WorldWideScience

Sample records for blast effects

  1. Blast effects of external explosions

    OpenAIRE

    Sochet, Isabelle

    2010-01-01

    International audience; Security considerations for industrial production and storage require characterization of the mechanical effects caused by blast waves resulting from a detonation or deflagration. This paper evaluates current analytical methods to determine the characteristic parameters of a blast wave with respect to the pressure, impulse and duration of the positive phase of the blast. In the case of a detonation, the trinitrotoluene (TNT) equivalent-based method determines the mass ...

  2. Demystifying blast effects on buildings

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, A.; Carson, D.; Stevens, T. [Halsall Associates Ltd., Toronto, ON (Canada)

    2007-07-01

    This paper presented methods of designing the structures of building structures in such a way that the effects of blast loads can be mitigated. The methods were designed to provide strength and ductility so that kinetic energy delivered by the blast is resisted by strain energy. Fundamental aspects of blast effects were examined, and the design of flexural members subject to blast loading were discussed. An equivalent static load procedure based on the equivalency of kinetic and strain energies was also presented along with a threat independent approach which included principles to prevent progressive collapse, ductile columns, and the addition of upward resistance to floors. Measures to mitigate damage caused by shattered glass and other cladding elements during blasts were also discussed.

  3. Effectiveness of eye armor during blast loading.

    Science.gov (United States)

    Bailoor, Shantanu; Bhardwaj, Rajneesh; Nguyen, Thao D

    2015-11-01

    Ocular trauma is one of the most common types of combat injuries resulting from the interaction of military personnel with improvised explosive devices. Ocular blast injury mechanisms are complex, and trauma may occur through various injury mechanisms. However, primary blast injuries (PBI) are an important cause of ocular trauma that may go unnoticed and result in significant damage to internal ocular tissues and visual impairment. Further, the effectiveness of commonly employed eye armor, designed for ballistic and laser protection, in lessening the severity of adverse blast overpressures (BOP) is unknown. In this paper, we employed a three-dimensional (3D) fluid-structure interaction computational model for assessing effectiveness of the eye armor during blast loading on human eyes and validated results against free field blast measurements by Bentz and Grimm (2013). Numerical simulations show that the blast waves focused on the ocular region because of reflections from surrounding facial features and resulted in considerable increase in BOP. We evaluated the effectiveness of spectacles and goggles in mitigating the pressure loading using the computational model. Our results corroborate experimental measurements showing that the goggles were more effective than spectacles in mitigating BOP loading on the eye. Numerical results confirmed that the goggles significantly reduced blast wave penetration in the space between the armor and the eyes and provided larger clearance space for blast wave expansion after penetration than the spectacles. The spectacles as well as the goggles were more effective in reducing reflected BOP at higher charge mass because of the larger decrease in dynamic pressures after the impact. The goggles provided greater benefit of reducing the peak pressure than the spectacles for lower charge mass. However, the goggles resulted in moderate, sustained elevated pressure loading on the eye, that became 50-100% larger than the pressure loading

  4. Analysis of the blasting effect on the electric shove loading efficiency of the open pit

    Institute of Scientific and Technical Information of China (English)

    FU Tian-guang; SUN Ying

    2008-01-01

    The connection between blasting cost and comprehensive cost is the main concern. Some blasting effect factors (such as unit explosive consumption, uniformity of blockness, shape and porosity of blasting heap), which had an influence on electric shove loading efficiency, were analyzed. In the end a project to properly increase in blasting cost to decrease the comprehensive cost was put forward. At the same time, the hole-by-hole blasting is effective technology to improve blasting effect.

  5. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  6. Assessment of Blasting Operations Effects During Highway Tunnel Construction

    Directory of Open Access Journals (Sweden)

    Valašková Veronika

    2015-12-01

    Full Text Available Blasting operations are one of the fundamental parts of daily civil engineering. Drilling and blasting still remain the only possible ways of tunnelling in very adverse geological conditions. However, this method is a source of various disadvantages, the main one being tremors propagating through the geological environment which not only affect buildings, but also disturb the comfort of living in the vicinity of the source. Designing this procedure is mostly done using standardized empirical relations. This article shows the possibility of using a FEM technique in predicting blast effects. This approach is demonstrated in a simple case study on the impact of blasting operations on steel pipes.

  7. Evaluation of blast-induced vibration effects on structures 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Gyu Shick; Lee, Dae Soo; Joo, Kwang Ho; Lee, Woong Keon [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of); Ryu, Chang Ha; Chung, So Keul; Lee, Kyung Won; Shin, Hee Soon; Chun, Sun Woo; Park, Yeon Jun; Synn, Joong Ho; Choi, Byung Hee [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-31

    Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants to maintain the safety of structures and facilities in power plants. Our own standard for safety level of blast vibration is not prepared yet, and foreign standards have been generally employed without theoretical and experimental verification. Safety-related structures of power plants and facilities have to be protected against the effects of possible hazards due to blast vibration. Earthquakes have been considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibration are not. In order to ensure the safety, rational safe criterion should be established and blast design should be satisfy it, which requires the development of a model for prediction of vibration level through more systematic measurement and analysis. The main objectives of the study are : to provide background data for establishing the rational safe vibration limits, to develop models for prediction of blast vibration level, to establish safe blast design criterion, and to accumulate techniques for field measurements, data acquisition and analysis (author). 80 refs., 347 figs.

  8. Modelling and Testing of Blast Effect On the Structures

    Science.gov (United States)

    Figuli, Lucia; Jangl, Štefan; Papán, Daniel

    2016-10-01

    As a blasting agent in the blasting and mining engineering, has been using one of so called new generation of explosives which offer greater flexibility in their range and application, and such explosive is ANFO. It is type of explosive consists of an oxidiser and a fuel (ammonium nitrate and fuel oil). One of such ANFO explosives which are industrially made in Slovakia is POLONIT. The explosive is a mixture of ammonium nitrate, methyl esters of higher fatty acids, vegetable oil and red dye. The paper deals with the analysis of structure subjected to the blast load created by the explosion of POLONIT charge. First part of paper is describing behaviour and characteristic of blast wave generated from the blast (detonation characteristics, physical characteristics, time-history diagram etc.) and the second part presents the behaviour of such loaded structures, because of the analysis of such dynamical loaded structure is required knowing the parameters of blast wave, its effect on structure and the tools for the solution of dynamic analysis. The real field tests of three different weight of charges and two different structures were done. The explosive POLONIT was used together with 25 g of ignition explosive PLNp10. Analytical and numerical model of blast loaded structure is compared with the results obtained from the field tests (is compared with the corresponding experimental accelerations). For the modelling structures were approximated as a one-degree system of freedom (SDOF), where the blast wave was estimated with linear decay and exponential decay using positive and negative phase of blast wave. Numerical solution of the steel beam dynamic response was performed via FEM (Finite Element Method) using standard software Visual FEA.

  9. Analysis of the blasting effect on the electric shove loading efficiency of the open pit

    Institute of Scientific and Technical Information of China (English)

    FU Tian-guang; SUN Ying

    2008-01-01

    The connection between blasting cost and comprehensive cost is the main concern.Some blasting effect factors (such as unit explosive consumption,uniformity of blockness,shape and porosity of blasting heap),which had an influence on electric shove loading efficiency,were analyzed.In the end a project to properly increase in blasting cost to decrease the comprehensive cost was put forward.At the same time,the hole-by-hole blasting is effective technology to improve blasting effect.

  10. The Effects of Underwater Blast on Divers

    Science.gov (United States)

    2007-11-02

    bladder, including hepatic tear can cause referred right shoulder pain. Transient paralysis in the lower limbs, testicular pain, nausea, vomiting...blast trauma . This is probably because most immersion blast has been studied with heads above the water, 24 sinus injury is unlikely to threaten life and...without impediment. Close to the explosive source, however; there is violent trauma to the rib-cage, chest and abdominal contents, and limb fractures

  11. Mitigation of Blast Effects on Aluminum Foam Protected Masonry Walls

    Institute of Scientific and Technical Information of China (English)

    SU Yu; WU Chengqing; GRIFFITH Mike

    2008-01-01

    Terrorist attacks using improvised explosive devices (lED) can result in unreinforced masonry (URM) wall collapse.Protecting URM wall from lED attack is very complicated.An effective solution to mitigate blast effects on URM wall is to retrofit URM walls with metallic foam sheets to absorb blast energy.However,mitigation of blast effects on metallic foam protected URM walls is currently in their infancy in the world.In this palaer,numerical models are used to simulate the performance of aluminum foam protected URM walls subjected to blast loads.A distinctive model,in which mortar and brick units of masonry are discritized individually,is used to model the performance of masonry and the contact between the masonry and steel face-sheet of aluminum foam is modelled using the interface element model.The aluminum foam is modelled by a nonlinear elastoplastic material model.The material models for masonry,aluminum foam and interface are then coded into a finite element program LS-DYNA3D to perform the numerical calculations of response and damage of aluminum foam protected URM walls under airblast loads.Discussion is made on the effectiveness of the aluminum foam protected system for URM wall against blast loads.

  12. Modelling Blast Effects on a Reinforced Concrete Bridge

    Directory of Open Access Journals (Sweden)

    Markellos Andreou

    2016-01-01

    Full Text Available The detailed investigation of blast phenomena and their catastrophic effects on existing structures are the main objectives of the present paper. It is well known that blast phenomena may be characterized by significant complexity, often involving complicated wave propagation effects as well as distinguishable material behaviors. Considering the above and in an attempt to provide a simplified modelling approach for the simulation of blast effects, a novel procedure is presented herein based on well-established methodologies and common engineering practices. In the above framework, firstly, the “predominant” deformation shape of the structure is estimated based on elastic finite element simulations under blast loads and then the structural response of the system is evaluated as a result of common computational beam-element tools such as displacement-based pushover analysis. The proposed methodology provides an immediate first estimation of the structural behavior under blast loads, based on familiar engineering procedures. A two-span reinforced concrete bridge was thoroughly investigated and the results provide insightful information regarding the damage patterns and localization.

  13. Strain Rate Effects in CFRP Used For Blast Mitigation

    Directory of Open Access Journals (Sweden)

    Sarah. L. Orton

    2014-04-01

    Full Text Available The purpose of this research is to gain a better understanding of strain rate effects in carbon fiber reinforced polymer (CFRP laminates exposed to blast loading. The use of CFRP offers an attractive option for mitigating structures exposed to blasts. However, the effect of high strain rates in CFRP composites commonly used in the civil industry is unknown. This research conducted tensile tests of 21 CFRP coupons using a hydraulically powered dynamic loader. The strain rates ranged from 0.0015 s−1 to 7.86 s−1 and are representative of strain rates that CFRP may see in a blast when used to strengthen reinforced concrete structures. The results of the testing showed no increase in the tensile strength or stiffness of the CFRP at the higher strain rates. In addition, the results showed significant scatter in the tensile strengths possibly due to the rate of loading or manufacture of the coupon.

  14. The effect of calculated explosive energy output on blast design

    Energy Technology Data Exchange (ETDEWEB)

    Katsabanis, P.D.; Workman, L.

    1996-12-31

    The energy output of an explosive is typically calculated using an equation of state and computer applications. Results are reported as weight and bulk strength, either in absolute terms or relative to ANFO. The effect of the equation of state selected and the assumptions regarding the energy calculation are considered and interpreted for the purpose of blast design. It appears that variations in the heat of detonation which result from the selection of the equation of state and parameters associated with it are not sufficient to significantly affect blast patterns, explosive consumption and costs. However variations stemming from the use of available energy associated with a cut-off pressure are significant, suggesting in many cases large pattern expansions. The validity of the various approaches is discussed and blast design results based on the energy calculated by the different approaches are presented and evaluated.

  15. Effect of Foam Cladding for Blast Mitigation: Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    MA Guowei; YE Ziqing; ZHANG Xingui

    2006-01-01

    Two numerical simulations were performed to investigate the protective effect of the foam cladding.One simulation is based on a previous experimental study,which is a ballistic pendulum with and without a foam cladding subjected to close-range blast loading.The other model is a steel beam with and without a foam cladding under blast loading.The overpressure due to the blast event can be calculated by the empirical function ConWep or by an arbitrary Lagrangian-Eulerian (ALE)coupling model.The first approach is relatively simple and widely used.The second approach can model the propagation of the blast wave in the air and the interaction between the air and the solid.Itis found that the pendulum with the foam cladding always swings to a larger rotation angel compared to a bare pendulum.However,the steel beam with an appropriate foam cladding has a smaller deflection compared to the bare beam without a foam cladding.It is concluded that the protective effect of the foam cladding depends on the properties of the foam and the protected structure.

  16. A Review of Current Researches on Blast Load Effects on Building Structures in China

    Institute of Scientific and Technical Information of China (English)

    LI Zhongxian; DU Hao; BAO Chunxiao

    2006-01-01

    The damages of building structures subjected to multifarious explosions cause huge losses of lives and property.It is the reason why the blast resistance and explosion protection of building structures become an important research topic in the civil engineering field all over the world.This paper provides an overview of the research work in China on blast loads effect on building structures.It includes modeling blast shock wave propagation and their effects,the dynamic responses of various building structures under blast loads and the measures to strengthen the building structures against blast loads.The paper also discusses the achievements and further work that needs be done for a better understanding of the blast loads' effects on building structures,and for deriving effective and economic techniques to design new or to strengthen existing structures.

  17. Combined Effects of Primary and Tertiary Blast on Rat Brain: Characterization of a Model of Blast-induced Mild Traumatic Brain Injury

    Science.gov (United States)

    2014-03-01

    R) asymmetry . Since none of the brain regions exhibited a significant Blast x No. of Events x Side (L/R) interaction, the effect of side was...AD Award Number: W81XWH-11-2-0127 TITLE: Combined Effects of Primary and Tertiary Blast on Rat Brain : Characterization of a Model of...Blast-induced Mild Traumatic Brain Injury PRINCIPAL INVESTIGATOR: Dr. Joseph Long CONTRACTING ORGANIZATION: The Geneva Foundation, Tacoma, WA

  18. Structural Response to Blast Loading: The Effects of Corrosion on Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Hakan Yalciner

    2014-01-01

    Full Text Available Structural blast design has become a necessary part of the design with increasing terrorist attacks. Terrorist attacks are not the one to make the structures important against blast loading where other explosions such as high gas explosions also take an important place in structural safety. The main objective of this study was to verify the structural performance levels under the impact of different blast loading scenarios. The blast loads were represented by using triangular pulse for single degree of freedom system. The effect of blast load on both corroded and uncorroded reinforced concrete buildings was examined for different explosion distances. Modified plastic hinge properties were used to ensure the effects of corrosion. The results indicated that explosion distance and concrete strength were key parameters to define the performance of the structures against blast loading.

  19. Effect of texture and blasting pressure on residual stress and surface modifications in wet sand blasted α-Al2O3 coating

    OpenAIRE

    Ekström, Erik

    2015-01-01

    Recently, wet sand blasting on coated cutting tool inserts has drawn interest to the tooling industry due to its positive effects on cutting performance and tool life. This performance boost has partly been attributed to the buildup of compressive residual stresses in the coating during the blasting process. However, the mechanism of forming residual stresses in ceramic coatings during sand blasting is not fully understood. This work utilize x-ray diffraction as the main tool to study the for...

  20. Effects of low-level blast exposure on the nervous system: Is there really a controversy?

    Directory of Open Access Journals (Sweden)

    Gregory A Elder

    2014-12-01

    Full Text Available High-pressure blast waves can cause extensive CNS injury in humans. However, in combat settings such as Iraq and Afghanistan, lower level exposures associated with mild TBI (mTBI or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD. We describe how TBI is defined in humans and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in humans is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments a condition of low-level blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet animal studies show that low-level blast pressure waves are transmitted to the brain. In brain low-level blast exposures cause behavioral, biochemical, pathological and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long-term effects on the nervous system.

  1. Effect of the Location of the Detonation Initiation Point for Bench Blasting

    Directory of Open Access Journals (Sweden)

    Liang Liu

    2015-01-01

    Full Text Available Uneven floor and fragmentation play an important role in blasting operations due to the direct effects on the efficiency of hauling and loading. This paper focuses on the influences of initiation position on bench blasting in order to improve blasting effects. The numerical simulations of bench blasting at different initiation points (top, middle, and bottom are implemented based on secondary development of LS-DYNA with a tensile-compressive damage model. The damage spatial distribution characteristics of different initiation points are compared. The outlines of rock foundation and boulder areas are analyzed with the damage threshold of critical breakage that is ascertained by acoustic characteristic of damage rock mass. Results of the numerical simulations demonstrate that different initiation points make a great influence on the stress and energy distribution in blasting process and induce different blasting effects. Middle initiation turns out to be the best initiation to increase the flatness of the floor and decrease the oversize boulder ratio simultaneously, which will increase the damage areas of the bottom and top regions and give a better blasting effect. Field experiment in Baihetan Station was carried out to validate conclusions of numerical simulation. Research could provide a good reference for the improvement of rock blasting.

  2. Literature survey of blast and fire effects of nuclear weapons on urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Reitter, T.A.; McCallen, D.B.; Kang, S.W.

    1982-06-01

    The American literature of the past 30 years on fire and blast effects of nuclear weapons on urban areas has been surveyed. The relevant work is briefly sketched and areas where information is apparently lacking are noted. This report is intended to provide the basis for suggesting research priorities in the fire and blast effects area for the Federal Emergency Management Agency. It is also intended to provide entry into the literature for researchers. over 850 references are given.

  3. Effects Of Primary Blast Overpressure On Retina And Optic Tract In Rats

    Directory of Open Access Journals (Sweden)

    James eDemar

    2016-04-01

    Full Text Available Blast has been the leading cause of injury, particularly traumatic brain injury and visual system injury, in combat operations in Iraq and Afghanistan. We determined the effect of shock tube-generated primary blast on retinal electrophysiology and on retinal and brain optic tract histopathology in a rat model.The amplitude of a- and b- waves on the electroretinogram (ERG for both right and left eyes were measured prior to a battlefield-simulation Friedlander-type blast wave and on 1, 7, and 14 days thereafter. Histopathologic findings of the right and left retina and the right and left optic tracts (2.8 mm post-optic chiasm were evaluated 14 days after the blast.For two experiments in which the right eye was oriented to the blast, the amplitude of ERG a- and b-waves at 7 days post-blast on the right side but not on the left side was diminished compared to that of sham animals (P=0.005-0.01 Histopathologic injury scores at 14 days post-blast for the right retina but not the left retina were higher than for sham animals (P=0.01, and histopathologic injury scores at 14 days for both optic tracts were markedly higher than for shams (P < 0.0001. Exposure of one eye to a blast wave, comparable to that causing human injury, produced injury to the retina as determined by ERG and histopathology, and to both post-chiasmatic optic tracts as determined by histopathology. This model may be useful for analyzing the effect of therapeutic interventions on retinal damage due to primary blast waves.

  4. Mesh Size Effect in Numerical Simulation of Blast Wave Propagation and Interaction with Structures

    Institute of Scientific and Technical Information of China (English)

    SHI Yanchao; LI Zhongxian; HAO Hong

    2008-01-01

    Numerical method is popular in analysing the blast wave propagation and interaction with structures.However, because of the extremely short duration of blast wave and energy transmission between different grids, the numerical results are sensitive to the finite element mesh size.Previous numerical simulations show that a mesh size acceptable to one blast scenario might not be proper for another case, even though the difference between the two scenarios is very small,indicating a simple numerical mesh size convergence test might not be enough to guarantee accurate numerical results.Therefore, both coarse mesh and fine mesh were used in different blast scenarios to investigate the mesh size effect on numerical results of blast wave propagation and interaction with structures.Based on the numerical results and their comparison with field test results and the design charts in TM5-1300, a numerical modification method was proposed to correct the influence of the mesh size on the simulated results.It can be easily used to improve the accuracy of the numerical results of blast wave propagation and blast loads on structures.

  5. Simultaneous investigation of blast induced ground vibration and airblast effects on safety level of structures and human in surface blasting

    Institute of Scientific and Technical Information of China (English)

    Faramarzi Farhad⇑; Ebrahimi Farsangi Mohammad Ali; Mansouri Hamid

    2014-01-01

    The significance of studying, monitoring and predicting blast induced vibration and noise level in mining and civil activities is justified in the capability of imposing damages, sense of uncertainty due to negative psychological impacts on involved personnel and also judicial complaints of local inhabitants in the nearby area. This paper presents achieved results during an investigation carried out at Sungun Copper Mine, Iran. Besides, the research also studied the significance of blast induced ground vibration and air-blast on safety aspects of nearby structures, potential risks, frequency analysis, and human response. According to the United States Bureau of Mines (USBM) standard, the attenuation equations were devel-oped using field records. A general frequency analysis and risk evaluation revealed that:94%of generated frequencies are less than 14 Hz which is within the natural frequency of structures that increases risk of damage. At the end, studies of human response showed destructive effects of the phenomena by ranging between 2.54 and 25.40 mm/s for ground vibrations and by the average value of 110 dB for noise levels which could increase sense of uncertainty among involved employees.

  6. Effect of shot peening and grit blasting on surface integrity: Influence on residual stresses

    Institute of Scientific and Technical Information of China (English)

    K.TOSHA; LU Jian

    2006-01-01

    The influences of factors such as particle size (0.55-2.2 mm), particle velocity (15-35 m/s) and thickness of work material on the surface integrity were investigated. The residual stresses induced by shot peening or grit blasting were examined. In order to clarify the influences of those factors on residual stress included in the surface integrity, a medium carbon steel (w(C)= 0.45%, 180 HV) was peened by a centrifugal type peening machine using cast steel particles (650-800 HV). The results show that the compressive residual stresses on the peened surface are larger than those of grit blasting; the critical thickness of shot peening is about 50% thicker than that of grit blasting; the high compressive stresses induced by blasting are owing to the wrought or peening effect.

  7. Blasting and Blast Effects in Cold Regions. Part 3. Explosions in Ground Materials

    Science.gov (United States)

    1989-05-01

    entries in Table 8 stuggest 20’ to 26’ for for most materials tends to be around 200 when the equivalent sideslope, while the last four entries 3t0 Fable...34 to 47 . rocal of volume per unit weight is a specific energy Iwo entries in -able 8 (small-scale tests in sand- if multiplied by the energy per unit...the best I I approximation at small scaled radii from ground Explcsion Sensor zero for a deep blast, with square root scaling giv- I Rock Rock2 Rock

  8. Evaluation of effectiveness of raw materials and materials use in a blast furnace department of a steelworks

    Directory of Open Access Journals (Sweden)

    E. Kardas

    2017-01-01

    Full Text Available The paper analyses the quality of raw materials used in the production of blast furnace pig iron. The ferruginous sinter and pellets are the basic raw materials used in the process. The paper presents the impact of those raw materials quality on the effectiveness of the blast furnace process. The process effectiveness will be specified by means of selected process parameters.

  9. Modeling and Simulating Blast Effects on Electric Substations

    Energy Technology Data Exchange (ETDEWEB)

    Lyle G. Roybal; Robert F. Jeffers; Kent E. McGillivary; Tony D. Paul; Ryan Jacobson

    2009-05-01

    A software simulation tool was developed at the Idaho National Laboratory to estimate the fragility of electric substation components subject to an explosive blast. Damage caused by explosively driven fragments on a generic electric substation was estimated by using a ray-tracing technique to track and tabulate fragment impacts and penetrations of substation components. This technique is based on methods used for assessing vulnerability of military aircraft and ground vehicles to explosive blasts. An open-source rendering and ray-trace engine was used for geometric modeling and interactions between fragments and substation components. Semi-empirical material interactions models were used to calculate blast parameters and simulate high-velocity material interactions between explosively driven fragments and substation components. Finally, a Monte Carlo simulation was added to model the random nature of fragment generation allowing a skilled analyst to predict failure probabilities of substation components.

  10. Maximal exercise performance-impairing effects of simulated blast overpressure in sheep.

    Science.gov (United States)

    Januszkiewicz, A J; Mundie, T G; Dodd, K T

    1997-07-25

    Lung contusion has been identified as a primary blast injury. These experiments addressed a fundamental and overt endpoint of primary blast injury, incapacitation (performance decrement). Respiration, hemodynamics, and blood gases were measured in sheep undergoing incremental exercise challenge before and 1 h after simulated blast exposure of the thorax. Pathologic examination of lung tissue was performed after exposure and exercise testing. Blast overpressure was simulated in the laboratory using a compressed air-driven shock tube. Three levels of lung injury (Levels 1-3, 'Trivial', 'Slight', and 'Moderate' injury, respectively) were examined for effects on maximal oxygen consumption (VO[2max]), an index of cardiorespiratory fitness. Resting hemodynamics and blood gases were relatively normal an hour after exposure, immediately before exercise. However, Levels 1-3 lung injury were associated with average 4.8, 29.9 and 49.3% VO(2max). decreases, respectively. These performance decrements for Levels 2 and 3 were significantly different from respective controls (non-exposed). Exercise caused significant hemoconcentration in sheep under control conditions, before exposure (resting 9.5 +/- 0.9, end-exercise 11.8 +/- 0.9 g/100 ml). Blast exposure resulted in average decreases of 4.9 +/- 3.4, 12.8 +/- 4.0, and 12.6 +/- 3.3% in exercise-induced hemoconcentration for Levels 1-3 injury, respectively. Normal exercise-induced hemodynamic increases were also attenuated after exposure. Levels 2 and 3 injury resulted in average 22.6 +/- 2.9 and 18.5 +/- 11.2% stroke volume decreases, and also 22.3 +/- 8.4 and 29.0 +/- 14.2% cardiac output decreases, respectively, during exercise. While blast lung pathology and pulmonary function changes could account for post-blast performance decrements, these experiments suggest that in sheep, early after exposure, diminished hemoconcentration and cardiac disfunction may also contribute to decreased exercise performance.

  11. Assessment of the Effect of Blast Hole Diameter on the Number of Oversize Boulders Using ANN Model

    Science.gov (United States)

    Dhekne, Prakash; Pradhan, Manoj; Jade, Ravi Krishnarao

    2016-04-01

    Now-a-days, blasts are planned using large diameter blast holes. The loading density (kg/m) and subsequently the energy available for the breakage of the rockmass increase with the diameter. The in-hole velocity of detonation (VoD) of non-ideal explosive also boosts up with the increase in diameter till the optimum diameter is reached. The increase in the energy content and in-hole VoD cause a sizable effect on the rock fragmentation. The effect can be assessed by counting the number of oversize boulders. This paper explains as to how the technique of artificial neural network modeling was used to predict the number of oversize boulders resulting from ANFO and SME blasts with blast holes of different diameters. The results from ANFO blasts indicated that there was no significant variation in the number of oversize boulders with the diameter whereas a perceptible variation was noticed in case of SME blasts with the change in the diameter. The change in the number of oversize boulders in ANFO blasts was negligible because mean energy factor remained almost same even when the diameter of the blast holes was altered. The decrease in the number of oversize boulders in SME blasts was on account of increase in mean energy factor when the blast hole diameter was increased. The increase in the in-hole VoD due to increase in the diameter of the hole was not found to have an effect on the generation of oversize boulders as this increase was not substantial both in SME and ANFO blasts.

  12. Brittleness and Packing Density Effects on Blast-hole Cuttings Yield of Selected Rocks

    Directory of Open Access Journals (Sweden)

    B. Adebayo

    2016-06-01

    Full Text Available This paper evaluates brittleness and packing density to analysis their effects on blast-hole cutting yield for three selected rocks in Nigeria. Brittleness test (S20 was carried out in accordance with Norwegian Soil and Rock Engineering and the Brittleness Index (BI for the selected rocks were estimated. The packing density determined from the photomicrograph of the rock samples. The grain size of 45 blast-holes drill cuttings collected from three selected while drilling of these rocks were determined using standard method of America Society for Testing and Materials (ASTM D 2487. The brittleness values are 50%, 44% and 42% for micro granite, porphyritic granite and medium biotite granite respectively. The result of BI varied from 10.32 – 11.59 and they are rated as moderately brittle rocks. The values of packing density varied from 92.20 – 94.55%, 91.00 -92.96% and 92.92 – 94.96% for all the rocks. The maximum weights of blast-hole particle size retained at 75 µm are 106.00g, 103.28 g and 99.76 g for medium biotite granite, micro granite and porhyritic granite respectively. Packing density values have correlation to some extent with (S20 values hence, this influence the yield of blast-hole cuttings as drilling progresses. The minimum weight of blast-hole cuttings particle size retained at 150 µm agrees with brittleness index classification for micro granite.

  13. EFFECTS OF BLAST-FURNACE SLAG ON NATURAL POZZOLAN-BASED GEOPOLYMER CEMENT

    Directory of Open Access Journals (Sweden)

    MAHSHAD YAZDANIPOUR

    2011-03-01

    Full Text Available A number of geopolymer cement mixes were designed and produced by alkali-activation of a pumice-type natural pozzolan. Effects of blast-furnace slag on basic engineering properties of the mixes were studied. Different engineering properties of the mixes such as setting times and 28-day compressive strength were studied at different amounts of blast-furnace slag, sodium oxide content, and water-to-cement ratio. The mix comprising of 5 wt.% blast-furnace slag and 8 wt.% Na2O with a water-to-dry binder ratio of 0.30 exhibits the highest 28-day compressive strength, i.e. 36 MPa. Mixes containing 5 wt.% of ground granulated blast furnace slag showed the least efflorescence or best soundness. Laboratory techniques of X-ray diffractometry (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM were utilized for characterizing a number of mixes and studying their molecular and micro-structure. Investigations done by scanning electron microscopy confirm that smaller blast-furnace slag particles react totally while the larger ones react partially with alkaline activators and contribute to the formation of a composite microstructure.

  14. Streptococcus sanguinis adhesion on titanium rough surfaces: effect of shot-blasting particles.

    Science.gov (United States)

    Rodríguez-Hernández, Ana G; Juárez, A; Engel, E; Gil, F J

    2011-08-01

    Dental implant failure is commonly associated to dental plaque formation. This problem starts with bacterial colonization on implant surface upon implantation. Early colonizers (such as Streptococcus sanguinis) play a key role on that process, because they attach directly to the surface and facilitate adhesion of later colonizers. Surface treatments have been focused to improve osseointegration, where shot-blasting is one of the most used. However the effects on bacterial adhesion on that sort of surfaces have not been elucidated at all. A methodological procedure to test bacterial adherence to titanium shot-blasted surfaces (alumina and silicon carbide) by quantifying bacterial detached cells per area unit, was performed. In parallel, the surface properties of samples (i.e., roughness and surface energy), were analyzed in order to assess the relationship between surface treatment and bacterial adhesion. Rather than roughness, surface energy correlated to physicochemical properties of shot-blasted particles appears as critical factors for S. sanguinis adherence to titanium surfaces.

  15. Effect Blasting Excavation of Yujiapeng Tunnel on Stability of Nearby Giant Dangerous Rock Masses (DRM)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of the interpretation of engineering geology of the tunnel and of its adjacent dangerous rock masses (DRM), this paper presents the energy and vibration parameters of the explosion that propagates in different blasting modes according to the experimental formulas now usually employed. Then the stability checking computation of T8-T12 area, the most dangerous area of DRM, is conducted under the limited blasting condition and with the limited equilibrium method. The result shows that the effect on the stability is only 5.5 % and that this area also contains certain safety reserves.

  16. Numerical investigation of the effects of shock tube geometry on the propagation of an ideal blast wave profile

    Science.gov (United States)

    Li, X. D.; Hu, Z. M.; Jiang, Z. L.

    2017-03-01

    Bio-shock tubes (BSTs) can approximately simulate the typical blast waves produced by nuclear or chemical charge explosions for use in biological damage studies. The profile of an ideal blast wave in air is characterized by the overpressure, the negative pressure, and the positive pressure duration, which are determined by the geometric configurations of BSTs. Numerical experiments are carried out using the Eulerian equations by the dispersion-controlled dissipative scheme to investigate the effect of different structural components on ideal blast waveforms. The results show that cylindrical and conical frustum driver sections with an appropriate length can produce typical blast wave profiles, but a flattened peak pressure may appear when using a tube of a longer length. Neither a double-expansion tube nor a shrinkage tube set in BSTs is practical for the production of an ideal blast waveform. In addition, negative pressure recovery will occur, exceeding the ambient pressure with an increase in pressure in the vacuum section.

  17. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.

    Science.gov (United States)

    Courtney, Amy C; Andrusiv, Lubov P; Courtney, Michael W

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  18. Tuyere development as an effective measure for high PC rate operation of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tagawa, T.; Kasai, A.; Nozawa, K.; Shibata, K. [Kobe Steel Ltd., Kakogawa Works, Hyogo (Japan). Ironmaking Dept.

    2008-07-01

    Kobe Steel has developed technologies to reduce coke consumption in its blast furnaces by injecting coal at a high rate. This paper described a newly developed tuyere and its contribution to improving permeability under high pulverized coal (PC) rate conditions at the blast furnaces at Kakogawa Works. Reducing the coke rate while increasing the coal injection rate results in higher ore/coke at the center region of the furnace, resulting in excessive peripheral gas and inducing gas channeling. Central coke charging (CCC) helps attain a stable gas flow inside the furnace by forming a vertical gas passage in the coke column. It enables furnace operators to directly control or enhance the central gas flow and improves gas and liquid permeability in the furnace bottom. In a conventional tuyere, the PC is introduced in or before the converged blast flow inside the tuyere where coal fines begin to decompose and interact with hot blasts. This newly developed convergent and divergent (CD) type tuyere was instrumental in safely reducing the pressure drop and its variation to a tolerable level even under ultra-high PCR conditions over 250 kg/thm. This paper described the effects of tuyere structure on raceway shapes using 3 types of tuyeres in a coke packed test furnace. It was concluded that the CD tuyere reduces pressure drop at the tuyere. An increase in PC rate offers benefits in terms of furnace stability. The CD tuyere also reduces coke deterioration in the raceway. 7 refs., 8 figs.

  19. Assessment of blasting induced effects on medical 316 LVM stainless steel by contacting and non-contacting thermoelectric power techniques

    OpenAIRE

    2012-01-01

    Grit blasting is a low cost surface modification treatment widely used to enhance mechanical fixation of implants through increasing their roughness. As a result of the severe surface plastic deformation, beneath the surface it produces additional effects such as grain size refinement, work hardening and compressive residual stresses, which are generally evaluated with destructive techniques. In this research work, the blasting induced effects by Al2O3 and ZrO2 particles and their evolution a...

  20. Dry ice blasting

    Science.gov (United States)

    Lonergan, Jeffrey M.

    1992-04-01

    As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.

  1. The integrated blast effects sensor suite: a rapidly developed, complex, system of systems.

    Science.gov (United States)

    Liu, Brian; Medda, Alessio; Woods, Douglas; Phelps, Shean; Fain, Walter

    2015-03-01

    Spurned by the increasing concern and consciousness of traumatic brain injuries in deployed U.S. service members, the U.S. Army Rapid Equipping Force sought help from the Georgia Tech Research Institute to rapidly develop and deploy a system capable of gathering relevant soldier-centric data-the Integrated Blast Effects Sensor Suite. To meet aggressive program milestones and requirements, Georgia Tech Research Institute engaged in rapid systems engineering efforts focused on leveraging iterative development and test methodologies. Ultimately, an integrated system of systems composed of vehicle systems, soldier-worn headset and torso systems, and data retrieval systems was deployed to troops in Afghanistan for an operational assessment. The Integrated Blast Effects Sensor Suite development process and parallel efforts investigating injury dosimetry methodologies have yielded unique findings and lessons learned, which should be incorporated into future evolutions of similar systems.

  2. 30 CFR 780.13 - Operation plan: Blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: Blasting. 780.13 Section 780.13... Operation plan: Blasting. (a) Blasting plan. Each application shall contain a blasting plan for the proposed... methods to be applied in controlling the adverse effects of blasting operations. (b) Monitoring...

  3. Effect of Large Negative Phase of Blast Loading on Structural Response of RC Elements

    Directory of Open Access Journals (Sweden)

    Syed Zubair Iman

    2016-01-01

    Full Text Available Structural response of reinforced concrete (RC elements for analysis and design are often obtained using the positive phase of the blast pressure curve disregarding the negative phase assuming insignificant contribution from the negative phase of the loading. Although, some insight on the effect of negative phase of blast pressure based on elastic single-degree-of-freedom (SDOF analysis was presented before, the influence of negative phase on different types of resistance functions of SDOF models and on realistic finite element analysis has not been explored. In this study, the effects of inclusion of pulse negative phase on structural response of RC elements from SDOF analysis and from more detailed finite element analysis have been investigated. Investigation of SDOF part has been conducted using MATLAB code that utilizes non-linear resistance functions of SDOF model. Detailed numerical investigation using finite element code DIANA was conducted on the significance of the negative phase on structural response. In the FE model, different support stiffness was used to explore the effect of support stiffness on the structural response due to blast negative phase. Results from SDOF and FE analyses present specific situations where the effect of large negative phase was found to be significant on the structural response of RC elements.

  4. THE EFFECT OF FISSURES IN DOLOMITE ROCK MASS ON BLASTING PROJECTS

    Directory of Open Access Journals (Sweden)

    Branko Božić

    1989-12-01

    Full Text Available Rock fractures in the form of fissures are one of more important geological features of a tectonic system. They have an effect on mechanical behaviour of rook masses exposed to the actions of surface forces. For exploitation in dolomite quarries carried out by blasting of deep shot holes it is important to know the system of fissures within a rock mass for the rock brakes along already weakened planes (the paper is published in Croatian.

  5. Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast

    Directory of Open Access Journals (Sweden)

    S. N. Raman

    2012-01-01

    Full Text Available The main distinction of blast load from other types of dynamic loadings is its impulsive nature, where the loads usually act for a very short duration but transmit very high impulsive pressures. This paper presents an overview of the present retrofitting techniques in use to enhance the capacity of structural elements to withstand the effects of blast loads, and introduces an alternative retrofitting approach by utilizing polymer coatings. The authors have demonstrated the positive effects of this approach by conducting a numerical investigation on the behavior of an unretrofitted reinforced concrete panel subjected to the blast load from a 2 kg charge at 1.6 m stand-off distance, and subsequently comparing its performance with several polymer coated panels. The analysis was performed by using an explicit nonlinear finite element (FE code. The results demonstrate the contributions of this technique in terms of panel displacement control and energy dissipation. Considering that the polymer coating can also act as a protective layer in improving the durability of structural materials, this technique can also be optimized favorably to enhance the overall sustainability of structures.

  6. The effect of controlled microrobotized blasting on implant surface texturing and early osseointegration.

    Science.gov (United States)

    Gil, Luiz F; Marin, Charles; Teixeira, Hellen; Marão, Heloisa F; Tovar, Nick; Khan, Rehan; Bonfante, Estevam A; Janal, Malvin; Coelho, Paulo G

    2016-02-01

    Surface topography modifications have become a key strategy for hastening the host-to-implant response to implantable materials. The present study evaluated the effect of three different carefully controlled surface texture patterns achieved through microrobotized blasting (controlled to high, medium and low roughness) relative to a larger scale blasting procedure (control) in early osseointegration in a canine model. Four commercially pure grade 2 titanium alloy implants (one of each surface) were bilaterally placed in the radii of six beagle dogs and allowed end points of 1 and 6 weeks in vivo. Following sacrifice, implants in bone were non-decalcified processed for bone morphologic and histometric (bone-to-implant contact; bone area fraction occupancy) evaluation. Surface topography was characterized by scanning electron microscopy and optical interferometry. Results showed initial osteogenic tissue interaction at one week and new bone in intimate contact with all implant surfaces at 6 weeks. At 1 and 6 weeks in vivo, higher bone-to-implant and bone area fraction occupancy were observed for the high texture pattern microrobotized blasted surface relative to others.

  7. Effects of repetitive low-level blast exposure on visual systems and ocular structures

    Directory of Open Access Journals (Sweden)

    José E. Capó-Aponte, OD, PhD

    2015-06-01

    Full Text Available The purpose of this study was to determine whether repetitive exposure to low-level blasts during military breacher training produces acute and cumulative damage to the ocular tissues or visual system. The effects of low-level blast exposure on high-contrast visual acuity, contrast sensitivity, oculomotor function, color vision, visual field (VF, pupillary light reflex, corneal endothelial cell density (ECD, macular thickness, retinal nerve fiber layer thickness, and cup-to-disc ratio were assessed using a battery of standard clinical ophthalmic tests administered 10 times over a 2-year period. Data from nine male breacher instructors (Cadre were compared with data from four male breacher engineers (Control. The Cadre group showed higher vertical deviation at near than the Control group over time. The VF mean deviation on the left eye tended to be worse in the Cadre group throughout the study, suggesting a decrease in VF sensitivity (Cadre: –0.20 +/– 0.15 dB; Control: 1.05 +/– 0.15 dB; p = 0.03. The Cadre group had a reduced ECD (right eye: Cadre 2,478 cells/mm2 vs Control 2,808 cells/mm2, p = 0.02; left eye: Cadre 2,562 cells/mm2 vs Control 2,892 cells/mm2, p = 0.03. These results suggest that even low-level primary blast has the potential to produce occult eye injury.

  8. The effect of abrasive blasting on the strength of a joint between dental porcelain and metal base.

    Science.gov (United States)

    Pietnicki, Krzysztof; Wołowiec, Emilia; Klimek, Leszek

    2014-01-01

    This paper presents the effect of selected parameters of abrasive blasting on the strength of a joint between dental porcelain and metal base. Experiments were conducted for different grain sizes of abrasive material and different blasting angles, with a constant blasting pressure. InLine dental porcelain was fused on samples of cobalt-chromium alloy following abrasive blasting; they were subsequently subjected to shearing forces on a testing machine. The fractures were observed under an electron scanning microscope in order to determine the character and course of fracturing. Strength tests showed that the grain size of abrasive material was a parameter with the greatest effect on the strength. The best effects were achieved for samples subjected to abrasive blasting with material with grain size of 110 μm. No statistically significant differences were found for the strength of samples worked at different angles. The results of the fractographic examinations have shown that in all the samples, fracturing occurred mainly along the porcelain-metal boundary, with few cases of fracturing through porcelain.

  9. Blast biology: a study of the primary and tertiary effects of blast in open underground protective shelters. Project 33. 1 of Operation Plumbbob

    Energy Technology Data Exchange (ETDEWEB)

    Ricmond, D.R.; Taborelli, R.V.; Bowen, I.G.

    1959-02-01

    Dogs, pigs, rabbits, guinea pigs, and mice were exposed to nuclear detonations in two open underground partitioned shelters. The shelters were of similar construction, and each was exposed to separate detonations. Each inner chamber filled through its own orifice; thus four separate pressure environments were obtained. An aerodynamic mound was placed over the escape hatch of each structure to determine its effect on the pressure-curve shape inside the chamber. In one test a sieve plate bolted across the top of the mound was evaluated. Wind protective baffles of solid plate and of heavy wire screen were installed in the shelters to compare primary and tertiary blast effects on dogs. The shelters also contained static and dynamic pressure gages, radiation detectors, telemetering devices, and, in one test, air-temperature measuring instruments, dust-collecting trays, and eight pigs for the biological assessment of thermal effects. One dog was severely injured from tertiary blast effects associated with a maximal dynamic pressure (Q) of 10.5 psi, and one was undamaged with a maximal Q of 2 psi. Primary blast effects resulting from peak overpressures of 30.3, 25.5, 9.5, and 4.1 psi were minimal. The mortality was 19% of the mice exposed to a peak pressure of 30.3 psi and 5 and 3% of the guinea pigs and mice exposed to a peak pressure of 25.5 psi. Many of the rabbits, guinea pigs, and mice sustained slight lung hemorrhages at maximum pressues of 25.5 and 30.3 psi. Eardrum perforation data for all species, except mice, were recorded. Following shot 2, thermal effects were noted. Animals of the groups saved for observation have died from ionizing-radiation effects.

  10. Effect of alkaline elements on the reactivity, strength and structural properties of blast furnace cokes

    Directory of Open Access Journals (Sweden)

    A. Bhattacharyya

    2015-07-01

    Full Text Available The present study concerns itself on the adverse effects of alkaline elements like sodium and potassium on blast furnace cokes. To achieve a deeper insight on the effects of alkaline elements on coke reactivity and strength, industrial coke samples impregnated with different alkaline species in various amounts have been tested under standard conditions to find out their Coke Reactivity Index (CRI and Coke Strength after Reaction (CSR values. Scanning electron microscopy, petrographic and Raman Spectrometric investigations demonstrate the change of structural properties. The mechanism of catalysis has been postulated.

  11. A novel model for cost performance evaluation of pulverized coal injected into blast furnace based on effective calorific value

    Institute of Scientific and Technical Information of China (English)

    徐润生; 张建良; 左海滨; 李克江; 宋腾飞; 邵久刚

    2015-01-01

    The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.

  12. The effect of blast furnace coke quality on the possibility of its use

    OpenAIRE

    A. Konstanciak

    2013-01-01

    In the paper behavior of the blast-furnace coke in the high temperature was presented. Comparative analysis of the chemical composition of the blast-furnace coke and the heat treatment of it were done. Coefficients M10 and M40 with the thermo-abrasiveness for chosen cokes were compared. The influence of ash content of the coke on the blast-furnace bed permeability was defined. Usefulness of the coke to blast-furnace process was also defined.

  13. Effects of Carbo-Nitridation Process of Ti-Bearing Blast Furnace Slag on Iron Content

    Science.gov (United States)

    Shi, Z.; Zhang, X. M.; Xu, Y.

    In order to prepare corrosion-resistant refractory material, experiment chooses Ti-bearing Blast Furnace Slag as raw materials which were treated by the method of carbo-nitridation. Finally, the corrosion resistance properties of the material can be improved by this method. The carbo-nitridation process affects the iron content of the slag in the study, which have a beneficial effect on the synthesis of Ti (C. N). The results indicated that the iron content of the slag significantly increased in process of Ti (C. N) synthesis: and the iron content of slag showed an upward trend with the increase of holding time.

  14. Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting.

    Science.gov (United States)

    Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka

    2014-04-01

    It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting.

  15. Combination Effect of Dry-Ice Blasting and Substrate Preheating on Plasma-Sprayed CoNiCrAlY Splats

    Science.gov (United States)

    Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2013-02-01

    CoNiCrAlY splats were plasma-sprayed on the stainless steel substrate which was pretreated by dry-ice blasting. Only impact marks were distinguished on the glycerol-polluted substrate, while halo donut splats formed on the pretreated substrate because of the cleaning effect of dry-ice blasting on this organic substance. The proportions of different splat types vary as a function of the treatment time of dry-ice blasting. The condensation phenomenon was also detected on the substrate surface accompanying the cleaning effect after the pretreatment of dry-ice blasting. In this study, dry-ice blasting was investigated to be coupled with substrate preheating to control the substrate temperature. It was found that a regular disk-like CoNiCrAlY splat can be obtained as the substrate temperature is higher than dew point temperature.

  16. CONTROL OF FRAGMENTATION BY BLASTING

    Directory of Open Access Journals (Sweden)

    Branko Božić

    1998-12-01

    Full Text Available The degree of fragmentation influences the economy of the excavation operations. Characteristics of blasted rock such as fragment size, volume and mass are fundamental variables effecting the economics of a mining operation and are in effect the basis for evaluating the quality of a blast. The properties of fragmentation, such as size and shape, are very important information for the optimization of production. Three factors control the fragment size distribution: the rock structure, the quantity of explosive and its distribution within the rock mass. Over the last decade there have been considerable advances in our ability to measure and analyze blasting performance. These can now be combined with the continuing growth in computing power to develop a more effective description of rock fragmentation for use by future blasting practitioners. The paper describes a view of the fragmentation problem by blasting and the need for a new generation of engineering tools to guide the design and implementation of blasting operations.

  17. Effectiveness analysis of methane-drainage by deep-hole controlled pre-splitting blasting for preventing coal and gas outburst

    Institute of Scientific and Technical Information of China (English)

    CAO Shu-gang; LI Yong; LIU Yan-bao; ZHANG Li-qiang; XU A-meng

    2009-01-01

    In the study of the application effectiveness of deep-hole controlled pre-splitting blasting technology, it was found through laboratory micro test and field study on a mine in south China that under the technology, coal masses produce many irreversible cracks. Af-ter blasting, the nearer the distance from blasting hole, the larger the BET surface area and volume ratio of the infiltration pore are; they increased by 11.47% and 5.73%, respec-tively. The coefficient of air permeability is increased 4 times. After 3 months, the gas drainage rate was increased by 66%. In the first 15 days, the cumulative pumped gas was 1.93 times of blasting before. The average absolute gas emission decreased by 63.46%. Experimental results show that deep-hole controlled pre-splitting blasting not only prevents coal and gas outburst, but also gives good economic results.

  18. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties.

    Science.gov (United States)

    Lieblich, M; Barriuso, S; Multigner, M; González-Doncel, G; González-Carrasco, J L

    2016-02-01

    Roughening of Ti6Al4V by blasting with alumina or zirconia particles improves the mechanical fixation of implants by increasing the surface area available for bone/implant apposition. Additional thermal oxidation treatments of the blasted alloy have already shown to be a complementary low-cost solution to enhancing the in vitro biocompatibility and corrosion resistance of the alloy. In this work, the effects of oxidation treatment on a grit blasted Ti6Al4V biomedical alloy have been analysed in order to understand the net effect of the combined treatments on the alloy fatigue properties. Synchrotron radiation diffraction experiments have been performed to measure residual stresses before and after the treatments and microstructural and hardness changes have been determined. Although blasting of Ti6Al4V with small spherical zirconia particles increases the alloy fatigue resistance with respect to unblasted specimens, fatigue strength after oxidation decreases below the unblasted value, irrespective of the type of particle used for blasting. Moreover, at 700°C the as-blasted compressive residual stresses (700MPa) are not only fully relaxed but even moderate tensile residual stresses, of about 120MPa, are found beneath the blasted surfaces. Contrary to expectations, a moderate increase in hardness occurs towards the blasted surface after oxidation treatments. This can be attributed to the fact that grit blasting modifies the crystallographic texture of the Ti6Al4V shifting it to a random texture, which affects the hardness values as shown by additional experiments on cold rolled samples. The results indicate that the oxidation treatment performed to improve biocompatibility and corrosion resistance of grit blasted Ti6Al4V should be carried out with caution since the alloy fatigue strength can be critically diminished below the value required for high load-bearing components.

  19. Effect of Shock Wave on Fabricated Anti-Blast Wall and Distribution Law Around the Wall Under Near Surface Explosion

    Institute of Scientific and Technical Information of China (English)

    WU Jun; LIU Jingbo; YAN Qiushi

    2008-01-01

    The loads of shock wave effect on fabricated anti-blast wall and distribution law around the wall were investigated by using near surface explosion test method and FEM.The pressure-time histories and variety law on the foreside and backside of the anti-blast wall were adopted in the tests of variety of different explosion distances and dynamites,as well as in the comparison between the test and numerical calculation.The test results show that the loads of shock wave effect on the anti-blast wall were essen-tially consistent with calculation results using criterion under surface explosion when explosion distances exceed 2 m,the distribution of overpressure behind wall was gained according to variety law based on small-large-small.It is also demonstrated that the peak overpressure behind wall had commonly appeared in wall height by 1.5--2.5 multiples,and the peak overpressures of protective building behind wall could be reduced effectively by using the fabricated anti-blast wall.

  20. Protective effects of decay-accelerating factor on blast-induced neurotrauma in rats

    OpenAIRE

    Li, Yansong; Chavko, Mikulas; Slack, Jessica L.; Liu, Bin; McCarron, Richard M.; Ross, James D. (Dalhousie University); Dalle Lucca, Jurandir J

    2013-01-01

    Background Blast-induced neurotrauma (BINT) is the signature life threatening injury of current military casualties. Neuroinflammation is a key pathological occurrence of secondary injury contributing to brain damage after blast injury. We have recently demonstrated that blast-triggered complement activation and cytokine release are associated with BINT. Here, we evaluated if administration of the complement inhibitor recombinant human decay-accelerating factor (rhDAF) is beneficial on neuroi...

  1. Condition for Contur Blasting use on Openpit Mines

    OpenAIRE

    Krsmanovic, I; Dambov, Risto

    2010-01-01

    For purpose of obtaining a stable final slope in open pit mines practice, the most common approach is the contour blasting method and investigation of possible applications of various primary blasting methods for purpose of gaining the optimal techno-economical effects. This paper presents one of the contour blasting methods, drilling and blasting parameters, construction of explosive charges and method of initiation.

  2. The effect of blast furnace coke quality on the possibility of its use

    Directory of Open Access Journals (Sweden)

    A. Konstanciak

    2013-04-01

    Full Text Available In the paper behavior of the blast-furnace coke in the high temperature was presented. Comparative analysis of the chemical composition of the blast-furnace coke and the heat treatment of it were done. Coefficients M10 and M40 with the thermo-abrasiveness for chosen cokes were compared. The influence of ash content of the coke on the blast-furnace bed permeability was defined. Usefulness of the coke to blast-furnace process was also defined.

  3. BLEVE blast by expansion-controlled evaporation

    NARCIS (Netherlands)

    Berg, A.C. van den; Voort, M.M. van der; Weerheijm, J.; Versloot, N.H.A.

    2006-01-01

    This report presents a new method to calculate the blast effects originating from an exploding vessel of liquefied gas. Adequate blast calculation requires full knowledge of the blast source characteristics, that is, the release and subsequent evaporation rate of the flashing liquid. Because the con

  4. Rock fragmentation control in opencast blasting

    Directory of Open Access Journals (Sweden)

    P.K. Singh

    2016-04-01

    Full Text Available The blasting operation plays a pivotal role in the overall economics of opencast mines. The blasting sub-system affects all the other associated sub-systems, i.e. loading, transport, crushing and milling operations. Fragmentation control through effective blast design and its effect on productivity are the challenging tasks for practicing blasting engineer due to inadequate knowledge of actual explosive energy released in the borehole, varying initiation practice in blast design and its effect on explosive energy release characteristic. This paper describes the result of a systematic study on the impact of blast design parameters on rock fragmentation at three mines in India. The mines use draglines and shovel–dumper combination for removal of overburden. Despite its pivotal role in controlling the overall economics of a mining operation, the expected blasting performance is often judged almost exclusively on the basis of poorly defined parameters such as powder factor and is often qualitative which results in very subjective assessment of blasting performance. Such an approach is very poor substitutes for accurate assessment of explosive and blasting performance. Ninety one blasts were conducted with varying blast designs and charging patterns, and their impacts on the rock fragmentation were documented. A high-speed camera was deployed to record the detonation sequences of the blasts. The efficiency of the loading machines was also correlated with the mean fragment size obtained from the fragmentation analyses.

  5. Blast-Induced Damage on Millisecond Blasting Model Test with Multicircle Vertical Blastholes

    Directory of Open Access Journals (Sweden)

    Qin-yong Ma

    2015-01-01

    Full Text Available To investigate the blast-induced damage effect on surrounding rock in vertical shaft excavation, 4 kinds of millisecond blasting model tests with three-circle blastholes were designed and carried out with excavation blasting in vertical shaft as the background. The longitudinal wave velocity on the side of concrete model was also measured before and after blasting. Then blast damage factor was then calculated by measuring longitudinal wave velocity before and after blasting. The test results show that the blast-induced damage factor attenuated gradually with the centre of three-circle blastholes as centre. With the threshold value of 0.19 for blast-induced damage factor, blast-induced damage zones for 4 kinds of model tests are described and there is an inverted cone blast-induced damage zone in concrete model. And analyses of cutting effect and blast-induced damage zone indicate that in order to minimize the blast-induced damage effect and ensure the cutting effect the reasonable blasting scheme for three-circle blastholes is the inner two-circle blastholes initiated simultaneously and the outer third circle blastholes initiated in a 25 ms delay.

  6. Chloroplast-Expressed MSI-99 in Tobacco Improves Disease Resistance and Displays Inhibitory Effect against Rice Blast Fungus

    Directory of Open Access Journals (Sweden)

    Yun-Peng Wang

    2015-03-01

    Full Text Available Rice blast is a major destructive fungal disease that poses a serious threat to rice production and the improvement of blast resistance is critical to rice breeding. The antimicrobial peptide MSI-99 has been suggested as an antimicrobial peptide conferring resistance to bacterial and fungal diseases. Here, a vector harboring the MSI-99 gene was constructed and introduced into the tobacco chloroplast genome via particle bombardment. Transformed plants were obtained and verified to be homoplastomic by PCR and Southern hybridization. In planta assays demonstrated that the transgenic tobacco plants displayed an enhanced resistance to the fungal disease. The evaluation of the antimicrobial activity revealed that the crude protein extracts from the transgenic plants manifested an antimicrobial activity against E. coli, even after incubation at 120 °C for 20 min, indicating significant heat stability of MSI-99. More importantly, the MSI-99-containing protein extracts were firstly proved in vitro and in vivo to display significant suppressive effects on two rice blast isolates. These findings provide a strong basis for the development of new biopesticides to combat rice blast.

  7. Effect of phase separation structure on cementitious reactivity of blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    LI Yu; SUN HengHu; LIU XiaoMing; CUI ZengDi

    2009-01-01

    Blast furnace slag samples with phase separation structure were prepared by re-melting and then water quenching process. By use of XRD, DTA and SEM technologies in combination with mechanical prop-erty experiment, the structure characteristics of samples were determined and their effects on cemen-titious reactivity were investigated. The results show that the samples with phase separation have better cementitious reactivity than sample with homogenous glass and sample with crystalline phases, which mainly contributes to its grass structure with coexistence of Ca-O rich phase and Si-O rich phase. Moreover, the amorphous samples possess hydrability which is affected by their formation process, since phase separation extends the range of possible Ca-rich crystalline phases.

  8. Effect of phase separation structure on cementitious reactivity of blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Blast furnace slag samples with phase separation structure were prepared by re-melting and then water quenching process. By use of XRD,DTA and SEM technologies in combination with mechanical property experiment,the structure characteristics of samples were determined and their effects on cementitious reactivity were investigated. The results show that the samples with phase separation have better cementitious reactivity than sample with homogenous glass and sample with crystalline phases,which mainly contributes to its glass structure with coexistence of Ca-O rich phase and Si-O rich phase. Moreover,the amorphous samples possess hydrability which is affected by their formation process,since phase separation extends the range of possible Ca-rich crystalline phases.

  9. Assessment of blast loading effects - Types of explosion and loading effects

    Energy Technology Data Exchange (ETDEWEB)

    Cullis, Ian G., E-mail: igcullis@qinetiq.co [QinetiQ, Fort Halstead, Sevenoaks, Kent TN14 7BP (United Kingdom); Schofield, James, E-mail: jsschofield@qinetiq.co [QinetiQ, Rosyth, Dunfermline KY11 2XR (United Kingdom); Whitby, Angela, E-mail: ajwhitby@qinetiq.co [QinetiQ, Farnborough, Hampshire GU14 0LX (United Kingdom)

    2010-09-15

    There has been a great deal of work undertaken on the modelling and protection of the structure of buildings to explosive blast, fragment and missile penetration. Buildings and tunnels present interesting challenges because of the different energy release characteristics of modern explosives and gaseous mixtures. The paper describes how by combining modelling capabilities in blast-structure interaction with vulnerability models a capability is formed that has a wide range of potential uses, which links the many stages of response planning to an attack or more general emergency. From designing survivable infrastructures and planning protective measures, through training of staff and responders to handling of actual events, the concept provides a comprehensive approach to the whole spectrum of building and infrastructure survivability assessment issues for a wide range of environments. The paper describes its application to buildings and other related infrastructure.

  10. Temperature Profiles and the Effect of AGN on Submillimeter Emission from BLAST Observations of Resolved Galaxies

    CERN Document Server

    Wiebe, Donald V; Bock, James J; Chapin, Edward L; Devlin, Mark J; Dicker, Simon; Griffin, Matthew; Gundersen, Joshua O; Halpern, Mark; Hargrave, Peter C; Hughes, David H; Klein, Jeff; Marsden, Gaelen; Martin, Peter G; Mauskopf, Philip; Netterfield, Calvin B; Olmi, Luca; Pascale, Enzo; Patanchon, Guillaume; Rex, Marie; Scott, Douglas; Semisch, Christopher; Thomas, Nicholas; Truch, Matthew D P; Tucker, Carole; Tucker, Gregory S; Viero, Marco P

    2009-01-01

    Over the course of two flights, the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) made resolved maps of seven nearby (<25 Mpc) galaxies at 250, 350, and 500 microns. During its June 2005 flight from Sweden (BLAST05), BLAST observed a single nearby galaxy, NGC 4565. During the December 2006 flight from Antarctica (BLAST06), BLAST observed the nearby galaxies NGC 1097, NGC 1291, NGC 1365, NGC 1512, NGC 1566, and NGC 1808. We fit physical dust models to a combination of BLAST observations and other available data for the the galaxies with Spitzer data. We fit a modified blackbody to the remaining galaxies to obtain total dust mass and mean dust temperature. For the four galaxies with Spitzer data, we also produce maps and radial profiles of dust column density and temperature. We measure the fraction of BLAST detected flux originating from the central cores of these galaxies and use this to calculate a "core fraction", an upper limit on the "AGN fraction" of submillimeter detected galaxies. Fin...

  11. Effect of Na3PO4 on the Hydration Process of Alkali-Activated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Lukáš Kalina

    2016-05-01

    Full Text Available In recent years, the utilization of different non-traditional cements and composites has been increasing. Alkali-activated cementitious materials, especially those based on the alkali activation of blast furnace slag, have considerable potential for utilization in the building industry. However, alkali-slag cements exhibit very rapid setting times, which are too short in some circumstances, and these materials cannot be used for some applications. Therefore, it is necessary to find a suitable retarding admixture. It was shown that the sodium phosphate additive has a strong effect on the heat evolution during alkali activation and effectively retards the hydration reaction of alkali-activated blast furnace slag. The aim of the work is the suggestion of a reaction mechanism of retardation mainly based on Raman and X‑ray photoelectron spectroscopy.

  12. Adenovirus-mediated human β-nerve growth factor gene transfer has a protective effect on cochlear spiral ganglion after blast exposure

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To study whether adenovirus-mediated human β-nerve growth factor (Ad-hNGFβ) gene has any protective effect on blast hearing impairment. Methods:Deafness was induced by blast exposure (172. 0 dB) in 30 healthy guinea pigs. On day 7 of blast exposure, Ad-hNGFβ was infused into the perilymphatic space of 20 animals as the study group (hNGFβ group), and artificial perilymph fluid (APF) was infused into the perilymphatic space of the other 10 animals as the control group. At weeks 1, 4 and 8 after blast exposure, the animals were sacrificed and the cochleae were removed for immunohis-tochemical and HE stainings. Results: Expression of Ad-hNGFβ protein was detected in each turn of the cochlea at the 1st week, with almost equal intensity in all turns. At the 4th week, the reactive intensity of the expression of Ad-hNGFβ protein decreased. At the 8th week, no expression was detectable. The results of HE staining showed that the amount of spiral ganglions in hNGFβ group was significantly greater than that of the control group at week 4 (F<0. 01). Conclusion: Ad-hNGFβ can be expressed at a high level and for a relatively long period in the blast impaired cochlea, suggesting that Ad-hNGFβ has a protective effect on cochlear spiral ganglion cells after blast exposure and the efficient gene transfer into cochlea had been achieved without toxicity.

  13. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    CERN Document Server

    Courtney, Michael

    2011-01-01

    Instrumentation is needed to produce realistic blast waves in a laboratory setting. This paper describes the development and characterization of oxy-acetylene driven, laboratory scale shock tubes for use in studying blast injury, candidate armor materials, and material properties at blast loading rates. The pressure-time profiles show a true shock front and exponential decay characteristic of blast waves and have relevant durations. The modular design includes shock tube diameters of 27 mm and 41 mm, and a selection of peak pressures from 204 kPa to 920 kPa can be produced by selection of the driver section diameter and placement of the test sample. Characterization studies of several driver/driven section combinations showed consistent results, with peak pressures having 0.8 - 6.9 percent uncertainty in the mean. This shock tube design provides a more realistic blast profile than current air-driven shock tubes. In addition, operation does not require specialized personnel or facilities like most blast-driven...

  14. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haoliang, E-mail: haoliang.huang@tudelft.nl [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Ye, Guang [Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology (Netherlands); Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University (Belgium); Damidot, Denis [Université Lille Nord de France (France); EM Douai, LGCgE-MPE-GCE, Douai (France)

    2014-06-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH)₂ solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO₄⁻² ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation.

  15. Blast furnace slag can effectively remediate coastal marine sediments affected by organic enrichment.

    Science.gov (United States)

    Asaoka, Satoshi; Yamamoto, Tamiji

    2010-04-01

    There is an urgent need to control nutrient release fluxes from organically-enriched sediments into overlying waters to alleviate the effects of eutrophication. This study aims to characterize blast furnace slag (BFS) and evaluate its remediation performance on organically-enriched sediments in terms of suppressing nutrient fluxes and reducing acid volatile sulfide. BFS was mainly composed of inorganic substances such as CaO, SiO(2), Al(2)O(3) and MgO in amorphous crystal phase. Container experiments showed that the phosphate concentration in the overlying water, its releasing flux from sediment and AVS of the sediment decreased by 17-23%, 39% and 16% compared to the control without BFS, respectively. The loss on ignition was significantly decreased by 3.6-11% compared to the control. Thus, the application of BFS to organically-enriched sediment has a suppressive role on organic matter, AVS concentration and phosphate releasing flux from sediments and therefore, is a good candidate as an effective environmental remediation agent.

  16. The Study of the Grit-blasting Parameters and Their Effects on the Adhesive Strength of the Plasma Sprayed Coatings

    Institute of Scientific and Technical Information of China (English)

    M; Heydarzadeh; Sohi; M; Frooghieh; Sh; Khameneh; Asl

    2002-01-01

    Surface Preparation is very important in adhesive b on ding of spray coatings to the surface of a work piece. The common practice is gr it-blasting of the surface before subjecting it to the spray coating process. In this study, grit-blasting of an AISI 4130 steel (of different heat treatmen ts) with Al 2O 3 particles was studied. Various grit-blasting parameters such as blasting particle size, the distance between blasting nozzle and the work pi ece (25, 30 and 40 cm.), blasting pressure (3,4,5,6 and ...

  17. Blast Valve Design and Related Studies : A Review

    Directory of Open Access Journals (Sweden)

    P. K. Sharma

    2016-04-01

    Full Text Available The protective structures required for performing critical operations are vulnerable to the blast and shock loads of advanced weapons. A blast valve is an important component of such structures for ventilation during normal conditions and for protection from blast/ shock during explosion. In this paper, various aspects of blast valve design and related studies are briefly reviewed. The concept and effects of blast wave, blast impact, numerical modelling and deformation of circular plate (one of the critical components of blast valve have been discussed. The merits and demerits of sensing mechanisms viz. remote and direct sensing are discussed. The leakage of blast pressure during finite closing period of the valve (one of the critical problems and the shock tube as a major experimental facility for testing of blast valves are briefly discussed.

  18. Effect of Crushed Air-cooled Blast Furnace Slag on Mechanical Properties of Concrete

    Institute of Scientific and Technical Information of China (English)

    WANG Aiguo; DENG Min; SUN Daosheng; LI Bing; TANG Mingshu

    2012-01-01

    Morphology characteristics of mix aggregates with crushed air-cooled blast furnace slag (SCR) and crushed limestone (LCR) with 5-20 mm and 20-40 mm gradation were represented by numerical parameters including angularity number (AN) and index of aggregate particle shape and texture (IAPST).The effect of mix aggregates containing SCR on compressive strength and splitting tensile strength of concrete was investigated.Fracture characteristics of concrete,interfacial structure between aggregates and matrix were analyzed.The experimental results show that porous and rough SCR increases contact area with matrix in concrete,concave holes and micro-pores on the surface of SCR are filled by mortar and hydrated cement paste,which may increase interlocking and mechanical bond between aggregate and matrix in concrete.SCR can be used to produce a high-strength concrete with better mechanical properties than corresponding concrete made with LCR.The increase of AN and IAPST of aggregate may enhance mechanical properties of concrete.

  19. Assessment of the Effects of Acute and Repeated Exposure to Blast Overpressure in Rodents: Towards a Greater Understanding of Blast and the Potential Ramifications for Injury in Humans Exposed to Blast

    Directory of Open Access Journals (Sweden)

    Stephen Thomas Ahlers

    2012-03-01

    Full Text Available Mild traumatic brain injury (mTBI resulting from exposure to improvised explosive devices (IEDs has fueled a requirement to develop animals models that mirror this condition using exposure to blast overpressure (BOP. En route to developing a model of repeated exposure to BOP we sought to initially characterize the effects of acute BOP exposure in rodents, focusing specifically on the levels of BOP exposure that produced clinical mTBI symptoms. We first measured BOP effects on gross motor function on a balance beam. Separate groups of unanesthetized rats were exposed (in different orientations to 40 kPa, 75 kPa and 120 kPa BOP exposure inside a pneumatically driven shock tube. Results demonstrated that rats exposed to 120 kPa demonstrated transient alterations or loss of consciousness indicated by a transient loss of righting and by increased latencies on the balance beam. The 120 kPa exposure was the threshold for overt pathology for acute BOP exposure with approximately 30% of rats presenting with evidence of subdural hemorrhage and cortical contusions. All animals exposed to 120 kPa BOP manifested evidence of significant pulmonary hemorrhage. Anterograde memory deficits were observed in rats exposed to 75 kPa facing the BOP wave and rats exposed to 120 kPa in the lateral (side orientation. We next assessed repeated exposure to either lateral or frontal 40 kPa BOP in anesthetized rats, once per day for 12 days. Results showed that repeated exposure in the frontal, but not side, orientation to the BOP wave produced a transitory learning deficit on a Morris water maze (MWM task as shown by significantly longer latencies to reach the submerged platform in the second and third blocks of a four block session. Implications of these data are discussed in relation to the manifestation of mTBI in military personnel exposed to IEDs. Finally, we suggest that there are multiple types of brain injury from blast.

  20. Effect of shot blasting on processoxidised stainless steel – morphology,chemistry and pickling performance

    OpenAIRE

    Myrsell, Johan

    2014-01-01

    The oxide scale created during manufacturing of stainless steel is often removed by a chemical pickling with mixed acid. Various pre-treatments to pickling are also applied to increase the efficiency of the oxide scale removal. Shot blasting is one such pre-treatment, which operates to remove a certain amount of oxide and also to generate cracks and openings for the subsequent pickling. In this work, three materials, AISI 2205, 430 and 304 have been blasted and later exposed to mixed acid. Th...

  1. Plastic Media Blasting Data Gathering Study

    Science.gov (United States)

    1986-12-01

    matt, reducing the filtering surface. 25 3) Cartridge Collectors: Cartridge dust collectors consist of a number of nonwoven tubular filters placed...Engineering Command 03 SPLASTIC MEDIA BLASTING DATA GATHERING STUDY: FINAL REPORT ABSTRAC>lastic Media Blasting (PMB) is proving to be a cost effective method...facilities; needed blasting and media recovery equipment; different types of media ; and media disposal. The Economics section gives two examples of economic

  2. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  3. The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miles, Aaron R. [Univ. of Maryland, College Park, MD (United States)

    2004-01-01

    In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Aspects of the IC's are shown to have a strong effect on the time to transition to the quasi-self-similar regime. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. We point to recent stellar calculations that predict IC's we find incompatible with self-similarity, and

  4. Study of mass attenuation coefficients and effective atomic numbers of bismuth-ground granulated blast furnace slag concretes

    Science.gov (United States)

    Kumar, Sandeep; Singh, Sukhpal

    2016-05-01

    Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.

  5. The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves

    Energy Technology Data Exchange (ETDEWEB)

    Miles, A

    2004-04-27

    In core-collapse supernovae, strong blast waves drive interfaces susceptible to Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH) instabilities. In addition, perturbation growth can result from material expansion in large-scale velocity gradients behind the shock front. Laser-driven experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. In this dissertation, we present a computational study of unstable systems driven by high Mach number shock and blast waves. Using multi-physics radiation hydrodynamics codes and theoretical models, we consider the late nonlinear instability evolution of single mode, few mode, and multimode interfaces. We rely primarily on 2D calculations but present recent 3D results as well. For planar multimode systems, we show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions (IC's) by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. Aspects of the IC's are shown to have a strong effect on the time to transition to the quasi-self-similar regime. With higher-dimensional blast waves, divergence restores the properties necessary for establishment of the self-similar state, but achieving it requires very high initial characteristic mode number and high Mach number for the incident blast wave. We point to recent stellar calculations that predict IC's we find incompatible with self-similarity, and

  6. 青海德尔尼铜矿爆破效果评估及优化%Blasting Effect Evaluation and Optimization of Deerni Copper Mine in Qinghai

    Institute of Scientific and Technical Information of China (English)

    周驭; 周文海; 楼晓明

    2015-01-01

    青海德尔尼铜矿一直以来爆破效果不佳,针对大块率高、根底状况差、爆堆分散、铲装效率低、生产缓慢的现状,应用模糊综合评估模型对4254、4398 m平台爆破效果进行评估优化。运用数学方法拟合和考虑各子集评估体系之间的相互关系,对定性指标量化、定量指标无量纲化后确定其评估权重,在此基础上形成德尔尼铜矿爆破效果评估综合模型,计算分析评估结果。总结出由于施工管理不当,导致现场凿岩穿孔出现超钻欠钻、装药结构不合理、充填高度不够、爆破网络设计与现场需求不够匹配等影响爆破效果的主要因素。基于现状,通过试验对比,依据具体施工地质条件,改进爆破工艺设计,分别设计普通平台以及靠近边坡2种爆破网络图。分析结果表明,该评估优化可指导德尔尼铜矿爆破生产、改善爆破效果、提高矿山生产能力、增加经济效益,对实现露天矿爆破效果的改善具有指导意义。%There are always poor blasting effect in Qinghai Deerni Copper Mine. In view of the high level of big block rate,bad bottom conditions,dispersive blasting piles,low loading efficiency,and low production efficiency,the comprehensive fuzzy evaluation model was used to evaluate and optimize the blasting effect at 4 254,4 398 m platform. Therefore,the open-pit mine blasting effect evaluation model was set up,and the weight of the quantization of the qualitative index,and the non-dimen-sionalizing of the quantitative index are determined by means of mathematical fitting methods and considering the relationship between each evaluation sub-system. Based on these,the comprehensive evaluation model for blasting effect of Deerni Copper Mine is formed,and the evaluation results are calculated and analyzed. The key factors of affecting the blasting such as over or less drilling in on-site field,unreasonable charging structure

  7. Effect of nut coke on the performance of the ironmaking blast furnace

    NARCIS (Netherlands)

    Song, Q.

    2013-01-01

    The blast furnace consumes a large amount of high quality metallurgy coke (size 35-80 mm) in addition to ore in the form of pellets and sinter. This coke is the coarse fraction, derived from the coke plant. The fine fraction (8 -35 mm), arise after sieving, named nut coke, can’t be directly used in

  8. Auditory, Vestibular and Cognitive Effects due to Repeated Blast Exposure on the Warfighter

    Science.gov (United States)

    2012-10-01

    light-headedness, vertigo , migraine 4 associated dizziness , and to assist with identifying complaints of dizziness related to anxiety...Subjective measures recorded on the Dizziness Handicap Inventory (DHI), Department of Veteran’s Brain Injury Center (DVBIC) Questionnaire, and Blast...to participate in the study, the following questionnaires and screening tools were administered: Questionnaires Dizziness Handicap Inventory (DHI

  9. The effect of blast furnace slag on the self-compactability of pumice aggregate lightweight concrete

    Indian Academy of Sciences (India)

    Murat Kurt; Türkay Kotan; Muhammed Said Gül; Rüstem Gül; Abdulkadir Cüneyt Aydin

    2016-02-01

    This paper presents the results of an experimental study of the effects of blast furnace slag, different water/(cement+mineral additive) ratios and pumice aggregates on some physical and mechanical properties of self-compacting lightweight aggregate concrete. In this study, pumice was used as lightweight aggregate. Several properties of self-compacting pumice aggregate lightweight concretes, such as unit weight, flow diameter, T50 time, flow diameter after an hour, V-funnel time, and L-box tests, 7, 28, 90 and 180-day compressive strength, 28-day splitting tensile strength, dry unit weight, water absorption, thermal conductivity and ultrasonic pulse velocity tests, were conducted. For this purpose, 18 series of concrete samples were prepared in two groups. In the first group, pumice aggregate at 100% replacement of natural aggregate was used in the production of self-compacting lightweight aggregate concrete with constant w/(c+m) ratios as 0.35, 0.40, and 0.45 by weight. Furthermore, as a second group, pumice aggregate was used as a replacement of natural aggregate, at the levels of 0, 20, 40, 60, 80, and 100% by volume. Flow diameters, T50 times, paste volumes, 28-day compressive strengths, dry unit weights, thermal conductivities and ultrasonic pulse velocity of self-compacting lightweight aggregate concrete were obtained over the range of 600–770 mm, 3–9 s, 435–540 l/m3, 10.6–65.0 MPa, 845–2278 kg/m3, 0.363–1.694 W/mK and 2617–4770 m/s respectively, which satisfies not only the strength requirement of semistructural lightweight concrete but also the flowing ability requirements and thermal conductivity requirements of self-compacting lightweight aggregate concrete.

  10. A Table-top Blast Driven Shock Tube

    OpenAIRE

    Courtney, Michael; Courtney, Amy

    2011-01-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The d...

  11. A blast absorber test: measurement and model results

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Berg, F. van den; Hof, J. van 't; Arkel, E. van

    2006-01-01

    A blast absorber test was conducted at the Aberdeen Test Centre from 13 to 17 June 2005. The test was set up to determine the absorbing and shielding effect of a gravel pile, of 1.5 meters high and 15 by 15 meters wide, on blasts from large weapons: e.g. armor, artillery or demolition. The blast was

  12. Simulation of blast-induced, early-time intracranial wave physics leading to traumatic brain injury.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul Allen; Ford, Corey C. (University of New Mexico, Albuquerque, NM)

    2008-04-01

    U.S. soldiers are surviving blast and impacts due to effective body armor, trauma evacuation and care. Blast injuries are the leading cause of traumatic brain injury (TBI) in military personnel returning from combat. Understanding of Primary Blast Injury may be needed to develop better means of blast mitigation strategies. The objective of this paper is to investigate the effects of blast direction and strength on the resulting mechanical stress and wave energy distributions generated in the brain.

  13. A Review of Central Nervous System (CNS)/Cognitive Effects Due to Blast

    Science.gov (United States)

    2007-02-01

    Ecklund, J., Parks, S., Prusaczyk, K ., Januszkiewicz , A., Long, J., & Ling, G. (2005). Blast-Induced neuropathological changes in Sus scroffa...M. S., Rice, A. C., Clausen, T., Rice, L. K ., Barabnova, A., Bullock, R., & Hamm, R. J. (2002). Repeated mild brain injuries result in cognitive...Engl J Med, 352(13), 1335-42. 16 Distribution A: Approved for public release; distribution unlimited. Dodd, K . T., Mundie, T. G., Lagutchik

  14. Analysis and Numerical Simulation on the Reduction Effect of Stress Waves Caused by Water Jet Slotting Near Blasting Source

    Directory of Open Access Journals (Sweden)

    Dengfeng Su

    2016-01-01

    Full Text Available As one of the most serious “side effects” of blast excavation, blast-induced vibration must be controlled for existing buildings and human beings. This paper proposes a method for blast-induced vibration reduction with water jet assistance according to the cutting characters of low-noised, environment-friendly water jet. The mechanism of vibration-isolation with water jet assistance was analyzed, and the stress wave energy attenuation models were established based on blasting theory and stress wave theory. Influence law on shock wave attenuation by vibration-isolation slot was studied by numerical simulation. Simulation results agree with the theoretical analysis roughly. The results of this study put forward a method for blast-induced vibration near blasting source and provide a certain theoretical basis.

  15. Vibration velocity and frequency of underwater short-hole blasting

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on the measuring data of underwater blasting vibrationand the regression analysis results of these data, two formulae usually used of blasting vibration velocity were compared. Factors that canaffect blasting vibration and frequency were summarized and analyzed.It is thought that the effect of the number of freedom face and burden direction on blasting vibration should be considered during blastingdesign. Based on the relevant research results and the regression results of these data, a formula to calculate under water blasting frequency was put forward.

  16. Effects of 5-azacytidine on natural killer cell activating receptor expression in patients with refractory anemia with excess of blasts

    Directory of Open Access Journals (Sweden)

    Régis T. Costello

    2015-01-01

    Full Text Available Epigenetic drugs modify DNA methylation and are used in refractory anemia with excess of blasts (RAEB. These drugs may reactivate anti-oncogene expression and restore a normal phenotype instead of inducing antitumor toxicity, although they also have immunosuppressive effects on T-lymphocytes [1] In RAEB and acute myeloid leukemia, a defect in natural killer (NK cell cytotoxicity has been shown, which relies on abnormal expression of activating receptors. Previous study has shown that 5-azacytidine impaired mRNA synthesis and induced apoptosis in NK cells [2]. In this study we investigated the effect of the demethylating drug 5-azacytidine (Vidaza® on NK receptors with the hypothesis that demethylation of the promoters of activating NK receptor genes induces gene reactivation and thus may increase their expression.

  17. Blast Technologies

    Science.gov (United States)

    2011-06-27

    rollover  VAT: Vertical forces and floor deformation  HIP : Head protection systems Payoff: MABS  State-of-the-art unique piece of test equipment...13 14 15 16 17 Energy Absorbing Seats w/ Restraints Blast Mats and other Interior Treatments Data Recorders and Sensors Methods and Standards... treatments .  Airbag or comparable technologies such as bolsters.  Sensors that can detect and deploy/trigger interior treatments within the timeframe of a

  18. Simulating geometrically complex blast scenarios

    Institute of Scientific and Technical Information of China (English)

    Ian G. CULLIS; Nikos NIKIFORAKIS; Peter FRANKL; Philip BLAKELY; Paul BENNETT; Paul GREENWOOD

    2016-01-01

    The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs) often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length-and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  19. Simulating geometrically complex blast scenarios

    Directory of Open Access Journals (Sweden)

    Ian G. Cullis

    2016-04-01

    Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  20. Glyburide - Novel Prophylaxis and Effective Treatment for Blast-Traumatic Brain Injury

    Science.gov (United States)

    2013-10-01

    the solution as needed using a minimum amount of NaOH to a pH approximately 8 to 8.5. Solutions prepared in this way and stored at 37°C for 48 hours... Sensor Walk, an Pre-train on 24 hr Results Fig. 5 sions. only Blast ficits in no eous Reari truncal sta nt with glib lans test o laxis trea...Simard JM, Woo SK, Bhatta S, Gerzanich V. Drugs acting on SUR1 to treat CNS ischemia and trauma. Curr Opin Pharmacol 2008; 8(1):42-9. PM:18032110

  1. Effects of mechanical cleaning by manual brushing and abrasive blasting on lime render coatings on Architectural Heritage

    Directory of Open Access Journals (Sweden)

    Iglesias-Campos, M. A.

    2014-12-01

    Full Text Available This research studies the effects of mechanical cleaning by brushing and by abrasive blasting on the lime render coating of a façade. After analysing the properties of the material, the deposits to be removed and their possible influence on the treatment, different cleaning tests were made by manual brushing and by blasting with three varieties of abrasives at 45° and 75° angles, keeping the other parameters constant. Taking the restorer’s perspective as a starting point, and in order to fulfil the practical requirements of an intervention, tests were evaluated with macro-photography, USB digital microscope and stereomicroscope with 3D visualization and measurement. From the results can be concluded that abrasives with low friability and greater grain size than the space between mortar aggregates blasted at a 75° angle reduce the differential erosion compared to other abrasives; although manual brushing has less impact on the surface.En este trabajo se estudian los efectos de las limpiezas mecánicas con cepillado y con proyección de abrasivos sobre un revestimiento exterior de cal. Tras documentar las propiedades del material, de los depósitos superficiales y de su posible influencia en el tratamiento, se realizaron diferentes catas de limpieza con cepillado manual y con proyección de tres abrasivos con ángulos de 45° y 75° manteniendo constantes el resto de parámetros. Partiendo de la visión del conservador-restaurador y de un carácter práctico según las necesidades reales de intervención, los ensayos se evaluaron con macrofotografía, microscopio digital USB y microscopio estereoscópico con visualización y medición en 3D. De los resultados se determina que los abrasivos de baja friabilidad y granulometría mayor que el espacio entre los áridos del mortero proyectados con un ángulo de 75° reducen la erosión diferencial en comparación a otros abrasivos, aunque el cepillado manual altera menos la superficie.

  2. Modeling coupled blast/structure interaction with Zapotec, benchmark calculations for the Conventional Weapon Effects Backfill (CONWEB) tests.

    Energy Technology Data Exchange (ETDEWEB)

    Bessette, Gregory Carl

    2004-09-01

    Modeling the response of buried reinforced concrete structures subjected to close-in detonations of conventional high explosives poses a challenge for a number of reasons. Foremost, there is the potential for coupled interaction between the blast and structure. Coupling enters the problem whenever the structure deformation affects the stress state in the neighboring soil, which in turn, affects the loading on the structure. Additional challenges for numerical modeling include handling disparate degrees of material deformation encountered in the structure and surrounding soil, modeling the structure details (e.g., modeling the concrete with embedded reinforcement, jointed connections, etc.), providing adequate mesh resolution, and characterizing the soil response under blast loading. There are numerous numerical approaches for modeling this class of problem (e.g., coupled finite element/smooth particle hydrodynamics, arbitrary Lagrange-Eulerian methods, etc.). The focus of this work will be the use of a coupled Euler-Lagrange (CEL) solution approach. In particular, the development and application of a CEL capability within the Zapotec code is described. Zapotec links two production codes, CTH and Pronto3D. CTH, an Eulerian shock physics code, performs the Eulerian portion of the calculation, while Pronto3D, an explicit finite element code, performs the Lagrangian portion. The two codes are run concurrently with the appropriate portions of a problem solved on their respective computational domains. Zapotec handles the coupling between the two domains. The application of the CEL methodology within Zapotec for modeling coupled blast/structure interaction will be investigated by a series of benchmark calculations. These benchmarks rely on data from the Conventional Weapons Effects Backfill (CONWEB) test series. In these tests, a 15.4-lb pipe-encased C-4 charge was detonated in soil at a 5-foot standoff from a buried test structure. The test structure was composed of a

  3. Effect of recycling blast furnace flue dust as pellets on the sintering performance

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2010-01-01

    Full Text Available The Egyptian Iron and Steel Company generates a great amount of blast furnace flue dust. The recovery of metals and carbon from this flue dust becomes a very important demand due to the increase of the price of coke breeze and the decrease of the primary source of metals. At the same time, it make the environment more safe by decreasing pollution. Introducing these dust fines in the sintering process proves to be very harmful for different operating parameters. Thus, this study aims at investigating the production of pellets resulting from these fines, using molasses as organic binder and its application in sintering of iron ore. The sintering experiments were performed using flue dust as pellets as a substitute of coke breeze. The results revealed that, sintering properties such as inter strength increases with using the flue dust pellets, while productivity of both the sinter machine and sinter machine at blast furnace yard decreases. Also the vertical velocity of the sinter machine and the weight loss during the reduction of produced the sinter by hydrogen decrease.

  4. Features of energy distribution for blast vibration signals based on wavelet packet decomposition

    Institute of Scientific and Technical Information of China (English)

    LING Tong-hua; LI Xi-bing; DAI Ta-gen; PENG Zhen-bin

    2005-01-01

    Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.

  5. Neuropsychological outcome from blast versus non-blast: mild traumatic brain injury in U.S. military service members.

    Science.gov (United States)

    Lange, Rael T; Pancholi, Sonal; Brickell, Tracey A; Sakura, Sara; Bhagwat, Aditya; Merritt, Victoria; French, Louis M

    2012-05-01

    The purpose of this study was to compare the neuropsychological outcome from blast-related versus non-blast related mild traumatic brain injury (MTBI). Participants were 56 U.S. military service members who sustained an MTBI, divided into two groups based on mechanism of injury: (a) non-blast related (Non-blast; n = 21), and (b) blast plus secondary blunt trauma (Blast Plus; n = 35). All participants had sustained their injury in theatre whilst deployed during Operation Iraqi Freedom or Operation Enduring Freedom. Patients had been seen for neuropsychological evaluation at Walter Reed Army Medical Center on average 4.4 months (SD = 4.1) post-injury. Measures included 14 clinical scales from the Personality Assessment Inventory (PAI) and 12 common neurocognitive measures. For the PAI, there were no significant differences between groups on all scales (p > .05). However, medium effect sizes were found for the Depression (d = .49) and Stress (d = .47) scales (i.e., Blast Plus > Non-blast). On the neurocognitive measures, after controlling for the influence of psychological distress (i.e., Depression, Stress), there were no differences between the Non-blast and Blast Plus groups on all measures. These findings provide little evidence to suggest that blast exposure plus secondary blunt trauma results in worse cognitive or psychological recovery than blunt trauma alone. (JINS, 2012, 18, 595-605).

  6. Calculation of driling and blasting parameters in blasting performance

    OpenAIRE

    Dambov, Risto; Karanakova Stefanovska, Radmila; Dambov, Ilija

    2015-01-01

    In all mining technology drilling and blasting parameters and works are one of the main production processes at each mine. The parameters of drilling and blasting and explosives consumption per ton of blasting mass are define economic indicators of any blasting no matter for what purpose and where mining is performed. The calculation of rock blasting should always have in mind that the methodology of calculation of all drilling and blasting parameters in blasting performance are performed for...

  7. Study of Blasting Vibration Effect on HML Open-pit Mine Slope%爆破震动对HML露天矿边坡影响的研究

    Institute of Scientific and Technical Information of China (English)

    张建华; 黄刚

    2012-01-01

    Frequent blasting vibration could exert its influence on the stability of exiting slope of open-pit mine. Based on the study of HML open-pit mine monitors the effect of blasting vibration on the slope and obtains the formula of decay law of blasting seismic waves in rock mass with regression analysis principle. According to the formula,it can help to design the blasting parameter and predict the vibration for future. Based on the former data, the mine blasting could be simulated by the LS-DYNA explicit dynamic analysis software to analysis the effect of blasting vibration on slope. The mechanism of hazards and laws of seismic waves in the propagation of the rock mass can be concluded by analyzing the vibration speed and effective stress of dot and element from slope model in HML mining which ensures the smooth running of mine production and provides the basis to maintain the stability of the slope.%频繁的爆破震动会对露天矿已有边坡稳定性造成影响.以HML露天矿为背景,监测爆破震动对边坡的扰动,用回归分析原理得出爆破地震波在岩体中传播衰减规律公式.为今后的爆破设计和震动的预测提供依据.在原有的数据基础上,利用LS—DYNA显式动力分析软件模拟矿山爆破,分析爆破地震波对边坡的影响.在边坡模型上选取点和单元体,通过分析比较其震动速度和有效应力的衰减规律,可以总结出地震波在HML矿山岩体中的传播规律和危害机理.为确保矿山生产顺利进行,维护矿山边坡的稳定性提供依据.

  8. Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

    2009-03-26

    Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

  9. Experimental study of blast mitigating devices based on combined construction

    Science.gov (United States)

    Takayama, K.; Silnikov, M. V.; Chernyshov, M. V.

    2016-09-01

    A robust blast inhibiting bin is the most often used device for damage blast effects suppression. In particular, a top open cylindrical bin significantly reduces a fragmentation effect resulted from a detonation of an explosive device placed inside the bin. However, reduction of blast wave overpressure and impulse by such cylindrical bins is not sufficient [1]. A reasonable alternative to endless increase of height and thickness of robust blast inhibiting bins is a development of destructible inhibitors having no solid elements in their structure and, therefore, excluding secondary fragmentation. So, the family of "Fountain" inhibitors [2,3] localizes and suppresses damaging blast effects due to multiphase working system. The present study is analyzing data obtained in testing of prototypes of new combined inhibitors. Their structure combines robust elements (bottoms, side surfaces) with elements responsible for blast loads reduction due to multi-phase working system (top and low transverse embeddings) and fairings impeding wave propagation in undesirable directions.

  10. Lipid Mediators and Human Leukemic Blasts

    Directory of Open Access Journals (Sweden)

    Rémi Fiancette

    2011-01-01

    Full Text Available Some of the most potent inflammatory mediators share a lipid origin. They regulate a wide spectrum of cellular processes including cell proliferation and apoptosis. However, the precise roles and ways (if any in which these compounds impact the growth and apoptosis of leukemic blasts remain incompletely resolved. In spite of this, significant advances have been recently made. Here we briefly review the current knowledge about the production of lipid mediators (prostaglandins, leukotrienes, platelet-activating factor by leukemic blasts, the enzymatic activities (phospholipase A2, cyclooxygenases, lipoxygenases involved in their productions and their effects (through specific membrane bound receptors on the growth, and apoptosis of leukemic blasts.

  11. Blasting and Passivation Treatments for ASTM F139 Stainless Steel for Biomedical Applications: Effects on Surface Roughness, Hardening, and Localized Corrosion

    Science.gov (United States)

    Barboza, Adriana L. Lemos; Kang, Kyung Won; Bonetto, Rita D.; Llorente, Carlos L.; Bilmes, Pablo D.; Gervasi, Claudio A.

    2015-01-01

    Due to the combination of good biofunctionality and biocompatibility at low cost, AISI 316 low carbon vacuum melting (LVM) stainless steel, as considered in ASTM F139 standard, is often the first choice for medical implants, particularly for use in orthopedic surgery. Proper surface finish must be provided to ensure adequate interactions of the alloy with human body tissues that in turn allows the material to deliver the desired performance. Preliminary studies performed in our laboratory on AISI 316LVM stainless steel surfaces modified by glass bead blasting (from industrial supplier) followed by different nitric acid passivation conditions disclosed the necessity to extend parameters of the surface treatments and to further consider roughness, pitting corrosion resistance, and surface and subsurface hardening measurements, all in one, as the most effective characterization strategy. This was the approach adopted in the present work. Roughness assessment was performed by means of amplitude parameters, functional parameters, and an estimator of the fractal dimension that characterizes surface topography. We clearly demonstrate that the blasting treatment should be carried out under controlled conditions in order to obtain similar surface and subsurface properties. Otherwise, a variation in one of the parameters could modify the surface properties, exerting a profound impact on its application as biomaterial. A passivation step is necessary to offset the detrimental effect of blasting on pitting corrosion resistance.

  12. Modelling the Source of Blasting for the Numerical Simulation of Blast-Induced Ground Vibrations: A Review

    Science.gov (United States)

    Ainalis, Daniel; Kaufmann, Olivier; Tshibangu, Jean-Pierre; Verlinden, Olivier; Kouroussis, Georges

    2017-01-01

    The mining and construction industries have long been faced with considerable attention and criticism in regard to the effects of blasting. The generation of ground vibrations is one of the most significant factors associated with blasting and is becoming increasingly important as mining sites are now regularly located near urban areas. This is of concern to not only the operators of the mine but also residents. Mining sites are subjected to an inevitable compromise: a production blast is designed to fragment the utmost amount of rock possible; however, any increase in the blast can generate ground vibrations which can propagate great distances and cause structural damage or discomfort to residents in surrounding urban areas. To accurately predict the propagation of ground vibrations near these sensitive areas, the blasting process and surrounding environment must be characterised and understood. As an initial step, an accurate model of the source of blast-induced vibrations is required. This paper presents a comprehensive review of the approaches to model the blasting source in order to critically evaluate developments in the field. An overview of the blasting process and description of the various factors which influence the blast performance and subsequent ground vibrations are also presented. Several approaches to analytically model explosives are discussed. Ground vibration prediction methods focused on seed waveform and charge weight scaling techniques are presented. Finally, numerical simulations of the blasting source are discussed, including methods to estimate blasthole wall pressure time-history, and hydrodynamic codes.

  13. Characterizing effects of mild traumatic brain injury and posttraumatic stress disorder on balance impairments in blast-exposed servicemembers and Veterans using computerized posturography.

    Science.gov (United States)

    Wares, Joanna R; Hoke, Kathy W; Walker, William; Franke, Laura Manning; Cifu, David X; Carne, William; Ford-Smith, Cheryl

    2015-01-01

    The high rate of blast exposures experienced by U.S. servicemembers (SMs) during the recent conflicts in Iraq and Afghanistan has resulted in frequent combat-related mild traumatic brain injuries (mTBIs). Dizziness and postural instability can persist after mTBI as a component of postconcussion syndrome, but also occur among the somatic complaints of posttraumatic stress disorder (PTSD). The goals of this study were to examine the use of computerized posturography (CPT) to objectively characterize chronic balance deficits after mTBI and to explore the utility of CPT in distinguishing between combat and blast-exposed participants with and without mTBI and PTSD. Data were analyzed from a subject pool of 166 combat-exposed SMs and Veterans who had a blast experience within the past 2 yr while deployed. Using nonparametric tests and measures of impairment, we found that balance was deficient in participants diagnosed with mTBI with posttraumatic amnesia (PTA) or PTSD versus those with neither and that deficits were amplified for participants with both diagnoses. In addition, unique deficiencies were found using CPT for individuals having isolated mTBI with PTA and isolated PTSD. Computerized balance assessment offers an objective technique to examine the physiologic effects and provide differentiation between participants with combat-associated mTBI and PTSD.

  14. Material Systems for Blast-Energy Dissipation

    Energy Technology Data Exchange (ETDEWEB)

    James Schondel; Henry S. Chu

    2010-10-01

    Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.

  15. Effects of Cylindrical Charge Geometry and Secondary Combustion Reactions on the Internal Blast Loading of Reinforced Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Price, Matthew A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2005-05-01

    An understanding of the detonation phenomenon and airblast behavior for cylindrical high-explosive charges is essential in developing predictive capabilities for tests and scenarios involving these charge geometries. Internal tests on reinforced concrete structures allowed for the analysis of cylindrical charges and the effect of secondary reactions occurring in confined structures. The pressure profiles that occur close to a cylindrical explosive charge are strongly dependent on the length-to-diameter ratio (L/D) of the charge. This study presents a comparison of finite-element code models (i.e., AUTODYN) to empirical methods for predicting airblast behavior from cylindrical charges. Current finite element analysis (FEA) and blast prediction codes fail to account for the effects of secondary reactions (fireballs) that occur with underoxidized explosives. Theoretical models were developed for TNT and validated against literature. These models were then applied to PBX 9501 for predictions of the spherical fireball diameter and time duration. The following relationships for PBX 9501 were derived from this analysis (units of ft, lb, s). Comparison of centrally located equivalent weight charges using cylindrical and spherical geometries showed that the average impulse on the interior of the structure is ~3%–5% higher for the spherical charge. Circular regions of high impulse that occur along the axial direction of the cylindrical charge must be considered when analyzing structural response.

  16. Copper and silver ion implantation of aluminium oxide-blasted titanium surfaces: proliferative response of osteoblasts and antibacterial effects.

    Science.gov (United States)

    Fiedler, Jörg; Kolitsch, Andreas; Kleffner, Bernhard; Henke, Dietmar; Stenger, Steffen; Brenner, Rolf E

    2011-09-01

    Implant infection still represents a major clinical problem in orthopedic surgery. We therefore tested the in vitro biocompatibility and antibacterial effects of copper (Cu)- and silver (Ag)-ion implantation. Discs of a commonly used titanium alloy (Ti6AlV4) with an aluminium oxide-blasted surface were treated by Cu- or Ag-ion implantation with different dosage regimen (ranging from 1e15-17 ions cm(-2) at energies of 2-20 keV). The samples were seeded with primary human osteoblasts and cell attachment and proliferation was analyzed by an MTT-assay. In comparison to the reference titanium alloy there was no difference in the number of attached viable cells after two days. After seven days the number of viable cells was increased for Cu with 1e17 ions cm(-2) at 2 and 5 keV, and for Ag with 1e16 ions cm(-2) at 5 keV while it was reduced for the highest amount of Ag deposition (1e17 ions cm(-2) at 20 keV). Antibacterial effects on S.aureus and E.coli were marginal for the studied dosages of Cu but clearly present for Ag with 1e16 ions cm(-2) at 2 and 5 keV and 1e17 ions cm(-2) at 20 keV. These results indicate that Ag-ion implantation may be a promising methodological approach for antibacterial functionalization of titanium implants.

  17. An examination of blast and impulse effects from the metal loading of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Victor E [Los Alamos National Laboratory; Zucker, Jonathan M [Los Alamos National Laboratory; Mc Afee, John M [Los Alamos National Laboratory; Tappan, Bryce C [Los Alamos National Laboratory; Asay, Blaine W [Los Alamos National Laboratory

    2010-01-01

    Explosive compositions loaded with various metal particulates were produced and tested using a unique experimental configuration. The high explosive HMX was used as the standard and was tested over a range of mass loading fractions using tungsten and tantalum as metal additives. The diagnostics used in this set of experiments included free-field blast sensors, dynamic force sensors, time-of-arrival sensors, and a high-speed digital camera. The experimental arrangement allowed for concurrent spatial measurements of the static pressure from expanding gaseous detonation products, along with the total force from the combination of gaseous products and solid particles. The total pressure from the multi-phase products was calculated by measuring the total force applied to the surface of a newly developed force sensor. The results from the force sensor and other measurement techniques were validated against existing numerical methods. The relationship between static and dynamic pressures as a function of metal loading fraction was examined empirically at several distances from the charge for two distinct metal additives.

  18. Device for Underwater Laboratory Simulation of Unconfined Blast Waves

    CERN Document Server

    Courtney, Elijah; Courtney, Michael

    2015-01-01

    Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source.

  19. Numerical Investigation of the Inner Profiles of Ironmaking Blast Furnaces: Effect of Throat-to-Belly Diameter Ratio

    Science.gov (United States)

    Li, Zhaoyang; Kuang, Shibo; Yan, Dingliu; Qi, Yuanhong; Yu, Aibing

    2017-02-01

    The inner profile of iron making blast furnace (BF) is of significant importance to reactor performance. However, its determination lacks any sound theoretical and empirical base. This paper presents a numerical study of the multiphase flow and thermochemical behaviors inside BFs with different inner profiles by a multi-fluid process model. The validity of the model is first confirmed by various applications. It is then used to study the effect of throat-to-belly diameter ratio ( R D) with respect to productivity, burden distribution pattern, and softening-melting temperature of ferrous materials. The results show that when R D increases, the fuel rate increases at relatively low productivities; however, it initially decreases to a minimum and then increases at relatively high productivities. This performance against R D to some degree varies with either burden distribution pattern or softening-melting temperature of ferrous materials. Optimum R D can be identified with relatively small coke rate and minimum fluctuations of global performance and in-furnace states. The analysis of the in-furnace states reveals that the flow and thermochemical behaviors above the cohesive zone are drastically deteriorated with increasing productivity for BFs with relatively small R D , leading to different variation trends of fuel rate.

  20. Effect of cooling rate on the crystallization behavior of perovskite in high titanium-bearing blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    Lu Liu; Mei-long Hu; Chen-guang Bai; Xue-weiLü; Yu-zhou Xu; Qing-yu Deng

    2014-01-01

    The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace (BF) slag was studied using confocal scanning laser microscopy (CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, which further extended in certain directions. The morphology and structure of perovskite was found to vary as a function of cooling rate. At cooling rates of 10 and 30 K/min, the dendritic arms of perovskite crossed obliquely, while they were orthogonal at a cooling rate of 20 K/min and hexagonal at cooling rates of 40 and 50 K/min. These three crystal morphologies thus obtained at different cooling rates respectively corresponded to the ortho-rhombic, cubic and hexagonal crystal structures of perovskite. The observed change in the structure of perovskite could probably be attrib-uted to the deficiency of O2-,when Ti2O3 was involved in the formation of perovskite.

  1. Experimental and Theoretical Study on Influence of Different Charging Structures on Blasting Vibration Energy

    OpenAIRE

    Wenbin Gu; Zhenxiong Wang; Jianghai Chen; Jianqing Liu; Ming Lu

    2015-01-01

    As an important parameter in blasting design, charging structure directly influences blasting effect. Due to complex conditions of this blasting and excavating engineering in Jiangsu, China, the authors carried out comparative researches with coupling structure, air-decoupling structure, and water-decoupling structure. After collecting, comparing, and analyzing produced signals on blasting vibration, the authors summarized that when proportional distances are the same, water-decoupling struct...

  2. The effects of structural setting on the azimuthal velocities of blast induced ground motion in perlite

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, S.G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1995-02-01

    A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity and acceleration transducers were placed in two concentric rings entirely surrounding the single shot hole at 150 and 300 azimuths as measured from ground zero. Data from the transducers was then used to determine the average propagation velocity of the blast vibration through the rock mass at the various azimuths. The rock mass was mapped to determine the prominent joint orientations (strike and dip) and the average propagation velocities were correlated with this geologic information. The data from these experiments shows that there is a correlation between the orientation of prominent joints and the average velocity of ground motion. It is theorized that this relationship is due to the relative path the ground wave follows when encountering a joint or structure within the rock mass. The more prominent structures allow the wave to follow along their strike thereby forming a sort of channel or path of least resistance and in turn increasing the propagation velocity. Secondary joints or structures may act in concert with more prominent features to form a network of channels along which the wave moves more freely than it may travel against the structure. The amplitudes of the ground motion was also shown to vary azimuthally with the direction of the most prominent structures.

  3. Analysis of key technologies and development of integrated digital processing system for cast blasting design

    Institute of Scientific and Technical Information of China (English)

    丁小华; 李克民; 肖双双; 狐为民

    2015-01-01

    Casting blast can greatly reduce the stripping cost and improve the production capacity of opencast coal mines. Key technologies including high bench blasting, inclined hole, millisecond blasting, pre-splitting blasting and casting blast parameters determination which have influence on the effect of casting blast have been researched with the combination of the ballistic theory and experience in mines. The integrated digital processing system of casting blast was developed in order to simplify the design process of casting blast, improve working efficiency and veracity of design result and comprehensively adopt the software programming method and the theory of casting blast. This system has achieved five functions, namely, the 3D visualization graphics management, the intelligent management of geological information, the intelligent design of casting blast, the analysis and prediction of the blasting effect and the automatic output of the design results. Long-term application in opencast coal mines has shown that research results can not only reduce the specific explosive consumption and improve the blasting effect, but also have high value of popularization and application.

  4. Comparative observation of protective effects of earplug and barrel on auditory organs of guinea pigs exposed to experimental blast underpressure

    Institute of Scientific and Technical Information of China (English)

    LI Chao-jun; ZHU Pei-fang; LIU Zhao-hua; WANG Zheng-guo; YANG Cheng; CHEN Hai-bin; NING Xin; ZHOU Ji-hong; Chen Jian

    2006-01-01

    Objective: To explore the protective effects of earplug and barrel on auditory organs of guinea pigs exposed to experimental blast underpressure (BUP).Methods: The hearing thresholds of the guinea pigs were assessed with auditory brainstem responses (ABR).The traumatic levels of tympanic membrane and ossicular chain were observed under stereo-microscope. The rate of outer hair cells (OHCs) loss was analyzed using a light microscope. The changes of guinea pigs protected with barrel and earplug were compared with those of the control group without any protection.Results: An important ABR threshold shift of the guinea pigs without any protection was detected from 8h to 14d after being exposed to BUP with a peak ranging from -64.5kPa to -69.3kPa (P<0.01). The rate of perforation of tympanic membrane reached 87.5 % and that of total OHCs loss was 19.46% + 5.38% at 14d after exposure. The guinea pigs protected with barrel and earplug had lower ABR threshold and total OHCs loss rate compared with the animals without any protection (P < 0.01 ). All of the tympanic membrane and ossicular chain of the protected animals maintained their integrities.Meanwhile, the guinea pigs protected with the barrel had lower ABR threshold and total OHCs loss rate than those with earplug (P<0.01).Conclusions: The earplug and barrel have protective effects against BUP-induced trauma on auditory organs of the guinea pigs and the protective effects of barrel are better than those of earplug.

  5. Conceptual design and simulation analysis of thermal behaviors of TGR blast furnace and oxygen blast furnace

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Extensive use of carbon based fuel is the main inducement for global warming and more extreme weather.Reducing carbon dioxide emission and enhancing energy use is a common subject in steel industry.In the integrated steel plant,decreasing carbon dioxide emission must consider energy balance in the whole iron and steel works,and secondary energy must be actively utilized.As promising blast-furnaces,top gas recovery blast furnace(TGR-BF) and oxygen blast furnace have been investigated.In this paper,conceptual TGR blast furnace and oxygen blast furnace are proposed.Base on the idea of blast furnace gas de-CO2 circulating as reducing agent and the idea of pure oxygen blast decreasing the thermal reserve zone temperature,process modeling is conducted with ASPEN Plus.It is shown that the developed model reasonably describes the energy balance and mass balance feature of the furnace,and provides basic thermodynamic condition for furnaces.The effects of changes in different operation conditions are studied by sensitivity analysis and reference data from simulation.

  6. Effects of Grit Blasting and Annealing on the High-Temperature Oxidation Behavior of Austenitic and Ferritic Fe-Cr Alloys

    Science.gov (United States)

    Proy, M.; Utrilla, M. V.; Otero, E.; Bouchaud, B.; Pedraza, F.

    2014-08-01

    Grit blasting (corundum) of an austenitic AISI 304 stainless steel (18Cr-8Ni) and of a low-alloy SA213 T22 ferritic steel (2.25Cr-1Mo) followed by annealing in argon resulted in enhanced outward diffusion of Cr, Mn, and Fe. Whereas 3 bar of blasting pressure allowed to grow more Cr2O3 and Mn x Cr3- x O4 spinel-rich scales, higher pressures gave rise to Fe2O3-enriched layers and were therefore disregarded. The effect of annealing pre-oxidation treatment on the isothermal oxidation resistance was subsequently evaluated for 48 h for both steels and the results were compared with their polished counterparts. The change of oxidation kinetics of the pre-oxidized 18Cr-8Ni samples at 850 °C was ascribed to the growth of a duplex Cr2O3/Mn x Cr3- x O4 scale that remained adherent to the substrate. Such a positive effect was less marked when considering the oxidation kinetics of the 2.25Cr-1Mo steel but a more compact and thinner Fe x Cr3- x O4 subscale grew at 650 °C compared to that of the polished samples. It appeared that the beneficial effect is very sensitive to the experimental blasting conditions. The input of Raman micro-spectroscopy was shown to be of ground importance in the precise identification of multiple oxide phases grown under the different conditions investigated in this study.

  7. Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants

    OpenAIRE

    2011-01-01

    Purpose The present study was performed to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on sand-blasted, large grit, acid-etched (SLA) implant surface microstructure according to varying energy levels and application times of the laser. Methods The implant surface was irradiated by the Er:YAG laser under combined conditions of 100, 140, or 180 mJ/pulse and an application time of 1 minute, 1.5 minutes, or 2 minutes. Scanning electron microscopy ...

  8. Dry ice blasting for the conservation cleaning of metals

    NARCIS (Netherlands)

    R. van der Molen; I. Joosten; T. Beentjes; L. Megens

    2010-01-01

    This research was carried out to assess the feasibility of dry ice blasting as a replacement for solvent cleaning for the removal of organic layers from metal cultural heritage objects. The effects of dry ice blasting on test samples of aluminium, bronze and weathering steel were studied along with

  9. Dry ice blasting for the conservation cleaning of metals

    NARCIS (Netherlands)

    van der Molen, R.; Joosten, I.; Beentjes, T.; Megens, L.; Mardikian, P.; Chemello, C.; Watters, C.; Hull, P.

    2011-01-01

    This research was carried out to assess the feasibility of dry ice blasting as a replacement for solvent cleaning for the removal of organic layers from metal cultural heritage objects. The effects of dry ice blasting on test samples of aluminium, bronze and weathering steel were studied along with

  10. 不同杀菌剂对水稻稻瘟病的防治效果%Effects of Different Fungicides on Rice Blast

    Institute of Scientific and Technical Information of China (English)

    付久才; 韩玉军

    2014-01-01

    In order to use drugs scientifically and reasonably ,the control effects and safety of four fungicides on rice blast were researched through field trails .The results showed that all four fungicides had best effects to control rice blast and had better safety on rice ,the effect exceeded 70% ,increased yield by 16 .71% ~21 .39% , Tricyclazole and Isoprothiolane had better effects among four fungicides .%为科学合理地选择和使用水稻稻瘟病杀菌药剂,采用田间试验方法,验证4种杀菌剂对水稻稻瘟病的防治效果及其对作物的安全性。结果表明:三环唑、稻瘟灵、肟菌·戊唑醇和春雷霉素均能有效防治水稻稻瘟病,防效均在70%以上。供试4种药剂均对水稻安全,并能促进水稻增产16.71%~21.39%,增加收益,其中三环唑和稻瘟灵的防治效果较好。

  11. Improved blasting results with precise initiation:Numerical simulation of sublevel caving blasting

    OpenAIRE

    Yi, Changping

    2013-01-01

    A series of numerical simulations of rock blasting using LS-DYNA software havebeen conducted to investigate the effect of short delay time on the fragmentation inunderground mines. The purpose was to test the hypothesis proposed by Rossmaniththat stress wave interaction could result in finer fragmentation by controlling theinitiation times. The blasted rock was simulated with RHT material model. After thecalculation, the elements with damage level above 0.6 were removed to simulate thefractur...

  12. Influence of millisecond time, charge length and detonation velocity on blasting vibration

    Institute of Scientific and Technical Information of China (English)

    陈士海; 吴建; 张子华

    2015-01-01

    The law of blasting vibration caused by blasting in rock is very complex. Traditional numerical methods cannot well characterize all the influencing factors in the blasting process. The effects of millisecond time, charge length and detonation velocity on the blasting vibration are discussed by analyzing the characteristics of vibration wave generated by finite length cylindrical charge. It is found that in multi-hole millisecond blasting, blasting vibration superimpositions will occur several times within a certain distance from the explosion source due to the propagation velocity difference of P-wave and S-wave generated by a short column charge. These superimpositions will locally enlarge the peak velocity of blasting vibration particle. The magnitude and scope of the enlargement are closely related to the millisecond time. Meanwhile, the particle vibration displacement characteristics of rock under long cylindrical charge is analyzed. The results show that blasting vibration effect would no longer increase when the charge length increases to a certain extent. This indicates that the traditional simple calculation method using the maximum charge weight per delay interval to predict the effect of blasting vibration is unreasonable. Besides, the effect of detonation velocity on blasting vibration is only limited in a certain velocity range. When detonation velocity is greater than a certain value, the detonation velocity almost makes no impact on blasting vibration.

  13. Methodology of Testing Shot Blasting Machines in Industrial Conditions

    Directory of Open Access Journals (Sweden)

    R. Wrona

    2012-04-01

    Full Text Available Shot blasting machines are widely used for automated surface treatment and finishing of castings. In shot blasting processes the stream of shots is generated and shaped by blasting turbines, making up a kinetic and dynamic system comprising a separating rotor, an adapting sleeve and a propelling rotor provided with blades. The shot blasting performance- i.e. the quality of shot treated surfaces depends on the actual design and operational parameters of the unit whilst the values of relevant parameters are associated with the geometry of turbine components and the level of its integration with the separator system. The circulation of the blasting medium becomes the integrating factor of the process line, starting from the hopper, through the propeller turbine, casting treatment, separation of contaminated abrasive mixture, to its recycling and reuse.Inferior quality of the abrasive agent (shot and insufficient purity of the abrasive mixture are responsible for low effectiveness of shot blasting. However, most practitioners fail to fully recognise the importance of proper diagnostics of the shot blasting process in industrial conditions. The wearing of major machine components and of the blasting agent and quality of shot treated surfaces are often misinterpreted, hence the need to take into account all factors involved in the process within the frame of a comprehensive methodology.This paper is an attempt to formulate and apply the available testing methods to the engineering practice in industrial conditions.

  14. Effect of bulk microstructure of commercially pure titanium on surface characteristics and fatigue properties after surface modification by sand blasting and acid-etching.

    Science.gov (United States)

    Medvedev, A E; Ng, H P; Lapovok, R; Estrin, Y; Lowe, T C; Anumalasetty, V N

    2016-04-01

    Surface modification techniques are widely used to enhance the biological response to the implant materials. These techniques generally create a roughened surface, effectively increasing the surface area thus promoting cell adhesion. However, a negative side effect is a higher susceptibility of a roughened surface to failure due to the presence of multiple stress concentrators. The purpose of the study reported here was to examine the effects of surface modification by sand blasting and acid-etching (SLA) on the microstructure and fatigue performance of coarse-grained and ultrafine-grained (UFG) commercially pure titanium. Finer grain sizes, produced by equal channel angular pressing, resulted in lower values of surface roughness in SLA-processed material. This effect was associated with greater resistance of the UFG structure to plastic deformation. The fatigue properties of UFG Ti were found to be superior to those of coarse-grained Ti and conventional Ti-6Al-4V, both before and after SLA-treatment.

  15. Note: A table-top blast driven shock tube.

    Science.gov (United States)

    Courtney, Michael W; Courtney, Amy C

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  16. A Table-top Blast Driven Shock Tube

    CERN Document Server

    Courtney, Michael; 10.1063/1.3518970

    2011-01-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer which explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  17. Study of blasting vibrations in Sarcheshmeh copper mine

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ground vibration is one of the side effects of blasting, in which way considerable amount of explosive energy is exhausted, and causes decrease in production and even decline in mine development workings. In this study, 57 recorded 3-C seismograms from 11 blasts in Sarcheshmeh copper mine, Kerman, Iran, are processed and analyzed. These data were recorded by digital seismograph PDAS-100 and analyzed by DADISP software. Finally, blasting parameters, such as explosive weight and type, distance between the structures and blasting site, blasting delays, affecting ground vibration are reviewed and their influence on peak particle velocity (PPV) are studied. Based on this study, suitable detonation delays and explosive type is determined. Considering these data, a graph of PPV versus scaled distance for Sarcheshmeh copper mine is prepared, by the help of which, safe distance for structures and accordingly explosive quantity could be determined.

  18. Numerical Analysis of Dynamic Behavior of RC Slabs Under Blast Loading

    Institute of Scientific and Technical Information of China (English)

    DU Hao; LI Zhongxian

    2009-01-01

    In Order to reduce economic and life losses due to terrorism or accidental explosion threats,reinforced concrete(RC)slabs of buildings need to be designed or retrofitted to resist blast loading.In this paper the dynamic behavior Of RC slabs under blast loading and its influencing factors are studied.The numerical model of an RC slab subjected to blast loading is established using the explicit dynamic analysis software.Both the strain rate effect and the damage accumulation are taken into account in the material model.The dynamic responses of the RC slab subiected to blast loading are analyzed,and the influence of concrete strength,thickness and reinforcement ratio on the behavior of the RC slab under blast loading iS numerically investigated.Based on the numerical results.some principles for blast-resistant design and retrofitting are proposed to improve the behavior of the RC slab subjected to blast loading.

  19. Numerical analysis of effect of shock-absorption in presplit blasting%预裂爆破减震效果数值分析

    Institute of Scientific and Technical Information of China (English)

    温海民; 刘艳东

    2012-01-01

    运用LS-DYNA3D程序模拟分析了爆炸应力波与预裂缝的相互作用过程中,应力波通过预裂缝的传播过程以及衰减规律,得到了预裂爆破的降震规律,数值计算结果表明,具有足够宽度和深度的预裂缝具有明显的降震效果。%The interaction of stress wave of blasting and pre-splitting crack was simulated with LS-DYNA3 D program, the dissemination process and the reduce regulation that the stress wave pass through the pre-splitting crack was analyzed, and the shock-absorption rules of pre-split blasting was found. The result of the numerical calculate implies that the pre-splitting crack with enough width and depth has obvious effect of shockabsorption.

  20. 75 FR 23589 - Safety Zones; Blasting Operations and Movement of Explosives, St. Marys River, Sault Sainte Marie...

    Science.gov (United States)

    2010-05-04

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; Blasting Operations and Movement of... ensure the safety of the maritime community during blasting and dredging operations. DATES: Effective... action is needed to ensure the public's safety during blasting and dredging operations. Delaying...

  1. Laboratory blast wave driven instabilities

    Science.gov (United States)

    Kuranz, Carolyn

    2008-11-01

    This presentation discusses experiments involving the evolution of hydrodynamic instabilities in the laboratory under high-energy-density (HED) conditions. These instabilities are driven by blast waves, which occur following a sudden, finite release of energy, and consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. Instabilities evolving under HED conditions are relevant to astrophysics. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 μm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses an interface having a 2D or 3D sinusoidal structure that serves as a seed perturbation for hydrodynamic instabilities. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability in the nonlinear regime. We have detected the interface structure under these conditions using x-ray backlighting. Recent advances in our diagnostic techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed or predicted by current simulations. The observed effect is potentially of great importance as a source of mass transport to places not anticipated by current theory and simulation. I will discuss the amount of mass in these spike extensions, the associated uncertainties, and hypotheses regarding their origin We also plan to show comparisons of experiments using single mode and multimode as well as 2D and 3D initial conditions. This work is sponsored by DOE/NNSA Research Grants DE-FG52-07NA28058 (Stewardship Sciences Academic Alliances) and DE-FG52-04NA00064 (National Laser User

  2. Blast Diffusion by Different Shapes of Domes

    Directory of Open Access Journals (Sweden)

    Ram Ranjan Sahu

    2015-03-01

    Full Text Available Domes have been used since ancient times in constructions. These are effective structures in supporting loads for large span. Dome has an added advantage of having good looking in structural applications. Many shapes of domes are being used nowadays for residential, commercial, and industrial purposes. Specific purpose domes are also used for nuclear containment. Main threats to structures are from the bomb blast. Hence, domes too are to be designed to withstand effectively the pressure energy generated by the blast. A comparative theoretical study is proposed on the different shapes of domes having same weight and thickness. Various responses are estimated through numerical method after simulating blast and comparing their intensities.Defence Science Journal, Vol. 65, No. 1, January 2015, pp.77-82, DOI:http://dx.doi.org/10.14429/dsj.65.6908

  3. Field experiment for blasting crater

    Institute of Scientific and Technical Information of China (English)

    YE Tu-qiang

    2008-01-01

    A series of single hole blasting crater experiments and a variable distance multi-hole simultaneous blasting experiment was carded in the Yunfu Troilite Mine, according to the Livingston blasting crater theory. We introduce in detail, our methodology of data collection and processing from our experiments. Based on the burying depth of the explosives, the blasting crater volume was fitted by the method of least squares and the characteristic curve of the blasting crater was obtained using the MATLAB software. From this third degree polynomial, we have derived the optimal burying depth, the critical burying depth and the optimal explosive specific charge of the blasting crater.

  4. Proceedings: 17th Asilomar conference on fire and blast effects of nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, R.G.; Meier, C.A. (eds.)

    1983-01-01

    The objective of the 1983 conference was to provide for the technical exchange of ideas relating to the science and technology of the immediate effects of nuclear weapon explosions. Separate abstracts were prepared for 39 of the papers.

  5. Effect of Mineral on Metallurgical Coke Solution Loss Reaction in Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    YANG Jun-he; FENG An-zu; DU He-gui

    2003-01-01

    The catalytic effects of minerals (oxides) on solution loss reaction of coke were investigated in detail by adding oxides to coal which produces coke or absorbing oxides on coke surface. The mineral catalysis index (MCI) which can be used to evaluate catalytic effects of minerals on solution loss of coke comprehensively was proposed. Using the volatility of coal in dry basis and MCI of coal as independent variables to control coke reactivity, the mathematical models of predicting coke reactivity index, coke strength of reactivity were constructed on the basis of the experimental results.

  6. Sunyaev-Zeldovich Effect from Quasar-driven Blast-waves

    CERN Document Server

    Platania, P; De Zotti, G; Lazzaro, E; Bersanelli, M

    2002-01-01

    Quasar-driven winds are currently the best candidates for accounting for the pre-heating of the intergalactic medium in clusters. Such winds, occurring during early phases of the evolution of spheroidal galaxies, shock-heat the interstellar gas, thus inducing a detectable Sunyaev-Zeldovich effect. We estimate the amplitude and the angular scale of such effect as well as its counts as a function of the comptonization parameter $y$. The contamination due to radio emission by the quasar itself is also discussed. The corresponding mean Compton distortion of the cosmic microwave background spectrum is found to be well below the COBE/FIRAS upper limit.

  7. 基于岩体爆破累积损伤效应的Hoek-Brown准则修正公式%Amended expressions of Hoek-Brown criterion based on blasting cumulative damage effects of rock mass

    Institute of Scientific and Technical Information of China (English)

    闫长斌; 李国权; 陈东亮; 刘振红; 刘建磊

    2011-01-01

    The disturbance and damage induced by excavation and blasting, especial blasting cumulative damage effects resulted from frequent blasting, will play down the integrity of rock mass, weaken the mechanical parameters of rock.mass and threaten the stability of rock engineering surely. Considered the blasting cumulative damage effects of rock mass, the shortages of Hoek-Brown criterion and its modified expressions were pointed out. The methods of obtaining the value of mb and s which could reflect the blasting cumulative damage effects, blasting disturbed state and the lowering degree of its mechanical parameters, were found by introducing integrity coefficient Kv and damage factor D. The cumulative expanded models of rock mass blasting damage were found with the baseline of rock mass sound velocity reducing ratio η and the models were used in the amended expressions of Hoek-Brown criterion, based on the relationship between sound velocity variation and blasting cumulative damage effects. The analysis of the amended expressions was carried out based on the simulative blasting tests in-situ and the data of sonic measurement. The research results show that the amended expressions of Hoek-Brown criterion taken blasting cumulative damage effects of rock mass into account are reasonable.%爆破开挖作业引起的扰动与损伤,特别是频繁爆破产生的累积损伤效应,必然导致岩体完整性降低,岩体力学参数弱化,从而威胁岩体工程稳定性.考虑岩体爆破损伤及其累积效应,指出了Hoek-Brown(赫克-布朗)准则及其改进公式的不足,引入完整性系数Kv和损伤因子D,建立了可以表征岩体爆破累积损伤效应、岩体爆破扰动状态及其力学参数弱化程度的mb和s的取值方法.基于声速变化与爆破累积损伤效应之间的联系,建立了以岩体声速降低率η为基准量的岩体爆破累积损伤扩展模型,并将该模型成功应用于提出的Hoek-Brown准则修正公式中.根据

  8. Public Information Classification Management System of Blasting Harmful Effects Monitoring%爆破有害效应监测公共信息分级管理系统

    Institute of Scientific and Technical Information of China (English)

    吴新霞; 程西江; 赵根; 黄跃文

    2013-01-01

    为体现爆破安全监测工作的科学性、公正性和准确性,爆破安全监测有关资料应纳入公共信息范畴.介绍了基于互联网技术的“爆破有害效应监测公共信息分级管理系统”的基本框架、分级管理方法.通过建立省级爆破有害效应监测公共信息分级管理系统,省、市、县有关部门就可对辖区范围内的爆破项目进行宏观管理;通过建立公司级爆破有害效应远程监测管理系统,可对本公司爆破项目进行精细管理.%In order to keep the blasting safety monitoring scientific and accurate,the relevant data of blasting safety monitoring should be included in public information domains.The basic framework and hierarchical management approach of public information classification management system of harmful effects monitoring were described based on the technology of Internet of thing.By establishing the public information classification management system of provincial class harmful effects monitoring,departments of province,city and county level can manage the blasting project within the administration area.By establishing the company-level remote monitoring and management system of the harmful effects in blasting,the fine management of the blasting projects in the company will be performed.

  9. Mitigation of blast loadings on structures by an anti-blast plastic water wall

    Institute of Scientific and Technical Information of China (English)

    张力; 陈力; 方秦; 张亚栋

    2016-01-01

    Seven in-situ tests were carried out in far field to study the blast mitigation effect of a kind of water filled plastic wall. Test results show that the mitigation effect of water filled plastic wall is remarkable. The maximum reduction of peak reflected overpressure reaches up to 94.53%, as well as 36.3% of the minimum peak reflected overpressure reduction in the scaled distance ranging from 1.71 m/kg1/3 to 3.42 m/kg1/3. Parametric studies were also carried out. The effects of the scaled gauge height, water/charge scaled distance (the distance between the explosive charge and the water wall), water wall scaled height and water/structure scaled distance (the distance between the water wall and the structure) were systematically investigated and compared with the usual rigid anti-blast wall. It is concluded that these parameters affect the mitigation effects of plastic water wall on blast loadings significantly, which is basically consistent to the trend of usual rigid anti-blast wall. Some formulae are also derived based on the numerical and test results, providing a simple but reliable prediction model to evaluate the peak overpressure of mitigated blast loadings on the structures.

  10. Blast Overpressure Studies.

    Science.gov (United States)

    1998-05-01

    USAARL Contract Report No. CR-98-Ö3 Blast Overpressure Studies By Daniel L. Johnson EG&G Management Systems, Inc. Albuquerque, New Mexico May...Both studies were done at the Blast Overpressure-Kirtland Test Site (BOP-KTS) in New Mexico . Under a contract conducted for the USAMRMC, EG&G was... TDH -4 9 elements mounted in a David Clark 9AN/2 ear muff for added noise isolation. The calibration of the earphones was accomplished using a Bruel

  11. ESF BLAST DESIGN ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    E.F. fitch

    1995-03-13

    The purpose and objective of this design analysis are to develop controls considered necessary and sufficient to implement the requirements for the controlled drilling and blasting excavation of operations support alcoves and test support alcoves in the Exploratory Studies Facility (ESF). The conclusions reached in this analysis will flow down into a construction specification ensuring controlled drilling and blasting excavation will be performed within the bounds established here.

  12. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment.

    Science.gov (United States)

    Jean, Aurélie; Nyein, Michelle K; Zheng, James Q; Moore, David F; Joannopoulos, John D; Radovitzky, Raúl

    2014-10-28

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans.

  13. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz Ram model

    Science.gov (United States)

    Morin, Mario A.; Ficarazzo, Francesco

    2006-04-01

    Rock fragmentation is considered the most important aspect of production blasting because of its direct effects on the costs of drilling and blasting and on the economics of the subsequent operations of loading, hauling and crushing. Over the past three decades, significant progress has been made in the development of new technologies for blasting applications. These technologies include increasingly sophisticated computer models for blast design and blast performance prediction. Rock fragmentation depends on many variables such as rock mass properties, site geology, in situ fracturing and blasting parameters and as such has no complete theoretical solution for its prediction. However, empirical models for the estimation of size distribution of rock fragments have been developed. In this study, a blast fragmentation Monte Carlo-based simulator, based on the Kuz-Ram fragmentation model, has been developed to predict the entire fragmentation size distribution, taking into account intact and joints rock properties, the type and properties of explosives and the drilling pattern. Results produced by this simulator were quite favorable when compared with real fragmentation data obtained from a blast quarry. It is anticipated that the use of Monte Carlo simulation will increase our understanding of the effects of rock mass and explosive properties on the rock fragmentation by blasting, as well as increase our confidence in these empirical models. This understanding will translate into improvements in blasting operations, its corresponding costs and the overall economics of open pit mines and rock quarries.

  14. Experimental Study on Effect of Prefabricated Damping Ditch/Slot on Reduction of Blasting Wave%预制沟槽对爆破震动阻隔效应的实验研究

    Institute of Scientific and Technical Information of China (English)

    文潮; 王占江; 李运良; 门朝举; 陈立强

    2012-01-01

    由于裂隙或者沟槽对炸药爆炸引起的震动具有良好的隔震作用,所以用现场试验的方法对比研究了用导爆索爆炸形成减震沟槽和人工开挖沟槽的减震效果.用3发50 g TNT当量、lm埋深的爆炸实验,研究了爆破成形和人工开挖预制的两种沟槽的隔震效果.实验结果表明,在爆破成形沟槽的两边存在一定宽度的裂隙区.两种沟槽均有效地降低了爆破震动的幅度并改变了地震波的频谱,而爆破成形沟槽的减震效果优于人工开挖的.离减震沟槽越近,隔震效果越明显.减震沟槽对中远区地震波低频部分隔震效果明显.%Cap or slot has an important effect on reduction of blasting vibration. The effect of vibration isolation and damping of gap or slot, which formed by detonation of the blasting fuse and excavation through manual work, is studied in this paper. In order to investigate the action of gap or slot, three underground explosion experiments were carried out an the north side of gap or slot, whose equivalent is 50g TNT and embedded depth is 1 m. The Pre-split crack zone exists in both sides of gap or slot formed by detonation of the blasting fuse. The experimental results show that the effects of gap or slot on reduction of blasting vibration are distinct and the explosion earthquake wave frequency spectrum characteristics are changed. The effect of gap or slot formed by detonation of the blasting fuse is superior to that of men-made gap or slot. The closer to gap or slot excavation face, the better the effect on reduction of blasting vibration is; The effects on vibration reduction are distinct to low frequency seismic wave at far distance from the gap or slot excavation face.

  15. Powder blasting for three-dimensional microstructuring of glass

    OpenAIRE

    Belloy, E.; Sayah, A.; M.A.M. Gijs

    2000-01-01

    We report on powder blasting as a promising technology for the three-dimensional structuring of brittle materials. We investigate the basic parameters of this process, which is based on the erosion of a masked substrate by a high-velocity eroding powder beam, using glass substrates. We study the effect of various parameters on the etching rate, like the powder velocity and the mask feature size, which induces geometrical effects to the erosion process. We introduce oblique powder blasting and...

  16. Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide.

    Science.gov (United States)

    Asaoka, Satoshi; Okamura, Hideo; Kim, Kyunghoi; Hatanaka, Yuzuru; Nakamoto, Kenji; Hino, Kazutoshi; Oikawa, Takahito; Hayakawa, Shinjiro; Okuda, Tetsuji

    2017-02-01

    Reducing hydrogen sulfide concentration in eutrophic marine sediments is crucial to maintaining healthy aquatic ecosystems. Managing fly ash, 750 million tons of which is generated annually throughout the world, is another serious environmental problem. In this study, we develop an approach that addresses both these issues by mixing coal fly ash from coal-fired power plants with blast furnace cement to remediate eutrophic sediments. The purpose of this study is to optimize the mixing ratio of coal fly ash and blast furnace cement to improve the rate of hydrogen sulfide removal based on scientific evidence obtained by removal experiments and XAFS, XRD, BET, and SEM images. In the case of 10 mg-S L(-1) of hydrogen sulfide, the highest removal rate of hydrogen sulfide was observed for 87 wt% of coal fly ash due to decreased competition of adsorption between sulfide and hydroxyl ions. Whereas regarding 100 mg-S L(-1), the hydrogen sulfide removal rate was the highest for 95 wt% of coal fly ash. However, for both concentrations, the removal rate obtained by 87 wt% and 95 wt% were statistically insignificant. The crushing strength of the mixture was over 1.2 N mm(-2) when the coal fly ash mixing ratio was less than 95 wt%. Consequently, the mixing ratio of coal fly ash was optimized at 87 wt% in terms of achieving both high hydrogen sulfide removal rate and sufficient crushing strength.

  17. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  18. Blast Load Response of Steel Sandwich Panels with Liquid Encasement

    Energy Technology Data Exchange (ETDEWEB)

    Dale Karr; Marc Perlin; Benjamin Langhorst; Henry Chu

    2009-10-01

    We describe an experimental investigation of the response of hybrid blast panels for protection from explosive and impact forces. The fundamental notion is to dissipate, absorb, and redirect energy through plastic collapse, viscous dissipation, and inter-particle forces of liquid placed in sub-structural compartments. The panels are designed to absorb energy from an impact or air blast by elastic-plastic collapse of the panel substructure that includes fluid-filled cavities. The fluid contributes to blast effects mitigation by providing increased initial mass and resistance, by dissipation of energy through viscosity and fluid flow, and by redirecting the momentum that is imparted to the system from the impact and blast impulse pressures. Failure and deformation mechanisms of the panels are described.

  19. An experimental investigation of blast driven turbulence

    Science.gov (United States)

    Musci, Benjamin; Ranjan, Devesh

    2016-11-01

    In the Georgia Tech Shock and Advanced Mixing Lab, a facility is being built to study blast driven turbulence. Motivated by the discrepancies observed between actual and modeled supernovae, this facility aims to resolve the important spatial scales in the extensive mixing of the outer layers. These outer layers will be modeled by subjecting two-three gases of varying density to a blast wave generated by Exploding Bridge Wires. The blast wave's interaction with perturbations at the gaseous, membrane-less, interfaces will induce the Richtmeyer-Meshkov or Rayleigh Taylor Instability, depending on the acceleration history and perturbation amplitude. Through the use of simultaneous Particle Image Velocimetry, and Planar Laser Induced Fluorescence, this project aims to determine the effect of interface initial conditions on turbulence. A 2D Diverging Wedge and 3D Diverging Conical Tube are being built to enable repeatable blast-wave production, continuous optical viewing of the flow, reproducible multi-layer interface creation, and the collection of simultaneous density-velocity measurements to directly measure turbulent quantities. The preliminary analysis informing the design of this facility, the construction progress, and updates on newly realized design constraints are presented.

  20. The radiological management of bomb blast injury.

    Science.gov (United States)

    Hare, S S; Goddard, I; Ward, P; Naraghi, A; Dick, E A

    2007-01-01

    A need to understand the nature and patterns of bomb blast injury, particularly in confined spaces, has come to the fore with the current worldwide threat from terrorism. The purpose of this review article is to familiarize the radiologist with the imaging they might expect to see in a mass casualty terrorist event, illustrated by examples from two of the main institutions receiving patients from the London Underground tube blasts of 7 July 2005. We present examples of injuries that are typical in blast victims, as well as highlighting some blast sequelae that might also be found in other causes of multiple trauma. This should enable the radiologist to seek out typical injuries, including those that may not be initially clinically apparent. Terror-related injuries are often more severe than those seen in other trauma cases, and multi-system trauma at distant anatomical sites should be anticipated. We highlight the value of using a standardized imaging protocol to find clinically undetected traumatic effects and include a discussion on management of multiple human and non-human flying fragments. This review also discusses the role of radiology in the management and planning for a mass casualty terrorist incident and the optimal deployment of radiographic services during such an event.

  1. Postconcussive symptoms after blast and nonblast-related mild traumatic brain injuries in Afghanistan and Iraq war veterans.

    Science.gov (United States)

    Lippa, Sara M; Pastorek, Nicholas J; Benge, Jared F; Thornton, G Matthew

    2010-09-01

    Blast injury is common in current warfare, but little is known about the effects of blast-related mild traumatic brain injury (mTBI). Profile analyses were conducted investigating differences in self-reported postconcussive (PC) symptoms in 339 veteran outpatients with mTBI histories reporting current symptoms based on mechanism of injury (blast only, nonblast only, or both blast and nonblast), number of blast injuries, and distance from the blast. Veterans with any blast-related mTBI history were younger and reported higher posttraumatic stress symptoms than veterans with nonblast-related mTBI histories, with a marginally significant difference in posttraumatic stress symptom report between veterans reporting blast-related mTBI only and those reporting nonblast-related mTBI. The groups did not differ in terms of PC symptom severity or PC symptom cluster profiles. Among veterans with blast-related mTBI histories, PC symptom report did not vary by number of blast-related mTBIs or proximity to blast. Overall, posttraumatic stress symptoms accounted for a substantial portion of variance in PC symptom report. In veteran outpatients with remote mTBI histories who have enduring symptom complaints related to the mTBI, mechanism of injury did not clearly contribute to differential PC symptom severity or PC symptom cluster profile. Proximal rather than distal factors may be important intervention targets in returning symptomatic veterans with mTBI histories.

  2. Tests and Analyses of the Effect of Underwater Controlled Blasting Projects in Complex Environments%复杂环境水下控制爆破工程影响效应测试分析

    Institute of Scientific and Technical Information of China (English)

    刘更宁; 汤连生; 戚玉亮; 桑海涛

    2015-01-01

    As the effects of blasting vibrations from underwater construction blasting have increas-ingly gained attention,it is particularly important to conduct research to examine the behavior of underwater blasting vibrations.This paper combines the major foundation trench excavation pro-jects of the immersed tube section in immersed tunnel engineering with indoor and outdoor tes-ting of the bedrock,field tests of the dynamic blasting effects,theoretical analysis,and other comprehensive means to explore the effect of dynamic characteristics of underwater explosion shocks on adjacent land buildings and riverside embankments.The results show that (1 )com-pared with the peak pressure value of a seismic wave,shock wave pressures of drilling blasting in water are small under the shallow water conditions and their propagation speeds are not faster than seismic waves,and therefore,when considering the stability of the embankment and shore buildings,the effects of water shock waves can be ignored under certain circumstances;and (2) concerning blasting constructions in different regions,the maximum blast should be the mini-mum of each of the allowed maximum doses based on the distances from the blasting point to the protected objects.The above results will provide an important reference for similar projects.%结合某沉管隧道沉管段基槽开挖工程,采用爆破动态效应的现场测试、理论分析等综合手段,探索水下爆破水中冲击波和爆破地震波动对邻近建筑物的动态效应特性。研究表明:(1)与地震波的峰值压力值相比,浅水条件下钻孔爆破水中冲击波压力值较小,传播速度也没有地震波快,特定情况下,在考量岸边堤岸及岸边建筑物的稳定性时可以忽略水冲击波的影响;(2)对于不同区域爆破施工来说,应根据其距离被保护对象的远近,选择各允许最大药量中的最小值作为最大爆破控制药量。研究成果对类似工程具有一定的借鉴意义。

  3. The Control of the Underwater Blasting Vibration Effect in Complex Environment%复杂环境下水下爆破振动效应控制技术

    Institute of Scientific and Technical Information of China (English)

    王洪刚; 王洪强; 陈郁华; 刘昌邦

    2012-01-01

    混凝土浇筑施工期间,对爆破振动安全要求较高.在莆田LNG码头施工过程中,为了减少爆破振动对周边建筑物以及新浇筑混凝土罐体的影响,采取了减振孔、改变装药结构等减振措施.通过水下爆破实际应用,证明减振孔、改变装药结构等能够有效地减少爆破对新浇筑混凝土罐体的影响.%During the construction of concrete pouring, the requirement is high to vibration safety. In Putian LNG-container pier, shock absorption holes and changing charge structure were used to decrease the effect of the blasting vibration to the surrounding buildings and the new pouring concrete. Through the practical application in the underwater blasting, shock absorption holes and changing charge structure can effectively decrease the influence of blasting.

  4. Trend analysis and comparison of basic parameters for tunnel blast design models

    Institute of Scientific and Technical Information of China (English)

    Khalili Soroush; Yavary Mehdi; Ebrahimabadi Arash

    2015-01-01

    One of the most important factors influencing on a tunnel blast efficiency is the proper design of blasting pattern. Among blasting parameters, blasthole diameter and tunnel face area are more significant so that any change in these parameters could finally affect on specific charge and specific drilling. There are mainly two groups of methods for tunnel blast design categorized based on the parallel cuts and angular cuts. In this research, a software for tunnel blast design was developed to analyze the effect and sensi-tiveness of blasthole diameter and the tunnel face area on blasting results in different blast design mod-els. Using the software, it is quickly possible to determine specific charge, specific drilling and number of blastholes for each blast design model. The relations between both of blasthole diameters and the tunnel face area with the above parameters in different blast design models were then investigated to yield a set of equations with the highest correlations to compare the methods. The results showed that angular method requires more blasthole numbers than parallel method in similar condition (blasthole diameter and tunnel face area). Moreover, the specific charge values yielded by the two methods are approximately the same and very close together.

  5. Antiknock Performance of Interlayered High-Damping-Rubber Blast Door under Thermobaric Shock Wave

    Directory of Open Access Journals (Sweden)

    Xiudi Li

    2016-01-01

    Full Text Available The long duration and high impulse shock wave of thermobaric bomb threatens the security of underground structures. To obtain high resistance blast door against thermobaric shock wave, firstly, the dynamic mechanic property of high damping rubber was studied by split Hopkinson pressure bar (SHPB equipment and the stress-strain relationship of high damping rubber under average strain rate of 5200/s was obtained. Secondly, the numerical model of interlayered high-damping-rubber blast door was established with ANSYS/LS-DYNA code based on test results, and the antiknock performance of interlayered high-damping-rubber blast door under thermobaric shock wave was analyzed by contrast with ordinary blast door. The results showed that the midspan displacement of the blast door decreased firstly and then increased with the increase of thickness of the high-damping-rubber interlayer, and the optimal thickness of the high-damping-rubber interlayer for energy consuming was 150 mm in the calculation condition of this paper. With the increase of the distance between the interlayer and the front surface of the door, the midspan displacement of the blast door decreased continually. The midspan maximum displacement of interlayered high-damping-rubber blast door decreased 74.5% in comparison to ordinary blast door. It showed that the high-damping-rubber structure can effectively improve the antiknock performance of blast door under thermobaric shock wave.

  6. Glyburide - Novel Prophylaxis and Effective Treatment for Traumatic Brain Injury

    Science.gov (United States)

    2012-08-01

    ABSTRACT The overall subject of this project is blast- traumatic brain injury (blast- TBI ) and the role of the SUR1-regulated NCCa-ATP channel in blast- TBI ...project is blast- traumatic brain injury (blast- TBI ) and the role of the SUR1-regulated NCCa-ATP channel in secondary injury following blast- TBI . The...effective treatment for traumatic brain injury PRINCIPAL INVESTIGATOR: J. Marc Simard, M.D., Ph.D

  7. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    Science.gov (United States)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  8. The enhancement effect of pre-reduction using zero-valent iron on the solidification of chromite ore processing residue by blast furnace slag and calcium hydroxide.

    Science.gov (United States)

    Li, Jinchunzi; Chen, Zhonglin; Shen, Jimin; Wang, Binyuan; Fan, Leitao

    2015-09-01

    A bench scale study was performed to assess the effectiveness of the solidification of chromite ore processing residue (COPR) by blast furnace slag and calcium hydroxide, and investigate the enhancement effect of pre-reduction using zero-valent iron (ZVI) on the solidification treatment. The degree of Cr immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as the solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method (Chinese standard HJ/T299-2007). Strength tests and semi-dynamic leaching tests were implemented to investigate the potential for reusing the final treatment product as a readily available construction material. The experimental results showed that the performance of pre-reduction/solidification (S/S) was superior to that of solidification alone. After pre-reduction, all of the S/S treated COPR samples met the TCLP limit for total Cr (5 mg L(-1)), whereas the samples with a COPR content below 40% met the pollution control limit of bricks and building block products (Chinese standard HJ/T 301-2007) produced with COPR for total Cr (0.3 mg L(-1)). At the same time, all of the S/S treated specimens tested were suitable for utilization at certain levels.

  9. A discrete particle approach to simulate the combined effect of blast and sand impact loading of steel plates

    Science.gov (United States)

    Børvik, T.; Olovsson, L.; Hanssen, A. G.; Dharmasena, K. P.; Hansson, H.; Wadley, H. N. G.

    2011-05-01

    The structural response of a stainless steel plate subjected to the combined blast and sand impact loading from a buried charge has been investigated using a fully coupled approach in which a discrete particle method is used to determine the load due to the high explosive detonation products, the air shock and the sand, and a finite element method predicts the plate deflection. The discrete particle method is based on rigid, spherical particles that transfer forces between each other during collisions. This method, which is based on a Lagrangian formulation, has several advantages over coupled Lagrangian-Eulerian approaches as both advection errors and severe contact problems are avoided. The method has been validated against experimental tests where spherical 150 g C-4 charges were detonated at various stand-off distances from square, edge-clamped 3.4 mm thick AL-6XN stainless steel plates. The experiments were carried out for a bare charge, a charge enclosed in dry sand and a charge enclosed in fully saturated wet sand. The particle-based method is able to describe the physical interactions between the explosive reaction products and soil particles leading to a realistic prediction of the sand ejecta speed and momentum. Good quantitative agreement between the experimental and predicted deformation response of the plates is also obtained.

  10. Rock blasting and explosives engineering

    Energy Technology Data Exchange (ETDEWEB)

    Persson, P.-A.; Holmberg, R.; Lee, J. (New Mexico Institute of Mining and Technology, Socorro, NM (United States). Research Center for Energetic Materials)

    1994-01-01

    The book covers the practical engineering aspects of different kinds of rock blasting. It includes a thorough analysis of the cost of the entire process of tunneling by drilling and blasting compared with full-face boring. It covers the economics of the entire rock blasting operation and its dependence on the size of excavation. The book highlights the fundamentals of rock mechanics, shock waves and detonation, initiation and mechanics of rock motion. It describes the engineering design principles and computational techniques for many separate mining methods and rock blasting operations. 274 refs.

  11. Physics of shock tube simulated IED blast for mTBI research

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Philippens, M.M.G.M.; Meijer, S.R.

    2010-01-01

    The objective of this research is to understand the blast propagation into the human skull and brain causing mTBI and use this knowledge for enabling design of effective protection measures against them. A shock tube including sensor system was optimized to simulate realistic IED blast profiles obta

  12. Structural safety criteria for blasting vibration based on wavelet packet energy spectra

    Institute of Scientific and Technical Information of China (English)

    Zhong Guosheng; Li Jiang; Zhao Kui

    2011-01-01

    Given multi-resolution decomposition of wavelet packet transforms, wavelet packet frequency band energy has been deduced from different bands of blasting vibration signals. Our deduction reflects the total effect of all three key elements (intensity, frequency and duration of vibration) of blasting vibration.We considered and discuss the dynamic response of structures and the effect of inherent characteristics of controlled structures to blasting vibration. Frequency band response coefficients for controlled structures by blasting vibration have been obtained. We established multi-factor blasting vibration safety criteria, referred to as response energy criteria. These criteria reflect the total effect of intensity,frequency and duration of vibration and the inherent characteristics (natural frequency and damping ratio) of dynamic responses from controlled structures themselves. Feasibility and reliability of the criteria are validated by an example.

  13. 30 CFR 75.1323 - Blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting circuits. 75.1323 Section 75.1323... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1323 Blasting circuits. (a) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made...

  14. 29 CFR 1926.912 - Underwater blasting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Underwater blasting. 1926.912 Section 1926.912 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.912 Underwater blasting. (a) A blaster shall conduct all blasting operations, and no shot shall be fired...

  15. 30 CFR 57.6803 - Blasting lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting lines. 57.6803 Section 57.6803 Mineral... and Underground § 57.6803 Blasting lines. Permanent blasting lines shall be properly supported. All blasting lines shall be insulated and kept in good repair. General Requirements—Surface and Underground...

  16. 30 CFR 56.6312 - Secondary blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting. 56.6312 Section 56.6312... Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from one source. Electric Blasting...

  17. 30 CFR 56.6803 - Blasting lines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting lines. 56.6803 Section 56.6803 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND... Blasting lines. Permanent blasting lines shall be properly supported. All blasting lines shall be...

  18. Effects of thrombopoietin (c-mpl ligand) on growth of blast cells from patients with transient abnormal myelopoiesis and acute myeloblastic leukemia.

    Science.gov (United States)

    Hirai, H; Shimazaki, C; Yamagata, N; Goto, H; Inaba, T; Kikuta, T; Sumikuma, T; Sudo, Y; Ashihara, E; Fujita, N; Hibi, S; Imashuku, S; Ito, E; Nakagawa, M

    1997-07-01

    Thrombopoietin (TPO) is a ligand for c-mpl that promotes both proliferation and differentiation of megakaryocytes in vivo and in vitro. We investigated the expression of c-mpl transcripts and the effects of recombinant human TPO (rhTPO) on the proliferation and differentiation of human leukemic cell lines or fresh samples obtained from 32 patients with transient abnormal myelopoiesis (TAM) or acute myeloblastic leukemia (AML). Cells were cultured with TPO alone or combined with rh interleukin-3 (IL-3) or stem cell factor (SCF). Expression of c-mpl was verified in 6 of 13 cases tested. All but one of the cases that showed c-mpl expression responded to TPO. Blasts from all cases of TAM or French-American-British (FAB) subtype M7 showed growth responses to TPO with higher sensitivity than cells of other FAB subtypes and these responses were increased by addition of rhIL-3 or rhSCF in some cases. Responses of cells of other FAB subtypes varied. In addition, increased expression of platelet-specific surface antigens on MO7E cells after incubation with rhTPO was observed. These data suggest that TPO may be involved in the abnormal proliferation and differentiation of human leukemic cells, especially of M7 and TAM cells, considered to be of megakaryocytic lineage.

  19. Identification of blast resistance genes for managing rice blast disease

    Science.gov (United States)

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...

  20. Effect of Al2O3 Addition on the Precipitated Phase Transformation in Ti-Bearing Blast Furnace Slags

    Science.gov (United States)

    Li, Zhongmin; Li, Jinfu; Sun, Yongqi; Seetharaman, Seshadri; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-04-01

    The present paper aims to provide a fundamental understanding on phase change of Ti-enriched crystalline phase induced by Al2O3 addition in Ti-bearing blast furnace slags with different basicities using Single Hot Thermocouple Technique and X-ray Diffraction. The results showed that an increase in the Al2O3 content led to phase change from rutile or perovskite to Mg3Al4Ti8O25 and prompted crystallization of the slags with basicity of 0.60 and 0.75, whereas only CaTiO3 was precipitated at a basicity of 0.95. Both thermodynamic and kinetic analyses were conducted to study the slag crystallization, which would throw light on phase change and enhanced crystallization. To further reveal the relationship with Al2O3 addition on slag structure and crystallization, Fourier transform infrared spectroscopy and magic angle spinning-nuclear magnetic resonance were adopted, with AlO4 tetrahedra and AlO6 octahedra observed in the slag. For slags with the basicity of 0.60 and 0.75, AlO6 octahedron, which was suggested to induce the phase change from TiO2 or CaTiO3 to Mg3Al4Ti8O25, was detected at high Al2O3 content. On the other hand, in slags with the basicity of 0.95, abundant Ca2+ may be connected to TiO6 octahedra, resulting in CaTiO3 formation.

  1. Effect of TiO2 Content on the Crystallization Behavior of Titanium-Bearing Blast Furnace Slag

    Science.gov (United States)

    Hu, Meilong; Wei, Ruirui; Yin, Fangqing; Liu, Lu; Deng, Qingyu

    2016-09-01

    The content of TiO2 has an important influence on both the basic structure and the crystallization behavior of titanium-bearing blast furnace (BF) slag. The results of thermodynamic calculations show that, when the mass content of TiO2 is smaller than 25%, CaTiO3 increases as the content of TiO2 increases. However, when the TiO2 content is more than 25%, the CaTiO3 content decreases and TiO2 gradually increases. The results of a confocal laser scanning microscopy (CLSM) experiment show that, when the TiO2 mass content is 10%, Ca2MgSi2O7 and Ca2Al2SiO7 are the main crystallized phases resulting from the molten slag. Furthermore, when the TiO2 mass content is 20%, CaMgSi2O6, Ca(Ti,Mg,Al)(Si,Al)2O7 and dendrite CaTiO3 are the crystallized phases, while when the TiO2 mass content increases to 30%, CaTiO3 is the sole phase. The discrepancy between the CLSM results and the thermodynamic calculations occurs mainly due to the high melting point of the titanium-bearing BF slag. During the cooling process for the molten slag, CaTiO3 is crystallized first, due to its high crystallization temperature. Furthermore, the molten slag is solidified in its entirety before the other phases crystallize.

  2. Predicting the Impact of Rock Blasting on Building Structures at Awunakrom in the Ahanta West District of Ghana

    Directory of Open Access Journals (Sweden)

    K.J. Bansah

    2014-07-01

    Full Text Available Blasting is an important process after drilling is completed in hard rock mining. It involves placing explosives in drill holes and detonating them to cause explosion. The energy released during this process fragments the rocks into sizes for desired end use. The detonation of these explosives may produce undesirable effects such as ground vibration which is capable of causing damage to building structures. It is therefore, necessary to conduct blast impact studies to determine potential impact of blast induced ground vibration prior to mining and establish remediation techniques. Blast impact study was conducted at Awunakrom in the Ahanta West District of Ghana. Building structures within the study area were mapped and characterized. A blast impact prediction model was also generated. Blast induced vibrations that may propagate from the Father Brown pit of Golden Star Wassa Limited using various instantaneous charges were determined. It was found that bench blasting at the Father Brown pit has a potential of causing damage to building structures within the Awunakrom community if the maximum instantaneous charge adopted at the southernmost periphery of the pit exceeds 30 kg. It was therefore, recommended that all bench blast conducted at the southern periphery of the Father Brown pit should adopt a maximum instantaneous charge of 30 kg to avert any potential blast damage. However, variable instantaneous charges of more than 30 kg can be adopted as the blast location moves towards the northern periphery.

  3. DAMAGE EFFECTS TO ROCK AND ENGINEERING APPLICATIONS OF DIRECTIONAL PRESSURE RELIEF VIBRATION ISOLATION BLASTING%定向卸压隔振爆破对岩石的损伤破坏效应及其工程应用

    Institute of Scientific and Technical Information of China (English)

    张志呈; 廖涛; 陈晓玲

    2015-01-01

    To reduce the destruction damage of conventional blasting on reserved rock,a new blasting method, namely,directional pressure relief vibration isolation blasting,is proposed and its technical principles are introduced. The test results of hopkinson bar,ultra-dynamic,dynamic caustics,dynamic photoelasticity,level one light gas gun and other tests results show that:this method would make explosion pressure reduced by 30% to 60% on the isolation material side;blasting vibration peak decreased by 32% to 67%;detonation wave would be blocked 46.95% and sound velocity reduced 13.48% on the isolation material side. The primary shear stress of the free surface side is 3.5 times of that on the isolation material side;stress intensity factors are 1 to 2.12 times of that on isolation material side. Engineering practices show that it brings a large number of energy together in free surface,geting a good blasting effect,meanwhile it can reduce the cost of the open pit slope excavation and overexcavation in drifting.%为降低常规爆破对保留岩体的破坏损伤,提出了定向卸压隔振爆破方法,并介绍了其技术原理。霍普金森杆、超动态、动焦散、动光弹和一级轻气炮等试验结果表明:采用定向卸压隔振爆破隔振材料一侧爆炸初始压力降低了30%~60%,爆破振动峰值下降了32%~67%;作用于隔振材料一侧爆轰波能量被阻隔46.95%,隔振材料一侧保留岩石的声速降低13.48%;临空面一侧的主剪应力是隔振材料一侧的3.5倍,应力强度因子是隔振材料一侧的1~2.12倍。实践表明,临空面方向汇集了大量能量,获得了好的爆破效果,同时可以减少露天边坡的开挖费用和平巷掘进超欠挖量。

  4. NCBI BLAST: a better web interface.

    Science.gov (United States)

    Johnson, Mark; Zaretskaya, Irena; Raytselis, Yan; Merezhuk, Yuri; McGinnis, Scott; Madden, Thomas L

    2008-07-01

    Basic Local Alignment Search Tool (BLAST) is a sequence similarity search program. The public interface of BLAST, http://www.ncbi.nlm.nih.gov/blast, at the NCBI website has recently been reengineered to improve usability and performance. Key new features include simplified search forms, improved navigation, a list of recent BLAST results, saved search strategies and a documentation directory. Here, we describe the BLAST web application's new features, explain design decisions and outline plans for future improvement.

  5. Shock tubes and blast injury modeling

    Institute of Scientific and Technical Information of China (English)

    Ya-Lei Ning; Yuan-Guo Zhou

    2015-01-01

    Explosive blast injury has become the most prevalent injury in recent military conflicts and terrorist attacks.The magnitude of this kind of polytrauma is complex due to the basic physics of blast and the surrounding environments.Therefore,development of stable,reproducible and controllable animal model using an ideal blast simulation device is the key of blast injury research.The present review addresses the modeling of blast injury and applications of shock tubes.

  6. A preliminary study on the effect of agro-meteorological factors on molecular mechanism of rice blast occurrence%农业气象因素影响稻瘟病发生分子机制初探

    Institute of Scientific and Technical Information of China (English)

    刘天华; 白姣姣; 吕东平

    2016-01-01

    Rice is an important food crop in China. Rice blast, a disease caused by ascomycetes (Magnaporthe oryzae), is one of most limiting factors of rice production in the country, which results in huge economic losses to the rice production each year. With the completion of whole genome sequencing of rice and M. oryzae, the interaction mechanism of rice and M. oryzae has become much clearer. Resistance to rice blast fungus can effectively prevent the invasion of pathogenic bacteria through the natural immune system of rice. Also pathogens can cause diseases in susceptible rice varieties by inhibiting innate immune system of rice. Outbreaks of rice blast and popular occur under three necessary conditions — susceptible rice variety, pathogenic bacteria and pathogenic meteorological factors. Thus the meteorological factors for the outbreak and epidemics of rice blast play an important role. Based on research achievements in recent years, this paper summarized the interaction mechanism of rice and M. oryzae from the pointing of pathogenic process of M. oryzae and rice resistance, discussed the effects of temperature, illumination, humidity and other meteorological factors on the pathogenesis of M. oryzae and disease resistance of rice. The paper further explored the molecular mechanism of invasion of rice blast epidemic caused by the factors, expecting to find the best ways for preventing and controlling rice blast. Finally, the paper provided theoretical evidences in support of proper prevention and treatment methods of rice blast.%水稻是我国重要的粮食作物,由子囊菌(Magnaporthe oryzae)所引起的稻瘟病是水稻生产活动中的重要限制因子之一,每年给水稻生产造成巨大的经济损失。随着水稻及稻瘟菌全基因组测序工作的完成,水稻和稻瘟菌间的互作机制已日渐明朗。水稻对稻瘟菌的抗性主要来自于自身体内天然免疫机制对病原菌入侵的有效阻止,同时病原菌能够通过

  7. High-low-blasting technology and its application in methane dynamic disaster prevention

    Institute of Scientific and Technical Information of China (English)

    LI Xian-zhong; LIN Bai-quan; YANG Wei; NI Guan-hua; LI Quan-gui

    2011-01-01

    The gas cooperative control model combined local pressure-relief with regional pressure-relief was established,based on the theory of multi-parameters cooperative.For the status of high gas contents,high in-situ stress and low-permeability of Ji-15 seam of No.12 coal mine in Pingmei Group.The law of detonation wave propagation and ground-stress change distribution were simulated by means of the finite element analysis software.The technology of high-low-blasting,composed of high blasting(deep crossing hole controlled hydraulic blasting) and low blasting (special roadway deep hole controlled blasting) were developed.The research shows that around control hole produce maximum tension fracture failure,and result in directional and controlled blasting,when the distance between control hole and blasting hole is 1.2 m.The theory makes blasting force and hydraulic force advantage superimpose,which raises the effect of pressure relief and permeability enhancements compared with general blasting.High blasting influence radius and low blasting influence radius superimposed with each other,that prevents methane dynamic disaster.The result of type approval test shows that the technology can increase gas permeability as high as 22.7~36.2 ratio,decrease gas pressure from 2.85 MPa to 0.30 MPa,increase drilling influence radius to about 9 m.The technology realizes regional overall permeability improvement,that provides a new technical measure for methane dynamic disaster prevention.

  8. Experimental and Theoretical Study on Influence of Different Charging Structures on Blasting Vibration Energy

    Directory of Open Access Journals (Sweden)

    Wenbin Gu

    2015-01-01

    Full Text Available As an important parameter in blasting design, charging structure directly influences blasting effect. Due to complex conditions of this blasting and excavating engineering in Jiangsu, China, the authors carried out comparative researches with coupling structure, air-decoupling structure, and water-decoupling structure. After collecting, comparing, and analyzing produced signals on blasting vibration, the authors summarized that when proportional distances are the same, water-decoupling structure can reduce instantaneous energy of blasting vibration more effectively with more average rock fragmentation and less harm of dust. From the perspective of impedance matching, the present paper analyzed influence of charging structure on blasting vibration energy, demonstrating that impedance matching relationship between explosive and rock changes because of different charging structures. Through deducing relationship equation that meets the impedance matching of explosive and rock under different charging structures, the research concludes that when blasting rocks with high impedance, explosive with high impedance can better transmits blasting energy. Besides, when employing decoupling charging, there exists a reasonable decoupling coefficient helping realize impedance matching of explosive and rock.

  9. Numerical simulation of muzzle blast

    NARCIS (Netherlands)

    Tyler-Street, M.

    2014-01-01

    Structural design methods for naval ships include environmental, operational and military load cases. One of the operational loads acting on a typical naval vessel is the muzzle blast from a gun. Simulating the muzzle blast load acting on a ship structure with CFD and ALE methods leads to large nume

  10. Circulation in blast driven instabilities

    Science.gov (United States)

    Henry de Frahan, Marc; Johnsen, Eric

    2016-11-01

    Mixing in many natural phenomena (e.g. supernova collapse) and engineering applications (e.g. inertial confinement fusion) is often initiated through hydrodynamic instabilities. Explosions in these systems give rise to blast waves which can interact with perturbations at interfaces between different fluids. Blast waves are formed by a shock followed by a rarefaction. This wave profile leads to complex time histories of interface acceleration. In addition to the instabilities induced by the acceleration field, the rarefaction from the blast wave decompresses the material at the interface, further increasing the perturbation growth. After the passage of the wave, circulation circulation generated by the blast wave through baroclinic vorticity continues to act upon the interface. In this talk, we provide scaling laws for the circulation and amplitude growth induced by the blast wave. Numerical simulations of the multifluid Euler equations solved using a high-order accurate Discontinuous Galerkin method are used to validate the theoretical results.

  11. BLAST: the Redshift Survey

    CERN Document Server

    Eales, Stephen; Devlin, Mark J; Dye, Simon; Halpern, Mark; Hughes, David H; Marsden, Gaelen; Mauskopf, Philip; Moncelsi, Lorenzo; Netterfield, Calvin B; Pascale, Enzo; Patanchon, Guillaume; Raymond, Gwenifer; Rex, Marie; Scott, Douglas; Semisch, Christopher; Siana, Brian; Truch, Matthew D P; Viero, Marco P

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently surveyed ~=8.7 deg^2 centered on GOODS-South at 250, 350 and 500 microns. In Dye et al. (2009) we presented the catalogue of sources detected at $\\rm 5\\sigma$ in at least one band in this field and the probable counterparts to these sources in other wavebands. In this paper, we present the results of a redshift survey in which we succeeded in measuring redshifts for 83 of these counterparts. We have used the spectroscopic redshifts to carry out a test of the ability of photometric redshift methods to estimate the redshifts of dusty galaxies. We have also investigated the cases where there are two possible counterparts to the BLAST source, finding that in at least half of these there is evidence that the two galaxies are physically associated, either because they are interacting or because they are in the same large-scale structure. Finally, we have made the first direct measurements of the luminosity function in the three BLAST band...

  12. Thermodynamic modeling of lead blast furnace

    Institute of Scientific and Technical Information of China (English)

    TAN Peng-fu

    2005-01-01

    A thermodynamic model was developed to predict the distribution behavior of Cu,Fe,S,O,Pb,Zn,As,and the heat balance in a lead blast furnace.The modeling results are validated by the plant data of a lead smelter in Kazakhstan.The model can be used to predict any set of controllable process parameters such as feed composition,smelting temperature,degree of oxygen enrichment and volume of oxygen-enriched air.The effects of the blast air,industrial oxygen,and coke charge on the distribution of Cu,Fe,S,O,Pb,Zn,As,the heat balance,and the lead loss in slag,were presented and discussed.

  13. A Modified Surface on Titanium Deposited by a Blasting Process

    Directory of Open Access Journals (Sweden)

    Caroline O’Sullivan

    2011-09-01

    Full Text Available Hydroxyapatite (HA coating of hard tissue implants is widely employed for its biocompatible and osteoconductive properties as well as its improved mechanical properties. Plasma technology is the principal deposition process for coating HA on bioactive metals for this application. However, thermal decomposition of HA can occur during the plasma deposition process, resulting in coating variability in terms of purity, uniformity and crystallinity, which can lead to implant failure caused by aseptic loosening. In this study, CoBlastTM, a novel blasting process has been used to successfully modify a titanium (V substrate with a HA treatment using a dopant/abrasive regime. The impact of a series of apatitic abrasives under the trade name MCD, was investigated to determine the effect of abrasive particle size on the surface properties of both microblast (abrasive only and CoBlast (HA/abrasive treatments. The resultant HA treated substrates were compared to substrates treated with abrasive only (microblasted and an untreated Ti. The HA powder, apatitic abrasives and the treated substrates were characterized for chemical composition, coating coverage, crystallinity and topography including surface roughness. The results show that the surface roughness of the HA blasted modification was affected by the particle size of the apatitic abrasives used. The CoBlast process did not alter the chemistry of the crystalline HA during deposition. Cell proliferation on the HA surface was also assessed, which demonstrated enhanced osteo-viability compared to the microblast and blank Ti. This study demonstrates the ability of the CoBlast process to deposit HA coatings with a range of surface properties onto Ti substrates. The ability of the CoBlast technology to offer diversity in modifying surface topography offers exciting new prospects in tailoring the properties of medical devices for applications ranging from dental to orthopedic settings.

  14. Grit blasting of medical stainless steel: implications on its corrosion behavior, ion release and biocompatibility.

    Science.gov (United States)

    Galván, J C; Saldaña, L; Multigner, M; Calzado-Martín, A; Larrea, M; Serra, C; Vilaboa, N; González-Carrasco, J L

    2012-03-01

    This study reports on the biocompatibility of 316 LVM steel blasted with small and rounded ZrO(2) particles or larger and angular shaped Al(2)O(3) particles. The effect of blasting on the in vitro corrosion behavior and the associated ion release is also considered. Surface of Al(2)O(3) blasted samples was rougher than that of ZrO(2) blasted samples, which was also manifested by a higher surface area. Compared to the polished alloy, blasted steels exhibited a lower corrosion resistance at the earlier stages of immersion, particularly when using Al(2)O(3) particles. With increasing immersion time, blasted samples experienced an improvement of the corrosion resistance, achieving impedance values typical of passive alloys. Blasting of the alloy led to an increase in Fe release and the leaching of Ni, Mn, Cr and Mo. On all surfaces, ion release is higher during the first 24 h exposure and tends to decrease during the subsequent exposure time. Despite the lower corrosion resistance and higher amount of ions released, blasted alloys exhibit a good biocompatibility, as demonstrated by culturing osteoblastic cells that attached and grew on the surfaces.

  15. Model for small arms fire muzzle blast wave propagation in air

    Science.gov (United States)

    Aguilar, Juan R.; Desai, Sachi V.

    2011-11-01

    Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

  16. Aquaporin 9, a promising predictor for the cytocidal effects of arsenic trioxide in acute promyelocytic leukemia cell lines and primary blasts.

    Science.gov (United States)

    Iriyama, Noriyoshi; Yuan, Bo; Yoshino, Yuta; Hatta, Yoshihiro; Horikoshi, Akira; Aizawa, Shin; Takeuchi, Jin; Toyoda, Hiroo

    2013-06-01

    A close correlation between the cytocidal effects of arsenic trioxide (ATO) and aquaporin-9 (AQP9) expression levels has been proposed, yet detailed studies are still needed to confirm this association. Thus, in the present study, the correlation between the expression levels of AQP9 and sensitivity to ATO was investigated using two acute promyelocytic leukemia (APL) cell lines, NB4 and HT93A, as well as primary APL cells from newly diagnosed and relapsed APL patients. A substantially higher sensitivity to ATO-mediated induction of apoptosis was observed in the NB4 cells when compared to that in the HT93A cells. In addition, markedly higher expression levels of AQP9, as assessed using flow cytometry, along with more intracellular arsenic accumulation, were observed in the NB4 cells. More importantly, similar to APL cell lines, the trend of expression levels of AQP9 correlated closely with the differential sensitivity to ATO-mediated induction of apoptosis in primary APL cells. In contrast, no correlation was observed between ATO sensitivity associated with AQP9 expression levels and the expression profiles of cell surface markers as well as chromosomal alterations. These results provide direct evidence that the expression levels of AQP9, rather than other biomarkers such as cell surface markers and chromosomal alterations, correlate closely with the sensitivity to ATO in both APL cell lines and primary blasts. These findings suggest that the AQP9 expression status of APL patients is a predictive marker for the successful outcome of ATO treatment, since AQP9 plays a pivotal role in various arsenite-mediated biological effects on normal and cancer cells. Moreover, flow cytometry may be a new convenient and valuable tool for analyzing the AQP9 status of APL patients compared to current methods such as western blotting.

  17. Application of coupled analysis methods for prediction of blast-induced dominant vibration frequency

    Science.gov (United States)

    Li, Haibo; Li, Xiaofeng; Li, Jianchun; Xia, Xiang; Wang, Xiaowei

    2016-03-01

    Blast-induced dominant vibration frequency (DVF) involves a complex, nonlinear and small sample system considering rock properties, blasting parameters and topography. In this study, a combination of grey relational analysis and dimensional analysis procedures for prediction of dominant vibration frequency are presented. Six factors are selected from extensive effect factor sequences based on grey relational analysis, and then a novel blast-induced dominant vibration frequency prediction is obtained by dimensional analysis. In addition, the prediction is simplified by sensitivity analysis with 195 experimental blast records. Validation is carried out for the proposed formula based on the site test database of the firstperiod blasting excavation in the Guangdong Lufeng Nuclear Power Plant (GLNPP). The results show the proposed approach has a higher fitting degree and smaller mean error when compared with traditional predictions.

  18. PRESSURE-IMPULSE DIAGRAM OF MULTI-LAYERED ALUMINUM FOAM PANELS UNDER BLAST PRESSURE

    Directory of Open Access Journals (Sweden)

    CHANG-SU SHIM

    2013-06-01

    Full Text Available Anti-terror engineering has increasing demand in construction industry, but basis of design (BOD is normally not clear for designers. Hardening of structures has limitations when design loads are not defined. Sacrificial foam claddings are one of the most efficient methods to protect blast pressure. Aluminum foam can have designed yield strength according to relative density and mitigate the blast pressure below a target transmitted pressure. In this paper, multi-layered aluminum foam panels were proposed to enhance the pressure mitigation by increasing effective range of blast pressure. Through explicit finite element analyses, the performance of blast pressure mitigation by the multi-layered foams was evaluated. Pressure-impulse diagrams for the foam panels were developed from extensive analyses. Combination of low and high strength foams showed better applicability in wider range of blast pressure.

  19. Working toward exposure thresholds for blast-induced traumatic brain injury: thoracic and acceleration mechanisms

    CERN Document Server

    Courtney, Michael; 10.1016/j.neuroimage.2010.05.025

    2011-01-01

    Research in blast-induced lung injury resulted in exposure thresholds that are useful in understanding and protecting humans from such injury. Because traumatic brain injury (TBI) due to blast exposure has become a prominent medical and military problem, similar thresholds should be identified that can put available research results in context and guide future research toward protecting warfighters as well as diagnosis and treatment. At least three mechanical mechanisms by which the blast wave may result in brain injury have been proposed - a thoracic mechanism, head acceleration and direct cranial transmission. These mechanisms need not be mutually exclusive. In this study, likely regions of interest for the first two mechanisms based on blast characteristics (positive pulse duration and peak effective overpressure) are developed using available data from blast experiments and related studies, including behind-armor blunt trauma and ballistic pressure wave studies. These related studies are appropriate to in...

  20. The importance of systemic response in the pathobiology of blast-induced neurotrauma

    Directory of Open Access Journals (Sweden)

    Ibolja eCernak

    2010-12-01

    Full Text Available Due to complex injurious environment where multiple blast effects interact with the body, parallel blast-induced neurotrauma is a unique clinical entity induced by systemic, local, and cerebral responses. Activation of autonomous nervous system; sudden pressure-increase in vital organs such as lungs and liver; and activation of neuroendocrine-immune system are among the most important mechanisms that contribute significantly to molecular changes and cascading injury mechanisms in the brain. It has been hypothesized that vagally mediated cerebral effects play a vital role in the early response to blast: this assumption has been supported by experiments where bilateral vagotomy mitigated bradycardia, hypotension, and apnea, and also prevented excessive metabolic alterations in the brain of animals exposed to blast. Clinical experience suggests specific blast-body-nervous system interactions such as 1 direct interaction with the head either through direct passage of the blast wave through the skull or by causing acceleration and/or rotation of the head; and 2 via hydraulic interaction, when the blast overpressure compresses the abdomen and chest, and transfers its kinetic energy to the body’s fluid phase, initiating oscillating waves that traverse the body and reach the brain. Accumulating evidence suggests that inflammation plays important role in the pathogenesis of long-term neurological deficits due to blast. These include memory decline, motor function and balance impairments, and behavioral alterations, among others. Experiments using rigid body- or head protection in animals subjected to blast showed that head protection failed to prevent inflammation in the brain or reduce neurological deficits, whereas body protection was successful in alleviating the blast-induced functional and morphological impairments in the brain.

  1. 高程放大效应对露天采场爆破震动衰减的影响研究%Research on the influence of elevation amplification effect on open-pit blasting vibration attenuation

    Institute of Scientific and Technical Information of China (English)

    胡光球; 璩世杰; 梁新民

    2015-01-01

    露天采场边坡对爆源不高于坡脚处的爆破震动存在放大作用。通过对露天采场高程放大效应机理分析,认为萨道夫斯基公式难以准确描述采场内爆破震动衰减规律;通过引入高程因素对萨道夫斯基公式进行修正,运用最小二乘法原理进行多元线性回归分析,建立震动衰减模型。对司家营铁矿Ⅱ采场中深孔爆破进行现场监测,验证了高程放大效应的存在。回归计算结果表明,修正的萨道夫斯基公式更具科学性。%The open pit slope can amplify blasting vibration whose explosion source is not higher than the toe of slope.Based on the analysis of the mechanism of elevation amplification effect in open pit,the paper considers that Sa-dove formula has difficulty in accurately describing blasting vibration attenuation law in stope.So a modified Sadove formula with the introduction of the elevation factors and a multiple linear regression analysis performed by the princi-ple of least square method combine to establish the attenuation model.The existence of elevation amplification effect is verified by monitoring medium-long hole blasting in No.Ⅱ stope of Sijiaying Iron Mine.The regression calculation re-sults prove the modified Sadove formula to be more scientific.

  2. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C 2 C 12 cells.

    Science.gov (United States)

    Mishra, Amrita; Tripathy, Suraj Kumar; Wahab, Rizwan; Jeong, Song-Hoon; Hwang, Inho; Yang, You-Bing; Kim, Young-Soon; Shin, Hyung-Shik; Yun, Soon-Il

    2011-11-01

    Microorganisms, their cell filtrates, and live biomass have been utilized for synthesizing various gold nanoparticles. The shape, size, stability as well as the purity of the bio synthesized nanoparticles become very essential for application purpose. In the present study, gold nanoparticles have been synthesized from the supernatant, live cell filtrate, and biomass of the fungus Penicillium brevicompactum. The fungus has been grown in potato dextrose broth which is also found to synthesize gold nanoparticles. The size of the particles has been investigated by Bio-TEM before purification, following purification and after storing the particles for 3 months under refrigerated condition. Different characterization techniques like X-ray diffraction, Fourier transform infrared spectroscopy, and UV-visible spectroscopy have been used for analysis of the particles. The effect of reaction parameters such as pH and concentration of gold salt have also been monitored to optimize the morphology and dispersity of the synthesized gold nanoparticles. A pH range of 5 to 8 has favored the synthesis process whereas increasing concentration of gold salt (beyond 2 mM) has resulted in the formation of bigger sized and aggregated nanoparticles. Additionally, the cytotoxic nature of prepared nanoparticles has been analyzed using mouse mayo blast cancer C(2)C(12) cells at different time intervals (24, 48, and 72 h) of incubation period. The cells are cultivated in Dulbecco's modified Eagle's medium supplemented with fetal bovine serum with antibiotics (streptopenicillin) at 37°C in a 5% humidified environment of CO(2). The medium has been replenished every other day, and the cells are subcultured after reaching the confluence. The viability of the cells is analyzed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide method.

  3. Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR.

    Science.gov (United States)

    Pegueroles, M; Aguirre, A; Engel, E; Pavon, G; Gil, F J; Planell, J A; Migonney, V; Aparicio, C

    2011-03-01

    Biomaterial surface properties, via alterations in the adsorbed protein layer, and the presence of specific functional groups can influence integrin binding specificity, thereby modulating cell adhesion and differentiation processes. The adsorption of fibronectin, a protein directly involved in osteoblast adhesion to the extracellular matrix, has been related to different physical and chemical properties of biomaterial surfaces. This study used blasting particles of different sizes and chemical compositions to evaluate the response of MG63 osteoblast-like cells on smooth and blasted titanium surfaces, with and without fibronectin coatings, by means of real-time reverse transcription-polymerase chain reaction (qRT-PCR) assays. This response included (a) expression of the α(5), α(v) and α(3) integrin subunits, which can bind to fibronectin through the RGD binding site, and (b) expression of alkaline phosphatase (ALP) and osteocalcin (OC) as cell-differentiation markers. ALP activity and synthesis of OC were also tested. Cells on SiC-blasted Ti surfaces expressed higher amounts of the α(5) mRNA gene than cells on Al(2)O(3)-blasted Ti surfaces. This may be related to the fact that SiC-blasted surfaces adsorbed higher amounts of fibronectin due to their higher surface free energy and therefore provided a higher number of specific cell-binding sites. Fn-coated Ti surfaces decreased α(5) mRNA gene expression, by favoring the formation of other integrins involved in adhesion over α(5)β(1). The changes in α(5) mRNA expression induced by the presence of fibronectin coatings may moreover influence the osteoblast differentiation pathway, as fibronectin coatings on Ti surfaces also decreased both ALP mRNA expression and ALP activity after 14 and 21 days of cell culture.

  4. Frequency-Dependent Attenuation of Blasting Vibration Waves

    Science.gov (United States)

    Zhou, Junru; Lu, Wenbo; Yan, Peng; Chen, Ming; Wang, Gaohui

    2016-10-01

    The dominant frequency, in addition to the peak particle velocity, is a critical factor for assessing adverse effects of the blasting vibration on surrounding structures; however, it has not been fully considered in blasting design. Therefore, the dominant frequency-dependent attenuation mechanism of blast-induced vibration is investigated in the present research. Starting with blasting vibration induced by a spherical charge propagating in an infinite viscoelastic medium, a modified expression of the vibration amplitude spectrum was derived to reveal the frequency dependency of attenuation. Then, ground vibration induced by more complex and more commonly used cylindrical charge that propagates in a semi-infinite viscoelastic medium was analyzed by numerical simulation. Results demonstrate that the absorptive property of the medium results in the frequency attenuation versus distance, whereas a rapid drop or fluctuation occurs during the attenuation of ground vibration. Fluctuation usually appears at moderate to far field, and the dominant frequency generally decreases to half the original value when rapid drop occurs. The decay rate discrepancy between different frequency components and the multimodal structure of vibration spectrum lead to the unsmooth frequency-dependent attenuation. The above research is verified by two field experiments. Furthermore, according to frequency-based vibration standards, frequency drop and fluctuation should be considered when evaluating blast safety. An optimized piecewise assessment is proposed for more accurate evaluation: With the frequency drop point as the breakpoint, the assessment is divided into two independent sections along the propagating path.

  5. 75 FR 56489 - Separation Distances of Ammonium Nitrate and Blasting Agents From Explosives or Blasting Agents...

    Science.gov (United States)

    2010-09-16

    ... Ammonium Nitrate and Blasting Agents From Explosives or Blasting Agents (2002R-226P) AGENCY: Bureau of... CFR 555.220 set forth a table of separation distances of ammonium nitrate and blasting agents from explosives or blasting agents followed by six explanatory notes. Note three (3) states that the...

  6. Prospects for studying how high-intensity compression waves cause damage in human blast injuries

    Science.gov (United States)

    Brown, Katherine; Bo, Chiara; Ramaswamy, Arul; Masouros, Spiros; Newell, Nicolas; Hill, Adam; Clasper, Jon; Bull, Anthony; Proud, William

    2011-06-01

    Blast injuries arising from improvised explosive devices are often complex leading to long-term disability in survivors. There is an urgent need to mitigate against the effects of blast that lead to these injuries, and to also improve post-traumatic therapeutic treatments related to problems associated with damage and healing processes and infections. We have initiated multidisciplinary studies to develop experimental facilities and strategies for analyzing the effects blast waves upon the human body, from cellular through to skeletal functions. This work is supported by the Atomic Weapons Establishment and the Defence Science and Technology Laboratory, UK.

  7. Analysis of blasting damage in adjacent mining excavations

    Directory of Open Access Journals (Sweden)

    Nick Yugo

    2015-06-01

    Full Text Available Following a small-scale wedge failure at Yukon Zinc's Wolverine Mine in Yukon, Canada, a vibration monitoring program was added to the existing rockbolt pull testing regime. The failure in the 1150 drift occurred after numerous successive blasts in an adjacent tunnel had loosened friction bolts passing through an unmapped fault. Analysis of blasting vibration revealed that support integrity is not compromised unless there is a geological structure to act as a failure plane. The peak particle velocity (PPV rarely exceeded 250 mm/s with a frequency larger than 50 Hz. As expected, blasting more competent rock resulted in higher PPVs. In such cases, reducing the round length from 3.5 m to 2.0 m was an effective means of limiting potential rock mass and support damage.

  8. Source model for blasting vibration

    Institute of Scientific and Technical Information of China (English)

    DING; Hua(丁桦); ZHENG; Zhemin(郑哲敏)

    2002-01-01

    By analyzing and comparing the experimental data, the point source moment theory and the cavity theory, it is concluded that the vibrating signals away from the blasting explosive come mainly from the natural vibrations of the geological structures near the broken blasting area. The source impulses are not spread mainly by the inelastic properties (such as through media damping, as believed to be the case by many researchers) of the medium in the propagation pass, but by this structure. Then an equivalent source model for the blasting vibrations of a fragmenting blasting is proposed, which shows the important role of the impulse of the source's time function under certain conditions. For the purpose of numerical simulation, the model is realized in FEM, The finite element results are in good agreement with the experimental data.

  9. Reliability of Hydrox explosive blasting

    Energy Technology Data Exchange (ETDEWEB)

    Chikunov, V.I.; Chulkov, O.G.; Domanov, V.P.

    1980-03-01

    The safest method of blasting in coal mines with methane and coal dust hazards is with the flameless Hydrox charges. The results of operational tests on Hydrox BV-A2U charges with a I-43 initiator in underground coal mines are discussed. Efficiency and reliability of blasting using Hydrox BV-A2U compared to BV-48 Hydrox charges is evaluated. Results of blasting and the percentage of charge failures are given in tables. It is suggested that BV-A2U Hydrox charges are superior to BV-48, as no charge failures occur, operational time of BV-A2U is up to 5 seconds and the maximum operational time spread is 1.8 sec (weight of initiator 0.05 kg). Blasting properties of BV-A2U are stable and do not change as a result of long storage. (In Russian)

  10. Explosive Blast Neuropathology and Seizures

    Directory of Open Access Journals (Sweden)

    S. Krisztian eKovacs

    2014-04-01

    Full Text Available Traumatic brain injury (TBI due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies.

  11. Numerical Simulation of Fluid Flow in Blast Furnace Hearth

    Institute of Scientific and Technical Information of China (English)

    ZHAO Min-ge; SUN Tian-liang; CHENG Su-sen; GAO Zheng-kai

    2005-01-01

    The liquid flow in blast furnace hearth can result in the erosion of hearth. To prolong the campaign life of blast furnace, the effects of coke bed structure, coke porosity and deepness of taphole on liquid flow in hearth were studied by κ-ε model under different conditions. The results show that with the decrease of coke porosity, the peripheral flow is enhanced. Moreover, the existence of narrow coke free zone and the deepness reduction of taphole can increase the flowability on the bottom of hearth.

  12. Blasting Vibration Generated by Breaking-Blasting Large Barriers with EBBLB

    OpenAIRE

    Wang Zhen-xiong; Gu Wen-bin; Liang Ting; Liu Jian-qing; Xu Jing-lin; Liu Xin

    2016-01-01

    Equipment for breaking and blasting large barriers (EBBLB) is new break-blast equipment, which inevitably induces ground vibration and may cause substantial damage to rock mass and nearby structures as well as human beings. The ground vibration induced by break-blast is one of the inevitable outcomes. By monitoring vibration at measuring points at different distances from blasting center, time history curve of vibrating velocity can be obtained; it can be drawn that blasting seismic waves are...

  13. Design of Blast Resistant Structure

    Directory of Open Access Journals (Sweden)

    C. K. Gautam

    1997-04-01

    Full Text Available A shock blast resistant structure designed, developed and experimentally evaluated by the authors is described. We structure, capable of with standing dynamic loading (12 psi and a static pressure of 1.5 m earth cover due to blast or any other explosion, also gives protection against radiation, chemical and thermal hazards. Some results and details of analysis and experimentation are presented.

  14. Porcine head response to blast

    Directory of Open Access Journals (Sweden)

    Jay eShridharani

    2012-05-01

    Full Text Available Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposed porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110-740 kPa peak incident overpressure with scaled durations from 1.3-6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. The bulk head acceleration and the pressure at the surface of the head and in the cranial cavity were measured. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within thirty seconds and the remaining two recovered within 8 minutes following bagging and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80-685 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300-2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385-3845 G’s and were well correlated with peak incident overpressure (R2=0.90. One standard deviation corridors for the surface pressure, intracranial pressure, and head acceleration are presented to provide experimental data for

  15. Centrifugal shot blast system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    This report describes a demonstration of Concrete cleaning, Inc., modified centrifugal shot blast technology to remove the paint coating from concrete flooring. This demonstration is part of the Chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East (ANL) CP-5 Research Reactor. The purpose of the LSDP is to demonstrate that using innovative and improved decontamination and decommissioning (D and D) technologies from various sources can result in significant benefits, such as decreased cost and increased health and safety, as compared with baseline D and D technologies. Potential markets exist for the innovative centrifugal shot blast system at the following sites: Fernald Environmental Management Project, Los Alamos, Nevada, Oak Ridge Y-12 and K-25, Paducah, Portsmouth Gaseous Diffusion site, and the Savannah River Site. This information is based on a revision to the OST Linkage Tables dated August 4, 1997.

  16. Destabilization analysis of overlapping underground chambers induced by blasting vibration with catastrophe theory

    Institute of Scientific and Technical Information of China (English)

    YAN Chang-bin; XU Guo-yuan; ZUO Yu-jun

    2006-01-01

    According to the main characters of overlapping underground chambers, the roof (floor) of two adjacent underground chambers is simplified to the mechanical model that is the beam with build-in ends. And vibration load due to blasting is simplified to harmonic wave. The catastrophic model of double cusp for underground chambers destabilization induced by blasting vibration has been established under the circumstances of considering deadweight of the beam, and the condition of destabilization has been worked out. The critical safety thickness of the roof (floor) of underground chambers has been confirmed according to the destabilization condition. The influence of amplitude and frequency of blasting vibration load on the critical safety thickness has been analyzed, and the quantitative relation between velocity, frequency of blasting vibration and critical safety thickness has been determined. Research results show that the destabilization of underground chambers is not only dependent on the amplitude and frequency of blasting vibration load, but also related to deadweight load and intrinsic attribute. It is accordant to testing results and some related latest research results of blasting seismic effect. With increasing amplitude, the critical safety thickness of underground chambers decreases gradually. And the possibility of underground chambers destabilization increases. When the frequency of blasting vibration is equal to or very close to the frequency of beam, resonance effect will take place in the system. Then the critical safety thickness will turn to zero, underground chambers will be damaged severely, and its loading capacity will lose on the whole.

  17. Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties

    Institute of Scientific and Technical Information of China (English)

    Ranjan Kumar; Deepankar Choudhury; Kapilesh Bhargava

    2016-01-01

    In the recent decades, effects of blast loads on natural and man-made structures have gained considerable attention due to increase in threat from various man-made activities. Site-specific empirical relationships for calculation of blast-induced vibration parameters like peak particle velocity (PPV) and peak particle displacement (PPD) are commonly used for estimation of blast loads in design. However, these relation-ships are not able to consider the variation in rock parameters and uncertainty of in situ conditions. In this paper, a total of 1089 published blast data of various researchers in different rock sites have been collected and used to propose generalized empirical model for PPV by considering the effects of rock parameters like unit weight, rock quality designation (RQD), geological strength index (GSI), and uniaxial compressive strength (UCS). The proposed PPV model has a good correlation coefficient and hence it can be directly used in prediction of blast-induced vibrations in rocks. Standard errors and coefficient of correlations of the predicted blast-induced vibration parameters are obtained with respect to the observed field data. The proposed empirical model for PPV has also been compared with the empirical models available for blast vibrations predictions given by other researchers and found to be in good agreement with specific cases.

  18. A Thoracic Mechanism of Mild Traumatic Brain Injury Due to Blast Pressure Waves

    CERN Document Server

    Courtney, Amy; 10.1016/j.mehy.2008.08.015

    2008-01-01

    The mechanisms by which blast pressure waves cause mild to moderate traumatic brain injury (mTBI) are an open question. Possibilities include acceleration of the head, direct passage of the blast wave via the cranium, and propagation of the blast wave to the brain via a thoracic mechanism. The hypothesis that the blast pressure wave reaches the brain via a thoracic mechanism is considered in light of ballistic and blast pressure wave research. Ballistic pressure waves, caused by penetrating ballistic projectiles or ballistic impacts to body armor, can only reach the brain via an internal mechanism and have been shown to cause cerebral effects. Similar effects have been documented when a blast pressure wave has been applied to the whole body or focused on the thorax in animal models. While vagotomy reduces apnea and bradycardia due to ballistic or blast pressure waves, it does not eliminate neural damage in the brain, suggesting that the pressure wave directly affects the brain cells via a thoracic mechanism. ...

  19. Effect of Dry-Ice Blasting on Structure and Magnetic Properties of Plasma-Sprayed Fe-40Al Coating from Nanostructured Powders

    Science.gov (United States)

    Song, Bo; Dong, Shujuan; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2014-01-01

    Amorphous and nanocrystalline materials have attracted much interest in the field of new materials design because of their excellent mechanical and physical properties as well as their magnetic properties. In this work, Fe-40Al coatings were prepared from a nanostructured feedstock by atmospheric plasma spray combined with dry-ice blasting. The scanning electron microscopy, x-ray diffraction, tensile test, and magnetic measurements were used to investigate microstructure, phase structure, adhesion, and magnetic properties of the deposited coatings. The results showed that after using dry-ice blasting, the oxidation and porosity decreased and the atmospheric plasma-sprayed Fe-40Al coatings exhibited a soft ferromagnetic character with lower coercivity and higher saturation magnetization due to their lower degree of order. The plasma-sprayed Fe-40Al coating from the nanostructured feedstock has a very high adhesive strength.

  20. 30 CFR 72.610 - Abrasive blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abrasive blasting. 72.610 Section 72.610... HEALTH STANDARDS FOR COAL MINES Miscellaneous § 72.610 Abrasive blasting. (a) Surface and underground mines. When an abrasive blasting operation is performed, all exposed miners shall properly...

  1. 30 CFR 57.6312 - Secondary blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Secondary blasting. 57.6312 Section 57.6312... Transportation-Surface and Underground § 57.6312 Secondary blasting. Secondary blasts fired at the same time in the same work area shall be initiated from one source. Electric Blasting—Surface and Underground...

  2. 30 CFR 58.610 - Abrasive blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Abrasive blasting. 58.610 Section 58.610... SAFETY AND HEALTH HEALTH STANDARDS FOR METAL AND NONMETAL MINES Miscellaneous § 58.610 Abrasive blasting. (a) Surface and underground mines. When an abrasive blasting operation is performed, all...

  3. Nucleotide Base Variation of Blast Disease Resistance Gene Pi33 in Rice Selected Broad Genetic Background

    OpenAIRE

    DWINITA WIKAN UTAMI; KALIA BARNITA; SITI YURIAH; IDA HANARIDA

    2011-01-01

    Rice is one of the most important crops for human beings, thus increasing productivity are continually persecuted. Blast disease can reduce the rate of productivity of rice cultivation. Therefore, the program of blast disease-resistant varieties needs to do effectively. One of broad-spectrum blast disease-resistant gene is Pi33. This study was aimed to identify the variation in the sequence of nucleotide bases of Pi33 gene in five interspesific lines which derived from Bio46 (IR64/Oryza rufip...

  4. Influence of blast furnace gas flow speed on dust deposition characteristics in butterfly valve region

    OpenAIRE

    Wang, Lixin; Wang, Bin; Fengshan HUANG

    2016-01-01

    The blast furnace gas contains plenty of dust, which deposits easily on the bottom of seat sealing surface of the tri-eccentric butterfly valve in the pipeline, causing stuck and damage to the valve plate, thereby affects the production of the blast furnace and brings great economic loss. To derive the influence mechanism of effects of the blast furnace gas flow speed within the pipeline on the dust deposition laws in the butterfly valve region, a 3D model of the butterfly valve and its regio...

  5. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  6. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Science.gov (United States)

    Xie, Kun; Kuang, Hui; Tsien, Joe Z

    2013-01-01

    There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  7. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kun Xie

    Full Text Available There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  8. Prediction of environmental impacts of quarry blasting operation using fuzzy logic.

    Science.gov (United States)

    Fişne, Abdullah; Kuzu, Cengiz; Hüdaverdi, Türker

    2011-03-01

    Blast-induced ground vibration is one of the most important environmental impacts of blasting operations because it may cause severe damage to structures and plants in nearby environment. Estimation of ground vibration levels induced by blasting has vital importance for restricting the environmental effects of blasting operations. Several predictor equations have been proposed by various researchers to predict ground vibration prior to blasting, but these are site specific and not generally applicable beyond the specific conditions. In this study, an attempt has been made to predict the peak particle velocity (PPV) with the help of fuzzy logic approach using parameters of distance from blast face to vibration monitoring point and charge weight per delay. The PPV and charge weight per delay were recorded for 33 blast events at various distances and used for the validation of the proposed fuzzy model. The results of the fuzzy model were also compared with the values obtained from classical regression analysis. The root mean square error estimated for fuzzy-based model was 5.31, whereas it was 11.32 for classical regression-based model. Finally, the relationship between the measured and predicted values of PPV showed that the correlation coefficient for fuzzy model (0.96) is higher than that for regression model (0.82).

  9. Innovative design tool for the optimization of blast-enhanced facade systems

    Directory of Open Access Journals (Sweden)

    Guido Lori

    2015-06-01

    Full Text Available In current blast enhancement design strategies, to resist the effects of an accidental explosion, a facade system is commonly designed to behave in-elastically and undergo large deformations. The large deformation of the facade system leads to high blast energy dissipation, subsequently reducing the blast energy transferred to the main structure. In addition to the blast resistance of the facade system, human injuries due to glass fragmentation within the vicinity of the facade system should also be minimized in order to meet the required safety levels. Overall building safety can be optimized by balancing blast energy dissipation and glass fragmentation. Recently, Permasteelisa Group has developed an innovative design tool to optimize blast-enhanced facades using an equivalent MDOF approach. A novel fragmentation tool has been proposed to assist this design procedure. This paper presents various critical parameters considered in blast-enhanced facade analysis, the experimental validation of these parameters and their influence in the design optimization process.  

  10. Time-frequency characteristics of blasting vibration signals measured in milliseconds

    Institute of Scientific and Technical Information of China (English)

    Zhao Mingsheng; Zhang Jianhua; Yi Changping

    2011-01-01

    In order to study the time-frequency characteristics of blasting vibration signals,measured in milliseconds,we carried out site blasting vibration tests at an open pit of the Jinduicheng Mine.Based on recorded field data and applying a combination of RSPWVD and wavelet,.we analyzed the time-frequency characteristics of recorded field data.summarized the time-frequency characteristics of blasting vibration signals in different frequency bands and present detailed information of blasting vibration signals in milliseconds of high time-frequency resolutions.Because RSPWVD can be seen as of definite physical significance to signal energy distribution in time and frequency domains,we studied the energy distribution of blasting vibration signals for various milliseconds intervals from a perspective of energy distribution.The results indicate that the effect of milliseconds intervals on time-frequency characteristics of blasting vibration signals is significant:the length of delay time directly affects the energy distribution of blasting vibration signals as well as the duration of energy in frequency bands.

  11. 30 CFR 77.1300 - Explosives and blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting. 77.1300 Section 77... Explosives and Blasting § 77.1300 Explosives and blasting. (a) No explosives, blasting agent, detonator, or any other related blasting device or material shall be stored, transported, carried, handled,...

  12. 30 CFR 75.1326 - Examination after blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Examination after blasting. 75.1326 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1326 Examination after blasting. (a) After blasting, the blasting area shall not be entered until it is clear of...

  13. Numerical simulation of stress for the blasting of foundation pit

    Institute of Scientific and Technical Information of China (English)

    FEI Hong-lu; ZHAO Xin-pu

    2008-01-01

    Through the simulation of explicit dynamic analysis software LS-DYNA, made an analysis to the particle velocity and the stress distribution of surrounding rock when the explosives blasting. Explicated the mechanical character of surrounding rock in the foun-dation pit blasting, provided a basis to set of blasting parameters and optimized the blast-ing construction.

  14. Experimental Investigation on the Basic Law of the Fracture Spatial Morphology for Water Pressure Blasting in a Drillhole Under True Triaxial Stress

    Science.gov (United States)

    Huang, Bingxiang; Li, Pengfeng

    2015-07-01

    zones: the blasting shock zone, the axial extension zone, and the orifice influence zone. The explosion shock zone is the range that is directly impacted by the explosive shock waves. The axial extension zone is the axial crack area with uniform width, which is formed when the blasting fracture in the edge of the explosion shock zone extends along the drillhole wall. The extension of the orifice influence zone is very large because the explosion stress waves reflect at the free face and generate tensile stress waves. In the water pressure blasting of the drillhole, the sealing section should be lengthened to allow the drillhole blasting cracks to extend sufficiently under the long-time effect of the blasting stress field of quasi-hydrostatic pressure.

  15. 27 CFR 555.220 - Table of separation distances of ammonium nitrate and blasting agents from explosives or blasting...

    Science.gov (United States)

    2010-04-01

    ... distances of ammonium nitrate and blasting agents from explosives or blasting agents. 555.220 Section 555... ammonium nitrate and blasting agents from explosives or blasting agents. Table: Department of Defense... Blasting agent Minimum thickness of artificial barricades (in.) 100 3 11 12 100 300 4 14 12 300 600 5 18...

  16. Toxicology of blast overpressure.

    Science.gov (United States)

    Elsayed, N M

    1997-07-25

    Blast overpressure (BOP) or high energy impulse noise, is the sharp instantaneous rise in ambient atmospheric pressure resulting from explosive detonation or firing of weapons. Blasts that were once confined to military and to a lesser extent, occupational settings, are becoming more universal as the civilian population is now increasingly at risk of exposure to BOP from terrorist bombings that are occurring worldwide with greater frequency. Exposure to incident BOP waves can cause auditory and non-auditory damage. The primary targets for BOP damage are the hollow organs, ear, lung and gastrointestinal tract. In addition, solid organs such as heart, spleen and brain can also be injured upon exposure. However, the lung is more sensitive to damage and its injury can lead to death. The pathophysiological responses, and mortality have been extensively studied, but little attention, was given to the biochemical manifestations, and molecular mechanism(s) of injury. The injury from BOP has been, generally, attributed to its external physical impact on the body causing internal mechanical damage. However, a new hypothesis has been proposed based on experiments conducted in the Department of Respiratory Research, Walter Reed Army Institute of Research, and later in the Department of Occupational Health, University of Pittsburgh. This hypothesis suggests that subtle biochemical changes namely, free radical-mediated oxidative stress occur and contribute to BOP-induced injury. Understanding the etiology of these changes may shed new light on the molecular mechanism(s) of injury, and can potentially offer new strategies for treatment. In this symposium. BOP research involving auditory, non-auditory, physiological, pathological, behavioral, and biochemical manifestations as well as predictive modeling and current treatment modalities of BOP-induced injury are discussed.

  17. Influence of blast furnace gas flow speed on dust deposition characteristics in butterfly valve region

    Directory of Open Access Journals (Sweden)

    Lixin WANG

    2016-02-01

    Full Text Available The blast furnace gas contains plenty of dust, which deposits easily on the bottom of seat sealing surface of the tri-eccentric butterfly valve in the pipeline, causing stuck and damage to the valve plate, thereby affects the production of the blast furnace and brings great economic loss. To derive the influence mechanism of effects of the blast furnace gas flow speed within the pipeline on the dust deposition laws in the butterfly valve region, a 3D model of the butterfly valve and its regional flow field is built with Pro/E software. Based on FLUENT module of ANSYS Workbench, along with standard k-ε turbulence model and DPM model, simulation analysis of moving trajectories of dust particles in butterfly valve region under 3 blast furnace gas flow speeds is conducted. Results show that the deposition mass of dust particles decreases firstly, then increases with the enlargement of valve plate opening angle under the blast furnace gas flow speed of 8 m/s, while decreases with the enlargement of valve plate opening under the blast furnace gas flow speeds of 12 m/s and 16 m/s. In the case of the valve plate opening angle of 15°, the deposition rate of dust particles increases with the growing of blast furnace gas flow speed, while decreases with the growing of blast furnace gas flow speed under the cases of valve plate opening angle of 45° and 75°. The research results provide a theoretical reference for the development of automatic dust removal system in the butterfly valve region of the blast furnace gas pipeline.

  18. 冲击爆炸作用对核电站安全壳毁伤效应研究的进展%State of Arts of Impact and Blast Effects on the NPPC

    Institute of Scientific and Technical Information of China (English)

    吴昊; 方秦; 龚自明; 赵建魁

    2012-01-01

    For the disastrous results of the released reactive fuel after the damage to the nuclear power plants (NPP), the NPP containment (NPPC) is one of the most potential targets in both military strikes and terroristic activities. In this paper, the state of arts of key scientific problems, which are related to the impact and blast effects of the projectiles and airplanes striking on the NPPC are concluded. It is pointed out that the main focuses in the research of the protective performance of NPPC are: Firstly, the damage effect of double layered reinforced concrete shields and steel liner composite target under the high-speed penetration (perforation) and blast effects of projectile; Secondly, the fine numerical simulations of the dynamic responses of NPPC under the impact of large commercial airplanes, with the consideration of the double-layered structure, concrete model, mass and rigidity distribution of the airplane, impact velocity and location, loading area and etc. ; Thirdly, the damage mechanism of reinforced concrete under coupling effects of impact & blast and fire.%核电站破坏后放射性燃料泄露带来的灾难性后果,使得核电站特别是核反应堆成为军事打击和恐怖袭击的重要目标之一.本文分析总结了核反应堆安全壳因弹体和飞机的冲(撞)击爆炸导致受损所涉及的关键科学问题的国内外研究进展,指出核安全壳体防护效能的研究重点主要在于:弹体“侵彻(贯穿)+爆炸”作用对双层钢筋混凝土和内衬钢板复合核安全壳结构的毁伤效应;综合考虑安全壳体结构、混凝土材料模型、飞机质量与刚度分布、撞击速度和位置、加载面积等因素影响的大型商用飞机撞击核安全壳全过程的精细化数值模拟;冲击爆炸与火荷载多灾场耦合作用下钢筋混凝土核安全壳的损伤破坏机理.

  19. Surface assessment and modification of concrete using abrasive blasting

    Science.gov (United States)

    Millman, Lauren R.

    Composite systems are applied to concrete substrates to strengthen and extend the service life. Successful restoration or rehabilitation requires surface preparation prior to the application of the overlay. Surface coatings, waterproofing systems, and other external surface applications also require surface preparation prior to application. Abrasive blast media is often used to clean and uniformly roughen the substrate. The appropriate surface roughness is necessary to facilitate a strong bond between the existing substrate and overlay. Thus, surface modification using abrasive blast media (sand and dry ice), their respective environmental effects, surface roughness characterization prior to and after blasting, and the adhesion between the substrate and overlay are the focus of this dissertation. This dissertation is comprised of an introduction, a literature review, and four chapters, the first of which addresses the environmental effects due to abrasive blasting using sand, water, and dry ice. The assessment considered four response variables: carbon dioxide (CO2) emissions, fuel and energy consumption, and project duration. The results indicated that for sand blasting and water jetting, the primary factor contributing to environmental detriment was CO22 emissions from vehicular traffic near the construction site. The second chapter is an analysis of the International Concrete Repair Institute's (ICRI) concrete surface profiles (CSPs) using 3-D optical profilometry. The primary objective was to evaluate the suitability of approximating the 3-D surface (areal) parameters with those extracted from 2-D (linear) profiles. Four profile directions were considered: two diagonals, and lines parallel and transverse to the longitudinal direction of the mold. For any CSP mold, the estimation of the 3-D surface roughness using a 2-D linear profile resulted in underestimation and overestimation errors exceeding 50%, demonstrating the inadequacy of 2-D linear profiles to

  20. The Use of Rice Varietal Diversity for Rice Blast Control

    Institute of Scientific and Technical Information of China (English)

    ZHU You-yong; LI Zuo-shen; LU Bao-rong; CHEN Hai-ru; FAN Jing-hua; WANG Yun-yue; LI Yan; FAN Jin-xiang; YANG Shi-sheng; MA Guan-liang; CHEN Jian-bin

    2003-01-01

    Field experiments of mixed- (intercropping) and pure-planting (monoculture) of four rice vari-eties, representing improved hybrid varieties (Shanyou63 and Shanyou22) and high-quality traditional varie-ties (Huangkenuo and Zigu) from Yunnan Province, were conducted based on their differences in genetic back-ground and agro-economical characteristics. The results demonstrated that the mixed-planting of the hybridrice and high-quality traditional rice varieties had a significantly greater effect on controlling rice blast diseasethan the monocuiture of these varieties, particularly the traditional ones. It is evident for the highly suscepti-ble traditional varieties in mixed-planting to achieve disease control, with significant decreases in blast inci-dences and severity indexes. The blast control efficiency reached up to 83 - 98 % under such planting model.This suggests that an appropriate mixed-planting of rice varieties with diverse genetic background and agro-e-conomical characteristics is an effective approach for rice blast control. In addition, resistance of the tradi-tional rice varieties to lodging was considerably increased in the plots with mixed-planting, compared with theplots with monoculture. The average rate of grain-yield increase ranged from 6.5 to 9.7 % in the plots withmixed-planting.

  1. 30 CFR 57.20031 - Blasting underground in hazardous areas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting underground in hazardous areas. 57... MINES Miscellaneous § 57.20031 Blasting underground in hazardous areas. In underground areas where... removed to safe places before blasting....

  2. Gazification of coal dust particles in the blast furnace tuyere apparatus

    Science.gov (United States)

    Shvydky, V. S.; Yaroshenko, Yu G.; Spirin, N. A.; Lavrov, V. V.

    2016-09-01

    The mathematical statement of the problem on gasification of coal dust particles in the blast-furnace tuyere apparatus is given, which includes the motion equation of a variable mass particle, heat equation of a particle and the heat-balance equation of the blast flow. The results of calculations are obtained by using mathematical software packages (Mathcad, Maple). Relatively weak effect of the volatiles combustion process on the thermal state of the tuyere zone is shown.

  3. Analysis of reflected blast wave pressure profiles in a confined room

    OpenAIRE

    Sochet, Isabelle; Sauvan, Pierre-Emmanuel; Trelat, Sophie

    2012-01-01

    International audience; To understand the blast effects of confined explosions, it is necessary to study the characteristic parameters of the blast wave in terms of overpressure, impulse and arrival time. In a previous study, experiments were performed using two different scales of a pyrotechnic workshop. The main purpose of these experiments was to compare the TNT equivalent for solid and gaseous explosives in terms of mass to define a TNT equivalent in a reflection field and to validate the...

  4. On Blasting Design of Quarrying in Yueshan for Exploiting Stone%月山采石场石料开采爆破设计

    Institute of Scientific and Technical Information of China (English)

    李发亮

    2012-01-01

    In this paper, the blasting design of quarrying in Yueshan for exploiting Stone is inU'oduced. Through the selecting design parameters of blasting and due to using presplit blasting, deep hole blasting, millisecond blasting outside hole, delayed blasting inside hole and overburden stripping for once in Yueshan Quarry, the good construction effect is obtained.%文中介绍了月山采石场石料开采爆破设计,通过对爆破设计参数的选择。采用周边预裂爆破及深孔爆破,应用孔外微差孔内延时爆破技术在月山采石场石料开采爆破开挖中采用了保护层一次性开挖。取得了良好的施工效果。

  5. The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis.

    Science.gov (United States)

    Shin, Seung-Il; Lee, Eun-Kwon; Kim, Jeong-Hyun; Lee, Ji-Hun; Kim, Sun-Hee; Kwon, Young-Hyuk; Herr, Yeek; Chung, Jong-Hyuk

    2013-05-01

    The purpose of this study was to evaluate the microscopic changes and surface roughness on hydroxyapatite (HA)-coated implants following exposure to different powers and durations of Er:YAG laser irradiation in order to determine the proper pulse energy level and irradiation time. Ten HA-coated implants and ten fluoride-modified TiO2 implants were used. The implants were divided into a control (one implant) and test group (nine implants) for each implant type. Implants in the test groups were sub-divided into three groups (three implants per group) based on the applied laser pulse energy and irradiation time. The measurement of surface roughness was performed on all implants in the test groups using a white light interferometer before and after laser irradiation. R a values were recorded and compared in order to evaluate changes in surface roughness. For HA-coated implants, the R a values increased in all test groups after laser irradiation. However, mean R a values in the fluoride-modified TiO2-blasted implant test group were decreased after irradiation. There was no statistical difference. Scanning electron microscope analysis revealed surface alterations in both the HA-coated and fluoridated TiO2-blasted implants irradiated for 1.5 min at 100 mJ/pulse, 10 Hz. When the pulse energy and irradiation time increased, greater surface alterations, including surface flattening and microfractures, were observed. In conclusion, the results of the current study suggest that no changes could be observed in both HA-coated implants and fluoride-modified TiO2-blasted implants after irradiation at an intensity of 100 mJ/pulse, 10 Hz for 1 min performed to achieve surface detoxification.

  6. Effect of Rheological Behavior of Particle-Water Suspensions on Properties of Gunned Refractory for Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    CAO Feng; MENG Qing-min; LONG Shi-gang; SUN Jia-lin; HONG Yan-ruo

    2006-01-01

    Study on rheological properties of gunned refractory is an effective way to optimize the quality of repaired layer and gunning operation. The fluidity of refractory was quantitatively evaluated as well as the rheological behavior of refractory particle-water suspensions. The relationship between the fluidity of refractory particle-water suspension and that of gunned refractory, and the relationship between the fluidity and adhesion ability of gunned refractory were studied. The experiments were carried out with a special rheometer and gunning machine. The results show that there is strong influence of some parameters on the rheological behavior of gunned refractory and gunning process. Interactions between particles and water that lead to the formation of gelatinous structures in this suspension are discussed.

  7. Improved BLAST for wireless communications

    Institute of Scientific and Technical Information of China (English)

    Li Yongzhao; Liao Guisheng; Wang Feng

    2006-01-01

    Bell layered space-time architecture (BLAST) is a multi-antenna communication structure with high spectrum efficiency, and it has found wide applications in LANs and WLANs. However, its performance is much poorer than those of other space-time coding approaches. In order to improve its performance, an improved BLAST based on RAKE receiving is investigated. The new system introduces orthogonal spreading sequences (OSS) into the transmitter while retains the basic structure of BLAST. The proposed receiver suppresses interferences from other antennas by the orthogonality contained in the received signals, and extracts information from each receiving antenna by using RAKE receiving principle to construct efficient statistic decision. Simulation results show that the improved system performs well over both frequency-flat and frequency-selective fading channels.

  8. Teknologi Pembuatan Material Shot Blast untuk Mendukung Industri Pengecoran Logam Nasional

    Directory of Open Access Journals (Sweden)

    Fajar Nurjaman

    2009-01-01

    Full Text Available Shot blast material is a supporting material in foundry which is used at surface finishing process of metal casting. Recently, there is no one of national industry that produce shot blast material, in consequence, the purpose of this research is to lessen the dependence of using shot blast material import by making a shot blast material which improve its hardness exceed the shot blast material import. This research use the raw material from scrap iron with the following composition: C (3.2%, Si (1.18%, Mn (6.1%, Cu (0.35%, Fe (88.7%. The scrap is melted in induction furnace untill melt (hot metal, then the hot metal (1200 oC is tilted into a runner which is connected with pan crucible, which is consisted of 107 holes with diameter of each holes is 10 mm. Hot metal that is leave from the holes, is injected by pressurized water 1.1 atm with the velocity 0.8 m/s, untill obtained grains of shot blast material, then these grains goes into the water tank which it has temperature 40oC. From thermodynamic study, to avoid the happening of the explosion that is arising out because the effect of high temperature difference at injection process beetween water and hot metal, hence the comparison value beetween the mass of water and hot metal equal to 1:4.6. From this research is obtained shot blast material Ø0.8-3.2 mm with the metallography structure with martensite domination and dispersion of cementite and a little austenit. The hardness value of this material is 54.8 HRC, where this value is larger than shot blast material import (45-50 HRC. Abstract in Bahasa Indonesia: Material shot blast merupakan material pendukung pengecoran logam yang digunakan pada proses surface finishing benda cor logam. Saat ini belum ada satupun industri nasional yang memproduksi material shot blast, karena itu tujuan penelitian ini untuk mengurangi ketergantungan penggunaan material shot blast impor dengan membuat material shot blast yang nilai kekerasannya melebihi material

  9. Studies on blast traumatic brain injury using in-vitro model with shock tube.

    Science.gov (United States)

    Arun, Peethambaran; Spadaro, John; John, Jennifer; Gharavi, Robert B; Bentley, Timothy B; Nambiar, Madhusoodana P

    2011-06-11

    One of the major limitations in studying the mechanisms of blast-induced traumatic brain injury (bTBI) or screening therapeutics for protection is the lack of suitable laboratory model systems that can closely mimic the complex blast exposure. Although animal models of bTBI that use shock tubes to mimic blast exposure are available, no high throughput shock tube-based in-vitro models have been reported. Here, we report an in-vitro bTBI model using a compressed air-driven shock tube and mouse neuroblastoma/rat glioblastoma hybrid cells (NG108-15) or SH-SY5Y human neuroblastoma cells in tissue culture plates. Our data showed significant neurobiological effects with decreased adenosine triphosphate levels, increased cellular injury, lactate dehydrogenase release, and reactive oxygen species formation after blast exposure.

  10. Skull Flexure from Blast Waves: A New Mechanism for Brain Injury with Implications for Helmet Design

    CERN Document Server

    Moss, William C; Blackman, Eric G

    2008-01-01

    Traumatic brain injury [TBI] has become the signature injury of current military conflicts. The debilitating effects of TBI on society are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various mechanisms, including impacts caused by the blast, have been investigated, but blast-induced deformation of the skull has been neglected. Through the use of hydrodynamical numerical simulations, we have discovered that non-lethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. This mechanism has implications for the diagnosis of TBI in soldiers and the design of protective equipment such as helmets.

  11. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    Science.gov (United States)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  12. The Mechanism and Application of Deep-Hole Precracking Blasting on Rockburst Prevention

    Directory of Open Access Journals (Sweden)

    Zhenhua Ouyang

    2015-01-01

    Full Text Available The mechanism of preventing rockburst through deep-hole precracking blasting was studied based on experimental test, numerical simulation, and field testing. The study results indicate that the deep-hole precracking could change the bursting proneness and stress state of coal-rock mass, thereby preventing the occurrence of rockburst. The bursting proneness of the whole composite structure could be weakened by the deep-hole precracking blasting. The change of stress state in the process of precracking blasting is achieved in two ways: (1 artificially break the roof apart, thus weakening the continuity of the roof strata, effectively inducing the roof caving while reducing its impact strength; and (2 the dynamic shattering and air pressure generated by the blasting can structurally change the properties of the coal-rock mass by mitigating the high stress generation and high elastic energy accumulation, thus breaking the conditions of energy transfer and rock burst occurrence.

  13. Assessment, development, and testing of glass for blast environments.

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Sarah Jill

    2003-06-01

    Glass can have lethal effects including fatalities and injuries when it breaks and then flies through the air under blast loading (''the glass problem''). One goal of this program was to assess the glass problem and solutions being pursued to mitigate it. One solution to the problem is the development of new glass technology that allows the strength and fragmentation to be controlled or selected depending on the blast performance specifications. For example the glass could be weak and fail, or it could be strong and survive, but it must perform reliably. Also, once it fails it should produce fragments of a controlled size. Under certain circumstances it may be beneficial to have very small fragments, in others it may be beneficial to have large fragments that stay together. The second goal of this program was to evaluate the performance (strength, reliability, and fragmentation) of Engineered Stress Profile (ESP) glass under different loading conditions. These included pseudo-static strength and pressure tests and free-field blast tests. The ultimate goal was to provide engineers and architects with a glass whose behavior under blast loading is less lethal. A near-term benefit is a new approach for improving the reliability of glass and modifying its fracture behavior.

  14. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  15. Numerical simulation of armored vehicles subjected to undercarriage landmine blasts

    Science.gov (United States)

    Erdik, A.; Kilic, S. A.; Kilic, N.; Bedir, S.

    2016-07-01

    Landmine threats play a crucial role in the design of armored personnel carriers. Therefore, a reliable blast simulation methodology is valuable to the vehicle design development process. The first part of this study presents a parametric approach for the quantification of the important factors such as the incident overpressure, the reflected overpressure, the incident impulse, and the reflected impulse for the blast simulations that employ the Arbitrary Lagrangian-Eulerian formulation. The effects of mesh resolution, mesh topology, and fluid-structure interaction (FSI) parameters are discussed. The simulation results are compared with the calculations of the more established CONventional WEaPons (CONWEP) approach based on the available experimental data. The initial findings show that the spherical topology provides advantages over the Cartesian mesh domains. Furthermore, the FSI parameters play an important role when coarse Lagrangian finite elements are coupled with fine Eulerian elements at the interface. The optimum mesh topology and the mesh resolution of the parametric study are then used in the landmine blast simulation. The second part of the study presents the experimental blast response of an armored vehicle subjected to a landmine explosion under the front left wheel in accordance with the NATO AEP-55 Standard. The results of the simulations show good agreement with the experimental measurements.

  16. Mechanical assessment of grit blasting surface treatments of dental implants.

    Science.gov (United States)

    Shemtov-Yona, K; Rittel, D; Dorogoy, A

    2014-11-01

    This paper investigates the influence of surface preparation treatments of dental implants on their potential (mechanical) fatigue failure, with emphasis on grit-blasting. The investigation includes limited fatigue testing of implants, showing the relationship between fatigue life and surface damage condition. Those observations are corroborated by a detailed failure analysis of retrieved fracture dental implants. In both cases, the negative effect of embedded alumina particles related to the grit-blasting process is identified. The study also comprises a numerical simulation part of the grit blasting process that reveals, for a given implant material and particle size, the existence of a velocity threshold, below which the rough surface is obtained without damage, and beyond which the creation of significant surface damage will severely reduce the fatigue life, thus increasing fracture probability. The main outcome of this work is that the overall performance of dental implants comprises, in addition to the biological considerations, mechanical reliability aspects. Fatigue fracture is a central issue, and this study shows that uncontrolled surface roughening grit-blasting treatments can induce significant surface damage which accelerate fatigue fracture under certain conditions, even if those treatments are beneficial to the osseointegration process.

  17. Blast Wave Characteristics and Equivalency

    OpenAIRE

    Sochet, Isabelle; Schneider, Helmut

    2010-01-01

    ISBN 978-5-94588-079-5; The characteristics of blast waves generated by detonation of gas clouds are studies theoretically and validated by both small-scale and large-scale experiments with ethylene-air mixtures of different equivalence ratio. The mixtures were confined in hemispherical or spherical balloons made from thin polyethylene foils of 0.75 m³ and 15 m³ in volume. The detonation of gas mixtures was initiated by a solid explosive. The characteristics of the blast wave in terms of over...

  18. Combat Helmets and Blast Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Duncan Wallace

    2012-01-01

    Full Text Available Background: The conflicts in Iraq and Afghanistan and the prominence of traumatic brain injury (TBI, mostly from improvised explosive devices, have focused attention on the effectiveness of combat helmets. Purpose: This paper examines the importance of TBI, the role and history of the development of combat helmets, current helmet designs and effectiveness, helmet design methodology, helmet sensors, future research and recommendations. Method: A literature review was conducted using search terms – combat helmets, traumatic brain injury, concussion, Iraq, Afghanistan and helmet sensors, searching PubMed, MEDLINE, ProQuest and Google Scholar. Conclusions: At present, no existing helmet is able to fully protect against all threats faced on the battlefield. The prominence of traumatic brain injury from improvised explosive devices in the current conflicts in Iraq and Afghanistan has highlighted the limitations in knowledge about blast and how to provide protection from it. As a result, considerable research is currently occurring in how to protect the head from blast over-pressure. Helmet sensors may provide valuable data. Some new combat helmets may be able to protect against rifle rounds, but may result in injuries occurring behind body armour. Optimal combat helmet design requires a balance between the need for protection from trauma and the comfort and practicality of the helmet for the user to ensure the best outcomes.

  19. Study and Analysis on Blasting Lost and Blasting Fallen Phenomenon Based on Joule law%基于焦耳定律对丢炮落炮现象的研究分析

    Institute of Scientific and Technical Information of China (English)

    吕玉芝; 尹兵; 赵明勇

    2016-01-01

    In the mine series blasting operation,a blasting lost and blasting fallen phenomenon often oc-curred and would be an important potential safety danger in the mine mining and excavation opera-tion.Based on the Joule law,an analysis was conducted on the three factors of the current,resistance and time affected to the blasting effect of the blasting network,an analysis was conducted on the blas-ting lost and blasting fallen causes and the countermeasures were provided.The safety blasting could be realized on the certain problems with the certainly analysis,the causes clarified,measures conduc-ted,elimination on the blasting lost and blasting fallen potential danger.%矿山串联爆破作业中,时常出现丢炮、落炮现象,是矿山采掘作业中的重大安全隐患。基于焦耳定律,对影响爆破网路爆破效果的三大因素———电流、电阻和时间进行了分析,对丢炮、落炮原因进行了剖析,并提出了应对办法。即具体问题具体分析,查明原因,采取措施,消除丢炮、落炮隐患,实现安全放炮。

  20. Numerical Simulation of Dynamic Response and Collapse for Steel Frame Structures Subjected to Blast Load

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiuhua; DUAN Zhongdong; ZHANG Chunwei

    2008-01-01

    The progressive collapse of steel frame structures under the blast load was investigated using LS-DYNA.The multi-material Eulerian and Lagrangian coupling algorithm was adopted.A fluid-structure coupling finite element model was established which consists of Lagrange element for simulating steel frame structures and concrete ground,multiple ALE element for simulating air and TNT explosive material.Numerical simulations of the blast pressure wave propagation,structural dynamic responses and deformation,and progressive collapse of a five-story steel frame structure in the event of an explosion near above ground were performed.The numerical analysis showed that the Lagrangian and Eulerian coupling algorithm gave good simulations of the shock wave propagation in the mediums and blast load effects on the structure.The columns subjected to blast load may collapse by shear yielding rather than by flexural deformation.The columns and joints of steel beam to column in the front steel frame structure generated enormous plastic deformation subjected to intensive blast waves,and columns lost carrying capacity,subsequently leading to the collapse of the whole structure.The approach coupling influence between structural deformation and fluid load well simulated the progressive collapse process of structures,and provided an effective tool for analyzing the collapse mechanism of the steel frame structure under blast load.

  1. A Study on Nuclear Blast Overpressure on Buildings and other infrastructures using Geospatial Technology

    Directory of Open Access Journals (Sweden)

    D. Thirumalaivasan

    2012-01-01

    Full Text Available An Improvised Nuclear Device or nuclear bomb of yield 10 kiloton to 20 kiloton explodes in any major city due to terrorism or any other reason can cause catastrophic damages on the building's and other infrastructures and also shutting down of critical life-safety systems.. The explosion may produce blast overpressure, thermal radiation and harmful instant and delayed nuclear radiations. The buildings and other Civil Engineering structures may be highly vulnerabke due to the blast overpressure from the explosion and thermal radiation. In this present study Remote Sensing and Geographical Information System is effectively utilized to model the blast affected zone from the ground Zero of the study area. This study also introduces different emperical methods to estimate blast loads and structural response. The purpose is to describe the blast effects of a nuclear explosion, thereby informing people of the real dangers posed by nuclear weapons. Therefore, as a case study, we consider a hypothetical City as a target for detonation. Due to security reasons the data for existing City is not used for this study purpose. The study area is hypothetically detonated with a 15 kiloton yield nuclear explosion as surface blast and wind spped is assumed as 5 meters per second.

  2. Ritonavir and disulfiram have potential to inhibit caspase-1 mediated inflammation and reduce neurological sequelae after minor blast exposure.

    Science.gov (United States)

    Foley, Kevin; Kast, Richard E; Altschuler, Eric L

    2009-02-01

    Caspase-1 triggers cytokine release following acceleration-induced concussive head injury. Minor blast injury in which no physical tissue injury occurs, results in the release of cytokines in a similar fashion. Ritonavir, a generically available protease inhibitor with a benign short-term side-effect profile, has been shown to inhibit expression of caspase-1. We review the relevant literature and propose that ritonavir may be of benefit in reducing adverse neuropsychiatric outcomes and hastening recovery following mild blast injury. Further research in animal models of blast injury followed by clinical studies would determine whether this therapy is effective.

  3. Mask materials for powder blasting

    NARCIS (Netherlands)

    Wensink, Henk; Jansen, Henri V.; Berenschot, J.W.; Elwenspoek, Miko C.

    2001-01-01

    Powder blasting, or abrasive jet machining (AJM), is a technique in which a particle jet is directed towards a target for mechanical material removal. It is a fast, cheap and accurate directional etch technique for brittle materials such as glass, silicon and ceramics. The particle jet (which expand

  4. Discrete fiber-reinforced polyurea systems for infrastructure strengthening and blast mitigation

    Science.gov (United States)

    Carey, Natalia L.

    The research presented in this dissertation focused on evaluating the effectiveness of various blast mitigation materials and coating technologies to be used for enhancing blast resistance of structural members. Mechanical properties and blast mitigation performance of different discrete fiber-reinforced polyurea (DFRP) systems were investigated through experimental and analytical work. Four technical papers discuss the research efforts conducted within this dissertation. The first paper examined the development and characterization of different DFRP systems for infrastructure strengthening and blast retrofit. The behavior of various systems which consisted of chopped E-glass fibers discretely integrated in with the polyurea matrix was evaluated through coupon tensile testing. The addition of glass fiber to a polymer coating provided improved stiffness and strength to the composite system while the polyurea base material provided ductility. The second paper evaluated the behavior of hybrid, plain, and steel fiber-reinforced concrete panels coated with various polyurea and DFRP systems under blast loading. Hybrid panels demonstrated higher blast mitigation performance compared to plain and steel fiber-reinforced concrete panels due to sacrificial hybrid layer. The addition of plain polyurea or DFRP systems on the tension side improved panel performance by containing fragmentation during a blast event. The third paper presents an analytical investigation conducted using the explicit finite element program LS-DYNA to model panel and coating response under blast loading. Several modeling solutions were undertaken and compared for concrete formulation. Modeling results were analyzed and compared to the experimental work to validate the conclusions. The final paper describes an internal equilibrium mechanics based model developed to predict the flexural capacity of reinforced concrete beams strengthened with various DFRP systems. The developed model was validated using

  5. Blast neurotrauma impairs working memory and disrupts prefrontal myo-inositol levels in rats.

    Science.gov (United States)

    Sajja, Venkata Siva Sai Sujith; Perrine, Shane A; Ghoddoussi, Farhad; Hall, Christina S; Galloway, Matthew P; VandeVord, Pamela J

    2014-03-01

    Working memory, which is dependent on higher-order executive function in the prefrontal cortex, is often disrupted in patients exposed to blast overpressure. In this study, we evaluated working memory and medial prefrontal neurochemical status in a rat model of blast neurotrauma. Adult male Sprague-Dawley rats were anesthetized with 3% isoflurane and exposed to calibrated blast overpressure (17 psi, 117 kPa) while sham animals received only anesthesia. Early neurochemical effects in the prefrontal cortex included a significant decrease in betaine (trimethylglycine) and an increase in GABA at 24 h, and significant increases in glycerophosphorylcholine, phosphorylethanolamine, as well as glutamate/creatine and lactate/creatine ratios at 48 h. Seven days after blast, only myo-inositol levels were altered showing a 15% increase. Compared to controls, short-term memory in the novel object recognition task was significantly impaired in animals exposed to blast overpressure. Working memory in control animals was negatively correlated with myo-inositol levels (r=-.759, pinositol may represent tardive glial scarring in the prefrontal cortex, a notion supported by GFAP changes in this region after blast overexposure as well as clinical reports of increased myo-inositol in disorders of memory.

  6. Numerical Analysis of Blast Furnace Performance Under Charging Iron-Bearing Burdens With High Reducibility

    Institute of Scientific and Technical Information of China (English)

    CHU Man-sheng; GUO Xian-zhen; SHEN Feng-man; YAGI Jun-ichiro; NOGAMI Hiroshi

    2007-01-01

    The reducibility of iron-bearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluated using a multi-fluid blast furnace model. The effects of reaction rate constants and diffusion coefficients were investigated separately or simultaneously for clarifying the variations of furnace state. According to the model simulation results, in the upper zone, the indirect reduction of the burdens proceeds at a faster rate and the shaft efficiency is enhanced with the improvement under the conditions of interface reaction and intra-particle diffusion. In the lower zone, direct reduction in molten slag is restrained. As a consequence, CO utilization of top gas is enhanced and the ratio of direct reduction is decreased. It is possible to achieve higher energy efficiency of the blast furnace, and this is represented by the improvement in productivity and the decrease in consumption of reducing agent. The use of high-reducibility burdens contributes to a better performance of blast furnace. More efforts are necessary to develop and apply high-reducibility sinter and carbon composite agglomerates for practical application at a blast furnace.

  7. Pyramiding blast, bacterial blight and brown planthopper resistance genes in rice restorer lines

    Institute of Scientific and Technical Information of China (English)

    JI Zhi-juan; Yang Shu-dong; ZENG Yu-xiang; LIANG Yan; YANG Chang-deng; QIAN Qian

    2016-01-01

    Rice blast, bacterial blight (BB) and brown planthopper (BPH) are the three main pests of rice. This study investigated pyr-amiding genes resistant to blast, BB and BPH to develop restorer lines. Ten new lines with blast, BB and/or BPH resistance genes were developed using marker-assisted selection (MAS) technique and agronomic trait selection (ATS) method. Only HR13 with resistance genes to blast, BB and BPH was obtained. In addition to blast and BB resistance, four lines (HR39, HR41, HR42, HR43) demonstrated moderate resistance to BPH, but MAS for BPH resistance genes were not conducted in developing these four lines. These data suggested that there were unknown elite BPH resistance genes in the Zhongzu 14 donor parent. A more effective defense was demonstrated in the lines withPi1 andPi2 genes although the weather in 2012 was favorable to disease incidence. Blast resistance of the lines with a single resistance gene,Pita, was easily inlfuenced by the weather. Overal, the information obtained through pyramiding multiple resistance genes on developing the restorer lines is helpful for rice resistance breeding.

  8. A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube.

    Science.gov (United States)

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1-3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68-1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is compared

  9. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  10. Study on the Mechanism of Adhesion Improvement Using Dry-Ice Blasting for Plasma-Sprayed Al2O3 Coatings

    Science.gov (United States)

    Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The mechanisms of adhesion improvement of plasma-sprayed Al2O3 coatings using dry-ice blasting were investigated. In this study, the change of substrate surface characteristics in both the topography and the wettability due to the treatment of dry-ice blasting was mainly studied. The effect of dry-ice blasting on Al2O3 splat morphology with different treatment durations was also examined. The residual stress of plasma-sprayed Al2O3 coatings using dry-ice blasting was measured by curvature method and compared to that of coatings deposited with conventional air cooling. Based on these numerous assessment tests, it could be concluded that the adhesion improvement of Al2O3 coatings could be attributed to the cleaning effect of dry-ice blasting on different organic substances adsorbed on the substrates and the peening effect.

  11. Numerical simulation of stress for the blasting of foundation pit

    Institute of Scientific and Technical Information of China (English)

    FEI Hong-lu; ZHAO Xin-pu

    2008-01-01

    Through the simulation of explicit dynamic analysis software LS-DYNA,made an analysis to the particle velocity and the stress distribution of surrounding rock when the explosives blasting.Explicated the mechanical character of surrounding rock in the foundation pit blasting,provided a basis to set of blasting parameters and optimized the blasting construction.

  12. 30 CFR 56.6605 - Isolation of blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Isolation of blasting circuits. 56.6605 Section... Extraneous Electricity § 56.6605 Isolation of blasting circuits. Lead wires and blasting lines shall be... sources of stray or static electricity. Blasting circuits shall be protected from any contact...

  13. 30 CFR 77.1304 - Blasting agents; special provisions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting agents; special provisions. 77.1304... COAL MINES Explosives and Blasting § 77.1304 Blasting agents; special provisions. (a) Sensitized ammonium nitrate blasting agents, and the components thereof prior to mixing, shall be mixed and stored...

  14. 30 CFR 75.1320 - Multiple-shot blasting.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Multiple-shot blasting. 75.1320 Section 75.1320... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1320 Multiple-shot blasting... periods of 1,000 milliseconds or less shall be used. (d) When blasting in anthracite mines, each...

  15. 30 CFR 56.6306 - Loading, blasting, and security.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Loading, blasting, and security. 56.6306... § 56.6306 Loading, blasting, and security. (a) When explosive materials or initiating systems are... permitted within the blast site shall be those activities directly related to the blasting operation and...

  16. 29 CFR 1926.910 - Inspection after blasting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Inspection after blasting. 1926.910 Section 1926.910 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Blasting and the Use of Explosives § 1926.910 Inspection after blasting. (a) Immediately after the blast has been fired, the firing line shall...

  17. 30 CFR 75.1316 - Preparation before blasting.

    Science.gov (United States)

    2010-07-01

    ... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1316 Preparation... using a blasting multimeter or other instrument specifically designed for such use. (3) The blasting... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Preparation before blasting. 75.1316 Section...

  18. On the application of locally adaptive unstructured grids to the problems of blast wave propagation and attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Timofeev, E.V.; Saito, T.; Takayama, K. [Tohoku Univ., Inst. of Fluid Science, Shock Wave Research Center, Sendai (Japan)]. E-mail: timo@ceres.ifs.tohoku.ac.jp; Voinovich, P.A. [Russian Academy of Sciences, Supercomputer Center at the A.F. Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Galyukov. A.O. [Soft-Impact Ltd., St. Petersburg (Russian Federation); Tahir, R.B.; Molder, S. [Ryerson Polytechnic Univ., Toronto, Ontario (Canada)

    2002-07-01

    The problem of blast wave propagation and attenuation have always been of considerable basic and practical interest. Due to diffraction effects, reflections and possible focusing, blast wave intensity may vary considerably even at the same distance from the explosion center. From the computational point of view, these problems deal typically with computational domains of complex geometry, often requiring the resolution of gas dynamics phenomena having characteristic scales much smaller than the scale of a computational domain. This paper presents experiences and capabilities in applying the above techniques to various practical problems involving blast wave propagation and attenuation.

  19. Evaluation of the interface between bone and titanium surfaces being blasted by aluminium oxide or bioceramic particles.

    Science.gov (United States)

    Müeller, Wolf-Dieter; Gross, Ulrich; Fritz, Thomas; Voigt, Christian; Fischer, Peter; Berger, Georg; Rogaschewski, Sigfried; Lange, Klaus-Peter

    2003-06-01

    The surface structure, in particular the surface roughness, and the surface chemistry of titanium implants influence their anchoring in bone. The aim of this study was to analyse metal-bone contact (MBC) after modification of the implant surface, using different materials for blasting. The surface modification of titanium was produced by blasting it with particles made of Al2O3 or bioceramics. The biological effects were then investigated experimentally using 27 rabbits, analysed after 7, 28 and 84 days after the implantation of titanium cylinders treated accordingly. The MBC showed a tendency for more bone after bioceramics were used as a blasting material, compared to Al2O3.

  20. Blasting tests - airborne and solid-borne sound during conventional drivages; Sprengversuche - Luft- und Koerperschall bei konventionellen Vortrieb

    Energy Technology Data Exchange (ETDEWEB)

    Wietek, Maximilian [V-S-H-VersuchsStollen Hagerbach AG, Flums Hochwies (Switzerland). F und E

    2009-01-29

    To remain competitive it is not sufficient to solve a problem correctly from the technical point of view. The challenges in tunnel drivage go far beyond the mere construction of the fully lined cavity. To reduce sound immission in populated areas during drivage by blasting a series of blasting tests were conducted. Explosives normally used in the VSH were used in the tests. The effect of different blasting variants on the propagation of airborne and solid-borne sound was successfully measured in the tests. Differences in the sound immission and the surface about 60 m above the drivage were also recorded. (orig.)

  1. The propagation of blast pulses through dampened granular media

    Science.gov (United States)

    Badham, Henry; Chalmers, Max; Nguyen, Thuy-Tien Ngoc; Proud, William Graham

    2017-01-01

    The propagation of stress through granular and dampened granular material has been reported previously, the addition of significant amounts of liquid in granular beds causes the mechanism of transmission of blast from one of percolation through the bed pores to one of stress transmission through the granules of the bed. It has been shown, however, that limited amounts liquid can retard propagation within blast-loaded beds by approximately an order of magnitude. This paper presents data on percolation through dampened granular beds using a shock tube as the pressure driver. The effect of particle shape and size was investigated using angular grains of quartz sand as well as smooth glass microspheres. The effect of addition of small amounts of liquids is presented.

  2. Structural concrete elements subjected to air blast loading

    OpenAIRE

    Magnusson, Johan

    2007-01-01

    In the design of structures to resist the effects of air blast loading or other severe dynamic loads it is vital to have large energy absorbing capabilities, and structural elements with large plastic deformation capacities are therefore desirable. Structures need to be designed for ductile response in order to prevent partial or total collapse due to locally failed elements. The research in this thesis considers experimental and theoretical studies on concrete beams of varying concrete stren...

  3. Blast wave attenuation by lightly destructable granular materials

    Science.gov (United States)

    Golub, V. V.; Lu, F. K.; Medin, S. A.; Mirova, O. A.; Parshikov, A. N.; Petukhov, V. A.; Volodin, V. V.

    Terrorist bombings are a dismal reality nowadays. One of the most effective ways for protection against blast overpressure is the use of lightly compacted materials such as sand [1] and aqueous foam [2] as a protective envelope or barrier. According to [1], shock wave attenuation in a mine tunnel (one-dimensional case) behind a destroyed object is given by q_e ≈ q {1}/{1 + 4(S/q)^{1/6} bρ _{mat} /L^{1/3} }where qe — effective charge, S — exposed area of the obstacle, q — TNT equivalent (grams), L — distance between charge and obstacle, b — obstacle thickness and ρ mat — material density. This empirical equation is applicable only in a one-dimensional case but not for a less confined environment. Another way of protecting a structure against blast is to coat the surface with a sacrificial layer. In [3] full-scale experiments were carried out to investigate the behaviour of a covering of aluminum foam under the effect of a blast wave.

  4. Blast mitigation experimental and numerical studies

    CERN Document Server

    2013-01-01

    Presents experimental methods of material and structural response to dynamic blast loads Includes computational analysis of material and structural response to dynamic blast loads Offers mitigation measures for structures in various environments Relates lab experiments to larger field tests Features more than 150 illustrations

  5. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  6. The use of blast furnace slag

    OpenAIRE

    V. Václavík; V. Dirner; T. Dvorský; J. Daxner

    2012-01-01

    The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  7. Fabrication of microstructures by powder blasting

    NARCIS (Netherlands)

    Wensink, Hendrik

    2002-01-01

    This thesis deals with the use of powder blasting as a micromachining technique to create micro systems. Powder blasting is a technology in which small particles, accelerated by an air jet, are directed towards a brittle target for mechanical material removal. It is especially useful for glass machi

  8. Refractory Pellet for Hot Blast Stove

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Peng Xigao

    2011-01-01

    1 Scope This standard specifies the term,definition,classification,specification,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of refractory pellet for hot blast stove.This standard is applicable to refractory pellet for hot blast stove.

  9. FACILITIES PLANNING WORKSHOP FOR BLASTING SUPPORT THE ACTIVITY OF DEVELOPMENT AND REPAIR SHIP IN PT. JASA MARINA INDAH UNIT II

    Directory of Open Access Journals (Sweden)

    Samuel Samuel

    2012-07-01

    Full Text Available Blasting in the process of planning the workshop production of new building and ship repair to play a role in providing blasting and paint on the block that will be of erection. As a result of blasting workshop facilities that do not have resulted in low production capacity that can be achieved by this workshop, namely three block ships per month. Capacity blasting and paint shop in this low resulted in low productivity process stage (stage the previous workshops which of course result in a decrease in vessel productivity in general.                 In penelitiaan aims to plan for blasting and paint shop facility which has been adjusted to the planned production capacity of PT. JASA MARINA INDAH II units.                 In this study it - thing to note is to understand the data - the data field for research conducted in terms of both technical and economic terms, with the blasting and paint shop facilities on the construction or repair of ships that have been planned, then the effectiveness of the work and production flow at. Jasa Marina Indah II units can be known.                 Based on the analysis and calculation of both technical and economical it can be identified by the workshop on the process of blasting Blasting efficiency is obtained for 2.55 hours, at 10.16 hours during the painting process, while economical in terms of labor costs can be reduced blasting cost is Rp.930000    for          paint       and         Rp.1.23million

  10. Acute death of astrocytes in blast-exposed rat organotypic hippocampal slice cultures

    Science.gov (United States)

    Miller, Anna P.; Shah, Alok S.; Aperi, Brandy V.; Kurpad, Shekar N.; Stemper, Brian D.; Glavaski-Joksimovic, Aleksandra

    2017-01-01

    Blast traumatic brain injury (bTBI) affects civilians, soldiers, and veterans worldwide and presents significant health concerns. The mechanisms of neurodegeneration following bTBI remain elusive and current therapies are largely ineffective. It is important to better characterize blast-evoked cellular changes and underlying mechanisms in order to develop more effective therapies. In the present study, our group utilized rat organotypic hippocampal slice cultures (OHCs) as an in vitro system to model bTBI. OHCs were exposed to either 138 ± 22 kPa (low) or 273 ± 23 kPa (high) overpressures using an open-ended helium-driven shock tube, or were assigned to sham control group. At 2 hours (h) following injury, we have characterized the astrocytic response to a blast overpressure. Immunostaining against the astrocytic marker glial fibrillary acidic protein (GFAP) revealed acute shearing and morphological changes in astrocytes, including clasmatodendrosis. Moreover, overlap of GFAP immunostaining and propidium iodide (PI) indicated astrocytic death. Quantification of the number of dead astrocytes per counting area in the hippocampal cornu Ammonis 1 region (CA1), demonstrated a significant increase in dead astrocytes in the low- and high-blast, compared to sham control OHCs. However only a small number of GFAP-expressing astrocytes were co-labeled with the apoptotic marker Annexin V, suggesting necrosis as the primary type of cell death in the acute phase following blast exposure. Moreover, western blot analyses revealed calpain mediated breakdown of GFAP. The dextran exclusion additionally indicated membrane disruption as a potential mechanism of acute astrocytic death. Furthermore, although blast exposure did not evoke significant changes in glutamate transporter 1 (GLT-1) expression, loss of GLT-1-expressing astrocytes suggests dysregulation of glutamate uptake following injury. Our data illustrate the profound effect of blast overpressure on astrocytes in OHCs at 2 h

  11. Safety of collieries blasting operations

    Energy Technology Data Exchange (ETDEWEB)

    Carbonel, P. (Cerchar, 75 - Paris (France))

    1984-01-01

    The slight increase in periodicity of blasting incidents and their nature have led to remind one of the basic safety principles: to reduce the probability of dust and methane ignition by the explosive used or by the shotfiring line; to carefully select the explosive in accordance to the work to be carried out. It is reminded that using an anti-gassy explosive does not necessarily mean that no ignition will occur.

  12. Power Tillers for Demining: Blast Test

    Directory of Open Access Journals (Sweden)

    Emanuela Elisa Cepolina

    2008-11-01

    Full Text Available Power tillers are very simple and versatile machines with large scale diffusion in developing countries, where they are commonly used both for agriculture and for transportation purposes. A new integrated participatory approach that makes use of and improves local end-users knowledge has been used to design a new robotic system for humanitarian demining applications in Sri Lanka, using power tiller as core module. A demining machine composed by a tractor unit, a ground processing tool and a vegetation cutting tool is here presented together with results obtained from the first blast test on the preliminary version of tractor unit armouring. Different breakable connections between wheels and axle have been designed to cause physical detachment and interrupt the transmission of the shock wave released by the explosion of a mine under one wheel. Effects of explosions on different types of wheels and on the chassis have been recorded and commented.

  13. IED blast postconcussive syncope and autonomic dysregulation.

    Science.gov (United States)

    Sams, Richard; LaBrie, D Walter; Norris, Jacob; Schauer, Judy; Frantz, Earl

    2012-01-01

    Concussions are the most frequent battle injury sustained in Afghanistan. The Concussion Restoration Care Center provides multidisciplinary care to concussed service members in theater. The Concussion Restoration Care Center has managed over 500 concussions, the majority being from improvised explosive device (IED) blasts. Syncope following a concussion without a loss of consciousness is rarely reported in the literature. The pathophysiology of concussion from a blast injury may be distinct from a concussion secondary to blunt trauma. Two cases of syncope following concussions with an alteration of consciousness are presented, and a mechanism of action is proposed. Post-IED blast concussive symptom frequency at initial presentation on a cohort of patients is reported, with 1.3% of patients experiencing postconcussive syncope. Syncope following an IED blast may be related to centrally mediated autonomic dysregulation at the brain stem level. Syncope should be added to the list of possible symptoms that occur following concussions, in particular concussions following a blast injury.

  14. Aspects of blast resistant masonry design

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, D.E.

    1989-01-01

    Blast resistant design should be examined for building code incorporation, due to the potential of explosions occurring in an industrial society. Specifically, public and commercial structures of concrete masonry construction need additional building code criteria, since these buildings have high density populations to protect. Presently, blast resistant design is accomplished by using government published manuals, but these do not address industry standard construction. A design air blast load of 4.54 kg (10 lbs) of TNT, located 0.91 m (3 ft) above ground surface and 30.48 m (100 ft) from a structure should be considered standard criteria. This loading would be sufficient to protect against blast, resist progressive failure, and yet not be an economic impediment. Design details and adequate inspection must be observed to ensure blast resistant integrity. 10 refs., 3 figs., 1 tab.

  15. Detonation safety of blasting caps

    Institute of Scientific and Technical Information of China (English)

    谢兴华; 彭小圣

    2002-01-01

    By means of researching into sympathetic detonation of blasting detonators in air, the regular patterns are concluded from blasting detonators interaction with the shock loading. The aerial distribution of initiating ability of detonators looks like a butterfly. The initiating ability mainly consists of shock wave, explosive gases and fliers. But fundamental questions remain. When does shock wave take the leading role? When and how does the explosive gases or the fliers take function? For those questions, there is less quantitative research. Through the theoretic deduction of the overpressure, the energy calculation of fliers and the experiment of sympathetic detonation of detonators, we can learn the sympathetic detonation distances of several kinds of detonators and make an inquiry into the lateral initiating regulations of detonators. So, we can provide the base data for the research into no sympathetic detonation of herd blasting detonators and then control the detonation between them. Then we can make full use of detonators and reduce the frequency of accidents caused by detonators.

  16. The Next Generation BLAST Experiment

    CERN Document Server

    Galitzki, Nicholas; Angilè, Francesco E; Ashton, Peter; Beall, James A; Becker, Dan; Bradford, Kristi J; Che, George; Cho, Hsiao-Mei; Devlin, Mark J; Dober, Bradley J; Fissel, Laura M; Fukui, Yasuo; Gao, Jiansong; Groppi, Christopher E; Hillbrand, Seth; Hilton, Gene C; Hubmayr, Johannes; Irwin, Kent D; Klein, Jeffrey; Van Lanen, Jeff; Li, Dale; Li, Zhi-Yun; Lourie, Nathan P; Mani, Hamdi; Martin, Peter G; Mauskopf, Philip; Nakamura, Fumitaka; Novak, Giles; Pappas, David P; Pascale, Enzo; Pisano, Giampaolo; Santos, Fabio P; Savini, Giorgio; Scott, Douglas; Stanchfield, Sara; Tucker, Carole; Ullom, Joel N; Underhill, Matthew; Vissers, Michael R; Ward-Thompson, Derek

    2014-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was a suborbital experiment designed to map magnetic fields in order to study their role in star formation processes. BLASTPol made detailed polarization maps of a number of molecular clouds during its successful flights from Antarctica in 2010 and 2012. We present the next-generation BLASTPol instrument (BLAST-TNG) that will build off the success of the previous experiment and continue its role as a unique instrument and a test bed for new technologies. With a 16-fold increase in mapping speed, BLAST-TNG will make larger and deeper maps. Major improvements include a 2.5 m carbon fiber mirror that is 40% wider than the BLASTPol mirror and ~3000 polarization sensitive detectors. BLAST-TNG will observe in three bands at 250, 350, and 500 microns. The telescope will serve as a pathfinder project for microwave kinetic inductance detector (MKID) technology, as applied to feedhorn coupled submillimeter detector arrays. The liquid he...

  17. Simulation of the Reflected Blast Wave froma C-4 Charge

    Energy Technology Data Exchange (ETDEWEB)

    Howard, W M; Kuhl, A L; Tringe, J W

    2011-08-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 {micro}m per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 8 ranges (GR = 0, 2, 4, 8, 10, and 12 inches) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 2 inches), which were dominated by jetting effects.

  18. Thermal Spray Coatings for Blast Furnace Tuyere Application

    Science.gov (United States)

    Pathak, A.; Sivakumar, G.; Prusty, D.; Shalini, J.; Dutta, M.; Joshi, S. V.

    2015-12-01

    The components in an integrated steel plant are invariably exposed to harsh working environments involving exposure to high temperatures, corrosive gases, and erosion/wear conditions. One such critical component in the blast furnace is the tuyere, which is prone to thermal damage by splashing of molten metal/slag, erosive damage by falling burden material, and corrosion from the ensuing gases. All the above, collectively or independently, accelerate tuyere failure, which presents a potential explosion hazard in a blast furnace. Recently, thermal spray coatings have emerged as an effective solution to mitigate such severe operational challenges. In the present work, five different coatings deposited using detonation spray and air plasma spray techniques were comprehensively characterized. Performance evaluation involving thermal cycling, hot corrosion, and erosion tests was also carried out. Based on the studies, a coating system was suggested for possible tuyere applications and found to yield substantial improvement in service life during actual field trials.

  19. Damage Assessment for Buried Structures Against Internal Blast Load

    Institute of Scientific and Technical Information of China (English)

    MA Guowei; HUANG Xin; LI Jianchun

    2008-01-01

    The soil-structure interaction(SSI)decoupling is applied to simplify buried structure against internal blast lpad as spring effect.Shear failure.bending failure and Combined failure modes are considered based on five transverse velocity profiles for the rigid-plastic structural element.The critical equations for shear and bending failure are derived respectively.Pressure impulse diagrams are accordingly developed to assess damage of the buried structures against internal blast lpad.Cornparison is done to show influences of soil-structure interaction and shear to-bending strength ratio of a structural element.A case study is conducted to show the application of damage assessment to a reinforced concrete beam element of buried structure.

  20. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    Directory of Open Access Journals (Sweden)

    Chang Qi

    2014-01-01

    Full Text Available It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  1. Dynamic response and optimal design of curved metallic sandwich panels under blast loading.

    Science.gov (United States)

    Qi, Chang; Yang, Shu; Yang, Li-Jun; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a "soft" outer face and a "hard" inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  2. Coke Reactivity in Simulated Blast Furnace Shaft Conditions

    Science.gov (United States)

    Haapakangas, Juho; Suopajärvi, Hannu; Iljana, Mikko; Kemppainen, Antti; Mattila, Olli; Heikkinen, Eetu-Pekka; Samuelsson, Caisa; Fabritius, Timo

    2016-08-01

    Despite the fact that H2 and H2O are always present in the gas atmosphere of a blast furnace shaft, their role in the solution-loss reactions of coke has not been thoroughly examined. This study focuses on how H2 and H2O affect the reaction behavior and whether a strong correlation can be found between reactivity in the conditions of the CRI test (Coke Reactivity Index) and various simulated blast furnace shaft gas atmospheres. Partial replacement of CO/CO2 with H2/H2O was found to significantly increase the reactivity of all seven coke grades at 1373 K (1100 °C). H2 and H2O, however, did not have a significant effect on the threshold temperature of gasification. The reactivity increasing effect was found to be temperature dependent and clearly at its highest at 1373 K (1100 °C). Mathematical models were used to calculate activation energies for the gasification, which were notably lower for H2O gasification compared to CO2 indicating the higher reactivity of H2O. The reactivity results in gas atmospheres with CO2 as the sole gasifying component did not directly correlate with reactivity results in gases also including H2O, which suggests that the widely used CRI test is not entirely accurate for estimating coke reactivity in the blast furnace.

  3. Application of dry-ice blasting for barrels treatment

    Directory of Open Access Journals (Sweden)

    Costantini Antonella

    2015-01-01

    Full Text Available The main aim of this work was to test a dry-ice basting method to regenerate the barriques in order to prolong their life. In addition, this treatment for barrels can also represent an alternative to the use of sulfur dioxide for the barrique sanitization, in line with the guidelines of oenological practices for sustainable development proposed by the OIV (International Organization of Vine and Wine (sustainable development, food security: reduction the content of sulfites in wine. The effect of the blasting with dry ice for the treatment of barrique has been studied from a microbiological and sensory point of view. Microbiological analyses were carried out using wine contaminated with Brettanomyces and Lactobacillus; results showed a reduction of contaminant of 98–100%. Finally, it was evaluated the impact of this treatment on the sensory profile of wine. In this regard the wine aged in a barrique dry-ice blasted was compared with a wine aged in a barrique treated with sulfur dioxide. From the sensory analysis emerged that the dry-ice blasting treatment can regenerate the barriques, this confers to the wine increased notes of vanilla and boisé. The benefits that derive from the use of this method are: a good sanitization of the barrel, a positive impact on the organo- leptic characteristics of the wine and the ability to regenerate and reuse a barrel, with a positive effect on sustainability.

  4. Nonlinear propagation of high-frequency energy from blast waves as it pertains to bat hearing

    Science.gov (United States)

    Loubeau, Alexandra

    Close exposure to blast noise from military weapons training can adversely affect the hearing of both humans and wildlife. One concern is the effect of high-frequency noise from Army weapons training on the hearing of endangered bats. Blast wave propagation measurements were conducted to investigate nonlinear effects on the development of blast waveforms as they propagate from the source. Measurements were made at ranges of 25, 50, and 100 m from the blast. Particular emphasis was placed on observation of rise time variation with distance. Resolving the fine shock structure of blast waves requires robust transducers with high-frequency capability beyond 100 kHz, hence the limitations of traditional microphones and the effect of microphone orientation were investigated. Measurements were made with a wide-bandwidth capacitor microphone for comparison with conventional 3.175-mm (⅛-in.) microphones with and without baffles. The 3.175-mm microphone oriented at 90° to the propagation direction did not have sufficient high-frequency response to capture the actual rise times at a range of 50 m. Microphone baffles eliminate diffraction artifacts on the rise portion of the measured waveform and therefore allow for a more accurate measurement of the blast rise time. The wide-band microphone has an extended high-frequency response and can resolve shorter rise times than conventional microphones. For a source of 0.57 kg (1.25 lb) of C-4 plastic explosive, it was observed that nonlinear effects steepened the waveform, thereby decreasing the shock rise time, from 25 to 50 m. At 100m, the rise times had increased slightly. For comparison to the measured blast waveforms, several models of nonlinear propagation are applied to the problem of finite-amplitude blast wave propagation. Shock front models, such as the Johnson and Hammerton model, and full-waveform marching algorithms, such as the Anderson model, are investigated and compared to experimental results. The models

  5. Effects of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag

    Science.gov (United States)

    Zhang, Li; Zhang, Wu; Zhang, Ju-hua; Li, Guang-qiang

    2016-09-01

    The influences of additives on the phase transformation, occurrence state, and the interface of the Ti component in Ti-bearing blast furnace slag were investigated. After oxidation, most of the Ti component in the slag was enriched into the perovskite phase, which served as the Ti-rich phase during the crystallization process. The phase transformation, occurrence state, and the interface of the Ti component were observed to be affected by the addition of different types of agents. During the oxidation process, titanaugite and Ti-rich diopside phases gradually transformed into non-Ti phases (anorthite: CaMgSi2O6 and CaAl2Si2O8) in the form of dendrites or columns, which were observed to be distributed at the surface of the perovskite phase. Several more cracks appeared along the grain boundaries of the perovskite phase after the addition of P2O5, facilitating the liberation of the perovskite phase. Composite additives combining both an acid and a base, such as CaO + CaF2 or P2O5 + CaF2, were used. We observed that the disadvantages of using single additives were successfully overcome.

  6. Experimental animal models for studies on the mechanisms of blast induced neurotrauma

    Directory of Open Access Journals (Sweden)

    Mårten eRisling

    2012-04-01

    Full Text Available A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED in current military conflicts. Blast induced neurotrauma (BINT is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. BINT is characterized by extreme forces and their complex propagation. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the relative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link

  7. Induced caving by blasting: innovative experiments in blasting gallery panels of underground coal mines of India

    Energy Technology Data Exchange (ETDEWEB)

    Roy, P.P.; Sawmliana, C.; Bhagat, N.K.; Madhu, M. [CMRI, Dhanbad (India). Blasting Dept.

    2003-04-01

    Induced caving by blasting during depillaring of panels in underground coal mines has received limited attention. This technique has become an integral part of a mining operation known as the blasting gallery (BG) method in India. Systematical deep hole (16-30 m) blasting has been successfully carried out from underground split galleries in BG panels. A study of drilling and blasting parameters, gas hazards, strata behaviour and ground vibration was undertaken as part of a research project for the Indian Ministry of Coal and Mines. Strata behaviour during blasting and ground movements were critically investigated. All experiments were conducted using newly developed explosive and detonating cord systems. A new blast damage index is proposed for damage assessment of the underground roof and pillars of BG panels. Useful mathematical formulas are described as an aid to future design.

  8. Damage of the auditory system associated with acute blast trauma.

    Science.gov (United States)

    Roberto, M; Hamernik, R P; Turrentine, G A

    1989-05-01

    This paper reviews the results of several studies on the effects of blast wave exposure on the auditory system of the chinchilla, the pig, and the sheep. The chinchillas were exposed at peak sound pressure levels of approximately 160 dB under well-controlled laboratory conditions. A modified shock tube was used to generate the blast waves. The pigs and sheep were exposed under field conditions in an instrumented hard-walled enclosure. Blast trauma was induced by the impact of a single explosive projectile. The peak sound pressure levels varied between 178 and 209 dB. All animals were killed immediately following exposure, and their temporal bones were removed for fixation and histologic analysis using light microscopy and scanning electron microscopy. Middle ears were examined visually for damage to the conductive system. There were well-defined differences in susceptibility to acoustic trauma among species. However, common findings in each species were the acute mechanical fracture and separation of the organ of Corti from the basilar membrane, and tympanic membrane and ossicular failure.

  9. Blast impact behaviour of concrete with different fibre reinforcement

    Directory of Open Access Journals (Sweden)

    Drdlová Martina

    2015-01-01

    Full Text Available The paper summarizes the results of the development of special concrete intended for the explosion resistance applications, with the emphasis on minimal secondary fragments formation at the explosion. The fine-grained concrete matrix has been reinforced by various types of short dispersed fibers (metallic, mineral and polymer of different sizes and by their combination and the effect of the fibre reinforcement on the physico-mechanical properties and blast resistance was observed. The concrete prism specimens have been subjected to the determination of mechanical parameters (compressive and flexural strength at quasi-static load. The blast tests were conducted on the slab specimens prepared from selected mixtures. The material characteristics and explosion test data have been used for numerical investigation, which defined the optimal wall composition and dimensions of the concrete element which should resist the explosion defined by type, size, weight and placement of the blast. In the next step the test elements resistance was verified by real explosion test.

  10. Soil Stabilisation Using Ground Granulated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Pathak

    2014-05-01

    Full Text Available Stabilisation is a broad sense for the various methods employed and modifying the properties of a soil to improve its engineering performance and used for a variety of engineering works. In today‟s day soil stabilisation is the major problem for civil engineers, either for construction of road and also for increasing the strength or stability of soil and reduces the construction cost. In this thesis the soil are stabilised by ground granulated blast furnace slag (GGBS and this material is obtained from the blast furnace of cement plant, which is the byproduct of iron (from ACC plant, sindri. It is generally obtained in three shaped one is air cooled, foamed shaped and another is in granulated shaped. The use of by-product materials for stabilisation has environmental and economic benefits. Ground granulated blast furnace slag (GGBS material is used in the current work to stabilise soil (clay. The main objectives of this research were to investigate the effect of GGBS on the engineering property (optimum moisture content and maximum dry density, plastic limit, liquid limit, compaction, unconfined compressive strength, triaxial and California bearing ratio test of the soil and determine the engineering properties of the stabilised.

  11. Blast Injuries: From Improvised Explosive Device Blasts to the Boston Marathon Bombing.

    Science.gov (United States)

    Singh, Ajay K; Ditkofsky, Noah G; York, John D; Abujudeh, Hani H; Avery, Laura A; Brunner, John F; Sodickson, Aaron D; Lev, Michael H

    2016-01-01

    Although most trauma centers have experience with the imaging and management of gunshot wounds, in most regions blast wounds such as the ones encountered in terrorist attacks with the use of improvised explosive devices (IEDs) are infrequently encountered outside the battlefield. As global terrorism becomes a greater concern, it is important that radiologists, particularly those working in urban trauma centers, be aware of the mechanisms of injury and the spectrum of primary, secondary, tertiary, and quaternary blast injury patterns. Primary blast injuries are caused by barotrauma from the initial increased pressure of the explosive detonation and the rarefaction of the atmosphere immediately afterward. Secondary blast injuries are caused by debris carried by the blast wind and most often result in penetrating trauma from small shrapnel. Tertiary blast injuries are caused by the physical displacement of the victim and the wide variety of blunt or penetrating trauma sustained as a result of the patient impacting immovable objects such as surrounding cars, walls, or fences. Quaternary blast injuries include all other injuries, such as burns, crush injuries, and inhalational injuries. Radiography is considered the initial imaging modality for assessment of shrapnel and fractures. Computed tomography is the optimal test to assess penetrating chest, abdominal, and head trauma. The mechanism of blast injuries and the imaging experience of the victims of the Boston Marathon bombing are detailed, as well as musculoskeletal, neurologic, gastrointestinal, and pulmonary injury patterns from blast injuries.

  12. Assessment of the Effect of Fungicide and Seed Rate on the Incidence of Leaf Blast (Magnaphorthe Grisea, On the Growth of Foxtail Millet (Setaria Italica (L. P. BEAUV in North-eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Z. G. S. Turaki

    2014-02-01

    Full Text Available In 2007 a multilocational trial was conducted in a split-plot using randomized complete block University of Maiduguri and Gashua Farm station to assess the effects of fungicide and seed rate on the incidence of leaf blast (Magnaphorte grisea, on the growth and yield of foxtail millet in the Northeastern Nigeria. The results showed that the lowest disease incidence of 20.8% and 0.4% were recorded from 100% recorded significantly (P < 0.05 the highest disease incidence of 80.0% and 64.3% at Maiduguri and Gashua respectively. The highest plant height and panicle length were recorded from plants grown at fungicide seed treatment ranging from 80-100% at seed rate of 5.0kg/ha. The lowest plant height and panicle length were obtained from plants grown from the untreated seed tate of 12.5kg/ha and while the lowest grain yields were recorded from untreated seed rate of 5.0kg/h at Maiduguri and Gashua respectively.

  13. Nucleotide Base Variation of Blast Disease Resistance Gene Pi33 in Rice Selected Broad Genetic Background

    Directory of Open Access Journals (Sweden)

    DWINITA WIKAN UTAMI

    2011-09-01

    Full Text Available Rice is one of the most important crops for human beings, thus increasing productivity are continually persecuted. Blast disease can reduce the rate of productivity of rice cultivation. Therefore, the program of blast disease-resistant varieties needs to do effectively. One of broad-spectrum blast disease-resistant gene is Pi33. This study was aimed to identify the variation in the sequence of nucleotide bases of Pi33 gene in five interspesific lines which derived from Bio46 (IR64/Oryza rufipogon and CT13432 crossing. DNA of five rice lines were amplified using the spesific primer for Pi33, G1010. Amplification results purified through Exonuclease 1 and Shrimp Alkaline Phosphatase protocols. Labelling using fluorescent dyes done before sequencing nucleotide base using CEQ8000 instrument. The results showed that lines number 28 showed introgesion of the three control parent genome (subspecies of Indica, subspecies of Japonica, and O. rufipogon while the Lines number 79, 136, and 143 were identical to Indica genome. Strain number 195 was identical to Japonica genome. These broad genetic background lines promise as durable performance to attack the expansion of the dynamic nature of the pathogen to blast. The result of ortholog sequence analysis found conserved nucleotide base sequence (CAGCAGCC which involved in heterotrimeric G-protein group. This protein has role as plant receptor for recognizing pathogen elicitor in interaction of rice and blast pathogen.

  14. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    Science.gov (United States)

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere.

  15. A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting

    Directory of Open Access Journals (Sweden)

    Xiuzhi Shi

    2016-01-01

    Full Text Available Ground vibrations originating from bench blasting may cause damage to slopes, structures, and underground workings in close proximity to an operating open-pit mine. It is important to monitor and predict ground vibration levels induced by blasting and to take measures to reduce their hazardous effects. The aims of this paper are to determine the weaker protection objects by comparatively studying bench blasting induced vibrations obtained at surface and in an underground tunnel in an open-pit mine and thus to seek vibration control methods to protect engineering objects at the site. Vibrations arising from measurement devices at surface and in an underground tunnel at the Zijinshan Open-Pit Mine were obtained. Comparative analysis of the peak particle velocities shows that, in the greatest majority of cases, surface values are higher than underground values for the same vibration distance. The transmission laws of surface and underground vibrations were established depending on the type of rock mass, the explosive charge, and the distance. Compared with the Chinese Safety Regulations for Blasting (GB6722-2014, the bench blasting induced vibrations would not currently cause damage to the underground tunnel. According to the maximum allowable peak particle velocities for different objects, the permitted maximum charges per delay are obtained to reduce damage to these objects at different distances.

  16. NK cell-mediated killing of AML blasts. Role of histamine, monocytes and reactive oxygen metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Brune, M.; Mellqvist, U.H. [Sahlgren`s Univ. Hospital, Dept. of Medicine, Haematology Section, Goeteborg (Sweden); Hansson, M.; Hermodsson, S.; Hellstrand, K. [Sahlgren`s Univ. Hospital, Dept. of Virology, Goeteborg (Sweden)

    1996-10-01

    Blasts recovered from patients with acute myelogenous leukaemia (AML) were lysed by heterologeous natural killer (NK) cells treated with NK cell-activating cytokine-induced killing of AML blasts was inhibited by monocytes, recovered from peripheral blood by counterflow centrifugal elutriation. Histamine, at concentrations exceeding 0.1 {mu}M, abrogated the monocyte-induced inhibition of NK cells; thereby, histamine and IL-2 or histamine and IFN-{alpha} synergistically induced NK cell-mediated destruction of AML blasts. The effect of histamine was completely blocked by the histamine H2-receptor (H2R) antagonist ranitidine but not by its chemical control AH20399AA. Catalase, a scavenger of reactive oxygen metabolites (ROM), reversed the monocyte-induced inhibition of NK cell-mediated killing of blast cells, indicating that the inhibitory signal was mediated by products of the respiratory burst of monocytes. It is concluded that (i) monocytes inhibit anti-leukemic properties of NK cells, (ii) the inhibition is conveyed by monocyte-derived ROM, and (iii) histamine reverses the inhibitory signal and, thereby, synergizes with NK cell-activating cytokines to induce killing of AML blasts. (au) 19 refs.

  17. Gene interactions and genetics of blast resistance and yield attributes in rice (Oryza sativa L.)

    Indian Academy of Sciences (India)

    B. Divya; A. Biswas; S. Robin; R. Rabindran; A. John Joel

    2014-08-01

    Blast disease caused by the pathogen Pyricularia oryzae is a serious threat to rice production. Six generations viz., P1, P2, F1, F2, B1 and B2 of a cross between blast susceptible high-yielding rice cultivar ADT 43 and resistant near isogenic line (NIL) CT13432-3R, carrying four blast resistance genes Pi1, Pi2, Pi33 and Pi54 in combination were used to study the nature and magnitude of gene action for disease resistance and yield attributes. The epistatic interaction model was found adequate to explain the gene action in most of the traits. The interaction was complementary for number of productive tillers, economic yield, lesion number, infected leaf area and potential disease incidence but duplicate epistasis was observed for the remaining traits. Among the genotypes tested under epiphytotic conditions, gene pyramided lines were highly resistant to blast compared to individuals with single genes indicating that the nonallelic genes have a complementary effect when present together. The information on genetics of various contributing traits of resistance will further aid plant breeders in choosing appropriate breeding strategy for blast resistance and yield enhancement in rice.

  18. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Gu Wenbin

    2015-01-01

    Full Text Available Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater drilling blasting was measured in a field experiment. It shows that the water bottom vibration monitor could collect vibration signals quite effectively in underwater environments. The followed signal analysis shows that the characteristics of water bottom vibration and land ground vibration induced by the same underwater drilling blasting are quite different due to the different geological environments. The amplitude and frequency band of water bottom vibration both exceed those of land ground vibration. Water bottom vibration is mainly in low-frequency band that induced by blasting impact directly acts on rock. Besides the low-frequency component, land vibration contains another higher frequency band component that induced by followed water hammer wave acts on bank slope.

  19. Chronic caffeine exposure attenuates blast-induced memory deficit in mice

    Institute of Scientific and Technical Information of China (English)

    Ya-Lei Ning; Nan Yang; Xing Chen; Zi-Ai Zhao; Xiu-Zhu Zhang; Xing-Yun Chen; Ping Li

    2015-01-01

    Objective:To investigate the effects of three different ways of chronic caffeine administration on blastinduced memory dysfunction and to explore the underlying mechanisms.Methods:Adult male C57BL/6 mice were used and randomly divided into five groups:control:without blast exposure,con-water:administrated with water continuously before and after blast-induced traumatic brain injury (bTBI),con-caffeine:administrated with caffeine continuously for 1 month before and after bTBI,pre-caffeine:chronically administrated with caffeine for 1 month before bTBI and withdrawal after bTBI,post-caffeine:chronically administrated with caffeine after bTBI.After being subjected to moderate intensity of blast injury,mice were recorded for learning and memory performance using Morris water maze (MWM) paradigms at 1,4,and 8 weeks post-blast injury.Neurological deficit scoring,glutamate concentration,proinflammatory cytokines production,and neuropathological changes at 24 h,1,4,and 8 weeks post-bTBI were examined to evaluate the brain injury in early and prolonged stages.Adenosine A1 receptor expression was detected using qPCR.Results:All of the three ways of chronic caffeine exposure ameliorated blast-induced memory deficit,which is correlated with the neuroprotective effects against excitotoxicity,inflammation,astrogliosis and neuronal loss at different stages of injury.Continuous caffeine treatment played positive roles in both early and prolonged stages of bTBI;pre-bTBl and post-bTBl treatment of caffeine tended to exert neuroprotective effects at early and prolonged stages of bTBI respectively.Up-regulation of adenosine A1 receptor expression might contribute to the favorable effects of chronic caffeine consumption.Conclusion:Since caffeinated beverages are widely consumed in both civilian and military personnel and are convenient to get,the results may provide a promising prophylactic strategy for blast-induced neurotrauma and the consequent cognitive impairment.

  20. Resistance of Concrete Masonry Walls With Membrane Catcher Systems Subjected to Blast Loading

    Science.gov (United States)

    2010-12-01

    effectiveness of systems comprised of polymers, composites, geotextiles , and thin steel and aluminum sheets has been researched extensively over the past...secondary debris resulting from blast pressure, and the effectiveness of systems comprising polymers, composites, geotextiles , and thin steel and aluminum...wall structure undergoes large transient displacements. Initially, relatively stiff composite laminates and geotextiles were investigated, including

  1. Disruption of caudate working memory activation in chronic blast-related traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary R. Newsome

    2015-01-01

    Full Text Available Mild to moderate traumatic brain injury (TBI due to blast exposure is frequently diagnosed in veterans returning from the wars in Iraq and Afghanistan. However, it is unclear whether neural damage resulting from blast TBI differs from that found in TBI due to blunt-force trauma (e.g., falls and motor vehicle crashes. Little is also known about the effects of blast TBI on neural networks, particularly over the long term. Because impairment in working memory has been linked to blunt-force TBI, the present functional magnetic resonance imaging (fMRI study sought to investigate whether brain activation in response to a working memory task would discriminate blunt-force from blast TBI. Twenty-five veterans (mean age = 29.8 years, standard deviation = 6.01 years, 1 female who incurred TBI due to blast an average of 4.2 years prior to enrollment and 25 civilians (mean age = 27.4 years, standard deviation = 6.68 years, 4 females with TBI due to blunt-force trauma performed the Sternberg Item Recognition Task while undergoing fMRI. The task involved encoding 1, 3, or 5 items in working memory. A group of 25 veterans (mean age = 29.9 years, standard deviation = 5.53 years, 0 females and a group of 25 civilians (mean age = 27.3 years, standard deviation = 5.81 years, 0 females without history of TBI underwent identical imaging procedures and served as controls. Results indicated that the civilian TBI group and both control groups demonstrated a monotonic relationship between working memory set size and activation in the right caudate during encoding, whereas the blast TBI group did not (p < 0.05, corrected for multiple comparisons using False Discovery Rate. Blast TBI was also associated with worse performance on the Sternberg Item Recognition Task relative to the other groups, although no other group differences were found on neuropsychological measures of episodic memory, inhibition, and general processing speed. These results

  2. Blast Wave Experiments at Z

    Science.gov (United States)

    2007-06-01

    radiation flows upward, it passes though a 1.7-mm high, tapered, 25-μm thick gold wall cone that is filled 20 ± 3 mg/cm3 silica aerogel (SiO2). Above...this cone is a 20 ± 3 mg/cm3 silica aerogel filled, 1-mm high, 2.4-mm inner diameter, 25-μm thick gold wall cylinder. On the cylinder rests a 4-mm...diameter gold platform that supports a higher density (40-60 mg/cm3) silica aerogel . This aerogel is the region where the blast wave forms after

  3. Peak Overpressures for Internal Blast

    Science.gov (United States)

    1979-06-01

    condensed into relatively simple algebraic equa- tions for the (logarithm of the) equilibrium constant of formation as a function of absolute...blast for three conventional fuels-benzene, JP-4 (a hydrocarbon fuel with an empirical formula C9H17 ), and ethylene oxide-are plotted as a function of...256 .26 9.4 6.36 2166 7.89 2666 .27 Cubica . 9.5 6.66 2244 7.91 2591 .13 0.028 9.7 6.51 2197 7.97 2801 .19 9.9 6.17 2090 8.01 2607 .23 9.9 7.59 2495

  4. BLAST-EXPLORER helps you building datasets for phylogenetic analysis

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2010-01-01

    Full Text Available Abstract Background The right sampling of homologous sequences for phylogenetic or molecular evolution analyses is a crucial step, the quality of which can have a significant impact on the final interpretation of the study. There is no single way for constructing datasets suitable for phylogenetic analysis, because this task intimately depends on the scientific question we want to address, Moreover, database mining softwares such as BLAST which are routinely used for searching homologous sequences are not specifically optimized for this task. Results To fill this gap, we designed BLAST-Explorer, an original and friendly web-based application that combines a BLAST search with a suite of tools that allows interactive, phylogenetic-oriented exploration of the BLAST results and flexible selection of homologous sequences among the BLAST hits. Once the selection of the BLAST hits is done using BLAST-Explorer, the corresponding sequence can be imported locally for external analysis or passed to the phylogenetic tree reconstruction pipelines available on the Phylogeny.fr platform. Conclusions BLAST-Explorer provides a simple, intuitive and interactive graphical representation of the BLAST results and allows selection and retrieving of the BLAST hit sequences based a wide range of criterions. Although BLAST-Explorer primarily aims at helping the construction of sequence datasets for further phylogenetic study, it can also be used as a standard BLAST server with enriched output. BLAST-Explorer is available at http://www.phylogeny.fr

  5. Energy spectrum analysis of blast waves based on an improved Hilbert-Huang transform

    Science.gov (United States)

    Li, L.; Wang, F.; Shang, F.; Jia, Y.; Zhao, C.; Kong, D.

    2016-07-01

    Using the improved Hilbert-Huang transform (HHT), this paper investigates the problems of analysis and interpretation of the energy spectrum of a blast wave. It has been previously established that the energy spectrum is an effective feature by which to characterize a blast wave. In fact, the higher the energy spectra in a frequency band of a blast wave, the greater the damage to a target in the same frequency band. However, most current research focuses on analyzing wave signals in the time domain or frequency domain rather than considering the energy spectrum. We propose here an improved HHT method combined with a wavelet packet to extract the energy spectrum feature of a blast wave. When applying the HHT, the signal is first roughly decomposed into a series of intrinsic mode functions (IMFs) by empirical mode decomposition. The wavelet packet method is then performed on each IMF to eliminate noise on the energy spectrum. Second, a coefficient is introduced to remove unrelated IMFs. The energy of each instantaneous frequency can be derived through the Hilbert transform. The energy spectrum can then be obtained by adding up all the components after the wavelet packet filters and screens them through a coefficient to obtain the effective IMFs. The effectiveness of the proposed method is demonstrated by 12 groups of experimental data, and an energy attenuation model is established based on the experimental data. The improved HHT is a precise method for blast wave signal analysis. For other shock wave signals from blasting experiments, an energy frequency time distribution and energy spectrum can also be obtained through this method, allowing for more practical applications.

  6. Skull flexure from blast waves: a mechanism for brain injury with implications for helmet design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-14

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts. The debilitating effects of TBI are long-lasting and costly. Although the mechanisms by which impacts cause TBI have been well researched, the mechanisms by which blasts cause TBI are not understood. Various possibilities have been investigated, but blast-induced deformation of the skull has been neglected. From numerical hydrodynamic simulations, we have discovered that nonlethal blasts can induce sufficient flexure of the skull to generate potentially damaging loads in the brain, even if no impact occurs. The possibility that this mechanism may contribute to TBI has implications for the diagnosis of soldiers and the design of protective equipment such as helmets.

  7. Replacement of Natural Fine Aggregate With Air Cooled Blast Furnace Slag An Industrial By Product

    Directory of Open Access Journals (Sweden)

    Dr. B. Krishna Rao

    2015-07-01

    Full Text Available The aim of the investigation is to replace natural fine aggregatewith Air Cooled Blast Furnace Slag in OPC concrete. At present, nearly million tons of slag is being produced in the steel plants, in India. The generation of slag would be dual problem in disposal difficulty and environmental pollution. Some strategies should be used to utilize the slag effectively. Considering physical properties of metallurgical slags and a series of possibilities for their use in the field of civil constructions, this report demonstrates the possibilities of using air cooled blast furnace slag as partial replacement of sand in concrete. A total of five concrete mixes, containing 0%, 12.5%, 25%, 37.5% and 50% partial replacement of regular sand with air cooled blast furnace slag are investigated in the laboratory. These mixes were tested to determine axial compressive strength, split tensile strength, and flexural strength for 7days, 28days, 56days and 90days.

  8. Analysis of reflected blast wave pressure profiles in a confined room

    Science.gov (United States)

    Sauvan, P. E.; Sochet, I.; Trélat, S.

    2012-05-01

    To understand the blast effects of confined explosions, it is necessary to study the characteristic parameters of the blast wave in terms of overpressure, impulse and arrival time. In a previous study, experiments were performed using two different scales of a pyrotechnic workshop. The main purpose of these experiments was to compare the TNT equivalent for solid and gaseous explosives in terms of mass to define a TNT equivalent in a reflection field and to validate the similitude between real and small scales. To study the interactions and propagations of the reflected shock waves, the present study was conducted by progressively building a confined volume around the charge. In this way, the influence of each wall and the origins of the reflected shock waves can be determined. The purpose of this paper is to report the blast wave interactions that resulted from the detonation of a stoichiometric propane-oxygen mixture in a confined room.

  9. Osteoblast response on Ti- and Zr-based bulk metallic glass surfaces after sand blasting modification.

    Science.gov (United States)

    Li, H F; Wang, Y B; Zheng, Y F; Lin, J P

    2012-10-01

    The present study aimed to evaluate the osteoblast response on Ti- and Zr-based BMG surfaces sand blasted with different grit corundums for implant application, with mechanically polished disks before sand blasting as control groups. The surface properties were characterized by scanning electron microscopy (SEM), contact angle, and roughness measurements. Further evaluation of the surface bioactivity was conducted by MG63 cell attachment, proliferation, morphology, and alkaline phosphatase (ALP) activity on the sample surfaces. It was found that corundum sand blasting surfaces significantly increased the surface wettability and MG63 cell attachment, cell proliferation, and ALP activity in comparison with the control group surfaces. Besides, the sample surface treated by large grit corundum is more favorable for cell attachment, proliferation, and differentiation than samples treated by small grit corundum, indicating that it might be effective for improving implant osseointegration in vivo.

  10. Investigating the feasibility of using a grit blasting process to coat nitinol stents with hydroxyapatite.

    Science.gov (United States)

    Keady, F; Murphy, B P

    2013-01-01

    This study investigates the feasibility of utilising a grit blasting process to coat three nitinol substrates (a planer 2D surface, a circular wire and a cardiovascular stent geometry) with a hydroxyapatite coating. Surface characteristics of the coating on the three substrates were determined and additionally the durability of the coating post fatigue testing was analysed. The coating process resulted in a consistent covering of the substrate that resulted in an extremely hydrophilic stent surface. The surface roughness was dependant on grit blasting particle size. A general trend of smaller particle size resulted in a lower surface roughness, while particle size did not have an effect on the hydroxyapatite coating thickness. Fatigue integrity tests that simulated 16 months implantation demonstrated minimal damage to the coating. In conclusion we demonstrated the initial feasibility of using a grit blasting method to produce a consistent, hydrophilic, and durable HAp stent coating that has the capability of incorporating a drug eluting function.

  11. Blast Load Input Estimation of the Medium Girder Bridgeusing Inverse Method

    Directory of Open Access Journals (Sweden)

    Ming-Hui Lee

    2008-01-01

    Full Text Available Innovative adaptive weighted input estimation inverse methodology for estimating theunknown time-varying blast loads on the truss structure system is presented. This method isbased on the Kalman filter and the recursive least square estimator (RLSE. The filter models thesystem dynamics in a linear set of state equations. The state equations of the truss structureare constructed using the finite element method. The input blast loads of the truss structuresystem are inverse estimated from the system responses measured at two distinct nodes. Thiswork presents an efficient weighting factor  applied in the RLSE, which is capable of providinga reasonable estimation results. The results obtained from the simulations show that the methodis effective in estimating input blast loads, so has great stability and precision.Defence Science Journal, 2008, 58(1, pp.46-56, DOI:http://dx.doi.org/10.14429/dsj.58.1622

  12. Blast furnace granular coal injection at Bethlehem Steel's Burns Harbor Plant

    Energy Technology Data Exchange (ETDEWEB)

    D. Gregory Hill; Leo I.E. Makovsky; Thomas A. Sarkus; Howard G. McIlvried [Bethlehem Steel Corporation, Chesterton, IN (USA)

    2004-03-01

    The paper discusses the demonstration of the British Steel/CPC-Macawber Blast Furnace Granular Coal Injection (BFGCI) technology that was installed on the blast furnaces at Bethlehem Steel's Burns Harbor Plant in Indiana as a highly successful Clean Coal Technology project, cofunded by the U.S. Department of Energy. In the BFGCI process, granular coal (10%-30% through a 200-mesh screen) is injected into a blast furnace as a fuel supplement to decrease coke requirements, thus reducing costs. Tests run to determine the effect of process variables on furnace operations showed that granular coal works as well as pulverized coal and is easier to handle and cheaper to produce because of reduced grinding costs.

  13. The Balloon-borne Large Aperture Submillimetre Telescope (BLAST) and BLASTPol

    Science.gov (United States)

    Pascale, Enzo; Pascale

    2013-01-01

    Balloon observations from Antarctica have proven an effective and efficient way to address open Cosmological questions as well as problems in Galactic astronomy. The Balloon-borne Large Aperture Submillimetre Telescope (BLAST) is a sub-orbital mapping experiment which uses 270 bolometric detectors to image the sky in three wavebands centred at 250, 350 and 500 μm with a 1.8 m telescope. In the years before Herschel launched, BLAST provided data of unprecedented angular and spectral coverage in frequency bands close to the peak of dust emission in star forming regions in our Galaxy, and in galaxies at cosmological distances. More recently, BLASTPol was obtained by reconfiguring the BLAST focal plane as a submillimetric polarimeter to study the role that Galactic magnetic fields have in regulating the processes of star-formation. The first and successful BLASTPol flight from Antarctica in 2010 is followed by a second flight, currently scheduled for the end of 2012.

  14. CO2 emission optimization for a blast furnace considering plastic injection

    Directory of Open Access Journals (Sweden)

    Xiong Liu, Xiaoyong Qin, Lingen Chen, Fengrui Sun

    2015-01-01

    Full Text Available An optimization model based on mass balance and energy balance for a blast furnace process is established by using a nonlinear programming method. The model takes the minimum CO2 emission of a blast furnace as optimization objective function, and takes plastic injection or pulverized coal injection into account. The model includes sixteen optimal design variables, six linear equality constraints, one linear inequality constraint, six nonlinear equality constraints, one nonlinear inequality constraint, and thirteen upper and lower bound constraints of optimal design variables. The optimization results are obtained by using the Sequential Quadratic Programming (SQP method. Comparative analyses for the effects of plastic injection and pulverized coal injection on the CO2 emission of a blast furnace are performed.

  15. Oxidation Control of Atmospheric Plasma Sprayed FeAl Intermetallic Coatings Using Dry-Ice Blasting

    Science.gov (United States)

    Song, Bo; Dong, Shujuan; Coddet, Pierre; Hansz, Bernard; Grosdidier, Thierry; Liao, Hanlin; Coddet, Christian

    2013-03-01

    The performance of atmospheric plasma sprayed FeAl coatings has been remarkably limited because of oxidation and phase transformation during the high-temperature process of preparation. In the present work, FeAl intermetallic coatings were prepared by atmospheric plasma spraying combined with dry-ice blasting. The microstructure, oxidation, porosity, and surface roughness of FeAl intermetallic coatings were investigated. The results show that a denser FeAl coating with a lower content of oxide and lower degree of phase transformation can be achieved because of the cryogenic, the cleaning, and the mechanical effects of dry-ice blasting. The surface roughness value decreased, and the adhesive strength of FeAl coating increased after the application of dry-ice blasting during the atmospheric plasma spraying process. Moreover, the microhardness of the FeAl coating increased by 72%, due to the lower porosity and higher dislocation density.

  16. Basic Local Alignment Search Tool (BLAST)

    Data.gov (United States)

    U.S. Department of Health & Human Services — BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the...

  17. Anhydrous Taphole Mix for Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyan

    2010-01-01

    @@ 1 Scope This standard specifies the term,definition,brand,label,technical requirements,test methods,quality appraisal procedures,packing,marking,transportation,storage,and quality certificate of anhydrous taphole mix for blast furnace.

  18. Kaolinite Refractory Bricks for Blast Furnaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ This standard is suitable to the fireclay bricks for blast furnace. 1 Classification, Shape and Dimension 1 According to physical and chemical indexes, the brick can be divided into two trademarks: ZGN-42 and GN-42.

  19. Blast vulnerability assessment : challenges and myths

    Energy Technology Data Exchange (ETDEWEB)

    Braimah, A.; Contestabile, E. [Natural Resources Canada, Ottawa, ON (Canada). Canadian Explosives Research Laboratory

    2007-07-01

    Challenges related to the creation of a comprehensive blast vulnerability assessment program for Canadian buildings was presented. Many building owners are now seeking to assess the vulnerability of their structures to blast loads, and wish to increase the survivability of both occupants and structures. However, the engineering community has not yet incorporated existing physical security measures into comprehensive mitigation strategies and designs. Different institutions are currently using varying amounts of explosives in vulnerability assessments, and there is an urgent need for information on terrorist capabilities in both the present and the future. Pressure-impulse diagrams are now used by engineers to assess component responses to blasts. However, pressure-impulse diagrams are based on single modes of failure, and may not be capable of capturing all failure modes of building components, nor are they able to ensure that vulnerability assessments do not overestimate the blast load resistance of buildings.

  20. Silica Brick for Hot Blast Stove

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 1 Scope This standard specifies the glossary and definition, marking, shape and dimension, technical requirements, test method, quality appraisal procedure, packing, label, transportation, storage and quality certification of silica brick for hot blast stove.

  1. Fireclay Refractory Bricks for Hot Blast Stove

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Zhang Yongfang; Chai Junlan

    2008-01-01

    @@ 1 Scope This standard specifies the classification, shape, dimension, technical requirements, test method,inspection rules, packing, marking,transportation,storage and quality certification of fireclay refractory bricks for hot blast stove.

  2. Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice.

    Science.gov (United States)

    Guo, Changjiang; Sun, Xiaoguang; Chen, Xiao; Yang, Sihai; Li, Jing; Wang, Long; Zhang, Xiaohui

    2016-01-01

    Most rice blast resistance genes (R-genes) encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. Our previous study has shown that more rice blast R-genes can be cloned in rapidly evolving NBS-LRR gene families. In the present study, two rapidly evolving R-gene families in rice were selected for cloning a subset of genes from their paralogs in three resistant rice lines. A total of eight functional blast R-genes were identified among nine NBS-LRR genes, and some of these showed resistance to three or more blast strains. Evolutionary analysis indicated that high nucleotide diversity of coding regions served as important parameters in the determination of gene resistance. We also observed that amino-acid variants (nonsynonymous mutations, insertions, or deletions) in essential motifs of the NBS domain contribute to the blast resistance capacity of NBS-LRR genes. These results suggested that the NBS regions might also play an important role in resistance specificity determination. On the other hand, different splicing patterns of introns were commonly observed in R-genes. The results of the present study contribute to improving the effectiveness of R-gene identification by using evolutionary analysis method and acquisition of novel blast resistance genes.

  3. The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms.

    Directory of Open Access Journals (Sweden)

    Amy eCourtney

    2015-10-01

    Full Text Available Primary blast induced traumatic brain injury (bTBI is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs which isolate a single injury mechanism.

  4. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  5. Design and commissioning of a semi-confined blast chamber

    Institute of Scientific and Technical Information of China (English)

    I.M. SNYMAN; F.J. MOSTERT; W. GRUNDLING

    2016-01-01

    This paper presents the design, test and analysis of a scaled cylindrical blast chamber. The blast chamber is a one-fifth dimensional size replica of the full-scale blast chamber (Emily). The blast chamber is semi-confined as one end is open. The scaled blast chamber is used to test concepts for closing the open end and allows the gas to vent at the same time. ANSYS AUTODYN calculated the pressure time histories for different closure scenarios. Comparing the results suggested a viable scenario, namely a structure consisting of a circular disc and a frame positioned at the open end of the blast chamber. The structure and cylindrical blast chamber were subjected to scaled blast tests and the pressure results are presented and discussed.

  6. Brain Injury Risk from Primary Blast

    Science.gov (United States)

    2012-02-29

    injury has been studied extensively in air-containing organs such as the lungs , gastrointestinal tract, and ear due to their increased...veterans (Owens, 2008). Primary blast injury has been studied extensively in air-containing organs such as the lungs , gastrointestinal tract, and ear... contusions typically on or around the brainstem though there were no skull fractures for any blast intensity. Risk functions were developed that

  7. Reduction of sidewall inclination and blast lag of powder blasted channels

    NARCIS (Netherlands)

    Wensink, Henk; Elwenspoek, Miko C.

    2002-01-01

    Powder blasting (abrasive jet machining) is a fast directional machining technique for brittle materials like silicon and glass. The cross-section of a powder blasted channel has a rounded V-shape. These inclined sidewalls are caused by the typical impact angle dependent removal rate for brittle mat

  8. Application of Active and Passive Blasting Vibration Control Technology in Underwater Drilling Blasting%爆破振动主动与被动控制技术在水下钻孔爆破中的应用

    Institute of Scientific and Technical Information of China (English)

    李红勇; 吴立; 代显华; 苏莹; 肖山; 叶小敏

    2016-01-01

    为使水下钻孔爆破振动控制达到最佳效果,以重庆长江果园港港池爆破开挖工程为依托,将主动与被动控制技术联合运用于临近高桩码头的爆破振动控制实践中。采用Sadaovsk公式对质点振速进行初估,确定爆破振动控制的必要性。基于主动控制与被动控制理论,从减震孔、爆破监测、起爆方式和堵塞措施等方面,确定具体爆破振动控制方案。采用考虑高差因素影响的振速修正公式,对临近高桩码头实际爆破监测数据进行回归分析,与理论值对比可知,现场爆破振动控制措施合理,爆破效果安全高效,为今后类似工程提供了可借鉴的经验。%To obtain the good effect on the vibration controlling of underwater drilling blasting,the active and passive control technology were applied near high-pile wharf in the blasting excavation engineering in Orchard harbor basin over the Chongqing Yangtze River. The blasting vibration velocity was preliminarily estimated through the Sada-ovsk formula,which ensured the necessity of blasting vibration control. Based on the theory of active and passive blas-ting vibration controlling,the scheme of blasting vibration controlling was confirmed through several aspects,including damping hole,blasting monitoring,detonating mode and stemming measures. According to the actual blasting monito-ring data,the regression analysis was conducted to calculate the vibration velocity of the high-pile wharf with the the corrected formula,where the altitude effect was taken into consideration. Comparing the value with the theoretical val-ue,conclusion is drawn that the blasting vibration control measures were reasonable and the blasting effect was effi-cient and safe enough.

  9. Information modeling system for blast furnace control

    Science.gov (United States)

    Spirin, N. A.; Gileva, L. Y.; Lavrov, V. V.

    2016-09-01

    Modern Iron & Steel Works as a rule are equipped with powerful distributed control systems (DCS) and databases. Implementation of DSC system solves the problem of storage, control, protection, entry, editing and retrieving of information as well as generation of required reporting data. The most advanced and promising approach is to use decision support information technologies based on a complex of mathematical models. The model decision support system for control of blast furnace smelting is designed and operated. The basis of the model system is a complex of mathematical models created using the principle of natural mathematical modeling. This principle provides for construction of mathematical models of two levels. The first level model is a basic state model which makes it possible to assess the vector of system parameters using field data and blast furnace operation results. It is also used to calculate the adjustment (adaptation) coefficients of the predictive block of the system. The second-level model is a predictive model designed to assess the design parameters of the blast furnace process when there are changes in melting conditions relative to its current state. Tasks for which software is developed are described. Characteristics of the main subsystems of the blast furnace process as an object of modeling and control - thermal state of the furnace, blast, gas dynamic and slag conditions of blast furnace smelting - are presented.

  10. Comparison of Some Blast Vibration Predictors for Blasting in Underground Drifts and Some Observations

    Science.gov (United States)

    Bhagwat, Vaibhab Pramod; Dey, Kaushik

    2016-04-01

    Drilling and blasting are the most economical excavation techniques in underground drifts driven through hard rock formation. Burn cut is the most popular drill pattern, used in this case, to achieve longer advance per blast round. The ground vibration generated due to the propagation of blast waves on the detonation of explosive during blasting is the principal cause for structural and rock damage. Thus, ground vibration is a point of concern for the blasting engineers. The ground vibration from a blast is measured using a seismograph placed at the blast monitoring station. The measured vibrations, in terms of peak particle velocity, are related to the maximum charge detonated at one instant and the distance of seismograph from the blast point. The ground vibrations from a number of blast rounds of varying charge/delay and distances are monitored. A number of scaling factors of these dependencies (viz. Distance and maximum charge/delay) have been proposed by different researchers, namely, square root, cube root, CMRI, Langefors and Kihlstrom, Ghosh-Daemon, Indian standard etc. Scaling factors of desired type are computed for all the measured blast rounds. Regression analysis is carried out between the scaling factors and peak particle velocities to establish the coefficients of the vibration predictor equation. Then, the developed predictor equation is used for designing the blast henceforth. Director General of Mine Safety, India, specified that ground vibrations from eight to ten blast rounds of varying charge/delay and distances should be monitored to develop a predictor equation; however, there is no guideline about the type of scaling factor to be used. Further to this, from the statistical point of view, a regression analysis on a small sample population cannot be accepted without the testing of hypothesis. To show the importance of the above, in this paper, seven scaling factors are considered for blast data set of a hard-rock underground drift using burn

  11. VRPI Temporal Progression of Closed Globe Injury from Blast Exposure

    Science.gov (United States)

    2015-09-01

    Experimental animals were separated into three survival time groups: 1 day, 1 week and 4 week. Before the blast exposure was performed, each animal ...150µL was reached. The sample was then separated into three equal tubes. FIGURE 1. PRESSURE-TIME HISTORY AT LOCATION OF ANIMAL PLACEMENT WITHIN BLAST...have found that the behaviorally assessed visual acuity of blast exposed animals is significantly degraded following blast exposure. The decrease in

  12. 30 CFR 57.6605 - Isolation of blasting circuits.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Isolation of blasting circuits. 57.6605 Section... Extraneous Electricity-Surface and Underground § 57.6605 Isolation of blasting circuits. Lead wires and... shall be protected from sources of stray or static electricity. Blasting circuits shall be...

  13. Spreading of sediment due to underwater blasting and dredging

    DEFF Research Database (Denmark)

    Nielsen, Morten Holtegaard; Bach, Lis; Bollwerk, Sandra

    2015-01-01

    impacts of suspended sediment from underwater blasting, which could include coverage of the benthos or increased turbidity, can be managed by timing the blast favourably relative to currents, waves and stratification. It is argued that the environmental impact of blasting can be minimized by decreasing...

  14. 30 CFR 56.6300 - Control of blasting operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of blasting operations. 56.6300 Section... § 56.6300 Control of blasting operations. (a) Only persons trained and experienced in the handling and use of explosive material shall direct blasting operations and related activities. (b) Trainees...

  15. 30 CFR 57.6300 - Control of blasting operations.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of blasting operations. 57.6300 Section... Transportation-Surface and Underground § 57.6300 Control of blasting operations. (a) Only persons trained and experienced in the handling and use of explosive material shall direct blasting operations and...

  16. 30 CFR 816.64 - Use of explosives: Blasting schedule.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Blasting schedule. 816.64... ACTIVITIES § 816.64 Use of explosives: Blasting schedule. (a) General requirements. (1) The operator shall conduct blasting operations at times approved by the regulatory authority and announced in the...

  17. 30 CFR 57.22607 - Blasting on shift (III mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting on shift (III mines). 57.22607 Section... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22607 Blasting on shift (III mines). When blasting on shift, tests for methane shall be made in the mine atmosphere by a competent person...

  18. 30 CFR 75.1310 - Explosives and blasting equipment.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting equipment. 75.1310... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310 Explosives and blasting equipment. (a) Only permissible explosives, approved sheathed explosive units,...

  19. 30 CFR 57.6306 - Loading, blasting, and security.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Loading, blasting, and security. 57.6306... Transportation-Surface and Underground § 57.6306 Loading, blasting, and security. (a) When explosive materials or... blasting operation and the activities of surveying, stemming, sampling of geology, and reopening of...

  20. Microrobotized blasting improves the bone-to-textured implant response. A preclinical in vivo biomechanical study.

    Science.gov (United States)

    Coelho, Paulo G; Gil, Luiz F; Neiva, Rodrigo; Jimbo, Ryo; Tovar, Nick; Lilin, Thomas; Bonfante, Estevam A

    2016-03-01

    This study evaluated the effect of microrobotized blasting of titanium endosteal implants relative to their manually blasted counterparts. Two different implant systems were utilized presenting two different implant surfaces. Control surfaces (Manual) were fabricated by manually grit blasting the implant surfaces while experimental surfaces (Microblasted) were fabricated through a microrobotized system that provided a one pass grit blasting routine. Both surfaces were created with the same ~50µm average particle size alumina powder at ~310KPa. Surfaces were then etched with 37% HCl for 20min, washed, and packaged through standard industry procedures. The surfaces were characterized through scanning electron microscopy (SEM) and optical interferometry, and were then placed in a beagle dog radius model remaining in vivo for 3 and 6 weeks. The implant removal torque was recorded and statistical analysis evaluated implant system and surface type torque levels as a function of time in vivo. Histologic sections were qualitatively evaluated for tissue response. Electron microscopy depicted textured surfaces for both manual and microblasted surfaces. Optical interferometry showed significantly higher Sa, Sq, values for the microblasted surface and no significant difference for Sds and Sdr values between surfaces. In vivo results depicted that statistically significant gains in biomechanical fixation were obtained for both implant systems tested at 6 weeks in vivo, while only one system presented significant biomechanical gain at 3 weeks. Histologic sections showed qualitative higher amounts of new bone forming around microblasted implants relative to the manually blasted group. Microrobotized blasting resulted in higher biomechanical fixation of endosteal dental implants and should be considered as an alternative for impant surface manufacturing.

  1. Blast from explosive evaporation of carbon dioxide: experiment, modeling and physics

    NARCIS (Netherlands)

    Van der Voort, M.M.; Van den berg, A.C.; Roekaerts, D.J.E.M.; Xie, M.; De Bruijn, P.C.J.

    2012-01-01

    Explosive evaporation of a superheated liquid is a relevant hazard in the process industry. A vessel rupture during storage, transport or handling may lead to devastating blast effects. In order to assess the risk associated with this hazard or to design protective measures, an accurate prediction m

  2. Blast from explosive evaporation of carbon dioxide: Experiment, modeling and physics

    NARCIS (Netherlands)

    Voort, M.M. van der; Berg, A.C. van den; Roekaerts, D.J.E.M.; Xie, M.; Bruijn, P.C.J. de

    2012-01-01

    Explosive evaporation of a superheated liquid is a relevant hazard in the process industry. A vessel rupture during storage, transport or handling may lead to devastating blast effects. In order to assess the risk associated with this hazard or to design protective measures, an accurate prediction m

  3. Detecting Sequence Homology at the Gene Cluster Level with MultiGeneBlast

    NARCIS (Netherlands)

    Medema, Marnix H.; Takano, Eriko; Breitling, Rainer; Nowick, Katja

    2013-01-01

    The genes encoding many biomolecular systems and pathways are genomically organized in operons or gene clusters. With MultiGeneBlast, we provide a user-friendly and effective tool to perform homology searches with operons or gene clusters as basic units, instead of single genes. The contextualizatio

  4. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NARCIS (Netherlands)

    Zemskov, S.V.; Ahmad, B.; Copuroglu, O.; Vermolen, F.J.

    2013-01-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, whi

  5. Surface modification with alumina blasting and H2SO4-HCl etching for bonding two resin-composite veneers to titanium.

    Science.gov (United States)

    Taira, Yohsuke; Egoshi, Takafumi; Kamada, Kohji; Sawase, Takashi

    2014-02-01

    The purpose of this study was to investigate the effect of an experimental surface treatment with alumina blasting and acid etching on the bond strengths between each of two resin composites and commercially pure titanium. The titanium surface was blasted with alumina and then etched with 45wt% H2SO4 and 15wt% HCl (H2SO4-HCl). A light- and heat-curing resin composite (Estenia) and a light-curing resin composite (Ceramage) were used with adjunctive metal primers. Veneered specimens were subjected to thermal cycling between 4 and 60°C for 50,000 cycles, and the shear bond strengths were determined. The highest bond strengths were obtained for Blasting/H2SO4-HCl/Estenia (30.2 ± 4.5 MPa) and Blasting/Etching/Ceramage (26.0 ± 4.5 MPa), the values of which were not statistically different, followed by Blasting/No etching/Estenia (20.4 ± 2.4 MPa) and Blasting/No etching/Ceramage (0.8 ± 0.3 MPa). Scanning electron microscopy observations revealed that alumina blasting and H2SO4-HCl etching creates a number of micro- and nanoscale cavities on the titanium surface, which contribute to adhesive bonding.

  6. Cygnus Loop Supernova Blast Wave

    Science.gov (United States)

    1993-01-01

    This is an image of a small portion of the Cygnus Loop supernova remnant, which marks the edge of a bubble-like, expanding blast wave from a colossal stellar explosion, occurring about 15,000 years ago. The HST image shows the structure behind the shock waves, allowing astronomers for the first time to directly compare the actual structure of the shock with theoretical model calculations. Besides supernova remnants, these shock models are important in understanding a wide range of astrophysical phenomena, from winds in newly-formed stars to cataclysmic stellar outbursts. The supernova blast is slamming into tenuous clouds of insterstellar gas. This collision heats and compresses the gas, causing it to glow. The shock thus acts as a searchlight revealing the structure of the interstellar medium. The detailed HST image shows the blast wave overrunning dense clumps of gas, which despite HST's high resolution, cannot be resolved. This means that the clumps of gas must be small enough to fit inside our solar system, making them relatively small structures by interstellar standards. A bluish ribbon of light stretching left to right across the picture might be a knot of gas ejected by the supernova; this interstellar 'bullet' traveling over three million miles per hour (5 million kilometres) is just catching up with the shock front, which has slowed down by ploughing into interstellar material. The Cygnus Loop appears as a faint ring of glowing gases about three degrees across (six times the diameter of the full Moon), located in the northern constellation, Cygnus the Swan. The supernova remnant is within the plane of our Milky Way galaxy and is 2,600 light-years away. The photo is a combination of separate images taken in three colors, oxygen atoms (blue) emit light at temperatures of 30,000 to 60,000 degrees Celsius (50,000 to 100,000 degrees Farenheit). Hydrogen atoms (green) arise throughout the region of shocked gas. Sulfur atoms (red) form when the gas cools to

  7. FastBLAST: homology relationships for millions of proteins.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    Full Text Available BACKGROUND: All-versus-all BLAST, which searches for homologous pairs of sequences in a database of proteins, is used to identify potential orthologs, to find new protein families, and to provide rapid access to these homology relationships. As DNA sequencing accelerates and data sets grow, all-versus-all BLAST has become computationally demanding. METHODOLOGY/PRINCIPAL FINDINGS: We present FastBLAST, a heuristic replacement for all-versus-all BLAST that relies on alignments of proteins to known families, obtained from tools such as PSI-BLAST and HMMer. FastBLAST avoids most of the work of all-versus-all BLAST by taking advantage of these alignments and by clustering similar sequences. FastBLAST runs in two stages: the first stage identifies additional families and aligns them, and the second stage quickly identifies the homologs of a query sequence, based on the alignments of the families, before generating pairwise alignments. On 6.53 million proteins from the non-redundant Genbank database ("NR", FastBLAST identifies new families 25 times faster than all-versus-all BLAST. Once the first stage is completed, FastBLAST identifies homologs for the average query in less than 5 seconds (8.6 times faster than BLAST and gives nearly identical results. For hits above 70 bits, FastBLAST identifies 98% of the top 3,250 hits per query. CONCLUSIONS/SIGNIFICANCE: FastBLAST enables research groups that do not have supercomputers to analyze large protein sequence data sets. FastBLAST is open source software and is available at http://microbesonline.org/fastblast.

  8. Experimental animal models for studies on the mechanisms of blast-induced neurotrauma.

    Science.gov (United States)

    Risling, Mårten; Davidsson, Johan

    2012-01-01

    A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED) in current military conflicts. Blast-induced neurotrauma (BINT) is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. Extreme forces and their complex propagation characterize BINT. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary, and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements, or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration, and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the comparative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements, or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link between experiments

  9. Lean processing in drivage by blasting; Lean Processing im Sprengvortrieb

    Energy Technology Data Exchange (ETDEWEB)

    Karos, G. [Kernbereich Produktionssteuerung (PP), Deutsche Sternkohle AG (DSK), Herne (Germany); Imgenberg, D. [Bergwerk Auguste Victoria der Deutschen Steinkohle AG (DSK), Marl (Germany)

    2007-02-01

    The 'Lean processing' production system was introduced into DSK two years ago and is used in all collieries. Taking a drivage by blasting with combined support system Type B as an example, the 'Lean processing' method for development is described. The experience and results in the implementation of the lean method at face 3330 in the Auguste Victoria colliery are subsequently considered. It is evident that the effective application of the system optimises the road drivage processes and has led to a clear increase in performance. (orig.)

  10. Stochastic Modeling Approach for the Evaluation of Backbreak due to Blasting Operations in Open Pit Mines

    Science.gov (United States)

    Sari, Mehmet; Ghasemi, Ebrahim; Ataei, Mohammad

    2014-03-01

    Backbreak is an undesirable side effect of bench blasting operations in open pit mines. A large number of parameters affect backbreak, including controllable parameters (such as blast design parameters and explosive characteristics) and uncontrollable parameters (such as rock and discontinuities properties). The complexity of the backbreak phenomenon and the uncertainty in terms of the impact of various parameters makes its prediction very difficult. The aim of this paper is to determine the suitability of the stochastic modeling approach for the prediction of backbreak and to assess the influence of controllable parameters on the phenomenon. To achieve this, a database containing actual measured backbreak occurrences and the major effective controllable parameters on backbreak (i.e., burden, spacing, stemming length, powder factor, and geometric stiffness ratio) was created from 175 blasting events in the Sungun copper mine, Iran. From this database, first, a new site-specific empirical equation for predicting backbreak was developed using multiple regression analysis. Then, the backbreak phenomenon was simulated by the Monte Carlo (MC) method. The results reveal that stochastic modeling is a good means of modeling and evaluating the effects of the variability of blasting parameters on backbreak. Thus, the developed model is suitable for practical use in the Sungun copper mine. Finally, a sensitivity analysis showed that stemming length is the most important parameter in controlling backbreak.

  11. Effect of Portable Vacuum Sealing Drainage Device in Blast Inj ury Wounds Drainage%便携式封闭负压引流装置对家猪爆炸伤模型创面的引流效果

    Institute of Scientific and Technical Information of China (English)

    杏玲芝; 张华; 王东红; 焦耿军; 王云

    2014-01-01

    目的:评估自制的便携式封闭负压引流(vacuum sealing drainage,VSD)装置对家猪爆炸伤模型创面的引流效果。方法遴选市售健康5~6个月龄家猪4头,雌雄各半,体质量35~40 kg,将雷管植入双侧后肢肌肉组织发达处,制造8个爆炸创面,配对分成观察组和对照组。在室外暴露创面4 h后进行清创,观察组给予彻底清创,VSD装置处理;对照组彻底清创后,无菌纱布覆盖。分别于暴露创面4h,治疗3、7d后对伤口大体判断疗效,观察白细胞、表皮生长因子的变化。结果爆炸4h后,两组实验对象白细胞、表皮生长因子的变化差异无统计学意义(P>0.05);治疗3、7 d后,观察组白细胞、表皮生长因子明显高于对照组,差异有统计学意义(P<0.05)。观察组伤口大体判断疗效观察较对照组创面清洁、无异味,触之易出血,创面有大量的颗粒状肉芽组织,创面周缘无明显的水肿和继发性坏死组织。结论自制便携式封闭负压引流装置在家猪爆炸创面愈合方面效果显著,且装置体积小、携带方便,可进一步应用于临床护理实践验证。%Objective To evaluate the effect of new patent of self-made portable vacuum sealing drainage device in animal experiment blast inj ury wounds drainage.Methods 4 pigs with two male and two female, body weight 35~40 kg were selected and implant the detonator in the developed muscle tissue of hind limbs,and made 8 blast inj ury wound,and paring into observation group and control group.The wounds were exposed outdoor and debride the wounds after 4 h.The observation group was given thorough debridement with VSD treatment;the control group was treated with sterile gauze covered after thorough debridement.The wounds healing situation and the change of white blood cells,epidermal growth factor were observed respectively at 4h after wounds exposed,3d and 7d after treatment

  12. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Tervola, K. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  13. Evolution of blast wave profiles in simulated air blasts: experiment and computational modeling

    Science.gov (United States)

    Chandra, N.; Ganpule, S.; Kleinschmit, N. N.; Feng, R.; Holmberg, A. D.; Sundaramurthy, A.; Selvan, V.; Alai, A.

    2012-09-01

    Shock tubes have been extensively used in the study of blast traumatic brain injury due to increased incidence of blast-induced neurotrauma in Iraq and Afghanistan conflicts. One of the important aspects in these studies is how to best replicate the field conditions in the laboratory which relies on reproducing blast wave profiles. Evolution of the blast wave profiles along the length of the compression-driven air shock tube is studied using experiments and numerical simulations with emphasis on the shape and magnitude of pressure time profiles. In order to measure dynamic pressures of the blast, a series of sensors are mounted on a cylindrical specimen normal to the flow direction. Our results indicate that the blast wave loading is significantly different for locations inside and outside of the shock tube. Pressure profiles inside the shock tube follow the Friedlander waveform fairly well. Upon approaching exit of the shock tube, an expansion wave released from the shock tube edges significantly degrades the pressure profiles. For tests outside the shock tube, peak pressure and total impulse reduce drastically as we move away from the exit and majority of loading is in the form of subsonic jet wind. In addition, the planarity of the blast wave degrades as blast wave evolves three dimensionally. Numerical results visually and quantitatively confirm the presence of vortices, jet wind and three-dimensional expansion of the planar blast wave near the exit. Pressure profiles at 90° orientation show flow separation. When cylinder is placed inside, this flow separation is not sustained, but when placed outside the shock tube this flow separation is sustained which causes tensile loading on the sides of the cylinder. Friedlander waves formed due to field explosives in the intermediate-to far-field ranges are replicated in a narrow test region located deep inside the shock tube.

  14. Blasting practices in a quarry with karstic cavities

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The blasting practices in a limestone quarry with karstic cavities have been presented. The existence of karstic cavities in the quarry has reduced blasting efficiency significantly. In order to improve blasting efficiency different blasting strategies (loading holes with ANFO in plastic bag, recording cavity location along the holes and charging the holes according to this information, and modifying blasting pattern according to karstic cavities) had been implemented and the results were evaluated on per ton cost basis. It was concluded that efficient blasting in such aquarries requires determining the size and shape of karstic cavities and based on this information, to modify the blast pattern and charge the holes. The suggested method is to record the cavity along the drill hole and to generate 3D model of cavities. By doing this, the production cost in the limestone quarry has decreased from 0.407 $/t to 0.354 $/t.

  15. Blast-induced traumatic brain injury: a new trend of blast injury research

    Institute of Scientific and Technical Information of China (English)

    Yan Zhao; Zheng-Guo Wang

    2015-01-01

    Blast injury has become the major life-and function-threatening injuries in recent warfares.There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI),which has been proved as one of the "signature wounds" in modern battlefield.We reviewed the recent progresses in bTBl-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  16. Physics of IED Blast Shock Tube Simulations for mTBI Research.

    Science.gov (United States)

    Mediavilla Varas, Jesus; Philippens, M; Meijer, S R; van den Berg, A C; Sibma, P C; van Bree, J L M J; de Vries, D V W M

    2011-01-01

    Shock tube experiments and simulations are conducted with a spherical gelatin filled skull-brain surrogate, in order to study the mechanisms leading to blast induced mild traumatic brain injury. A shock tube including sensor system is optimized to simulate realistic improvised explosive device blast profiles obtained from full scale field tests. The response of the skull-brain surrogate is monitored using pressure and strain measurements. Fluid-structure interaction is modeled using a combination of computational fluid dynamics (CFD) simulations for the air blast, and a finite element model for the structural response. The results help to understand the physics of wave propagation, from air blast into the skull-brain. The presence of openings on the skull and its orientation does have a strong effect on the internal pressure. A parameter study reveals that when there is an opening in the skull, the skull gives little protection and the internal pressure is fairly independent on the skull stiffness; the gelatin shear stiffness has little effect on the internal pressure. Simulations show that the presence of pressure sensors in the gelatin hardly disturbs the pressure field.

  17. Finite Element Analysis of Composite Hardened Walls Subjected to Blast Loads

    Directory of Open Access Journals (Sweden)

    Girum S. Urgessa

    2009-01-01

    Full Text Available Problem statement: There is currently no standard design guideline to determine the number of composites needed to retrofit masonry walls in order to withstand a given explosion. Past design approaches were mainly based on simplified single-degree-of-freedom analysis. A finite element analysis was conducted for concrete masonry walls hardened with composites and subjected to short duration blast loads. Approach: The analysis focused on displacement time history responses which form the basis for retrofit design guidelines against blast loadings. The blast was determined from 0.5 kg equivalent TNT explosive at 1.83 m stand-off distance to simulate small mailroom bombs. Two and four layered retrofitted walls were investigated. Uncertainties in the finite model analysis of walls such as pressure distributions, effect of mid height explosive bursts versus near the ground explosive bursts and variations in modulus of elasticity of the wall were presented. Results: Uniformly distributed blast loads over the retrofitted wall height produced a small difference in peak displacement results when compared to the non-uniform pressure distribution. Ground explosive burst was shown to produce a 62.7% increase in energy and a higher peak displacement response when compared to mid-height explosive burst. Conclusion: The parametric study on the variation of modulus of elasticity of concrete masonry showed no significant effect on peak displacement affirming the use of the resistance deflection contribution of the composite in retrofit designs.

  18. Desiliconization process of hot metal at blast furnance casthouse. Koro chusho ni okeru yosen no tatsukei shori

    Energy Technology Data Exchange (ETDEWEB)

    Uchiyama, T.; Takeda, K.; Taguchi, S.; Shinohara, K.; Kato, H.; Matsumoto, T. (Kawasaki Steel Corp., Tokyo (Japan))

    1990-09-01

    The Kawasaki Steel has developed several types of desiliconization facilities at blast furnace runner and applied to blast furnaces according to their individual local conditions. In response to the restriction in the maximum feed rate and mass velocity of desiliconization reagent by the slag foaming and splash formations for the desiliconization method without slag removal at the casthouse, three methods, i.e., a top feed method, a blasting by one stage, and a blasting by two stages were developed, according to increases in the required feeding rate of the desiliconization reagent. In the case that the desiliconization slag is removed at the blast furnace runner, it was demonstrated that the injection method by use of an immersion lance was effective because of its high oxygen efficiency in desiliconization. An simulation model of desiliconization was also developed, and the effect of the lance shape on oxygen efficiency in desiliconization was evaluated. On the basis of the simulation results, the oxygen efficiency in desiliconization was able to be increased to 60% by the improvement of the injection conditions. 8 refs., 18 figs., 3 tabs.

  19. Analysis of post-blasting source mechanisms of mining-induced seismic events in Rudna copper mine, Poland

    Directory of Open Access Journals (Sweden)

    Caputa Alicja

    2015-10-01

    Full Text Available The exploitation of georesources by underground mining can be responsible for seismic activity in areas considered aseismic. Since strong seismic events are connected with rockburst hazard, it is a continuous requirement to reduce seismic risk. One of the most effective methods to do so is blasting in potentially hazardous mining panels. In this way, small to moderate tremors are provoked and stress accumulation is substantially reduced. In this paper we present an analysis of post-blasting events using Full Moment Tensor (MT inversion at the Rudna mine, Poland, underground seismic network. In addition, we describe the problems we faced when analyzing seismic signals. Our studies show that focal mechanisms for events that occurred after blasts exhibit common features in the MT solution. The strong isotropic and small Double Couple (DC component of the MT, indicate that these events were provoked by detonations. On the other hand, post-blasting MT is considerably different than the MT obtained for strong mining events. We believe that seismological analysis of provoked and unprovoked events can be a very useful tool in confirming the effectiveness of blasting in seismic hazard reduction in mining areas.

  20. Analysis of post-blasting source mechanisms of mining-induced seismic events in Rudna copper mine, Poland.

    Science.gov (United States)

    Caputa, Alicja; Rudzinski, Lukasz; Talaga, Adam

    2016-04-01

    Copper ore exploitation in the Lower Silesian Copper District, Poland (LSCD), is connected with many specific hazards. The most hazardous one is induced seismicity and rockbursts which follow strong mining seismic events. One of the most effective method to reduce seismic activity is blasting in potentially hazardous mining panels. This way, small to moderate tremors are provoked and stress accumulation is substantially reduced. This work presents an analysis of post-blasting events using Full Moment Tensor (MT) inversion at the Rudna mine, Poland using signals dataset recorded on underground seismic network. We show that focal mechanisms for events that occurred after blasts exhibit common features in the MT solution. The strong isotropic and small Double Couple (DC) component of the MT, indicate that these events were provoked by detonations. On the other hand, post-blasting MT is considerably different than the MT obtained for common strong mining events. We believe that seismological analysis of provoked and unprovoked events can be a very useful tool in confirming the effectiveness of blasting in seismic hazard reduction in mining areas.

  1. The Potential of Streptomyces as Biocontrol Agents against the Rice Blast Fungus, Magnaporthe oryzae (Pyricularia oryzae)

    Science.gov (United States)

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M.; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10–30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents. PMID:28144236

  2. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement; Efecto de la incorporacion de ceniza volante y escoria de horno alto en el comportamiento electroquimico de concretos de cemento comercial

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.

    2015-07-01

    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  3. 铅鼓风炉中铜、硫、砷和锑对银分布的影响%Effect of copper, sulfur, arsenic and antimony on silver distribution in phases of lead blast furnace

    Institute of Scientific and Technical Information of China (English)

    J.CHAIDEZ-FELIX; A.ROMERO-SERRANO; A.HERNANDEZ-RAMIREZ; M.PEREZ-LABRA; I.ALMAGUER-GUZMAN; R.BENAVIDES-PEREZ; M.FLORES-FAVELA

    2014-01-01

    An experimental study was carried out to estimate the effect of the lead impurities on the silver distribution in the phases formed in the lead blast furnace. Samples of sinter with different contents of Cu, S, As and Sb were equilibrated under reducing atmosphere (p(CO)/p(CO2)=2.45) at 1573 K in a tube furnace and slowly cooled. The samples were characterized by scanning electron microscopy and microanalysis (SEM-EDS). There were five immiscible phases:slag (CaO, FeO and SiO2), matte (S, Cu and Fe), speiss (As, Fe and Cu), Cu-Sb phase and lead bullion (Pb, Ag, Sb, Cu, etc). The results showed that Cu and Sb promote silver losses during the process since they form a liquid solution with higher silver solubility than liquid bullion. Sulfur and arsenic react with copper to form the matte and speiss phases, respectively. The effect of S and As is to reduce the amount of Cu-Sb alloy and then the silver losses from the bullion.%研究铅鼓风炉中杂质对银分布的影响。将含有不同Cu、S、As和Sb含量的铅烧结块在管式炉中于1573 K下进行烧结,然后随炉冷却。烧结气氛为还原性的CO+CO2气体(p(CO)/p(CO2)=2.45)。采用SEM-EDS对所得样品进行表征。结果表明:烧结样品中含有5种不互溶的相,即炉渣(CaO,FeO,SiO2)、冰铜(S, Cu,Fe)、硬渣(As, Fe,Cu)、Cu-Sb相和铅块。银在Cu与Sb形成的熔体中的溶解度比在液态铅中的高。S与Cu形成冰铜, As与Cu形成硬渣。S和As能减少Cu-Sb合金的生成量,从而降低铅块中银的损失。

  4. 瓦斯抽放煤层增透深孔聚能爆破钻孔参数%Drilling parameters of deep-hole cumulative blasting to improve coal seam permeability in gas drainage

    Institute of Scientific and Technical Information of China (English)

    郭德勇; 吕鹏飞; 单智勇; 谢安

    2013-01-01

    以焦作煤业集团九里山矿煤层深孔聚能爆破试验为基础,利用数值模拟分析了爆破煤体应力变化规律,发现聚能爆破效应导致应力峰值增大,扩大了煤体裂隙区范围.同时对聚能爆破钻孔参数进行优化,确定了合理的炮孔直径、爆破孔间距、爆破孔与邻近抽放孔及煤层顶底板间距.现场试验结果表明:优化的钻孔参数不仅使聚能爆破增透效果显著而且保证了爆破过程的安全.%Based on coal seam deep-hole cumulative blasting experiments in Jiulishan Coal Mine of Jiaozuo Coal Group, the law of stress change in a blasting coal body was analyzed by numerical simulation. It is found that cumulative blasting effect leads to the increase of peak stress and enlarges the crack zone range of the coal body. Drilling parameters for cumulative blasting, such as blast hole diameter, blast hole spacing, distance between the blast hole and the adjacent gas drainage hole, and distance from the blast hole to the coal seam roof and floor, were determined by optimization. Field experimental results show that after using these optimized drilling parameters the cumulative blasting not only gets remarkable permeability increasing effect but also ensures blasting safety.

  5. EXPERIMENTAL STUDY ON BLASTING EFFECT UPON THICK ICE OF THE YELLOW RIVER%黄河冰层的爆炸破冰及作用效应试验

    Institute of Scientific and Technical Information of China (English)

    梁向前; 何秉顺; 谢文辉

    2012-01-01

    Experiment study on the blasting upon thick ice in the inner Mongolia section of the Yellow River was carried out. Special breakage ice product was applied in the experiment, The breakage mechanism of ice blasting, the variation characteristics of blasting vibration and shock wave pressure in water, and the influence on security of surrounding environment were analyzed by shaped contact explosion on the ice and explosion in the water below the ice. The results obtained by study are of theoretical value and guidance significance to research and manufacture of breakage ice production, the practice of blasting breakage ice, prevention of ice-jam flood disaster and safe control of environment.%以黄河内蒙古段厚冰冻层为试验对象,开河前期进行了厚冰层的爆破破冰试验.试验采用专门研发的破冰产品,从冰面接触聚能爆炸和冰下水中爆炸两种破冰方式,分析了冰层的破碎机理和爆破振动、水中冲击波压力的变化特征及对周围环境安全的影响.研究成果对破冰产品研制、人工干预开河、江河冰凌灾害治理及环境安全控制等具有理论研究和应用价值.

  6. Effect of air-blast drying and the presence of protectants on the viability of yeast entrapped in calcium alginate beads with an aim to improve the survival rate.

    Science.gov (United States)

    Kim, Dong-Hwan; Lee, Sae-Byuk; Park, Heui-Dong

    2017-01-01

    Five yeast strains, Saccharomyces cerevisiae D8, M12, and S13; Hanseniaspora uvarum S6; and Issatchenkia orientalis KMBL5774, isolated from Korean grapes, were entrapped in Ca-alginate beads, which are non-toxic, simple to use, and economical. Ca-alginate beads containing yeast cells were soaked in protective solutions, such as skim milk, saccharides, polyols, and nitrogen compounds, before air-blast drying to improve the yeast survival rate and storage ability. The results showed that both entrapment in Ca-alginate beads and soaking in protective agents favorably affected the survival of all strains. The microenvironment formed by the beads and protective agents can protect the yeast cells from harsh environmental conditions, such as low water (below 10 %). All the yeast strains entrapped in Ca-alginate beads showed greater than 80 % survival and less than 11 % water content after air-blast drying at 37 °C for 5 h. In addition, air-blast dried cells of S. cerevisiae D8, M12, S13; H. uvarum S6; and I. orientalis KMBL5774 entrapped in 2 % Ca-alginate beads and soaked in protective agents (10 % skim milk containing 10 % sucrose, 10 % raffinose, 10 % trehalose, 10 % trehalose, and 10 % glucose, respectively) after air-blast drying at 37 °C for 5 h showed 90, 87, 92, 90, and 87 % viability, respectively. All dried entrapped yeast cells showed survival rates of at least 51 % after storage at 4 °C for 3 months.

  7. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    Directory of Open Access Journals (Sweden)

    Steven Kelly

    Full Text Available The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  8. Roof pre-blasting to prevent support crushing and water inrush accidents

    Institute of Scientific and Technical Information of China (English)

    Wang Xiaozhen; Xu Jialin; Zhu Weibing; Li Yingchun

    2012-01-01

    Support crushing and water inrush when mining under an unconsolidated confined aquifer in the Qidong Coal Mine was prevented by roof pre-blasting.The mechanism and applicable conditions for this method have been studied.The results show that when an overburden structure that may cause support crushing and a water inrush accident exists the weakening of the primary key stratum,which thereby reduces its weighting step,roof pre-blasting is both feasible and effective.If the position of the primary key stratum can be moved upward to exceed 10 times the mining height the possibility of support crushing and water inrush disaster caused by key stratum compound breakage will be lowered.The overburden structure of the number 7121 working face was considered during the design of a technical proposal involving roof pre-blasting.After comprehensively analyzing the applicability of roof pre-blasting the resulting design prevented support crushing and water inrush disasters from happening at the number 7121 working face and laid a solid foundation for mining safely.

  9. Shock tube design for high intensity blast waves for laboratory testing of armor and combat materiel

    Institute of Scientific and Technical Information of China (English)

    Elijah COURTNEY; Amy COURTNEY; Michael COURTNEY

    2014-01-01

    Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from w1 MPa to w5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods are experimentally investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral prim-ing section which supports a deflagration to detonation transition. This approach increases the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (near Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increases the peak pressure from 1.17 MPa to 2.25 MPa. A 103 mm driving section is used to increase peak pressure to 2.64 MPa. The third method, adding solid fuel to the driving section with the oxy-acetylene, results in a peak pressure increasing to 1.70 MPa.

  10. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area

    Institute of Scientific and Technical Information of China (English)

    XU Guo-yuan; YAN Chang-bin

    2006-01-01

    Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions (FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maximum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining.

  11. Blasting Vibration Safety Criterion Analysis with Equivalent Elastic Boundary: Based on Accurate Loading Model

    Directory of Open Access Journals (Sweden)

    Qingwen Li

    2015-01-01

    Full Text Available In the tunnel and underground space engineering, the blasting wave will attenuate from shock wave to stress wave to elastic seismic wave in the host rock. Also, the host rock will form crushed zone, fractured zone, and elastic seismic zone under the blasting loading and waves. In this paper, an accurate mathematical dynamic loading model was built. And the crushed zone as well as fractured zone was considered as the blasting vibration source thus deducting the partial energy for cutting host rock. So this complicated dynamic problem of segmented differential blasting was regarded as an equivalent elastic boundary problem by taking advantage of Saint-Venant’s Theorem. At last, a 3D model in finite element software FLAC3D accepted the constitutive parameters, uniformly distributed mutative loading, and the cylindrical attenuation law to predict the velocity curves and effective tensile curves for calculating safety criterion formulas of surrounding rock and tunnel liner after verifying well with the in situ monitoring data.

  12. Graphitization of Coke and Its Interaction with Slag in the Hearth of a Blast Furnace

    Science.gov (United States)

    Li, Kejiang; Zhang, Jianliang; Liu, Yanxiang; Barati, Mansoor; Liu, Zhengjian; Zhong, Jianbo; Su, Buxin; Wei, Mengfang; Wang, Guangwei; Yang, Tianjun

    2016-04-01

    Coke reaction behavior in the blast furnace hearth has yet to be fully understood due to limited access to the high temperature zone. The graphitization of coke and its interaction with slag in the hearth of blast furnace were investigated with samples obtained from the center of the deadman of a blast furnace during its overhaul period. All hearth coke samples from fines to lumps were confirmed to be highly graphitized, and the graphitization of coke in the high temperature zone was convinced to start from the coke surface and lead to the formation of coke fines. It will be essential to perform further comprehensive investigations on graphite formation and its evolution in a coke as well as its multi-effect on blast furnace performance. The porous hearth cokes were found to be filled up with final slag. Further research is required about the capability of coke to fill final slag and the attack of final slag on the hearth bottom refractories since this might be a new degradation mechanism of refractories located in the hearth bottom.

  13. Data-driven modeling based on volterra series for multidimensional blast furnace system.

    Science.gov (United States)

    Gao, Chuanhou; Jian, Ling; Liu, Xueyi; Chen, Jiming; Sun, Youxian

    2011-12-01

    The multidimensional blast furnace system is one of the most complex industrial systems and, as such, there are still many unsolved theoretical and experimental difficulties, such as silicon prediction and blast furnace automation. For this reason, this paper is concerned with developing data-driven models based on the Volterra series for this complex system. Three kinds of different low-order Volterra filters are designed to predict the hot metal silicon content collected from a pint-sized blast furnace, in which a sliding window technique is used to update the filter kernels timely. The predictive results indicate that the linear Volterra predictor can describe the evolvement of the studied silicon sequence effectively with the high percentage of hitting the target, very low root mean square error and satisfactory confidence level about the reliability of the future prediction. These advantages and the low computational complexity reveal that the sliding-window linear Volterra filter is full of potential for multidimensional blast furnace system. Also, the lack of the constructed Volterra models is analyzed and the possible direction of future investigation is pointed out.

  14. Shock tube design for high intensity blast waves for laboratory testing of armor and combat materiel

    Directory of Open Access Journals (Sweden)

    Elijah Courtney

    2014-06-01

    Full Text Available Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ∼1 MPa to ∼5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods are experimentally investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which supports a deflagration to detonation transition. This approach increases the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (near Friedlander waveform. The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increases the peak pressure from 1.17 MPa to 2.25 MPa. A 103 mm driving section is used to increase peak pressure to 2.64 MPa. The third method, adding solid fuel to the driving section with the oxy-acetylene, results in a peak pressure increasing to 1.70 MPa.

  15. NO x emissions from blasting operations in open-cut coal mining

    Science.gov (United States)

    Attalla, Moetaz I.; Day, Stuart J.; Lange, Tony; Lilley, William; Morgan, Scott

    The Australian coal mining industry, as with other industries is coming under greater constraints with respect to their environmental impacts. Emissions of acid gases such as NO x and SO x to the atmosphere have been regulated for many years because of their adverse health effects. Although NO x from blasting in open-cut coal mining may represent only a very small proportion of mining operations' total NO x emissions, the rapid release and high concentration associated with such activities may pose a health risk. This paper presents the results of a new approach to measure these gas emissions by scanning the resulting plume from an open-cut mine blast with a miniaturised ultraviolet spectrometer. The work presented here was undertaken in the Hunter Valley, New South Wales, Australia during 2006. Overall this technique was found to be simpler, safer and more successful than other approaches that in the past have proved to be ineffective in monitoring these short lived plumes. The average emission flux of NO x from the blasts studied was about 0.9 kt t -1 of explosive. Numerical modelling indicated that NO x concentrations resulting from the blast would be indistinguishable from background levels at distances greater than about 5 km from the source.

  16. Correlations in the (Sub)millimeter background from ACTxBLAST

    CERN Document Server

    Hajian, Amir; Addison, Graeme; Aguirre, Paula; Appel, John William; Battaglia, Nick; Bock, James J; Bond, J Richard; Das, Sudeep; Devlin, Mark J; Dicker, Simon R; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Hughes, John P; Fowler, Joseph W; Halpern, Mark; Hasselfield, Matthew; Hilton, Matt; Hincks, Adam D; Hlozek, Renee; Irwin, Kent D; Klein, Jeff; Kosowsky, Arthur; Lin, Yen-Ting; Marriage, Tobias A; Marsden, Danica; Marsden, Gaelen; Menanteau, Felipe; Moncelsi, Lorenzo; Moodley, Kavilan; Netterfield, Calvin B; Niemack, Michael D; Nolta, Michael R; Page, Lyman A; Parker, Lucas; Scott, Douglas; Sehgal, Neelima; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Swetz, Daniel S; Switzer, Eric R; Thornton, Robert; Wollack, Ed

    2011-01-01

    We present measurements of the auto- and cross-frequency correlation power spectra of the cosmic (sub)millimeter background at: 250, 350, and 500 um (1200, 860, and 600 GHz) from observations made with the Balloon-borne Large Aperture Submillimeter Telescope, BLAST; and at 1380 and 2030 um (218 and 148 GHz) from observations made with the Atacama Cosmology Telescope, ACT. The overlapping observations cover 8.6 deg^2 in an area relatively free of Galactic dust near the south ecliptic pole (SEP). The ACT bands are sensitive to radiation from the CMB, the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio and dusty star-forming galaxies (DSFGs), while the dominant contribution to the BLAST bands is from DSFGs. We confirm and extend the BLAST analysis of clustering with an independent pipeline, and also detect correlations between the ACT and BLAST maps at over 25sigma significance, which we interpret as a detection of the DSFGs in the ACT maps. In addition to a Poisson component in the...

  17. Shock Tube Design for High Intensity Blast Waves for Laboratory Testing of Armor and Combat Materiel

    CERN Document Server

    Courtney, Elijah; Courtney, Michael

    2015-01-01

    Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ~1 MPa to ~5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods were investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which works by increasing the turbulent flow of the deflagration wave, thus increasing its speed and pressure. This approach increased the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increased the peak pressure from 1.17 MPa to 2.25 MPa. Using a 1...

  18. Wartime spine injuries: understanding the improvised explosive device and biophysics of blast trauma.

    Science.gov (United States)

    Kang, Daniel G; Lehman, Ronald A; Carragee, Eugene J

    2012-09-01

    The improvised explosive device (IED) has been the most significant threat by terrorists worldwide. Blast trauma has produced a wide pattern of combat spinal column injuries not commonly experienced in the civilian community. Unfortunately, explosion-related injuries have also become a widespread reality of civilian life throughout the world, and civilian medical providers who are involved in emergency trauma care must be prepared to manage casualties from terrorist attacks using high-energy explosive devices. Treatment decisions for complex spine injuries after blast trauma require special planning, taking into consideration many different factors and the complicated multiple organ system injuries not normally experienced at most civilian trauma centers. Therefore, an understanding about the effects of blast trauma by spine surgeons in the community has become imperative, as the battlefield has been brought closer to home in many countries through domestic terrorism and mass casualty situations, with the lines blurred between military and civilian trauma. We set out to provide the spine surgeon with a brief overview on the use of IEDs for terrorism and the current conflicts in Iraq and Afghanistan and also a perspective on the biophysics of blast trauma.

  19. Fluid dynamics of the 1997 Boxing Day volcanic blast on Montserrat, West Indies

    Science.gov (United States)

    Esposti Ongaro, T.; Clarke, A. B.; Neri, A.; Voight, B.; Widiwijayanti, C.

    2008-03-01

    Directed volcanic blasts are powerful explosions with a significant laterally directed component, which can generate devastating, high-energy pyroclastic density currents (PDCs). Such blasts are an important class of eruptive phenomena, but quantified understanding of their dynamics and effects is still incomplete. Here we use 2-D and 3-D multiparticle thermofluid dynamic flow codes to examine a powerful volcanic blast that occurred on Montserrat in December 1997. On the basis of the simulations, we divide the blast into three phases: an initial burst phase that lasts roughly 5 s and involves rapid expansion of the gas-pyroclast mixture, a gravitational collapse phase that occurs when the erupted material fails to mix with sufficient air to form a buoyant column and thus collapses asymmetrically, and a PDC phase that is dominated by motion parallel to the ground surface and is influenced by topography. We vary key input parameters such as total gas energy and total solid mass to understand their influence on simulations, and we compare the simulations with independent field observations of damage and deposits, demonstrating that the models generally capture important large-scale features of the natural phenomenon. We also examine the 2-D and 3-D model results to estimate the flow Mach number and conclude that the range of damage sustained at villages on Montserrat can be reasonably explained by the spatial and temporal distribution of the dynamic pressure associated with subsonic PDCs.

  20. Carbothermic Reduction of Titanium-Bearing Blast Furnace Slag

    Science.gov (United States)

    Zhen, Yu-Lan; Zhang, Guo-Hua; Chou, Kuo-Chih

    2016-03-01

    The carbothermic reduction experiments were carried out for titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company in argon atmosphere at high temperatures. The effects of reduction temperature, isothermal treatment time and carbon content on the formation of TiC were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The XRD pattern results showed that MgAl2O4 phase disappeared and the main phase of the reduced sample was TiC when the reduction temperature was higher than 1,773 K. The SEM pictures showed that the reduction rate of the titanium-bearing blast furnace slag could be increased by enhancing the temperature and the C content (carbon ratio ≤1.0). Furthermore, it was also found that TiC had the tendency of concentrating around the iron. The effects of additives such as Fe and CaCl2 on the formation of TiC were also studied in the present study.

  1. Blast-Induced Acceleration in a Shock Tube: Distinguishing Primary and Tertiary Blast Injury

    Science.gov (United States)

    2014-10-01

    Annual, Year 2 3. DATES COVERED 4. TITLE AND SUBTITLE Blast-Induced Acceleration in a Shock Tube : Distinguishing Primary and Tertiary 5a...Using a highly characterized shock tube simulation of blast, rats will be exposed to BOP with varied peak amplitudes and impulse in association...understanding of the relation of the former to the latter. As the use of shock tubes has greatly expanded in recent years for biomedical research

  2. Mathematical model and software for control of commissioning blast furnace

    Science.gov (United States)

    Spirin, N. A.; Onorin, O. P.; Shchipanov, K. A.; Lavrov, V. V.

    2016-09-01

    Blowing-in is a starting period of blast furnace operation after construction or major repair. The current approximation methods of blowing-in burden analysis are based on blowing-in practice of previously commissioned blast furnaces. This area is theoretically underexplored; there are no common scientifically based methods for selection of the burden composition and blast parameters. The purpose of this paper is development and scientific substantiation of the methods for selection of the burden composition and blast parameters in the blast furnace during the blowing-in period. Research methods are based on physical regularities of main processes running in the blast furnace, system analysis, and application of modern principles for development and construction of mathematical models, algorithms and software designed for automated control of complex production processes in metallurgy. As consequence of the research made by the authors the following results have been achieved: 1. A set of mathematical models for analysis of burden arrangement throughout the height of the blast furnace and for selection of optimal blast and gas dynamic parameters has been developed. 2. General principles for selection of the blowing-in burden composition and blast and gas dynamic parameters have been set up. 3. The software for the engineering and process staff of the blast furnace has been developed and introduced in the industry.

  3. Repeat Observations of New Impact Sites on Mars: Changes in Blast Zones

    Science.gov (United States)

    Daubar, I.; Geissler, P. E.; McEwen, A. S.; Dundas, C. M.; Byrne, S.

    2012-12-01

    New, dated craters on Mars (Malin et al. 2006, Daubar et al. 2012) are the freshest available examples of impact processes, and some of the only recently-modified surfaces with known ages for the initial surface disturbance. HiRISE has monitored many of these sites over three Mars years. The rates and characteristics of changes at these sites help us understand the initial impact processes and the modification processes that have occurred since. Future applications might include constraining ages of similar impacts that cannot be definitively dated by previous images and measuring variations in the rate of fading over time, perhaps even seasonal variations that would be important for dating dark marks that are only a few Mars years old. New impacts have an extended "blast zone" of (usually) lower albedo surrounding the craters. Blast zones are created by removal of high-albedo surface dust by various atmosphere/surface interactions of the shock waves associated with the descent and impact of the impactor and ejecta (Malin et al. 2006). Their creation could also (in addition?) be related to shock effects on small-scale surface texture. Features vary by site and include diffuse dark halos, dark arcuate or radial rays, light and dark-toned ejecta, slope streaks, and complex combinations thereof. Geissler et al. (2010a) reported that out of 14 sites with repeat imaging, only one site showed significant changes thus far. With 245 known impacts and many more repeat images, we can now extend this study to sites with different ages, target materials, and types of blast features. Surprisingly, some sites still show no detectable changes after three martian years, even after the 2007 global dust storm. In comparison, rover tracks fade on timescales of one martian year (Geissler et al. 2010b). Many other sites show changes, most commonly fading of the blast zone. Fading is most likely due to airfall of dust bringing the blast zones back to the ambient surrounding albedo. In

  4. Development and Application of Blast Casting Technique in Large-Scale Surface Mines: A Case Study of Heidaigou Surface Coal Mine in China

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available Blast casting is a high-efficiency technique applied in surface mines for overburden removal and results in stripping cost savings. According to ballistic theory and center-of-mass frame basic movement principles, key factors influencing blast casting effect were analyzed, which include bench height and mining panel width, inclined angle of blast holes, explosive unit consumption (EUC, delay-time interval, presplitting, and blast hole pattern parameters. An intelligent design software was developed for obtaining better breaking and casting effect, and the error rates predicted with actual result can be controlled with 10%. Blast casting technique was successfully applied in Heidaigou Surface Coal Mine (HSCM with more than 34% of material casted into the inner dump. A ramp ditch was set within the middle inner dump for coal transportation. The procedure of stripping and excavating was implemented separately and alternately in the two sections around the middle ramp ditch. An unconstrained-nonlinear model was deduced for optimizing the shift distance of the middle ramp. The calculation results show that optimum shift distance of HSCM is 480 m, and the middle ditch should be shifted after 6 blast casting mining panels being stripped.

  5. 添加剂对改性含钛高炉渣氯化过程的影响%Effect of Additives on Chlorination of Modified Titania-Containing Blast Furnace Slag

    Institute of Scientific and Technical Information of China (English)

    付念新; 娄太平; 都兴红; 隋智通

    2012-01-01

    To solve the easy sticking of the particles in the chlorination of modified titania-containing blast furnace slag,the mechanism of preventing the sticking by additives was studied by XRD and thermodynamics analysis.Meanwhile,the effects of temperature,excessive carbon content,gas flow rate(N2+Cl2) and chlorine partial pressure on the chlorination behavior were investigated.The results showed that the prior reaction of phosphoric acid as an additive with CaO occurs to form Ca3(PO4)2 with a high-melting point,and the latter reacts with CaCl2 to give Ca5(PO4)3Cl.Thereby the sticking of the particles caused by the aggregation of low-melting point calcium and magnesium chlorides is avoided.The best chlorination results are obtained at 850~900 ℃ with the excessive carbon content of 15%,the flow rate of 400 mL/min and the chlorine partial pressure of 40 kPa,and the chlorination ratio reaches 90.8%~93.5% in 60 min.%针对高钙镁改性含钛高炉渣氯化过程物料易粘结问题,通过热力学分析及X射线衍射检测研究了添加剂防止粘结的作用机制,并考察了温度、配碳量、气体(N2+Cl2)流量和氯气分压对氯化行为的影响.结果表明:氯化过程中添加剂磷酸优先与CaO作用生成高熔点的Ca3(PO4)2以及后者与CaCl2反应生成Ca5(PO4)3Cl,避免了低熔点钙镁氯化物富集而造成的物料粘结.当反应条件为温度850~900℃、配碳过量15%、气体流量400 mL/min和氯气分压40 kPa,得到最佳的氯化结果,60 min内氯化率可达到90.8%~93.5%.

  6. Application and effects of team-triage system in the rescue of mass blast casualties%成组化分诊模式在应对突发大批伤员救治中的应用

    Institute of Scientific and Technical Information of China (English)

    黄萍; 沈红; 陈雁; 刘瑛

    2012-01-01

    Objective To evaluate the effects of team-triage system in the rescue of mass casualties in grade-Ⅲ hospitals. Methods A triage team was set up based on the mode of team-triage system. Totally 124 blast injured patients were triaged and rescued according to the simple triage and rapid treatment procedure. Results Of the 124 wounded patients,35 patients were triaged to red area,30 patients to yellow area,and 59 patients to green area. The triage qualification rate was 100%. Thirty-four patients suffered from severe multiple injuries or combined injuries. One hundred and eighteen patients received debridement operation and ten patients received damage control operation. One patient died and the rescue success rate was 97.1%. Conclusions The mode of team-triage system can ensure the rapid and orderly triage and rescue procedure, raise the efficiency of triage management and increase patient satisfaction in the rescue of group wounded patients.%目的 探讨成组化分诊模式应用于三级医院应对大规模成批伤员救治的效果.方法 按照成组化分诊模式建立检伤分诊小组,按照简单检伤分类及快速治疗程序对124例爆炸伤伤员进行检伤分流管理.结果 124例伤员中分流到红区救治35例,黄区30例,绿区59例,分诊合格率100%.本组中严重多发伤及复合伤34例,行清创手术118例,损害控制性手术10例,死亡1例,抢救成功率97.1%.结论 成组化分诊模式应用于三级医院应对突发大规模成批伤员救治,可以迅速建立良好的检伤救治秩序、提高分诊全程管理的效率和患者满意度.

  7. 采收后热风烘烤对小枣制干效果的影响%Effects of Hot Blast Baking after Harvse t on Drying Efect of Small Jujube

    Institute of Scientific and Technical Information of China (English)

    芮松青; 岳明强; 陈善义

    2013-01-01

    In order to improve the system dry jujube harvest rate , taking Cangzhou ziziphus jujube which in the same piece of orchard and harvest in the same day as the material , two drying methods of natural drying after hot blast baking 20 min and directly natural drying in the sun of jujube fruit were setted , the effects of different treatments on drying time and yield of jujube were analyzed by contrasting experiment design .The results showed that the drying time was significantly shortened , the rotting rate of fruit during the process of drying was significantly reduced and the yield was increased under the treatment of natural drying after a short heat after harvest.The technology was well drying method for small jujube .%  为提高枣果采收后的制干率,利用同一块枣园内、同一天收获的沧州金丝小枣,采用对比试验设计,制干方法设枣果采收后先热风烘烤20 min然后自然晾晒(简称“烘后晾晒”)和枣果采收后直接在晒场上自然晾晒(简称“直接晾晒”, CK)2个处理,比较了不同处理方法对枣果制干时间和成品率的影响。结果表明:枣果收获后经过短暂的高温处理不仅能明显缩短制干所需的时间,还能显著降低晾晒过程中的浆烂率,提高成品率。该技术是值得枣农推广应用的良好的小枣制干方法。

  8. Distinguishing Realistic Military Blasts from Firecrackers in Mitigation Studies of Blast Induced Traumatic Brain Injury

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2011-01-21

    In their Contributed Article, Nyein et al. (1,2) present numerical simulations of blast waves interacting with a helmeted head and conclude that a face shield may significantly mitigate blast induced traumatic brain injury (TBI). A face shield may indeed be important for future military helmets, but the authors derive their conclusions from a much smaller explosion than typically experienced on the battlefield. The blast from the 3.16 gm TNT charge of (1) has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 10 atm, 0.25 ms, and 3.9 psi-ms at the front of the head (14 cm from charge), and 1.4 atm, 0.32 ms, and 1.7 psi-ms at the back of a typical 20 cm head (34 cm from charge). The peak pressure of the wave decreases by a factor of 7 as it traverses the head. The blast conditions are at the threshold for injury at the front of the head, but well below threshold at the back of the head (4). The blast traverses the head in 0.3 ms, roughly equal to the positive phase duration of the blast. Therefore, when the blast reaches the back of the head, near ambient conditions exist at the front. Because the headform is so close to the charge, it experiences a wave with significant curvature. By contrast, a realistic blast from a 2.2 kg TNT charge ({approx} an uncased 105 mm artillery round) is fatal at an overpressure of 10 atm (4). For an injury level (4) similar to (1), a 2.2 kg charge has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 2.1 atm, 2.3 ms, and 18 psi-ms at the front of the head (250 cm from charge), and 1.8 atm, 2.5 ms, and 16.8 psi-ms at the back of the head (270 cm from charge). The peak pressure decreases by only a factor of 1.2 as it traverses the head. Because the 0.36 ms traversal time is much smaller than the positive phase duration, pressures on the head become relatively uniform when the blast reaches the back of the head. The larger standoff implies

  9. Intercropping of rice varieties increases the efifciency of blast control through reduced disease occurrence and variability

    Institute of Scientific and Technical Information of China (English)

    HAN Guang-yu; LANG Jie; SUN Yan; WANG Yun-yue; ZHU You-yong; LU Bao-rong

    2016-01-01

    Creating a crop-heterogeneous system by intraspeciifc mixtures of different rice varieties can substantialy reduce blast diseases. Such variety mixtures provide an ecological approach for effective disease control, maintaining high yields with the minimum fungicide applications. Whether such an approach is universaly applicable for random rice variety combina-tions and what is the variation pattern of the diseases under intercropping stil remains unclear. We conducted two-year large-scale ifeld experiments involving 47 rice varieties/lines and 98 variety-combinations to compare the occurrence of rice blast in monoculture and intercropping plots at multiple sites. In the experiments, the plant height of the selected tradi-tional varieties was about 30 cm taler, and their life cycle was 10 days longer, than that of the improved rice varieties. The monoculture included either traditional or modern rice varieties grown in separate plots. The intercropping included both traditional and modern rice varieties planted together in the same plots. Results from the ifeld experiments under natural disease conditions demonstrated signiifcant reduction for rice blast disease in intercropping plots, compared with that in monoculture plots. For traditional varieties, the average blast incidence reduced from ~26% in monoculture to ~10% in intercropping, and the disease severity reduced from ~17 in monoculture to ~5 in intercropping. For modern varieties, the average blast incidence reduced from ~19% in monoculture to ~10% in intercropping, and the severity from ~10 in mono-culture to ~4 in intercropping. Traditional rice varieties (~72%) had a much greater increase in the efifciency of disease control than modern varieties (~60%). In addition, substantialy lower values of variance in the blast incidence and severity was detected among the variety combinations in intercropping plots than in monoculture plots. Based on these results, we conclude that the intercropping or mixture of

  10. Behaviour of plated structures subjected to blast loading

    Science.gov (United States)

    Aune, Vegard; Børvik, Tore; Langseth, Magnus

    2015-09-01

    An experimental investigation using a new shock tube facility to study blast-load effects on thin aluminium plates is presented. The shock tube is designed to expose materials and structures to extreme loading conditions, such as accidental explosions or terrorist attacks. The intensity of the loading in the present study was determined by the initial conditions of the compressed gas, i.e. volume and pressure, and the resulting loading on the target plate was compared to experimental data from explosive detonations found in the literature. The square plates were manufactured from a low-strength aluminium alloy and had an exposed area of 0.3 × 0.3 m2. Piezoelectric pressure sensors were used for pressure recordings and synchronized with two high-speed cameras operating at a frame rate of 21,000 fps in a stereoscopic setup to capture the dynamic response using a three-dimensional digital image correlation (3D-DIC) technique. The experiment showed that the shock tube is capable of recreating a loading similar to that of an unconfined far-field airblast, and worked as an easily controllable alternative to explosive detonations when studying the dynamic response of structures subjected to blast loading.

  11. A method for working with displeased patients-blast.

    Science.gov (United States)

    Steinman, Howard K

    2013-03-01

    Clinicians inevitably encounter patients with complaints and concerns about the quality of their care. This causes some to experience anxiety, fear, anger, resentment, guilt, and depression, especially when they believe they may have erred or caused harm. Lack of customer-service training and experience may contribute to these emotions. The "BLAST" technique is a complaint-resolution method that is useful in patient care and as a clinical teaching tool. The mnemonic stands for: Believe (what the patient is saying), Listen (actively, to assess and restate the patient's unmet expectations), Apologize (for the patient's unmet expectations), Satisfy (the patient), and Thank (the patient for expressing his/her concerns and providing a second chance to satisfy the patient). The technique appears to help clinicians become more at ease and confident when handling patient complaints. This may be especially helpful for clinicians who must routinely interact with post-treatment and post-procedure patients who commonly express surprise, concern, or complaints about their results and healing. BLAST may be an effective teaching tool enabling students, residents, and clinicians to become more comfortable and adept at working with displeased and concerned patients.

  12. A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

    2002-01-21

    This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

  13. Characteristics of and strategies for patients with severe burn-blast combined injury

    Institute of Scientific and Technical Information of China (English)

    CHAI Jia-ke; SHEN Chuan-an; TUO Xiao-ye; LIANG Li-ming; WANG Shu-jun; SHENG Zhi-yong; LU Jiang-yang; WEN Zhong-guang; YANG Hong-ming; JIA Xiao-ming; LI Li-gen; CAO Wei-hong; HAO Dai-feng

    2007-01-01

    Background Severe burn-blast combined injury is a great challenge to medical teams for its high mortality. The aim of this study was to elucidate the clinical characteristics of the injury and to present our clinical experiences on the treatment of such cases.Methods Five patients with severe burn-blast combined injuries were admitted to our hospital 77 hours post-injury on June 7, 2005. The burn extent ranged from 80% to 97% (89.6%±7.2%) of TBSA (full-thickness burns 75%-92%(83.4%±7.3%)). All the patients were diagnosed as having blast injury and moderate or severe inhalation injury. Functions of the heart, liver, kidney, lung, pancreas and coagulation were observed. Autopsy samples of the heart, liver, and lungs were taken from the deceased. Comprehensive measures were taken during the treatment, including protection of organ dys function, use of antibiotics, early anticoagulant treatment, early closure of burn wounds, etc. All the data were analyzed statistically with t test.Results One patient died of septic shock 23 hours after admission (four days after injury), the others survived.Dysfunction of the heart, liver, lungs, pancreas, and coagulation were found in all the patients on admission, and the functions were ameliorated after appropriate treatments.Conclusions Burn-blast combined injury may cause multiple organ dysfunctions, especially coagulopathy. Proper judgment of patients' condition, energetic anticoagulant treatment, early closure of burn wounds, rational use of antibiotics, nutritional support, intensive insulin treatment, timely and effective support and protection of organ function are the most important contributory factors in successful treatment of burn-blast combined injuries.

  14. Carbon monoxide exposure in blast furnace workers.

    Science.gov (United States)

    Lewis, S; Mason, C; Srna, J

    1992-09-01

    This study investigated the occupational exposure to carbon monoxide (CO) of a group of blast furnace workers from an integrated steelworks, compared to a control group having no significant occupational CO exposure from other areas in the same works. The study was undertaken in 1984 at Port Kembla, New South Wales. Carboxyhaemoglobin (COHb) levels before and after an eight-hour work shift were measured in 98 male steelworkers: 52 from two CO-exposed iron blast furnaces and 46 controls from production areas in the same steelworks. The sample was stratified by smoking habits. Environmental air CO levels had been found to be consistently higher on one furnace than on the other. Absorption of CO from the working environment occurred in workers on the blast furnace with higher CO levels, regardless of smoking habits. On this blast furnace, some readings of COHb levels after a workshift in nonsmokers approached the proposed Australian occupational limit of 5 per cent COHb saturation. Overall, workers with the highest occupational exposure who smoked most heavily had the highest absorption of CO over a work shift. Biological monitoring gives an accurate measure of individual worker 'dose' of CO from all sources. Both environmental monitoring and biological monitoring need to be included as part of a program for controlling occupational CO exposure.

  15. Modeling of Near-Field Blast Performance

    Science.gov (United States)

    2013-11-01

    The freeze-out temperature is chosen by comparison of calorimetry experiments (2, 3) and thermoequilibrium calculations using CHEETAH (4). The near...P.; Vitello, P. CHEETAH Users Manual; Lawrence Livermore National Laboratory: Livermore, CA, 2012. 5. Walter, P. Introduction to Air Blast

  16. Media selection for micro blasting medical parts.

    Science.gov (United States)

    Whelan, T

    2008-10-01

    Micro blasting is used in a range of applications including catheter, stent and pacemaker manufacturing. The correct media to use for the required surface is defined here together with some of the finer points of the process to ensure successful results.

  17. Developments in vapour cloud explosion blast modeling

    NARCIS (Netherlands)

    Mercx, W.P.M.; Berg, A.C. van den; Hayhurst, C.J.; Robertson, N.J.; Moran, K.C.

    2000-01-01

    TNT Equivalency methods are widely used for vapour cloud explosion blast modeling. Presently, however, other types of models are available which do not have the fundamental objections TNT Equivalency models have. TNO Multi-Energy method is increasingly accepted as a more reasonable alternative to be

  18. Sizing of rock fragmentation modeling due to bench blasting using adaptive neuro-fuzzy inference system (ANFIS)

    Institute of Scientific and Technical Information of China (English)

    Karami Alireza; Afiuni-Zadeh Somaieh

    2013-01-01

    One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation because it directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks. We developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80%passing size (K80) of Golgohar iron mine of Sirjan, Iran. Comparing the results of ANFIS and RBF models shows that although the statistical parame-ters RBF model is acceptable but ANFIS proposed model is superior and also simpler because ANFIS model is constructed using only two input parameters while seven input parameters used for construction of RBF model.

  19. Air Blasts from Cased and Uncased Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, L. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-12

    The problem of a spherical blast in air is solved using the STUN code. For bare charges, the calculations are shown to be in excellent agreement with previous published results. It is demonstrated that, for an unconfined (uncased) chemical explosive, both range and time to effect scale inversely as the cube root of the yield and directly as the cube root of the ambient air density. It is shown that the peak overpressure decays to roughly 1/10 of ambient pressure in a scaled range of roughly 10 m/kg1/3 at sea level. At a height of 30 km, where the ambient density is a factor of 64 less, the range to the same decay increases to 40 m/kg1/3 . As a direct result of the scaling a single calculation suffices for all charge sizes and altitudes. Although the close-in results are sensitive to the nature of the explosive source and the equation of state of the air, this sensitivity is shown to virtually disappear at scaled ranges > 0.5 m/kg1/3 . For cased explosives the case thickness introduces an additional scale factor. Moreover, when the blast wave arrives at the inner case radius the case begins to expand. Fracture occurs when a critical value of the resulting hoop strain is reached, causing the case to shatter into fragments. A model is proposed to describe the size distribution of the fragments and their subsequent motion via drag interaction with the explosion products and ambient air. It is shown that a significant fraction of the charge energy is initially transmitted to the case fragments in the form of kinetic energy; for example, a 1 kg spherical charge with a 5 mm thick steel case has almost 29% of the total charge energy as initial kinetic energy of case fragments. This percentage increases with increasing case thickness and decreases with increasing charge size. The peak overpressure at a given range is 70-85% for cased explosives as compared with uncased and the peak impulse per unit area is 90-95%. The peak overpressure and

  20. Development of heat-transfer circuits in the blast furnace

    Science.gov (United States)

    Spirin, N. A.; Yaroshenko, Yu G.; Lavrov, V. V.

    2016-09-01

    The development of heat-transfer circuits in the blast furnace as the technologies of blast-furnace smelting are improved are considered. It is shown that there are two zones of intense heat-transfer, and in modern conditions, when different kinds of iron ore are smelted, the use of combined blast with high parameters is a prerequisite for the stability of blastfurnace smelting operation and the smelting efficiency.

  1. Practical aspects of drilling and blasting in NCL

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, T.; Rai, V.K.; Choubey, S.N. [ICI India Limited (India)

    2000-05-01

    Drilling and blasting play a vital role in mining of Northern Coalfields Ltd.'s large opencast mines in India. The article deals with the practical aspects of drilling and blasting and discusses the company's strategy adopted in different projects to ensure accurate, safe and efficient drilling to achieve good blast for high productivity of excavating equipment. 3 figs., 1 tab.

  2. An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast.

    Science.gov (United States)

    Bauman, Richard A; Ling, Geoffrey; Tong, Lawrence; Januszkiewicz, Adolph; Agoston, Dennis; Delanerolle, Nihal; Kim, Young; Ritzel, Dave; Bell, Randy; Ecklund, James; Armonda, Rocco; Bandak, Faris; Parks, Steven

    2009-06-01

    Explosive blast has been extensively used as a tactical weapon in Operation Iraqi Freedom (OIF) and more recently in Operation Enduring Freedom(OEF). The polytraumatic nature of blast injuries is evidence of their effectiveness,and brain injury is a frequent and debilitating form of this trauma. In-theater clinical observations of brain-injured casualties have shown that edema, intracranial hemorrhage, and vasospasm are the most salient pathophysiological characteristics of blast injury to the brain. Unfortunately, little is known about exactly how an explosion produces these sequelae as well as others that are less well documented. Consequently, the principal objective of the current report is to present a swine model of explosive blast injury to the brain. This model was developed during Phase I of the DARPA (Defense Advanced Research Projects Agency) PREVENT (Preventing Violent Explosive Neurotrauma) blast research program. A second objective is to present data that illustrate the capabilities of this model to study the proximal biomechanical causes and the resulting pathophysiological, biochemical,neuropathological, and neurological consequences of explosive blast injury to the swine brain. In the concluding section of this article, the advantages and limitations of the model are considered, explosive and air-overpressure models are compared, and the physical properties of an explosion are identified that potentially contributed to the in-theater closed head injuries resulting from explosions of improvised explosive devices (IEDs).

  3. A Systems Science Approach to Understanding Polytrauma and Blast-Related Injury: Bayesian Network Model of Data From a Survey of the Florida National Guard.

    Science.gov (United States)

    Toyinbo, Peter A; Vanderploeg, Rodney D; Belanger, Heather G; Spehar, Andrea M; Lapcevic, William A; Scott, Steven G

    2017-01-15

    We sought to further define the epidemiology of the complex, multiple injuries collectively known as polytrauma/blast-related injury (PT/BRI). Using a systems science approach, we performed Bayesian network modeling to find the most accurate representation of the complex system of PT/BRI and identify key variables for understanding the subsequent effects of blast exposure in a sample of Florida National Guard members (1,443 deployed to Operation Enduring Freedom/Operation Iraqi Freedom and 1,655 not deployed) who completed an online survey during the period from 2009 to 2010. We found that postdeployment symptoms reported as present at the time of the survey were largely independent of deployment per se. Blast exposure, not mild traumatic brain injury (TBI), acted as the primary military deployment-related driver of PT/BRI symptoms. Blast exposure was indirectly linked to mild TBI via other deployment-related traumas and was a significant risk for a high level of posttraumatic stress disorder (PTSD) arousal symptoms. PTSD arousal symptoms and tinnitus were directly dependent upon blast exposure, with both acting as bridge symptoms to other postdeployment mental health and physical symptoms, respectively. Neurobehavioral or postconcussion-like symptoms had no significant dependence relationship with mild TBI, but they were synergistic with blast exposure in influencing PTSD arousal symptoms. A replication of this analysis using a larger PT/BRI database is warranted.

  4. Precision Blasting Techniques For Avalanche Control

    Science.gov (United States)

    Powell, Kevin M.

    Experimental firings sponsored by the Center For Snow Science at Alta, Utah have demonstrated the potential of a unique prototype shaped charge device designed to stimulate snow pack and ice. These studies, conducted against stable snow pack, demonstrated a fourfold increase in crater volume yield and introduced a novel application of Shock Tube technology to facilitate position control, detonation and dud recovery of manually deployed charges. The extraordinary penetration capability of the shaped charge mechanism has been exploited in many non-military applications to meet a wide range of rapidpiercing and/or cutting requirements. The broader exploitation of the potential of the shaped charge mechanism has nevertheless remained confined to defence based applications. In the studies reported in this paper, the inimitable ability of the shaped charge mechanism to project shock energy, or a liner material, into a highly focussed energetic stream has been applied uniquely to the stimulation of snow pack. Recent research and development work, conducted within the UK, has resulted in the integration of shaped charge technology into a common Avalauncher and hand charge device. The potential of the common charge configuration and spooled Shock Tube fire and control system to improve the safety and cost effectiveness of explosives used in avalanche control operations was successfully demonstrated at Alta in March 2001. Future programmes of study will include focussed shock/blast mechanisms for suspended wire traverse techniques, application of the shaped charge mechanism to helibombing, and the desig n and development of non-fragmenting shaped charge ammunition formilitary artillery gun systems.

  5. A Numerical Study on the Screening of Blast-Induced Waves for Reducing Ground Vibration

    Science.gov (United States)

    Park, Dohyun; Jeon, Byungkyu; Jeon, Seokwon

    2009-06-01

    Blasting is often a necessary part of mining and construction operations, and is the most cost-effective way to break rock, but blasting generates both noise and ground vibration. In urban areas, noise and vibration have an environmental impact, and cause structural damage to nearby structures. Various wave-screening methods have been used for many years to reduce blast-induced ground vibration. However, these methods have not been quantitatively studied for their reduction effect of ground vibration. The present study focused on the quantitative assessment of the effectiveness in vibration reduction of line-drilling as a screening method using a numerical method. Two numerical methods were used to analyze the reduction effect toward ground vibration, namely, the “distinct element method” and the “non-linear hydrocode.” The distinct element method, by particle flow code in two dimensions (PFC 2D), was used for two-dimensional parametric analyses, and some cases of two-dimensional analyses were analyzed three-dimensionally using AUTODYN 3D, the program of the non-linear hydrocode. To analyze the screening effectiveness of line-drilling, parametric analyses were carried out under various conditions, with the spacing, diameter of drill holes, distance between the blasthole and line-drilling, and the number of rows of drill holes, including their arrangement, used as parameters. The screening effectiveness was assessed via a comparison of the vibration amplitude between cases both with and without screening. Also, the frequency distribution of ground motion of the two cases was investigated through fast Fourier transform (FFT), with the differences also examined. From our study, it was concluded that line-drilling as a screening method of blast-induced waves was considerably effective under certain design conditions. The design details for field application have also been proposed.

  6. Quarry blasts assessment and their environmental impacts on the nearby oil pipelines, southeast of Helwan City, Egypt

    Directory of Open Access Journals (Sweden)

    Adel M.E. Mohamed

    2013-06-01

    Full Text Available Ground vibrations induced by blasting in the cement quarries are one of the fundamental problems in the quarrying industry and may cause severe damage to the nearby utilities and pipelines. Therefore, a vibration control study plays an important role in the minimization of environmental effects of blasting in quarries. The current paper presents the influence of the quarry blasts at the National Cement Company (NCC on the two oil pipelines of SUMED Company southeast of Helwan City, by measuring the ground vibrations in terms of Peak Particle Velocity (PPV. The seismic refraction for compressional waves deduced from the shallow seismic survey and the shear wave velocity obtained from the Multi channel Analysis of Surface Waves (MASW technique are used to evaluate the closest site of the two pipelines to the quarry blasts. The results demonstrate that, the closest site of the two pipelines is of class B, according to the National Earthquake Hazard Reduction Program (NEHRP classification and the safe distance to avoid any environmental effects is 650 m, following the deduced Peak Particle Velocity (PPV and scaled distance (SD relationship (PPV = 700.08 × SD−1.225 in mm/s and the Air over Pressure (air blast formula (air blast = 170.23 × SD−0.071 in dB. In the light of prediction analysis, the maximum allowable charge weight per delay was found to be 591 kg with damage criterion of 12.5 mm/s at the closest site of the SUMED pipelines.

  7. Design and Analysis of Single Plate Blast Resistant Door

    Directory of Open Access Journals (Sweden)

    Nilesh S. Aitavade

    2013-06-01

    Full Text Available Blast Resistant Doors are used to withstand high intensity impulsive blast loads. They are designed to prevent the impact of the blast from travelling from one side to the other side of the door. Taking into account the limitations and the growing need of efficient blast resistant doors, a design was developed using ASTM A36 as the material of construction instead of concrete. Analytical calculations for the actual pressure-impulse loading condition were done as per the UFC 3-340-02, and the results of analytical calculations were compared with results of the simulation of the numerical model for the given boundary conditions.

  8. Study on orientation fracture blasting with shaped charge in rock

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of the theories of mechanics of explosive and rock fracture mechanics, the mechanism of crack initiation and its expansion of directional fracture controlled blasting with shaped charges in rock were studied, then the blasting parameters were designed and tested by a model test in laboratory and field experiment. The experimental and test results showed that the energy from blasting is directionally concentrated for the cumulative action. The directional expansion of cracks is satisfactory, the results of the model test and field test suggested that the orientation fracture blasting with shaped charge is a good means of excavating tunnels or cutting rock.

  9. Mechanisms of hearing loss after blast injury to the ear.

    Directory of Open Access Journals (Sweden)

    Sung-Il Cho

    Full Text Available Given the frequent use of improvised explosive devices (IEDs around the world, the study of traumatic blast injuries is of increasing interest. The ear is the most common organ affected by blast injury because it is the body's most sensitive pressure transducer. We fabricated a blast chamber to re-create blast profiles similar to that of IEDs and used it to develop a reproducible mouse model to study blast-induced hearing loss. The tympanic membrane was perforated in all mice after blast exposure and found to heal spontaneously. Micro-computed tomography demonstrated no evidence for middle ear or otic capsule injuries; however, the healed tympanic membrane was thickened. Auditory brainstem response and distortion product otoacoustic emission threshold shifts were found to be correlated with blast intensity. As well, these threshold shifts were larger than those found in control mice that underwent surgical perforation of their tympanic membranes, indicating cochlear trauma. Histological studies one week and three months after the blast demonstrated no disruption or damage to the intra-cochlear membranes. However, there was loss of outer hair cells (OHCs within the basal turn of the cochlea and decreased spiral ganglion neurons (SGNs and afferent nerve synapses. Using our mouse model that recapitulates human IED exposure, our results identify that the mechanisms underlying blast-induced hearing loss does not include gross membranous rupture as is commonly believed. Instead, there is both OHC and SGN loss that produce auditory dysfunction.

  10. Controlled Low-Pressure Blast-Wave Exposure Causes Distinct Behavioral and Morphological Responses Modelling Mild Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Comorbid Mild Traumatic Brain Injury-Post-Traumatic Stress Disorder.

    Science.gov (United States)

    Zuckerman, Amitai; Ram, Omri; Ifergane, Gal; Matar, Michael A; Sagi, Ram; Ostfeld, Ishay; Hoffman, Jay R; Kaplan, Zeev; Sadot, Oren; Cohen, Hagit

    2017-01-01

    The intense focus in the clinical literature on the mental and neurocognitive sequelae of explosive blast-wave exposure, especially when comorbid with post-traumatic stress-related disorders (PTSD) is justified, and warrants the design of translationally valid animal studies to provide valid complementary basic data. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast-wave produced by exploding a thin copper wire. By combining cognitive-behavioral paradigms and ex vivo brain MRI to assess mild traumatic brain injury (mTBI) phenotype with a validated behavioral model for PTSD, complemented by morphological assessments, this study sought to examine our ability to evaluate the biobehavioral effects of low-intensity blast overpressure on rats, in a translationally valid manner. There were no significant differences between blast- and sham-exposed rats on motor coordination and strength, or sensory function. Whereas most male rats exposed to the blast-wave displayed normal behavioral and cognitive responses, 23.6% of the rats displayed a significant retardation of spatial learning acquisition, fulfilling criteria for mTBI-like responses. In addition, 5.4% of the blast-exposed animals displayed an extreme response in the behavioral tasks used to define PTSD-like criteria, whereas 10.9% of the rats developed both long-lasting and progressively worsening behavioral and cognitive "symptoms," suggesting comorbid PTSD-mTBI-like behavioral and cognitive response patterns. Neither group displayed changes on MRI. Exposure to experimental blast-wave elicited distinct behavioral and morphological responses modelling mTBI-like, PTSD-like, and comorbid mTBI-PTSD-like responses. This experimental animal model can be a useful tool for elucidating neurobiological mechanisms underlying the effects of blast-wave-induced mTBI and PTSD and comorbid mTBI-PTSD.

  11. 30 CFR 817.66 - Use of explosives: Blasting signs, warnings, and access control.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 817.11. The operator...

  12. 30 CFR 57.22601 - Blasting from the surface (I-A mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting from the surface (I-A mines). 57.22601... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22601 Blasting from the surface (I-A mines... blast area and through at least one atmospheric monitoring sensor. (b) After blasting, if the...

  13. 30 CFR 57.6404 - Separation of blasting circuits from power source.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of blasting circuits from power... NONMETAL MINES Explosives Electric Blasting-Surface and Underground § 57.6404 Separation of blasting circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall...

  14. 22 CFR 121.11 - Military demolition blocks and blasting caps.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Military demolition blocks and blasting caps... blasting caps. Military demolition blocks and blasting caps referred to in Category IV(a) do not include the following articles: (a) Electric squibs. (b) No. 6 and No. 8 blasting caps, including...

  15. 30 CFR 56.6404 - Separation of blasting circuits from power source.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of blasting circuits from power... MINES Explosives Electric Blasting § 56.6404 Separation of blasting circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall be locked in the open position...

  16. 77 FR 58173 - Proposed Extension of Existing Information Collection; Explosive Materials and Blasting Units...

    Science.gov (United States)

    2012-09-19

    ... Materials and Blasting Units (Pertains to Metal and Nonmetal Underground Mines Deemed To Be Gassy AGENCY... materials and blasting units as permissible for use in the mining industry. However, since there are no permissible explosives or blasting units available that have adequate blasting capacity for some metal...

  17. 30 CFR 816.66 - Use of explosives: Blasting signs, warnings, and access control.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Use of explosives: Blasting signs, warnings... STANDARDS-SURFACE MINING ACTIVITIES § 816.66 Use of explosives: Blasting signs, warnings, and access control. (a) Blasting signs. Blasting signs shall meet the specifications of § 816.11. The operator shall—...

  18. Electro- or Turbo-Driven?—Analysis of Different Blast Processes of Blast Furnace

    Directory of Open Access Journals (Sweden)

    Wenqiang Sun

    2016-08-01

    Full Text Available There has always been a dispute about the energy efficiency and energy cost of electro-driven and turbo-driven blast furnace (BF blast processes. In order to find where the problem lies, energy efficiency analysis models and energy cost analysis models of electro-driven and turbo-driven blast processes were established, and the differences between the two driving processes in terms of theoretical minimum steam consumption, energy efficiency and energy cost were studied. The results showed that the theoretical minimum steam consumption of a blast process depends on steam thermodynamic properties and is unrelated to drive mode and drive process. A certain overlapped interval between electro-driven and turbo-driven blast processes in terms of energy efficiency exists. The equation for calculating the standard coal coefficient of steam was proposed, and the relationship to judge strengths and weaknesses of the two driving modes in terms of energy efficiency and energy cost was established. Finally, two companies were selected for case study research. The results led to different conclusions because of the differences between energy media in terms of standard coal coefficient and unit price. To select the best driving mode, plant-running conditions and energy prices of the region of operation in addition to other relevant factors should all be taken into account.

  19. Practice of Optimal Operation of Energy Medium Pipe Network in Blast Furnace Area%宣钢高炉区域能源介质管网优化运行的实践

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    The shortcomings in the energy medium pipe network of blast furnace of Xuanhua Iron & Steel Co are described in detail. The energy medium pipe network is recon-structed, which has achieved better energy saving effect of blast furnace and ensured efficient and stable operation of blast furnace.%  主要针对高炉能源介质管网存在的不足进行详细的阐述,并进行了完善与改造,使高炉节能收到了较好的效果并保证了高炉的高效稳定运行。

  20. White Matter Abnormalities are Associated with Chronic Postconcussion Symptoms in Blast-Related Mild Traumatic Brain Injury

    Science.gov (United States)

    Miller, Danielle R.; Hayes, Jasmeet P.; Lafleche, Ginette; Salat, David H.; Verfaellie, Mieke

    2016-01-01

    Blast-related mild traumatic brain injury (mTBI) is a common injury among Iraq and Afghanistan military veterans due to the frequent use of improvised explosive devices. A significant minority of individuals with mTBI report chronic postconcussion symptoms (PCS), which include physical, emotional, and cognitive complaints. However, chronic PCS are non-specific and are also associated with mental health disorders such as posttraumatic stress disorder (PTSD). Identifying the mechanisms that contribute to chronic PCS is particularly challenging in blast-related mTBI, where the incidence of co-morbid PTSD is high. In this study, we examined whether blast-related mTBI is associated with diffuse white matter changes, and whether these neural changes are associated with chronic PCS. Ninety Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans were assigned to one of three groups including a blast-exposed no-TBI group, a blast-related mTBI without loss of consciousness (LOC) group (mTBI−LOC), and a blast-related mTBI with LOC group (mTBI+LOC). PCS were measured with the Rivermead Postconcussion Questionnaire. Results showed that participants in the mTBI+LOC group had more spatially heterogeneous white matter abnormalities than those in the no-TBI group. These white matter abnormalities were significantly associated with physical PCS severity even after accounting for PTSD symptoms, but not with cognitive or emotional PCS severity. A mediation analysis revealed that mTBI+LOC significantly influenced physical PCS severity through its effect on white matter integrity. These results suggest that white matter abnormalities are associated with chronic PCS independent of PTSD symptom severity and that these abnormalities are an important mechanism explaining the relationship between mTBI and chronic physical PCS. PMID:26497829

  1. White matter abnormalities are associated with chronic postconcussion symptoms in blast-related mild traumatic brain injury.

    Science.gov (United States)

    Miller, Danielle R; Hayes, Jasmeet P; Lafleche, Ginette; Salat, David H; Verfaellie, Mieke

    2016-01-01

    Blast-related mild traumatic brain injury (mTBI) is a common injury among Iraq and Afghanistan military veterans due to the frequent use of improvised explosive devices. A significant minority of individuals with mTBI report chronic postconcussion symptoms (PCS), which include physical, emotional, and cognitive complaints. However, chronic PCS are nonspecific and are also associated with mental health disorders such as posttraumatic stress disorder (PTSD). Identifying the mechanisms that contribute to chronic PCS is particularly challenging in blast-related mTBI, where the incidence of comorbid PTSD is high. In this study, we examined whether blast-related mTBI is associated with diffuse white matter changes, and whether these neural changes are associated with chronic PCS. Ninety Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) veterans were assigned to one of three groups including a blast-exposed no--TBI group, a blast-related mTBI without loss of consciousness (LOC) group (mTBI--LOC), and a blast-related mTBI with LOC group (mTBI + LOC). PCS were measured with the Rivermead Postconcussion Questionnaire. Results showed that participants in the mTBI + LOC group had more spatially heterogeneous white matter abnormalities than those in the no--TBI group. These white matter abnormalities were significantly associated with physical PCS severity even after accounting for PTSD symptoms, but not with cognitive or emotional PCS severity. A mediation analysis revealed that mTBI + LOC significantly influenced physical PCS severity through its effect on white matter integrity. These results suggest that white matter abnormalities are associated with chronic PCS independent of PTSD symptom severity and that these abnormalities are an important mechanism explaining the relationship between mTBI and chronic physical PCS.

  2. Possible Collapse Mode for Slender Reinforced Concrete Plates Subjected to Blast Load

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; DU Xiuli; CHEN Zhen; ZENG Fanna

    2008-01-01

    This paper discusses the collapse mode of thin reinforced concrete (RC) plates subjected to blast load.To extend the well known plastic-mode method to analyze,not only perfectplastic plates,but also RC plates,it is needed to investigate the effect of material cracking on the collapse mode because the plate might have been cracked on both upper and lower surface before the plastic-mode fully develops,creating an unexpected type of collapse mode shape.A new failure mode is proposed and verified by numerical analysis in this paper.The new mode is a result of the material cracking and has an un-negligible effect on the reaction mechanism of the RC plate to the blast load.

  3. Open-pit Mine Bench Blasting Design and the Application based on Three-dimensional Model%基于三维模型的露天矿台阶爆破设计及其应用

    Institute of Scientific and Technical Information of China (English)

    段玉贤; 李发本

    2011-01-01

    Based on three-dimensional orebody modeling technology,the blast-hole distributing and blasting network design of open-pit mine bench blasting was studied.Which had been successfully used in blasting project design at 1414 northern bench of Sandaozhuang Open-pit Mine of Luoyang Luanchuan Molybdenum Industry Group Co,Ltd.The result indicated that the blasting design system blasting plan is scientific and effective,and the blasting design working efficiency has been improved greatly.%基于三维矿体建模技术,针对露天矿台阶爆破的布孔和爆破网络设计展开研究,并在洛钼集团三道庄露天矿1414台阶北部的爆破工程设计中成功应用。实践表明,该爆破设计系统爆破方案科学有效,大大提高了爆破设计工作效率。

  4. Automated methods of predicting the function of biological sequences using GO and BLAST

    Directory of Open Access Journals (Sweden)

    Baumann Ute

    2005-11-01

    Full Text Available Abstract Background With the exponential increase in genomic sequence data there is a need to develop automated approaches to deducing the biological functions of novel sequences with high accuracy. Our aim is to demonstrate how accuracy benchmarking can be used in a decision-making process evaluating competing designs of biological function predictors. We utilise the Gene Ontology, GO, a directed acyclic graph of functional terms, to annotate sequences with functional information describing their biological context. Initially we examine the effect on accuracy scores of increasing the allowed distance between predicted and a test set of curator assigned terms. Next we evaluate several annotator methods using accuracy benchmarking. Given an unannotated sequence we use the Basic Local Alignment Search Tool, BLAST, to find similar sequences that have already been assigned GO terms by curators. A number of methods were developed that utilise terms associated with the best five matching sequences. These methods were compared against a benchmark method of simply using terms associated with the best BLAST-matched sequence (best BLAST approach. Results The precision and recall of estimates increases rapidly as the amount of distance permitted between a predicted term and a correct term assignment increases. Accuracy benchmarking allows a comparison of annotation methods. A covering graph approach performs poorly, except where the term assignment rate is high. A term distance concordance approach has a similar accuracy to the best BLAST approach, demonstrating lower precision but higher recall. However, a discriminant function method has higher precision and recall than the best BLAST approach and other methods shown here. Conclusion Allowing term predictions to be counted correct if closely related to a correct term decreases the reliability of the accuracy score. As such we recommend using accuracy measures that require exact matching of predicted

  5. Control of City Shallow Buried Tunnel Blasting Hazard to Surface Buildings

    Directory of Open Access Journals (Sweden)

    Yang Deqiang

    2015-01-01

    Full Text Available Combining with the blasting test of an under-construction tunnel, this paper optimizes the overall blasting construction scheme. The optimized blasting scheme is used in the site construction test and the peak particle vibration velocity is strictly controlled under working conditions through blasting vibration monitoring to ensure the safety of surrounding buildings and structures in the construction process. The corresponding control measures are proposed to reduce the blasting vibration which brings certain guiding significance to the following construction project.

  6. Preliminary findings of cortical thickness abnormalities in blast injured service members and their relationship to clinical findings.

    Science.gov (United States)

    Tate, D F; York, G E; Reid, M W; Cooper, D B; Jones, L; Robin, D A; Kennedy, J E; Lewis, J

    2014-03-01

    Though cortical abnormalities have been demonstrated in moderate and severe traumatic brain injured (TBI) patients, there have been no studies examining cortical changes following blast related mild TBI (mTBI). The purpose of this study was to determine the effects and functional relevance of blast mTBI on cortical thickness in a small cohort of carefully screened blast injured US Service Members (SM). Twelve SM with mTBI acquired through blast injury were compared to 11 demographically matched control SM without TBI. Both mTBI and control participants were active duty and had completed a combat deployment. Subjects underwent MRI examination and the T1 weighted anatomic images were processed using the FreeSurfer suite of tools. Cortical thickness maps were compared between groups and examined for relationships with time since injury (TSI). Utilizing a large database of functional imaging results (BrainMap), significant regions of interest (ROI) were used to determine the behavioral profiles most consistently associated with the specific ROI. In addition, clinical variables were examined as part of post-hoc analysis of functional relevance. Group comparisons controlling for age demonstrated several significant clusters of cortical thinning for the blast injured SM. After multiple comparisons correction (False Discovery Rate (FDR)), two left hemisphere clusters remained significant (left superior temporal (STG) and frontal (SFG) gyri). No clusters were significantly correlated with TSI after FDR correction. Behavioral analysis for the STG and SFG clusters demonstrated three significant behavioral/cognitive sub-domains, each associated with audition and language. Blast injured SMs demonstrated distinct areas of cortical thinning in the STG and SFG. These areas have been previously shown to be associated with audition and language. Post-hoc analyses of clinical records demonstrated significant abnormal audiology reports for the blast injured SM suggesting that the

  7. Blast event simulation for a vehicle subjected to an explosion

    NARCIS (Netherlands)

    Zhang, G.; Vlahopoulos, N.; Goetz, R.; Velde, R. van de

    2007-01-01

    One of the main threats to military vehicles originates from blasts. In order to improve the survivability of the occupants it is important to design a military vehicle for increased occupant safety. Simulation technology that combines modeling of the blast loads from an explosion, the response of t

  8. New technique for identifying varieties resistance to rice blast

    Institute of Scientific and Technical Information of China (English)

    ZHUPeiliang

    1994-01-01

    After 8 yrs lab experiments and field tests, an advanced technique for identifying varieties resistance to rice blast was developed by a research group in Plant Protection Institute, Zhejiang Academy of AgricuLltural Sciences. With this technique, the inoculum was prepared on a maizc-rice-straw-agar media which was suitable for sporulation of most rice blast pathogen isolates.

  9. Reduction Mechanism of Chromite Ore in Blast Furnace

    Institute of Scientific and Technical Information of China (English)

    LI Yi-wei; DING Wei-zhong; LU Xiong-gang; XU Kuang-di

    2004-01-01

    The structural changes and reduction degree of chromite ore in blast furnace were studied by optical micrograph analysis, scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDXA). The smelting reduction mechanism of chromite in blast furnace was primarily discussed.

  10. Preliminary blasting as a means of constructing the final slopes

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Jimeno, E.; Lopez Jimeno, C. (Lignitos de Meirama, La Coruna (Spain))

    1983-01-01

    In order to undertake construction of a new belt at the Meirama opencast lignite workings in the Province of Coruna it has been necessary partially to re-site the slope of the general haulage drift. Preliminary blasting was thought to be the most suitable method of blasting in order to maintain slope stability of the rock mass. (17 refs.)

  11. The composition of the products from flameless blasting

    Energy Technology Data Exchange (ETDEWEB)

    Chikunov, V.I.; Chikunova, G.V.; Domanov, V.P.; Nezyrova, L.P.

    1979-01-01

    Results are given from research on the composition of the products resulting from Hydrox coal blasting together with a mechanism for the conversion of the components during the reaction process. Methods for decreasing the quantity of toxic gases during blasting in the stopes of coal mines that have dangerous gas and dust levels are recommended.

  12. Structural Analysis Of Offshore Structures Exposed To Blast Loads

    DEFF Research Database (Denmark)

    Hansen, Hans Jakup; Thygesen, Ulf; Kristensen, Anders;

    2002-01-01

    Numerical methods for simulations of blast loads and resulting structural response are investigated and compared to results obtained from tests. The CFD code EXSIM is used for the simulation of the blast load. This code provides a load profile wich is entered in the FEM analysis model....

  13. Histologic and biomechanical evaluation of alumina-blasted/acid-etched and resorbable blasting media surfaces.

    Science.gov (United States)

    Bonfante, Estevam A; Marin, Charles; Granato, Rodrigo; Suzuki, Marcelo; Hjerppe, Jenni; Witek, Lukasz; Coelho, Paulo G

    2012-10-01

    This study evaluated the early biomechanical fixation and bone-to-implant contact (BIC) of an alumina-blasted/acid-etched (AB/AE) compared with an experimental resorbable blasting media (RBM) surface in a canine model. Higher texturization was observed for the RBM than for the AB/AE surface, and the presence of calcium and phosphorus was only observed for the RBM surface. Time in vivo and implant surface did not influence torque. For both surfaces, BIC significantly increased from 2 to 4 weeks.

  14. The effect of the anisodaminum and dexamethasone on the changes of blood gas of the rats following the blast-toxicosis combined injury by the explosion of the nitrogen tetroxide%山莨菪碱联用地塞米松对四氧化二氮爆炸致冲毒复合伤大鼠血气的影响

    Institute of Scientific and Technical Information of China (English)

    岳茂兴; 杨鹤鸣; 王正国; 王德文; 夏亚东; 杨志焕; 李建忠; 彭瑞云; 徐世全

    2001-01-01

    Objectve To investigate the effects of anisodaminum and dexamethasone on the changes of blood gas of the N2O4 blast-toxicosis combined injury model. Methods Two hundred and twenty-four male Wistar rats were divided randomly into 4 groups: ①N2O4 blast-toxicosis combined injury model group; ②Anisodaminum treated group; anisodaminum (3 mg/kg) was given ip right after, 15 min after and 2 h after the injury; ③Dexamethasone treated group; dexamethasone (10 mg/kg) was given ip right after the injury, 15 min after and 2 h after the injury; ④Anisodaminum and dexamethasone combine-treated group; anisodaminum (3 mg/kg) and dexamethasone (10 mg/kg) were given ip right after, 15 min after and 2 h after the injury. Each group was subdivided into control group and 6 treatment groups which were killed 3, 6, 12, 24, 48, 72 hours after the injury for blood gas analysis.  Results In N2O4 blast-toxicosis model group PaO2 and pH of the plasma were significantly decreased, while PaCO2 was increased . Combined use of anisodaminum and dexamethasone in the early stage significantly ameliorated the disorders of the blood gas of the combined injury. Conclusion It is suggested that the combined use of anisodaminum and dexamethasone in the early stage is effective in the treatment of blast-toxicosis combined injury caused by the explosion of the nitrogen tetroxide.%目的通过复制N2O4爆炸致冲毒复合伤模型,研究山莨菪碱联用地塞米松对实验动物血气的影响。方法采用健康雄性Wistar大鼠224只,随机分组:①模型组:冲击伤加N2O4染毒复合致伤;②山莨菪碱组:伤后即刻、伤后15 min、伤后2 h分别腹腔注射山莨菪碱3 mg/kg,共3次;③地塞米松组:伤后即刻、15 min、2 h分别腹腔注射地塞米松10 mg/kg,共3次。④山莨菪碱联用地塞米松组:伤后分3次注射山莨菪碱3 mg/kg及地塞米松10 mg/kg。结果模型组血氧分压明显下降,二氧化碳分压上升,血

  15. Prevention of Blast-Related Injuries

    Science.gov (United States)

    2015-07-14

    al (2012) conducted porcine blast experiments in a compressed gas shock tube, and found that the ICP was lower than the reflected pressure and also...was recently shown that TGF beta from immature astrocytes could initiate synaptic elimination in postnatal thalamus by regulating the expression of...Stevens B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat Neurosci. Dec 2013;16(12):1773- 1782. 38 22

  16. Centrifugal shot blasting. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.

  17. Seamounts, Direct Blast and Volume Reverberation Upgrades

    Science.gov (United States)

    1988-11-30

    Highway. Suits 1204. Arlington, VA 22202-4302. "n to the Office of Management and Budget. Peperworik Reduction Project (0704-0188). Washington. DC 2050M. 1...Subtitle. 5. Funding Numbers. Seamounts, Direct Blast And Volume Reverberation Upgrades proram Eemen No 3 7 85N Project No R02017 6. Author(s). L...Section Pae 1 INTRODUCTION ................................. 1-1 2 ASERT: DATA PREPARATION FOR ASTRAL ........... 2-1 2.1 Overview and Purpose of

  18. Blast Injuries: What Clinicians Need to Know

    Centers for Disease Control (CDC) Podcasts

    2008-11-05

    In this podcast, Dr. Richard C. Hunt, Director of the CDC’s Division of Injury Response, National Center for Injury Prevention and Control provides a brief overview for health care providers on how to respond and care for persons injured by an explosion or blast event.  Created: 11/5/2008 by National Center for Injury Prevention and Control (NCIPC), Division of Injury Response (DIR).   Date Released: 11/6/2008.

  19. Response Mechanism: Blast/Fire Interactions.

    Science.gov (United States)

    1983-11-01

    present research. The problem of blast interaction with fire was studied theoretically by Fendell at TRW [6) and experimentally by Martin, Backovsky and...Editors, SRI International Report for DCPA, Contract No. DCPA01-78-C-0279, Work Unit 2563F (September 1979). 6. Carrier, G., Fendell , F., Feldman P...Engineering University of California Gainesville, FL 32601 P.O. Box 808, L-140 Livermore, CA 94550 Dr. Francis E. Fendell R1/1038 Mr. Edward L. Hill TRW

  20. Prevention of Blast-Related Injuries

    Science.gov (United States)

    2014-07-01

    curvature changes. Figure 38. Locations with element disconnect issues 2. Modeling air blast wave propagation using a 2-D to 3-D mapping...sagittal sinus, transverse sinus, cerebral spinal fluid (CSF), hemispheres of the cerebrum with distinct white and gray matter, cerebellum, brainstem...brain and cerebral spinal fluid (CSF) were meshed and defined with Lagrangian formulation-based elements. The CSF fills the subarachnoid space

  1. Structural Optimization for Blast Mitigation Using HCA

    Science.gov (United States)

    2009-08-14

    UNCLASSIFIED
 Structural Optimization for Blast Mitigation Using HCA University of Notre Dame John Goetz, Huade Tan, Andrés Tovar , John Renaud...John Goetz; Huande Tan; Andres Tovar ; John Renaud 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...Overview: Algorithm •  A continuum-based topology optimization –  First utilized for bone remodeling ( Tovar ’04) –  Extend bone remodeling technique for

  2. Research and development of blasting abrasive made of steelmaking slag

    Institute of Scientific and Technical Information of China (English)

    TANG Oujing

    2015-01-01

    This study focuses on the development of a new type of nonmetallic steelmaking slag abrasive.The performance,processing,and application of steelmaking slag as a nonmetallic abrasive are introduced.The chemical composition,hardness,crushing value,and particle gradation of steelmaking slag are analyzed.A processing method for steelmaking slag as a blasting abrasive is suggested and evaluated.Compared with conventional abrasives such as copper ore sand and cast iron shot,processed steelmaking slag exhibits similar performance and can satisfy abrasive technical requirements.The derusting effect provided by steelmaking slag for a ship deck can reach the Sa2.0 level,and its recyclability is higher than that of copper ore sand.The derusting performance of steelmaking slag is similar to that of copper ore,and it can thus be used in repairing ship decks.

  3. High performance installation for drill and blast advance Mitholz, Switzerland

    Institute of Scientific and Technical Information of China (English)

    Jost Wenk

    2004-01-01

    The section Mitholz of the L tschberg Alp - Transit tunnel consists basically of 3 drill & blast advances with a cross section of 63 - 69m2 and a total length of 25 km.The high - performance back - up installation in use distinguishes itself by the following substantial innovations:The joint venture SATCO ( STRABAG AG, Rothpletz, Lienhard & Cie. , Walo Bertschinger AG, Vinci Construction,Skanska Europe AB), the c ontractor in charge, is achieving very high rates of advance, thanks to the high - performance back - up installations.- The chosen heading system has a positive effect on the entire construction program. Supplementary work can be done within the planned time schedule - Owing to the excellent performance, the joint venture SATCO is ahead on the construction program by about 700m.- The high rates of advance result for the customer in a positive return on investment - The installed equipment results in a higher safety at the workplace for the workers

  4. Blast furnace slags as sorbents of phosphate from water solutions.

    Science.gov (United States)

    Kostura, Bruno; Kulveitová, Hana; Lesko, Juraj

    2005-05-01

    The paper is focused on the sorption of phosphorus from aqueous solutions by crystalline and amorphous blast furnace slags. Slag sorption kinetics were measured, adsorption tests were carried out and the effect of acidification on the sorption properties of slags was studied. The kinetic measurements confirmed that the sorption of phosphorus on crystalline as well as amorphous slags can be described by a model involving pseudo-second-order reactions. For all slag types, phosphorus sorption follows the Langmuir adsorption isotherm. The acid neutralizing capacities of crystalline and amorphous slags were determined. In the case of the crystalline slags, buffering intervals were found to exist during which the slag minerals dissolve in the sequence bredigite-gehlenite-diaspor. There is a high correlation (R2=0.9989) between ANC3.8 and the saturation capacities of crystalline and amorphous slags.

  5. Mitigation of Mine Blast Loading by Collapsible Structures

    Directory of Open Access Journals (Sweden)

    Izak Marius Snyman

    2013-05-01

    Full Text Available This paper presents research results on the mitigation of mine blast loading by collapsible structures. A baseline test consisting of a test platform with a V-shape body exposed to the charge was executed, recording the imparted impulse and the deformation of the test item. A collapsible structure is added to the test platform and tested (two tests. By the law of conservation of momentum, similar peak imparted impulse values were obtained. However, the average imparted impulse reduced by between 16 % to 18% by adding this collapsible element in the load path. The average impulse is the total momentum transferred after the response of the damping system is filtered into the measurement system. The results are analysed with ANSYS AUTODYN and support the measured effects of the introduction of the mitigation measure.Defence Science Journal, 2013, 63(3, pp.262-270, DOI:http://dx.doi.org/10.14429/dsj.63.2308

  6. Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment

    Science.gov (United States)

    Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.

    2009-01-01

    An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.

  7. Influence of maximum decking charge on intensity of blasting vibration

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Based on the character of short-time non-stationary random signal, the relationship between the maximum decking charge and energy distribution of blasting vibration signals was investigated by means of the wavelet packet method. Firstly, the characteristics of wavelet transform and wavelet packet analysis were described. Secondly, the blasting vibration signals were analyzed by wavelet packet based on software MATLAB, and the change of energy distribution curve at different frequency bands were obtained. Finally, the law of energy distribution of blasting vibration signals changing with the maximum decking charge was analyzed. The results show that with the increase of decking charge, the ratio of the energy of high frequency to total energy decreases, the dominant frequency bands of blasting vibration signals tend towards low frequency and blasting vibration does not depend on the maximum decking charge.

  8. The past and present of blast injury research in China

    Institute of Scientific and Technical Information of China (English)

    Yan Zhao; Yuan-Guo Zhou

    2015-01-01

    With the increasing incidence of blast injury,the research on its mechanisms and protective measures draws more and more attention.Blast injury has many characteristics different from general war injuries or trauma.For example,soldiers often have various degrees of visceral injury without significant surface damage,combined injuries and arterial air embolism.Researchers in China began to investigate blast injury later than the United States and Sweden,but the development is so fast that lots of achievements have been gained,including the development of biological shock tube,the mechanisms and characteristics of blast injury in various organs,as well as protective measures under special environments.This article reviews the past and current situation of blast injury research in China.

  9. High-speed measurement of firearm primer blast waves

    CERN Document Server

    Courtney, Michael; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast pressure of 8.2-25.0%. 3) Combined with smaller blast waves, these large variations in peak blast pressure of DDNP-based primers led to delayed ignition and failure to fire in brief field tests.

  10. Numerical Calculation of Concrete Slab Response to Blast Loading

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiaoqing; HAO Hong; KUZNETSOV Valerian A; WASCHL John

    2006-01-01

    In the present paper,a dynamic plastic damage model for concrete has been employed to estimate responses of a reinforced concrete slab subjected to blast loading.The interaction between the blast wave and the concrete slab is considered in 3D simulation.In the first stage,the initial detonation and blast wave propagation is modelled in 2D simulation before the blast wave reaches the concrete slab,then the results obtained from 2D calculation are remapped to a 3D model.The calculated blast load is compared with that obtained from TM5-1300.Numerical results of the concrete slab response are compared with the explosive test carried out in the Weapons System Division,Defence Science and Technology Organisation,Department of Defence,Australia.

  11. Air-Decking Technique in Bench Blasting

    Institute of Scientific and Technical Information of China (English)

    ZHU Hong-bing; LU Wen-bo; WU Liang

    2006-01-01

    The mechanism and the design parameters of blasting with air-decking are studied. The theory of detonation waves is used to investigate the processes of the one-dimensional plane detonation wave within a borehole. The interaction of the rarefaction wave with an interface and reflection on a rigid wall is also analyzed. The same courses of the shock wave are also investigated. This decides the distribution of the pressure of the explosion products changing with time along the borehole. Based on the above theoretical analysis, two conditions should be met for a reasonable range of values of the air-decking ratio in blasting rock. First, the rarefaction wave from the contact interface between detonation products and air reaches the bottom earlier than that of the reflected shock wave from the end of the stemming. Second,the reflected shock wave reaches the contact interface between the detonation products and air earlier than that of the reflected rarefaction wave from the bottom of the borehole. Finally, the reasonable value of the air-decking ratio must be decided theoretically in air-decking blasting. For different explosives, the reasonable range of air-decking ratio varies from 0.15 to 0.4. This result is well consistent with what was obtained by previous researchers.

  12. D-BLAST OFDM with Channel Estimation

    Directory of Open Access Journals (Sweden)

    Du Jianxuan

    2004-01-01

    Full Text Available Multiple-input and multiple-output (MIMO systems formed by multiple transmit and receive antennas can improve performance and increase capacity of wireless communication systems. Diagonal Bell Laboratories Layered Space-Time (D-BLAST structure offers a low-complexity solution for realizing the attractive capacity of MIMO systems. However, for broadband wireless communications, channel is frequency-selective and orthogonal frequency division multiplexing (OFDM has to be used with MIMO techniques to reduce system complexity. In this paper, we investigate D-BLAST for MIMO-OFDM systems. We develop a layerwise channel estimation algorithm which is robust to channel variation by exploiting the characteristic of the D-BLAST structure. Further improvement is made by subspace tracking to considerably reduce the error floor. Simulation results show that the layerwise estimators require 1 dB less signal-to-noise ratio (SNR than the traditional blockwise estimator for a word error rate (WER of when Doppler frequency is 40 Hz. Among the layerwise estimators, the subspace-tracking estimator provides a 0.8 dB gain for WER with 200 Hz Doppler frequency compared with the DFT-based estimator.

  13. Study on blast furnace cooling stave for various refractory linings based on numerical modeling

    Science.gov (United States)

    Mohanty, T. R.; Sahoo, S. K.; Moharana, M. K.

    2016-02-01

    Cooling technology for refractory lining of blast furnace is very important for the metallurgical industry, because it can substantially increase output and operation life of furnaces. A three dimensional mathematical model for the temperature field of the blast furnace stave cooler with refractory lining has been developed and analyzed. The temperature and heat dissipated by stave cooler is examined by using the finite element method. The cast steel stave is studied and computational analysis is made to know the effect of the cooling water velocity, temperature, and the lining material on the maximum temperature of the stave hot surface. The refractory lining materials, which are used in this experiment, are high alumina bricks with different stave materials (copper, aluminum and cast iron). The obtained numerical calculations are compared with that obtained from experiments performed at Rourkela Steel Plant, Odisha taking a stave in belly zone having maximum heat load shows very good agreement.

  14. Simulation of the reflected blast wave from a C-4 charge

    Science.gov (United States)

    Howard, W. Michael; Kuhl, Allen L.; Tringe, Joseph

    2012-03-01

    The reflection of a blast wave from a C4 charge detonated above a planar surface is simulated with our ALE3D code. We used a finely-resolved, fixed Eulerian 2-D mesh (167 μm per cell) to capture the detonation of the charge, the blast wave propagation in nitrogen, and its reflection from the surface. The thermodynamic properties of the detonation products and nitrogen were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. Computed pressure histories are compared with pressures measured by Kistler 603B piezoelectric gauges at 7 ranges (GR = 0, 5.08, 10.16, 15.24, 20.32, 25.4, and 30.48 cm) along the reflecting surface. Computed and measured waveforms and positive-phase impulses were similar, except at close-in ranges (GR < 5 cm), which were dominated by jetting effects.

  15. BLAST: A balloon-borne, large-aperture, submillimetre telescope

    Science.gov (United States)

    Wiebe, Donald Victor

    BLAST is a balloon-borne large-aperture, submillimetre telescope, which makes large area (1--200 square degree) surveys of Galactic and extragalactic targets. Since BLAST observes in the stratosphere, it is able to make broad-band observations between 200 mum and 550 mum which are difficult or impossible to perform from the ground. BLAST has been designed to probe star formation both in the local Galaxy and in the high redshift (z = 1--4) universe. Because BLAST is flown on an unmanned stratospheric balloon platform, it has been designed to be able to operate autonomously, without needing operator intervention to perform its scientific goals. This thesis includes an overview of the design of the BLAST platform, with emphasis on the command and control systems used to operate the telescope. BLAST has been flown on two long-duration balloon flights. The first of these, from Esrange, Sweden in June of 2005, acquired ˜70 hours of primarily Galactic data. During the second flight, from Willy Field, Antarctica in December of 2006, BLAST acquired ˜225 hours of both Galactic and extragalactic data. Operational performance of the platform during these two flights is reviewed, with the goal of providing insight on how future flights can be improved. Reduction of the data acquired by these large-format bolometer arrays is a challenging procedure, and techniques developed for BLAST data reduction are reviewed. The ultimate goal of this reduction is the generation of high quality astronomical maps which can be used for subsequent portions of data analysis. This thesis treats, in detail, the iterative, maximum likelihood map maker developed for BLAST. Results of simulations performed on the map maker to characterise its ability to reconstruct astronomical signals are presented. Finally, astronomical maps produced by this map maker using real data acquired by BLAST are presented, with a discussion on non-physical map pathologies resulting from the data reduction pipeline and

  16. Decontamination of surfaces by blasting with crystals of H{sub 2}O and CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Benson, C.E.; Parfitt, J.E.; Patton, B.D.

    1995-02-01

    A major mission of the US Department of Energy during the 1990s is site and environmental cleanup. In pursuit of this mission, numerous remediation projects are under way and many others are being planned at Oak Ridge National Laboratory (ORNL). In this report, tests using two proposed methods for decontaminating surfaces one using water ice crystals [Crystalline Ice Blast (CIB)], the other using dry ice crystals (CO{sub 2} Cleanblast{trademark}) -- are described. Both methods are adaptations of the commonly used sand blasting technology. The two methods tested differ from sand blasting in that the particles are not particularly abrasive and do not accumulate as particles in the wastes. They differ from each other in that the CO{sub 2} particles sublime during and after impact and the ice particles melt. Thus, the two demonstrations provide important information about two strong candidate decontamination methodologies. Each process was tested at ORNL using contaminated lead bricks and contaminated tools and equipment. Demonstrations with the prototype Crystalline Ice Blast and the CO{sub 2} Cleanblast systems showed that paint, grease, and oil can be removed from metal, plastic, asphalt, and concrete surfaces. Furthermore, removal of contamination from lead bricks was highly effective. Both processes were found to be less effective, under the conditions tested, with contaminated tools and equipment that had chemically bonded contamination or contamination located in crevices since neither technology abrades the substrates or penetrates deeply into crevices to remove particulates. Some process improvements are recommended.

  17. Indoor propagation and assessment of blast waves from weapons using the alternative image theory

    Science.gov (United States)

    Kong, B.; Lee, K.; Lee, S.; Jung, S.; Song, K. H.

    2016-03-01

    Blast waves generated from the muzzles of various weapons might have significant effects on the human body, and these effects are recognized as being more severe when weapons are fired indoors. The risk can be assessed by various criteria, such as waveform, exposed energy, and model-based types. This study introduces a prediction model of blast wave propagation for estimating waveform parameters related to damage risk assessment. To simulate indoor multiple reflections in a simple way, the model is based on the alternative image theory and discrete wavefront method. The alternative theory is a kind of modified image theory, but it uses the image space concept from a receiver's perspective, so that it shows improved efficiency for indoor problems. Further, the discrete wavefront method interprets wave propagation as the forward movement of a finite number of wavefronts. Even though the predicted results show slight differences from the measured data, the locations of significant shock waves indicate a high degree of correlation between them. Since the disagreement results not from the proposed techniques but from the assumptions used, it is concluded that the model is appropriate for analysis of blast wave propagation in interior spaces.

  18. Blast-induced electromagnetic fields in the brain from bone piezoelectricity.

    Science.gov (United States)

    Lee, Ka Yan Karen; Nyein, Michelle K; Moore, David F; Joannopoulos, J D; Socrate, Simona; Imholt, Timothy; Radovitzky, Raul; Johnson, Steven G

    2011-01-01

    In this paper, we show that bone piezoelectricity-a phenomenon in which bone polarizes electrically in response to an applied mechanical stress and produces a short-range electric field-may be a source of intense blast-induced electric fields in the brain, with magnitudes and timescales comparable to fields with known neurological effects. We compute the induced charge density in the skull from stress data on the skull from a finite-element full-head model simulation of a typical IED-scale blast wave incident on an unhelmeted human head as well as a human head protected by a kevlar helmet, and estimate the resulting electric fields in the brain in both cases to be on the order of 10 V/m in millisecond pulses. These fields are more than 10 times stronger than the IEEE safety guidelines for controlled environments (IEEE Standards Coordinating Committee 28, 2002) and comparable in strength and timescale to fields from repetitive Transcranial Magnetic Stimulation (rTMS) that are designed to induce neurological effects (Wagner et al., 2006a). They can be easily measured by RF antennas, and may provide the means to design a diagnostic tool that records a quantitative measure of the head's exposure to blast insult.

  19. Multi-fluid numerical simulation and analysis of blast furnace in oxygen blast furnace process%氧气高炉多流体数值模拟与分析

    Institute of Scientific and Technical Information of China (English)

    张宗良; 孟嘉乐; 郭占成

    2015-01-01

    为研究不同氧气高炉操作流程及操作参数对高炉内部过程产生的影响,预测氧气高炉流程各参数的变化规律,基于多流体理论、冶金传输原理、冶金反应动力学与热力学理论以及计算流体力学建立了普通高炉多流体模型,并在此基础上修改边界条件及内部相关参数,建立氧气高炉多流体数学模型。通过建立的模型分别对普通高炉和气化炉氧气高炉(GF-FOBF)流程中的氧气高炉进行了模拟计算,得到两种工艺流程下高炉内温度场、浓度场和速度场等典型参数的分布情况。通过对计算结果的对比,分析了氧气高炉操作条件下炉内状态的主要特征和相对于普通高炉发生的变化,发现氧气高炉内部速度场、温度场均发生变化,特别是气相组分的均匀分布问题明显。本模型可为氧气高炉流程试验及流程开发提供参考。%To study the effects of different oxygen blast furnace operating procedures and their operating parameters on blast furnace process,and to predict the variation of each parameter of oxygen blast furnace process,a multi-fluid blast furnace model is built based on multi-fluid theory,metallurgical transport theory,metallurgical thermodynamics and kinetics,and computational fluid dynamics.By modifying its boundary conditions and internal parameters,the establishment of multi-fluid model of oxygen blast furnace is achieved.Numerical simulation of the normal blast furnace and gasification furnace-oxygen blast furnace (GF-FOBF)is carried out with this model and the fields of typical parameters,such as temperature field,are obtained.By comparing the calculation results,the main features of the furnace under oxygen blast furnace operating conditions and changes relative to the traditional blast furnace are analyzed.It can be found that the oxygen blast furnace internal velocity field and temperature field change,especially the distribution of gas

  20. Energy Saving Research of the Blast Furnace Dewetting Blast and the Choice of Dehumidification Ways%高炉脱湿鼓风节能研究及除湿方法的选取

    Institute of Scientific and Technical Information of China (English)

    邓文龙; 卿山; 王华; 刘文光; 周庆华; 何峰; 龚贵君

    2012-01-01

    对高炉鼓风除湿进行了节能分析,通过高炉系统的热平衡原理得出了理论燃烧温度,继而得出了鼓风除湿能降低焦煤消耗与提高产量的结论.通过研究得出了最佳除湿剂为LiCl及其最佳除湿浓度为40%,并对除湿剂的除湿原理进行了介绍与说明.%This paper analyses the energy saving effect of the blast furnace blast and dehumidification. Through heat balance principle of the blast furnace system to reach the theoretical combustion temperature, then draw the conclusion that the blast dehumidification can reduce the consumption of coking coal and increase the output. Through the research, this paper obtains the best dehumidizer is LiCl and its optimal concentration is 40%, and the dehumidification principle is introduced.

  1. A Blast Headform Surrogate for the Assessment of Blast-Induced Traumatic Brain Injury

    Science.gov (United States)

    2012-11-27

    Correct fit of headwear , Representative blast diffraction around headform – Biofidelic wrt internal geometry and material selection: Stress transmission...overpressure histories • With and without protective headwear BI2PED – Recent results Introduction Strategy Facilities Iterations BI2PED & results

  2. 隧道爆破开挖围岩动力损伤效应数值模拟%Numerical simulation of dynamic damage effect of surrounding rocks for tunnels by blasting excavation

    Institute of Scientific and Technical Information of China (English)

    左双英; 肖明; 续建科; 史文兵

    2011-01-01

    采用数值模拟技术预估岩体开裂深度及爆破损伤影响范围对工程设计可以起到事先指导作用,对施工安全具有重大意义,其中科学的、合理的损伤模型及迭代计算方法是关键.基于FLAC3D程序的用户自定义本构模块,将考虑累积应变和荷载作用时间的Yang-Liu率相关动力损伤模型与Mohr-Coulomb弹塑性本构进行耦合,将围岩破坏过程中的损伤特性反映在荷载增量迭代计算中,形成了弹塑性动力损伤本构模型,详细推导了损伤应力修正迭代计算方法.对一圆形隧道爆破开挖进行模拟,探讨了爆破诱发的质点振动衰减特征及围岩损伤分布规律.分析结果表明,爆破产生的质点振动速度峰值与其所造成的损伤具有很好的相关性.该爆破损伤模型及模拟方法可以为类似工程提供一定参考.%It can not only play a guiding role in engineering design in advance predicting the cracking depth and damaged range of surrounding rocks by blasting excavation in use of numerical simulation method, but also is of great significance to construction safety; in which, a scientific and reasonable damage model and iterative calculation method are most important key technique. Based on the user-defined constitutive modules of the fast Lagrangian analysis of continua in three dimensions (FLAC3D) procedure, Yang-Liu dynamic damage model dependent on strain rate considering cumulative strain and load time is embedded in Mohr-Coulomb elastoplastic model. The rock damage characteristic is reflected in the iteration calculation process of a incremental load; thus an elastoplastic dynamic damage constitutive model is formed. Subsequently, iterative format of damaged and modified stresses is derived in detail. In simulating a circular tunnel by blasting excavation, a discussion and analysis for characteristics of vibration attenuation and distribution rules of damage in surrounding rock mass induced by blasting are carried

  3. Microscope-controlled glass bead blasting: a new technique

    Directory of Open Access Journals (Sweden)

    Peter Kotschy

    2011-01-01

    Full Text Available Peter Kotschy1, Sascha Virnik2, Doris Christ3, Alexander Gaggl21Private Practice, Vienna, Austria; 2Department of Oral and Maxillofacial Surgery, Central Hospital, Klagenfurt, Austria; 3Klagenfurt, AustriaObjective: The aim of periodontal therapy is the healing of periodontal inflammation; the protection of the attachment and the alveolar bone; and the regeneration of the periodontal structures. In the therapy of periodontitis, supra- and subgingival scaling and root planing plays a main role. The procedure described combines perfect root cleaning without scaling and root planing and minimal invasive periodontal surgery without a scalpel.Material and methods: Glass beads of 90 µm were used with the kinetic preparation unit PrepStart® under a pressure of 0.5–5 bar. This technique was practised only under visual control using the OPMI® PRO Magis microscope. Seven examinations were carried out at baseline after 3, 6, 12, 18, 24, and 36 months.Results: Time shows a statistically significant influence on all of the considered target variables (P < 0.0001 for all. As the according estimate is negative, probing depth decreases over time. The major decrease seems to be during the first 6 months. Considering probing depth, plaque on the main effect root shows significant influence (again, P < 0.0001 for all. Observations with high probing depth at the beginning were faster than those with low probing depth. The same characteristic appears by attachment level. Patients with more loss of attachment show more gain.Conclusions: Using microscope-controlled glass bead blasting results in a perfectly clean root surface using visual control (magnification 20×. Microscope-controlled glass bead blasting is therefore a good alternative to periodontal surgery.Keywords: periodontal therapy, microscope, periodontitis

  4. Changes in Ultrastructure and Sensory Characteristics on Electro-magnetic and Air Blast Freezing of Beef during Frozen Storage.

    Science.gov (United States)

    Choi, Yun-Sang; Ku, Su-Kyung; Jeong, Ji-Yun; Jeon, Ki-Hong; Kim, Young-Boong

    2015-01-01

    The ultrastructure in the beef muscle of the electro-magnetic resonance and air blast freezing during the frozen storage, and the changes in the quality characteristics after thawing were evaluated. The size of ice crystal was small and evenly formed in the initial freezing period, and it showed that the size was increased as the storage period was elapsed (pfrozen storage. The thawing loss of beef stored by the electro-magnetic resonance freezing was significantly lower than the air blast freezing during frozen storage (p<0.05), and it showed that the thawing loss of the round was higher than the loin. Water holding capacity decreased as the storage period became longer while the electro-magnetic resonance freezing was higher than the air blast on 8 month (p<0.05). As a result of sensory evaluation, the beef stored by the electro-magnetic resonance freezing did not show the difference until 4 months, and it showed higher acceptability in comparison with the beef stored by the air blast freezing. Thus, it is considered that the freezing method has an effect on the change in the ultrastructure and quality characteristics of the beef.

  5. AFWL (Air Force Weapons Laboratory) HULL (Hydrodynamics Unlimited) calculations of air blast over a dam slope. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fry, M.A.; Needham, C.E.; Stucker, M.; Chambers, B.S.; Ganong, G.P.

    1976-10-01

    This laboratory performed Hydrodynamics Unlimited (HULL) calculations of the air blast over a dam for two yields and two pressure regions. A 5th calculation included a rigid blockhouse at the foot of the dam. Although the shielding effect of the dam reduced the incident blast wave overpressure, reflection of the shock from the valley floor raised the peak overpressure up to at least 40% of the free air value. In almost every case, the overpressure impulses near the foot of the dam were greater than or equal to free air values. The rigid blockhouse experienced the most severe overpressure environments. The assumption of a 50-psi hard blockhouse is reasonable. During collapse of the blockhouse, it appears to be rigid to the air flow, since it responds slowly to the rapid air blast. Although there may be other reasons to detonate the weapon on the surface of the reservoir, the best way to destroy the blockhouse and any related structures with air blast, probably would be to detonate the device downstream of the blockhouse.

  6. Improvement in the properties of plasma-sprayed metallic, alloy and ceramic coatings using dry-ice blasting

    Science.gov (United States)

    Dong, Shujuan; Song, Bo; Hansz, Bernard; Liao, Hanlin; Coddet, Christian

    2011-10-01

    Dry-ice blasting, as an environmental-friendly method, was introduced into atmospheric plasma spraying for improving properties of metallic, alloy and ceramic coatings. The deposited coatings were then compared with coatings plasma-sprayed using conventional air cooling in terms of microstructure, temperature, oxidation, porosity, residual stress and adhesion. It was found that a denser steel or CoNiCrAlY alloy coating with a lower content of oxide can be achieved with the application of dry-ice blasting during the plasma spraying. In addition, the adhesive strength of Al 2O 3 coating deposited with dry-ice blasting exceeded 60 MPa, which was nearly increased by 30% compared with that of the coating deposited with conventional air cooling. The improvement in properties of plasma-sprayed metallic, alloy and ceramic coatings caused by dry-ice blasting was attributed to the decrease of annulus-ringed disk like splats, the better cooling efficiency of dry-ice pellets and even the mechanical effect of dry-ice impact.

  7. Crucial roles of abscisic acid biogenesis in virulence of rice blast fungus Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Carla eSpence

    2015-12-01

    Full Text Available Rice suffers dramatic yield losses due to blast pathogen Magnaporthe oryzae. Pseudomonas chlororaphis EA105, a bacterium that was isolated from the rice rhizosphere, inhibits M. oryzae. It was shown previously that pre-treatment of rice with EA105 reduced the size of blast lesions through JA- and ETH-mediated ISR. ABA acts antagonistically towards SA, JA, and ETH signaling, to impede plant defense responses. EA105 may be reducing the virulence of M. oryzae by preventing the pathogen from up-regulating the key ABA biosynthetic gene NCED3 in rice roots, as well as a β-glucosidase likely involved in activating conjugated inactive forms of ABA. However, changes in total ABA concentrations were not apparent, provoking the question of whether ABA concentration is an indicator of ABA signaling and response. In the rice-M. oryzae interaction, ABA plays a dual role in disease severity by increasing plant susceptibility and accelerating pathogenesis in the fungus itself. ABA is biosynthesized by M. oryzae. Further, exogenous ABA increased spore germination and appressoria formation, distinct from other plant growth regulators. EA105, which inhibits appressoria formation, counteracted the virulence-promoting effects of ABA on M. oryzae. The role of endogenous fungal ABA in blast disease was confirmed through the inability of a knockout mutant impaired in ABA biosynthesis to form lesions on rice. Therefore, it appears that EA105 is invoking multiple strategies in its protection of rice from blast including direct mechanisms as well as those mediated through plant signaling. ABA is a molecule that is likely implicated in both tactics.

  8. Damage Assessment of Two-Way Bending RC Slabs Subjected to Blast Loadings

    Directory of Open Access Journals (Sweden)

    Haokai Jia

    2014-01-01

    Full Text Available Terrorist attacks on vulnerable structures and their individual structural members may cause considerable damage and loss of life. However, the research work on response and damage analysis of single structural components, for example, a slab to blast loadings, is limited in the literature and this is necessary for assessing its vulnerability. This study investigates the blast response and damage assessment of a two-way bending reinforced concrete (RC slab subjected to blast loadings. Numerical modeling and analysis are carried out using the commercial finite element code LS-DYNA 971. A damage assessment criterion for the two-way bending RC slab is defined based on the original and residual uniformly distributed load-carrying capacity. Parametric studies are carried out to investigate the effects of explosive weight and explosive position on the damage mode of the two-way RC slab. Some design parameters, such as the boundary conditions and the negative reinforcement steel bar length, are also discussed. The illustrated results show that the proposed criterion can apply to all failure modes. The damage assessment results are more accurate than the ones due to the conventional deformation criterion.

  9. Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting

    Directory of Open Access Journals (Sweden)

    Dong Sam Park

    2008-02-01

    Full Text Available For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplating as a preprocess, are considered to have some problems. In this study, we propose a new microfabrication technology which consists of micro end-milling and powder blasting. This technique could be directly applied to fabricate the metal mold without any preprocesses. The metal mold with micro-channels is machined by micro end-milling, and then, burrs generated in the end-milling process are removed by powder blasting. From the experimental results, micro end-milling combined with powder blasting could be applied effectively for fabrication of the injection mold of biochips with micro fluidic channels.

  10. Analysis of concrete targets with different kinds of reinforcements subjected to blast loading

    Science.gov (United States)

    Oña, M.; Morales-Alonso, G.; Gálvez, F.; Sánchez-Gálvez, V.; Cendón, D.

    2016-05-01

    In this paper we describe an experimental campaign carried out to study and analyse the behaviour of concrete slabs when subjected to blast loading. Four different types of concrete have been tested: normal strength concrete with steel rebar, normal strength concrete with steel rebar retrofitted with Kevlar coating, steel fibre reinforced concrete (SFRC) and polypropylene fibre reinforced concrete (PFRC). The major asset of the experimental setup used is that it allows to subject up to four specimens to the same blast load what, besides being cost effective, makes possible to have a measure of the experimental scatter. The results of SFRC and PFRC concretes have been analysed by using a previously developed material model for the numerical simulation of concrete elements subjected to blast. The experimental campaign and preliminary results of this numerical analysis show how the high strain rates, in spite of improving the mechanical properties of these kinds of fibre reinforced concretes, lead to an embrittlement of the material, which may be dangerous from the point of view of the structural behaviour.

  11. Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method

    Science.gov (United States)

    Khandelwal, Manoj; Monjezi, M.

    2013-03-01

    Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.

  12. Blast exposure and dual sensory impairment: An evidence review and integrated rehabilitation approach

    Directory of Open Access Journals (Sweden)

    Gabrielle H. Saunders, PhD

    2012-10-01

    Full Text Available Combat exposures to blast can result in both peripheral damage to the ears and eyes and central damage to the auditory and visual processing areas in the brain. The functional effects of the latter include visual, auditory, and cognitive processing difficulties that manifest as deficits in attention, memory, and problem solving--symptoms similar to those seen in individuals with visual and auditory processing disorders. Coexisting damage to the auditory and visual system is referred to as dual sensory impairment (DSI. The number of Operation Iraqi Freedom/Operation Enduring Freedom Veterans with DSI is vast; yet currently no established models or guidelines exist for assessment, rehabilitation, or service-delivery practice. In this article, we review the current state of knowledge regarding blast exposure and DSI and outline the many unknowns in this area. Further, we propose a model for clinical assessment and rehabilitation of blast-related DSI that includes development of a coordinated team-based approach to target activity limitations and participation restrictions in order to enhance reintegration, recovery, and quality of life.

  13. Blast Protection Shelter by Using Hollow Steel Filled with Recycled Concrete

    Institute of Scientific and Technical Information of China (English)

    LI Jianchun; HUANG Xin; MA Guowei

    2008-01-01

    Under extreme loading condition, a shelter will provide a safe place to protect people from injury caused by blast wave and fragments.In order to save resource and reuse waste materials, a new design concept for blast protection shelter was explored.The new construction was composed of I-section steel panel or C-channel steel panel filled with recycled concrete aggregate.The compaction process of the recycled concrete aggregate filled in the steel construction was experimentally investigated.A single storey shelter based on the proposed design concept was numerically simulated by using LS-DYNA software.In the 3D numerical model, three walls were designed using I-section steel and one wall using C-channel steel, and all of the four walls were filled with recycled concrete aggregate.The penetration analysis was done by using ConWep.Some penetration tests were also carried out by using a gas gun.It is found that the proposed shelter based on the design concept is effective for blast protection.

  14. Numerical Simulation of Response of SRC Columns Subjected to Blast Loading

    Institute of Scientific and Technical Information of China (English)

    SUN Jianyun; LI Guoqiang; LU Yong

    2006-01-01

    The dynamic characteristics and failure modes of steel reinforced concrete (SRC) columns subjected to blast loading are complicated because of the transient stress wave in the SRC columns and the interaction between steel and concrete.This paper presents a numerical simulation of the response of SRC columns subjected to blast loading using hydrocode LS-DYNA.In the numerical model,a sophisticate concrete material model (the Concrete Damage Model) is employed with consideration of the strain rate effect and the damage accumulation.An erosion technique is adopted to model the spalling process of concrete.The possible failure modes of SRC columns are evaluated.It is observed that the failure of SRC columns subjected to blast load can generally be classified into three modes,namely,a direct failure in concrete body due to the stress wave,a transverse shear failure near the support sections due to the high shear force,and a flexural failure pertaining to large local and global deformation of the reinforcing steel.

  15. Modelling and analysis of blast furnace performance for efficient utilization of energy

    Energy Technology Data Exchange (ETDEWEB)

    Rasul, M.G.; Tanty, B.S.; Mohanty, B. [Central Queensland University, Rockhampton, Qld. (Australia). Faculty of Sciences, Engineering and Health

    2007-07-01

    A simple model is presented to assess thermal performance of blast furnace (BF) for efficient utilisation of energy with an integrated view to improving the productivity of the plant. The model is developed using the mass, energy and availability balance equations and is applied to an existing iron and steel industry in India. A comparison of the actual operation of the BF is made with that of the model prediction. The model provides a reasonable agreement with the real time data of the BF operation. The predicted values of BF coke rate and blast rate are 8.6% and 5.11% higher than that of the actual values, respectively. The First and Second Law efficiencies of BF operating system were found to be 77.3% and 39.13%, respectively. irreversibility of the actual operation of BF was found to be 18.9%, which included the irreversibility due to the transformation of chemical energy and promoting of reduction reactions. The main cause of the irreversibility in the process was the conversion of chemical energy of the fuel to thermal energy. The effect of the changing operating parameters on the plant productivity is also investigated. This study suggests that the plant productivity can be improved by increasing the hot air blast temperature, reducing hot metal silicon level, reducing coke ash level and increasing sinter volume in the charge. 20 refs., 7 figs., 5 tabs.

  16. An Energy-Based Safety Evaluation Index of Blast Vibration

    Directory of Open Access Journals (Sweden)

    Mingsheng Zhao

    2015-01-01

    Full Text Available The combined peak particle velocity (PPV and frequency safety criterion for blast vibration is widely used in blasting engineering. However, some field investigations are inconsistent with this criterion. On the basis of field investigations, it is found that there are two failure modes of structures subjected to blasting seismic waves, that is, first-excursion failure and cumulative plastic damage failure. Moreover, the nature of structural responses under blast vibrations is a process of energy input, transformation, and dissipation. Therefore, an energy-based dual safety standard is proposed in this work to more comprehensively explain all failure modes of structures under blast vibrations. To this end, structures are simplified into elastic-plastic single degree of freedom (SDOF systems with bilinear restoring force models, and energy responses of SDOF systems are then determined using the Newmark-β method. From the energy responses, the maximum instantaneous input energy and hysteretic energy are selected as the basis of the dual safety criterion, because they can reflect first-excursion failure and cumulative plastic damage failure, respectively. Finally, field investigations in a blasting site in Zunyi, Guizhou province, China, are used to prove that compared to the PPV-frequency criterion the proposed energy-based dual safety criterion is more capable of assessing the damage potential of blast vibrations.

  17. Integrating Gene Ontology and Blast to predict gene functions

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-gang; MO Zhi-hong

    2007-01-01

    A GoBlast system was built to predict gene function by integrating Blast search and Gene Ontology (GO) annotations together. The operation system was based on Debian Linux 3.1, with Apache as the web server and Mysql database as the data storage system. FASTA files with GO annotations were taken as the sequence source for blast alignment, which were formatted by wu-formatdb program. The GoBlast system includes three Bioperl modules in Perl: a data input module, a data process module and a data output module. A GoBlast query starts with an amino acid or nucleotide sequence. It ends with an output in an html page, presenting high scoring gene products which are of a high homology to the queried sequence and listing associated GO terms beside respective gene poducts. A simple click on a GO term leads to the detailed explanation of the specific gene function. This avails gene function prediction by Blast. GoBlast can be a very useful tool for functional genome research and is available for free at http://bioq.org/goblast.

  18. Explosively driven air blast in a conical shock tube.

    Science.gov (United States)

    Stewart, Joel B; Pecora, Collin

    2015-03-01

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  19. Behavior of RCC Structural Members for Blast Analysis: A Review

    Directory of Open Access Journals (Sweden)

    Prof. C. M. Deshmukh

    2016-11-01

    Full Text Available n today’s scenario threat of enemies and terrorist attack is increasing. Therefore consideration of blast load in analysis and design is essential. A bomb explosion within or nearby outside the building can cause catastrophic failure of building. Blast loads have, in the recent past, become important service loads for certain categories of structure. An important task in blast resistance design is to make a realistic prediction of blast pressure. The distance of explosion from the structure is an important datum, governing the magnitude and duration of blast loads. In the present study, the RCC frame was analyzed by using conventional code for gravity loads using moment resisting frame. The blast load was calculated using UFC-340-02 (2008 or IS 4991-1968 for 500 kg and 100 Kg TNT at standoff distance of 10m and 30m from face of column at first floor level. The triangular impulse was applied as nodal time history at all front face joints. The analysis was performed using Computer aided software. The response of structure of will be evaluated under various blast scenarios. The response will be checked for safety of the structure on many parameters like displacement, acceleration and velocity.

  20. Explosively driven air blast in a conical shock tube

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Joel B., E-mail: joel.b.stewart2.civ@mail.mil; Pecora, Collin, E-mail: collin.r.pecora.civ@mail.mil [U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States)

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.