov (United States)

    Ayala Valderrama, D. M.; Gómez Cuaspud, J. A.

    2017-12-01

    This article presents the structural and thermal characterization of fly ash, the waste from blast furnace slag and the glass hull, generated as common residues in industry, which cannot be recycled easily or destroyed in a simple and fast way. In the particular case of fly ash, at present are being used as a lightweight aggregate in the production of cement, concrete and additive in the production of glass and glass ceramics. As far as the slag and hull, are being used as additives for the asphalt and concretes, however its use still is restricted, reason why its use in alternative ways are necessary. Initially the chemical composition of residues was established, determining that the fly ashes contains SiO2, Al2O3 and Fe2O3 oxides; 90% of the total composition, was confirmed by X-ray diffraction analysis. As minor constituents, small percentages of Mg, P, S, K, Na and Ti were found. For the slag case, the phases of Fe3O4, Ca3Mg (SiO2)4 and Ca(MgAl)(Si,Al)2O6 were identified, observing the presence of amorphous phase higher than 94% of the total phase of the system. Meanwhile, the glass hull sample showed a higher percentage of 95% amorphicity, mainly identifying a weak signal associated with silicon oxide SiO2. The thermal analyses of the samples, exhibit a decrease in mass for samples between 25-1000°C was observed, which can be attributed to different physical-chemical events that occur in the materials. The heat flow for each sample is related with the removal of the water retained by the physisorption processes around 92-110°C in all cases. With this previous characterization of the precursors, a sample was composed using 70% fly ash, 10% slag and 20% of glass hull was composed and treated at 1200°C/1.5 hours, obtaining a dense black glassy material for potential applications in field of the glass ceramics.

  12. Perméabilité au gaz et aux ions chlore des mortiers à base de laitier de faible hydraulicité Gas and chloride ions permeability of mortar with low hydraulicity slag

    Directory of Open Access Journals (Sweden)

    Courard L.

    2012-09-01

    Full Text Available La durabilité des bétons au laitier de haut fourneau dépend fortement de l’activité hydraulique du laitier. Dans cette étude, un laitier algérien, caractérisé par une faible hydraulicité, est utilisé dans la fabrication de mortiers comme substituant du ciment à des taux de 0, 30 et 50%. En plus d’une caractérisation mécanique, l’effet du laitier sur la durabilité des mortiers est évalué par des essais de perméabilité à l’oxygène, de diffusion de chlorures en régime permanent ainsi que de conduction des ions chlore (essai accéléré ASTM. Les résultats montrent, malgré une faible réactivité du laitier, une amélioration de la perméabilité à l’oxygène à long terme (360 jours pour les mortiers au laitier, particulièrement pour un taux de 50%. La présence du laitier réduit la perméabilité aux ions chlore, d’une part, en augmentant le temps de passage des chlorures à travers le mortier et, d’autre part, en diminuant le taux de diffusion. Par ailleurs, une faible conduction des chlorures est observée pour les mortiers au laitier, montrant une similitude avec les résultats d’essai de diffusion en régime permanent. Durability of ground granulated blast furnace slag concrete depends largely on the hydraulic activity of the slag. In this study, a low activity Algerian slag is used as a substitution to cement in the manufacture of mortars at rates of 0, 30 and 50%. In addition to the mechanical characterization, the effect of slag on the durability of mortars is evaluated by oxygen permeability test, chlorides diffusion test in steady state and chlorides conduction test (ASTM accelerated test. Despite the low activity of slag, the results show improved oxygen permeability at long term (360 days for slag mortars, particularly for a 50% rate. The presence of slag reduces the chloride permeability by on one hand increasing the time of passage of the chlorides through mortar and, on the other hand, by

  13. Magnetic spherules from the soils near the slag dump of the Nizhniy Tagil metallurgical plant

    Directory of Open Access Journals (Sweden)

    A. B. Makarov

    2017-12-01

    Full Text Available Magnetic spherules, which are widespread in soils, can have different origins, but spherules with cosmic origin are the most studied. At that, functioning of numerous industrial enterprises of metallurgical profile, thermal power stations, and motor transport can be their origin. According to the data of previous researchers, spherical magnetic particles in soils can serve as an indicator for quantitative assessment of erosion-accumulative phenomena. The authors studied magnetic spherules, isolated from soil samples taken near the dump of blast furnace and metallurgical slags of a large Nizhny Tagil metallurgical plant located on the left bank of the Olkhovka river, functioning since 1949. The way the dump forms is by draining slag along the slope. Consequently, adjacent territories are exposed to a significant dust load, associated with increased concentrations of a number of heavy metals: chromium, iron, manganese, vanadium, copper and zinc. The study of magnetic spherules performed for samples of soils taken at a distance of 50 and 100 m to the west of the dump showed that the content of magnetic fraction in them was 15.1 and 11.7% respectively, of the mineral part of the samples. The authors studied magnetic spherules on a scanning microscope JEOL JSM 6390LV, an at that provide their morphology and the chemical composition of magnetic spherules (18 analyzes and aggregates on their surface (5 analyzes. Based on the presence of characteristic impurity elements, there are the following varieties: zinc, manganese, vanadium, determined by the peculiarities of metallurgical processes. Low concentrations of spherules in soils do not allow considering them as a significant source of pollution of natural environment, only a slight increase in the content of heavy metals characteristic for them is possible.

  14. Effect of demolition/construction wastes on the properties of alkali activated slag cement

    Directory of Open Access Journals (Sweden)

    Sayieda R. Zedan

    2017-12-01

    Full Text Available The key point of this investigation is to study the effect of demolition and building wastes on the physico-chemical and mechanical properties of alkali activated slag (AAS. In this study, ground granulated blast-furnace slag (GGBFS was activated by mixture of 3:3 wt.% sodium hydroxide:liquid sodium silicate (NaOH:Na2SiO3 ratio by weight of GGBFS. AAS was individually replaced by 10 wt.% ceramic, red clay brick and concrete wastes (CW, RCBW and CoW. The results showed that, significant shorter setting times were observed when AAS was replaced by CW, RCBW or CoW. The AAS-CoW showed the shortest setting times compared to other all mixes. The chemically combined water and pH decreased in the direction of AAS-CoW > AAS > AAS-RCBW > AAS-CW. CoW has a positive effect on the compressive strength development at one day of curing, while, CW and RCBW have a negative effect at the same time (1 day. At later ages of curing, the AAS-RCBW showed the highest compressive strength values as compared with AAS-CW, AAS-CoW and AAS. The crystallinity degree of hydration products enhanced when AAS was replaced by these wastes. Also, the Fe2O3 present in waste played an important role on the development of compressive strength. The hydration products were investigated using X-ray diffraction (XRD, Fourier transform infrared (FTIR spectroscopy and scanning electron microscopy (SEM and the results were compared with the development in compressive strength.

  15. Reuse of steel slag in bituminous paving mixtures.

    Science.gov (United States)

    Sorlini, Sabrina; Sanzeni, Alex; Rondi, Luca

    2012-03-30

    This paper presents a comprehensive study to evaluate the mechanical properties and environmental suitability of electric arc furnace (EAF) steel slag in bituminous paving mixtures. A variety of tests were executed on samples of EAF slag to characterize the physical, geometrical, mechanical and chemical properties as required by UNI EN specifications, focusing additionally on the volumetric expansion associated with hydration of free CaO and MgO. Five bituminous mixtures of aggregates for flexible road pavement were designed containing up to 40% of EAF slag and were tested to determine Marshall stability and indirect tensile strength. The leaching behaviour of slag samples and bituminous mixtures was evaluated according to the UNI EN leaching test. The tested slag showed satisfactory physical and mechanical properties and a release of pollutants generally below the limits set by the Italian code. Tests on volume stability of fresh materials confirmed that a period of 2-3 months is necessary to reduce effects of oxides hydration. The results of tests performed on bituminous mixtures with EAF slag were comparable with the performance of mixtures containing natural aggregates and the leaching tests provided satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Crystallization phenomena in slags

    Science.gov (United States)

    Orrling, Carl Folke

    2000-09-01

    The crystallization of the mold slag affects both the heat transfer and the lubrication between the mold and the strand in continuous casting of steel. In order for mold slag design to become an engineering science rather than an empirical exercise, a fundamental understanding of the melting and solidification behavior of a slag must be developed. Thus it is necessary to be able to quantify the phenomena that occur under the thermal conditions that are found in the mold of a continuous caster. The double hot thermocouple technique (DHTT) and the Confocal Laser Scanning Microscope used in this study are two novel techniques for investigating melting and solidification phenomena of transparent slags. Results from these techniques are useful in defining the phenomena that occur when the slag film infiltrates between the mold and the shell of the casting. TTT diagrams were obtained for various slags and indicated that the onset of crystallization is a function of cooling rate and slag chemistry. Crystal morphology was found to be dependent upon the experimental temperature and four different morphologies were classified based upon the degree of melt undercooling. Continuous cooling experiments were carried out to develop CCT diagrams and it was found that the amount and appearance of the crystalline fraction greatly depends on the cooling conditions. The DHTT can also be used to mimic the cooling profile encountered by the slag in the mold of a continuous caster. In this differential cooling mode (DCT), it was found that the details of the cooling rate determine the actual response of the slag to a thermal gradient and small changes can lead to significantly different results. Crystal growth rates were measured and found to be in the range between 0.11 mum/s to 11.73 mum/s depending on temperature and slag chemistry. Alumina particles were found to be effective innoculants in oxide melts reducing the incubation time for the onset of crystallization and also extending

  17. Hydrothermal solidification of municipal solid waste incineration bottom ash with slag addition.

    Science.gov (United States)

    Jing, Zhenzi; Ran, Xianqiang; Jin, Fangming; Ishida, Emile H

    2010-01-01

    Hydrothermal solidification of municipal solid waste incineration (MSWI) bottom ash has been carried out under saturated steam pressure (1.56 MPa) at 200 degrees C for up to 24 h by mixing quartz, slaked lime and water-cooled blast furnace slag (WBFS). The strength enhancement for the WBFS addition was best. The strength development was shown to be due mainly to tobermorite formation, and the tobermorite formation densified matrix, thus promoting the strength development. WBFS seemed to have a higher reactivity than the quartz during the initial hydrothermal process, which provided more silica available to harden the solidified specimens. However, a longer curing time (24 h) was favorable to the quartz dissolution for tobermorite formation, which in turn, enhanced the strength for quartz addition. Curing time affected the crystal morphology evolution, and the stubby plate of tobermorite seemed to result in a high strength enhancement in this study. Laboratory leaching tests were conducted to determine the amount of heavy metals dissolved from the final solidified specimens, and the leaching results showed that after hydrothermal processing the heavy metals dissolved from the solidified specimens were reduced effectively. As such, the hydrothermal processing may have a high potential for recycling/reusing MSWI ash on a large scale. 2010 Elsevier Ltd. All rights reserved.

  18. Sulphuric Acid Resistant of Self Compacted Geopolymer Concrete Containing Slag and Ceramic Waste

    Directory of Open Access Journals (Sweden)

    Shafiq I.

    2017-01-01

    Full Text Available Malaysia is a one of the developing countries where the constructions of infrastructure is still ongoing, resulting in a high demand for concrete. In order to gain sustainability factors in the innovations for producing concrete, geopolymer concrete containing granulated blast-furnace slag and ceramics was selected as a cement replacement in concrete for this study. Since Malaysia had many ceramic productions and uses, the increment of the ceramic waste will also be high. Thus, a new idea to reuse this waste in construction materials have been tested by doing research on this waste. Furthermore, a previous research stated that Ordinary Portland Cement concrete has a lower durability compared to the geopolymer concrete. Geopolymer binders have been reported as being acid resistant and thus are a promising and alternative binder for sewer pipe manufacture. Lack of study regarding the durability of the geopolymer self-compacting concrete was also one of the problems. The waste will be undergoing a few processes in the laboratory in order to get it in the best form before undergoing the next process as a binder in geopolymer concrete. This research is very significant in order to apply the concept of sustainability in the construction field. In addition, the impact of this geopolymer binder is that it emits up to nine times less CO2 than Portland Cement.

  19. Extraction of Vanadium from Vanadium Slag Via Non-salt Roasting and Ammonium Oxalate Leaching

    Science.gov (United States)

    Li, Meng; Du, Hao; Zheng, Shili; Wang, Shaona; Zhang, Yang; Liu, Biao; Dreisinger, David Bruce; Zhang, Yi

    2017-10-01

    A clean method featuring non-salt roasting followed by (NH4)2C2O4 leaching to recover vanadium from vanadium slag was proposed. The carcinogenic Cr6+ compounds and exhaust gases were avoided, and the water generated from vanadate precipitation may be recycled and reused in this new leaching process. The leaching residues may be easily used by a blast furnace. Moreover, (NH4)2C2O4 solution was used as a leaching medium to avoid expensive and complicated ammonium controlling operations as a result of the stability of (NH4)2C2O4 at a high temperature. The transformation mechanisms of vanadium- and chromium-bearing phases were systematically investigated by x-ray diffraction analysis and scanning electron microscopy with energy-disperse x-ray spectrometry, respectively. In addition, the effects of oxygen concentration, roasting temperature, and holding time on vanadium recovery were investigated. Finally, the effects of leaching variables on the vanadium leaching rate were also examined.

  20. Criteria determining the selection of slags for the melt decontamination of radioactively contaminated stainless steel by electroslag remelting

    International Nuclear Information System (INIS)

    Buckentin, J.M.R.; Damkroger, B.K.; Shelmidine, G.J.; Atteridge, D.G.

    1997-01-01

    Electroslag remelting is an excellent process choice for the melt decontamination of radioactively contaminated metals. ESR furnaces are easily enclosed and do not make use of refractories which could complicate thermochemical interactions between molten metal and slag. A variety of cleaning mechanisms are active during melting; radionuclides may be partitioned to the slag by means of thermochemical reaction, electrochemical reaction, or mechanical entrapment. At the completion of melting, the slag is removed from the furnace in solid form. The electroslag process as a whole is greatly affected by the chemical and physical properties of the slag used. When used as a melt decontamination scheme, the ESR process may be optimized by selection of the slag. In this research, stainless steel bars were coated with non-radioactive surrogate elements in order to simulate surface contamination. These bars were electroslag remelted using slags of various chemistries. The slags investigated were ternary mixtures of calcium fluoride, calcium oxide, and alumina. The final chemistries of the stainless steel ingots were compared with those predicted by the use of a Free Energy Minimization Modeling technique. Modeling also provided insight into the chemical mechanisms by which certain elements are captured by a slag. Slag selection was also shown to have an impact on the electrical efficiency of the process as well as the surface quality of the ingots produced

  1. Cementos petroleros con adición de escoria de horno alto. Características y propiedades Characteristics and properties of oil-well cements additioned with blast furnace slag

    OpenAIRE

    Sánchez, R.; Palacios, Marta; Puertas, F.

    2011-01-01

    En el presente trabajo se ha estudiado la activación alcalina de cementos Pórtland con incorporación de escoria de horno alto (20% y 30% con respecto al peso de cemento) para su posible aplicación en la construcción de pozos petrolíferos. Los estudios de hidratación realizados indican que en mezclas cemento/escoria, la disolución activadora de silicato sódico inhibe parcialmente la disolución de las fases silicato del cemento Pórtland originando un retraso de su hidratación así como la m...

  2. Forensic Investigation of AC and PCC Pavements with Extended Service Life : Volume 3 : Petrographic Examination of Blast Furnace Slag Aggregate Concrete Cores taken from PCC Pavements in Cuyahoga County , Ohio

    Science.gov (United States)

    2011-09-01

    The purpose of this research was to identify flexible and rigid pavements in Ohio with average and above average : performance, and determine reasons for these differences in performance. The identification and implementation of : factors linked to e...

  3. Refractory Corrosion Mechanisms in a Novel High Carbon Ferromanganese Production Furnace

    Science.gov (United States)

    Gregurek, D.; Wenzl, C.; Kreuzer, D.; Spanring, A.; Kirschen, M.; Zeelie, D.; Groenewald, J.

    2016-12-01

    The present paper presents the refractory design for a novel HCFeMn smelting furnace that, other than standard submerged arc furnaces, allows the processing of fine ores. A combination of basic and non-basic materials, comprising bricks, castables and ramming was chosen, under consideration of the unique furnace design and process conditions. Post-mortem investigations on refractory samples from the different furnace zones were carried out and provided information about the main wear mechanism. Additionally, investigations of the process slag and metal were carried out both practically and theoretically using thermodynamic calculations, to better understand the corrosion phenomena observed in the post mortem samples.

  4. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  5. New evidence for rejuvenation of phosphorus retention capacity in EAF steel slag.

    Science.gov (United States)

    Drizo, Aleksandra; Cummings, John; Weber, David; Twohig, Eamon; Druschel, Greg; Bourke, Bill

    2008-08-15

    The purpose of this research was to investigate phosphorus (P) retention capacity and rejuvenation potential of electric arc furnace (EAF) steel slag from Quebec and New Zealand (NZ) iron melter slag (IMS). Columns filled with slag materials were fed with dairy effluent and subjected to two feeding and one resting cycle(s). P retention capacities and rejuvenation potentials were determined after each feeding cycle. Elemental composition and mineralogical analysis were performed on IMS samples. Finally, chemical fractionation analysis was conducted on both NZ IMS and Quebec EAF steel slags. The results revealed that initiating a resting period in EAF steel slag filters prior to reaching their P saturation point increased the overall filter P retention capacity by 49.5 and 42.4% compared to 28% in a filter which had its resting period initiated after reaching P saturation. The rejuvenation property could play a significant role in full-scale applications by prolonging life expectancy and increasing cost efficiency. P retention and rejuvenation by NZ slag materials was negligible relative to EAF steel slag material from Quebec. Chemical fractionation analysis revealed differences between materials, indicating that the highest quantities of P were bound to Ca and Fe in EAF steel slag and to Ca and Al fractions in iron melter slag. This study also demonstrates that slag's performance is dependent on the source of the material and the steel making practices. Therefore, testing of the P adsorptive capability and, if relevant, the rejuvenation potential of individual steel mill slags, should be a prerequisite prior to their use in field applications.

  6. ACCELERATED CARBONATION OF STEEL SLAG COMPACTS: DEVELOPMENT OF HIGH STRENGTH CONSTRUCTION MATERIALS

    Directory of Open Access Journals (Sweden)

    Mieke eQuaghebeur

    2015-12-01

    Full Text Available Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags (stainless steel slag and basic oxygen furnace slags in high quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO2 at elevated pressure (up to 2 MPa and temperatures (20 to 140°C. For stainless steel slags raising the temperature from 20 to 140°C had a positive effect on the CO2 uptake, strength development and the environmental properties (i.e. leaching of Cr and Mo of the carbonated slag compacts. For BOF slags raising the temperature was not beneficial for the carbonation process. Elevated CO2 pressure and CO2 concentration of the feed gas had a positive effect on the CO2 uptake and strength development for both types of steel slags. In addition also the compaction force had a positive effect on the strength development. The carbonates that are produced in-situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100 to 150 g CO2/kg slag. The technology was developed on lab scale by optimisation of process parameters with regard to compressive strength development, CO2 uptake and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-industrial equipment and process conditions.

  7. Visualisation and quantification of heavy metal accessibility in smelter slags: The influence of morphology on availability

    International Nuclear Information System (INIS)

    Morrison, Anthony L.; Swierczek, Zofia; Gulson, Brian L.

    2016-01-01

    The Imperial Smelting Furnace (ISF) for producing lead and zinc simultaneously has operated on four continents and in eleven countries from the 1950's. One of the process changes that the ISF introduced was the production of a finely granulated slag waste. Although this slag contained significant amounts of residual lead (Pb) and zinc (Zn), because of its glassy nature it was considered environmentally benign. From the Cockle Creek smelter near Boolaroo at the northern end of Lake Macquarie, NSW, Australia, it is estimated that around 2.1 million tonnes of the fine slag was distributed into the community and most remains where it was originally utilised. Residual tonnages of slag of this magnitude are common worldwide wherever the ISF operated. Studies of base metal smelting slags have concluded that mineralogical and morphological characteristics of the slag play a critical role in moderating environmental release of toxic elements. Scanning electron microscopy (SEM) and microanalysis of the ISF slags has shown that the Pb and associated elements are present as discrete nodules (∼6–22 μm) in the slag and that they are not associated with Zn which is contained in the glass slag phase. Using an automated SEM and analysis technique (QEMSCAN ® ) to “map” the mineralogical structure of the particles, it was possible to quantitatively determine the degree of access infiltrating fluids might have to the reaction surface of the Pb phases. The level of access decreases with increasing particle size, but in even the largest sized particles (−3350 + 2000 μm) nearly 80% of the Pb-containing phases were totally or partially accessible. These results provide evidence that the toxic elements in the slags are not contained by the glassy phase and will be vulnerable to leaching over time depending on their individual phase reactivity. - Highlights: • QEMSCAN ® allowed determination of access to infiltrating fluids to Pb in smelter slags. • Pb and

  8. Utilization of steel melting electric arc furnace slag for development ...

    Indian Academy of Sciences (India)

    Administrator

    batch of each composition was prepared by wet milling in a pot mill for 6 h at a speed of 35 rpm. The slurries were dried and disintegrated. Dry powders were thoroughly mixed with 5–6 ... Instron 5500 R machine was utilized to determine fle- xural strength. Acid and alkali resistance of the samples were tested as per Indian ...

  9. DIE SLAG VAN DOORNKRAAL

    African Journals Online (AJOL)

    Die slag van Doornkraal moet gesien word teen die agtergrond van die ..... saddled and tied to a food wagon. Steyn galloped off, leaving ..... great habit of his. He was proceeding to inspect the position, when he was shot through the neck. "64). Met sy aankoms op Doornkraal, het It kol De Lisle hom gehaas na die "rooi huis" ...

  10. DIE SLAG VAN BLOEDRIVIER~

    African Journals Online (AJOL)

    cast iron blown over with bronze stands today. ... deur 'n moerasagtige pan effens noord van die noordel ike drif. Ook hierdeur is die laer in 'n mate gedek. Meer na die suidweste het die bree. Gelato-kop, na die Slag 'Vechtkop' genoem, oor die laer getroon. HOGOsptl'nr. 'i'OSRASACT IGE: PAN. BLOEDRIVI3R. S'S.

  11. CO2Mineralization and Utilization using Steel Slag for Establishing a Waste-to-Resource Supply Chain.

    Science.gov (United States)

    Pan, Shu-Yuan; Chung, Tai-Chun; Ho, Chang-Ching; Hou, Chin-Jen; Chen, Yi-Hung; Chiang, Pen-Chi

    2017-12-08

    Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO 2 ) emission and alkaline solid waste generation. In fact, most CO 2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO 2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO 2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO 2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.

  12. Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials.

    Science.gov (United States)

    Castaldelli, Vinícius N; Akasaki, Jorge L; Melges, José L P; Tashima, Mauro M; Soriano, Lourdes; Borrachero, María V; Monzó, José; Payá, Jordi

    2013-07-25

    Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter ( ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders.

  13. Applicability of alkali activated slag-seeded Egyptian Sinai kaolin for the immobilization of 60Co radionuclide

    International Nuclear Information System (INIS)

    El-Naggar, M.R.

    2014-01-01

    The present work was established to determine the applicability of local Egyptian kaolinite and blast furnace slag (BFS) as raw materials toward the synthesis of geopolymers and subsequent immobilization of cobalt-60, which is one of the most abundant radionuclides generated in radioactive waste streams in Egypt. XRF, XRD, FT-IR, and SEM techniques were used to characterize the local raw materials and their corresponding alkali activated products. Metakaolin (MK) was obtained by thermal treatment of Egyptian Sinai kaolin 750 °C/4 h. MK and five different BFS content (5, 10, 30, 50 and 80%) were used to synthesize geopolymeric matrices using an alkaline activator of Si-modulus = 1.35 at solid/liquid ratios of 0.8. Compressive strength tests were performed indicating that 50% BFS addition gave the highest values of compressive strength. The IAEA standard leaching tests of cobalt-60 from the solidified waste matrices were carried out. The effective diffusion coefficients of cobalt-60 radionuclides from the solidified waste matrices were calculated to be in the order of 10 −14 cm 2 /s. Leaching of radionuclides was examined to be controlled by the wash-off mechanism with very acceptable values. These results gave encouragement that the tested Egyptian raw materials can be conveniently applied for the synthesis of geopolymers that can be used as a low-cost and high-efficiency materials for the immobilization of radioactive waste

  14. Applicability of alkali activated slag-seeded Egyptian Sinai kaolin for the immobilization of {sup 60}Co radionuclide

    Energy Technology Data Exchange (ETDEWEB)

    El-Naggar, M.R., E-mail: elnaggar74@yahoo.com

    2014-04-01

    The present work was established to determine the applicability of local Egyptian kaolinite and blast furnace slag (BFS) as raw materials toward the synthesis of geopolymers and subsequent immobilization of cobalt-60, which is one of the most abundant radionuclides generated in radioactive waste streams in Egypt. XRF, XRD, FT-IR, and SEM techniques were used to characterize the local raw materials and their corresponding alkali activated products. Metakaolin (MK) was obtained by thermal treatment of Egyptian Sinai kaolin 750 °C/4 h. MK and five different BFS content (5, 10, 30, 50 and 80%) were used to synthesize geopolymeric matrices using an alkaline activator of Si-modulus = 1.35 at solid/liquid ratios of 0.8. Compressive strength tests were performed indicating that 50% BFS addition gave the highest values of compressive strength. The IAEA standard leaching tests of cobalt-60 from the solidified waste matrices were carried out. The effective diffusion coefficients of cobalt-60 radionuclides from the solidified waste matrices were calculated to be in the order of 10{sup −14} cm{sup 2}/s. Leaching of radionuclides was examined to be controlled by the wash-off mechanism with very acceptable values. These results gave encouragement that the tested Egyptian raw materials can be conveniently applied for the synthesis of geopolymers that can be used as a low-cost and high-efficiency materials for the immobilization of radioactive waste.

  15. Thermal properties of fly ash substituted slag cement waste forms for disposal of Savannah River Plant salt waste

    International Nuclear Information System (INIS)

    Roy, D.M.; Kaushal, S.; Licastro, P.H.; Langton, C.A.

    1985-01-01

    Waste processing at the Savannah River Plant will involve reconstitution of the salts (NaNO 3 , NaNO 2 , NaOH, etc.) into a concentrated solution (32 weight percent salts) followed by solidification in a cement-based waste form for burial. The stability and mechanical durability of such a 'saltstone monolith' will depend largely on the temperature reached due to heat of hydration and the thermal properties of the waste form. Fly ash has been used as an inexpensive constituent and to moderate the hydration and setting processes so as to avoid reaching prohibitively high temperatures which could cause thermal stresses. Both high-calcium and low-calcium fly ashes have been studied for this purpose. Other constituents of these mixes include granulated blast furnace slag and finely crushed limestone. Adiabatic temperature increase and thermal conductivity of these mixes have been studied and related x-ray diffraction and scanning electron microscopy studies carried out to understand the hydration process

  16. Numerical simulations of slagging dynamics using a meshmeshless strategy

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Spliethoff, H. [Technische Universitaet Muenchen (Germany). Lehrstuhl fuer Energiesysteme

    2009-07-01

    In pulverized co-firing and gasification facilities such as coal and biomass power plants, ash deposition, fouling and slagging, may significantly affect heat exchange and gasification per-formance Deposit growth dramatically increases production loss and may lead to the shut-down of the facility. Computational Fluid Dynamics (CFD) calculations can be used as a valid 'non-intrusive' investigation tool in an efficient problem solving strategy. At TU Munich, an ongoing project aims to develop a dedicated numerical tool to monitor and predict deposition, deposit growth and slagging dynamics in pulverized solid fuel furnaces and gasifiers. A novel in-house code was developed to track solid particles and predict deposit growth and slag dynamics. The adopted numerical strategy uses a Mesh-Meshless approach combined with a Lagrangian particle tracking. Ash particles are tracked in a Lagrangian frame post-processing CFD gas phase results (RANS or LES). Growth and thermo-mechanical proper-ties of the deposit are simultaneously evaluated. Slag dynamics is computed by using a meshless approach: deposit mesh nodes are considered point-mass particles interacting only with mesh connected node-particle neighbours. Forces are modelled applying a visco-elastic model and calculated by means of a Galerking weight (kernel) function. The final goal is to mathematically describe both particle adhesion and slag dynamics applying visco-elastic models using a mesh-meshless approach aiming to investigate slag/slurry dynamics. Pre-liminary numerical results on one layer encourage further development on this subject. (orig.)

  17. Development and start up of a co-injection system of coal tar/natural gas in blast furnace no. 4; Desarrollo y puesta en operacion de un sistema de co-inyeccion de alquitran/gas natural en el alto horno no. 4

    Energy Technology Data Exchange (ETDEWEB)

    Falcon Rodriguez, Manuel I.; Mata Esparza, Hector Rolando; Arevalo Ballesteros, Gerardo [Altos Hornos de Mexico S. A., Coahuila (Mexico)

    1993-12-31

    The crisis has attracted the world`s attention on the need for energy conservation and the development in a greater extent the utilization of carbon base fuels and other energy sources (nuclear energy). Being a blast furnace, not only an energy consumer but also an energy producer, the greatest contribution to the pig iron cost is the energy needed to melt and reduce to metallic state the iron ores, this energy is mainly derived from coke. The dependence on coal via the coking plant to produce first fusion iron is incremented day after day as a result of the high levels of production. Altos Hornos de Mexico (AHMSA), contemplated within its strategic plan, the reduction in the production of its coking plants derived from the natural aging of its furnaces, consequently the shortage of coke for productions higher than 2.6 MMT of pig iron is pending. The injection of fuels into a blast furnace through its nozzles is a technology used for the diminishing the coke consumption of coke, its use implies a change in the philosophy of the blast furnace operation, and is currently employed in most of the blast furnaces of the world. AHMSA taking advantage of coal tar production (approx. 130 tons/day) in its coking plants decided the design and put into operation a co-injection system of coal tar and natural gas. The activities tending to carry out this project were initiated on April 1993, performing all of them with its own resources, completing them on July 18, 1993, day on which the injection of coal tar/natural gas in blast furnace No. 4 in a stable form. To date (October 1993), the coal tar injection has been increased up to 36 kg/ton of pig iron. During the injection periods, the presence of operational, mechanical and instrumentation problems have not been an obstacle for the evolution on the injection, fulfilling its function of substituting coke in a replacing relationship of 1:1, i.e. 1 kg of coal tar per each kg of coke, without affecting the product quality

  18. Effect of Fluoride Containning Slag on Oxide Inclusions in Electroslag Ingot

    Science.gov (United States)

    Dong, Yanwu; Jiang, Zhouhua; Cao, Yulong; Fan, Jinxi; Yu, Ang; Liu, Fubin

    Besides controlling homogeneous composition and compact solidification structure, removal of non-metallic inclusions is an important characteristic for electroslag remelting process. Many factors influence the non-metallic inclusions in steel including gas and inclusions original content in consumable electrode, atmosphere, slag amount and its composition, power input, melting rate, filling ratio and so on. Fluoride containing slag, which influences the non-metallic inclusions to a great extent, has been widely used for electroslag remelting process. The present paper focuses on the effect of fluoride containing slag on the inclusions in electroslag ingot based on the interaction of slag-metal interface. In this work, steel grade MC5 and several slags have been employed for investigating the effect of slag on inclusions. These experiments had been carried out in an electrical resistance furnace under argon atmosphere in order to eliminate the effect of ambient oxygen. Some specimens had been taken at different times for analyzing the content, dimensions, and type of non-metallic inclusions. Quantitative metallographic analysis method has been adopted for observing and examining the inclusions. SEM-EDS analysis has been used to investigate the composition of non-metallic inclusions of specimens at different time for investigating the modification behavior of inclusions. All the results obtained will be comparison to the original state inclusions in steel, which will be in favor of choose of slag for electroslag remelting process.

  19. The degradation of lining of rotary furnaces in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Anisimov, E.

    2014-01-01

    Roč. 21, č. 3 (2014), s. 116-121 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : zinc oxide * the production of zinc oxide * zinc slag * refractories * the degradation of rotary furnace linings Subject RIV: JG - Metallurgy http://ojs.mateng.sk/index.php/Mateng/article/view/133/194

  20. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  1. Process envelopes for stabilisation/solidification of contaminated soil using lime-slag blend.

    Science.gov (United States)

    Kogbara, Reginald B; Yi, Yaolin; Al-Tabbaa, Abir

    2011-09-01

    Stabilisation/solidification (S/S) has emerged as an efficient and cost-effective technology for the treatment of contaminated soils. However, the performance of S/S-treated soils is governed by several intercorrelated variables, which complicates the optimisation of the treatment process design. Therefore, it is desirable to develop process envelopes, which define the range of operating variables that result in acceptable performance. In this work, process envelopes were developed for S/S treatment of contaminated soil with a blend of hydrated lime (hlime) and ground granulated blast furnace slag (GGBS) as the binder (hlime/GGBS = 1:4). A sand contaminated with a mixture of heavy metals and petroleum hydrocarbons was treated with 5%, 10% and 20% binder dosages, at different water contents. The effectiveness of the treatment was assessed using unconfined compressive strength (UCS), permeability, acid neutralisation capacity and contaminant leachability with pH, at set periods. The UCS values obtained after 28 days of treatment were up to ∼800 kPa, which is quite low, and permeability was ∼10(-8) m/s, which is higher than might be required. However, these values might be acceptable in some scenarios. The binder significantly reduced the leachability of cadmium and nickel. With the 20% dosage, both metals met the waste acceptance criteria for inert waste landfill and relevant environmental quality standards. The results show that greater than 20% dosage would be required to achieve a balance of acceptable mechanical and leaching properties. Overall, the process envelopes for different performance criteria depend on the end-use of the treated material.

  2. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    International Nuclear Information System (INIS)

    Bernal, Susan A.; Mejia de Gutierrez, Ruby; Provis, John L.; Rose, Volker

    2010-01-01

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO 2 -rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO 2 /Na 2 O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na + present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na + for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  3. Degradation of normal portland and slag cement concrete under load, due to reinforcement corrosion

    International Nuclear Information System (INIS)

    Philipose, K.E.; Beaudoin, J.J.; Feldman, R.F.

    1992-08-01

    The corrosion of reinforcement is one of the major degradation mechanisms of reinforced concrete elements. The majority of studies published on concrete-steel corrosion have been conducted on unstressed specimens. Structural concrete, however, is subjected to substantial strain near the steel reinforcing bars that resist tensile loads, which results in a system of microcracks. This report presents the initial results of an investigation to determine the effect of applied load and microcracking on the rate of ingress of chloride ion and corrosion of steel in concrete. Simply-supported concrete beam specimens were loaded to give a maximum strain of about 600 με on the tension face. Chloride ion ingress on cores taken from loaded specimens was monitored using energy-dispersive X-ray analysis techniques. Corrosion current and rate measurements using linear polarization electrochemical techniques were also obtained on the same loaded specimens. Variables investigated included two concrete types, two steel cover-depths, three applied load levels, bonded and unbonded rebars and the exposure of tension and compression beam faces to chloride solution. One concrete mixture was made with type 10 Portland cement, the other with 75% blast furnace slag, 22% type 50 cement and 3% silica fume. The rate of chloride ion ingress into reinforced concrete, and hence the time for chloride ion to reach the reinforcing steel, is shown to be dependent on applied load and the concrete quality. The dependence of corrosion process descriptors - passive layer formation, initiation period and propagation period - on the level of applied load is discussed. (Author) (6 refs., 3 tabs., 10 figs.)

  4. Blast Technologies

    Science.gov (United States)

    2011-06-27

    Team Leader Risa Scherer Blast Mitigation Interior and Laboratory Team Leader Blast Technologies POC’s Government Point Of Contacts (POCs): To...to yield injury assessments at higher fidelities and with higher confidence UNCLASSIFIED UNCLASSIFIED Risa Scherer Blast Mitigation Interior and

  5. A Kinetic Ladle Furnace Process Simulation Model: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing

    Science.gov (United States)

    Van Ende, Marie-Aline; Jung, In-Ho

    2017-02-01

    The ladle furnace (LF) is widely used in the secondary steelmaking process in particular for the de-sulfurization, alloying, and reheating of liquid steel prior to the casting process. The Effective Equilibrium Reaction Zone model using the FactSage macro processing code was applied to develop a kinetic LF process model. The slag/metal interactions, flux additions to slag, various metallic additions to steel, and arcing in the LF process were taken into account to describe the variations of chemistry and temperature of steel and slag. The LF operation data for several steel grades from different plants were accurately described using the present kinetic model.

  6. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.

    Science.gov (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Kříbek, Bohdan; Mapani, Ben

    2017-02-01

    The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Advanced steel reheat furnace

    Energy Technology Data Exchange (ETDEWEB)

    Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  8. Experimental investigation of surface modified EOF steel slag as coarse aggregate in concrete

    Directory of Open Access Journals (Sweden)

    Y.K. Sabapathy

    2017-10-01

    Full Text Available An experimental work was carried out to study the effect of Energy Optimizing Furnace (EOF steel slag as coarse aggregate replacement in concrete. Surface modification of slag was carried out to seal the surface voids of raw slag aggregates. Quarry dust obtained as an extractive waste from the granite stone quarries has been used as a blending material in this work. After several trials, it was found that a mix proportion of 1:6:14 (cement:quarry dust:slag aggregate was the most suitable mix ratio for the surface modification of the slag aggregates. Various mixes of concrete were prepared with different proportions of modified slag (ranging from 0% to 100% as replacements for aggregates. Three grades of concrete (20 MPa, 30 MPa and 40 MPa were used in the investigation and the concrete mixes were evaluated for compressive strength and splitting tensile strength. It was found that the compressive strength improved for 25 percent replacement of natural coarse aggregates. The splitting tensile strength was found to peak at 25 percent replacement of natural aggregates.

  9. Steel desulphurization with synthetic slag

    Energy Technology Data Exchange (ETDEWEB)

    Heput, T.; Ardelean, E.; Socalici, A.; Maksay, S.; Gavanescu, A.

    2007-07-01

    Generally speaking, sulfur is considered a harmful element for steel quality, reason why all the technological steps are being taken in order to eliminate it from the metal bath. This paper deals with the influence of the chemical composition, on the slag quantity and of the batch stirring condition upon the desulfurization process in the casting ladle by treatment with synthetic slag. The experiments were made at an open-hearth plant with the steel tapping in two ladles (the desulfurization was made with synthetic slag at one ladle while the other one was considered standard) and at the electric steel plant and for the synthetic slag formation a mix was used, made, according to several receipts, of : lime (50-75%), fluorine (0-17%); bauxite (0-32%) and aluminous slag (8-22%). The data were processed in the calculation programs EXCEL and MATLAB, which resulted in a series of correlations between the desulfurization degree and the chemical composition of the slag, respectively the slag quantity both for the charges bubbled with Argon and the un bubbled ones. (Author) 5 refs.

  10. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  11. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  12. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    Directory of Open Access Journals (Sweden)

    Mehrdad Massoudi

    2013-02-01

    Full Text Available The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  13. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad [National Energy Technology Laboratory; Wang, Ping

    2013-02-07

    The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  14. The effect of alumina in slag on manganese and silicon distributions in silicomanganese smelting

    Science.gov (United States)

    Swinbourne, D. R.; Rankin, W. J.; Eric, R. H.

    1995-02-01

    The distribution ratios of manganese and silicon between silicomanganese alloy and slag, in equilibrium with carbon, were investigated at 1500 °C. The alumina content of the slag was varied from about 9 to 32 pct. Both distribution ratios decreased as A12O3 increased to about 20 pct and, thereafter, remained constant. The value of the “apparent equilibrium constant” displayed a maximum at about 24 pct A12O3, mainly because of the variation in the values of the activity coefficients of SiO2 and MnO. It was concluded that the slag and silicomanganese alloy in a submerged arc furnace are at, or at least close to, equilibrium.

  15. Recycling of metal bearing electronic scrap in a plasma furnace

    Science.gov (United States)

    Jarosz, Piotr; Małecki, Stanisław; Gargul, Krzysztof

    2011-12-01

    The recycling of electronic waste and the recovery of valuable components are large problems in the modern world economy. This paper presents the effects of melting sorted electronic scrap in a plasma furnace. Printed circuit boards, cables, and windings were processed separately. The characteristics of the obtained products (i.e., alloy metal, slag, dust, and gases) are presented. A method of their further processing in order to obtain commercial products is proposed. Because of the chemical composition and physical properties, the waste slag is environmentally inert and can be used for the production of abrasives. Process dusts containing large amounts of carbon and its compounds have a high calorific value. That makes it possible to use them for energy generation. The gas has a high calorific value, and its afterburning combined with energy recovery is necessary.

  16. ENERGY STAR Certified Furnaces

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.1 ENERGY STAR Program Requirements for Furnaces that are effective as of February 1,...

  17. Exploring the life cycle management of industrial solid waste in the case of copper slag.

    Science.gov (United States)

    Song, Xiaolong; Yang, Jianxin; Lu, Bin; Li, Bo

    2013-06-01

    Industrial solid waste has potential impacts on soil, water and air quality, as well as human health, during its whole life stages. A framework for the life cycle management of industrial solid waste, which integrates the source reduction process, is presented and applied to copper slag management. Three management scenarios of copper slag are developed: (i) production of cement after electric furnace treatment, (ii) production of cement after flotation, and (iii) source reduction before the recycling process. A life cycle assessment is carried out to estimate the environmental burdens of these three scenarios. Life cycle assessment results showed that the environmental burdens of the three scenarios are 2710.09, 2061.19 and 2145.02 Pt respectively. In consideration of the closed-loop recycling process, the environmental performance of the flotation approach excelled that of the electric furnace approach. Additionally, although flash smelting promotes the source reduction of copper slag compared with bath smelting, it did not reduce the overall environmental burdens resulting from the complete copper slag management process. Moreover, it led to the shifting of environmental burdens from ecosystem quality damage and resources depletion to human health damage. The case study shows that it is necessary to integrate the generation process into the whole life cycle of industrial solid waste, and to make an integrated assessment for quantifying the contribution of source reduction, rather than to simply follow the priority of source reduction and the hierarchy of waste management.

  18. IRON ORE SINTER PRODUCTION USING ELECTRIC ARC FURNACE DUST AS RAW MATERIAL

    Directory of Open Access Journals (Sweden)

    Victor Bridi Telles

    2013-03-01

    Full Text Available The steel production through Electric Arc Furnaces (EAF generates approximately 15% to 20% of Electric Arc Furnace Dust (EAFD. This waste is considered dangerous due to the presence of metals as lead and cadmium that leach in contact with water. Because of this, the EAFD recycling becomes an alternative to diminish the costs with landfills and environmental harms caused by the waste. The iron ore sintering is a process that reuses most part of powders generated by the steelmaking. However the EAFD is not reused in this process because it contains zinc. The zinc is highly detrimental inside blast furnaces causing heavy crusts and affecting the thermodynamic equilibrium of the process. Therefore, this work studies the EAFD reuse in the iron ore sintering process to produce iron ore sinter with zinc contents between the limits established for blast furnaces.

  19. A Brief Review of Viscosity Models for Slag in Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad; Wang, Ping

    2011-11-01

    Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties

  20. Compacting of fly dusts from cupola and electric arc furnace

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-01-01

    Full Text Available Recycling and utilization of dust waste is important not only from the point of view of its usage as an alternative source of raw materials, but regarding the environmental problems also. Dust emissions arise from thermal and chemical or physical processes and mechanical actions. Two kinds of fl y dusts from cupola furnaces (hot and cold blast cupola furnace and fl y dust from electric arc furnace were used by experiments. They were pelletized only with addition of water and briquetted with diff erent addition of water glass, bentonite and cement. Quality of briquettes was tested by compression – strength test and by break down test in green state, after drying and afterstoring (1 month.

  1. Radioactive waste melting furnace

    International Nuclear Information System (INIS)

    Nakayama, Junpei.

    1997-01-01

    The present invention provides a radioactive waste melting furnace excellent in heat insulating property, capable of exchanging only refractory materials with lesser amount of contamination. Namely, an heat insulation layer is disposed on the outer wall of the melting furnace. A refractory layer is disposed on the inner wall being in contact with molten materials in the melting furnace. A metal vessel covering the refractory layer is interposed between the heat insulation layer and the refractory layer. In addition, a metal outer shell covering the heat insulation layer is disposed on the heat insulation layer on the outer wall of the melting furnace. Bricks comprising, for example, alumina, carbon, zircon, magnesia or chromia having a low heat conductivity are used for the outer wall heat insulation layer irrespective of the melting performance. The refractory layer on the inner wall is made of bricks comprising chromia, alumina and zircon as molten materials of low basicity and chromia and magnesia as molten materials of high basicity. The materials of the metal vessel may be ordinary carbon steels, cast irons, or stainless steels. The refractory layer is taken out from the melting furnace together with the metal vessel, and only the refractory layer can be removed. Radiation contamination is eliminated. The metal vessel can be used again. (I.S.)

  2. EVALUATION OF CEMENT THIXOTROPY FOR THE CEMENT OF OIL WELLS IN AREAS WITH LOSSES: EFFECT OF PLASTER AND DAIRY OF HIGH FURNACES

    Directory of Open Access Journals (Sweden)

    T. Bouziani

    2010-12-01

    Full Text Available Cementing of oil and gas wells can be a very delicate operation. Among the concerns of service companies, during this operation are the nature and conditions of the formations in well. This is the case of cementing operations in southern Algeria, specifically on the fields of In-Amen, where the formations in lost zones are naturally weak and highly permeable. In these areas, drilling fluids (muds and cements pumped will be, completely or partially lost, what we call "lost circulation". Thixotropic cements are useful to overcome lost circulation problems. They are characterized by a special rheological behavior, allowing it to plug lost zones when they are pumped. Our work aims to assess the thixotropy of cements perapred with two types of cement (class G Asland cement and CEM I 42.5 portland cement with the plaster, using a viscometer with coaxial cylinder (couette type. Moreover, the effect of blast furnace slag (LHF on the properties and thixotropic mixtures prepared was also studied. The results show that portland cement (available locally can produce mixes with higher and more stable thixotropy than the class G cement (from importation, which is a practical and economical for cementing job operations in wells with loss zones. The results also show that the effect of LHF is positive, since in addition to his contribution to long term performances, especially the durability of hardened concrete, it improves the thixotropy of cement made of plaster.

  3. Diagnostics for a waste processing plasma arc furnace (invited) (abstract)

    International Nuclear Information System (INIS)

    Woskov, P.P.

    1995-01-01

    Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI) c for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants

  4. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  5. The degradation of lining of rotary furnaces in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    Natália Luptáková

    2014-06-01

    Full Text Available This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including chemical complexes of elements Fe, Zn and Al. The mechanism of degradation of the lining leads to slag rests and it is closely connected with the mutual interaction of the aggressive agents with the components of the lining. This process creates a new undesired surface layer which increased the overall thickness of zinc slag. Stuck slag has the influence on rapid degradation of the linings and moreover it also decreases the production quality of ZnO. Analysis results introduced in this paper are significant information for minimizing of degradation of rotary furnaces.  

  6. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.

    2013-01-01

    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  7. AISI/DOE Technology Roadmap Program: Behavior of Phosphorus in DRI/HBI During Electric Furnace Steelmaking

    Energy Technology Data Exchange (ETDEWEB)

    Richard J. Frueham; Christopher P. Manning cmanning@bu.edu

    2001-10-05

    Many common scrap substitutes such as direct reduced iron pellets (DRI), hot briquetted iron (HBI), iron carbide, etc., contain significantly higher levels of phosphorus steelmaking for the production of higher quality steels, control of phosphorus levels in the metal will become a concern. This study has developed a more complete understanding of the behavior of phosphorus in DRI during EAF steelmaking, through a thorough investigation of the kinetics and thermodynamics of phosphorus transfer in the EAF based upon laboratory and plant experiments and trials. Laboratory experiments have shown that phosphorus mass transfer between oxide and metallic phases within commercial direct reduced iron pellets occurs rapidly upon melting according to the local equilibrium for these phases. Laboratory kinetic experiments indicate that under certain conditions, phosphorus mass transfer between slag and metal is influenced by dynamic phenomena, which affect the mass transfer coefficient for the reaction and/or the slag metal interfacial area. Plant trials were conducted to directly evaluate the conditions of mass transfer in the electric furnace and to determine the effects of different scrap substitute materials upon the slag chemistry, the behavior of phosphorus in the steel, and upon furnace yield. The data from these trials were also used to develop empirical models for the slag chemistry and furnace temperature as functions of time during a single heat. The laboratory and plant data were used to develop a numerical process model to describe phosphorus transfer in the EAF

  8. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  9. Mechanical behaviour of steel fibre-reinforced alkali activated slag concrete

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2009-03-01

    Full Text Available This study addressed the mechanical behaviour of a steel fibre-reinforced alternative concrete made from waterglass (Na2SiO3.nH2O+NaOH- activated Colombian blast furnace slag. The mixes studied were prepared with 400 kg of cement and the fibres were added in proportions of 40 and 120 kg per cubic metre of concrete. 7-, 14- and 28-day concrete was tested for compressive, splitting tensile and flexural strength. The results obtained showed that adding steel fibre to alkaline concrete lowered early age compressive strength, and that this decline was more intense with rising volumes of steel. Flexural and splitting tensile strength grew, however, enhancing the toughness of the material. As a general rule, the mechanical strength of the plain and fibre-reinforced alkaline concretes studied was higher than exhibited by conventional ordinary Portland cement concrete prepared with similar proportions of cement and fibre.En este estudio se investigó el comportamiento mecánico de hormigones alternativos reforzados con fibras de acero, basados en una escoria siderúrgica colombiana activada alcalinamente con waterglass (Na2SiO3.nH2O+NaOH. Las mezclas en estudio fueron preparadas con 400 kg de cemento y las fibras fueron incorporadas en proporciones de 40 kg y 120 kg por metro cúbico de hormigón, respectivamente. Se evaluó el comportamiento mecánico de los hormigones frente a esfuerzos de compresión, tracción indirecta y flexión a edades de curado de 7, 14 y 28 días. Los resultados obtenidos indican que la incorporación de fibras de acero en los hormigones alcalinos reduce la resistencia a la compresión a edades tempranas siendo superior la pérdida de resistencia a mayores volúmenes de fibra incorporados, mientras que la resistencia a la flexión y tracción indirecta se incrementan significativamente, mejorando la tenacidad del material. En términos generales, es posible concluir que el comportamiento mecánico exhibido por los hormigones

  10. Design of Slag Thickness Fuzzy Control System for Slag Adding Robot

    Directory of Open Access Journals (Sweden)

    Guo Yuan

    2017-01-01

    Full Text Available According to the defect of artificial slag adding and open-loop slag adding in continuous casting mold, a slag adding robot with real-time slag thickness detection and feedback control is developed. That is, the laser ranging sensor is applied on the basis of the open-loop slag adding robot. Then the real-time information of in-mold slag thickness can be obtained. And the coupling relation of three factors: real-time slag thickness, mold work slagging speed and robot slagging rate are taken into comprehensive consideration. Therefore fuzzy controller is built to realize the fuzzy PID control of the slagging robot feeding electro-mechanical system and achieve the intelligent control of slag thickness in the mold. The simulation and application results show that the slag adding robot based on fuzzy PID control has good effect and quick response. The slag can be pressed according to the requirement, which is beneficial to energy saving and consumption reduction, and improves the quality of the billet.

  11. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The effect of blast furnace slag on the self-compactability of pumice aggregate lightweight concrete · Murat Kurt Türkay Kotan Muhammed Said Gül Rüstem Gül Abdulkadir Cüneyt Aydin · More Details Abstract Fulltext PDF. This paper presents the results of an experimental study of the effects of blast furnace slag, different ...

  12. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  13. Usage of Thermodynamic Activity for Optimization of Power Expenses in Respect of Casting Process in Arc Steel-Melting Furnace

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2006-01-01

    Full Text Available The equilibrium between carbon and oxygen has been investigated during oxidizing refining in an arc steel-melting furnace. It is shown that there is a possibility to apply an equilibrium thermodynamic. It has been established that during oxidizing refining FeO concentration in slag practically does not depend on C concentration in metal. It is demonstrated that in a number of cases metal carbon oxidation is characterized by the presence of a transit period that may be attributed to incomplete slag-formation process.

  14. A Study on Calcium Transfer from Slag to Steel and its Effect on Modification of Alumina and Spinel Inclusions

    Science.gov (United States)

    Kumar, Deepoo; Pistorius, P. Chris

    Aluminum deoxidized steel tends to form solid inclusions (alumina, spinel, partially modified calcium aluminates). These solid inclusions are known to present challenges during casting, cause slivers during mechanical working and act as crack initiation sites for mechanical failure. Calcium injection practice has been used by the industry to transform these solid inclusions into liquid inclusions for several decades. There has been a significant amount of study to understand the mechanism of calcium modification of alumina/spinel inclusions. However, there has been little attempt to understand calcium transfer from slag to steel to inclusions that may modify alumina inclusions. In this study, laboratory deoxidation experiments were conducted using an induction furnace, physically simulating a ladle furnace; samples were taken during these experiments to study the extent of calcium transfer through inclusion analysis. This study shows that in the presence of silicon, there can be significant amount of calcium transfer from slag. Also, as the rate of calcium transfer from slag is limited by mass transfer in steel and slag, it is difficult to modify a large concentration of inclusions. However, an appreciable extent of calcium transfer was found in the case of lower concentration of inclusions (less than 150 ppm area fraction).

  15. Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach

    Energy Technology Data Exchange (ETDEWEB)

    Chaurand, Perrine [CEREGE, UMR 6635 CNRS, University Paul Cezanne, IFR 112 PMSE, Europole Mediterraneen de l' Arbois, BP 80, 13545 Aix en Provence Cedex 04 (France)]. E-mail: chaurand@cerege.fr; Rose, Jerome [CEREGE, UMR 6635 CNRS, University Paul Cezanne, IFR 112 PMSE, Europole Mediterraneen de l' Arbois, BP 80, 13545 Aix en Provence Cedex 04 (France); Briois, Valerie [LURE Laboratoire pour l' Utilisation du Rayonnement Electromagnetique, Universite Paris-Sud, Orsay (France); Olivi, Luca [Sincrotrone Trieste S.C.p.A. S.S., 14 Km 163.5, 34012 Basovizza Trieste (Italy); Hazemann, Jean-Louis [Laboratoire de Cristallographie, BP 166, 38042 Grenoble Cedex 09 (France); Proux, Olivier [Laboratoire de Geophysique Interne et de Tectonophysique, UMR CNRS Universite Joseph Fourier, 1381 rue de la piscine, Domaine Universitaire, 38400 St Martin d' Heres (France); Domas, Jeremie [INERIS, Domaine du petit Arbois, Batiment Laennec, BP 33, 13545 Aix en Provence Cedex 04 (France); Bottero, Jean-Yves [CEREGE, UMR 6635 CNRS, University Paul Cezanne, IFR 112 PMSE, Europole Mediterraneen de l' Arbois, BP 80, 13545 Aix en Provence Cedex 04 (France)

    2007-01-31

    Basic oxygen furnace (BOF) steel slag is a residue from the basic oxygen converter in steel-making operations, and is partially reused as an aggregate for road constructions. Although BOF slag is an attractive building material, its long-term behaviour and the associated environmental impacts must be taken into account. Indeed BOF slag is mainly composed of calcium, silicon and iron but also contains trace amounts of potential toxic elements, specifically chromium and vanadium, which can be released. The present research focuses (i) on the release of Cr and V during leaching and (ii) on their speciation within the bearing phase. Indeed the mobility and toxicity of heavy metals strongly depend on their speciation. Leaching tests show that only low amounts of Cr, present at relatively high concentration in steel slag, are released while the release of V is significantly high. X-ray absorption near-edge structure (XANES) spectroscopy indicates that Cr is present in the less mobile and less toxic trivalent form and that its speciation does not evolve during leaching. On the contrary, V which is predominantly present in the 4+ oxidation state seems to become oxidized to the pentavalent form (the most toxic form) during leaching.

  16. Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach.

    Science.gov (United States)

    Chaurand, Perrine; Rose, Jerome; Briois, Valérie; Olivi, Luca; Hazemann, Jean-Louis; Proux, Olivier; Domas, Jérémie; Bottero, Jean-Yves

    2007-01-31

    Basic oxygen furnace (BOF) steel slag is a residue from the basic oxygen converter in steel-making operations, and is partially reused as an aggregate for road constructions. Although BOF slag is an attractive building material, its long-term behaviour and the associated environmental impacts must be taken into account. Indeed BOF slag is mainly composed of calcium, silicon and iron but also contains trace amounts of potential toxic elements, specifically chromium and vanadium, which can be released. The present research focuses (i) on the release of Cr and V during leaching and (ii) on their speciation within the bearing phase. Indeed the mobility and toxicity of heavy metals strongly depend on their speciation. Leaching tests show that only low amounts of Cr, present at relatively high concentration in steel slag, are released while the release of V is significantly high. X-ray absorption near-edge structure (XANES) spectroscopy indicates that Cr is present in the less mobile and less toxic trivalent form and that its speciation does not evolve during leaching. On the contrary, V which is predominantly present in the 4+ oxidation state seems to become oxidized to the pentavalent form (the most toxic form) during leaching.

  17. Environmental impacts of steel slag reused in road construction: A crystallographic and molecular (XANES) approach

    International Nuclear Information System (INIS)

    Chaurand, Perrine; Rose, Jerome; Briois, Valerie; Olivi, Luca; Hazemann, Jean-Louis; Proux, Olivier; Domas, Jeremie; Bottero, Jean-Yves

    2007-01-01

    Basic oxygen furnace (BOF) steel slag is a residue from the basic oxygen converter in steel-making operations, and is partially reused as an aggregate for road constructions. Although BOF slag is an attractive building material, its long-term behaviour and the associated environmental impacts must be taken into account. Indeed BOF slag is mainly composed of calcium, silicon and iron but also contains trace amounts of potential toxic elements, specifically chromium and vanadium, which can be released. The present research focuses (i) on the release of Cr and V during leaching and (ii) on their speciation within the bearing phase. Indeed the mobility and toxicity of heavy metals strongly depend on their speciation. Leaching tests show that only low amounts of Cr, present at relatively high concentration in steel slag, are released while the release of V is significantly high. X-ray absorption near-edge structure (XANES) spectroscopy indicates that Cr is present in the less mobile and less toxic trivalent form and that its speciation does not evolve during leaching. On the contrary, V which is predominantly present in the 4+ oxidation state seems to become oxidized to the pentavalent form (the most toxic form) during leaching

  18. Eficiência relativa de fontes de silício no controle de brusone nas folhas em arroz Relative efficiency of silicon sources on rice leaf blast control

    Directory of Open Access Journals (Sweden)

    Rodrigo Fascin Berni

    2003-02-01

    Full Text Available A adubação silicatada constitui uma das alternativas para diminuir o uso de fungicidas no controle da brusone em arroz. Foi realizado um experimento, durante 1999/2000 e repetido durante 2000/2001, com o objetivo de estudar a eficiência relativa de fontes de silício (Si na redução da severidade da brusone nas folhas da cultivar Metica-1, em área de várzea. Os tratamentos foram três fontes de Si (silicato de alto forno; serpentinito, minério rico em Si e wollastonita, um metasilicato de cálcio natural, em cinco doses (0, 0,5, 1,0, 2,0 e 4,0 Mg ha-1 sem tratamento das sementes ou com tratamento das sementes com o fungicida pyroquilon 200 g de i.a. por 100 kg. A severidade da brusone diminuiu significativamente com o aumento de doses de silício. As relações entre a área sob curva de progresso da doença e as doses, tanto do silicato de alto forno quanto da wollastonita, foram lineares e negativas, com ou sem tratamento de sementes, em ambos os anos do experimento. Os resultados revelam o aumento da eficiência do tratamento das sementes com fungicida na redução da brusone nas folhas com a fertilização silicatada.Silicon fertilization of rice is one of the alternatives for reducing the use of fungicides in the control of rice blast. An experiment was conducted, during 1999/2000 and repeated in 2000/2001, in order to study the efficiency of sources of silicon (Si to reduce leaf blast on rice cultivar Metica-1, cultivated in the low land. The treatments included three sources of Si (high furnace silicate slag, serpentinite ore rich in silicon and wollastonite ore, a native calcium metasilicate at five doses (0, 0.5, 1.0, 2.0 and 4.0 Mg ha-1, with and without fungicide treatment (pyroquilon 200 g a.i. per 100 kg of seed. The blast disease severity decreased with increase in Si doses. The relationship between area under disease progress curve and doses of silicate slag as well as wollastonite were linear and negative, with and without

  19. Non-carbon induction furnace

    Science.gov (United States)

    Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.

    1984-01-06

    The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.

  20. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  1. A rotary arc furnace for aluminum dross processing

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C. [Hydro-Quebec, Shawinigan, Quebec (Canada)

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally non-acceptable because of the production of salt slags. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tonnes of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  2. A rotary arc furnace for aluminum dross processing

    Energy Technology Data Exchange (ETDEWEB)

    Drouet, M.G.; Meunier, J.; Laflamme, C.B.; Handfield, M.D.; Biscaro, A.; Lemire, C. [Hydro-Quebec, Shawinigan, Quebec (Canada)

    1995-12-31

    Dross, a major by-product of all processes involving molten aluminum, forms at the surface of the molten metal as the latter reacts with the furnace atmosphere. It generally represents 1 to 5 wt% of the melt, depending on the process, and contains on average about 50% free aluminum dispersed in an oxide layer. Since aluminum production is highly energy-intensive, dross recycling is very attractive from both the energy and the economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally unacceptable because of the salt slags produced. Hydro-Quebec has developed and patented a new salt-free technology using a rotary furnace heated by an electric arc between two graphite electrodes, called DROSCAR{reg_sign}. A 600-kW pilot plant in operation at LTEE is in use to demonstrate the process. This process provides aluminum recovery rates for over 90%, using a highly energy efficient, environmentally sound production method. In 1994, 400 tons of aluminum dross were treated in this facility and several tests on various types of dross have also been conducted in early 1995. A report on the results will be presented.

  3. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  4. Steel desulphurization with synthetic slag

    Directory of Open Access Journals (Sweden)

    Heput, T.

    2007-02-01

    Full Text Available Generally speaking, sulphur is considered a harmful element for steel quality, reason why all the technological steps are being taken in order to eliminate it from the metal bath. This paper deals with the influence of the chemical composition, on the slag quantity and of the bath stirring condition upon the desulphurization process in the casting ladle by treatment with synthetic slag. The experiments were made at an open-hearth plant with the steel tapping in two ladles (the desulphurization was made with synthetic slag at one ladle while the other one was considered standard and at the electric steel plant and for the synthetic slag formation a mix was used, made, according to several receipts, of: lime (50-75%, fluorine (0-17%, bauxite (0-32% and aluminous slag (8-22%. The data were processed in the calculation programs EXCEL and MATLAB, which resulted in a series of correlations between the desulphurization degree and the chemical composition of the slag, respectively the slag quantity both for the charges bubbled with Argon and the unbubbled ones.

    En general, el azufre es considerado un elemento nocivo para la calidad del acero y, por eso, en la práctica, se toman todas las medidas de orden tecnológico para su eliminación del baño metálico. En este trabajo se analiza la influencia de la composición química, de la cantidad de escoria y del estado de agitación del baño sobre el proceso de desulfuración en la cuchara para fundir por tratamiento con escoria sintética. Los experimentos se han realizado en una acería evacuando el acero en dos ollas (en una cuchara se efectuó la desulfuración con escoria sintética y a la otra se consideró como patrón y en un acería eléctrica y para la formación de la escoria sintética se utilizó una mezcla producida según muchas recetas, formada por: cal (50-75%, fluorina (0-17%, bauxita (0-32% y escoria aluminosa (8-22%. Los datos han sido procesados en los programas de c

  5. SITUATIONAL CONTROL OF HOT BLAST STOVES GROUP BASED ON DECISION TREE

    Directory of Open Access Journals (Sweden)

    E. I. Kobysh

    2016-09-01

    Full Text Available In this paper was developed the control system of group of hot blast stoves, which operates on the basis of the packing heating control subsystem and subsystem of forecasting of modes duration in the hot blast stoves APCS of iron smelting in a blast furnace. With the use of multi-criteria optimization methods, implemented the adjustment of control system conduct, which takes into account the current production situation that has arisen in the course of the heating packing of each hot blast stove group. Developed a situation recognition algorithm and the choice of scenarios of control based on a decision tree.

  6. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  7. Cupola Furnace Computer Process Model

    Energy Technology Data Exchange (ETDEWEB)

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  8. CORELESS INDUCTION FURNACE. CONSTRUCTIVE DIFFERENCES, OPERATION

    Directory of Open Access Journals (Sweden)

    A. N. Saharevich

    2012-01-01

    Full Text Available The main tendencies of development of induction crucible furnaces are considered. constructive differences of crucible furnaces in comparison with fuel furnaces are given. The area of their application is specified.

  9. Experimental Study on the Behavior of TiN and Ti2O3 Inclusions in Contact with CaO‐Al2O3‐SiO2‐MgO Slags

    Directory of Open Access Journals (Sweden)

    S. K. Michelic

    2017-01-01

    Full Text Available TiN and Ti2O3 are the predominant inclusion types in Ti-alloyed ferritic chromium stainless steels. In order to ensure the required steel cleanness level, an effective removal of such inclusions in the slag during secondary metallurgy is essential. This inclusion removal predominantly takes place via dissolution of the inclusion in the slag. The dissolution behavior of TiN and Ti2O3 in CaO-SiO2-Al2O3-MgO slags as well as their agglomeration behavior in the liquid steel is investigated using High Temperature Laser Scanning Confocal Microscopy and Tammann Furnace experiments. Thermodynamic calculations are performed using FactSage 7.0. The behavior of TiN is observed to be completely different to that of oxides. Ti2O3 dissolves quickly in slags, and its dissolution behavior is comparable to that of other already well examined oxides. In contrast, TiN shows a very intense gas reaction which is attributed to the release of nitrogen during contact with slag. Slags with higher SiO2 content show a significantly higher ability for the dissolution of TiN as compared to Al2O3-rich slags. The gas reaction is found to also significantly influence the final steel cleanness. Despite the easy absorption of TiN in the slag, the formed nitrogen supports the formation of pinholes in the steel.

  10. Efficiency of using direct-flow burners and nozzles in implementation of dry-bottom ash removal at the TPP-210A boiler furnace

    Science.gov (United States)

    Arkhipov, A. M.; Kanunnikov, A. A.; Kirichkov, V. S.; Prokhorov, V. B.; Fomenko, M. V.; Chernov, S. L.

    2017-02-01

    In reconstruction of operating pulverized coal-fired boilers, one of the main factors is the choice of a method for slag removal: dry bottom ash removal (DBAR) or slag-tap removal (STR). In this case, ecological and economic aspects should be taken into account, and also the early ignition of pulverized coal fuel, the reliability of operation of the furnace walls in the mode without slagging, and the stability of slag removal should be provided. In this work, issues of changeover of the pulverized coal-fired boilers of the TPP-210A type from the STR mode to the DBAR mode are considered. As of today, the main problems during the operation of these boilers are the high emissions of nitrogen oxides together with flue gases into the atmosphere and the appropriated payoffs, a small range of loads available, the necessity of stabilization of the pulverizedcoal flame sustainability by using the highly reactive fuel, large mechanical fuel underburning, etc. Results of studying aerodynamics of a furnace with DBAR obtained in the process of physical simulation are given; technical solutions and preliminary design (configuration of burners and nozzles in the boiler furnace, conceptual design of the pulverized coal burner, configuration of TPP-210A boiler with the low heat liberation of furnace cross-section and volumetric heat release) are set forth, which are associated with the optimization of aerodynamics of furnace volume, when the direct-flow burners and nozzles are used, and with organization of the efficient staged combustion of solid fuel. Two versions of possible modernization of a boiler unit are considered. Under conditions of the planned increase in the steam production capacity, the most promising measures are as follows: the DBAR implementation with reducing heat releases of the cross-section and volume of the furnace approximately by half, the installation of the direct-flow burners and nozzles with injection of recirculation gases into the active combustion

  11. Identification of possible non-stationary effects in a new type of vortex furnace

    Directory of Open Access Journals (Sweden)

    Shadrin Evgeniy Yu.

    2017-01-01

    Full Text Available The article presents the results of an experimental study of pressure and velocity pulsations in the model of improved vortex furnace with distributed air supply and vertically oriented nozzles of the secondary blast. Investigation of aerodynamic characteristics of a swirling flow with different regime parameters was conducted in an isothermal laboratory model (in 1:25 scale of vortex furnace using laser Doppler measuring system and pressure pulsations analyzer. The obtained results have revealed a number of features of the flow structure, and the spectral analysis of pressure and velocity pulsations allows to speak about the absence of large-scale unsteady vortical structures in the studied design.

  12. Process and plant for the processing of slag from aluminium scrap and waste melting, recovery of components thereof and treatment of gasses generated

    Energy Technology Data Exchange (ETDEWEB)

    Olper, M.; Corsini, T.; Fracchia, P.

    1990-08-28

    Aluminum scrap is generally melted with a saline flux which absorbs the residues in the scrap and which protects the molten aluminum from oxidation. After tapping out the aluminum from the furnace, a saline slag is formed which creates serious disposal problems in that traditional methods for processing this slag (hot water leaching to dissolve the salts) releases gases developed from the decomposition of residues in the slag. Hydrogen, methane, and ammonia are the major components of these gases, and minor components include highly toxic substances such as phosphine and hydrogen sulfides. An object of this invention is to propose a treatment plant for saline slag arising from the processing of aluminum scrap, in which hazardous products are not emitted. According to the invention, the slag is leached with water, the solution is filtered and concentrated for recovery of chlorides, and the gases developed during leaching are burnt with the addition of fuel in order to reach their self-ignition temperature. The combustion heat produced by combusting these gases is recovered, preferably in a venturi-type apparatus, and used to concentrate the leach solution produced from the slag. 1 fig.

  13. A Gibbs Energy Minimization Approach for Modeling of Chemical Reactions in a Basic Oxygen Furnace

    Science.gov (United States)

    Kruskopf, Ari; Visuri, Ville-Valtteri

    2017-12-01

    In modern steelmaking, the decarburization of hot metal is converted into steel primarily in converter processes, such as the basic oxygen furnace. The objective of this work was to develop a new mathematical model for top blown steel converter, which accounts for the complex reaction equilibria in the impact zone, also known as the hot spot, as well as the associated mass and heat transport. An in-house computer code of the model has been developed in Matlab. The main assumption of the model is that all reactions take place in a specified reaction zone. The mass transfer between the reaction volume, bulk slag, and metal determine the reaction rates for the species. The thermodynamic equilibrium is calculated using the partitioning of Gibbs energy (PGE) method. The activity model for the liquid metal is the unified interaction parameter model and for the liquid slag the modified quasichemical model (MQM). The MQM was validated by calculating iso-activity lines for the liquid slag components. The PGE method together with the MQM was validated by calculating liquidus lines for solid components. The results were compared with measurements from literature. The full chemical reaction model was validated by comparing the metal and slag compositions to measurements from industrial scale converter. The predictions were found to be in good agreement with the measured values. Furthermore, the accuracy of the model was found to compare favorably with the models proposed in the literature. The real-time capability of the proposed model was confirmed in test calculations.

  14. Challenges in Melt Furnace Tests

    Science.gov (United States)

    Belt, Cynthia

    2014-09-01

    Measurement is a critical part of running a cast house. Key performance indicators such as energy intensity, production (or melt rate), downtime (or OEE), and melt loss must all be understood and monitored on a weekly or monthly basis. Continuous process variables such as bath temperature, flue temperature, and furnace pressure should be used to control the furnace systems along with storing the values in databases for later analysis. While using measurement to track furnace performance over time is important, there is also a time and place for short-term tests.

  15. Dissolution of steel slags in aqueous media.

    Science.gov (United States)

    Yadav, Shashikant; Mehra, Anurag

    2017-07-01

    Steel slag is a major industrial waste in steel industries, and its dissolution behavior in water needs to be characterized in the larger context of its potential use as an agent for sequestering CO 2 . For this purpose, a small closed system batch reactor was used to conduct the dissolution of steel slags in an aqueous medium under various dissolution conditions. In this study, two different types of steel slags were procured from steel plants in India, having diverse structural features, mineralogical compositions, and particle sizes. The experiment was performed at different temperatures for 240 h of dissolution at atmospheric pressure. The dissolution rates of major and minor slag elements were quantified through liquid-phase elemental analysis using an inductively coupled plasma atomic emission spectroscopy at different time intervals. Advanced analytical techniques such as field emission gun-scanning electron microscope, energy-dispersive X-ray, BET, and XRD were also used to analyze mineralogical and structural changes in the slag particles. High dissolution of slags was observed irrespective of the particle size distribution, which suggests high carbonation potential. Concentrations of toxic heavy metals in the leachate were far below maximum acceptable limits. Thus, the present study investigates the dissolution behavior of different mineral ions of steel slag in aqueous media in light of its potential application in CO 2 sequestration.

  16. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  17. Furnace devices aerodynamics optimization for fuel combustion efficiency improvement and nitrogen oxide emission reduction

    Science.gov (United States)

    Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.

    2017-11-01

    MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.

  18. A numerical model for chemical reaction on slag layer surface and slag layer behavior in entrained-flow gasifier

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2013-01-01

    Full Text Available The paper concerns with slag layer accumulation, chemical reaction on slag layer surface, and slag layer flow, heat and mass transfer on the wall of entrained-flow coal gasifier. A slag layer model is developed to simulate slag layer behaviors in the coal gasifier. This 3-D model can predict temperature, slag particle disposition rate, disposition particle composition, and syngas distribution in the gasifier hearth. The model is used to evaluate the effects of O2/coal ratio on slag layer behaviors.

  19. Arc -furnace Flicker Compensation in Ethiopia.

    African Journals Online (AJOL)

    series capacitors nor the translater scheme is appli- cable where more ... The arc furnace is of conventional design. The furnace ... power of the furnace. This reactor had three tappings and a short-circuiting switch. REQUIREMENTS OF THE COMPENSATOR. The fluctuations could be caused by the furnace on whichever ...

  20. Fossil fuel furnace reactor

    Science.gov (United States)

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  1. Leaching Kinetics of Praseodymium in Sulfuric Acid of Rare Earth Elements (REE) Slag Concentrated by Pyrometallurgy from Magnetite Ore

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chul-Joo; Yoon, Ho-Sung; Chung, Kyung Woo; Lee, Jin-Young; Kim, Sung-Don; Shin, Shun Myung [Korea Institute of Geoscience and Mineral Resources, Daejeon (Korea, Republic of); Kim, Hyung-Seop; Cho, Jong-Tae; Kim, Ji-Hye; Lee, Eun-Ji; Lee, Se-Il; Yoo, Seung-Joon [Seonam University, Asan (Korea, Republic of)

    2015-02-15

    A leaching kinetics was conducted for the purpose of recovery of praseodymium in sulfuric acid (H{sub 2}SO{sub 4}) from REE slag concentrated by the smelting reduction process in an arc furnace as a reactant. The concentration of H{sub 2}SO{sub 4} was fixed at an excess ratio under the condition of slurry density of 1.500 g slag/L, 0.3 mol H{sub 2}SO{sub 4}, and the effect of temperatures was investigated under the condition of 30 to 80 .deg. C. As a result, praseodymium oxide (Pr{sub 6}O{sub 1}1) existing in the slag was completely converted into praseodymium sulfate (Pr{sub 2}(SO{sub 4}){sub 3}·8H{sub 2}O) after the leaching of 5 h. On the basis of the shrinking core model with a shape of sphere, the first leaching reaction was determined by chemical reaction mechanism. Generally, the solubility of pure REEs decreases with the increase of leaching temperatures in sulfuric acid, but REE slag was oppositely increased with increasing temperatures. It occurs because the ash layer included in the slag is affected as a resistance against the leaching. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction was determined to be 9.195 kJmol{sup -1}. In the second stage, the leaching rate is determined by the ash layer diffusion mechanism. The apparent activation energy of the second ash layer diffusion was determined to be 19.106 kJmol{sup -1}. These relative low activation energy values were obtained by the existence of unreacted ash layer in the REE slag.

  2. Slags from steel production: Properties and their utilization

    Directory of Open Access Journals (Sweden)

    J. Vlcek

    2013-07-01

    Full Text Available During steel production a considerable amount of slags is produced. In addition to its usual processing, as recycling in device for steel production and preparation of aggregates, it is also possible to apply less common slag processing ways. Depending on cooling mode of the steel slags these may show some binding properties. Geopolymer type binders can be prepared from the slag using alkali activators or the hydraulic properties of the dicalciumsilicate present in the slag can be induced by water. The paper summarizes present state of material utilisation of the steel slags with focus on emphasize of the possible sources of the slag volume instability. The influence of process of slag cooling on its phase composition is documented. It was also found that slags from real sources show different parameters compared to samples obtained for laboratory examination.

  3. AISI/DOE Technology Roadmap Program: Removal of Residual Elements in The Steel Ladle by a Combination of Top Slag and Deep Injection Practice

    Energy Technology Data Exchange (ETDEWEB)

    S. Street; K.S. Coley; G.A. Iron

    2001-08-31

    The objective of this work was to determine if tin could be removed from liquid steel by a combination of deep injection of calcium and a reducing top-slag practice. The work was carried out in three stages: injection of Ca wire into 35 Kg heats in an induction furnace under laboratory condition; a fundamental study of the solubility of Sn in the slag as a function of oxygen potential, temperature and slag composition; and, two full-scale plant trials. During the first stage, it was found that 7 to 50% of the Sn was removed from initial Sn contents of 0.1%, using 8 to 16 Kg of calcium per tonne of steel. The Sn solubility study suggested that low oxygen potential, high basicity of the slag and lower temperature would aid Sn removal by deep injection of Ca in the bath. However, two full-scale trials at the LMF station in Dofasco's plant showed virtually no Sn removal, mainly because of very low Ca consumption rates used (0.5 to 1.1 Kg/tonne vs. 8 to 16 Kg/tonne used during the induction furnace study in the laboratory). Based on the current price of Ca, addition of 8 to 16 Kg/tonne of steel to remove Sn is too cost prohibitive, and therefore, it is not worthwhile to pursue this process further, even though it may be technically feasible.

  4. Generating electricity and heat from lean gas. Dual fuel engine generates electricity and process heat from cupola furnace gas; Strom und Waerme aus Schwachgas gewinnen. Zuendstrahlmotor erzeugt Strom und Prozesswaerme aus Kupolofengas

    Energy Technology Data Exchange (ETDEWEB)

    Hirn, Gerhard

    2012-07-01

    White-hot molten iron flows into the launder. The blast of heat released provides visitors with an impressive demonstration of the amount of energy flowing in foundries. Large volumes of carbon (coke) are used for the melting process in the cupola furnace, whereby a combustible process gas is formed as a by-product. This so-called cupola furnace gas has a low heating value and has previously been completely combusted for generating the hot blast in the cupola furnace's recuperator. However, in this process only around 35 % of the contained energy is used thermally. Now it is possible to utilise the remaining 65 % of the chemically bound energy that was previously not used in most foundries: a modified biogas combined heat and power plant runs with cupola furnace gas (CFG) from the melting furnace. (orig.)

  5. Method for processing aluminum spent potliner in a graphite electrode ARC furnace

    Science.gov (United States)

    O'Connor, William K.; Turner, Paul C.; Addison, Gerald W.

    2002-12-24

    A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

  6. Simultaneous obtention of multicomponent ferroalloy and slag from black sands for the development of electrical arc welding consumables

    International Nuclear Information System (INIS)

    Cruz-Crespo, A.; Gomez-Rodriguez, L.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Cerpa-Naranjo, A.; Cores-Sanchez, A.

    2004-01-01

    In this paper, chemical and mineralogical characterizations of the black sands of the Mejias placer of Sagua de Tanamo (the most important beach littoral placer of the northwest of oriental Cuba) are exposed. Starting from these characterizations a calculation strategy is developed for the making of the metallurgical load that allows to obtain simultaneously, when processed by carbothermic reduction in an electrical arc furnace, a multicomponent ferroalloy and a useful slag for the making of electric arch welding consumables. The powder of the obtained slag is agglomerated with liquid glass. The resulting pellets, due to their behavior on the submerged arc welding (SAW) present technological and metallurgical properties that correspond with the requirements of an agglomerated flux matrix. The chemical composition of the multicomponent ferroalloy is constituted by metallic elements of high metallurgical and alloyed values (V, Cr, Mo, Ti, Nb). It is appropriate for the formulation of consumables for manual welding (SMAW) and SAW, as well. (Author) 15 refs

  7. Pulverized coal firing of aluminum melting furnaces. First annual technical progress report, May 1978-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    West, C.E.; Hines, J.E.; Stewart, D.L. Jr.; Yu, H.

    1979-10-01

    The ultimate objective of this program is the commercial demonstration of an efficient, environmentally acceptable coal firing process suitable for implementation on melting furnaces throughout the aluminum industry. To achieve this goal, the program has been divided into two phases. Phase I has begun with the design and construction of a 350 lb/h (coal) staged slagging cyclone combustor (SSCC) attached to a 7-ft dia aluminum melting ladle furnace. Process development will culminate with a 1000 pph prototype SSCC firing a 40,000 lb capacity open hearth melting furnace at the Alcoa Laboratories. Phase II implementation is currently planned for Alcoa's Lafayette, IN, Works, where two of the ingot plant's five open hearth melting furnaces will be converted to utilize coal. In addition to confirmation of data gathered in Phase I, the effect of extended production schedule operation on equipment and efficiencies will be determined. This work would begin in 1982 pursuant to technical and economic evaluation of the process development at that time. A major design subcontract for assistance in the design of the SSCC is 80% completed.

  8. Properties of paving units incorporating slag cement

    Directory of Open Access Journals (Sweden)

    Hanan A. El Nouhy

    2013-04-01

    Full Text Available The aim of this study is to investigate the effect and possibility of using Portland slag cement in the production of interlocking paving units. Paving units consist of two layers. Four mixes were cast. The first mix was the control mix, in which Portland cement was used in the two layers. In the second mix, Portland slag cement was used in the upper layer, Portland cement was used in the backing layer. In the third mix, Portland cement was placed in the upper layer, while Portland slag cement was used in the backing layer. Finally, in the fourth mix, Portland cement was fully replaced by Portland slag cement in both layers. Tests were carried out in order to investigate the properties of the manufactured specimens at ages 28 and 180 days, respectively. Compressive strength and abrasion resistance were conducted according to the American Society for Testing and Materials (ASTM C 140 and ASTM C418. Water absorption, split tensile strength, abrasion resistance, as well as, skid resistance were performed according to both Egyptian Standard Specifications (ESS 4382 and European Standard (EN 1338. The Egyptian standard is identical with the European standard. The results indicate that it is feasible to use Portland slag cement in the manufacture of paving blocks as the conditions of the conducted tests were satisfied at age180 days except for the minimum splitting tensile strength test.

  9. Process-integrated slag treatment; Prozessintegrierte Schlackebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Koralewska, R.; Faulstich, M. [Technische Univ., Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft

    1998-09-01

    The present study compares two methods of washing waste incineration slag, one with water only, and one which uses additives during wet deslagging. The presented aggregate offers ideal conditions for process-integrated slag treatment. The paper gives a schematic description of the integrated slag washing process. The washing liquid serves to wash out the readily soluble constituents and remove the fines, while the additives are for immobilising heavy metals in the slag material. The study is based on laboratory and semi-technical trials on the wet chemical treatment of grate slag with addition of carbon dioxide and phosphoric acid. [Deutsch] Die dargestellten Untersuchungen beziehen sich auf den Vergleich zwischen einer Waesche der Muellverbrennungsschlacke mit Wasser und unter Zugabe von Additiven im Nassentschlacker. In diesem Aggregat bieten sich optimale Voraussetzungen fuer eine prozessintegrierte Schlackebehandlung. Die Durchfuehrung der integrierten Schlackewaesche wird schematisch gezeigt. Durch die Waschfluessigkeit sollen die leichtloeslichen Bestandteile ausgewaschen und die Feinanteile ausgetragen sowie durch die Additive zusaetzlich die Schwermetalle im Schlackematerial immobilisiert werden. Dazu erfolgten Labor- und halbtechnische Versuche zur nasschemischen Behandlung der Rostschlacken unter Zugabe von Kohlendioxid und Phosphorsaeure. (orig./SR)

  10. High Efficiency Solar Furnace Core, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop a high efficiency solar furnace core that greatly lessens the heat losses from the furnace core, either greatly reducing the amount of...

  11. Environmental and economic implications of slag disposal practices ...

    African Journals Online (AJOL)

    A large volume of slag is annually produced by the ferrochromium industry and the slag has historically been dumped without any pollution prevention, control or remediation measures. The slag at the ASSMANG Chrome Machadodorp (ACM) plant in Mpumalanga (where this case study was conducted) contains elements ...

  12. Environmental characteristics and utilization potential of metallurgical slag: Chapter 19

    Science.gov (United States)

    Piatak, Nadine; De Vivo, Benedetto; Belkin, Harvey E.; Lima, Annamaria

    2018-01-01

    Slag, an abundant byproduct from the pyrometallurgical processing of ores, can be an environmental liability or a valuable resource. The most common environmental impact of slag is from the leaching of potentially toxic elements, acidity, or alkalinity that may impact nearby soils and surface water and groundwater. Factors that influence its environmental behavior include physical characteristics, such as grain size and porosity, chemical composition with some slag being enriched in certain elements, the mineralogy and partitioning of elements in more or less reactive phases, water-slag interactions, and site conditions. Many of these same factors also influence its resource potential. For example, crystalline ferrous slag is most commonly used as construction aggregate, whereas glassy (i.e., granulated) slag is used in cement. Also, the calcium minerals found in ferrous slag result in useful applications in water treatment. In contrast, the high trace-element content of some base-metal slags makes the slags economically attractive for extraction of residual elements. An evaluation tool is used to help categorize a particular slag as an environmental hazard or valuable byproduct. Results for one type of slag, legacy steelmaking slag from the Chicago area in the USA, suggest the material has potential to be used for treating phosphate-rich or acidic waters; however, the pH and trace-element content of resulting solutions may warrant further examination.

  13. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  14. Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies

    Science.gov (United States)

    Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry

    2016-08-01

    Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.

  15. Carbothermic reduction of pyrolusite for obtaining carbon bearing ferromanganese and slags, adequated to the development of welding materials; Reduccion carbotermica de pirolusita para la obtencion de ferromanganeso y escoria, adecuados al desarrollo de materiales de soldadura

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Crespo, A.; Garcia-Sanchez, L. L.; Quintana-Puchol, R.; Perdomo Gonzalez, L.; Gomez-Perez, C. R.; Jimenez-Vielsa, G. E.; Cores-Sanchez, A.

    2004-07-01

    The high carbon ferromanganese obtained by means of carbothermic reduction in an electric arc furnace of direct current is proposed. the ideal composition of slag oxides to achieve a flux to be used in the submerged arc welding (SAW) is established. Calculation for charge components (pyrolusite, coke, steel wool, lime, rutile and fluorite) for no fluxes technology for FeMn is carried out taking into account the welding fluxes characteristics of the SiO{sub 2}-MnO-CaO system. Change materials reduction experiments to obtain FeMn and slag are used to develop a SAW flux. (Author) 21 refs.

  16. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material ...

  17. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The systems include a primary combustion compartment coupled to an impact separator for removing molten slag from hot combustion gases. Quenching means are provided for solidifying the molten slag removed by the impact separator, and processing means are provided forming a slurry from the solidified slag for facilitating removal of the solidified slag from the system. The released hot combustion gases, substantially free of molten slag, are then ducted to a lean combustion compartment and then to an expander section of a gas turbine.

  18. Extratores de silício disponível em escórias e fertilizantes Extractors of available silicon in slags and fertilizers

    Directory of Open Access Journals (Sweden)

    H. S. Pereira

    2003-04-01

    ções entre o Si recuperado e o Si extraído pela cultura do arroz foram a resina Amberlite e o Na2CO3 10 g dm-3 + NH4NO3 16 g dm-3, seguidos pela coluna de lixiviação.Methods to quantify available silicon (Si in fertilizers and slags are not yet sufficiently trustworthy. In this study, Si extracted from several sources was analyzed, using the extractors: Na2CO3 + NH4NO3 in varying concentration, time of agitation and of reaction; water; HCl 0,5 mol dm-3; 50 g dm-3 of Na2CO3; 50 g dm-3 of citric acid; 0,5 mol dm-3 of acetic acid; acid cation exchange resin (Amberlite IRC-50, pK 6.1; and the leaching column method. A greenhouse experiment, where 125 kg ha-1 of total Si from 12 different sources was applied on irrigated rice, was also conducted. For the determination of Si, shaking duration was not essential, although 3 h of shaking entailed a statistically superior result. The concentrations of 10 + 16 g dm-3 and 30 + 48 g dm-3 of Na2CO3 + NH4NO3 proved to be the most promising for Si extraction. The smaller concentration (10 + 16 g dm-3 was therefore chosen to evaluate Si sources in relation to settling time. All Si sources increased solubility during the rest time period. The best correlation between Si uptake by the rice plants and Si detected in the various analyzed sources was found in the period between day 5 and 9. According to the results, extractor Na2CO3 + NH4NO3 evaluates Si in fertilizers adequately and can be used as method to determine the potential Si release in the soil and its availability for plants. The most efficient source for Si solubilization for rice was Rhodia, followed by Wollastonita, while the sources MB-4 and blast furnace slag provided less available Si. The acid extractors were more efficient at extracting Si from blast furnace slags and less efficient with Wollastonita. Water was the extractor that presented the lowest Si recovery rate. The best correlation between Si contents and uptake by the rice crop were achieved by the extractors resin

  19. Steel slag aggregate in concrete: the effect of ageing on potentially expansive compounds

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2010-02-01

    Full Text Available Growing numbers of plants have sprung up in recent years to treat the electric arc furnace slag generated in scrap metal melting. When this by-product is separated, crushed and screened, it yields a granular material known as steel slag aggregate, which may be profitably used in the manufacture of commercial concrete. The feasibility of this application depends essentially on the volume stability of the resulting aggregate. The present paper discusses the potentially expansive compounds (Cl-, SO3, free CaO and free MgO present in aggregate derived from different types of black slag during aggregate ageing. The aim is to establish optimal ageing conditions to ensure volume stability in steel slag aggregate. The findings showed that the slag analyzed had low concentrations of the expansive compounds studied and that possible swelling can be reduced by 45day ageing.

    En los últimos años están surgiendo diferentes plantas de tratamiento de las escorias generadas en el proceso de fusión de la chatarra en los hornos de arco eléctrico. Mediante procesos de separación, machaqueo y cribado se obtiene un material granular denominado árido siderúrgico, que puede ser atractivo para su utilización en la fabricación de hormigones comerciales. En este sentido, la viabilidad de dicha aplicación dependerá, fundamentalmente, de asegurar su estabilidad en volumen. Este trabajo presenta un estudio de los compuestos potencialmente expansivos (Cl-, SO3, CaO libre y MgO libre de los áridos siderúrgicos procedentes de diferentes tipos de escorias negras, así como su evolución después de un proceso de envejecimiento. El objetivo es establecer las condiciones óptimas de un proceso de envejecimiento a partir del cual se pueda asegurar la estabilidad, en volumen, del árido siderúrgico. Los resultados evidencian que las escorias analizadas tienen bajas concentraciones de los compuestos expansivos

  20. Preliminary study of tin slag concrete mixture

    Science.gov (United States)

    Hashim, Mohd Jamil; Mansor, Ishak; Pauzi Ismail, Mohamad; Sani, Suhairy; Azmi, Azhar; Sayuti, Shaharudin; Zaidi Ibrahim, Mohd; Adli Anuar, Abul; Rahim, Abdul Adha Abdul

    2018-01-01

    The study focuses on practices to facilitate tin smelting industry to reduce radioactive waste product (Tin Slag) by diluting its radioactivity to a safe level and turning it to a safer infrastructural building product. In the process the concrete mix which include Portland cement, sand, tin slag, water and plasticizer are used to produce interlocking brick pavements, piles and other infrastructural products. The mixing method follows DOE (UK) standard method of mixing targeted at in selected compressive strength suitable for its function and durability. A batching machine is used in the mixing and six test cubes are produced for the test. The testing equipment used are a compressional machine, ultrasonic measurement and a Geiger Muller counter to evaluate of the concrete mix to find the lowest emission of radiation surface dose without compromising the strength of concrete mix. The result obtained indicated the radioactivity of tin slag in the mixing process has reduced to background level that is 0.5μSv/h while the strength and workability of the concrete has not been severely affected. In conclusion, the concrete mix with tin slag has shown the potential it can be turned into a safe beneficial infrastructural product with good strength.

  1. Cyanidation Study of Slag Rich in Silver

    Science.gov (United States)

    Pérez-Labra, Miguel; Romero-Serrano, J. Antonio; Ávila-Davila, E. O.; Reyes-Pérez, M.; Barrientos-Hernández, F. R.; Hernández, I. A. Lira

    Slag from smelting reduction processes were characterized by chemical analysis, XRD, SEM-EDS and XRF. The results revealed Ag concentrations of 362 g/t of slag, the slag mineralogical characterization by XRD and SEM-EDS showed mineralogical species oxidized complex containing Pb, Zn, Ca, Si, Fe, As, S in its structure, silver was found in globules associated lead in the slag and the furutobeite specie. The leaching study was conducted to evaluate process variables such as NaCN concentration: from 7.8×10-3M - 1.26×10-1M, temperature: 25-50°C, particle size: +140 mesh to -400 mesh, stirring speed of 750 rpm - 900 rpm. All studies were performed with a NaOH concentration of 0.2 M. The optimal values of silver recovery encountered in conditions of 7.8×10-3M NaCN, agitation rate of 750 rpm, temperature of 35°C and with a treatment time of 240 min. We also observed that a particle size -400 mesh will have optimum recoveries compared to +140 mesh, +200, +270 and +325.

  2. Preventing cracks when casting steel slag ladles

    OpenAIRE

    Ivanov, M.; Shvetsov, V.

    2014-01-01

    The paper is dedicated to the improvement of large steel casting technology where slag ladle casting is taken as an example. The temperature measurement of the crystallization process of casting is held. The causes of the formation of cracks are reviewed. To prevent the formation of cracks the recommendations are developed to improve the casting technology.

  3. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    . Volume 42 Issue 7 July 2017 pp 1203-1213. Strength development characteristics of concrete produced with blended cement using ground granulated blast furnace slag (GGBS) under various curing conditions · SHAHAB SAMAD ...

  4. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    Science.gov (United States)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  5. Synthesis and heavy metal immobilization behaviors of slag based geopolymer.

    Science.gov (United States)

    Yunsheng, Zhang; Wei, Sun; Qianli, Chen; Lin, Chen

    2007-05-08

    In this paper, two aspects of studies are carried out: (1) synthesis of geopolymer by using slag and metakaolin; (2) immobilization behaviors of slag based geopolymer in a presence of Pb and Cu ions. As for the synthesis of slag based geopolymer, four different slag content (10%, 30%, 50%, 70%) and three types of curing regimes (standard curing, steam curing and autoclave curing) are investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The testing results showed that geopolymer mortar containing 50% slag that is synthesized at steam curing (80 degrees C for 8h), exhibits higher mechanical strengths. The compressive and flexural strengths of slag based geopolymer mortar are 75.2 MPa and 10.1 MPa, respectively. Additionally, Infrared (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are used to characterize the microstructure of the slag based geopolymer paste. IR spectra show that the absorptive band at 1086 cm(-1) shifts to lower wave number around 1007 cm(-1), and some six-coordinated Als transforms into four-coordination during the synthesis of slag based geopolymer paste. The resulting slag based geopolymeric products are X-ray amorphous materials. SEM observation shows that it is possible to have geopolymeric gel and calcium silicate hydrate (C-S-H) gel forming simultaneously within slag based geopolymer paste. As for immobilization of heavy metals, the leaching tests are employed to investigate the immobilization behaviors of the slag based geopolymer mortar synthesized under the above optimum condition. The leaching tests show that slag based geopolymer mortar can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reach 98.5% greater when heavy metals are incorporated in the slag geopolymeric matrix in the range of 0.1-0.3%. The Pb exhibits better immobilization efficiency than the Cu in the case of large dosages of heavy metals.

  6. Feasibility study of hydrogen generator with molten slag granulation

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, T.; Mizuochi, T. [Graduate School of Engineering, Osaka Pref. Univ., Sakai, Osaka (Japan); Yagi, J.I.; Nogami, H. [Inst. of Multidisciplinary Research for Advanced Materials, Tohoku Univ., Aobaku, Sendai (Japan)

    2004-02-01

    A huge amount of hot molten oxides, such as steelmaking slag and molten municipal waste, is discharged at present without heat recovery, in spite of its very high potential. For example, hot molten slag as a byproduct in the Japanese steelmaking industry, over 1723 K in temperature, reaches as much as 30 million tonnes annually. To recover heat of the viscous slag chemically, the strongly endothermic reaction CH{sub 4}+H{sub 2}O {yields} 3H{sub 2}+CO was selected and then the property of dry granulation of the molten slag by rotary cup atomizer (RCA) for expanding surface area of the slag was experimentally studied. The purpose of this paper was, therefore, to study slag granulation under various conditions for promoting heat exchange between slag and gas, in which the influence of the rotating speed and the shape of the cup on the slag drop size was mainly examined. The collected slag drops were correlated with operating conditions such as rotating speed, cup shape, etc. Most significantly, the molten slag was successfully granulated under the dry conditions without water impingement. The rotating speed of the cup influenced the diameter and shape of the slag drops very strongly. The higher rotating speed made the slag drops smaller, more spherical and uniform. Drops with 5 to 6 mm of average dimension were obtained at a rotating speed of 15 rps (900 rpm), and drops with about 1 mm at 50 rps (3000 rpm). In the former case, the shape of the obtained drops changed from spherical to ribbon-like. These results will be useful to establish new heat recovery processes with hydrogen generation from molten slag with many benefits. Energy analysis and cost evaluation were also conducted, to study the benefit of the proposed process. (orig.)

  7. Model investigations 3D of gas-powder two phase flow in descending packed bed in metallurgical shaft furnaces

    OpenAIRE

    B. Panic; K. Janiszewski

    2014-01-01

    This paper presents the second phase of model investigations of static pressure radial distribution conducted on 4 levels of bed height. During the phase the diameter of glass bed particles was increased, blast-furnace pellets were introduced as bed and iron powder was used as powder. Experiments were carried out with regard to gas velocity, bed and powder type and size of bed particles. The radial distribution of 3 fractions of powder accumulated in the bed – static powder, dynamic powder an...

  8. Accelerated carbonation of steelmaking slags in a high-gravity rotating packed bed

    International Nuclear Information System (INIS)

    Chang, E-E; Pan, Shu-Yuan; Chen, Yi-Hung; Tan, Chung-Sung; Chiang, Pen-Chi

    2012-01-01

    Highlights: ► The carbonation conversion in a RPB was higher than that in traditional reactors. ► The optimum conditions were operated at 750 rpm and 65 °C for 30 min. ► The product on BOF slag was identified as crystallized calcite based on SEM and XRD. ► The diffusivity ranged from 10 −7 to 10 −6 cm 2 s −1 based on the shrinking core model. - Abstract: Carbon dioxide (CO 2 ) sequestration using the accelerated carbonation of basic oxygen furnace (BOF) slag in a high-gravity rotating packed bed (RPB) under various operational conditions was investigated. The effects of reaction time, reaction temperature, rotation speed and slurry flow rate on the CO 2 sequestration process were evaluated. The samples of reacted slurry were analyzed quantitatively using thermogravimetric analysis (TGA) and atomic absorption spectrometry (AAS) and qualitatively using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM). The sequestration experiments were performed at a liquid-to-solid ratio of 20:1 with a flow rate of 2.5 L min −1 of a pure CO 2 stream under atmospheric temperature and pressure. The results show that a maximum conversion of BOF slag was 93.5% at a reaction time of 30 min and a rotation speed of 750 rpm at 65 °C. The experimental data were utilized to determine the rate-limiting mechanism based on the shrinking core model (SCM), which was validated by the observations of SEM and TEM. Accelerated carbonation in a RPB was confirmed to be a viable method due to its higher mass-transfer rate.

  9. Co-reduction of Copper Smelting Slag and Nickel Laterite to Prepare Fe-Ni-Cu Alloy for Weathering Steel

    Science.gov (United States)

    Guo, Zhengqi; Pan, Jian; Zhu, Deqing; Zhang, Feng

    2018-02-01

    In this study, a new technique was proposed for the economical and environmentally friendly recovery of valuable metals from copper smelting slag while simultaneously upgrading nickel laterite through a co-reduction followed by wet magnetic separation process. Copper slag with a high FeO content can decrease the liquidus temperature of the SiO2-Al2O3-CaO-MgO system and facilitate formation of liquid phase in a co-reduction process with nickel laterite, which is beneficial for metallic particle growth. As a result, the recovery of Ni, Cu, and Fe was notably increased. A crude Fe-Ni-Cu alloy with 2.5% Ni, 1.1% Cu, and 87.9% Fe was produced, which can replace part of scrap steel, electrolytic copper, and nickel as the burden in the production of weathering steel by an electric arc furnace. The study further found that an appropriate proportion of copper slag and nickel laterite in the mixture is essential to enhance the reduction, acquire appropriate amounts of the liquid phase, and improve the growth of the metallic alloy grains. As a result, the liberation of alloy particles in the grinding process was effectively promoted and the metal recovery was increased significantly in the subsequent magnetic separation process.

  10. Iron Recovery from Discarded Copper Slag in a RHF Direct Reduction and Subsequent Grinding/Magnetic Separation Process

    Directory of Open Access Journals (Sweden)

    Zhicheng Cao

    2016-11-01

    Full Text Available Studies on the direct reduction of carbon-bearing pellets made from discarded copper slag have been conducted in this paper. They include the influences of reduction coal content, limestone content, industrial sodium carbonate content, reduction temperature, reduction time and layers of carbon-bearing pellets on reduction effect. Finally, the optimum conditions have been obtained. The pilot scale experiment results show that the optimum conditions are the mass proportion of discarded copper slag, reduction coal, limestone and industrial sodium carbonate of 100:25:10:3, the reduction temperature of 1280 °C for the reduction time of 35 min, three layers (approximately 42 mm of carbon-bearing pellets—this was the basis on which the pilot tests in a rotary hearth furnace (RHF were conducted. The iron products obtained from the pilot tests under such conditions have an iron grade of 90.35% with an iron recovery rate of 89.70%. The mechanism research based on the analysis results of X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS indicates that fayalite (2FeO·SiO2 and magnetite (Fe3O4 in the copper slag are reduced into metallic Fe in the direct reduction (DR process, and the mass and heat transfer become stronger from the bottom to the top layer of the pellets, resulting in a rising iron recovery rate.

  11. An innovative method for nondestructive analysis of cast iron artifacts at Hopewell Furnace National Historic Site, Pennsylvania

    Science.gov (United States)

    Sloto, Ronald A.; Martin f. Helmke,

    2014-01-01

    For this study, we sampled iron ore, cast iron furnace products, slag, soil, groundwater, streamflow, and streambed sediment. It was important for us to determine which trace metals from the smelted ore were incorporated into the cast iron in order to provide a complete picture of the fate of those metals. It was the only missing piece of information after all other media were sampled. Standard techniques were used to sample and analyze all media except cast iron. Standard techniques require collecting samples in the field, shipping them to a laboratory, and performing a destructive analysis. We needed a nonstandard approach for analysis of the cast iron artifacts.

  12. Performance of alkaline activated slag at high temperatures

    Directory of Open Access Journals (Sweden)

    Mejía de Gutiérrez, R.

    2004-12-01

    Full Text Available This paper presents an investigation into the performance of alkali-activated slag (AAS mortar exposed to elevated temperatures. Sodium silicate, sodium hydroxide and a mix (waterglass with a modulus (SiO2/Na20 of 1.5 were used as activators. The specimens were heated in an electric furnace up to 1000 ºC in steps of 200 ºC for a constant period of 2 hours. The weight loss, residual compressive strength, resistance to chloride ion penetration, porosity and capillary sorption were evaluated and the results were compared with those of ordinary and blended Portland cement mortar

    En el presente traba jo se estudió el comportamiento frente a ¡a temperatura de morteros producidos a partir de escorias siderúrgicas activadas alcalinamente (EAA, utilizando diferentes activantes tales como silicato sódico, hidróxido de sodio y sus correspondientes mezclas. Cada espécimen se expuso por dos horas a temperaturas hasta de 1.000 ºC, en intervalos de 200 °C y en cada caso se determinaron los cambios de color peso, resistencia mecánica y durabilidad. Esta última propiedad se evaluó determinando las modificaciones de porosidad y permeabilidad a cloruros. Los resultados se comparan con los obtenidos en morteros de cemento Portland con y sin adición, específicamente con aquéllos que incorporan humo de sílice.

  13. Leaching of heavy metals from steelmaking slags

    Directory of Open Access Journals (Sweden)

    Gomes, J. F. P

    2006-12-01

    Full Text Available Leaching tests with EAF and Ladle slags were performed, using a flow through test and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. The chemical analysis of the leachates during this period shows, in general, for both types of slag, an increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slag samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-through test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5 % (Ca and 1% (other elements.

    Este articulo contiene los resultados obtenidos en ensayos de lixiviación de escorias de acero (horno electrico y cuchara ejecutados siguiendo la metodologia de flujo dinámico así como el ensayo normalizado DIN 38414-S4. El primer ensayo intenta simular el comportamiento de lixiviación de las escorias en vertedero. Para las escorias ensayadas se han complementado los ensayos con el análisis químico de los lixiviados y se ha verificado un aumento de la liberación de metales pesados. El ensayo DIN 38414-S4 se ha utilizado para evaluar la lixiviación por agua de metales pesados, en muestras de escorias originales. Despues de un año de ensayos, se han observado niveles muy bajos de lixiviación. Los elementos mas lixiviados han sido calcio y magnesio. No obstante, en los ensayos de flujo dinámico, el calcio y el magnesio lixiviados de las escorias sólidas era menor de 0,5% y el resto de los otros metales era inferior a 0,1%. Los lixiviados obtenidos con el ensayo DIN 38414-S4 presentan, como era de esperar, valores

  14. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  15. The solidification behavior of calcium oxide-aluminum oxide slags

    Science.gov (United States)

    Prapakorn, Kritsada

    The binary CaO-Al2O3 based slag and the ternary CaO-Al2O3-MgO based slag are common slags covering and inclusions that are found in calcium treated Al-killed, continuously cast steels. However, the effect of cooling conditions and chemistry on the solidification behavior of these slags is not well characterized. To better understand this phenomena, the solidification behavior of these slags was studied by using double hot thermocouple technique. TTT and CCT diagrams of these slags were determined to quantify the solidification behavior in both dry and humid atmospheres. In this work, these slag samples were easily undercooled and the solidification behavior of these slags was found to be a strong function of cooling conditions. The crystallization tendency of these slags follows the trends suggested by the phase diagram. In CaO-Al2O3 based slags, The eutectic composition (50%CaO) give the lowest crystallization tendency due to the lowest liquidus temperature. In a eutectic CaO-Al2O3 slag sample, dissolved water in the sample increases crystallization tendency and enhances the growth. It was also found that the crystalline phase that formed during cooling in both the dry and humid conditions is the mixture between 3CaO.Al2O 3 and CaO.Al2O3 phases. In CaO-Al2O3-MgO based slags, the crystallization tendency increases with MgO content because the high MgO content leads to the high liquidus temperature. The effect of dissolved of water on the crystallization of CaO-Al2O3-MgO based slags is not as prominent as in the eutectic CaO-Al2O3 slag. Thus, the addition of MgO to CaO-Al2O3 slags was seen to minimize or eliminate the effect of humidity on the solidification of CaO-Al2O3 based slags. In this work, Uhlmann's method was used to estimate the solid-liquid interfacial energy of CaO-Al2O3 based slag for the temperature between 1100--1250°C. The result is between 0.25--0.4 Joules/m 2.

  16. Robotic Water Blast Cleaner

    Science.gov (United States)

    Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.

    1983-01-01

    Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.

  17. Furnace profile effects on glass shell formation

    International Nuclear Information System (INIS)

    O'Holleran, T.P.; Downs, R.L.; Homyk, B.D.

    1981-01-01

    In the course of blowing glass shells in a furnace drop tower it has been observed that furnace temperature profile affects shell aspect ratio. Wall uniformity appears less sensitive to temperature profile as long as some minimum-time/temperature history is achieved for a given glass composition. Quantitative results will be reported from experiments wherein the furnace temperature profile is systematically varied and the resultant shells are statistically analyzed for aspect ratio and wall uniformity

  18. Elemental properties of coal slag and measured airborne exposures at two coal slag processing facilities.

    Science.gov (United States)

    Mugford, Christopher; Boylstein, Randy; Gibbs, Jenna L

    2017-05-01

    In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of silica sand abrasives containing >1% silica due to the risk of silicosis. This gave rise to substitutes including coal slag. An Occupational Safety and Health Administration investigation in 2010 uncovered a case cluster of suspected pneumoconiosis in four former workers at a coal slag processing facility in Illinois, possibly attributable to occupational exposure to coal slag dust. This article presents the results from a National Institute for Occupational Safety and Health industrial hygiene survey at the same coal slag processing facility and a second facility. The industrial hygiene survey consisted of the collection of: (a) bulk samples of unprocessed coal slag, finished granule product, and settled dust for metals and silica; (b) full-shift area air samples for dust, metals, and crystalline silica; and (c) full-shift personal air samples for dust, metals, and crystalline silica. Bulk samples consisted mainly of iron, manganese, titanium, and vanadium. Some samples had detectable levels of arsenic, beryllium, cadmium, and cobalt. Unprocessed coal slags from Illinois and Kentucky contained 0.43-0.48% (4,300-4,800 mg/kg) silica. Full-shift area air samples identified elevated total dust levels in the screen (2-38 mg/m 3 ) and bag house (21 mg/m 3 ) areas. Full-shift area air samples identified beryllium, chromium, cobalt, copper, iron, nickel, manganese, and vanadium. Overall, personal air samples for total and respirable dust (0.1-6.6 mg/m 3 total; and 0.1-0.4 mg/m 3 respirable) were lower than area air samples. All full-shift personal air samples for metals and silica were below published occupational exposure limits. All bulk samples of finished product granules contained less than 1% silica, supporting the claim coal slag may present less risk for silicosis than silica sand. We note that the results presented here are solely from two coal slag processing

  19. Moderate Dilution of Copper Slag by Natural Gas

    Science.gov (United States)

    Zhang, Bao-jing; Zhang, Ting-an; Niu, Li-ping; Liu, Nan-song; Dou, Zhi-he; Li, Zhi-qiang

    2018-01-01

    To enable use of copper slag and extract the maximum value from the contained copper, an innovative method of reducing moderately diluted slag to smelt copper-containing antibacterial stainless steel is proposed. This work focused on moderate dilution of copper slag using natural gas. The thermodynamics of copper slag dilution and ternary phase diagrams of the slag system were calculated. The effects of blowing time, temperature, matte settling time, and calcium oxide addition were investigated. The optimum reaction conditions were identified to be blowing time of 20 min, reaction temperature of 1250°C, settling time of 60 min, CaO addition of 4% of mass of slag, natural gas flow rate of 80 mL/min, and outlet pressure of 0.1 MPa. Under these conditions, the Fe3O4 and copper contents of the residue were 7.36% and 0.50%, respectively.

  20. Investigation and assessment of lead slag concrete as nuclear shields

    International Nuclear Information System (INIS)

    Zaghloul, Y.R.

    2009-01-01

    The present work is concerned with the efficiency of heavy weight concrete as a shielding material in constructing nuclear installations as well as for radioactive wastes disposal facilities.In this context, lead slag was used as a replacement for fine aggregates in heavy concrete shields that include local heavy weight aggregates (namely; barite and ilmenite) as well as normal concrete includes dolomite and sand as coarse and fine aggregates, as a reference. The effect of different percentages of lead slag was investigated to assess the produced lead slag concrete as a nuclear shielding material. The different properties (physical, mechanical and nuclear) of the produced lead slag concrete were investigated. The results obtained showed that increasing the lead slag percentage improving the investigated properties of the different concrete mixes. In addition, ilmenite concrete with 20% lead slag showed the best results for all the investigated properties.

  1. Measurement of airflow in residential furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Biermayer, Peter J.; Lutz, James; Lekov, Alex

    2004-01-24

    In order to have a standard for furnaces that includes electricity consumption or for the efficiency of furnace blowers to be determined, it is necessary to determine the airflow of a furnace or furnace blower. This study focused on airflow testing, in order to determine if an existing test method for measuring blower airflow could be used to measure the airflow of a furnace, under conditions seen in actual installations and to collect data and insights into the operating characteristics of various types of furnace blowers, to use in the analysis of the electricity consumption of furnaces. Results of the measured airflow on furnaces with three types of blower and motor combinations are presented in the report. These included: (1) a forward-curved blower wheel with a typical permanent split capacitor (PSC) motor, (2) a forward-curved blower wheel with an electronically-commutated motor (ECM), and (3) a prototype blower, consisting of a backward-inclined blower wheel matched to an ECM motor prototype, which is being developed as an energy-saving alternative to conventional furnace blowers. The testing provided data on power consumption, static and total pressure, and blower speed.

  2. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.

    2005-12-01

    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  3. Copper slag concrete admixed with polypropylene fibres

    OpenAIRE

    Chakrawarthi, Vijayaprabha; Darmar, Brindha; Elangovan, Ashokkumar

    2016-01-01

    A sustainable concrete design has become an imperative requirement for the present-day concrete industry. A part of an extensive research project aimed at studying possibilities for using copper slag (CS) and polypropylene (PP) fibres in concrete is presented and analysed. Measurements were conducted to investigate the workability, density, compressive strength, tensile strength, and micro-structural properties of concrete, as well as the ultimate load carrying capacity of reinforced-concrete...

  4. The thermal treatment of electric arc furnace dust under low gas phase pressure

    Directory of Open Access Journals (Sweden)

    W. Derda

    2009-04-01

    Full Text Available The paper presents the results of laboratory tests on the process of thermal reduction of electric arc furnace dust (EAFD in the temperature range from 1273 to 1473 K. Before proceeding to the experimental tests, a thermodynamic analysis was made using the computer program FactSage® with the aim of determining the optimal conditions for the dust components reduction reaction to proceed. The results of tests carried out, respectively, under atmospheric pressure conditions and under reduced pressure conditions are presented, where carbon in the form of graphite and blast-furnace dust (containing approx. 40 % of carbon was used as the reducer. The test results represent the effect of reduced pressure on the potential for intensifying the process of zinc removal from the dust. The degree of zinc extraction was considerably higher compared to the results of tests carried out under atmospheric pressure conditions.

  5. Pilot-scale steam aging of steel slags.

    Science.gov (United States)

    Kumar, Praveen; Satish Kumar, D; Marutiram, K; Prasad, Smr

    2017-06-01

    Solid waste management has gained importance in the steel industry in view of rising environmental concerns and scarcity of raw materials. In spite of significant developments in reducing waste generation and development of recycling technologies, steel slag is still a concern for the industry as most of it is dumped. Steel slag is similar to stone aggregates in strength, but its volumetric instability in contact with water hinders its application as aggregates in construction. A part of steel slag is normally exposed to rain and sun for natural aging and stabilization for months before use. The natural aging process is slow and time-consuming, and thus restricts its usage. The steelmaking slag can be put to effective use as coarse aggregates if quickly aged and stabilized by pre-reacting the free expansive phases. In the present work, a new process has been developed to accelerate the steel slag aging process using steam in a 30 T pilot scale facility. The setup has controlled steam injection, distribution, and process control system for steam, temperature, flow, and pressure. Steam percolates through the minute pores in the slag lumps and hydrates the expansive free lime and MgO phases, making it stable. The aged slag expansion properties were tested using an in-house developed expansion testing apparatus. The process is capable of reducing the expansion of steel slag from 3.5% to steel slag is currently being used in roads at JSW Steel, Vijayanagar Works.

  6. Influence of Addition of Briquettes with Dust Content into the Charge of Electric Induction Furnace on Cast Iron Quality

    Directory of Open Access Journals (Sweden)

    A. Pribulová

    2012-09-01

    Full Text Available Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process.Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting+5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5%bentonite and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.

  7. Recovery of metal values from copper slag and reuse of residual secondary slag.

    Science.gov (United States)

    Sarfo, Prince; Das, Avimanyu; Wyss, Gary; Young, Courtney

    2017-12-01

    Resource and environmental factors have become major forces in mining and metallurgy sectors driving research for sustainability purposes. The concept of zero-waste processing has been gaining ground readily. The scant availability of high quality raw materials has forced the researchers to shift their focus to recycling while the exceedingly stringent environmental regulations have forced researchers to explore new frontiers of minimizing/eliminating waste generation. The present work is aimed at addressing both aspects by employing recycling to generate wealth from copper slag and producing utilizable materials at the same time thus restoring the ecosystem. Copper slag was characterized and processed. The pyro-metallurgical processing prospects to generate utilizable materials were arrived at through rigorous thermodynamic analysis. Carbothermal reduction at elevated temperature (near 1440°C) helped recover a majority of the metal values (e.g., Fe, Cu and Mo) into the iron-rich alloy product which can be a feed material for steel making. On the other hand, the non-metallic residue, the secondary slag, can be used in the glass and ceramic industries. Reduction time and temperature and carbon content were shown to be the most important process variables for the reaction which were optimized to identify the most favored operating regime that maximizes the metal recovery and simultaneously maximizes the hardness of the secondary slag and minimizes its density, the two major criteria for the secondary slag product to be utilizable. The flux addition level was shown to have relatively less impact on the process performance if these are maintained at an adequate level. The work established that the copper slag, a waste material, can be successfully processed to generate reusable products through pyrometallurgical processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    Unknown

    our laboratory. The components and accessories required for operating this furnace are described here. The salient feature of this furnace is that it contains three separate heating zones. The heating zone at .... spectrograph, the electronic absorption spectrum of C1Π ← X1Σ system of InBr at. ~ 2800 Å. The bands of C ← X ...

  9. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  10. A novel estimation of electrical and cooling losses in electric arc furnaces

    International Nuclear Information System (INIS)

    Trejo, Eder; Martell, Fernando; Micheloud, Osvaldo; Teng, Lidong; Llamas, Armando; Montesinos-Castellanos, Alejandro

    2012-01-01

    A method to calculate electrical losses and a heat transfer model of a conventional Electric Arc Furnace (EAF) are presented. The application of a novel power theory for the EAF was used to compute electrical losses and it was compared with conventional power calculations. The electrical losses and electrical variables were used as input parameters to the proposed heat transfer model. Chemical energy sources were included as energy inputs to estimate the overall heat transferred including the heat losses in the cooling system. In the heat transfer model the furnace was divided in 11 inner surfaces and the radiation view factors between them were estimated by a commercial finite element software. Variations of the view factors for different arc coverage were evaluated. Different scenarios for cooling panels losses, with respect to arc coverage and thickness of slag layers adhered to cooling system panels, were analyzed. The approach presented in this work allows calculation of energy balances in electrical arc furnaces with low computational resources. Finally, the contribution of this research work is to define a framework for further research oriented to improve both the electrical and thermal energy efficiencies to increase productivity and reduce energy consumption in steel plants. -- Highlights: ► Radiation view factors for the electric arc furnace are estimated. ► Potential reduction in cooling losses is estimated to be 60 kWh/ton. ► Electrical losses are calculated based in the randomness power theory. ► The new approach yields an increase of 10% in the electrical losses. ► An analytic model is used to estimate the radiation mechanism.

  11. Biomass furnace: projection and construction

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Fernanda Augusta de Oliveira; Silva, Juarez Sousa e; Silva, Denise de Freitas; Sampaio, Cristiane Pires; Nascimento Junior, Jose Henrique do [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola

    2008-07-01

    Of all the ways to convert biomass into thermal energy, direct combustion is the oldest. The thermal-chemical technologies of biomass conversion such as pyrolysis and gasification, are currently not the most important alternatives; combustion is responsible for 97% of the bio-energy produced in the world (Demirbas, 2003). For this work, a small furnace was designed and constructed to use biomass as its main source of fuel, and the combustion chamber was coupled with a helical transporter which linked to the secondary fuel reservoir to continually feed the combustion chamber with fine particles of agro-industrial residues. The design of the stove proved to be technically viable beginning with the balance of mass and energy for the air heating system. The proposed heat generator was easily constructed as it made use of simple and easily acquired materials, demanding no specialized labor. (author)

  12. Slag transport models for vertical and horizontal surfaces. [SLGTR code

    Energy Technology Data Exchange (ETDEWEB)

    Chow, L S.H.; Johnson, T R

    1978-01-01

    In a coal-fired MHD system, all downstream component surfaces that are exposed to combustion gases will be covered by a solid, liquid, or solid-liquid film of slag, seed, or a mixture of the two, the specific nature of the film depending on the physical properties of the slag and seed and on local conditions. An analysis was made of a partly-liquid slag film flowing on a cooled vertical or horizontal wall of a large duct, through which passed slag-laden combustion gases. The model is applicable to the high-temperature steam generators in the downstream system of an MHD power plant and was used in calculations for a radiant-boiler concept similar to that in the 1000-MWe Gilbert-STD Baseline Plant study and also for units large enough for 230 and 8 lb/s (104.3 and 3.5 kg/s) of combustion gas. The qualitative trends of the results are similar for both vertical and horizontal surfaces. The results show the effects of the slag film, slag properties, and gas emissivity on the heat flux to the steam tubes. The slag film does not reduce the rate of heat transfer in proportion to its surface temperature, because most of the heat is radiated from the gas and particles suspended in it to the slag surface.

  13. ENERGY ASPECTS OF STEELMAKING SLAGS APPLICATION IN METALLURGY

    Directory of Open Access Journals (Sweden)

    V. L. Naydek

    2013-01-01

    Full Text Available A comparative assessment of energy intensity of converter steel production in different types of smelting with slag processing in the ladle was made. Analysis of the data shows that the use of liquid steel slag in steel production for its refining saves about 2.2 GJ or 75 kg of coal equivalent for each ton of metal.

  14. Design and Development of Tilting Rotary Furnace

    Science.gov (United States)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken

  15. 3D Model Studies on the Effect of Bed and Powder Type Upon Radial Static Pressure and Powder Distribution in Metallurgical Shaft Furnaces

    Directory of Open Access Journals (Sweden)

    Panic B.

    2017-09-01

    Full Text Available The flow of gases in metallurgical shaft furnaces has a decisive influence on the course and process efficiency. Radial changes in porosity of the bed cause uneven flow of gas along the radius of the reactor, which sometimes is deliberate and intentional. However, holdup of solid particles in descending packed beds of metallurgical shaft furnaces can lead to unintentional changes in porosity of the bed along the radial reactor. Unintentional changes in porosity often disrupt the flow of gas causing poor performance of the furnace. Such disruptions of flow may occur in the blast furnace due to high level of powder content in gas caused by large amount of coal dust/powder insufflated as fuel substitute. The paper describes the model test results of radial distribution of static pressure and powder hold up within metallurgical reactor. The measurements were carried out with the use of 3D physical model of two-phase flow gas-powder in the moving (descending packed bed. Sinter or blast furnace pellets were used as packed bed while carbon powder or iron powder were used as the powder. Wide diversity within both static pressure distribution and powder distribution along the radius of the reactor were observed once the change in the type of powder occurred.

  16. Recycling of electric arc furnace dust; Reciclagem de poeira de aciaria eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Marques Sobrinho, Vicente de Paulo Ferreira; Oliveira, Jose Roberto de, E-mail: vicente@ifes.edu.b [Instituto Federal de Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil); Tenorio, Jorge Alberto Soares; Espinosa, Denise Crocce Romano [Universidade de Sao Paulo (EPUSP), SP (Brazil). Escola Politecnica

    2010-07-01

    This research aims to study the process of incorporation of the metal iron in electric arc furnace dust (EAFD), from a steel mill producing long steel by liquid iron in addition to the changing temperature of 1400 degrees Celsius of EAFD 'as received', the percentage of EAFD to be added (5, 10 and 20% of initial weight of sample pig iron) and the time of withdrawal of the sample of pig iron and slag (30 minutes after the addition of EAFD). Previously, the EAFD will be characterized using the following techniques: chemical analysis, size analysis, specific surface area, Xray diffraction, scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) microanalysis. . After characterization, the EAFD will be added to the bath of liquid pig iron. It is expected that the results obtained at the end of the research allow the evaluation of the iron metal incorporation of EAFD in pig iron bath. (author)

  17. Roles of Mineralogical Phases in Aqueous Carbonation of Steelmaking Slag

    Directory of Open Access Journals (Sweden)

    Huining Zhang

    2016-05-01

    Full Text Available Mineralogical phases of steelmaking slags have significant influences on the carbonation of the slags. In this paper, the effects of temperature and reaction time on the conversion of calcium-related phases and the carbonation degree of a slag sample were studied. The experimental conditions were a liquid-to-solid ratio of 20 mL/g, a carbon dioxide flow rate of 1 L/min and a slag particle size of 38–75 μm. The results show that the optimum carbonation temperature and reaction time are 60 °C and 90 min, respectively, and calcite phase content is about 26.78% while the conversion rates of Ca3Al2O6, CaSiO3, Ca2SiO4 and free CaO are about 40%, 42.46%, 51% and 100%, respectively, and the carbon dioxide sequestration efficiency is about 170 g/kg slag.

  18. Programmable temperature regulator of VAO-1 furnace

    International Nuclear Information System (INIS)

    Zahalka, F.

    1979-01-01

    A programmable temperature controller is described for a furnace for high-level waste processing. Furnace temperature is controlled by a program compiled from a combination of 3 parts with different linear increments or decrements of time dependent temperature and 2 parts with isothermal control for over a preset period. The equipment consists essentially of a programming unit, a programmed digital-to-analog converter and a power unit. The design is described in detail and its specifications are given. The maximum operating temperature of 1500 degC may be reached in the furnace charge section. (B.S.)

  19. Distribution of nickel between copper-nickel and alumina saturated iron silicate slags

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, R.G.; Acholonu, C.C.

    1984-03-01

    The solubility of nickel in slag is determined in this article by equilibrating copper-nickel alloys with alumina-saturated iron silicate slags in an alumina crucible at 1573 K. The results showed that nickel dissolves in slag both as nickel oxide and as nickel metal. The presence of alumina is shown to increase the solubility of nickel in slags.

  20. To the problem of nonmetallic inclusions assimilation by slags in the course of steel casting

    International Nuclear Information System (INIS)

    Klimov, Yu.V.; Krupman, L.I.; Medzhibozhskij, M.Ya.; Povkh, Yu.I.; Belanenko, A.A.

    1975-01-01

    The effect of slag viscosity as well as a method of steel pouring with slag-forming mixtures used upon the slag assimilation of oxide inclusions has been studied with a radioactive tracer method. The inclusions are absorbed by slag primarily in the course of filling casting moulds when a relatively intensive metal circulation occurs. The ensuing decrease of slag viscosity results in better purification of steel from inclusions. In the period of natural convection the inclusions are not removed irrespective of the slag properties. The bottom pouring results in the lowest degree of steel purification from inclusions due to the limited surface of a slag-metal contact