WorldWideScience

Sample records for blast effects

  1. Effectiveness of eye armor during blast loading.

    Science.gov (United States)

    Bailoor, Shantanu; Bhardwaj, Rajneesh; Nguyen, Thao D

    2015-11-01

    Ocular trauma is one of the most common types of combat injuries resulting from the interaction of military personnel with improvised explosive devices. Ocular blast injury mechanisms are complex, and trauma may occur through various injury mechanisms. However, primary blast injuries (PBI) are an important cause of ocular trauma that may go unnoticed and result in significant damage to internal ocular tissues and visual impairment. Further, the effectiveness of commonly employed eye armor, designed for ballistic and laser protection, in lessening the severity of adverse blast overpressures (BOP) is unknown. In this paper, we employed a three-dimensional (3D) fluid-structure interaction computational model for assessing effectiveness of the eye armor during blast loading on human eyes and validated results against free field blast measurements by Bentz and Grimm (2013). Numerical simulations show that the blast waves focused on the ocular region because of reflections from surrounding facial features and resulted in considerable increase in BOP. We evaluated the effectiveness of spectacles and goggles in mitigating the pressure loading using the computational model. Our results corroborate experimental measurements showing that the goggles were more effective than spectacles in mitigating BOP loading on the eye. Numerical results confirmed that the goggles significantly reduced blast wave penetration in the space between the armor and the eyes and provided larger clearance space for blast wave expansion after penetration than the spectacles. The spectacles as well as the goggles were more effective in reducing reflected BOP at higher charge mass because of the larger decrease in dynamic pressures after the impact. The goggles provided greater benefit of reducing the peak pressure than the spectacles for lower charge mass. However, the goggles resulted in moderate, sustained elevated pressure loading on the eye, that became 50-100% larger than the pressure loading

  2. Research on Effects of Blast Casting Vibration and Vibration Absorption of Presplitting Blasting in Open Cast Mine

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available The impact energy produced by blast casting is able to break and cast rocks, yet the strong vibration effects caused at the same time would threaten the safety of mines. Based on the theory of Janbu’s Limit Equilibrium Method (LEM, pseudo-static method has been incorporated to analyze the influence of dynamic loads of blasting on slope stability. The horizontal loads produced by blast vibrations cause an increase in sliding forces, and this leads to a lower slope stability coefficient. When the tensile stresses of the two adjacent blast holes are greater than the tensile strength of rock mass, the radical oriented cracks are formed, which is the precondition for the formation of presplit face. Thus, the formula for calculating the blast hole spacing of presplit blasting can be obtained. Based on the analysis of the principles of vibration tester and vibration pick-up in detecting blast vibrations, a detection scheme of blast vibration is worked out by taking the blast area with precrack rear and non-precrack side of the detection object. The detection and research results of blast vibration show that presplit blasting can reduce the attenuation coefficient of stress wave by half, and the vibration absorption ratio could reach 50.2%; the impact of dynamic loads on the end-wall slope stability coefficient is 1.98%, which proves that presplit blasting plays an important role in shock absorption of blast casting.

  3. Low-cost blast wave generator for studies of hearing loss and brain injury: blast wave effects in closed spaces.

    Science.gov (United States)

    Newman, Andrew J; Hayes, Sarah H; Rao, Abhiram S; Allman, Brian L; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C; Salvi, Richard

    2015-03-15

    Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198dB SPL (159.3kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188dB peak SPL (50.4kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Determination of Destress Blasting Effectiveness Using Seismic Source Parameters

    Science.gov (United States)

    Wojtecki, Łukasz; Mendecki, Maciej J.; Zuberek, Wacaław M.

    2017-12-01

    Underground mining of coal seams in the Upper Silesian Coal Basin is currently performed under difficult geological and mining conditions. The mining depth, dislocations (faults and folds) and mining remnants are responsible for rockburst hazard in the highest degree. This hazard can be minimized by using active rockburst prevention, where destress blastings play an important role. Destress blastings in coal seams aim to destress the local stress concentrations. These blastings are usually performed from the longwall face to decrease the stress level ahead of the longwall. An accurate estimation of active rockburst prevention effectiveness is important during mining under disadvantageous geological and mining conditions, which affect the risk of rockburst. Seismic source parameters characterize the focus of tremor, which may be useful in estimating the destress blasting effects. Investigated destress blastings were performed in coal seam no. 507 during its longwall mining in one of the coal mines in the Upper Silesian Coal Basin under difficult geological and mining conditions. The seismic source parameters of the provoked tremors were calculated. The presented preliminary investigations enable a rapid estimation of the destress blasting effectiveness using seismic source parameters, but further analysis in other geological and mining conditions with other blasting parameters is required.

  5. Blast effects physical properties of shock waves

    CERN Document Server

    2018-01-01

    This book compiles a variety of experimental data on blast waves. The book begins with an introductory chapter and proceeds to the topic of blast wave phenomenology, with a discussion Rankine-Hugoniot equations and the Friedlander equation, used to describe the pressure-time history of a blast wave. Additional topics include arrival time measurement, the initiation of detonation by exploding wires, a discussion of TNT equivalency, and small scale experiments. Gaseous and high explosive detonations are covered as well. The topics and experiments covered were chosen based on the comparison of used scale sizes, from small to large. Each characteristic parameter of blast waves is analyzed and expressed versus scaled distance in terms of energy and mass. Finally, the appendix compiles a number of polynomial laws that will prove indispensable for engineers and researchers.

  6. Strain Rate Effects in CFRP Used For Blast Mitigation

    Directory of Open Access Journals (Sweden)

    Sarah. L. Orton

    2014-04-01

    Full Text Available The purpose of this research is to gain a better understanding of strain rate effects in carbon fiber reinforced polymer (CFRP laminates exposed to blast loading. The use of CFRP offers an attractive option for mitigating structures exposed to blasts. However, the effect of high strain rates in CFRP composites commonly used in the civil industry is unknown. This research conducted tensile tests of 21 CFRP coupons using a hydraulically powered dynamic loader. The strain rates ranged from 0.0015 s−1 to 7.86 s−1 and are representative of strain rates that CFRP may see in a blast when used to strengthen reinforced concrete structures. The results of the testing showed no increase in the tensile strength or stiffness of the CFRP at the higher strain rates. In addition, the results showed significant scatter in the tensile strengths possibly due to the rate of loading or manufacture of the coupon.

  7. Measurements of near-field blast effects using kinetic plates

    Science.gov (United States)

    Manner, V. W.; Pemberton, S. J.; Brown, G. W.; Tappan, B. C.; Hill, L. G.; Preston, D. N.; Neuscamman, S. J.; Glascoe, L. G.

    2014-05-01

    Few tests have been designed to measure the near-field blast impulse of ideal and non-ideal explosives, mostly because of the inherent experimental difficulties due to non-transparent fireballs and thermal effects on gauges. In order to measure blast impulse in the near-field, a new test has been developed by firing spherical charges at 152 mm (6 in) from steel plates and probing acceleration using laser velocimetry. Tests measure the velocity imparted to the steel plate in the 50 - 300 μs timeframe, and are compared with free-field overpressure measurements at 1.52 m (5 ft) and ms timescales using piezoelectric pencil gauges. Specifically, tests have been performed with C4 to probe the contributions of ideal explosives and charge size effects. Non-ideal aluminized explosive formulations have been studied to explore the role of aluminum in near-field blast effects and far-field pressure, and are compared with formulations using LiF as an inert surrogate replacement for Al. The results are compared with other near-field blast tests and cylinder tests, and the validity of this test is explored with modeling and basic theory.

  8. Evaluating the Effectiveness of Various Blast Loading Descriptors as Occupant Injury Predictors for Underbody Blast Events

    Science.gov (United States)

    2014-01-09

    t:N , CFC # Pulse type Dec. g ion ms al ms m/s Sp. Pwr Eff. G G- ava @2ms @Oms @15ms 1000 @3ms @7ms @7ms @30ms @Oms 1 Triangular 44 40 2 8.6 376 27 22...Power, Blast, ROM, reduced order models, MADYMO, occupant, injury, pulse , loading, descriptor, calculator 16. SECURITY CLASSIFICATION OF: 17... pulse and occupant injury It has been shown before that there is no single input parameter which can be used to effectively assess occupant injury

  9. Effect of blasting on the strength of a rock mass

    Energy Technology Data Exchange (ETDEWEB)

    Muller, L.

    1964-01-01

    Although the fact that blasting concussions tend to loosen a rock mass has always been known, the enormous reduction in strength associated with such loosening is not generally recognized. Recent investigations of the effect of blasting on a rock mass have shown that even slight loosening may markedly reduce the strength. This factor introduces a new slant on modern blasting methods, some of which will have to be considered more critically. The sensitivity of the mass to impacts depends on stress concentrations at the end of joints (Kerbspannungen) and on tensile stresses developed in the immediate vicinity of a joint, even in regions where the field stresses are not tensile. Thus, the sensitivity depends on the shape and orientation of the joints and particularly on the degree of separation of the individual joint families. The orientation of the joint families to the strains produced by blasting is just as important as the reduction in overall strength arising from the drop in friction due to the effects of the ''knocking out'' process (Foppl) on the joint body complex. Concussions may critically increase the degree of separation of the joint network thus reducing the tensile and shear strengths of the rock mass. (19 refs.)

  10. Effect of casing yield stress on bomb blast impulse

    Directory of Open Access Journals (Sweden)

    Hutchinson M.D.

    2012-08-01

    Full Text Available An equation to predict blast effects from cased charges was first proposed by U. Fano in 1944 and revised by E.M. Fisher in 1953 [1]. Fisher’s revision provides much better matches to available blast impulse data, but still requires empirical parameter adjustments. A new derivation [2], based on the work of R.W. Gurney [3] and G.I. Taylor [4], has resulted in an equation which nearly matches experimental data. This new analytical model is also capable of being extended, through the incorporation of additional physics, such as the effects of early case fracture, finite casing thickness, casing metal strain energy dissipation, explosive gas escape through casing fractures and the comparative dynamics of blast wave and metal fragment impacts. This paper will focus on the choice of relevant case fracture strain criterion, as it will be shown that this allows the explicit inclusion of the dynamic properties of the explosive and casing metal. It will include a review and critique of the most significant earlier work on this topic, contained in a paper by Hoggatt and Recht [5]. Using this extended analytical model, good matches can readily be made to available free-field blast impulse data, without any empirical adjustments being needed. Further work will be required to apply this model to aluminised and other highly oxygen-deficient explosives.

  11. Pulmonary effects of combined blast injury and radiation poisoning.

    Science.gov (United States)

    Johnston, A McD

    2004-09-01

    In situations with relatively small numbers of patients with pulmonary blast injury aggressive modern intensive care treatment may allow a return to normal function. The additional effects of radiation poisoning are more difficult to factor in, but new treatments such as colony stimulating factors may improve the outlook for a group with moderate to severe radiation exposure who would previously have died of infection or haemorrhage.

  12. Structural Response to Blast Loading: The Effects of Corrosion on Reinforced Concrete Structures

    Directory of Open Access Journals (Sweden)

    Hakan Yalciner

    2014-01-01

    Full Text Available Structural blast design has become a necessary part of the design with increasing terrorist attacks. Terrorist attacks are not the one to make the structures important against blast loading where other explosions such as high gas explosions also take an important place in structural safety. The main objective of this study was to verify the structural performance levels under the impact of different blast loading scenarios. The blast loads were represented by using triangular pulse for single degree of freedom system. The effect of blast load on both corroded and uncorroded reinforced concrete buildings was examined for different explosion distances. Modified plastic hinge properties were used to ensure the effects of corrosion. The results indicated that explosion distance and concrete strength were key parameters to define the performance of the structures against blast loading.

  13. The Vestibular Effects of Repeated Low-Level Blasts.

    Science.gov (United States)

    Littlefield, Philip D; Pinto, Robin L; Burrows, Holly L; Brungart, Douglas S

    2016-01-01

    The objective of this study was to use a prospective cohort of United States Marine Corps (USMC) instructors to identify any acute or long-term vestibular dysfunction following repeated blast exposures during explosive breaching training. They were assessed in clinic and on location during training at the USMC Methods of Entry School, Quantico, VA. Subjects received comprehensive baseline vestibular assessments and these were repeated in order to identify longitudinal changes. They also received shorter assessments immediately following blast exposure in order to identify acute findings. The main outcome measures were the Neurobehavioral Symptom Inventory, vestibular Visual Analog Scale (VAS) of subjective vestibular function, videonystagmography (VNG), vestibular evoked myogenic potentials (VEMP), rotary chair (including the unilateral centrifugation test), computerized dynamic posturography, and computerized dynamic visual acuity. A total of 11 breachers and 4 engineers were followed for up to 17 months. No acute effects or longitudinal deteriorations were identified, but there were some interesting baseline group differences. Upbeat positional nystagmus was common, and correlated (p<0.005) with a history of mild traumatic brain injury (mTBI). Several instructors had abnormally short low-frequency phase leads on rotary chair testing. This study evaluated breaching instructors over a longer test period than any other study, and the results suggest that this population appears to be safe from a vestibular standpoint at the current exposure levels. Upbeat positional nystagmus correlated with a history of mTBI in this population, and this has not been described elsewhere. The data trends also suggest that this nystagmus could be an acute blast effect. However, the reasons for the abnormally short phase leads seen in rotary chair testing are unclear at this time. Further investigation seems warranted.

  14. Effects of low-level blast exposure on the nervous system: Is there really a controversy?

    Directory of Open Access Journals (Sweden)

    Gregory A Elder

    2014-12-01

    Full Text Available High-pressure blast waves can cause extensive CNS injury in humans. However, in combat settings such as Iraq and Afghanistan, lower level exposures associated with mild TBI (mTBI or subclinical exposure have been much more common. Yet controversy exists concerning what traits can be attributed to low-level blast, in large part due to the difficulty of distinguishing blast-related mTBI from post-traumatic stress disorder (PTSD. We describe how TBI is defined in humans and the problems posed in using current definitions to recognize blast-related mTBI. We next consider the problem of applying definitions of human mTBI to animal models, in particular that TBI severity in humans is defined in relation to alteration of consciousness at the time of injury, which typically cannot be assessed in animals. However, based on outcome assessments a condition of low-level blast exposure can be defined in animals that likely approximates human mTBI or subclinical exposure. We review blast injury modeling in animals noting that inconsistencies in experimental approach have contributed to uncertainty over the effects of low-level blast. Yet animal studies show that low-level blast pressure waves are transmitted to the brain. In brain low-level blast exposures cause behavioral, biochemical, pathological and physiological effects on the nervous system including the induction of PTSD-related behavioral traits in the absence of a psychological stressor. We review the relationship of blast exposure to chronic neurodegenerative diseases noting the paradoxical lowering of Abeta by blast, which along with other observations suggest that blast-related TBI is pathophysiologically distinct from non-blast TBI. Human neuroimaging studies show that blast-related mTBI is associated with a variety of chronic effects that are unlikely to be explained by co-morbid PTSD. We conclude that abundant evidence supports low-level blast as having long-term effects on the nervous system.

  15. The Effect of Material and Side Walls on Hull Deflection during a Blast Event

    Science.gov (United States)

    2017-12-13

    ARL-CR-0822 ● DEC 2017 US Army Research Laboratory The Effect of Material and Side Walls on Hull Deflection during a Blast Event...Army Research Laboratory The Effect of Material and Side Walls on Hull Deflection during a Blast Event prepared by Danielle Abell SURVICE...2. REPORT TYPE Contractor Report 3. DATES COVERED (From - To) June 2016–September 2017 4. TITLE AND SUBTITLE The Effect of Material and Side

  16. Literature survey of blast and fire effects of nuclear weapons on urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Reitter, T.A.; McCallen, D.B.; Kang, S.W.

    1982-06-01

    The American literature of the past 30 years on fire and blast effects of nuclear weapons on urban areas has been surveyed. The relevant work is briefly sketched and areas where information is apparently lacking are noted. This report is intended to provide the basis for suggesting research priorities in the fire and blast effects area for the Federal Emergency Management Agency. It is also intended to provide entry into the literature for researchers. over 850 references are given.

  17. Literature survey of blast and fire effects of nuclear weapons on urban areas

    International Nuclear Information System (INIS)

    Reitter, T.A.; McCallen, D.B.; Kang, S.W.

    1982-06-01

    The American literature of the past 30 years on fire and blast effects of nuclear weapons on urban areas has been surveyed. The relevant work is briefly sketched and areas where information is apparently lacking are noted. This report is intended to provide the basis for suggesting research priorities in the fire and blast effects area for the Federal Emergency Management Agency. It is also intended to provide entry into the literature for researchers. over 850 references are given

  18. Effects of repetitive low-level blast exposure on visual systems and ocular structures

    OpenAIRE

    José E. Capó-Aponte, OD, PhD; Gina M. Jurek; David V. Walsh, OD, PhD; Leonard A. Temme, PhD; William A. Ahroon, PhD; Daniel W. Riggs, MS

    2015-01-01

    The purpose of this study was to determine whether repetitive exposure to low-level blasts during military breacher training produces acute and cumulative damage to the ocular tissues or visual system. The effects of low-level blast exposure on high-contrast visual acuity, contrast sensitivity, oculomotor function, color vision, visual field (VF), pupillary light reflex, corneal endothelial cell density (ECD), macular thickness, retinal nerve fiber layer thickness, and cup-to-disc ratio were ...

  19. Assessment of blast effect open pit,”Ranci’’ of shock waves on constructed facilities and environment

    OpenAIRE

    Trajkovik, Slobodan; Lutovac, Suzana; Ravilik, Marija; Doneva, Nikolinka

    2013-01-01

    The blast effect problem of shock waves is growing in the area surrounding blasting activities. In addition to damage shock waves may cause on buildings and mining site facilities, they also impact badly human force there, namely the environment. Lately considerable research in the world has been dedicated to the examination and numeric modelling of this phenomenon. Specific standards have been established defining the blast effect margin level of shock waves on facilities and human force th...

  20. The effects of repeated low-level blast exposure on hearing in marines

    Directory of Open Access Journals (Sweden)

    Lina R Kubli

    2017-01-01

    Full Text Available Background: The study evaluates a group of Military Service Members specialized in blast explosive training called “Breachers” who are routinely exposed to multiple low-level blasts while teaching breaching at the U.S. Marine Corps in Quantico Virginia. The objective of this study was to determine if there are any acute or long-term auditory changes due to repeated low-level blast exposures used in training. The performance of the instructor group “Breachers” was compared to a control group, “Engineers”. Methods: A total of 11 Breachers and four engineers were evaluated in the study. The participants received comprehensive auditory tests, including pure-tone testing, speech-in-noise (SIN measures, and central auditory behavioral and objective tests using early and late (P300 auditory evoked potentials over a period of 17 months. They also received shorter assessments immediately following the blast-exposure onsite at Quantico. Results: No acute or longitudinal effects were identified. However, there were some interesting baseline effects found in both groups. Contrary to the expected, the onsite hearing thresholds and distortion product otoacoustic emissions were slightly better at a few frequencies immediately after blast-exposure than measurements obtained with the same equipment weeks to months after each blast-exposure. Conclusions: To date, the current study is the most comprehensive study that evaluates the long-term effects of blast-exposure on hearing. Despite extensive testing to assess changes, the findings of this study suggest that the levels of current exposures used in this military training environment do not seem to have an obvious deleterious effect on hearing.

  1. Evaluation of effectiveness of raw materials and materials use in a blast furnace department of a steelworks

    Directory of Open Access Journals (Sweden)

    E. Kardas

    2017-01-01

    Full Text Available The paper analyses the quality of raw materials used in the production of blast furnace pig iron. The ferruginous sinter and pellets are the basic raw materials used in the process. The paper presents the impact of those raw materials quality on the effectiveness of the blast furnace process. The process effectiveness will be specified by means of selected process parameters.

  2. EFFECTS OF BLAST-FURNACE SLAG ON NATURAL POZZOLAN-BASED GEOPOLYMER CEMENT

    Directory of Open Access Journals (Sweden)

    MAHSHAD YAZDANIPOUR

    2011-03-01

    Full Text Available A number of geopolymer cement mixes were designed and produced by alkali-activation of a pumice-type natural pozzolan. Effects of blast-furnace slag on basic engineering properties of the mixes were studied. Different engineering properties of the mixes such as setting times and 28-day compressive strength were studied at different amounts of blast-furnace slag, sodium oxide content, and water-to-cement ratio. The mix comprising of 5 wt.% blast-furnace slag and 8 wt.% Na2O with a water-to-dry binder ratio of 0.30 exhibits the highest 28-day compressive strength, i.e. 36 MPa. Mixes containing 5 wt.% of ground granulated blast furnace slag showed the least efflorescence or best soundness. Laboratory techniques of X-ray diffractometry (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM were utilized for characterizing a number of mixes and studying their molecular and micro-structure. Investigations done by scanning electron microscopy confirm that smaller blast-furnace slag particles react totally while the larger ones react partially with alkaline activators and contribute to the formation of a composite microstructure.

  3. The effect of soaking time on properties of blast furnace coke

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.; Dash, P.S.; Krishnan, S.H.; Kumar, D. [Tata Steel, Jamshedpur (India)

    2004-07-01

    Attempts were made to study the effect of soaking time on properties of blast furnace coke at Tata Steel. Plant trial indicated that when soaking time was increased the +50 mm size coke, mean size, and M{sub 40} indices improved. The CSR value exhibited no significant improvement after a certain limit. This may be due to stability of coke structure improvement in coke quality by increasing soaking time. To achieve the maximum improvement in coke cost, loss of output and heat consumption may be compensated by decreasing coke rate and improving productivity in the blast furnace. 6 refs., 8 figs., 3 tabs.

  4. Auditory, Vestibular and Cognitive Effects due to Repeated Blast Exposure on the Warfighter

    Science.gov (United States)

    2012-10-01

    competitions Prior disorders of hearing and balance including: o Meniere’s disease o Chronic migraine o Multiple sclerosis o Vestibular neuritis o...AD______________ AWARD NUMBER: W81XWH-08-2-0029 TITLE: Auditory, Vestibular and Cognitive...201 – 31 201 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Auditory, Vestibular and Cognitive Effects due to Repeated Blast Exposure on the

  5. The effect of blast furnace slag on the self-compactability of pumice ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents the results of an experimental study of the effects of blast furnace slag, different water/(cement+mineral additive) ratios and pumice aggregates on some physical and mechanical properties of self-compacting lightweight aggregate concrete. In this study, pumice was used as lightweight ...

  6. DIRECT AIR BLAST EXPOSURE EFFECTS IN ANIMALS, OPERATION UPSHOT-KNOTHOLE, PROJECT 4.2

    Energy Technology Data Exchange (ETDEWEB)

    DRAEGER, R.H. (UNITED STATES NAVY - DEPARTMENT OF); LEE, R.H. (UNITED STATES NAVY - DEPARTMENT OF)

    1953-12-31

    Project 4.2 was designed to study direct (primary) air blast injury, in animals, from an atomic weapon in the range of 20 to 50 psi under circumstances affording protection against missiles, thermal and ionizing radiation and to estimate the probable direct air blast hazard in man. The pressure levels at which atomic weapons direct air blast injuries occur will determine, to a large extent, the number of blast casualties likely to be encountered. It is probable that fatal overpressures are not reached until well within the range at which indirect (secondary) blast, thermal and ionizing radiation are practically certain to prove fatal. Only in special situations affording partial protection from other injuries are blast injuries likely to be of practical importance. Two animal species of widely different body weights (700 rats and 56 dogs) were exposed, together with air pressure recorders, in aluminum cylinders, covered by sandbags and dirt but open at both ends, at seven stations distributed within the intended overpressure range of 20 to 50 psi of Shot 10« About 200 rats were likewise exposed in Shot 9. Unfortunately, the destructive effect of the air blast of Shot 10 was much greater than anticipated. Many of the exposure cylinders were displaced and their contents destroyed. Only a partial recovery of the animals was possible due to the excessive radioactive contamination which greatly limited the time in the area. Most of the animals were dead upon recovery. Those living were in a state of severe shock. Autopsy findings showed remarkably few traumatic lesions and lung hemorrhages in spite of the rough treatment and high overpressure to which they were subjected. The rats recovered from Shot 9 were exposed to a recorded pressure of 18 to 2k psi. The autopsy findings showed moderate lung hemorrhage in most of the animals undoubtedly due to direct air blast injury. The findings were typical of those seen following exposure to air blast from HE or in the shock

  7. Hydrocortisone in culture protects the blast cells in acute myeloblastic leukemia from the lethal effects of cytosine arabinoside

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.S.; Wang, C.; Minkin, S.; Minden, M.D.; McCulloch, E.A. (Ontario Cancer Institute, University of Toronto (Canada))

    1991-07-01

    The blast cells in acute myeloblastic leukemia (AML) respond to many of the same regulatory mechanisms that control normal hemopoiesis. These include the growth factors that bind to membrane receptors and steroid hormones or vitamins that have intracellular receptors. The authors report the effects in culture of the steroid glucocorticoid hydrocortisone on freshly explanted AML blasts from patients and on two continuous AML cell lines. Only small changes in clonogenic cell numbers in suspension cultures were seen in the presence of hydrocortisone. The most striking effect of the hormone was on the sensitivity of blasts cells to cytosine arabinoside (ara-C). In contrast to the response of AML blast cells to retinoic acid, a ligand for intracellular steroid receptors that sensitizes some blast populations to ara-C, hydrocortisone reduced the toxic effects of the drug. The protective action of hydrocortisone was not mediated through the cell cycle since exposure of blasts to hydrocortisone did not affect the percentage of cells in DNA synthesis as measured with the tritiated thymidine (3HTdR) suicide technique. The hydrocortisone effect could be demonstrated using a pulse (20 min) exposure protocol. Blasts pulsed with increasing specific activities of 3HTdR showed the usual response pattern with an initial loss in plating efficiency to about 50% of control, followed by a plateau, regardless of whether the cells had been exposed to hydrocortisone. Control blasts exposed to increasing ara-C concentrations gave very similar dose-response curves; in striking contrast, blast cells cultured in hydrocortisone, then pulsed with ara-C did not lose colony-forming ability even though the same population was sensitive to 3HTdR.

  8. Effects of torpedo blasting on rockburst prevention during deep coal seam mining in the Upper Silesian Coal Basin

    Directory of Open Access Journals (Sweden)

    Ł. Wojtecki

    2017-08-01

    Full Text Available In the Upper Silesian Coal Basin (USCB, coal seams are exploited under progressively more difficult geological and mining conditions (greater depth, higher horizontal stress, more frequent occurrence of competent rock layers, etc.. Mining depth, dislocations and mining remnants in coal seams are the most important factors responsible for the occurrence of rockburst hazards. Longwall mining next to the mining edges of neighbouring coal seams is particularly disadvantageous. The levels of rockburst hazards are minimised via the use of rockburst prevention methods. One active prevention method is torpedo blasting in roof rocks. Torpedo blastings are performed in order to decrease local stress concentrations in rock masses and to fracture the roof rocks to prevent or minimise the impact of high-energy tremors on excavations. The estimation of the effectiveness of torpedo blasting is particularly important when mining is under difficult geological and mining conditions. Torpedo blasting is the main form of active rockburst prevention in the assigned colliery in the Polish part of the USCB. The effectiveness of blasting can be estimated using the seismic effect method, in which the seismic monitoring data and the mass of explosives are taken into consideration. The seismic effect method was developed in the Czech Republic and is always being used in collieries in the Czech part of the coal basin. Now, this method has been widely adopted for our selected colliery in the Polish part of the coal basin. The effectiveness of torpedo blastings in the faces and galleries of the assigned longwall in coal seam 506 has been estimated. The results show that the effectiveness of torpedo blastings for this longwall was significant in light of the seismic effect method, which corresponds to the in situ observations. The seismic effect method is regularly applied to estimating the blasting effectiveness in the selected colliery.

  9. Geomechanical effects of stress shadow created by large-scale destress blasting

    Directory of Open Access Journals (Sweden)

    Isaac Vennes

    2017-12-01

    Full Text Available This study aims to determine if large-scale choked panel destress blasting can provide sufficient beneficial stress reduction in highly-stressed remnant ore pillar that is planned for production. The orebody is divided into 20 stopes over 2 levels, and 2 panels are choke-blasted in the hanging wall to shield the ore pillar by creating a stress shadow around it. A linear-elastic model of the mining system is constructed with finite difference code FLAC3D. The effect of destress blasting in the panels is simulated by applying a fragmentation factor (α to the rock mass stiffness and a stress reduction factor (β to the current state of stress in the region occupied by the destress panels. As an extreme case, the destress panel is also modeled as a void to obtain the maximum possible beneficial effects of destressing and stress shadow. Four stopes are mined in the stress shadow of the panels in 6 lifts and then backfilled. The effect of destress blasting on the remnant ore pillar is quantified based on stress change and brittle shear ratio (BSR in the stress shadow zone compared to the base case without destress blasting. To establish realistic rock fragmentation and stress reduction factors, model results are compared to measured stress changes reported for case studies at Fraser and Brunswick mines. A 1.5 MPa immediate stress decrease was observed 20 m away from the panel at Fraser Mine, and a 4 MPa immediate stress decrease was observed 25 m away at Brunswick Mine. Comparable results are obtained from the current model with a rock fragmentation factor α of 0.2 and a stress reduction factor β of 0.8. It is shown that a destress blasting with these parameters reduces the major principal stress in the nearest stopes by 10–25 MPa. This yields an immediate reduction of BSR, which is deemed sufficient to reduce volume of ore at risk in the pillar.

  10. Effect of Large Negative Phase of Blast Loading on Structural Response of RC Elements

    Directory of Open Access Journals (Sweden)

    Syed Zubair Iman

    2016-01-01

    Full Text Available Structural response of reinforced concrete (RC elements for analysis and design are often obtained using the positive phase of the blast pressure curve disregarding the negative phase assuming insignificant contribution from the negative phase of the loading. Although, some insight on the effect of negative phase of blast pressure based on elastic single-degree-of-freedom (SDOF analysis was presented before, the influence of negative phase on different types of resistance functions of SDOF models and on realistic finite element analysis has not been explored. In this study, the effects of inclusion of pulse negative phase on structural response of RC elements from SDOF analysis and from more detailed finite element analysis have been investigated. Investigation of SDOF part has been conducted using MATLAB code that utilizes non-linear resistance functions of SDOF model. Detailed numerical investigation using finite element code DIANA was conducted on the significance of the negative phase on structural response. In the FE model, different support stiffness was used to explore the effect of support stiffness on the structural response due to blast negative phase. Results from SDOF and FE analyses present specific situations where the effect of large negative phase was found to be significant on the structural response of RC elements.

  11. THE EFFECT OF FISSURES IN DOLOMITE ROCK MASS ON BLASTING PROJECTS

    Directory of Open Access Journals (Sweden)

    Branko Božić

    1989-12-01

    Full Text Available Rock fractures in the form of fissures are one of more important geological features of a tectonic system. They have an effect on mechanical behaviour of rook masses exposed to the actions of surface forces. For exploitation in dolomite quarries carried out by blasting of deep shot holes it is important to know the system of fissures within a rock mass for the rock brakes along already weakened planes (the paper is published in Croatian.

  12. A theoretical study using the multiphase numerical simulation technique for effective use of H2 as blast furnaces fuel

    OpenAIRE

    Jose Adilson de Castro; Cyro Takano; Jun-ichiro Yagi

    2017-01-01

    We present a numerical simulation procedure for analyzing hydrogen, oxygen and carbon dioxide gases injections mixed with pulverized coals within the tuyeres of blast furnaces. Effective use of H2 rich gas is highly attractive into the steelmaking blast furnace, considering the possibility of increasing the productivity and decreasing the specific emissions of carbon dioxide becoming the process less intensive in carbon utilization. However, the mixed gas and coal injection is a complex techn...

  13. Modeling and simulation of explosion effectiveness as a function of blast and crowd characteristics

    Science.gov (United States)

    Usmani, Zeeshan-Ul-Hassan

    Suicide bombing has become one of the most lethal and favorite modus operandi of terrorist organizations around the world. On average, there is a suicide bombing attack every six days somewhere in the world. While various attempts have been made to assess the impact of explosions on structures and military personnel, little has been done on modeling the impact of a blast wave on a crowd in civilian settings. The assessment of an explosion's effect on a crowd can lead to better management of disasters, triage of patients, locating blast victims under the debris, development of protective gear, and safe distance recommendations to reduce the casualties. The overall goal of this work is to predict the magnitude of injuries and lethality on humans from a blast-wave with various explosive and crowd characteristics, and to compare, contrast, and analyze the performance of explosive and injury models against the real-life data of suicide bombing incidents. This thesis introduces BlastSim---a physics based stationary multi-agent simulation platform to model and simulate a suicide bombing event. The agents are constrained by the physical characteristics and mechanics of the blast wave. The BlastSim is programmed to test, analyze, and validate the results of different model combinations under various conditions with different sets of parameters, such as the crowd and explosive characteristics, blockage and human shields, fragmentation and the bomber's position, in 2-dimensional and 3-dimensional environments. The suicide bombing event can be re-created for forensic analysis. The proposed model combinations show a significant performance---the Harold Brode explosive model with Catherine Lee injury model using the blockage stands out consistently to be the best with an overall cumulative accuracy of 87.6%. When comparing against actual data, overall, prediction accuracy can be increased by 71% using this model combination. The J. Clutter with Reflection explosive model using

  14. Elastomeric Polymers for Retrofitting of Reinforced Concrete Structures against the Explosive Effects of Blast

    Directory of Open Access Journals (Sweden)

    S. N. Raman

    2012-01-01

    Full Text Available The main distinction of blast load from other types of dynamic loadings is its impulsive nature, where the loads usually act for a very short duration but transmit very high impulsive pressures. This paper presents an overview of the present retrofitting techniques in use to enhance the capacity of structural elements to withstand the effects of blast loads, and introduces an alternative retrofitting approach by utilizing polymer coatings. The authors have demonstrated the positive effects of this approach by conducting a numerical investigation on the behavior of an unretrofitted reinforced concrete panel subjected to the blast load from a 2 kg charge at 1.6 m stand-off distance, and subsequently comparing its performance with several polymer coated panels. The analysis was performed by using an explicit nonlinear finite element (FE code. The results demonstrate the contributions of this technique in terms of panel displacement control and energy dissipation. Considering that the polymer coating can also act as a protective layer in improving the durability of structural materials, this technique can also be optimized favorably to enhance the overall sustainability of structures.

  15. Blast Technologies

    Science.gov (United States)

    2011-06-27

    Team Leader Risa Scherer Blast Mitigation Interior and Laboratory Team Leader Blast Technologies POC’s Government Point Of Contacts (POCs): To...to yield injury assessments at higher fidelities and with higher confidence UNCLASSIFIED UNCLASSIFIED Risa Scherer Blast Mitigation Interior and

  16. Blast biology: a study of the primary and tertiary effects of blast in open underground protective shelters. Project 33. 1 of Operation Plumbbob

    Energy Technology Data Exchange (ETDEWEB)

    Ricmond, D.R.; Taborelli, R.V.; Bowen, I.G.

    1959-02-01

    Dogs, pigs, rabbits, guinea pigs, and mice were exposed to nuclear detonations in two open underground partitioned shelters. The shelters were of similar construction, and each was exposed to separate detonations. Each inner chamber filled through its own orifice; thus four separate pressure environments were obtained. An aerodynamic mound was placed over the escape hatch of each structure to determine its effect on the pressure-curve shape inside the chamber. In one test a sieve plate bolted across the top of the mound was evaluated. Wind protective baffles of solid plate and of heavy wire screen were installed in the shelters to compare primary and tertiary blast effects on dogs. The shelters also contained static and dynamic pressure gages, radiation detectors, telemetering devices, and, in one test, air-temperature measuring instruments, dust-collecting trays, and eight pigs for the biological assessment of thermal effects. One dog was severely injured from tertiary blast effects associated with a maximal dynamic pressure (Q) of 10.5 psi, and one was undamaged with a maximal Q of 2 psi. Primary blast effects resulting from peak overpressures of 30.3, 25.5, 9.5, and 4.1 psi were minimal. The mortality was 19% of the mice exposed to a peak pressure of 30.3 psi and 5 and 3% of the guinea pigs and mice exposed to a peak pressure of 25.5 psi. Many of the rabbits, guinea pigs, and mice sustained slight lung hemorrhages at maximum pressues of 25.5 and 30.3 psi. Eardrum perforation data for all species, except mice, were recorded. Following shot 2, thermal effects were noted. Animals of the groups saved for observation have died from ionizing-radiation effects.

  17. Blast load effects research in dry and wet soil

    CSIR Research Space (South Africa)

    Ahmed, R

    2014-09-01

    Full Text Available The Scientifically Instrumented Impulse Measurement Apparatus (SIIMA) was developed to measure the total imparted impulse due to explosive loading. The instrument was designed to be used to compare the effects of variables on the resulting impulse...

  18. Effects of heat treatments of coal on coke destruction under blast furnace conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shkoller, M.B.; Dinel' t, V.M.; Korchuganova, G.S.; Petrov, V.B.

    1983-09-01

    This paper discusses results of investigations on effects of chemical reactions in a blast furnace on coke disintegration and destruction. The investigations were carried out by the VUKhIN Institute branch in Kuznetsk. Effects of silicates and carbonates of sodium, potassium and zinc on mechanical coke properties were investigated under laboratory conditions. Coke samples were placed in a reactor and were treated by vapors of metal compounds. Coke produced from a coal mixture with conventional moisture content and from preheated coal mixture was used. Coal properties are given in a table. Design of laboratory equipment used for tests is shown in 2 schemes. Heat treatments influenced coke porosity and its structural strength. Proportion of large pores accessible to sodium and potassium in coke from preheated coal was 4.5 times lower than in coke from a conventional mixture. Adsorption of sodium and potassium on coke from preheated charge was lower (from 0.22% to 0.24%) than on coke from a conventional mixture (from 2.5% to 2.9%). Adsorption of alkali metals on coke reduced its structural strength and increased coke oxidation rate by carbon dioxide. Use of heat treatments of coal for coking reduced adsorption of alkali metals on coke in a blast furnace, increased coke structural strength and reduced coke oxidation rate by carbon dioxide. (16 refs.) (In Russian)

  19. Blast effect on the lower extremities and its mitigation: a computational study.

    Science.gov (United States)

    Dong, Liqiang; Zhu, Feng; Jin, Xin; Suresh, Mahi; Jiang, Binhui; Sevagan, Gopinath; Cai, Yun; Li, Guangyao; Yang, King H

    2013-12-01

    A series of computational studies were performed to investigate the response of the lower extremities of mounted soldiers under landmine detonation. A numerical human body model newly developed at Wayne State University was used to simulate two types of experimental studies and the model predictions were validated against test data in terms of the tibia axial force as well as bone fracture pattern. Based on the validated model, the minimum axial force causing tibia facture was found. Then a series of parametric studies was conducted to determine the critical velocity (peak velocity of the floor plate) causing tibia fracture at different upper/lower leg angles. In addition, to limit the load transmission through the vehicular floor, two types of energy absorbing materials, namely IMPAXX(®) foam and aluminum alloy honeycomb, were selected for floor matting. Their performances in terms of blast effect mitigation were compared using the validated numerical model, and it has been found that honeycomb is a more efficient material for blast injury prevention under the loading conditions studied. © 2013 Elsevier Ltd. All rights reserved.

  20. The effect of blast furnace coke quality on the possibility of its use

    Directory of Open Access Journals (Sweden)

    A. Konstanciak

    2013-04-01

    Full Text Available In the paper behavior of the blast-furnace coke in the high temperature was presented. Comparative analysis of the chemical composition of the blast-furnace coke and the heat treatment of it were done. Coefficients M10 and M40 with the thermo-abrasiveness for chosen cokes were compared. The influence of ash content of the coke on the blast-furnace bed permeability was defined. Usefulness of the coke to blast-furnace process was also defined.

  1. Effects of torpedo blasting on rockburst prevention during deep coal seam mining in the Upper Silesian Coal Basin

    Czech Academy of Sciences Publication Activity Database

    Wojtecki, Ł.; Koníček, Petr; Schreiber, J.

    2017-01-01

    Roč. 9, č. 4 (2017), s. 694-701 ISSN 1674-7755 Institutional support: RVO:68145535 Keywords : rockburst prevention * torpedo blasting * seismic effect * Upper Silesian Coal Basin (USCB) Subject RIV: DH - Mining , incl. Coal Mining OBOR OECD: Mining and mineral processing http://www.sciencedirect.com/science/article/pii/S1674775517300896

  2. High-speed imaging and small-scale explosive characterization techniques to understand effects of primary blast-induced injury on nerve cell structure and function

    Science.gov (United States)

    Piehler, T.; Banton, R.; Zander, N.; Duckworth, J.; Benjamin, R.; Sparks, R.

    2018-01-01

    Traumatic brain injury (TBI) is often associated with blast exposure. Even in the absence of penetrating injury or evidence of tissue injury on imaging, blast TBI may trigger a series of neural/glial cellular and functional changes. Unfortunately, the diagnosis and proper treatment of mild traumatic brain injury (mTBI) caused by explosive blast is challenging, as it is not easy to clinically distinguish blast from non-blast TBI on the basis of patient symptoms. Damage to brain tissue, cell, and subcellular structures continues to occur slowly and in a manner undetectable by conventional imaging techniques. The threshold shock impulse levels required to induce damage and the cumulative effects upon multiple exposures are not well characterized. Understanding how functional and structural damage from realistic blast impact at cellular and tissue levels at variable timescales after mTBI events may be vital for understanding this injury phenomenon and for linking mechanically induced structural changes with measurable effects on the nervous system. Our working hypothesis is that there is some transient physiological dysfunction occurring at cellular and subcellular levels within the central nervous system due to primary blast exposure. We have developed a novel in vitro indoor experimental system that uses real military explosive charges to more accurately represent military blast exposure and to probe the effects of primary explosive blast on dissociated neurons. We believe this system offers a controlled experimental method to analyze and characterize primary explosive blast-induced cellular injury and to understand threshold injury phenomenon. This paper will also focus on the modeling aspect of our work and how it relates to the experimental work.

  3. A patient with a traumatic brain injury due to barrel bomb tertiary blast effect

    Directory of Open Access Journals (Sweden)

    Mustafa Bolatkale

    2017-06-01

    Full Text Available Preparing to manage weapons of mass destruction events challenges emergency services systems neighboring Syria every day. Understanding injury from explosives is essential for all providers of emergency care in both civilian and military settings. In this case, the authors present a 22-year-old man who was admitted to the emergency department with displaced skull fracture, epidural hemorrhage and cerebral contusion due to barrel bomb tertiary blast effect. A 22-year-old man who complained of pain in the right temporal head region after barrel bomb explosion was admitted in the emergency department. The patient could not remember the explosion and found himself on the ground. In his medical history, there was not a record of any diseases, operations or traumas. Examination of the head revealed scalp hematoma and slump in the skull on the right temporal region. Patients computed tomography (CT scan showed a displaced skull fracture, epidural hematoma and cerebral contusion.

  4. Effect of plastic media blasting method on mechanical properties of Al 2024-T6 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Uner, Umit [1st Air Supply and Maintenance Centre, Eskisehir (Turkmenistan); Orak, Sezan; Sofuoglu, Mehmet Alper [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2016-11-15

    We investigated the effect of Plastic media blasting (PMB) method on mechanical properties of Al 2024-T6 alloy for aircraft body coatings. Painting-stripping process with three cycles was performed using PMB for three different thicknesses. The relationship between surface morphology-deformation and defects was characterized. PMB affects the fatigue life and surface morphology of specimens. The fatigue life decreases when the specimen thickness decreases. In contrast, this method does not significantly affect the fatigue life of thick specimens. The surface roughness was between 0.30-0.65 Ra for processed specimens. The study will determine proper sheet metal thickness which is not affected seriously because of the method for Al 2024-T6 alloy.

  5. The effect of the air blast sprayer speed on the chemical distribution in vineyard.

    Science.gov (United States)

    Celen, I H; Arin, S; Durgut, M R

    2008-06-01

    A study was conducted to determine the spray deposition patterns for air blast sprayers used to apply chemicals to the canopy of Semillon grapevine in vineyard. The application carried out in 12 bars and three sprayer speed (2.1-4.9-7.7 km h(-1)). The spray deposition was measured on the point in the different distances (1.5-3-6-9 m). Tartrazine were applied as tracer material. Maximum spray deposit was obtained 66.1 mg cm(-2) at sprayer speed of 2.1 km h(-1) and minimum deposit was obtained 37.1 mg cm(-2) at sprayer speed of 7.7 km h(-1). The results showed that the sprayer speeds had significant effect on spray deposit distribution and increasing of the sprayer speed increased drift.

  6. BLEVE blast by expansion-controlled evaporation

    NARCIS (Netherlands)

    Berg, A.C. van den; Voort, M.M. van der; Weerheijm, J.; Versloot, N.H.A.

    2006-01-01

    This report presents a new method to calculate the blast effects originating from an exploding vessel of liquefied gas. Adequate blast calculation requires full knowledge of the blast source characteristics, that is, the release and subsequent evaporation rate of the flashing liquid. Because the

  7. Chloroplast-Expressed MSI-99 in Tobacco Improves Disease Resistance and Displays Inhibitory Effect against Rice Blast Fungus

    Directory of Open Access Journals (Sweden)

    Yun-Peng Wang

    2015-03-01

    Full Text Available Rice blast is a major destructive fungal disease that poses a serious threat to rice production and the improvement of blast resistance is critical to rice breeding. The antimicrobial peptide MSI-99 has been suggested as an antimicrobial peptide conferring resistance to bacterial and fungal diseases. Here, a vector harboring the MSI-99 gene was constructed and introduced into the tobacco chloroplast genome via particle bombardment. Transformed plants were obtained and verified to be homoplastomic by PCR and Southern hybridization. In planta assays demonstrated that the transgenic tobacco plants displayed an enhanced resistance to the fungal disease. The evaluation of the antimicrobial activity revealed that the crude protein extracts from the transgenic plants manifested an antimicrobial activity against E. coli, even after incubation at 120 °C for 20 min, indicating significant heat stability of MSI-99. More importantly, the MSI-99-containing protein extracts were firstly proved in vitro and in vivo to display significant suppressive effects on two rice blast isolates. These findings provide a strong basis for the development of new biopesticides to combat rice blast.

  8. Blast wave parameters at diminished ambient pressure

    Science.gov (United States)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  9. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  10. Control blasting of reinforced concrete

    International Nuclear Information System (INIS)

    Nagase, Tetsuo

    1981-01-01

    With the need of decommissioning nuclear power plants, it is urgently required to establish its methods and standards. In Shimizu Construction Co., Ltd., experimental feasibility studies have been made on explosive demolition method i.e. the controlled blasting for the massive concrete structures peculiar to nuclear power plants, considering low radiation exposure, safety and high efficiency. As such, four techniques of line drilling, cushion blasting, pre-splitting and guide hole blasting, respectively, are described with photographs. Assuming the selective demolition of activated concrete structures, the series of experiments showed the good results of clear-cut surfaces and the effect of blasting was confined properly. Moreover, the scattering of debris in blasting was able to be entirely prevented by the use of rubber belts. The generation of gas and dust was also little due to the small amount of the charge used. (J.P.N.)

  11. Effect of Na3PO4 on the Hydration Process of Alkali-Activated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Lukáš Kalina

    2016-05-01

    Full Text Available In recent years, the utilization of different non-traditional cements and composites has been increasing. Alkali-activated cementitious materials, especially those based on the alkali activation of blast furnace slag, have considerable potential for utilization in the building industry. However, alkali-slag cements exhibit very rapid setting times, which are too short in some circumstances, and these materials cannot be used for some applications. Therefore, it is necessary to find a suitable retarding admixture. It was shown that the sodium phosphate additive has a strong effect on the heat evolution during alkali activation and effectively retards the hydration reaction of alkali-activated blast furnace slag. The aim of the work is the suggestion of a reaction mechanism of retardation mainly based on Raman and X‑ray photoelectron spectroscopy.

  12. Molecular diversity in rice blast resistance gene Pi-ta makes it highly effective against dynamic population of Magnaporthe oryzae.

    Science.gov (United States)

    Thakur, S; Gupta, Y K; Singh, P K; Rathour, R; Variar, M; Prashanthi, S K; Singh, A K; Singh, U D; Chand, D; Rana, J C; Singh, N K; Sharma, T R

    2013-08-01

    Rice blast is one of the important diseases of rice which can be effectively managed by the deployment of resistance genes. Pi-ta is one of the major blast resistant genes effective against pathogen populations in different parts of India. We analysed allelic variants of Pi-ta from 48 rice lines selected after phenotyping of 529 rice landraces across three eco-geographical blast hot spot regions. Besides, Pi-ta orthologue sequences of 220 rice accessions belonging to wild and cultivated species of rice were also included in the study for a better evo-devo perspective of the diversity present in the gene and the selection pressures acting on this locus. We obtained high nucleotide variations (SNPs and insertion-deletions) in the intronic region. We also identified 64 haplotypes based on nucleotide polymorphism in these alleles. Pi-ta orthologues of Indian landraces were scattered in eight major haplotypes indicating its heterogenous nature. We identified a total of 47 different Pi-ta protein variants on the basis of deduced amino acid residues amongst the orthologues. Five unique and novel Pi-ta variants were identified for the first time in rice landraces exhibiting different reaction types against the Magnaporthe oryzae population. A high value of Pi(non/syn) was observed only in the leucine-rich domain of the alleles cloned from Indian landraces, indicating strong selective forces acting on this region. The detailed molecular analysis of the Pi-ta orthologues provides insights to a high degree of inter- and intraspecific relationships amongst the Oryza species. We identified rice landraces possessing the effective alleles of this resistance gene which can be used in future blast resistance breeding programmes.

  13. Effect of Shot Blasting on Fatigue Strength of Q345B Steel Plate with a Central Hole

    Directory of Open Access Journals (Sweden)

    Xiang You

    2017-11-01

    Full Text Available The fatigue strength of Q345B steel plate with a central hole after shot blasting is studied herein. The improvement of fatigue strength related to the failure behavior is highlighted with due analysis of fatigue cracks initiation at the defect below the condensed surface induced by shot blasting. The effect of stress concentration is shown to be non-ignorable in the fatigue strength analysis. Codified fatigue categories in accordance with EN 1993-1-9 are used in drawing a comparison of studied fatigue behavior. Finally, an analytical model based on a modified reference model is proposed for the evaluation of the test fatigue strength results. It is demonstrated that the predicted results agree well with test data, since the stress ratio and the size of the defect as well as the stress concentration are appropriately considered.

  14. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    International Nuclear Information System (INIS)

    Huang, Haoliang; Ye, Guang; Damidot, Denis

    2014-01-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH) 2 solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO 4 2− ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. - Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation

  15. Underbody blast effect on the pelvis and lumbar spine: A computational study.

    Science.gov (United States)

    Lei, Jianyin; Zhu, Feng; Jiang, Binhui; Wang, Zhihua

    2018-03-01

    Explosion from an anti-tank landmine under a military vehicle, known as underbody blast (UBB), may cause severe injury or even death for the occupants inside the vehicle. Severity and patterns of lower extremity, pelvis and lumbar spine injuries subjected to UBB have been found highly related to loading conditions, i.e. the vertical acceleration pulse. A computational human model has been developed and successfully simulated the tibia fracture under UBB in the previous study. In the present study, it was further improved by building a detailed lumbar spine and pelvis model with high biofidelity. The newly developed pelvis and lumbar spine were validated against component level test data in the literature. Then, the whole body model was validated with the published cadaver sled test data. Using the validated whole body model, parametric studies were conducted by adjusting the peak acceleration and time duration of pulses produced in the UBB to investigate the effect of waveform on the injury response. The critical values of these two parameters for pelvis and lumbar spine fracture were determined, and the relationship between injury pattern and loading conditions was established. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    1999-01-01

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and

  17. Analysis and Numerical Simulation on the Reduction Effect of Stress Waves Caused by Water Jet Slotting Near Blasting Source

    OpenAIRE

    Su, Dengfeng; Kang, Yong; Li, Dongyang; Wang, Xiaochuan; Yan, Fuwen

    2016-01-01

    As one of the most serious “side effects” of blast excavation, blast-induced vibration must be controlled for existing buildings and human beings. This paper proposes a method for blast-induced vibration reduction with water jet assistance according to the cutting characters of low-noised, environment-friendly water jet. The mechanism of vibration-isolation with water jet assistance was analyzed, and the stress wave energy attenuation models were established based on blasting theory and stres...

  18. Effect of nut coke on the performance of the ironmaking blast furnace

    NARCIS (Netherlands)

    Song, Q.

    2013-01-01

    The blast furnace consumes a large amount of high quality metallurgy coke (size 35-80 mm) in addition to ore in the form of pellets and sinter. This coke is the coarse fraction, derived from the coke plant. The fine fraction (8 -35 mm), arise after sieving, named nut coke, can’t be directly used in

  19. Chloride-binding Effect of Blast Furnace Slag in Cement Pastes ...

    African Journals Online (AJOL)

    Unlike previous investigations, this study attempted to make a clear distinction between the contributions of the two components in a blended cement consisting of ordinary Portland cement (OPC) and ground blast furnace slag (BFS). These contributions of each component have been quantified. Relationships between the ...

  20. Effect of Surface Contaminants Remained on the Blasted Surface on Epoxy Coating Performance and Corrosion Resistance

    International Nuclear Information System (INIS)

    Baek, Kwang Ki; Park, Chung Seo; Kim, Ki Hong; Chung, Mong Kyu; Park, Jin Hwan

    2006-01-01

    One of the critical issues in the coating specification is the allowable limit of surface contaminant(s) - such as soluble salt(s), grit dust, and rust - after grit blasting. Yet, there is no universally accepted data supporting the relationship between the long-term coating performance and the amount of various surface contaminants allowed after grit blasting. In this study, it was attempted to prepare epoxy coatings applied on grit-blasted steel substrate dosed with controlled amount of surface contaminants - such as soluble salt(s), grit dust, and rust. Then, coating samples were subjected to 4,200 hours of cyclic test(NORSOK M-501), which were then evaluated in terms of resistance to rust creepage, blistering, chalking, rusting, cracking and adhesion strength. Additional investigations on the possible damage at the paint/steel interface were carried out using an Electrochemical Impedance Spectroscopy(EIS) and observations of under-film-corrosion. Test results suggested that the current industrial specifications were well matched with the allowable degree of rust, whereas the allowable amount of soluble salt and grit dust after grit blasting showed a certain deviation from the specifications currently employed for fabrication of marine vessels and offshore facilities

  1. Air blast effects on nuclear power plants from vapor cloud explosions

    International Nuclear Information System (INIS)

    Wiedermann, A.H.; Eichler, T.V.; Kot, C.A.

    1981-01-01

    To assess the hazards arising from the explosion of a large flammable vapor cloud a method was developed for estimating the air blast field assuming a detonation wave is established. The actual 'pancake' like geometry typical for negatively buoyant vapor clouds is taken into account. The cloud height and other characteristics are generated by a global cloud dynamics model for negatively buoyant clouds. This model provides the cloud height as a function of fuel vapor concentration and other pertinent variables. A two-dimensional Eulerian shock hydrodynamic computer code is utilized to compute the blast environment in the neighborhood of the end of the cloud. The initial field is taken to be a quasi-steady explosion field calculated by the method of characteristics for a thin Prandtl-Meyer expansion wave, and the upward driven air shock representing the combustion and pressure relief processes inherent in the pancake geometry. This initial fields is established in the 2-D hydrocode at a time corresponding to the arrival of the detonation front at the cloud edge. It is to be noted that the local blast environment scales with respect to the cloud height. The computational results indicate that it is essential to include the influence of cloud geometry for the realistic prediction of the air blast hazard arising from the explosion of a negatively buoyant vapor cloud. (orig./HP)

  2. Evaluation of the Effectiveness of Wet Blast Cleaning Methods of Surface Preparation

    Science.gov (United States)

    1985-06-01

    SSPC-SP 10 SSPC-SP 10 ----- 90 120 ----- 8.8 6.4 --—- $0.56 $0.40 a - b - c - d - e - f - Simpson Water Blast Unit PG4-1500 with Graco "King...Eastern Chemical Equipment Company Delco Manufacturing Company Edwards Manufacturing company Flow Industries, Incorporated Graco , Incorporated Harben

  3. Proceedings of the seventeenth annual conference on explosives and blasting technique. Volume 1

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Papers from this conference dealt with the following topics: surface and underground mine blasting, control of blast effects in sensitive areas, blasthole deviation, regulatory impact when blasting at Superfund sites, computer-aided blast design and monitoring, tunneling techniques, shaft excavations, video camera analysis of blasting operations, soil densification, cost optimization, mine blasting accidents, non-electric initiation systems, and delay detonators. Papers have been indexed separately for inclusion on the data base

  4. Control of adverse effects of explosive blasting in mines by using shock tube (non-electric) initiation systems and its future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, P.D. [Maharashtra Explosives Ltd., Nagpur (India)

    2000-04-01

    Every kind of blasting in mines produces some adverse effects on environment, such as ground vibration, noise, fly rock etc. Presently, for restricting these adverse effects, use of shock tube (non-electric) initiation systems are gaining momentum. There are some inherent shortcomings of this initiation system regarding chances of misfires. This paper discusses the various adverse effects of blasting, advantages of shock tube initiation system and the shortcomings of shock tube initiation system regarding chances of misfire and how misfire arises out of failure of shock tube initiation system is different and more dangerous than the misfire occurring due to failure of conventional system (with detonating fuse and cord relays). 1 tab.

  5. The Effects of Blast Exposure on Protein Deimination in the Brain

    Directory of Open Access Journals (Sweden)

    Peter J. Attilio

    2017-01-01

    Full Text Available Oxidative stress and calcium excitotoxicity are hallmarks of traumatic brain injury (TBI. While these early disruptions may be corrected over a relatively short period of time, long-lasting consequences of TBI including impaired cognition and mood imbalances can persist for years, even in the absence of any evidence of overt injury based on neuroimaging. This investigation examined the possibility that disordered protein deimination occurs as a result of TBI and may thus contribute to the long-term pathologies of TBI. Protein deimination is a calcium-activated, posttranslational modification implicated in the autoimmune diseases rheumatoid arthritis and multiple sclerosis, where aberrant deimination creates antigenic epitopes that elicit an autoimmune attack. The present study utilized proteomic analyses to show that blast TBI alters the deimination status of proteins in the porcine cerebral cortex. The affected proteins represent a small subset of the entire brain proteome and include glial fibrillary acidic protein and vimentin, proteins reported to be involved in autoimmune-based pathologies. The data also indicate that blast injury is associated with an increase in immunoglobulins in the brain, possibly representing autoantibodies directed against novel protein epitopes. These findings indicate that aberrant protein deimination is a biomarker for blast TBI and may therefore underlie chronic neuropathologies of head injury.

  6. Analysis and Numerical Simulation on the Reduction Effect of Stress Waves Caused by Water Jet Slotting Near Blasting Source

    Directory of Open Access Journals (Sweden)

    Dengfeng Su

    2016-01-01

    Full Text Available As one of the most serious “side effects” of blast excavation, blast-induced vibration must be controlled for existing buildings and human beings. This paper proposes a method for blast-induced vibration reduction with water jet assistance according to the cutting characters of low-noised, environment-friendly water jet. The mechanism of vibration-isolation with water jet assistance was analyzed, and the stress wave energy attenuation models were established based on blasting theory and stress wave theory. Influence law on shock wave attenuation by vibration-isolation slot was studied by numerical simulation. Simulation results agree with the theoretical analysis roughly. The results of this study put forward a method for blast-induced vibration near blasting source and provide a certain theoretical basis.

  7. A blast absorber test: measurement and model results

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Berg, F. van den; Hof, J. van 't; Arkel, E. van

    2006-01-01

    A blast absorber test was conducted at the Aberdeen Test Centre from 13 to 17 June 2005. The test was set up to determine the absorbing and shielding effect of a gravel pile, of 1.5 meters high and 15 by 15 meters wide, on blasts from large weapons: e.g. armor, artillery or demolition. The blast was

  8. Simulating geometrically complex blast scenarios

    Directory of Open Access Journals (Sweden)

    Ian G. Cullis

    2016-04-01

    Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.

  9. Effect of recycling blast furnace flue dust as pellets on the sintering performance

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2010-01-01

    Full Text Available The Egyptian Iron and Steel Company generates a great amount of blast furnace flue dust. The recovery of metals and carbon from this flue dust becomes a very important demand due to the increase of the price of coke breeze and the decrease of the primary source of metals. At the same time, it make the environment more safe by decreasing pollution. Introducing these dust fines in the sintering process proves to be very harmful for different operating parameters. Thus, this study aims at investigating the production of pellets resulting from these fines, using molasses as organic binder and its application in sintering of iron ore. The sintering experiments were performed using flue dust as pellets as a substitute of coke breeze. The results revealed that, sintering properties such as inter strength increases with using the flue dust pellets, while productivity of both the sinter machine and sinter machine at blast furnace yard decreases. Also the vertical velocity of the sinter machine and the weight loss during the reduction of produced the sinter by hydrogen decrease.

  10. Effects of 5-azacytidine on natural killer cell activating receptor expression in patients with refractory anemia with excess of blasts

    Directory of Open Access Journals (Sweden)

    Régis T. Costello

    2015-01-01

    Full Text Available Epigenetic drugs modify DNA methylation and are used in refractory anemia with excess of blasts (RAEB. These drugs may reactivate anti-oncogene expression and restore a normal phenotype instead of inducing antitumor toxicity, although they also have immunosuppressive effects on T-lymphocytes [1] In RAEB and acute myeloid leukemia, a defect in natural killer (NK cell cytotoxicity has been shown, which relies on abnormal expression of activating receptors. Previous study has shown that 5-azacytidine impaired mRNA synthesis and induced apoptosis in NK cells [2]. In this study we investigated the effect of the demethylating drug 5-azacytidine (Vidaza® on NK receptors with the hypothesis that demethylation of the promoters of activating NK receptor genes induces gene reactivation and thus may increase their expression.

  11. Proceedings of the seventeenth annual conference on explosives and blasting technique. Volume 2

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Papers from this conference dealt with the following topics: surface and underground mine blasting, ground vibrations and blast effects, design for explosive fracturing of rock, sequential timing for blasting control, design for production optimization, use of blasting for abandoned mine reclamation, chemical explosives, lightning warning systems, magazine security, fire safety, and drilling equipment. Papers have been indexed separately for inclusion on the data base

  12. Rodent model of direct cranial blast injury.

    Science.gov (United States)

    Kuehn, Reed; Simard, Philippe F; Driscoll, Ian; Keledjian, Kaspar; Ivanova, Svetlana; Tosun, Cigdem; Williams, Alicia; Bochicchio, Grant; Gerzanich, Volodymyr; Simard, J Marc

    2011-10-01

    Traumatic brain injury resulting from an explosive blast is one of the most serious wounds suffered by warfighters, yet the effects of explosive blast overpressure directly impacting the head are poorly understood. We developed a rodent model of direct cranial blast injury (dcBI), in which a blast overpressure could be delivered exclusively to the head, precluding indirect brain injury via thoracic transmission of the blast wave. We constructed and validated a Cranium Only Blast Injury Apparatus (COBIA) to deliver blast overpressures generated by detonating .22 caliber cartridges of smokeless powder. Blast waveforms generated by COBIA replicated those recorded within armored vehicles penetrated by munitions. Lethal dcBI (LD(50) ∼ 515 kPa) was associated with: (1) apparent brainstem failure, characterized by immediate opisthotonus and apnea leading to cardiac arrest that could not be overcome by cardiopulmonary resuscitation; (2) widespread subarachnoid hemorrhages without cortical contusions or intracerebral or intraventricular hemorrhages; and (3) no pulmonary abnormalities. Sub-lethal dcBI was associated with: (1) apnea lasting up to 15 sec, with transient abnormalities in oxygen saturation; (2) very few delayed deaths; (3) subarachnoid hemorrhages, especially in the path of the blast wave; (4) abnormal immunolabeling for IgG, cleaved caspase-3, and β-amyloid precursor protein (β-APP), and staining for Fluoro-Jade C, all in deep brain regions away from the subarachnoid hemorrhages, but in the path of the blast wave; and (5) abnormalities on the accelerating Rotarod that persisted for the 1 week period of observation. We conclude that exposure of the head alone to severe explosive blast predisposes to significant neurological dysfunction.

  13. Effects of mechanical cleaning by manual brushing and abrasive blasting on lime render coatings on Architectural Heritage

    Directory of Open Access Journals (Sweden)

    Iglesias-Campos, M. A.

    2014-12-01

    Full Text Available This research studies the effects of mechanical cleaning by brushing and by abrasive blasting on the lime render coating of a façade. After analysing the properties of the material, the deposits to be removed and their possible influence on the treatment, different cleaning tests were made by manual brushing and by blasting with three varieties of abrasives at 45° and 75° angles, keeping the other parameters constant. Taking the restorer’s perspective as a starting point, and in order to fulfil the practical requirements of an intervention, tests were evaluated with macro-photography, USB digital microscope and stereomicroscope with 3D visualization and measurement. From the results can be concluded that abrasives with low friability and greater grain size than the space between mortar aggregates blasted at a 75° angle reduce the differential erosion compared to other abrasives; although manual brushing has less impact on the surface.En este trabajo se estudian los efectos de las limpiezas mecánicas con cepillado y con proyección de abrasivos sobre un revestimiento exterior de cal. Tras documentar las propiedades del material, de los depósitos superficiales y de su posible influencia en el tratamiento, se realizaron diferentes catas de limpieza con cepillado manual y con proyección de tres abrasivos con ángulos de 45° y 75° manteniendo constantes el resto de parámetros. Partiendo de la visión del conservador-restaurador y de un carácter práctico según las necesidades reales de intervención, los ensayos se evaluaron con macrofotografía, microscopio digital USB y microscopio estereoscópico con visualización y medición en 3D. De los resultados se determina que los abrasivos de baja friabilidad y granulometría mayor que el espacio entre los áridos del mortero proyectados con un ángulo de 75° reducen la erosión diferencial en comparación a otros abrasivos, aunque el cepillado manual altera menos la superficie.

  14. A theoretical study using the multiphase numerical simulation technique for effective use of H2 as blast furnaces fuel

    Directory of Open Access Journals (Sweden)

    Jose Adilson de Castro

    2017-07-01

    Full Text Available We present a numerical simulation procedure for analyzing hydrogen, oxygen and carbon dioxide gases injections mixed with pulverized coals within the tuyeres of blast furnaces. Effective use of H2 rich gas is highly attractive into the steelmaking blast furnace, considering the possibility of increasing the productivity and decreasing the specific emissions of carbon dioxide becoming the process less intensive in carbon utilization. However, the mixed gas and coal injection is a complex technology since significant changes on the inner temperature and gas flow patterns are expected, beyond to their effects on the chemical reactions and heat exchanges. Focusing on the evaluation of inner furnace status under such complex operation a comprehensive mathematical model has been developed using the multi interaction multiple phase theory. The BF, considered as a multiphase reactor, treats the lump solids (sinter, small coke, pellets, granular coke and iron ores, gas, liquids metal and slag and pulverized coal phases. The governing conservation equations are formulated for momentum, mass, chemical species and energy and simultaneously discretized using the numerical method of finite volumes. We verified the model with a reference operational condition using pulverized coal of 215 kg per ton of hot metal (kg thm−1. Thus, combined injections of varying concentrations of gaseous fuels with H2, O2 and CO2 are simulated with 220 kg thm−1 and 250 kg thm−1 coals injection. Theoretical analysis showed that stable operations conditions could be achieved with productivity increase of 60%. Finally, we demonstrated that the net carbon utilization per ton of hot metal decreased 12%.

  15. Raydet non-electric blast initiation system for efficient and environment-friendly surface blasts

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, M.O. [IDL Chemicals Ltd., Hyderabad (India). Technical Services Cell

    1995-08-01

    This paper discusses the advantages of using the Raydet shock tube based blast initiation system and reviews research work carried out on release of explosive energy in the drillhole, effect of stemming retention (stemming effectiveness) and advantages of `true bottom hole initiation` of drillholes in surface blasting. Some case studies are presented. 6 refs., 5 figs., 1 tab.

  16. Assessing the Vulnerability of Large Critical Infrastructure Using Fully-Coupled Blast Effects Modeling

    Energy Technology Data Exchange (ETDEWEB)

    McMichael, L D; Noble, C R; Margraf, J D; Glascoe, L G

    2009-03-26

    Structural failures, such as the MacArthur Maze I-880 overpass in Oakland, California and the I-35 bridge in Minneapolis, Minnesota, are recent examples of our national infrastructure's fragility and serve as an important reminder of such infrastructure in our everyday lives. These two failures, as well as the World Trade Center's collapse and the levee failures in New Orleans, highlight the national importance of protecting our infrastructure as much as possible against acts of terrorism and natural hazards. This paper describes a process for evaluating the vulnerability of critical infrastructure to large blast loads using a fully-coupled finite element approach. A description of the finite element software and modeling technique is discussed along with the experimental validation of the numerical tools. We discuss how such an approach can be used for specific problems such as modeling the progressive collapse of a building.

  17. Control buildings for blast resistance

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.A.

    1982-08-01

    Offers advice on interior design for blast-resistant control buildings. Suggests that for the comfort and safety of occupants, special attention must be paid to internal finishes and color schemes. Considers external treatment (e.g. panels, cladding fixings, thermal insulation), air intakes and exhausts, internal finishes (e.g. stud lining method), and internal walls and partitions. Presents diagrams showing construction method for a control building; elimination of ''cold bridge'' at eaves level; staggering door openings to minimize blast effects; and flexure of concrete walls without affecting the inner lining.

  18. Consideration on local blast vibration control by delay blasting; Danpatsu happa ni yoru kyokuchiteki shindo seigyo ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Mogi, Gento; Adachi, Tsuyoshi; Yamatomi, Jiro [The University of Tokyo School of Engineering Department of Geosystem Engineering, Tokyo (Japan); Hoshino, Tatsuya [Mitsui Mining and Smelting Corp., Tokyo (Japan)

    1999-10-31

    In this research, local blast vibration control based on the theory of superposition of waves was investigated. Firstly, the influence of delay time errors of conventional electric detonators upon the level of local blast vibration was examined. Secondly, for a further effective local blast vibration control, a new delay blasting design concept 'combined delay blasting' that postulates the use of electronic detonators, which virtually have no delay time errors, is proposed. For a delay blasting with uniform detonation time intervals, an optimum time interval to minimize the local PPV (Peak Particle Velocity) is obtained based on the relationship between the PPV and the time interval, which is derived by superposing identical vibration time histories of each single hole shot. However, due to the scattering of the actual delay time caused by errors, PPV of a production blast seldom coincides with the estimated one. Since the expected value and the variance of PPV mainly depend on sensitivity of PPV around the nominal delay time, it is proposed that not only the optimum but also several sub-optimum candidates of delay time should be examined taking error into consideration. Concerning the 'combined delay blasting', its concept and some simulation results are presented. The estimated reduction effect of blast vibration of a delay blast based on this concept was quite favorable, indicating a possibility for further effective local blast vibration control. (author)

  19. Reducing Drill and Blast Cost through Blast Optimisation – A Case ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... gold mine in Ghana, and further developed a suitable, cost-effective drill and blast geometric parameters for the mine. The study was conducted on three ... explosive type, density and costs; labour; oversize. (relative boulders), toes and ... garnering input data, and in its direct linkage between blast design ...

  20. Effect of the Basicity on the Crystallization Behavior of Titanium Bearing Blast Furnace Slag

    Science.gov (United States)

    Meilong, Hu; Ruirui, Wei; Leizhang, Gao; Lu, Liu; Chenguang, Bai

    2018-03-01

    Basicity of titanium bearing blast furnace (BF) slag is critical for its crystallization behavior. Thermodynamics calculation indicates that rutile is the main phase after crystallization (or at room temperature). It precipitates during the cooling when the basicity of the slag is lower than 0.7. With increasing basicity, perovskite appears and becomes the main phase instead which contains titanium. Crystallization temperature of perovskite is higher than that of rutile and the other phases. Namely, perovskite crystallizes firstly from the molten slag during decreasing temperature. XRD analysis shows that CaTi21O38 is the main phase with a basicity of 0.6. CaMg0.39Al0.87Ti0.48Si1.26O6, CaTiSiO5 and CaMgSi2O6 are the main crystallization phases with a basicity of 0.8. The difference between experimental and thermodynamics calculation is due to the complicate crystallization behavior of the multiple slag under super cooling rate. When the slag basicity increases to 1.1, the main precipitatied phase is perovskite, which agrees well with theory calculation. In addition, the crystal structure of the synthesized titanium bearing slag is basically similar regardless of the basicity.

  1. Numerical Simulation of Blast Vibration and Crack Forming Effect of Rock-Anchored Beam Excavation in Deep Underground Caverns

    Directory of Open Access Journals (Sweden)

    XinPing Li

    2017-01-01

    Full Text Available Aiming at surrounding rock damage induced by dynamic disturbance from blasting excavation of rock-anchored beam in rock mass at moderate or far distance in underground cavern, numerical model of different linear charging density and crustal stress in underground cavern is established by adopting dynamic finite element software based on borehole layout, charging, and rock parameter of the actual situation of a certain hydropower station. Through comparison in vibration velocity, contour surface of rock mass excavation, and the crushing extent of excavated rock mass between calculation result and field monitoring, optimum linear charging density of blast hole is determined. Studies are also conducted on rock mass vibration in moderate or far distance to blasting source, the damage of surrounding rock in near-field to blasting source, and crushing degree of excavated rock mass under various in situ stress conditions. Results indicate that, within certain range of in situ stress, the blasting vibration is independent of in situ stress, while when in situ stress is increasing above certain value, the blasting vibration velocity will be increasing and the damage of surrounding rock and the crushing degree of excavated rock mass will be decreasing.

  2. Effect of γ-irradiation on the electrical conductivity of some soda lime silicate glass containing blast furnace slag

    International Nuclear Information System (INIS)

    Elalaily, N.A.; Khalil, Magda M.I.; Ahmed, L.S.

    2007-01-01

    The effect of electric field strength on conduction in soda lime silicate glass doped with blast furnace slag with different concentration was studied and the value of jump distance was calculated. The structure and the mixed anion effect in the conductivity have been examined by measuring the electrical conductivity of glass samples at temperature ranging between 20 and 250 deg. C. The results showed that the electrical conductivity of the examined glasses are divided into three ranges depending on the temperature range. The first is from room temperature to about 49.5 deg. C, the second is at a temperature range of 60.3-104 deg. C where the glass shows a decrease in its conductivity with the increase in temperature. This was followed by another increase in the electrical conductivity with the increase in temperature. The results also showed that the glass becomes more insulating as the slag content increased. The effect of irradiation was also studied by exposing glass samples to two different irradiation doses. It can be noticed that irradiation causes an increase in the electrical conductivity, especially at high temperature. The results were discussed and correlated according to the molecular structure of the prepared glass

  3. The effects of structural setting on the azimuthal velocities of blast induced ground motion in perlite

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, Susan G. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    1995-02-01

    A series of small scale explosive tests were performed during the spring of 1994 at a perlite mine located near Socorro, NM. The tests were designed to investigate the azimuthal or directional relationship between small scale geologic structures such as joints and the propagation of explosively induced ground motion. Three shots were initiated within a single borehole located at ground zero (gz) at depths varying from the deepest at 83 m (272 ft) to the shallowest at 10 m (32 ft). The intermediate shot was initiated at a depth of 63 m (208 ft). An array of three component velocity and acceleration transducers were placed in two concentric rings entirely surrounding the single shot hole at 150 and 300 azimuths as measured from ground zero. Data from the transducers was then used to determine the average propagation velocity of the blast vibration through the rock mass at the various azimuths. The rock mass was mapped to determine the prominent joint orientations (strike and dip) and the average propagation velocities were correlated with this geologic information. The data from these experiments shows that there is a correlation between the orientation of prominent joints and the average velocity of ground motion. It is theorized that this relationship is due to the relative path the ground wave follows when encountering a joint or structure within the rock mass. The more prominent structures allow the wave to follow along their strike thereby forming a sort of channel or path of least resistance and in turn increasing the propagation velocity. Secondary joints or structures may act in concert with more prominent features to form a network of channels along which the wave moves more freely than it may travel against the structure. The amplitudes of the ground motion was also shown to vary azimuthally with the direction of the most prominent structures.

  4. Effects of Cylindrical Charge Geometry and Secondary Combustion Reactions on the Internal Blast Loading of Reinforced Concrete Structures

    Energy Technology Data Exchange (ETDEWEB)

    Price, Matthew A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States)

    2005-05-01

    An understanding of the detonation phenomenon and airblast behavior for cylindrical high-explosive charges is essential in developing predictive capabilities for tests and scenarios involving these charge geometries. Internal tests on reinforced concrete structures allowed for the analysis of cylindrical charges and the effect of secondary reactions occurring in confined structures. The pressure profiles that occur close to a cylindrical explosive charge are strongly dependent on the length-to-diameter ratio (L/D) of the charge. This study presents a comparison of finite-element code models (i.e., AUTODYN) to empirical methods for predicting airblast behavior from cylindrical charges. Current finite element analysis (FEA) and blast prediction codes fail to account for the effects of secondary reactions (fireballs) that occur with underoxidized explosives. Theoretical models were developed for TNT and validated against literature. These models were then applied to PBX 9501 for predictions of the spherical fireball diameter and time duration. The following relationships for PBX 9501 were derived from this analysis (units of ft, lb, s). Comparison of centrally located equivalent weight charges using cylindrical and spherical geometries showed that the average impulse on the interior of the structure is ~3%–5% higher for the spherical charge. Circular regions of high impulse that occur along the axial direction of the cylindrical charge must be considered when analyzing structural response.

  5. Blasting and Passivation Treatments for ASTM F139 Stainless Steel for Biomedical Applications: Effects on Surface Roughness, Hardening, and Localized Corrosion

    Science.gov (United States)

    Barboza, Adriana L. Lemos; Kang, Kyung Won; Bonetto, Rita D.; Llorente, Carlos L.; Bilmes, Pablo D.; Gervasi, Claudio A.

    2015-01-01

    Due to the combination of good biofunctionality and biocompatibility at low cost, AISI 316 low carbon vacuum melting (LVM) stainless steel, as considered in ASTM F139 standard, is often the first choice for medical implants, particularly for use in orthopedic surgery. Proper surface finish must be provided to ensure adequate interactions of the alloy with human body tissues that in turn allows the material to deliver the desired performance. Preliminary studies performed in our laboratory on AISI 316LVM stainless steel surfaces modified by glass bead blasting (from industrial supplier) followed by different nitric acid passivation conditions disclosed the necessity to extend parameters of the surface treatments and to further consider roughness, pitting corrosion resistance, and surface and subsurface hardening measurements, all in one, as the most effective characterization strategy. This was the approach adopted in the present work. Roughness assessment was performed by means of amplitude parameters, functional parameters, and an estimator of the fractal dimension that characterizes surface topography. We clearly demonstrate that the blasting treatment should be carried out under controlled conditions in order to obtain similar surface and subsurface properties. Otherwise, a variation in one of the parameters could modify the surface properties, exerting a profound impact on its application as biomaterial. A passivation step is necessary to offset the detrimental effect of blasting on pitting corrosion resistance.

  6. Effects of non-latching blast valves on the source term and consequences of the design-basis accidents in the Device Assembly Facility (DAF)

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1993-08-01

    The analysis of the Design-Basis Accidents (DBA) involving high explosives (HE) and Plutonium (Pu) in the assembly cell of the Device Assembly Facility (DAF), which was completed earlier, assumed latching blast valves in the ventilation system of the assembly cell. Latching valves effectively sealed a release path through the ventilation duct system. However, the blast valves in the assembly cell, as constructed are actually non-latching valves, and would reopen when the gas pressure drops to 0.5 psi above one atmosphere. Because the reopening of the blast valves provides an additional release path to the environment, and affects the material transport from the assembly cell to other DAF buildings, the DOE/NV DAF management has decided to support an additional analysis of the DAF's DBA to account for the effects of non-latching valves. Three cases were considered in the DAF's DBA, depending on the amount of HE and Pu involved, as follows: Case 1 -- 423 number-sign HE, 16 kg Pu; Case 2 -- 150 number-sign HE 10 kg Pu; Case 3 -- 55 number-sign HE 5 kg Pu. The results of the analysis with non-latching valves are summarized

  7. 77 FR 49277 - Takes of Marine Mammals During Specified Activities; Confined Blasting Operations by the U.S...

    Science.gov (United States)

    2012-08-15

    ... effects that confined blasting can have on marine animals near the blast (Keevin et al., 1999). The visual... Atmospheric Administration Takes of Marine Mammals During Specified Activities; Confined Blasting Operations... Marine Mammals During Specified Activities; Confined Blasting Operations by the U.S. Army Corps of...

  8. Material Systems for Blast-Energy Dissipation

    Energy Technology Data Exchange (ETDEWEB)

    James Schondel; Henry S. Chu

    2010-10-01

    Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipate energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.

  9. Blast-related mild traumatic brain injury: a Bayesian random-effects meta-analysis on the cognitive outcomes of concussion among military personnel.

    Science.gov (United States)

    Karr, Justin E; Areshenkoff, Corson N; Duggan, Emily C; Garcia-Barrera, Mauricio A

    2014-12-01

    Throughout their careers, many soldiers experience repeated blasts exposures from improvised explosive devices, which often involve head injury. Consequentially, blast-related mild Traumatic Brain Injury (mTBI) has become prevalent in modern conflicts, often occuring co-morbidly with psychiatric illness (e.g., post-traumatic stress disorder [PTSD]). In turn, a growing body of research has begun to explore the cognitive and psychiatric sequelae of blast-related mTBI. The current meta-analysis aimed to evaluate the chronic effects of blast-related mTBI on cognitive performance. A systematic review identified 9 studies reporting 12 samples meeting eligibility criteria. A Bayesian random-effects meta-analysis was conducted with cognitive construct and PTSD symptoms explored as moderators. The overall posterior mean effect size and Highest Density Interval (HDI) came to d = -0.12 [-0.21, -0.04], with executive function (-0.16 [-0.31, 0.00]), verbal delayed memory (-0.19 [-0.44, 0.06]) and processing speed (-0.11 [-0.26, 0.01]) presenting as the most sensitive cognitive domains to blast-related mTBI. When dividing executive function into diverse sub-constructs (i.e., working memory, inhibition, set-shifting), set-shifting presented the largest effect size (-0.33 [-0.55, -0.05]). PTSD symptoms did not predict cognitive effects sizes, β PTSD  = -0.02 [-0.23, 0.20]. The results indicate a subtle, but chronic cognitive impairment following mTBI, especially in set-shifting, a relevant aspect of executive attention. These findings are consistent with past meta-analyses on multiple mTBI and correspond with past neuroimaging research on the cognitive correlates of white matter damage common in mTBI. However, all studies had cross-sectional designs, which resulted in universally low quality ratings and limited the conclusions inferable from this meta-analysis.

  10. Mechanical and Histological Effects of Resorbable Blasting Media Surface Treatment on the Initial Stability of Orthodontic Mini-Implants.

    Science.gov (United States)

    Gansukh, Odontuya; Jeong, Jong-Wha; Kim, Jong-Wan; Lee, Jong-Ho; Kim, Tae-Woo

    2016-01-01

    Introduction. This study aimed to evaluate the effects of resorbable blasting media (RBM) treatment on early stability of orthodontic mini-implants by mechanical, histomorphometric, and histological analyses. Methods. Ninety-six (64 for mechanical study and 32 for histological study and histomorphometric analysis) titanium orthodontic mini-implants (OMIs) with machined (machined group) or RBM-treated (CaP) surface (RBM group) were implanted in the tibiae of 24 rabbits. Maximum initial torque (MIT) was measured during insertion, and maximum removal torque (MRT) and removal angular momentum (RAM) were measured at 2 and 4 weeks after implantation. Bone-to-implant contact (BIC) and bone area (BA) were analyzed at 4 weeks after implantation. Results. RBM group exhibited significantly lower MIT and significantly higher MRT and RAM at 2 weeks than machined group. No significant difference in MRT, RAM, and BIC between the two groups was noted at 4 weeks, although BA was significantly higher in RBM group than in machined group. RBM group showed little bone resorption, whereas machined group showed new bone formation after bone resorption. Conclusions. RBM surface treatment can provide early stability of OMIs around 2 weeks after insertion, whereas stability of machined surface OMIs may decrease in early stages because of bone resorption, although it can subsequently recover by new bone apposition.

  11. Robotic Water Blast Cleaner

    Science.gov (United States)

    Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.

    1983-01-01

    Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.

  12. Partitioning of a scaled shallow-buried near-field blast load

    CSIR Research Space (South Africa)

    Reinecke, J

    2015-07-01

    Full Text Available Buried blast threats have been used for many years in both conventional and unconventional warfare. They are cheap, easily hidden, remain viable for extremely long periods after deployment and are effective, focusing the resulting blast products...

  13. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    Science.gov (United States)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  14. BLAST OBSERVATIONS OF RESOLVED GALAXIES: TEMPERATURE PROFILES AND THE EFFECT OF ACTIVE GALACTIC NUCLEI ON FIR TO SUBMILLIMETER EMISSION

    International Nuclear Information System (INIS)

    Wiebe, Donald V.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Pascale, Enzo; Bock, James J.; Devlin, Mark J.; Dicker, Simon; Klein, Jeff; Rex, Marie; Gundersen, Joshua O.; Hughes, David H.; Martin, Peter G.; Netterfield, Calvin B.; Olmi, Luca; Patanchon, Guillaume

    2009-01-01

    Over the course of two flights, the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) made resolved maps of seven nearby ( 2 kg -1 at 250 μm. This study is an introduction to future higher-resolution and higher-sensitivity studies to be conducted by Herschel and SCUBA-2.

  15. Investigation of head response to blast loading.

    Science.gov (United States)

    Lockhart, Philip; Cronin, Duane; Williams, Kevin; Ouellet, Simon

    2011-02-01

    Head injury resulting from blast loading, specifically mild traumatic brain injury, has been identified as a possible and important blast-related injury for soldiers in modern conflict zones. A study was undertaken to evaluate head response to blast loading scenarios using an explicit finite element numerical model and to comment on the potential for head injury. The blast loading and simplified human body numerical models were validated using impulse, peak acceleration and the Head Injury Criterion from experimental blast test data. A study was then undertaken to evaluate head response at varying distances and orientations from the explosive. The accelerations and injury metrics for the head increased with decreasing distance to the explosive, as expected, but were also significant at intermediate distances from the explosive for larger charge sizes and intermediate heights of burst. Varying lateral position with constant standoff did not have a significant effect on the head kinematic response. The head injury criteria considered were exceeded in close proximity to the explosive (blast loading, aggressive loading is predicted at small standoff distances and confirmed by the resulting head kinematics.

  16. Effects of titanium brush on machined and sand-blasted/acid-etched titanium disc using confocal microscopy and contact profilometry.

    Science.gov (United States)

    Park, Jun-Beom; Jeon, Yongpyo; Ko, Youngkyung

    2015-02-01

    Mechanical techniques, including scaling with metal, plastic, or ultrasonic instruments, rubber cup polishing, air-powder abrasive system and brushing with a conventional or a rotating brush, have been used for the debridement of dental implants. Recently, rotating brushes with titanium bristles (titanium brush) have been introduced for the debridement of implant surface when peri-implant osseous defects occur. The purpose of this study was to evaluate the effects of a titanium brush on machined (MA) and sand-blasted and acid-etched (SA) titanium surfaces using scanning electron microscopy, confocal microscopy and profilometry. Moreover, correlations between the two quantitative evaluation methods (confocal microscopy and contact profilometry) were assessed. Both MA and SA discs were treated with rotating titanium brush at 300 rpm under irrigation for a total of 40 s. Roughness measurements were taken with confocal microscopy and surface profilometry. Then, the MA and SA surfaces were evaluated using scanning electron microscopy to determine the changes of the surface properties. Untreated MA surface demonstrated uniform roughness with circumferential machining marks, and scratch lines over the original surfaces were observed after treatment with the titanium brush. Similarly, the titanium brush produced noticeable changes on the SA titanium surfaces. However, this treatment with titanium brush did not significantly change the roughness parameters, including the arithmetic mean height of the surface (Sa) and the maximum height of the surface (Sz), in both MA and SA surfaces. Correlations between two evaluation methods showed a Pearson correlation coefficient of 0.98 with linear regression R(2) of 0.96. This study showed that the treatment with the titanium brush did not significantly change the roughness parameters, including Sa and Sz, in both MA and SA surfaces. Correlations between confocal microscopy and surface profilometry showed high correlation with a

  17. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    2001-01-01

    The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites

  18. ORGANISATIONAL-TECHNOLOGICAL CHARACTERISTICS OF BLASTING WORKS ON THE GRIČ TUNNEL

    OpenAIRE

    Zvonimir Deković; Zvonimir Ester; Mario Dobrilović

    2005-01-01

    The paper describes organisational-technological characteristics of blasting works during the excavation of the Grič Tunnel. The significance of blasting works during the excavation of the tunnel is shown through adjustment of blasting parameters taking into consideration the dynamics of the works, cost-effectiveness and influence of geological circumstances. Successfulness of blasting directly influences the subsequent tunnel excavation cycle both in terms of duration as well as eventually i...

  19. CO2 blasting in Europe

    International Nuclear Information System (INIS)

    Vankerckhoven, Patrick

    1995-01-01

    Carbon dioxide blasting can be used during the lifetime of nuclear facilities to remove deposited contamination and reduce the dose to personnel during repair and maintenance. By contrast with conventional mechanical or chemical decontamination methods, it does not leave additional secondary wastes. During the process, liquid CO 2 is expanded and converted into dry snow which is compressed and extruded to form small dry ice pellets. These low temperature pellets are blasted at high speed in a stream of compressed air against the surface to be treated where the mechanical and thermal shock embrittles the contaminating layer and severs its bond with the surface. The dry ice sublimes into the atmosphere as CO 2 gas and the loosened contamination can be removed via a ventilation and filtration system. Some examples of the effective use of CO 2 blasting are given. They include decontamination of: a supercompactor used on radioactive waste drums; the walls and floors of a nuclear fuel fabrication plant; the vacuum vessel of the Joint European Torus, hot cells; a phosphate fertilizer plant contaminated by radium 226. (UK)

  20. Proceedings: 17th Asilomar conference on fire and blast effects of nuclear weapons

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, R.G.; Meier, C.A. (eds.)

    1983-01-01

    The objective of the 1983 conference was to provide for the technical exchange of ideas relating to the science and technology of the immediate effects of nuclear weapon explosions. Separate abstracts were prepared for 39 of the papers.

  1. Genetic diversity of the blast fungus, Magnaporthe grisea (Hebert ...

    African Journals Online (AJOL)

    The effectiveness of some resistance genes indicated that they could be pyramided to provide durable resistance to blast fungus in Burkina Faso. The study also revealed the possible existence of new pathotypes in Burkina Faso. Fifty-five isolates of the blast fungus, Magnaporthe grisea, collected from the nurseries and rice ...

  2. Dry ice blasting for the conservation cleaning of metals

    NARCIS (Netherlands)

    van der Molen, R.; Joosten, I.; Beentjes, T.; Megens, L.; Mardikian, P.; Chemello, C.; Watters, C.; Hull, P.

    2011-01-01

    This research was carried out to assess the feasibility of dry ice blasting as a replacement for solvent cleaning for the removal of organic layers from metal cultural heritage objects. The effects of dry ice blasting on test samples of aluminium, bronze and weathering steel were studied along with

  3. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement

    International Nuclear Information System (INIS)

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.

    2015-01-01

    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  4. Studies on the effect of burden width on blast-induced vibration in open-pit mines

    Science.gov (United States)

    Uysal, Önder; Arpaz, Ercan; Berber, Mehmet

    2007-11-01

    This study concerns the correlation between burden and blast-induced vibrations in open-pit mines. For this purpose, two different mines were studied. In these mines, the vibrations caused by explosions at burdens having widths ranging from 3 to 14 m were measured from various distances. From the results, it was found for these cases that burden width has a significant impact on vibrations. Consequently, it was proven that vibrations decrease as burden increases.

  5. The Effects of Explosive Blast as Compared to Post-Traumatic Stress Disorder on Brain Function and Stucture

    Science.gov (United States)

    2011-04-01

    since the blast injury was 32.7 (SD=9.26). Subjects completed a battery of neuropsychological tests designed to assess memory and executive functions...rest with eyes closed. Electrodes were embedded in an elastic cap and placed on the head to conform to 10-10 nomenclature. Vertical electro-oculograms...emergency medical documents; eyewitness accounts; Military Acute Concussion Evaluation [MACE; see www.DVBIC.org]) to further inform plausibility that

  6. Effect of air-cooled slag and granulated blast furnace slag addition as substitutor on fly ash based geopolymer

    Science.gov (United States)

    Harmaji, Andrie; Imran, Aishah Mahyarni; Sunendar, Bambang; Lazuardi, Muhammad Sofyan; Khairunnasari, Ikhsan; Sobandi, Ahmad

    2017-09-01

    Air Cooled Slag and Granulated Blast Furnace Slag is a waste material from steelmaking process that not utilized, even though it rich in silica and CaO that can increase mechanical properties of building materials. Therefore, this material is potential as substitutor for geopolymer. Geopolymer is an alkali activated material consists of aluminosilicate precursor activated by NaOH and waterglass as activator. One of the common aluminosilicate binder used is fly ash. Geopolymer was made by mixing fly ash and air cooled slag or granulated blast furnace slag in certain ratio with alkali activator solution. The aim for this study is to obtain the best ratio of slag to fly ash binder that produces the highest compressive strength. The best compressive strength was 29.80 MPa achieved in fly ash:air cooled slag 40:60 ratio and 31.33 MPa achieved in fly ash:granulated blast furnace slag 40:60 ratio. X-Ray Diffraction test showed the appearance of anorthite (Ca, Na (Al, Si)4 O8). FTIR characterization showed the appearance of siloxo and sialate bonding which commonly found in geopolymerization.

  7. Combined Effects of Primary and Tertiary Blast on Rat Brain: Characterization of a Model of Blast-induced Mild Traumatic Brain Injury

    Science.gov (United States)

    2015-03-01

    a single mTBI can result in neurobehavioral problems such as increased anxiety and cognitive impairment, the probability of short- as well as long...Electrophoresis. 2013. [13] Elliott BM, Grunberg NE. Effects of social and physical enrichment on open field activity differ in male and female Sprague-Dawley...and astrocytes in the pathogenesis of three neurologic disorders: HIV- associated dementia , Alzheimer disease, and multiple sclerosis. J Neurol Sci

  8. SURFACE PREPARATION OF STEEL SUBSTRATES USING GRIT-BLASTING

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; D. J. Varacalle, Jr.; D. Deason; W. Rhodaberger; E. Sampson

    2005-05-01

    The primary purpose of grit blasting for thermal spray applications is to ensure a strong mechanical bond between the substrate and the coating by the enhanced roughening of the substrate material. This study presents statistically designed experiments that were accomplished to investigate the effect of abrasives on roughness for A36/1020 steel. The experiments were conducted using a Box statistical design of experiment (SDE) approach. Three grit blasting parameters and their effect on the resultant substrate roughness were investigated. These include blast media, blast pressure, and working distance. The substrates were characterized for roughness using surface profilometry. These attributes were correlated with the changes in operating parameters. Twin-Wire Electric Arc (TWEA) coatings of aluminum and zinc/aluminum were deposited on the grit-blasted substrates. These coatings were then tested for bond strength. Bond strength studies were conducted utilizing a portable adhesion tester following ASTM standard D4541.

  9. Modelling human eye under blast loading.

    Science.gov (United States)

    Esposito, L; Clemente, C; Bonora, N; Rossi, T

    2015-01-01

    Primary blast injury (PBI) is the general term that refers to injuries resulting from the mere interaction of a blast wave with the body. Although few instances of primary ocular blast injury, without a concomitant secondary blast injury from debris, are documented, some experimental studies demonstrate its occurrence. In order to investigate PBI to the eye, a finite element model of the human eye using simple constitutive models was developed. The material parameters were calibrated by a multi-objective optimisation performed on available eye impact test data. The behaviour of the human eye and the dynamics of mechanisms occurring under PBI loading conditions were modelled. For the generation of the blast waves, different combinations of explosive (trinitrotoluene) mass charge and distance from the eye were analysed. An interpretation of the resulting pressure, based on the propagation and reflection of the waves inside the eye bulb and orbit, is proposed. The peculiar geometry of the bony orbit (similar to a frustum cone) can induce a resonance cavity effect and generate a pressure standing wave potentially hurtful for eye tissues.

  10. Impact of complex blast waves on the human head: a computational study.

    Science.gov (United States)

    Tan, Long Bin; Chew, Fatt Siong; Tse, Kwong Ming; Chye Tan, Vincent Beng; Lee, Heow Pueh

    2014-12-01

    Head injuries due to complex blasts are not well examined because of limited published articles on the subject. Previous studies have analyzed head injuries due to impact from a single planar blast wave. Complex or concomitant blasts refer to impacts usually caused by more than a single blast source, whereby the blast waves may impact the head simultaneously or consecutively, depending on the locations and distances of the blast sources from the subject, their blast intensities, the sequence of detonations, as well as the effect of blast wave reflections from rigid walls. It is expected that such scenarios will result in more serious head injuries as compared to impact from a single blast wave due to the larger effective duration of the blast. In this paper, the utilization of a head-helmet model for blast impact analyses in Abaqus(TM) (Dassault Systemes, Singapore) is demonstrated. The model is validated against studies published in the literature. Results show that the skull is capable of transmitting the blast impact to cause high intracranial pressures (ICPs). In addition, the pressure wave from a frontal blast may enter through the sides of the helmet and wrap around the head to result in a second impact at the rear. This study recommended better protection at the sides and rear of the helmet through the use of foam pads so as to reduce wave entry into the helmet. The consecutive frontal blasts scenario resulted in higher ICPs compared with impact from a single frontal blast. This implied that blast impingement from an immediate subsequent pressure wave would increase severity of brain injury. For the unhelmeted head case, a peak ICP of 330 kPa is registered at the parietal lobe which exceeds the 235 kPa threshold for serious head injuries. The concurrent front and side blasts scenario yielded lower ICPs and skull stresses than the consecutive frontal blasts case. It is also revealed that the additional side blast would only significantly affect ICPs at

  11. Methodology of Testing Shot Blasting Machines in Industrial Conditions

    Directory of Open Access Journals (Sweden)

    R. Wrona

    2012-04-01

    Full Text Available Shot blasting machines are widely used for automated surface treatment and finishing of castings. In shot blasting processes the stream of shots is generated and shaped by blasting turbines, making up a kinetic and dynamic system comprising a separating rotor, an adapting sleeve and a propelling rotor provided with blades. The shot blasting performance- i.e. the quality of shot treated surfaces depends on the actual design and operational parameters of the unit whilst the values of relevant parameters are associated with the geometry of turbine components and the level of its integration with the separator system. The circulation of the blasting medium becomes the integrating factor of the process line, starting from the hopper, through the propeller turbine, casting treatment, separation of contaminated abrasive mixture, to its recycling and reuse.Inferior quality of the abrasive agent (shot and insufficient purity of the abrasive mixture are responsible for low effectiveness of shot blasting. However, most practitioners fail to fully recognise the importance of proper diagnostics of the shot blasting process in industrial conditions. The wearing of major machine components and of the blasting agent and quality of shot treated surfaces are often misinterpreted, hence the need to take into account all factors involved in the process within the frame of a comprehensive methodology.This paper is an attempt to formulate and apply the available testing methods to the engineering practice in industrial conditions.

  12. Investigation on Blast Resistance of Precast Reinforced Concrete Floor Slab

    Science.gov (United States)

    Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Ruggiero, Andrew; Testa, Gabriel; Bernabei, Manuele; Cassioli, Luigi; Grossi, Silvana

    2017-06-01

    The knowledge of the effective blast resistance of civil infrastructures is a fundamental information for risk assessment and modelling consequences of terrorist attack in high population density urban environment. In this work, blast resistance of precast reinforced concrete floor slab, commonly used for commercial parking, was investigated performing blast tests, detonating bare explosive charge of RDX 80-20 in contact with the slab. The charge mass, and the stand-off distance, was varied in order to generate different damage extents, from visible to fully breached condition. Numerical simulations were performed considering all slab structural elements. Failure model for concrete was calibrated on breach size and shape observed in the experiments. The explosive and blast wave-structure interaction were simulated using arbitrary Lagrangian-Eulerian method (ALE) and particle blast method (PBM) for comparison.

  13. ORGANISATIONAL-TECHNOLOGICAL CHARACTERISTICS OF BLASTING WORKS ON THE GRIČ TUNNEL

    Directory of Open Access Journals (Sweden)

    Zvonimir Deković

    2005-12-01

    Full Text Available The paper describes organisational-technological characteristics of blasting works during the excavation of the Grič Tunnel. The significance of blasting works during the excavation of the tunnel is shown through adjustment of blasting parameters taking into consideration the dynamics of the works, cost-effectiveness and influence of geological circumstances. Successfulness of blasting directly influences the subsequent tunnel excavation cycle both in terms of duration as well as eventually in terms of influence on the entire tunnel investment. Comparison of changes of basic blasting parameters during tunnel excavation ensured optimal excavation progress with minimal price per meter of tunnel progress.

  14. Blast Effects on Fires

    Science.gov (United States)

    1980-12-01

    SECURITY CLASIFICATION OF THIS PAGE(Wham. DOO XEA)*Q Results affirm the concept of flame displacement as a mechanism of extinguish ent for liquid-fuel...of bed length (for a 2-foot bed) and the downstream and upstream 12 inches of bed length for the basic (middle positioned) 1-foot bed. Steel plates

  15. Recent Results from BLAST

    International Nuclear Information System (INIS)

    Hasell, D.K.

    2005-01-01

    The Bates Large Acceptance Spectrometer Toroid experiment, BLAST, at the MIT-Bates Linear Accelerator Laboratory is designed to study in a systematic manner the spindependent electromagnetic interaction in few-nucleon systems at momentum transfers below 1 GeV/c. Utilizing a polarized electron beam, highly polarized internal gas targets of H and D, and a symmetric detector configuration, BLAST is able to make simultaneous measurements of several reaction channels for different combinations of beam helicity and target polarization (vector for H, both vector and tensor for D). BLAST will provide new data on the nucleon and deuteron form factors as well as study few body physics and pion production. Preliminary results are presented

  16. Protecting the lower extremity against a/p blast mines

    CSIR Research Space (South Africa)

    van Dyk, T

    2006-09-01

    Full Text Available protection concept Result: Chaos and arguments Slide 4 © CSIR 2006 www.csir.co.za A/P Blast Mines Effects Slide 5 © CSIR 2006 www.csir.co.za Basic Principles Shock Effect Slide 6 © CSIR 2006... the Lower Extremity against a/p Blast Mines J T van Dyk DEFENCE, PEACE, SAFETY AND SECURITY LANDWARDS SCIENCES COMPETENCY AREA Slide 2 © CSIR 2006 www.csir.co.za Contents • R&D overview • Effect of a/p blast mines • Basic...

  17. Characteristics of capillary discharge channel and its effect on concrete splitting-off by electro-blasting method

    Science.gov (United States)

    Kuznetsova, N. S.; Yudin, A. S.; Voitenko, N. V.

    2017-05-01

    The numerical simulation results on fracture of a concrete block due to dynamic explosive loads applied to the walls of a blast hole are presented. The influence of the pulse shape on the shock-wave dynamics is considered. A comparison of mechanical stresses in direct and reflected pressure waves induced in the concrete block by explosion pulses of various durations and amplitudes shows that the shorter pulses with higher amplitudes and steeper rise times provide a higher blasting efficiency. The wire application for the discharge initiation enables the operating voltage of the generator to decrease, the discharge gap to increase, and hence, the channel energy to lead to the demolition build-up at electro burst. The significant dependence of the stress-wave profile on the pressure pulse wave shape at the borehole wall, which is determined by the rate of electrical energy release in the plasma channel, has been shown. An analysis of the stress-wave dynamics has shown that the rapid power deposition into a plasma channel tends to shift an amplitude of the tangential stresses in a reflected wave to the higher values and to extend the region of tensile tangential stresses initiating the main crack propagation from the borehole walls to a free material surface.

  18. Effect of High-Temperature Curing Methods on the Compressive Strength Development of Concrete Containing High Volumes of Ground Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Wonsuk Jung

    2017-01-01

    Full Text Available This paper investigates the effect of the high-temperature curing methods on the compressive strength of concrete containing high volumes of ground granulated blast-furnace slag (GGBS. GGBS was used to replace Portland cement at a replacement ratio of 60% by binder mass. The high-temperature curing parameters used in this study were the delay period, temperature rise, peak temperature (PT, peak period, and temperature down. Test results demonstrate that the compressive strength of the samples with PTs of 65°C and 75°C was about 88% higher than that of the samples with a PT of 55°C after 1 day. According to this investigation, there might be optimum high-temperature curing conditions for preparing a concrete containing high volumes of GGBS, and incorporating GGBS into precast concrete mixes can be a very effective tool in increasing the applicability of this by-product.

  19. Expanded rock blast modeling capabilities of DMC{_}BLAST, including buffer blasting

    Energy Technology Data Exchange (ETDEWEB)

    Preece, D.S. [Sandia National Labs., Albuquerque, NM (United States); Tidman, J.P.; Chung, S.H. [ICI Explosives (Canada)

    1996-12-31

    A discrete element computer program named DMC{_}BLAST (Distinct Motion Code) has been under development since 1987 for modeling rock blasting. This program employs explicit time integration and uses spherical or cylindrical elements that are represented as circles in 2-D. DMC{_}BLAST calculations compare favorably with data from actual bench blasts. The blast modeling capabilities of DMC{_}BLAST have been expanded to include independently dipping geologic layers, top surface, bottom surface and pit floor. The pit can also now be defined using coordinates based on the toe of the bench. A method for modeling decked explosives has been developed which allows accurate treatment of the inert materials (stemming) in the explosive column and approximate treatment of different explosives in the same blasthole. A DMC{_}BLAST user can specify decking through a specific geologic layer with either inert material or a different explosive. Another new feature of DMC{_}BLAST is specification of an uplift angle which is the angle between the normal to the blasthole and a vector defining the direction of explosive loading on particles adjacent to the blasthole. A buffer (choke) blast capability has been added for situations where previously blasted material is adjacent to the free face of the bench preventing any significant lateral motion during the blast.

  20. 75 FR 23589 - Safety Zones; Blasting Operations and Movement of Explosives, St. Marys River, Sault Sainte Marie...

    Science.gov (United States)

    2010-05-04

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; Blasting Operations and Movement of... ensure the safety of the maritime community during blasting and dredging operations. DATES: Effective... action is needed to ensure the public's safety during blasting and dredging operations. Delaying the...

  1. Study of the action of blast deck charge in rocky soils

    Directory of Open Access Journals (Sweden)

    Boiko V.V.

    2017-04-01

    Full Text Available Blasting (B in the industry, including the mining extraction of minerals, are carried out mostly with the use of blasthole charges that systematically distributed on the block that is undermined, by individual groups. The latter are blasted according to the scheme of short-delay firing (SDF through the intervals that are accepted not less than 20 Ms. Thus, the seismic effect of group charge explosion, consisting of individual blasthole charges and that actually is a group located charge determined by the formula of concentrated charge. Blast deck charges are effectively used in the driving of the trenches in the mining, formation of screens and cracks near the security objects. Only this method of performing blasting allows to define seismic effect in the transition from one diameter of a charge to another, as well as to determine the actual number of detonated charges in one group, which may differ from the calculated in drilling and blasting project. The work analyzes the physical essence of processes happened while blasting of blast deck charges. The effect of the orientation of the seismic action of blasting of blast deck charges towards the allocation line of charges is investigated. The results of generalized dependence of the speed of the displacement of the ground by the blast parameters and epicentral distance are obtained. We demonstrate with specific examples that blast deck charges that blasting simultaneously make a major chain of the career massive explosions at mining. Keywords: seismic fluctuations; the number of charges; the interaction of charges; the distance between the charges; the coefficients of the seismicity and the attenuation of the intensity of the waves; the unit charge; blast deck and blasthole charges; phase shifting; effective charge.

  2. Blasting agents and initiation systems

    Energy Technology Data Exchange (ETDEWEB)

    Fiscor, S.

    2000-01-01

    Although blasting differs between and within each industry, as a whole, the mines and quarries are making a shift from a purely ammonium nitrate/fuel oil (ANFO) mixture to a blend of emulsion and ANFO on a straight emulsion. Non-electric (shock tube) initiation systems have provided a viable alternative to the electric detonator (blasting cap). Explosives manufacturers are seeing their roles changes to being blasting contractors or consultants rather than just suppliers. The article discusses these trends and gives examples of typical blasting techniques and amounts of blasting agent used at large USA surface coal mines. Electric caps are still used in blasting underground coal. The Ensign Bickford Co. (EBCo) is developing electronic detonators and has been field testing an electronic initiator, the DIGIDET detonator, for the last four years. When commercially available, electronic detonators will be accurate but will come with a hefty price tag. 2 photos.

  3. Technology Demonstration of Wet Abrasive Blasting for Removal of Lead- and Asbestos-Containing Paint

    National Research Council Canada - National Science Library

    Race, Timothy

    2003-01-01

    ...). This technology demonstration showed that wet blasting using an engineered abrasive can safely and effectively remove lead- and asbestos-containing paint from exterior concrete masonry unit walls...

  4. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz Ram model

    Science.gov (United States)

    Morin, Mario A.; Ficarazzo, Francesco

    2006-04-01

    Rock fragmentation is considered the most important aspect of production blasting because of its direct effects on the costs of drilling and blasting and on the economics of the subsequent operations of loading, hauling and crushing. Over the past three decades, significant progress has been made in the development of new technologies for blasting applications. These technologies include increasingly sophisticated computer models for blast design and blast performance prediction. Rock fragmentation depends on many variables such as rock mass properties, site geology, in situ fracturing and blasting parameters and as such has no complete theoretical solution for its prediction. However, empirical models for the estimation of size distribution of rock fragments have been developed. In this study, a blast fragmentation Monte Carlo-based simulator, based on the Kuz-Ram fragmentation model, has been developed to predict the entire fragmentation size distribution, taking into account intact and joints rock properties, the type and properties of explosives and the drilling pattern. Results produced by this simulator were quite favorable when compared with real fragmentation data obtained from a blast quarry. It is anticipated that the use of Monte Carlo simulation will increase our understanding of the effects of rock mass and explosive properties on the rock fragmentation by blasting, as well as increase our confidence in these empirical models. This understanding will translate into improvements in blasting operations, its corresponding costs and the overall economics of open pit mines and rock quarries.

  5. BeoBLAST: distributed BLAST and PSI-BLAST on a Beowulf cluster.

    Science.gov (United States)

    Grant, J D; Dunbrack, R L; Manion, F J; Ochs, M F

    2002-05-01

    BeoBLAST is an integrated software package that handles user requests and distributes BLAST and PSI-BLAST searches to nodes of a Beowulf cluster, thus providing a simple way to implement a scalable BLAST system on top of relatively inexpensive computer clusters. Additionally, BeoBLAST offers a number of novel search features through its web interface, including the ability to perform simultaneous searches of multiple databases with multiple queries, and the ability to start a search using the PSSM generated from a previous PSI-BLAST search on a different database. The underlying system can also handle automated querying for high throughput work. Source code is available under the GNU public license at http://bioinformatics.fccc.edu/

  6. Seismic safety in conducting large-scale blasts

    Science.gov (United States)

    Mashukov, I. V.; Chaplygin, V. V.; Domanov, V. P.; Semin, A. A.; Klimkin, M. A.

    2017-09-01

    In mining enterprises to prepare hard rocks for excavation a drilling and blasting method is used. With the approach of mining operations to settlements the negative effect of large-scale blasts increases. To assess the level of seismic impact of large-scale blasts the scientific staff of Siberian State Industrial University carried out expertise for coal mines and iron ore enterprises. Determination of the magnitude of surface seismic vibrations caused by mass explosions was performed using seismic receivers, an analog-digital converter with recording on a laptop. The registration results of surface seismic vibrations during production of more than 280 large-scale blasts at 17 mining enterprises in 22 settlements are presented. The maximum velocity values of the Earth’s surface vibrations are determined. The safety evaluation of seismic effect was carried out according to the permissible value of vibration velocity. For cases with exceedance of permissible values recommendations were developed to reduce the level of seismic impact.

  7. Tunnel blasting - recent developments

    Energy Technology Data Exchange (ETDEWEB)

    White, T.E.

    1999-05-01

    While tunnelling machines are more efficient than previously, there are still areas where blasting is a more efficient method of advance. Drilling and design methods are increasingly sophisticated, as is choice of explosive. Explosive deployment must be carefully calculated so as to avoid desensitisation. Nitroglycerine may be used as slurries; bulk mixing on site of ANFO is also practised in mining in the UK. Electric detonators, Nonel tubes, and electronic detonators are also increasingly employed.

  8. Lateral blasts at Mount St. Helens and hazard zonation

    Science.gov (United States)

    Crandell, D.R.; Hoblitt, R.P.

    1986-01-01

    Lateral blasts at andesitic and dacitic volcanoes can produce a variety of direct hazards, including ballistic projectiles which can be thrown to distances of at least 10 km and pyroclastic density flows which can travel at high speed to distances of more than 30 km. Indirect effect that may accompany such explosions include wind-borne ash, pyroclastic flows formed by the remobilization of rock debris thrown onto sloping ground, and lahars. Two lateral blasts occurred at a lava dome on the north flank of Mount St. Helens about 1200 years ago; the more energetic of these threw rock debris northeastward across a sector of about 30?? to a distance of at least 10 km. The ballistic debris fell onto an area estimated to be 50 km2, and wind-transported ash and lapilli derived from the lateral-blast cloud fell on an additional lobate area of at least 200 km2. In contrast, the vastly larger lateral blast of May 18, 1980, created a devastating pyroclastic density flow that covered a sector of as much as 180??, reached a maximum distance of 28 km, and within a few minutes directly affected an area of about 550 km2. The May 18 lateral blast resulted from the sudden, landslide-induced depressurization of a dacite cryptodome and the hydrothermal system that surrounded it within the volcano. We propose that lateral-blast hazard assessments for lava domes include an adjoining hazard zone with a radius of at least 10 km. Although a lateral blast can occur on any side of a dome, the sector directly affected by any one blast probably will be less than 180??. Nevertheless, a circular hazard zone centered on the dome is suggested because of the difficulty of predicting the direction of a lateral blast. For the purpose of long-term land-use planning, a hazard assessment for lateral blasts caused by explosions of magma bodies or pressurized hydrothermal systems within a symmetrical volcano could designate a circular potential hazard area with a radius of 35 km centered on the volcano

  9. Test methods for protective footwear against AP mine blast

    OpenAIRE

    Cronin, D.S.; Williams, K.; Bass, C.R.; Magnan, P.; Dosquet, F.; Bergeron, D.M.; Bree, J.L.M.J. van

    2003-01-01

    The testing and development of protective footwear for anti-personnel landmine blast threats is of great importance to civilian and military deminers, and peacekeepers. This study will review the wide range of test methods that have been developed by NATO countries to test footwear against the effects of anti-personnel blast mines. Experimental testing requires the definition of a threat and a means of assessing the expected trauma to the human leg. The latter is accomplished with various phy...

  10. Fluid-structure interaction and its effect on the performance of composite structures under air-blast loading

    Directory of Open Access Journals (Sweden)

    E Wang

    2016-09-01

    Full Text Available Three material systems: E-glass Vinyl-Ester (EVE composites, sandwich composites with EVE facesheet and monolithic foam core (2 different core thicknesses, and monolithic aluminum alloy plates, were subjected to shock wave loading to study their blast response and fluid-structure interaction behaviors. High-speed photography systems were utilized to obtain the real-time side-view and back face deformation images. A 3-D Digital Image Correlation (DIC technique was used to analyze the real-time back face displacement fields and subsequently obtain the characteristic fluid-structure interaction time. The reflected pressure profiles and the deflection of the back face center point reveal that the areal density plays an important role in the fluid-structure interaction. The predictions from Taylor's model (classical solution, does not consider the compressibility and model by Wang et al. (considers the compressibility were compared with the experimental results. These results indicated that the model by Wang et al. can predict the experimental results accurately, especially during the characteristic fluid-structure interaction time. Further study revealed that the fluid-structure interaction between the fluid and the sandwich composites cannot be simplified as the fluid-structure interaction between the fluid and the facesheet. Also, it was observed that the core thickness affects the fluid-structure interaction behavior of sandwich composites.

  11. Computational modeling of blast induced whole-body injury: a review.

    Science.gov (United States)

    Chanda, Arnab; Callaway, Christian

    2018-02-01

    Blast injuries affect millions of lives across the globe due to its traumatic after effects on the brain and the whole body. To date, military grade armour materials are designed to mitigate ballistic and shrapnel attacks but are less effective in resisting blast impacts. In order to improve blast absorption characteristics of armours, the first key step is thoroughly understands the effects of blasts on the human body itself. In the last decade, a plethora of experimental and computational work has been carried out to investigate the mechanics and pathophysiology of Traumatic Brain Injury (TBI). However, very few attempts have been made so far to study the effect of blasts on the various other parts of the body such as the sensory organs (eyes and ears), nervous system, thorax, extremities, internal organs (such as the lungs) and the skeletal system. While an experimental evaluation of blast effects on such physiological systems is difficult, developing finite element (FE) models could allow the recreation of realistic blast scenarios on full scale human models and simulate the effects. The current article reviews the state-of-the-art in computational research in blast induced whole-body injury modelling, which would not only help in identifying the areas in which further research is required, but would also be indispensable for understanding body location specific armour design criteria for improved blast injury mitigation.

  12. BlastR—fast and accurate database searches for non-coding RNAs

    Science.gov (United States)

    Bussotti, Giovanni; Raineri, Emanuele; Erb, Ionas; Zytnicki, Matthias; Wilm, Andreas; Beaudoing, Emmanuel; Bucher, Philipp; Notredame, Cedric

    2011-01-01

    We present and validate BlastR, a method for efficiently and accurately searching non-coding RNAs. Our approach relies on the comparison of di-nucleotides using BlosumR, a new log-odd substitution matrix. In order to use BlosumR for comparison, we recoded RNA sequences into protein-like sequences. We then showed that BlosumR can be used along with the BlastP algorithm in order to search non-coding RNA sequences. Using Rfam as a gold standard, we benchmarked this approach and show BlastR to be more sensitive than BlastN. We also show that BlastR is both faster and more sensitive than BlastP used with a single nucleotide log-odd substitution matrix. BlastR, when used in combination with WU-BlastP, is about 5% more accurate than WU-BlastN and about 50 times slower. The approach shown here is equally effective when combined with the NCBI-Blast package. The software is an open source freeware available from www.tcoffee.org/blastr.html. PMID:21624887

  13. Blast Load Response of Steel Sandwich Panels with Liquid Encasement

    Energy Technology Data Exchange (ETDEWEB)

    Dale Karr; Marc Perlin; Benjamin Langhorst; Henry Chu

    2009-10-01

    We describe an experimental investigation of the response of hybrid blast panels for protection from explosive and impact forces. The fundamental notion is to dissipate, absorb, and redirect energy through plastic collapse, viscous dissipation, and inter-particle forces of liquid placed in sub-structural compartments. The panels are designed to absorb energy from an impact or air blast by elastic-plastic collapse of the panel substructure that includes fluid-filled cavities. The fluid contributes to blast effects mitigation by providing increased initial mass and resistance, by dissipation of energy through viscosity and fluid flow, and by redirecting the momentum that is imparted to the system from the impact and blast impulse pressures. Failure and deformation mechanisms of the panels are described.

  14. High productivity vacuum blasting system

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    2000-01-01

    The purpose of the project is to increase the productivity and economics of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCB's and lead-base paint and provides worker and environmental protection by continuously recycling the blast media and the full containment of the dust generated in the process

  15. A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting

    OpenAIRE

    Xiuzhi Shi; Xianyang Qiu; Jian Zhou; Dan Huang; Xin Chen; Yonggang Gou

    2016-01-01

    Ground vibrations originating from bench blasting may cause damage to slopes, structures, and underground workings in close proximity to an operating open-pit mine. It is important to monitor and predict ground vibration levels induced by blasting and to take measures to reduce their hazardous effects. The aims of this paper are to determine the weaker protection objects by comparatively studying bench blasting induced vibrations obtained at surface and in an underground tunnel in an open-pit...

  16. Investigations of primary blast-induced traumatic brain injury

    Science.gov (United States)

    Sawyer, T. W.; Josey, T.; Wang, Y.; Villanueva, M.; Ritzel, D. V.; Nelson, P.; Lee, J. J.

    2018-01-01

    The development of an advanced blast simulator (ABS) has enabled the reproducible generation of single-pulse shock waves that simulate free-field blast with high fidelity. Studies with rodents in the ABS demonstrated the necessity of head restraint during head-only exposures. When the head was not restrained, violent global head motion was induced by pressures that would not produce similar movement of a target the size and mass of a human head. This scaling artefact produced changes in brain function that were reminiscent of traumatic brain injury (TBI) due to impact-acceleration effects. Restraint of the rodent head eliminated these, but still produced subtle changes in brain biochemistry, showing that blast-induced pressure waves do cause brain deficits. Further experiments were carried out with rat brain cell aggregate cultures that enabled the conduct of studies without the gross movement encountered when using rodents. The suspension nature of this model was also exploited to minimize the boundary effects that complicate the interpretation of primary blast studies using surface cultures. Using this system, brain tissue was found not only to be sensitive to pressure changes, but also able to discriminate between the highly defined single-pulse shock waves produced by underwater blast and the complex pressure history exposures experienced by aggregates encased within a sphere and subjected to simulated air blast. The nature of blast-induced primary TBI requires a multidisciplinary research approach that addresses the fidelity of the blast insult, its accurate measurement and characterization, as well as the limitations of the biological models used.

  17. PREVALENCE OF RICE BLAST AND VARIETAL

    African Journals Online (AJOL)

    search-screening site grown to an improved vari- ety, Tox 3050, was heavily blasted. There was no blast incidence at Damongo. in Upper East. Region, there was severe incidence of blast in farmers' fields at Bawku and PVS nurseries and farmers' fields at Nyorigu. There was no blast at. Manga, Navrongo, Tono, Sandema, ...

  18. EVALUATION OF THE THIXOTROPY OF OIL-WELL CEMENTS USED FOR CEMENTING LOST CIRCULATION ZONES: EFFECT OF PLASTER AND BLAST FURNACE SLAG

    Directory of Open Access Journals (Sweden)

    T. Bouziani

    2015-08-01

    Full Text Available Cementing of oil and gas wells can be a very delicate operation. Among the concerns of service companies, during this operation are the nature and conditions of the formations in well. This is the case of cementing operations in southern Algeria, specifically on the fields of In-Amen, where the formations in lost zones are naturally weak and highly permeable. In these areas, drilling fluids (muds and cements pumped will be, completely or partially lost, what we call "lost circulation". Thixotropic cements are useful to overcome lost circulation problems. They are characterized by a special rheological behavior, allowing it to plug lost zones when they are pumped.Our work aims to assess the thixotropy of cements perapred with two types of cement (class G Asland cement and CEM I 42.5 portland cement with the plaster, using a viscometer with coaxial cylinder (couette type. Moreover, the effect of blast furnace slag (LHF on the properties and thixotropic mixtures prepared was also studied. The results show that portland cement (available locally can produce mixes with higher and more stable thixotropy than the class G cement (from importation, which is a practical and economical for cementing job operations in wells with loss zones. The results also show that the effect of LHF is positive, since in addition to his contribution to long term performances, especially the durability of hardened concrete, it improves the thixotropy of cement made of plaster.

  19. Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading

    Science.gov (United States)

    Codina, R.; Ambrosini, D.

    2018-03-01

    For the last few decades, the effects of blast loading on structures have been studied by many researchers around the world. Explosions can be caused by events such as industrial accidents, military conflicts or terrorist attacks. Urban centers have been prone to various threats including car bombs, suicide attacks, and improvised explosive devices. Partially vented constructions subjected to external blast loading represent an important topic in protective engineering. The assessment of blast survivability inside structures and the development of design provisions with respect to internal elements require the study of the propagation and leakage of blast waves inside buildings. In this paper, full-scale tests are performed to study the effects of the leakage of blast waves inside a partially vented room that is subjected to different external blast loadings. The results obtained may be useful for proving the validity of different methods of calculation, both empirical and numerical. Moreover, the experimental results are compared with those computed using the empirical curves of the US Defense report/manual UFC 3-340. Finally, results of the dynamic response of the front masonry wall are presented in terms of accelerations and an iso-damage diagram.

  20. BOMB BLAST: PATTERN AND NATURE OF INJURIES

    OpenAIRE

    Brahmaji Master; Chandra Sekhar; Rangaiah

    2015-01-01

    Bomb blast cause injury on large groups of people by multiple mechanisms. Bomb blast injuries differ from the conventional description of trauma complexity. Primary injuries are caused by blast wave and over pressure. Secondary injuries are caused by flyin g debris and cause shrapnel wounds. Tertiary injuries are caused by blast wind due to forceful impact and quaternary injuries are caused by other vectors like heat, radiation etc. Combined injuries, especially blast and...

  1. Characterization of viscoelastic materials for low-magnitude blast mitigation

    Science.gov (United States)

    Bartyczak, S.; Mock, W.

    2014-05-01

    Recent research indicates that exposure to low amplitude blast waves, such as IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficiently protecting warfighters from this danger and the effects are debilitating, costly, and long-lasting. The objective of the present work is to evaluate the blast mitigating behavior of current helmet materials and new materials designed for blast mitigation using a test fixture recently developed at the Naval Surface Warfare Center Dahlgren Division for use with an existing gas gun. The 40-mm-bore gas gun was used as a shock tube to generate blast waves (ranging from 0.5 to 2 bar) in the test fixture mounted on the gun muzzle. A fast opening valve was used to release helium gas from the breech which formed into a blast wave and impacted instrumented targets in the test fixture. Blast attenuation of selected materials was determined through the measurement of stress data in front of and behind the target. Materials evaluated in this research include polyurethane foam from currently fielded US Army and Marine Corps helmets, polyurea 1000, and three hardnesses of Sorbothane (48, 58, and 70 durometer, Shore 00). Polyurea 1000 and 6061-T6 aluminum were used to calibrate the stress gauges.

  2. The effect of pretreating resorbable blast media titanium discs with an ultrasonic scaler or toothbrush on the bacterial removal efficiency of brushing

    Science.gov (United States)

    Koh, Minchul; Park, Jun-Beom; Jang, Yun-Ji

    2013-01-01

    Purpose This in vitro study was performed to assess the adherence of Porphyromonas gingivalis to a resorbable blast media (RBM) titanium surface pretreated with an ultrasonic scaler or toothbrush and to evaluate the effects of the treatment of the RBM titanium discs on the bacterial removal efficiency of brushing by crystal violet assay and scanning electron microscopy. Methods RBM titanium discs were pretreated with one of several ultrasonic scaler tips or cleaned with a toothbrush. Then the titanium discs were incubated with P. gingivalis and the quantity of adherent bacteria was compared. The disc surfaces incubated with bacteria were brushed with a toothbrush with dentifrice. Bacteria remaining on the disc surfaces were quantified. Results A change in morphology of the surface of the RBM titanium discs after different treatments was noted. There were no significant differences in the adherence of bacteria on the pretreated discs according to the treatment modality. Pretreatment with various instruments did not produce significant differences in the bacterial removal efficiency of brushing with dentifrice. Conclusions Within the limits of this study, various types of mechanical instrumentation were shown to cause mechanical changes on the RBM titanium surface but did not show a significant influence on the adherence of bacteria and removal efficiency of brushing. PMID:24455443

  3. Blasting Impact by the Construction of an Underground Research Tunnel in KAERI

    International Nuclear Information System (INIS)

    Kwon, S.; Cho, W. J.

    2005-12-01

    The underground research tunnel, which is under construction in KAERI for the validation of HLW disposal system, is excavated by drill and blasting method using high-explosives. In order not to disturb the operation at the research facilities such as HANARO reactor, it is critical to develop a blasting design , which will not influence on the facilities, even though several tens of explosives are detonated almost simultaneously. To develop a reasonable blasting design, a test blasting at the site should be performed. A preliminary analysis for predicting the expected vibration and noise by the blasting for the construction of the underground research tunnel was performed using a typical empirical equation. From the study, a blasting design could be developed not to influence on the major research facilities in KAERI. For the validation of the blasting design, a test blasting was carried out at the site and the parameters of vibration equation could be determined using the measured data during the test blasting. Using the equation, it was possible to predict the vibration at different locations at KAERI and to conclude that the blasting design would meet the design criteria at the major facilities in KAERI. The study would verify the applicability of blasting method for the construction of a research tunnel in a rock mass and that would help the design and construction of large scale underground research laboratory, which might be carried out in the future. It is also meaningful to accumulate technical experience for enhancing the reliability and effectiveness of the design and construction of the HLW disposal repository, which will be constructed in deep underground by drill and blasting technique

  4. CO2 pellet blasting studies

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1997-01-01

    Initial tests with CO 2 pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO 2 pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO 2 blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report

  5. Differences in postinjury auditory system pathophysiology after mild blast and nonblast acute acoustic trauma.

    Science.gov (United States)

    Race, Nicholas; Lai, Jesyin; Shi, Riyi; Bartlett, Edward L

    2017-08-01

    Hearing difficulties are the most commonly reported disabilities among veterans. Blast exposures during explosive events likely play a role, given their propensity to directly damage both peripheral (PAS) and central auditory system (CAS) components. Postblast PAS pathophysiology has been well documented in both clinical case reports and laboratory investigations. In contrast, blast-induced CAS dysfunction remains understudied but has been hypothesized to contribute to an array of common veteran behavioral complaints, including learning, memory, communication, and emotional regulation. This investigation compared the effects of acute blast and nonblast acoustic impulse trauma in adult male Sprague-Dawley rats. An array of audiometric tests were utilized, including distortion product otoacoustic emissions (DPOAE), auditory brain stem responses (ABR), middle latency responses (MLR), and envelope following responses (EFRs). Generally, more severe and persistent postinjury central auditory processing (CAP) deficits were observed in blast-exposed animals throughout the auditory neuraxis, spanning from the cochlea to the cortex. DPOAE and ABR results captured cochlear and auditory nerve/brain stem deficits, respectively. EFRs demonstrated temporal processing impairments suggestive of functional damage to regions in the auditory brain stem and the inferior colliculus. MLRs captured thalamocortical transmission and cortical activation impairments. Taken together, the results suggest blast-induced CAS dysfunction may play a complementary pathophysiological role to maladaptive neuroplasticity of PAS origin. Even mild blasts can produce lasting hearing impairments that can be assessed with noninvasive electrophysiology, allowing these measurements to serve as simple, effective diagnostics. NEW & NOTEWORTHY Blasts exposures often produce hearing difficulties. Although cochlear damage typically occurs, the downstream effects on central auditory processing are less clear

  6. Explosive Blast Neuropathology and Seizures

    Directory of Open Access Journals (Sweden)

    S. Krisztian eKovacs

    2014-04-01

    Full Text Available Traumatic brain injury (TBI due to explosive blast exposure is a leading combat casualty. It is also implicated as a key contributor to war related mental health diseases. A clinically important consequence of all types of TBI is a high risk for development of seizures and epilepsy. Seizures have been reported in patients who have suffered blast injuries in the Global War on Terror but the exact prevalence is unknown. The occurrence of seizures supports the contention that explosive blast leads to both cellular and structural brain pathology. Unfortunately, the exact mechanism by which explosions cause brain injury is unclear, which complicates development of meaningful therapies and mitigation strategies. To help improve understanding, detailed neuropathological analysis is needed. For this, histopathological techniques are extremely valuable and indispensable. In the following we will review the pathological results, including those from immunohistochemical and special staining approaches, from recent preclinical explosive blast studies.

  7. Air-injected slurry blasting tests

    International Nuclear Information System (INIS)

    Wood, C.R.

    1983-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize SRP high-level liquid waste in a borosilicate glass form. The molten waste glass at about 1050 0 C is poured into large (2-ft-dia, 10-ft-long) stainless steel canisters. During this operation the exterior of the canister reaches a temperature of up to 550 0 C and a thin oxide film is formed. This film traps radionuclide particles and must be removed to achieve the decontamination required before the canister leaves the DWPF canyon building. Air-injected frit slurry blasting has been chosen as the DWPF canister decontamination process based on results of tests with radioactively contaminated coupons. A small frit blaster in the Equipment Test Facility (ETF) has been used to optimize this process. Stainless steel coupons were heated at 600 0 C for 1 hour to simulate the canister oxide film. The coupons were weighed and then blasted at different parametric conditions. By weighing the coupons after blasting, the effects produced by each parameter could be compared and optimum parametric values determined

  8. Porcine head response to blast

    Directory of Open Access Journals (Sweden)

    Jay eShridharani

    2012-05-01

    Full Text Available Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposed porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110-740 kPa peak incident overpressure with scaled durations from 1.3-6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. The bulk head acceleration and the pressure at the surface of the head and in the cranial cavity were measured. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within thirty seconds and the remaining two recovered within 8 minutes following bagging and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80-685 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300-2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385-3845 G’s and were well correlated with peak incident overpressure (R2=0.90. One standard deviation corridors for the surface pressure, intracranial pressure, and head acceleration are presented to provide experimental data for

  9. New Marker Development for the Rice Blast Resistance Gene Pi-km

    Science.gov (United States)

    The blast resistance (R) gene Pi-km protects rice against specific races of the fungal pathogen Magnaporthe oryzae. The use of blast R genes remains the most cost-effective method of disease control. To facilitate the breeding process, we developed a Pi-km specific molecular marker. For this purp...

  10. Physics of shock tube simulated IED blast for mTBI research

    NARCIS (Netherlands)

    Mediavilla Varas, J.; Philippens, M.M.G.M.; Meijer, S.R.

    2010-01-01

    The objective of this research is to understand the blast propagation into the human skull and brain causing mTBI and use this knowledge for enabling design of effective protection measures against them. A shock tube including sensor system was optimized to simulate realistic IED blast profiles

  11. The BLAST experiment

    International Nuclear Information System (INIS)

    Hasell, D.; Akdogan, T.; Alarcon, R.; Bertozzi, W.; Booth, E.; Botto, T.; Calarco, J.R.; Clasie, B.; Crawford, C.; DeGrush, A.; Dow, K.; Dutta, D.; Farkhondeh, M.; Fatemi, R.; Filoti, O.; Franklin, W.; Gao, H.; Geis, E.; Gilad, S.; Hersman, W.

    2009-01-01

    The Bates large acceptance spectrometer toroid (BLAST) experiment was operated at the MIT-Bates Linear Accelerator Center from 2003 until 2005. The detector and experimental program were designed to study, in a systematic manner, the spin-dependent electromagnetic interaction in few-nucleon systems. As such the data will provide improved measurements for neutron, proton, and deuteron form factors. The data will also allow details of the reaction mechanism, such as the role of final state interactions, pion production, and resonances to be studied. The experiment used: a longitudinally polarized electron beam stored in the South Hall Storage Ring; a highly polarized, isotopically pure, internal gas target of hydrogen or deuterium provided by an atomic beam source; and a symmetric, general purpose detector based on a toroidal spectrometer with tracking, time-of-flight, Cherenkov, and neutron detectors. Details of the experiment and operation are presented.

  12. Blast Exposure, White Matter Integrity, and Cognitive Function in Iraq and Afghanistan Combat Veterans

    Directory of Open Access Journals (Sweden)

    Erin A. Hazlett

    2017-04-01

    Full Text Available The long-term effects of blast exposure are a major health concern for combat veterans returning from the recent conflicts in Iraq and Afghanistan. We used an optimized diffusion tensor imaging tractography algorithm to assess white matter (WM fractional anisotropy (FA in blast-exposed Iraq and Afghanistan veterans (n = 40 scanned on average 3.7 years after deployment/trauma exposure. Veterans diagnosed with a blast-related mild traumatic brain injury (mTBI were compared to combat veterans with blast exposure but no TBI diagnosis. Blast exposure was associated with decreased FA in several WM tracts. However, total blast exposure did not correlate well with neuropsychological testing performance and there were no differences in FA based on mTBI diagnosis. Yet, veterans with mTBI performed worse on every neurocognitive test administered. Multiple linear regression across all blast-exposed veterans using a six-factor prediction model indicated that the amount of blast exposure accounted for 11–15% of the variability in composite FA scores such that as blast exposure increased, FA decreased. Education accounted for 10% of the variability in composite FA scores and 25–32% of FA variability in the right cingulum, such that as level of education increased, FA increased. Total blast exposure, age, and education were significant predictors of FA in the left cingulum. We did not find any effect of post-traumatic stress disorder on cognition or composite FA. In summary, our findings suggest that greater total blast exposure is a contributing factor to poor WM integrity. While FA was not associated with neurocognitive performance, we hypothesize that FA changes in the cingulum in veterans with multiple combat exposures and no head trauma prior to deployment may represent a marker of vulnerability for future deficits. Future work needs to examine this longitudinally.

  13. Computational modeling of blast exposure associated with recoilless weapons combat training

    Science.gov (United States)

    Wiri, S.; Ritter, A. C.; Bailie, J. M.; Needham, C.; Duckworth, J. L.

    2017-11-01

    Military personnel are exposed to blast as part of routine combat training with shoulder-fired recoilless rifles. These weapons fire large-caliber ammunitions capable of disabling structures and uparmored vehicles (e.g., tanks). Scientific, medical, and military leaders are beginning to recognize the blast overpressure from these shoulder-fired weapons may result in acute and even long-term physiological effects to military personnel. However, the back blast generated from the Carl Gustav and Shoulder-launched Multipurpose Assault Weapon (SMAW) shoulder-fired weapons on the weapon operator has not been quantified. By quantifying and modeling the full-body blast exposure from these weapons, better injury correlations can be constructed. Blast exposure data from the Carl Gustav and SMAW were used to calibrate a propellant burn source term for computational simulations of blast exposure on operators of these shoulder-mounted weapon systems. A propellant burn model provided the source term for each weapon to capture blast effects. Blast data from personnel-mounted gauges during weapon firing were used to create initial, high-fidelity 3D computational fluid dynamic simulations using SHAMRC (Second-order Hydrodynamic Automatic Mesh Refinement Code). These models were then improved upon using data collected from static blast sensors positioned around the military personnel while weapons were utilized in actual combat training. The final simulation models for both the Carl Gustav and SMAW were in good agreement with the data collected from the personnel-mounted and static pressure gauges. Using the final simulation results, contour maps were created for peak overpressure and peak overpressure impulse experienced by military personnel firing the weapon as well as those assisting with firing of those weapons. Reconstruction of the full-body blast loading enables a more accurate assessment of the cause of potential mechanisms of injury due to air blast even for subjects not

  14. Assessment of impact on environment and constructed facilities owing to blasting at open pit mine "Nepričava"

    OpenAIRE

    Trajković, Slobodan; Lutovac, Suzana; Ravilić, Marina

    2013-01-01

    This paper deals with problems related to adverse effects accompanying blast work. One of them is the occurrence of seismic effect and its impact on constructed facilities and the environment. There is a growing problem of shock waves caused by blasting in the vicinity of the blast site. In addition to possible damage to constructed and mine facilities, those shock waves affect, adversely, people in them, namely the environment. Lately considerable research in the world has been dedicated to ...

  15. Blast-induced Mild Traumatic Brain Injury

    Science.gov (United States)

    2010-01-01

    directly to the brain after craniotomy 154 or 240 kPa Unknown 2.8 or 20 kPa 40 kPa 1 or 10 MPa Redistribution of phosphorylated neurofilament H...m a: 1𔃻) .... !l ~ Blast-induced Mild Traumatic Brain Injury 767 colleagues55 compared neuropsychological test results in a group of primarily...patterns between blast and non-blast-injured subjects, thus providing no support at the neuropsychological level that blast is different. However

  16. Service robot for hull-blasting

    OpenAIRE

    Ortiz Zaragoza, Francisco José; Iborra García, Andrés José; Álvarez Torres, María Bárbara; Marín García, Fulgencio; Fernández Meroño, José María

    2001-01-01

    Present grit blasting technology for hull cleaning is very pollutant, environmentally unaffordable, and it is progressively forbidden in the most environmental countries (mainly north of Europe). At the time being, the above methodology has been partially substituted by ultra highpressure water blasting, however they do not show as good performance as the grit blasting systems. This paper describes a service robot for hull blasting. The technology we developed consists of the cleanin...

  17. Blast tests of expedient shelters in the DICE THROW event

    International Nuclear Information System (INIS)

    Kearny, C.H.; Chester, C.V.

    1978-03-01

    To determine the worst blast environments that eight types of expedient shelters can withstand, we subjected a total of 18 shelters to the 1-kiloton blast effects of Defense Nuclear Agency's DICE THROW main event. These expedient shelters included two Russian and two Chinese types. The best shelter tested was a Small-Pole Shelter that had a box-like room of Russian design with ORNL-designed expedient blast entries and blast doors added. It was undamaged at the 53-psi peak overpressure range; the pressure rise inside was only 1.5 psi. An unmodified Russian Pole-Covered Trench Shelter was badly damaged at 6.8 psi. A Chinese ''Man'' Shelter, which skillfully uses very small poles to attain protective earth arching, survived 20 psi, undamaged. Two types of expedient shelters built of materials found in and around most American homes gave good protection at overpressures up to about 6 psi. Rug-Covered Trench Shelters were proved unsatisfactory. Water storage pits lined with ordinary plastic trash bags were proven practical at up to 53 psi, as were triangular expedient blast doors made of poles

  18. 30 CFR 75.1323 - Blasting circuits.

    Science.gov (United States)

    2010-07-01

    ...) Blasting circuits shall be protected from sources of stray electric current. (b) Detonators made by different manufacturers shall not be combined in the same blasting circuit. (c) Detonator leg wires shall be... used between the blasting cable and detonator circuitry shall— (1) Be undamaged; (2) Be well insulated...

  19. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  20. Chronic Hormonal Imbalance and Adipose Redistribution Is Associated with Hypothalamic Neuropathology following Blast Exposure.

    Science.gov (United States)

    VandeVord, Pamela J; Sajja, Venkata Siva Sai Sujith; Ereifej, Evon; Hermundstad, Amy; Mao, Shijie; Hadden, Timothy J

    2016-01-01

    Endocrine disorders have been shown to be a consequence of blast traumatic brain injury in soldiers returning from military conflicts. Hormone deficiency and adrenocorticotropic hormone (ACTH) dysfunction can lead to symptoms such as fatigue, anxiety, irritability, insomnia, sexual dysfunction, and decreased quality of life. Given these changes following blast exposure, the current study focused on investigating chronic pathology within the hypothalamus following blast, in addition to systemic effects. An established rodent model of blast neurotrauma was used to induce mild blast-induced neurotrauma. Adipose tissue, blood, and brain samples were collected at one and three months following a single blast exposure. Adipose tissue and blood were evaluated for changes in ACTH, adiponectin, C-reactive protein, glial fibrillary acidic protein, interleukin (IL)-1β, and leptin. The hypothalamus was evaluated for injury using immunohistochemical techniques. The results demonstrated that the weight of the blast animals was significantly less, compared with the sham group. The slower rate of increase in their weight was associated with changes in ACTH, IL-1β, and leptin levels. Further, histological analysis indicated elevated levels of cleaved caspase-3 positive cells within the hypothalamus. The data suggest that long-term outcomes of brain injury occurring from blast exposure include dysfunction of the hypothalamus, which leads to compromised hormonal function, elevated biological stress-related hormones, and subsequent adipose tissue remodeling.

  1. Model for small arms fire muzzle blast wave propagation in air

    Science.gov (United States)

    Aguilar, Juan R.; Desai, Sachi V.

    2011-11-01

    Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

  2. Application of full-face round by the sequential blasting machine in tunnel excavation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.D.; Park, B.K.; Lee, S.E.; Lim, H.U.

    1995-12-31

    Many methods and techniques have been developed to reduce ground vibrations. Some of them are an adoption of electric millisecond detonators with a sequential blasting machine and an improvement of initiating system with an adequate number of delay intervals. To reduce the level of ground vibration in tunnel excavation, the sequential blasting machine (S.B.M.) with decisecond detonators was adopted. A total of 134 blasts was recorded at various sites and the results were analyzed. The distances blast-to-structures were ranged from 20.3 to 42.0 meter, where charge weights were varied from 0.25 to 0.75kg per delay. It is proved that the sequential blasting in tunnel excavation is very effective to control ground vibration.

  3. Domain enhanced lookup time accelerated BLAST

    Directory of Open Access Journals (Sweden)

    Boratyn Grzegorz M

    2012-04-01

    Full Text Available Abstract Background BLAST is a commonly-used software package for comparing a query sequence to a database of known sequences; in this study, we focus on protein sequences. Position-specific-iterated BLAST (PSI-BLAST iteratively searches a protein sequence database, using the matches in round i to construct a position-specific score matrix (PSSM for searching the database in round i + 1. Biegert and Söding developed Context-sensitive BLAST (CS-BLAST, which combines information from searching the sequence database with information derived from a library of short protein profiles to achieve better homology detection than PSI-BLAST, which builds its PSSMs from scratch. Results We describe a new method, called domain enhanced lookup time accelerated BLAST (DELTA-BLAST, which searches a database of pre-constructed PSSMs before searching a protein-sequence database, to yield better homology detection. For its PSSMs, DELTA-BLAST employs a subset of NCBI’s Conserved Domain Database (CDD. On a test set derived from ASTRAL, with one round of searching, DELTA-BLAST achieves a ROC5000 of 0.270 vs. 0.116 for CS-BLAST. The performance advantage diminishes in iterated searches, but DELTA-BLAST continues to achieve better ROC scores than CS-BLAST. Conclusions DELTA-BLAST is a useful program for the detection of remote protein homologs. It is available under the “Protein BLAST” link at http://blast.ncbi.nlm.nih.gov. Reviewers This article was reviewed by Arcady Mushegian, Nick V. Grishin, and Frank Eisenhaber.

  4. The importance of systemic response in the pathobiology of blast-induced neurotrauma

    Directory of Open Access Journals (Sweden)

    Ibolja eCernak

    2010-12-01

    Full Text Available Due to complex injurious environment where multiple blast effects interact with the body, parallel blast-induced neurotrauma is a unique clinical entity induced by systemic, local, and cerebral responses. Activation of autonomous nervous system; sudden pressure-increase in vital organs such as lungs and liver; and activation of neuroendocrine-immune system are among the most important mechanisms that contribute significantly to molecular changes and cascading injury mechanisms in the brain. It has been hypothesized that vagally mediated cerebral effects play a vital role in the early response to blast: this assumption has been supported by experiments where bilateral vagotomy mitigated bradycardia, hypotension, and apnea, and also prevented excessive metabolic alterations in the brain of animals exposed to blast. Clinical experience suggests specific blast-body-nervous system interactions such as 1 direct interaction with the head either through direct passage of the blast wave through the skull or by causing acceleration and/or rotation of the head; and 2 via hydraulic interaction, when the blast overpressure compresses the abdomen and chest, and transfers its kinetic energy to the body’s fluid phase, initiating oscillating waves that traverse the body and reach the brain. Accumulating evidence suggests that inflammation plays important role in the pathogenesis of long-term neurological deficits due to blast. These include memory decline, motor function and balance impairments, and behavioral alterations, among others. Experiments using rigid body- or head protection in animals subjected to blast showed that head protection failed to prevent inflammation in the brain or reduce neurological deficits, whereas body protection was successful in alleviating the blast-induced functional and morphological impairments in the brain.

  5. Parallel BLAST on split databases.

    Science.gov (United States)

    Mathog, David R

    2003-09-22

    BLAST programs often run on large SMP machines where multiple threads can work simultaneously and there is enough memory to cache the databases between program runs. A group of programs is described which allows comparable performance to be achieved with a Beowulf configuration in which no node has enough memory to cache a database but the cluster as an aggregate does. To achieve this result, databases are split into equal sized pieces and stored locally on each node. Each query is run on all nodes in parallel and the resultant BLAST output files from all nodes merged to yield the final output. Source code is available from ftp://saf.bio.caltech.edu/

  6. Blast Responses and Vibration of Flood-Defense Structures under High-Intensity Blast Loadings

    Directory of Open Access Journals (Sweden)

    Yonghee Ryu

    2018-01-01

    Full Text Available This study presented the blast behavior of flood-defense structures subjected to high-intensity loadings such as blast shock waves. In order to understand the blast behavior of weir structures, PHAST program was used to predict blast loadings in consideration of material reactivity and congestion levels. Environment factors such as weather data and atmospheric parameters were also considered in this study. Then, nonlinear dynamic analyses were performed using the ABAQUS platform to evaluate structural responses and blast vibration of concrete weir structures subjected to various types of blast loadings, due to uncertainties of the magnitude and durations of blast loads as a function of distance from the explosion. It was shown that the blast damage to concrete weir structure was significantly influenced by congestion levels or material reactivity. Also, the stress concentration under blast loading was observed at the connection area between the concrete weir body and stilling basin.

  7. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae) Alleviation in the United States.

    Science.gov (United States)

    Nalley, Lawton; Tsiboe, Francis; Durand-Morat, Alvaro; Shew, Aaron; Thoma, Greg

    2016-01-01

    Rice blast (Magnaporthe oryzae) is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally-the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world's population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA) show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion) impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in production.

  8. Economic and Environmental Impact of Rice Blast Pathogen (Magnaporthe oryzae Alleviation in the United States.

    Directory of Open Access Journals (Sweden)

    Lawton Nalley

    Full Text Available Rice blast (Magnaporthe oryzae is a key concern in combating global food insecurity given the disease is responsible for approximately 30% of rice production losses globally-the equivalent of feeding 60 million people. These losses increase the global rice price and reduce consumer welfare and food security. Rice is the staple crop for more than half the world's population so any reduction in rice blast would have substantial beneficial effects on consumer livelihoods. In 2012, researchers in the US began analyzing the feasibility of creating blast-resistant rice through cisgenic breeding. Correspondingly, our study evaluates the changes in producer, consumer, and environmental welfare, if all the rice produced in the Mid-South of the US were blast resistant through a process like cisgenics, using both international trade and environmental assessment modeling. Our results show that US rice producers would gain 69.34 million dollars annually and increase the rice supply to feed an additional one million consumers globally by eliminating blast from production in the Mid-South. These results suggest that blast alleviation could be even more significant in increasing global food security given that the US is a small rice producer by global standards and likely experiences lower losses from blast than other rice-producing countries because of its ongoing investment in production technology and management. Furthermore, results from our detailed life cycle assessment (LCA show that producing blast-resistant rice has lower environmental (fossil fuel depletion, ecotoxicity, carcinogenics, eutrophication, acidification, global warming potential, and ozone depletion impacts per unit of rice than non-blast resistant rice production. Our findings suggest that any reduction in blast via breeding will have significantly positive impacts on reducing global food insecurity through increased supply, as well as decreased price and environmental impacts in

  9. Fragment Size Distribution of Blasted Rock Mass

    Science.gov (United States)

    Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris

    2017-12-01

    Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.

  10. Face shield design against blast-induced head injuries.

    Science.gov (United States)

    Tan, Long Bin; Tse, Kwong Ming; Tan, Yuan Hong; Sapingi, Mohamad Ali Bin; Tan, Vincent Beng Chye; Lee, Heow Pueh

    2017-12-01

    Blast-induced traumatic brain injury has been on the rise in recent years because of the increasing use of improvised explosive devices in conflict zones. Our study investigates the response of a helmeted human head subjected to a blast of 1 atm peak overpressure, for cases with and without a standard polycarbonate (PC) face shield and for face shields comprising of composite PC and aerogel materials and with lateral edge extension. The novel introduction of aerogel into the laminate face shield is explored and its wave-structure interaction mechanics and performance in blast mitigation is analysed. Our numerical results show that the face shield prevented direct exposure of the blast wave to the face and help delays the transmission of the blast to reduce the intracranial pressures (ICPs) at the parietal lobe. However, the blast wave can diffract and enter the midface region at the bottom and side edges of the face shield, resulting in traumatic brain injury. This suggests that the bottom and sides of the face shield are important regions to focus on to reduce wave ingress. The laminated PC/aerogel/PC face shield yielded higher peak positive and negative ICPs at the frontal lobe, than the original PC one. For the occipital and temporal brain regions, the laminated face shield performed better than the original. The composite face shield with extended edges reduced ICP at the temporal lobe but increases ICP significantly at the parietal lobe, which suggests that a greater coverage may not lead to better mitigating effects. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500°C

    Science.gov (United States)

    Yue, Hong-rui; Jiang, Tao; Zhang, Qiao-yi; Duan, Pei-ning; Xue, Xiang-xin

    2017-07-01

    The electrorheological properties of CaO-SiO2-Al2O3-MgO-TiO2-TiC slags were investigated to enhance understanding of the effect of TiC addition on the viscosity, yield stress, and fluid pattern of Ti-bearing slags in a direct-current electric field. The viscosities and shear stresses of 4wt% and 8wt% TiC slags were found to increase substantially with increasing electric field intensity, whereas virtually no rheological changes were observed in the 0wt% TiC slag. The Herschel-Bulkley model was applied to demonstrate that the fluid pattern of the 4wt% TiC slag was converted from that of a Newtonian fluid to that of a Bingham fluid in response to the applied electric field; and the static yield stress increased linearly with the square of the electric field intensity.

  12. Understanding yield reduction in rice due to leaf blast

    NARCIS (Netherlands)

    Bastiaans, L.

    1993-01-01

    The study described in this thesis focuses on a quantitative understanding of the effect of leaf blast on growth and production of a rice crop, based on insight in the physiological processes underlying damage. For this purpose, experimental research was conducted at two levels of

  13. Mask materials for powder blasting

    NARCIS (Netherlands)

    Wensink, H.; Jansen, Henricus V.; Berenschot, Johan W.; Elwenspoek, Michael Curt

    Powder blasting, or abrasive jet machining (AJM), is a technique in which a particle jet is directed towards a target for mechanical material removal. It is a fast, cheap and accurate directional etch technique for brittle materials such as glass, silicon and ceramics. The particle jet (which

  14. INCREASED RELIABILITY OF ELECTRIC BLASTING

    OpenAIRE

    Kashuba, Oleh Ivanovych; Skliarov, L I; Skliarov, A L

    2017-01-01

    The problems of improving reliability of an electric blasting method using electric detonators with nichrome filament bridges. It was revealed that in the calculation of the total resistance of the explosive network it is necessary to increase to 24% of the nominal value

  15. An analysis of the heap construction by long hole blasting for in-situ leaching of blasted ore

    International Nuclear Information System (INIS)

    Yang Shijiao

    1999-01-01

    The author establishes specific requirements for heap construction by blasting on the basis of the mechanism for in situ leaching of blasted ore, analyses the feasibility of heap construction by long hole blasting, selection of the blast plan and the relevant technological problems, and gives a case of heap construction by long hole blasting in Renhua uranium mine

  16. Internal Jugular Vein Compression: A Novel Approach to Mitigate Blast Induced Hearing Injury.

    Science.gov (United States)

    Sindelar, Brian; Shinners, Michael; Sherman, Sydney; Novak, Kevin; Erickson, Kristine; Patel, Vimal; Kubilis, Paul; Smith, David; Finan, John; Bailes, Julian E

    2017-04-01

    Internal jugular vein (IJV) compression before blast injury will lead to reduced risk of traumatic hearing injury following exposure to a blast injury. IJV compression and its effects on not only intracranial, but also intracochlear pressure may potentiate blast induced hearing injury, therefore, precluding its use as a prophylactic therapy for blast induced traumatic brain injury. Twenty Sprague Dawley rats were exposed to a 17.9 ± 0.4 PSI (195.8 dB SPL) right sided shock wave in which 10 had application of a custom IJV compression collar before injury. All rodents received baseline and post blast injury otoacoustic emission (OAE) and auditory brainstem response (ABR) testing followed by cochlear histology. IJV compression was shown to significantly reduce ABR and OAE threshold shifts in comparison to the non-intervention group by: 14.9 ± 4.8 dB (right ear ABR 0.5 kHz Day 1 post blast, p = 0.01), 13.1 ± 4.9 dB (right ear ABR 4 kHz Day 1 post blast, p = 0.04), 16.5 ± 4.5 dB (right ear ABR click Day 1 post blast, p = 0.003), 12.1 ± 4.6 dB (right ear ABR click Day 6 post blast, p = 0.04), and 14.0 ± 3.2 dB (both ears OAE 3.2-10 kHz, p collar application had a greater number of total hair cells per mm from 70 to 100% distance from the cochlear apex following blast injury in comparison to those without intervention (blast: 211.8 ± 27.5 versus blast+collar: 355.5 ± 39.5 [p = 0.0002]). This study supports the use of IJV compression in a pre-clinical model as a new prophylactic mechanism to combat blast induced hearing injury.

  17. Proceedings of the twenty-fourth annual conference on explosives and blasting technique

    Energy Technology Data Exchange (ETDEWEB)

    1998-01-01

    Papers of interest to the coal industry include: death of a coal shovel; deep hole blasting with SMS (site-mix slurry system); trend of bulk explosives in India; bottomhole annular pressure - a theoretical problem with real effects; maximizing rotary blast hole drills; explosive energy concept for drill productivity and higher overall productivity at reduced excavation costs; large diameter presplitting improved through two novel techniques; avoiding tragedy - lessons to be learned from a flyrock fatality; and an economic analysis of cast blasting compared to other stripping alternatives.

  18. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  19. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  20. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel.

  1. Innovative design tool for the optimization of blast-enhanced facade systems

    Directory of Open Access Journals (Sweden)

    Guido Lori

    2015-06-01

    Full Text Available In current blast enhancement design strategies, to resist the effects of an accidental explosion, a facade system is commonly designed to behave in-elastically and undergo large deformations. The large deformation of the facade system leads to high blast energy dissipation, subsequently reducing the blast energy transferred to the main structure. In addition to the blast resistance of the facade system, human injuries due to glass fragmentation within the vicinity of the facade system should also be minimized in order to meet the required safety levels. Overall building safety can be optimized by balancing blast energy dissipation and glass fragmentation. Recently, Permasteelisa Group has developed an innovative design tool to optimize blast-enhanced facades using an equivalent MDOF approach. A novel fragmentation tool has been proposed to assist this design procedure. This paper presents various critical parameters considered in blast-enhanced facade analysis, the experimental validation of these parameters and their influence in the design optimization process.  

  2. Mild blast events alter anxiety, memory, and neural activity patterns in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kun Xie

    Full Text Available There is a general interest in understanding of whether and how exposure to emotionally traumatizing events can alter memory function and anxiety behaviors. Here we have developed a novel laboratory-version of mild blast exposure comprised of high decibel bomb explosion sound coupled with strong air blast to mice. This model allows us to isolate the effects of emotionally fearful components from those of traumatic brain injury or bodily injury typical associated with bomb blasts. We demonstrate that this mild blast exposure is capable of impairing object recognition memory, increasing anxiety in elevated O-maze test, and resulting contextual generalization. Our in vivo neural ensemble recording reveal that such mild blast exposures produced diverse firing changes in the anterior cingulate cortex, a region processing emotional memory and inhibitory control. Moreover, we show that these real-time neural ensemble patterns underwent post-event reverberations, indicating rapid consolidation of those fearful experiences. Identification of blast-induced neural activity changes in the frontal brain may allow us to better understand how mild blast experiences result in abnormal changes in memory functions and excessive fear generalization related to post-traumatic stress disorder.

  3. Viscoelastic Materials Study for the Mitigation of Blast-Related Brain Injury

    Science.gov (United States)

    Bartyczak, Susan; Mock, Willis, Jr.

    2011-06-01

    Recent preliminary research into the causes of blast-related brain injury indicates that exposure to blast pressures, such as from IED detonation or multiple firings of a weapon, causes damage to brain tissue resulting in Traumatic Brain Injury (TBI) and Post Traumatic Stress Disorder (PTSD). Current combat helmets are not sufficient to protect the warfighter from this danger and the effects are debilitating, costly, and long-lasting. Commercially available viscoelastic materials, designed to dampen vibration caused by shock waves, might be useful as helmet liners to dampen blast waves. The objective of this research is to develop an experimental technique to test these commercially available materials when subject to blast waves and evaluate their blast mitigating behavior. A 40-mm-bore gas gun is being used as a shock tube to generate blast waves (ranging from 1 to 500 psi) in a test fixture at the gun muzzle. A fast opening valve is used to release nitrogen gas from the breech to impact instrumented targets. The targets consist of aluminum/ viscoelastic polymer/ aluminum materials. Blast attenuation is determined through the measurement of pressure and accelerometer data in front of and behind the target. The experimental technique, calibration and checkout procedures, and results will be presented.

  4. Blast neurotrauma impairs working memory and disrupts prefrontal myo-inositol levels in rats.

    Science.gov (United States)

    Sajja, Venkata Siva Sai Sujith; Perrine, Shane A; Ghoddoussi, Farhad; Hall, Christina S; Galloway, Matthew P; VandeVord, Pamela J

    2014-03-01

    Working memory, which is dependent on higher-order executive function in the prefrontal cortex, is often disrupted in patients exposed to blast overpressure. In this study, we evaluated working memory and medial prefrontal neurochemical status in a rat model of blast neurotrauma. Adult male Sprague-Dawley rats were anesthetized with 3% isoflurane and exposed to calibrated blast overpressure (17 psi, 117 kPa) while sham animals received only anesthesia. Early neurochemical effects in the prefrontal cortex included a significant decrease in betaine (trimethylglycine) and an increase in GABA at 24 h, and significant increases in glycerophosphorylcholine, phosphorylethanolamine, as well as glutamate/creatine and lactate/creatine ratios at 48 h. Seven days after blast, only myo-inositol levels were altered showing a 15% increase. Compared to controls, short-term memory in the novel object recognition task was significantly impaired in animals exposed to blast overpressure. Working memory in control animals was negatively correlated with myo-inositol levels (r=-.759, p<0.05), an association that was absent in blast exposed animals. Increased myo-inositol may represent tardive glial scarring in the prefrontal cortex, a notion supported by GFAP changes in this region after blast overexposure as well as clinical reports of increased myo-inositol in disorders of memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Investigation of Axial Strengthened Reinforced Concrete Columns under Lateral Blast Loading

    Directory of Open Access Journals (Sweden)

    Mohammad Esmaeilnia Omran

    2017-01-01

    Full Text Available Different factors can affect blast response of structural components. Hence, experimental tests could be the best method for evaluating structures under blast loading. Therefore, an experimental explosion loading has been done on RC members by the authors. Four RC components, with identical geometry and material, with and without axial load were imposed to air blast. Observed data of the members’ response under blast loading was used for validation of finite element modeling process using ABAQUS software. With respect to complexity, limitations, and high costs of experimental tests, analytical studies and software modeling can be good alternatives. Accordingly, in this paper, the behavior of 6 different models of normal and strengthened RC columns under blast loading was evaluated using ABAQUS. Strengthening configurations considered here were designed for enhancing axial capacity of RC columns. Therefore, we can investigate the effectiveness of axial strengthening of column on its blast resistance capacity and residual axial strength. The considered strengthening methods were different steel jacket configurations including steel angle, channel, and plate sections. The results showed that retrofitting significantly improves blast performance of the columns. Moreover, residual strength capacity of the columns strengthened with steel channel is higher than the other models.

  6. Prediction of environmental impacts of quarry blasting operation using fuzzy logic.

    Science.gov (United States)

    Fişne, Abdullah; Kuzu, Cengiz; Hüdaverdi, Türker

    2011-03-01

    Blast-induced ground vibration is one of the most important environmental impacts of blasting operations because it may cause severe damage to structures and plants in nearby environment. Estimation of ground vibration levels induced by blasting has vital importance for restricting the environmental effects of blasting operations. Several predictor equations have been proposed by various researchers to predict ground vibration prior to blasting, but these are site specific and not generally applicable beyond the specific conditions. In this study, an attempt has been made to predict the peak particle velocity (PPV) with the help of fuzzy logic approach using parameters of distance from blast face to vibration monitoring point and charge weight per delay. The PPV and charge weight per delay were recorded for 33 blast events at various distances and used for the validation of the proposed fuzzy model. The results of the fuzzy model were also compared with the values obtained from classical regression analysis. The root mean square error estimated for fuzzy-based model was 5.31, whereas it was 11.32 for classical regression-based model. Finally, the relationship between the measured and predicted values of PPV showed that the correlation coefficient for fuzzy model (0.96) is higher than that for regression model (0.82).

  7. Genetic analysis of rice blast disease resistance genes using USDA rice mini-core and a mapping population

    Science.gov (United States)

    Rice blast disease caused by the fungal pathogen Magnaporthe oryzae (M. oryzae) is one of the most destructive diseases of cultivated rice, resulting in significant yield loss each year all over the world. Developing and utilizing blast resistant rice varieties is the most economical and effective m...

  8. CrocoBLAST: Running BLAST efficiently in the age of next-generation sequencing.

    Science.gov (United States)

    Tristão Ramos, Ravi José; de Azevedo Martins, Allan Cézar; da Silva Delgado, Gabrielle; Ionescu, Crina-Maria; Ürményi, Turán Peter; Silva, Rosane; Koca, Jaroslav

    2017-11-15

    CrocoBLAST is a tool for dramatically speeding up BLAST+ execution on any computer. Alignments that would take days or weeks with NCBI BLAST+ can be run overnight with CrocoBLAST. Additionally, CrocoBLAST provides features critical for NGS data analysis, including: results identical to those of BLAST+; compatibility with any BLAST+ version; real-time information regarding calculation progress and remaining run time; access to partial alignment results; queueing, pausing, and resuming BLAST+ calculations without information loss. CrocoBLAST is freely available online, with ample documentation (webchem.ncbr.muni.cz/Platform/App/CrocoBLAST). No installation or user registration is required. CrocoBLAST is implemented in C, while the graphical user interface is implemented in Java. CrocoBLAST is supported under Linux and Windows, and can be run under Mac OS X in a Linux virtual machine. jkoca@ceitec.cz. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Influence of blast furnace gas flow speed on dust deposition characteristics in butterfly valve region

    Directory of Open Access Journals (Sweden)

    Lixin WANG

    2016-02-01

    Full Text Available The blast furnace gas contains plenty of dust, which deposits easily on the bottom of seat sealing surface of the tri-eccentric butterfly valve in the pipeline, causing stuck and damage to the valve plate, thereby affects the production of the blast furnace and brings great economic loss. To derive the influence mechanism of effects of the blast furnace gas flow speed within the pipeline on the dust deposition laws in the butterfly valve region, a 3D model of the butterfly valve and its regional flow field is built with Pro/E software. Based on FLUENT module of ANSYS Workbench, along with standard k-ε turbulence model and DPM model, simulation analysis of moving trajectories of dust particles in butterfly valve region under 3 blast furnace gas flow speeds is conducted. Results show that the deposition mass of dust particles decreases firstly, then increases with the enlargement of valve plate opening angle under the blast furnace gas flow speed of 8 m/s, while decreases with the enlargement of valve plate opening under the blast furnace gas flow speeds of 12 m/s and 16 m/s. In the case of the valve plate opening angle of 15°, the deposition rate of dust particles increases with the growing of blast furnace gas flow speed, while decreases with the growing of blast furnace gas flow speed under the cases of valve plate opening angle of 45° and 75°. The research results provide a theoretical reference for the development of automatic dust removal system in the butterfly valve region of the blast furnace gas pipeline.

  10. Injection of heavy fuel oil into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Paloposki, T. [Helsinki Univ. of Technology, Otaniemi (Finland); Hakala, J.; Mannila, P.; Laukkanen, J. [Oulu Univ. (Finland)

    1996-12-31

    This study deals with the injection and combustion of heavy fuel oil in blast furnaces. The injection of the oil was studied experimentally in a small-scale test rig. The combustion of the oil was analysed with a commercial computer program for flow and combustion simulations. Results from computer simulations show that the combustion of the oil can be improved by decreasing the size of the oil drops and by enhancing the mixing between the oil drops and the hot blast. The devolatilization rate of the oil mainly depends on the size of the oil drops. The combustion rate of the volatiles mainly depends on the effectiveness of turbulent mixing with combustion air. Methods to decrease the size of the oil drops were sought in the experimental part of the study. Experimental results show that the size of the oil drops increases with increasing mass flow rate of the oil and decreases with increasing velocity of the hot blast. Methods to improve the mixing between the oil drops and the hot blast are suggested but have not yet been experimentally tested. (author) (4 refs.)

  11. Assessment, development, and testing of glass for blast environments.

    Energy Technology Data Exchange (ETDEWEB)

    Glass, Sarah Jill

    2003-06-01

    Glass can have lethal effects including fatalities and injuries when it breaks and then flies through the air under blast loading (''the glass problem''). One goal of this program was to assess the glass problem and solutions being pursued to mitigate it. One solution to the problem is the development of new glass technology that allows the strength and fragmentation to be controlled or selected depending on the blast performance specifications. For example the glass could be weak and fail, or it could be strong and survive, but it must perform reliably. Also, once it fails it should produce fragments of a controlled size. Under certain circumstances it may be beneficial to have very small fragments, in others it may be beneficial to have large fragments that stay together. The second goal of this program was to evaluate the performance (strength, reliability, and fragmentation) of Engineered Stress Profile (ESP) glass under different loading conditions. These included pseudo-static strength and pressure tests and free-field blast tests. The ultimate goal was to provide engineers and architects with a glass whose behavior under blast loading is less lethal. A near-term benefit is a new approach for improving the reliability of glass and modifying its fracture behavior.

  12. Numerical simulation of armored vehicles subjected to undercarriage landmine blasts

    Science.gov (United States)

    Erdik, A.; Kilic, S. A.; Kilic, N.; Bedir, S.

    2016-07-01

    Landmine threats play a crucial role in the design of armored personnel carriers. Therefore, a reliable blast simulation methodology is valuable to the vehicle design development process. The first part of this study presents a parametric approach for the quantification of the important factors such as the incident overpressure, the reflected overpressure, the incident impulse, and the reflected impulse for the blast simulations that employ the Arbitrary Lagrangian-Eulerian formulation. The effects of mesh resolution, mesh topology, and fluid-structure interaction (FSI) parameters are discussed. The simulation results are compared with the calculations of the more established CONventional WEaPons (CONWEP) approach based on the available experimental data. The initial findings show that the spherical topology provides advantages over the Cartesian mesh domains. Furthermore, the FSI parameters play an important role when coarse Lagrangian finite elements are coupled with fine Eulerian elements at the interface. The optimum mesh topology and the mesh resolution of the parametric study are then used in the landmine blast simulation. The second part of the study presents the experimental blast response of an armored vehicle subjected to a landmine explosion under the front left wheel in accordance with the NATO AEP-55 Standard. The results of the simulations show good agreement with the experimental measurements.

  13. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  14. Binding of iodinated recombinant human GM-CSF to the blast cells of acute myeloblastic leukemia

    International Nuclear Information System (INIS)

    Kelleher, C.A.; Wong, G.G.; Clark, S.C.; Schendel, P.F.; Minden, M.D.; McCulloch, E.A.

    1988-01-01

    Granulocyte/macrophage-colony-stimulating factor (GM-CSF) is an effective growth factor for the blasts of acute myeloblastic leukemia (AML). Radioiodinated Chinese hamster ovary (CHO)-cell derived GM-CSF was prepared using Bolton-Hunter reagent to label free amino groups on the protein. Normal human neutrophils and the blast cells from AML patients were examined for binding. We found that there were fewer receptors of higher affinity on blast cells compared with neutrophils. After brief culture in suspension, receptor number increased and affinity decreased. Experiments provided evidence that GM-CSF from Escherichia coli had a higher affinity for neutrophils (kd = 20 pM) than the CHO-cell derived protein (kd = 500 pM-1 nM). This difference was reflected in the increased effectiveness of the E. coli protein over the CHO protein to stimulate colony formation in both normal bone marrow cells and AML blasts

  15. Interspecies Scaling in Blast Neurotrauma

    Science.gov (United States)

    2015-08-27

    Armour Systems Symposium 2014 in Cambridge, England. 6.1 Introduction The increased risk of exposure to blast in both military and civilian settings...Physiological Processes in Homeothermic Animals." Annual Review of Physiology 43, 1: 301-22. Capehart, B and Bass, D. 2012. "Review: managing ...CI, Calvente, RR, Lillo, VM and Canas, JM. 2007. " Management and analysis of out-of-hospital health-related responses to simultaneous railway

  16. Main agronomic traits and resistance to rice blast of space-induced mutant lines of Zhong-er-ruan-zhan

    International Nuclear Information System (INIS)

    Xiao Wuming; Wang Hui; Liu Yongzhu; Guo Tao; Chen Zhiqiang; Yang Qiyun; Zhu Xiaoyuan

    2012-01-01

    The main agronomic traits and resistance to rice blast of 34 space-induced lines from an elite rice cultivar, Zhong-er-ruan-zhan were evaluated at their SP 4 . The resistance to blast of the mutant lines had been tested by two blast isolates previously. It was found that the mutant lines showed significant difference in plant height, effective panicles, panicle length and grains per panicle etc. from their parent. The range of variation in 1000-grain weight the largest, followed by the seed-setting rate, and that of effective panicles was the least among all the traits. Except for the line Z34, 33 mutant lines had broader resistance spectra than the wild-type based on the test with 38 different blast isolates, and all the 33 lines were also resistant to the panicle blast in the field. The result confirmed that selection for resistant to blast in lower generations was reliable. Taking account of agronomic traits and blast resistance, promising lines with resistance to blast and good agronomic characters could be selected from those mutant lines. Therefore, the elite rice germplasm with enhanced disease resistance can be produced. (authors)

  17. Novel method to dynamically load cells in 3D-hydrogels culture for blast injury studies

    Science.gov (United States)

    Sory, David R.; Areias, Anabela C.; Overby, Darryl R.; Proud, William G.

    2017-01-01

    For at least a century explosive devices have been one of the most important causes of injuries in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injuries at the organ or tissue level, few studies have investigated the mechanisms of blast injuries at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses relevant to blast loadings and blunt trauma. The experimental phase involves high strain-rate axial compression of cylindrical specimens within an hermetically sealed chamber made of biocompatible polymer. Numerical simulations were performed in order to verify the experimental loading conditions and to characterize the loading path within the sample. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injury at the cellular level.

  18. The Mechanism and Application of Deep-Hole Precracking Blasting on Rockburst Prevention

    Directory of Open Access Journals (Sweden)

    Zhenhua Ouyang

    2015-01-01

    Full Text Available The mechanism of preventing rockburst through deep-hole precracking blasting was studied based on experimental test, numerical simulation, and field testing. The study results indicate that the deep-hole precracking could change the bursting proneness and stress state of coal-rock mass, thereby preventing the occurrence of rockburst. The bursting proneness of the whole composite structure could be weakened by the deep-hole precracking blasting. The change of stress state in the process of precracking blasting is achieved in two ways: (1 artificially break the roof apart, thus weakening the continuity of the roof strata, effectively inducing the roof caving while reducing its impact strength; and (2 the dynamic shattering and air pressure generated by the blasting can structurally change the properties of the coal-rock mass by mitigating the high stress generation and high elastic energy accumulation, thus breaking the conditions of energy transfer and rock burst occurrence.

  19. Blasting methods for heterogeneous rocks in hillside open-pit mines with high and steep slopes

    Science.gov (United States)

    Chen, Y. J.; Chang, Z. G.; Chao, X. H.; Zhao, J. F.

    2017-06-01

    In the arid desert areas in Xinjiang, most limestone quarries are hillside open-pit mines (OPMs) where the limestone is hard, heterogeneous, and fractured, and can be easily broken into large blocks by blasting. This study tried to find effective technical methods for blasting heterogeneous rocks in such quarries based on an investigation into existing problems encountered in actual mining at Hongshun Limestone Quarry in Xinjiang. This study provided blasting schemes for hillside OPMs with different heights and slopes. These schemes involve the use of vertical deep holes, oblique shallow holes, and downslope hole-by-hole sublevel or simultaneous detonation techniques. In each bench, the detonations of holes in a detonation unit occur at intervals of 25-50 milliseconds. The research findings can offer technical guidance on how to blast heterogeneous rocks in hillside limestone quarries.

  20. Application and Development of an Environmentally Friendly Blast Hole Plug for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Donghui Yang

    2018-01-01

    Full Text Available Drilling and blasting technology is one of the main methods for pressure relief in deep mining. The traditional method for blasting hole blockage with clay stemming has many problems, which include a large volume of transportation, excess loading time, and high labor intensity. An environmentally friendly blast hole plug was designed and developed. This method is cheap, closely blocks the hole, is quickly loaded, and is convenient for transportation. The impact test on the plug was carried out using an improved split Hopkinson pressure bar test system, and the industrial test was carried out in underground tunnel of coal mine. The tests results showed that, compared with clay stemming, the new method proposed in this paper could prolong the action time of the detonation gas, prevent premature detonation gas emissions, reduce the unit consumption of explosives, improve the utilization ratio, reduce the labor intensity of workers, and improve the effect of rock blasting with low cost of rock breaking.

  1. Gene pyramiding enhances durable blast disease resistance in rice

    OpenAIRE

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-01

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resista...

  2. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  3. Blast mitigation experimental and numerical studies

    CERN Document Server

    2013-01-01

    Presents experimental methods of material and structural response to dynamic blast loads Includes computational analysis of material and structural response to dynamic blast loads Offers mitigation measures for structures in various environments Relates lab experiments to larger field tests Features more than 150 illustrations

  4. Swift GRBs and the blast wave model

    NARCIS (Netherlands)

    Curran, P.A.; van der Horst, A.J.; Starling, R.L.C.; Wijers, R.A.M.J.

    2009-01-01

    The complex structure of the light curves of Swift GRBs has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p, density profile of the circumburst medium,

  5. Two-dimensional explosion experiments examining the interaction between a blast wave and a sand hill

    Science.gov (United States)

    Sugiyama, Y.; Izumo, M.; Ando, H.; Matsuo, A.

    2018-02-01

    Two-dimensional explosion experiments were conducted to discuss the interaction between a blast wave and sand and show the mitigation effect of the sand on the blast wave. The explosive used was a detonating cord 1.0 m in length, which was initiated in a sand hill shaped like a triangular prism and whose cross section was an isosceles triangle with base angles of 30°. Sand-hill heights of 30 and 60 mm were used as parameters to discuss the effect of sand mass upon blast-wave strength. The interaction of the blast wave with the sand/air interface causes multiple peaks in the blast wave, which are induced by successive transmissions at the interface. The increase in the sand mass further mitigates the blast parameters of peak overpressure and positive impulse. The results of this experiment can be utilized to validate the numerical method of solving the problem of interaction between a compressible fluid and a particle layer.

  6. Finite Element Simulation of Medium-Range Blast Loading Using LS-DYNA

    Directory of Open Access Journals (Sweden)

    Yuzhen Han

    2015-01-01

    Full Text Available This study investigated the Finite Element simulation of blast loading using LS-DYNA. The objective is to identify approaches to reduce the requirement of computation effort while maintaining reasonable accuracy, focusing on blast loading scheme, element size, and its relationship with scale of explosion. The study made use of the recently developed blast loading scheme in LS-DYNA, which removes the necessity to model the explosive in the numerical models but still maintains the advantages of nonlinear fluid-structure interaction. It was found that the blast loading technique could significantly reduce the computation effort. It was also found that the initial density of air in the numerical model could be purposely increased to partially compensate the error induced by the use of relatively large air elements. Using the numerical approach, free air blast above a scaled distance of 0.4 m/kg1/3 was properly simulated, and the fluid-structure interaction at the same location could be properly duplicated using proper Arbitrary Lagrangian Eulerian (ALE coupling scheme. The study also showed that centrifuge technique, which has been successfully employed in model tests to investigate the blast effects, may be used when simulating the effect of medium- to large-scale explosion at small scaled distance.

  7. Measurement and Modelling of Blast Movement to Reduce Ore ...

    African Journals Online (AJOL)

    user

    with comprehensive monitoring using high speed video and blast movement markers. 2. Develop site specific models ... The Blast Movement Monitor (BMM) is a system developed and patented by the JKMRC, University .... at Ahafo mine, the current practice was to mine to pre-blast grade boundaries (from blast hole drilling.

  8. prevalence of rice blast and varietal screening in ghana

    African Journals Online (AJOL)

    search-screening site grown to an improved vari- ety, Tox 3050, was heavily blasted. There was no blast incidence at Damongo. In Upper Iiast. Region, there was severe incidence of blast in farmers' fields at Bawku and PVS nurseries and farmers' fields at Nyorigu. There was no blast at. Manga, Navrongo, Tono, Sandema, ...

  9. Power Tillers for Demining: Blast Test

    Directory of Open Access Journals (Sweden)

    Emanuela Elisa Cepolina

    2007-06-01

    Full Text Available Power tillers are very simple and versatile machines with large scale diffusion in developing countries, where they are commonly used both for agriculture and for transportation purposes. A new integrated participatory approach that makes use of and improves local end-users knowledge has been used to design a new robotic system for humanitarian demining applications in Sri Lanka, using power tiller as core module. A demining machine composed by a tractor unit, a ground processing tool and a vegetation cutting tool is here presented together with results obtained from the first blast test on the preliminary version of tractor unit armouring. Different breakable connections between wheels and axle have been designed to cause physical detachment and interrupt the transmission of the shock wave released by the explosion of a mine under one wheel. Effects of explosions on different types of wheels and on the chassis have been recorded and commented.

  10. Power Tillers for Demining: Blast Test

    Directory of Open Access Journals (Sweden)

    Emanuela Elisa Cepolina

    2008-11-01

    Full Text Available Power tillers are very simple and versatile machines with large scale diffusion in developing countries, where they are commonly used both for agriculture and for transportation purposes. A new integrated participatory approach that makes use of and improves local end-users knowledge has been used to design a new robotic system for humanitarian demining applications in Sri Lanka, using power tiller as core module. A demining machine composed by a tractor unit, a ground processing tool and a vegetation cutting tool is here presented together with results obtained from the first blast test on the preliminary version of tractor unit armouring. Different breakable connections between wheels and axle have been designed to cause physical detachment and interrupt the transmission of the shock wave released by the explosion of a mine under one wheel. Effects of explosions on different types of wheels and on the chassis have been recorded and commented.

  11. Blast Testing and Modelling of Composite Structures

    DEFF Research Database (Denmark)

    Giversen, Søren

    The motivation for this work is based on a desire for finding light weight alternatives to high strength steel as the material to use for armouring in military vehicles. With the use of high strength steel, an increase in the level of armouring has a significant impact on the vehicle weight......-up proved functional and provided consistent data of the panel response. The tests reviled that the sandwich panels did not provide a decrease in panel deflection compared with the monolithic laminates, which was expected due to their higher flexural rigidity. This was found to be because membrane effects...... a pressure distribution on a selected surfaces and has been based on experimental pressure measurement data, and (ii) with a designed 3 step numerical load model, where the blast pressure and FSI (Fluid Structure Interaction) between the pressure wave and modelled panel is modelled numerically. The tested...

  12. Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model

    Science.gov (United States)

    Goldstein, Lee E.; Fisher, Andrew M.; Tagge, Chad A.; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A.; Upreti, Chirag; Kracht, Jonathan M.; Ericsson, Maria; Wojnarowicz, Mark W.; Goletiani, Cezar J.; Maglakelidze, Giorgi M.; Casey, Noel; Moncaster, Juliet A.; Minaeva, Olga; Moir, Robert D.; Nowinski, Christopher J.; Stern, Robert A.; Cantu, Robert C.; Geiling, James; Blusztajn, Jan K.; Wolozin, Benjamin L.; Ikezu, Tsuneya; Stein, Thor D.; Budson, Andrew E.; Kowall, Neil W.; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F.; Moss, William C.; Cleveland, Robin O.; Tanzi, Rudolph E.; Stanton, Patric K.; McKee, Ann C.

    2013-01-01

    Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory. PMID:22593173

  13. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model.

    Science.gov (United States)

    Goldstein, Lee E; Fisher, Andrew M; Tagge, Chad A; Zhang, Xiao-Lei; Velisek, Libor; Sullivan, John A; Upreti, Chirag; Kracht, Jonathan M; Ericsson, Maria; Wojnarowicz, Mark W; Goletiani, Cezar J; Maglakelidze, Giorgi M; Casey, Noel; Moncaster, Juliet A; Minaeva, Olga; Moir, Robert D; Nowinski, Christopher J; Stern, Robert A; Cantu, Robert C; Geiling, James; Blusztajn, Jan K; Wolozin, Benjamin L; Ikezu, Tsuneya; Stein, Thor D; Budson, Andrew E; Kowall, Neil W; Chargin, David; Sharon, Andre; Saman, Sudad; Hall, Garth F; Moss, William C; Cleveland, Robin O; Tanzi, Rudolph E; Stanton, Patric K; McKee, Ann C

    2012-05-16

    Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein-linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.

  14. Explosive signatures: Pre & post blast

    Science.gov (United States)

    Bernier, Evan Thomas

    Manuscripts 1 and 2 of this dissertation both involve the pre-blast detection of trace explosive material. The first manuscript explores the analysis of human hair as an indicator of exposure to explosives. Field analysis of hair for trace explosives is quick and non-invasive, and could prove to be a powerful linkage to physical evidence in the form of bulk explosive material. Individuals tested were involved in studies which required handling or close proximity to bulk high explosives such as TNT, PETN, and RDX. The second manuscript reports the results of research in the design and application of canine training aids for non-traditional, peroxide-based explosives. Organic peroxides such as triacetonetriperoxide (TATP) and hexamethylenetriperoxidediamine (HMTD) can be synthesized relatively easily with store-bought ingredients and have become popular improvised explosives with many terrorist groups. Due to the hazards of handling such sensitive compounds, this research established methods for preparing training aids which contained safe quantities of TATP and HMTD for use in imprinting canines with their characteristic odor. Manuscripts 3 and 4 of this dissertation focus on research conducted to characterize pipe bombs during and after an explosion (post-blast). Pipe bombs represent a large percentage of domestic devices encountered by law enforcement. The current project has involved the preparation and controlled explosion of over 90 pipe bombs of different configurations in order to obtain data on fragmentation patterns, fragment velocity, blast overpressure, and fragmentation distance. Physical data recorded from the collected fragments, such as mass, size, and thickness, was correlated with the relative power of the initial device. Manuscript 4 explores the microstructural analysis of select pipe bomb fragments. Shock-loading of the pipe steel led to plastic deformation and work hardening in the steel grain structure as evidenced by optical microscopy and

  15. Numerical dynamic analysis of stiffened plates under blast loading

    Directory of Open Access Journals (Sweden)

    H.R. Tavakoli

    Full Text Available Using the general purpose finite element package Abaqus, an investigation has been carried out to examine the dynamic response of steel stiffened plates subjected to uniform blast loading. The main objective of this study is to determine the dynamic response of the stiffened plates considering the effect of stiffener configurations. Several parameters, such as boundary conditions, mesh dependency and strain rate, have been considered in this study. Special emphasis is focused on the evaluation of midpoint displacements and energy of models. The modeling techniques were described in details. The numerical results provide better insight into the effect of stiffener configurations on the nonlinear dynamic response of the stiffened plates subjected to uniform blast loading.

  16. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    Science.gov (United States)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-04-01

    Experiments show that when a high-explosive charge with embedded particles or a charge surrounded by a layer of liquid or granular material is detonated, the flow generated is perturbed by the motion of the particles and the blast wave profile differs from that of an ideal Friedlander form. Initially, the blast wave overpressure is reduced due to the energy dissipation resulting from compaction, fragmentation, and heating of the particle bed, and acceleration of the material. However, as the blast wave propagates, particle-flow interactions collectively serve to reduce the rate of decay of the peak blast wave overpressure. Computations carried out with a multiphase hydrocode reproduce the general trends observed experimentally and highlight the transition between the particle acceleration/deceleration phases, which is not accessible experimentally, since the particles are obscured by the detonation products. The dependence of the particle-blast interaction and the blast mitigation effectiveness on the mitigant to explosive mass ratio, the particle size, and the initial solid volume fraction is investigated systematically. The reduction in peak blast overpressure is, as in experiments, primarily dependent on the mass ratio of material to explosive, with the particle size, density, and initial porosity of the particle bed playing secondary roles. In the near field, the blast overpressure decreases sharply with distance as the particles are accelerated by the flow. When the particles decelerate due to drag, energy is returned to the flow and the peak blast overpressure recovers and reaches values similar to that of a bare explosive charge for low mass ratios. Time-distance trajectory plots of the particle and blast wave motion with the pressure field superimposed, illustrate the weak pressure waves generated by the motion of the particle layer which travel upstream and perturb the blast wave motion. Computation of the particle and gas momentum flux in the multiphase

  17. Status of the BLAST experiment

    International Nuclear Information System (INIS)

    Hasell, D.K.

    2004-01-01

    The BLAST experiment is beginning operation at the MIT-Bates Linear Accelerator Laboratory. The experiment will study the spin dependent electro-magnetic interaction in few nucleon systems at momentum transfers between 0.1 and 1.0 GeV 2 . This will provide improved measurements of the nucleon form factors, particularly G E n , as well as study the structure of D and 3 He. Other reaction channels such as pion production and inclusive scattering will also be studied. The experiment, physics goals, and current status are described briefly. (orig.)

  18. Terrorism and blast phenomena: lessons learned from the attack on the USS Cole (DDG67).

    Science.gov (United States)

    Langworthy, Michael J; Sabra, John; Gould, Mark

    2004-05-01

    Blast phenomena and injuries to the musculoskeletal system have been well documented for the past 50 years. The USS Cole was attacked in Aden Harbor in Yemen on October 12, 2000. Seventeen sailors were killed and 39 were wounded. The bombing of the USS Cole and an analysis of the pattern of injury are unique compared with previous terrorist bombing attacks in which the predominant injury pattern is from Type II and Type III blast phenomena. Because the ship superstructure did not collapse, there were no confounding variables in examining the pattern of injury as there would have been with shrapnel-generating devices or detonations with subsequent building collapse. The morbidity and mortality sustained by the victims was almost exclusively from Type I and Type III blast effects. The musculoskeletal system was a clear marker for mortality and morbidity. Fractures of the cranium, spine, pelvis, and long bones denoted increasing severity of injury to critical organ systems. Shipboard firefighting was successful in containing fires and there was very little morbidity from inhalational injuries or burns. Blast phenomena that affect ships or buildings that have been specifically built to absorb a blast attack likely will manifest a different mode and pattern of injury than those seen in traditional terrorist blast events.

  19. A Small-Group Activity Introducing the Use and Interpretation of BLAST

    Directory of Open Access Journals (Sweden)

    Peter D. Newell

    2013-08-01

    Full Text Available As biological sequence data are generated at an ever increasing rate, the role of bioinformatics in biological research also grows. Students must be trained to complete and interpret bioinformatic searches to enable them to effectively utilize the trove of sequence data available. A key bioinformatic tool for sequence comparison and genome database searching is BLAST (Basic Local Alignment Search Tool. BLAST identifies sequences in a database that are similar to the entered query sequence, and ranks them based on the length and quality of the alignment. Our goal was to introduce sophomore and junior level undergraduate students to the basic functions and uses of BLAST with a small group activity lasting a single class period. The activity provides students an opportunity to perform a BLAST search, interpret the data output, and use the data to make inferences about bacterial cell envelope structure. The activity consists of two parts. Part 1 is a handout to be completed prior to class, complete with video tutorial, that reviews cell envelope structure, introduces key terms, and allows students to familiarize themselves with the mechanics of a BLAST search. Part 2 consists of a hands-on, web-based small group activity to be completed during the class period. Evaluation of the activity through student performance assessments suggests that students who complete the activity can better interpret the BLAST output parameters % query coverage and % max identity. While the topic of the activity is bacterial cell wall structure, it could be adapted to address other biological concepts.

  20. Osteogenic differentiation of periosteum-derived stromal cells in blast-associated traumatic loading

    Science.gov (United States)

    Sory, David R.; Amin, Harsh D.; Rankin, Sara M.; Proud, William G.

    2017-06-01

    One of the most recurrent medical complications resulting from blast trauma includes blast-induced heterotopic ossification. Heterotopic ossification refers to the pathologic formation of extraskeletal bone in non-osseous tissue. Although a number of studies have established the interaction between mechanics and biology in bone formation following shock trauma, the exact nature of the mechanical stimuli associated to blast-loading and their influence on the activation of osteogenic differentiation of cells remain unanswered. Here we present the design and calibration of a loading platform compatible with living cells to examine the effects of mechanical stress pulses of blast-associated varying strain rates on the activation of osteogenic differentiation of periosteum (PO) cells. Multiaxial compression loadings of PO cells are performed at different magnitudes of stress and ranges of strain rate. A proof of concept is presented so as to establish a new window to address fundamental questions regarding blast injuries at the cellular level. This work was conducted under the auspices of the Royal British Legion Centre for Blast Injury Studies at Imperial College London. The authors would like to acknowledge the financial support of the Royal British Legion.

  1. Controlled drill ampersand blast excavation at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Thompson, P.M.

    1996-01-01

    A controlled drill and blast method has been developed and used to excavate the Underground Research Laboratory, a geotechnical facility constructed by Atomic Energy of Canada Limited (AECL) in crystalline rock. It has been demonstrated that the method can effectively reduce the excavation disturbed zone (EDZ) and is suitable for the construction of a used fuel disposal vault in the plutonic rock of the Canadian Shield

  2. Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: in vitro and in vivo studies.

    Science.gov (United States)

    Herrero-Climent, M; Lázaro, P; Vicente Rios, J; Lluch, S; Marqués, M; Guillem-Martí, J; Gil, F J

    2013-08-01

    Rough implant surfaces have shown improved osseointegration rates. In a majority of dental implants, the microrough surfaces are obtained by grit blasting and/or acid-etching. The aim of this contribution was to evaluate the effects of acid-etching, after the grit-blasted treatment in titanium dental implants, on surface wettability, surface energy, osteoblast responses and its osseointegration behavior. Four surfaces were studied: as-machined, acid-etched, micro-rough by grit-blasting and the combination grit-blasted surface with acid-etched. The surfaces with increasing roughness show more osteoblastic adhered cells. This effect was most pronounced on samples blasted and blasted with acid-etching. The roughness obtained by grit-blasting is the main factor in comparison with the acid etching treatment in the biological response. These results were confirmed in vivo tests and histological analysis. The results demonstrated that the combination of the grit-blasted and acid-etched accelerated lightly bone regeneration at the different periods of implantation in comparison with the grit-blasted implants.

  3. Blasting detonators incorporating semiconductor bridge technology

    Energy Technology Data Exchange (ETDEWEB)

    Bickes, R.W. Jr.

    1994-05-01

    The enormity of the coal mine and extraction industries in Russia and the obvious need in both Russia and the US for cost savings and enhanced safety in those industries suggests that joint studies and research would be of mutual benefit. The author suggests that mine sites and well platforms in Russia offer an excellent opportunity for the testing of Sandia`s precise time-delay semiconductor bridge detonators, with the potential for commercialization of the detonators for Russian and other world markets by both US and Russian companies. Sandia`s semiconductor bridge is generating interest among the blasting, mining and perforation industries. The semiconductor bridge is approximately 100 microns long, 380 microns wide and 2 microns thick. The input energy required for semiconductor bridge ignition is one-tenth the energy required for conventional bridgewire devices. Because semiconductor bridge processing is compatible with other microcircuit processing, timing and logic circuits can be incorporated onto the chip with the bridge. These circuits can provide for the precise timing demanded for cast effecting blasting. Indeed tests by Martin Marietta and computer studies by Sandia have shown that such precise timing provides for more uniform rock fragmentation, less fly rock, reduce4d ground shock, fewer ground contaminants and less dust. Cost studies have revealed that the use of precisely timed semiconductor bridges can provide a savings of $200,000 per site per year. In addition to Russia`s vast mineral resources, the Russian Mining Institute outside Moscow has had significant programs in rock fragmentation for many years. He anticipated that collaborative studies by the Institute and Sandia`s modellers would be a valuable resource for field studies.

  4. LTC vacuum blasting machine (concrete): Baseline report

    International Nuclear Information System (INIS)

    1997-01-01

    The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjunction with FIU's evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration

  5. PROGRESS IN THERMO-ABRASIVE BLASTING SYSTEMS

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Quality of surface preparation of components and structures for further painting and/or coating is important in many fields of engineering. One of the most widely used methods of surface preparation is abrasive blasting. In the last few years, a new method for surface preparation has evolved, namely thermo-abrasive blasting. This technique utilises a high enthalpy thermal jet, generated by the thermo-abrasive blasting gun, to propel abrasive particles. Thermo-abrasive blasting has a number of advantages over conventional abrasive blasting, which were assessed during trials. This paper describes a progress in the applications of thermo-abrasive blasting as well as future potentials for South African industry. The performance data and economic comparison of conventional and thermo-abrasive blasting are also presented in this paper.

    AFRIKAANSE OPSOMMING: Die gehalte van voorbereiding van komponent- en struktuuroppervlaktes is oral belangrik in ingenieurswesetoepassings. Wat vrywel tot die hede dikwels gebruik was, is straalskuring. Onlangs het 'n nuwe metode tot stand gekom naamlik termostraalskuring. Die metode maak gebruik van 'n hoë entalpie termostaat om skuurmiddel aan te dryf. Die nuwe metode besit sekere voordele in vergelyking met tradisionele straalskuring. Praktykbevestiging is hiervan met toetse verkry. Hierdie stuk bespreek ook die praktyktoepassings van termostraalskuring en die gepaardgaande voordele vir die Suid-Afrikaanse nywerheid. Toepassingsdata en ekomiese vergelyking van konvensionele- en termostraalskuring word ook behandel.

  6. Effects of Experimental Parameters on the Extraction of Silica and Carbonation of Blast Furnace Slag at Atmospheric Pressure in Low-Concentration Acetic Acid

    Directory of Open Access Journals (Sweden)

    Kyungsun Song

    2017-05-01

    Full Text Available Blast furnace slag (BFS, a calcium-rich industrial byproduct, has been utilized since 2005 as a mineral carbonation feedstock for CO2 sequestration, producing calcium carbonate precipitates. In this study, the conditions for the dissolution of Ca and Si in acetic acid, and subsequent carbonation, were elaborated. For this purpose, the retardation of the polymerization of silicon was attempted by varying the concentration of acetic acid, temperature, and leaching time. An inductively coupled plasma (ICP analysis revealed that both the Ca and Si dissolved completely within 30 min in 5% acetic acid at room temperature. This high dissolution value can be attributed to the fact that Ca was bound to O rather than to Si, as determined by X-ray photoelectron spectroscopy (XPS. The use of CO2-absorbed monoethanolamine enabled the complete carbonation of BFS at ambient conditions without the need for a pH swing. The presence of dissolved silica was found to affect the polymorphs of the precipitated CaCO3. We believe that this process offers a simple method for manipulating the composites of products obtained by mineral carbonation diminishing the leaching residues.

  7. Study of blast wave overpressures using the computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    M. L. COSTA NETO

    Full Text Available ABSTRACT The threats of bomb attacks by criminal organizations and accidental events involving chemical explosives are a danger to the people and buildings. Due the severity of these issues and the need of data required for a safety design, more research is required about explosions and shock waves. This paper presents an assessment of blast wave overpressures using a computational fluid dynamics software. Analyses of phenomena as reflection of shock waves and channeling effects were done and a comparison between numerical results and analytical predictions has been executed, based on the simulation on several models. The results suggest that the common analytical predictions aren’t accurate enough for an overpressure analysis in small stand-off distances and that poorly designed buildings may increase the shock wave overpressures due multiple blast wave reflections, increasing the destructive potential of the explosions.

  8. A Blast Wave Model With Viscous Corrections

    Science.gov (United States)

    Yang, Z.; Fries, R. J.

    2017-04-01

    Hadronic observables in the final stage of heavy ion collision can be described well by fluid dynamics or blast wave parameterizations. We improve existing blast wave models by adding shear viscous corrections to the particle distributions in the Navier-Stokes approximation. The specific shear viscosity η/s of a hadron gas at the freeze-out temperature is a new parameter in this model. We extract the blast wave parameters with viscous corrections from experimental data which leads to constraints on the specific shear viscosity at kinetic freeze-out. Preliminary results show η/s is rather small.

  9. CO{sub 2} pellet blasting studies

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, K.E.

    1997-01-01

    Initial tests with CO{sub 2} pellet blasting as a decontamination technique were completed in 1993 at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). During 1996, a number of additional CO{sub 2} pellet blasting studies with Alpheus Cleaning Technologies, Oak Ridge National Laboratory, and Pennsylvania State University were conducted. After the testing with Alpheus was complete, an SDI-5 shaved CO{sub 2} blasting unit was purchased by the ICPP to test and determine its capabilities before using in ICPP decontamination efforts. Results of the 1996 testing will be presented in this report.

  10. Blast Injuries: From Improvised Explosive Device Blasts to the Boston Marathon Bombing.

    Science.gov (United States)

    Singh, Ajay K; Ditkofsky, Noah G; York, John D; Abujudeh, Hani H; Avery, Laura A; Brunner, John F; Sodickson, Aaron D; Lev, Michael H

    2016-01-01

    Although most trauma centers have experience with the imaging and management of gunshot wounds, in most regions blast wounds such as the ones encountered in terrorist attacks with the use of improvised explosive devices (IEDs) are infrequently encountered outside the battlefield. As global terrorism becomes a greater concern, it is important that radiologists, particularly those working in urban trauma centers, be aware of the mechanisms of injury and the spectrum of primary, secondary, tertiary, and quaternary blast injury patterns. Primary blast injuries are caused by barotrauma from the initial increased pressure of the explosive detonation and the rarefaction of the atmosphere immediately afterward. Secondary blast injuries are caused by debris carried by the blast wind and most often result in penetrating trauma from small shrapnel. Tertiary blast injuries are caused by the physical displacement of the victim and the wide variety of blunt or penetrating trauma sustained as a result of the patient impacting immovable objects such as surrounding cars, walls, or fences. Quaternary blast injuries include all other injuries, such as burns, crush injuries, and inhalational injuries. Radiography is considered the initial imaging modality for assessment of shrapnel and fractures. Computed tomography is the optimal test to assess penetrating chest, abdominal, and head trauma. The mechanism of blast injuries and the imaging experience of the victims of the Boston Marathon bombing are detailed, as well as musculoskeletal, neurologic, gastrointestinal, and pulmonary injury patterns from blast injuries. ©RSNA, 2016.

  11. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  12. On firework blasts and qualitative parameter dependency.

    Science.gov (United States)

    Zohdi, T I

    2016-01-01

    In this paper, a mathematical model is developed to qualitatively simulate the progressive time-evolution of a blast from a simple firework. Estimates are made for the blast radius that one can expect for a given amount of detonation energy and pyrotechnic display material. The model balances the released energy from the initial blast pulse with the subsequent kinetic energy and then computes the trajectory of the material under the influence of the drag from the surrounding air, gravity and possible buoyancy. Under certain simplifying assumptions, the model can be solved for analytically. The solution serves as a guide to identifying key parameters that control the evolving blast envelope. Three-dimensional examples are given.

  13. Nucleon and Deuteron Form Factors from BLAST

    International Nuclear Information System (INIS)

    Hasell, D. K.

    2009-01-01

    The BLAST experiment was designed to study in a systematic manner the spin-dependent, electromagnetic interaction on hydrogen and deuterium. Measuring only asymmetries in electron scattering with respect to the beam helicity, target spin, or both; the BLAST experiment was able to extract information on nucleon and deuteron form factors independent of beam intensity or target density. By further forming 'super-ratios' of asymmetries, measurements were possible independent of beam and target polarization thus reducing uncertainties due to these quantities as well. Some of the form factor results from BLAST will be briefly presented here. Also, in response to observed discrepancies between polarization measurements and those obtained using traditional Rosenbluth separation techniques a proposed experiment, OLYMPUS, which will use the BLAST detector to measure the two photon contribution to elastic electron scattering will also be presented.

  14. Basic Local Alignment Search Tool (BLAST)

    Data.gov (United States)

    U.S. Department of Health & Human Services — BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the...

  15. A Software Framework for Blast Event Simulation

    National Research Council Canada - National Science Library

    Swensen, D. A; Denison, M. K; Guilkey, James; Harman, Todd; Goetz, Richard

    2006-01-01

    .... The BCF will provide a virtual test-bed where disparate computational models can seamlessly interact with one another to provide a unified modeling solution for blast-vehicle-occupant scenarios...

  16. Preliminary report on the rice blast resistance of space-induced mutants derived from rice cultivar 'Taihang-68'

    International Nuclear Information System (INIS)

    Zhang Jingxin; Sun Dayuan; Wang Hui; Liu Yongzhu; Guo Tao; Chen Zhiqiang; Yang Qiyun; Zhu Xiaoyuan

    2012-01-01

    To screen the blast resistance mutants, the resistance of SP 1 progenies derived from rice variety Taihang-68 were evaluated after satellite flight by representative blast isolate GD0193 which had a broad pathogenic spectra, and then primary genetic analysis of resistant mutants and mapping of resistance gene, as well as resistance spectra at seedling and neck blast resistance at maturity were performed. The results showed that space-mutation was effective method to change the blast resistance of Taihang-68. The screened resistant mutants TH1 and TH2 showed that resistance to isolate GD0193 no disjunction and separation respectively, and the resistance separation ratio of TH2 indicated that its resistance was controlled by one pair of major genes, which was preliminary mapped on the long arm of chromosome 11. In blast resistance spectra and neck blast resistance, TH1 and TH2 were both enhanced remarkable compared with the wild-type at seedling and maturity, and their resistance could be inherited, the blast resistance of these two mutants were also increased comparing with several main cultivars in South China. (authors)

  17. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  18. The concept of explosives malfunctioning in rock blasting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q. [Canada Centre for Mineral and Energy Technology, Val d`Or, Quebec (Canada)

    1994-12-31

    The problem of cross-hole explosive malfunctioning in rock blasting (including sympathetic detonation, desensitization and cut-offs) is a function of delay and spacing in a blast which should be designed to avoid such occurrences. On a delay-spacing chart, the phenomenon of explosive malfunctioning is explained by dividing the chart into different regions, while the shape and size of each region could vary from one explosive to the other. Over seventy blasts have been carried out at the CANMET Experimental Mine to identify the malfunctioning characteristics of specific emulsion, water-gel and dynamite explosives. In each experiment, two parallel blastholes, 32 mm in diameter and 1.7 m deep, were drilled downwards in an underground drift. Full coupling was achieved by tamping the explosives in the wet holes. The receptor hole is initiated with a delay following the donor hole in order to observe the timing effect on the explosives being shocked. High frequency vibration monitoring was used to identify the detonation or failure of the receptor hole. The VOD measurement was used for donor holes but not for the receptor holes because of the cut-off at the collar as a result of donor hole cratering, which was further confirmed with high speed video recording. The spacing is varied to modify the shock pressure the receptor charges are subjected to. Results are presented for the three explosives tested.

  19. [Gunshot or blast injuries of the hand. Principles of treatment].

    Science.gov (United States)

    Kollig, E; Franke, A

    2012-07-01

    Gunshot injuries to the hand are rare in Central Europe. As a result of their special trauma morphology they are a serious threat to the functional integrity of the hand and often lead to a loss of function which can be associated with a permanent unfitness to work or disability. Blast injuries to the hand are more common in this part of the world and are usually caused by the inappropriate use of fireworks. This trauma entity is associated with a number of special kinetic features and effects which have therapeutic consequences and should therefore be discussed separately. As a result of the low incidence of these specific types of injuries in times of peace, experience-based expertise is unlikely to be available. The management of gunshot injuries to the hand is a particular challenge to hand surgeons who must have specialist knowledge and skills in order to achieve an optimum outcome. This applies even more so to the treatment of blast injuries to the hand which are associated with far more complex injury patterns. As a rule blast injuries are associated with a high risk of complications and require a rapid assessment and rigorous management of all damaged structures similar to approaches used for infections of the hand. Illustrated by several cases which have been treated at our institution the basic aspects of the development and morphology of these injuries are discussed as well as different treatment options, algorithms and possible treatment outcomes.

  20. Blast impact behaviour of concrete with different fibre reinforcement

    Directory of Open Access Journals (Sweden)

    Drdlová Martina

    2015-01-01

    Full Text Available The paper summarizes the results of the development of special concrete intended for the explosion resistance applications, with the emphasis on minimal secondary fragments formation at the explosion. The fine-grained concrete matrix has been reinforced by various types of short dispersed fibers (metallic, mineral and polymer of different sizes and by their combination and the effect of the fibre reinforcement on the physico-mechanical properties and blast resistance was observed. The concrete prism specimens have been subjected to the determination of mechanical parameters (compressive and flexural strength at quasi-static load. The blast tests were conducted on the slab specimens prepared from selected mixtures. The material characteristics and explosion test data have been used for numerical investigation, which defined the optimal wall composition and dimensions of the concrete element which should resist the explosion defined by type, size, weight and placement of the blast. In the next step the test elements resistance was verified by real explosion test.

  1. Prevention of Blast-Related Injuries

    Science.gov (United States)

    2017-09-01

    Award Number: W81XWH-12-2-0038 TITLE: Prevention of Blast-Related Injuries PRINCIPAL INVESTIGATOR: Albert I. King CONTRACTING ORGANIZATION...CONTRACT NUMBER Prevention of Blast-Related Injuries 5b. GRANT NUMBER W81XWH-12-2-0038 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Albert King, John...TR-7340). Army research lab Aberdeen proving ground MD weapons and materials research directorate. (2015) 11. Reneer, D.V., Hisel, R.D., Hoffman

  2. Blasting at a Superfund chemical waste site

    International Nuclear Information System (INIS)

    Burns, D.R.

    1991-01-01

    During the summer of 1989, Maine Drilling and Blasting of Gardiner, Maine was contracted by Cayer Corporation of Harvard, Massachusetts to drill and blast an interceptor trench at the Nyanza Chemical Superfund Site in Ashland, Massachusetts. The interceptor trench was to be 1,365 feet long and to be blasted out of granite. The trench was to be 12 feet wide at the bottom with 1/1 slopes, the deepest cut being 30 feet deep. A French drain 12 feet wide by 15 to 35 feet deep was blasted below the main trench on a 2% slope from its center to each end. A French drain is an excavation where the rock is blasted but not dug. The trench would be used as a perimeter road with any ground water flow going through the French drain flowing to both ends of the trench. Being a Superfund project turned a simple blasting project into a regulatory nightmare. The US Environmental Protection Agency performed all the chemical related functions on site. The US Army Corps of Engineers was overseeing all related excavation and construction on site, as was the Massachusetts Department of Environmental Quality Engineering, the local Hazardous Wastes Council, and the local Fire Department. All parties had some input with the blasting and all issues had to be addressed. The paper outlines the project, how it was designed and completed. Also included is an outline of the blast plan to be submitted for approval, an outline of the Safety/Hazardous Waste training and a description of all the problems which arose during the project by various regulatory agencies

  3. A Stealth Intervention: The GLAMA (Girls! Lead! Achieve! Mentor! Activate!) and BLAST (Boys! Lead! Activate! Succeed Together!) School Connectedness, Peer Leadership and Physical Activity Transition Program

    Science.gov (United States)

    Jenkinson, Kate A.; Naughton, Geraldine; Benson, Amanda C.

    2018-01-01

    This study investigated the effects of the GLAMA (Girls! Lead! Achieve! Mentor! Activate!) and BLAST (Boys! Lead! Activate! Succeed Together!) controlled 8-week peer-led stealth intervention on school connectedness and physical activity self-efficacy (PASE). The GLAMA and BLAST sessions were conducted during curriculum time in an Australian state…

  4. Exposure to a predator scent induces chronic behavioral changes in rats previously exposed to low-level blast: Implications for the relationship of blast-related TBI to PTSD

    Directory of Open Access Journals (Sweden)

    Georgina Perez-Garcia

    2016-10-01

    Full Text Available Blast-related mild traumatic brain injury (mTBI has been unfortunately common in veterans who served in the recent conflicts in Iraq and Afghanistan. The postconcussion syndrome associated with these mTBIs has frequently appeared in combination with post-traumatic stress disorder (PTSD. The presence of PTSD has complicated diagnosis since clinically PTSD and the postconcussion syndrome of mTBI have many overlapping symptoms. In particular establishing how much of the symptom complex can be attributed to the psychological trauma associated with PTSD in contrast to the physical injury of TBI has proven difficult. Indeed some have suggested that much of what is now being called blast-related postconcussion syndrome is better explained by PTSD. The relationship between the postconcussion syndrome of mTBI and PTSD is complex. Association of the two disorders might be viewed as additive effects of independent psychological and physical traumas suffered in a war zone. However we previously found that rats exposed to repetitive low-level blast exposure in the absence of a psychological stressor developed a variety of anxiety and PTSD-related behavioral traits that were present months following the last blast exposure. Here we show that a single predator scent challenge delivered 8 months after the last blast exposure induces chronic anxiety related changes in blast-exposed rats that are still present 45 days later. These observations suggest that in addition to independently inducing PTSD-related traits, blast exposure sensitizes the brain to react abnormally to a subsequent psychological stressor. These studies have implications for conceptualizing the relationship between blast-related mTBI and PTSD and suggest that blast-related mTBI in humans may predispose to the later development of PTSD in reaction to subsequent psychological stressors.

  5. Ultra Safe And Secure Blasting System

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M M

    2009-07-27

    The Ultra is a blasting system that is designed for special applications where the risk and consequences of unauthorized demolition or blasting are so great that the use of an extraordinarily safe and secure blasting system is justified. Such a blasting system would be connected and logically welded together through digital code-linking as part of the blasting system set-up and initialization process. The Ultra's security is so robust that it will defeat the people who designed and built the components in any attempt at unauthorized detonation. Anyone attempting to gain unauthorized control of the system by substituting components or tapping into communications lines will be thwarted in their inability to provide encrypted authentication. Authentication occurs through the use of codes that are generated by the system during initialization code-linking and the codes remain unknown to anyone, including the authorized operator. Once code-linked, a closed system has been created. The system requires all components connected as they were during initialization as well as a unique code entered by the operator for function and blasting.

  6. The second generation of electronic blasting systems

    Energy Technology Data Exchange (ETDEWEB)

    Hammelmann, F.; Petzold, J. [Dynamit Nobel GmbH (Germany)

    2001-07-01

    8 years after the market introduction of the first commercial electronic detonator - DYNATRONIC - the paper describes a new area of electronic blasting systems Made in Germany: i-kon. The results of a joint development between Dynamit Nobel and Orica is a unique universal electronic detonator, which is as simple to use as a standard non-electric detonator. The delay time or delay interval is not factory preprogrammed and the system is not based on a numbered system like conventional detonators. The miner or Blaster decides on site which delay timing he likes to use and is programming the whole blast on site. The new i-kon system allows delay times between 0 and 8000 ms by increments of 1 ms. With the control equipment it is possible to blast up to 1600 detonators in a single blast. The paper describes the construction and functionality of this new electronic blasting system - manufactured and developed by Precision Blasting Systems, a joint venture between Orica and Dynamic Nobel. (orig.)

  7. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    Science.gov (United States)

    Yang, Shu; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606

  8. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    Directory of Open Access Journals (Sweden)

    Chang Qi

    2014-01-01

    Full Text Available It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  9. Dynamic response and optimal design of curved metallic sandwich panels under blast loading.

    Science.gov (United States)

    Qi, Chang; Yang, Shu; Yang, Li-Jun; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a "soft" outer face and a "hard" inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  10. Constructal design of a blast furnace iron-making process based on multi-objective optimization

    International Nuclear Information System (INIS)

    Liu, Xiong; Chen, Lingen; Feng, Huijun; Qin, Xiaoyong; Sun, Fengrui

    2016-01-01

    For the fixed total raw material cost and based on constructal theory and finite time thermodynamics, a BFIM (blast furnace iron-making) process is optimized by taking a complex function as optimization objective. The complex function is integrated with HM (hot metal) yield and useful energy of the BF (blast furnace). The optimal cost distribution of raw materials (namely “generalized optimal construct”) is obtained. The effects of some parameters, such as oxygen enrichment, blast temperature and pulverized coal dosage, on the optimization results are analyzed. The results show that the HM yield, useful energy and complex function are, respectively, increased by 3.13%, 2.66% and 2.90% after generalized constructal optimization. The utilization efficiencies of the BFG (blast furnace gas) and slag are 41.3% and 57.1%, respectively, which means that the utilization potentials of the BFG and slag can be further exploited. Increasing pulverized coal dosage and decreasing the agglomerate ratio can increase the complex function. The performance the BFIM process can be improved by adjusting the oxygen enrichment, blast temperature, blast dosage, pressure ratio of the Brayton cycle's air compressor and relative pressure drop of the air compressor inlet to their optimal values, respectively, which are new findings of this paper. - Highlights: • Constructal optimization of a blast furnace iron-making process is performed. • Finite time thermodynamic model of open Brayton cycle is adopted. • Weighting function is taken as optimization objective. • Optimal cost distribution of the raw materials is obtained.

  11. Experimental animal models for studies on the mechanisms of blast induced neurotrauma

    Directory of Open Access Journals (Sweden)

    Mårten eRisling

    2012-04-01

    Full Text Available A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED in current military conflicts. Blast induced neurotrauma (BINT is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. BINT is characterized by extreme forces and their complex propagation. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the relative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link

  12. Reliability Analysis of Retaining Walls Subjected to Blast Loading by Finite Element Approach

    Science.gov (United States)

    GuhaRay, Anasua; Mondal, Stuti; Mohiuddin, Hisham Hasan

    2018-02-01

    Conventional design methods adopt factor of safety as per practice and experience, which are deterministic in nature. The limit state method, though not completely deterministic, does not take into account effect of design parameters, which are inherently variable such as cohesion, angle of internal friction, etc. for soil. Reliability analysis provides a measure to consider these variations into analysis and hence results in a more realistic design. Several studies have been carried out on reliability of reinforced concrete walls and masonry walls under explosions. Also, reliability analysis of retaining structures against various kinds of failure has been done. However, very few research works are available on reliability analysis of retaining walls subjected to blast loading. Thus, the present paper considers the effect of variation of geotechnical parameters when a retaining wall is subjected to blast loading. However, it is found that the variation of geotechnical random variables does not have a significant effect on the stability of retaining walls subjected to blast loading.

  13. BLAST-EXPLORER helps you building datasets for phylogenetic analysis

    Directory of Open Access Journals (Sweden)

    Claverie Jean-Michel

    2010-01-01

    Full Text Available Abstract Background The right sampling of homologous sequences for phylogenetic or molecular evolution analyses is a crucial step, the quality of which can have a significant impact on the final interpretation of the study. There is no single way for constructing datasets suitable for phylogenetic analysis, because this task intimately depends on the scientific question we want to address, Moreover, database mining softwares such as BLAST which are routinely used for searching homologous sequences are not specifically optimized for this task. Results To fill this gap, we designed BLAST-Explorer, an original and friendly web-based application that combines a BLAST search with a suite of tools that allows interactive, phylogenetic-oriented exploration of the BLAST results and flexible selection of homologous sequences among the BLAST hits. Once the selection of the BLAST hits is done using BLAST-Explorer, the corresponding sequence can be imported locally for external analysis or passed to the phylogenetic tree reconstruction pipelines available on the Phylogeny.fr platform. Conclusions BLAST-Explorer provides a simple, intuitive and interactive graphical representation of the BLAST results and allows selection and retrieving of the BLAST hit sequences based a wide range of criterions. Although BLAST-Explorer primarily aims at helping the construction of sequence datasets for further phylogenetic study, it can also be used as a standard BLAST server with enriched output. BLAST-Explorer is available at http://www.phylogeny.fr

  14. SparkBLAST: scalable BLAST processing using in-memory operations.

    Science.gov (United States)

    de Castro, Marcelo Rodrigo; Tostes, Catherine Dos Santos; Dávila, Alberto M R; Senger, Hermes; da Silva, Fabricio A B

    2017-06-27

    The demand for processing ever increasing amounts of genomic data has raised new challenges for the implementation of highly scalable and efficient computational systems. In this paper we propose SparkBLAST, a parallelization of a sequence alignment application (BLAST) that employs cloud computing for the provisioning of computational resources and Apache Spark as the coordination framework. As a proof of concept, some radionuclide-resistant bacterial genomes were selected for similarity analysis. Experiments in Google and Microsoft Azure clouds demonstrated that SparkBLAST outperforms an equivalent system implemented on Hadoop in terms of speedup and execution times. The superior performance of SparkBLAST is mainly due to the in-memory operations available through the Spark framework, consequently reducing the number of local I/O operations required for distributed BLAST processing.

  15. Is Blast Injury a Modern Phenomenon?: Early Historical Descriptions of Mining and Volcanic Traumatic Brain Injury With Relevance to Modern Terrorist Attacks and Military Warfare.

    Science.gov (United States)

    Bowen, Lauren N; Moore, David F; Okun, Michael S

    2016-03-01

    Given the recent interest in blast injury spurred by returning soldiers from overseas conflicts, we sought to research the early historical descriptions of blast injuries and their treatments. Consideration was given to specific descriptions of survivors of closed head injury and their treatment. A review of the medical and nonmedical literature was undertaken, with particular emphasis on pre-1800 descriptions of volcanic eruptions and mining accidents. Compilations of accounts of the Etna eruptions dating from 126 BC were translated into English, and early mining texts from the 1600s and 1700s were reviewed. Accumulations of flammable gases were recorded in many medieval sources and this knowledge of toxic gas which could lead to blast injury was known in the mining community by 1316. No direct attribution of injuries to blast forces was present in the historical record examined before the 1300s, although mining accounts in the 1600s detail deaths due to blast. No specific descriptions of survivors of a closed head injury were found in the mining and volcanic eruption literature. Descriptions and warnings of blast forces were commonly written about in the medieval and Renaissance mining communities. Personal narratives as early as 1316 recognize the traumatic effects of blast injury. No mining or volcanic blast descriptions before 1800 detailed severe closed head injury survivors, suggesting greater mortality than morbidity from blast injury in the premodern era. This review also uncovered that there was no historical treatment or remedy recommended to survivors of blast injury. Blast explosions resulting in injury or death were frequently described, although in simplistic terminology.

  16. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study.

    Science.gov (United States)

    Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng

    2017-07-07

    Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.

  17. Experimental Measures of Blast and Acoustic Trauma in Marine Mammals

    National Research Council Canada - National Science Library

    Ketten, Darlene R

    2004-01-01

    .... To determine onset of damage zones for blast trauma in marine mammals, fresh post-mortem specimens were implanted with pressure gages, CT scanned, and exposed to underwater blast pressures of 10-300 psi...

  18. Placement of the dam for the no. 2 kambaratinskaya HPP by large-scale blasting: some observations

    Energy Technology Data Exchange (ETDEWEB)

    Shuifer, M. I.; Argal, E. S. [JSC ' SPII Gidroproekt' (Russian Federation)

    2011-11-15

    Results of complex instrument observations of large-scale blasting during construction of the dam for the No. 2 Kambaratinskaya HPP on the Naryn River in the Republic of Kirgizia are analyzed. The purpose of these observations was: to determine the actual parameters of the seismic process, evaluate the effect of air and acoustic shock waves, and investigate the kinematics of the surface formed by the blast in its core region within the mass of fractured rocks.

  19. Rice Blast Control and Polyvarietal Planting in the Philippines: A Study in Genotype by Environment Biogeography

    Directory of Open Access Journals (Sweden)

    Daniel J. Falvo

    2001-06-01

    Full Text Available Current approaches to biogeography are based on organismic biology. Certain biogeographical phenomena, however, cannot be fully understood using organismic approaches to biogeography. I employed an approach based on molecular biology and biochemistry that I call genotype by environment biogeography in order to provide a more complete understanding of why the dispersal of rice blast disease is less efficient in fields planted with mixtures of rice varieties. In a case study of an upland ricefield in the Philippines, I found that planting varietal mixtures results in a form of effective blast control that I call intrafield gene deployment. I suggest that intrafield gene deployment be used to design more effective methods of blast control in intensive rice agriculture.

  20. A Comparative Study of Ground and Underground Vibrations Induced by Bench Blasting

    Directory of Open Access Journals (Sweden)

    Xiuzhi Shi

    2016-01-01

    Full Text Available Ground vibrations originating from bench blasting may cause damage to slopes, structures, and underground workings in close proximity to an operating open-pit mine. It is important to monitor and predict ground vibration levels induced by blasting and to take measures to reduce their hazardous effects. The aims of this paper are to determine the weaker protection objects by comparatively studying bench blasting induced vibrations obtained at surface and in an underground tunnel in an open-pit mine and thus to seek vibration control methods to protect engineering objects at the site. Vibrations arising from measurement devices at surface and in an underground tunnel at the Zijinshan Open-Pit Mine were obtained. Comparative analysis of the peak particle velocities shows that, in the greatest majority of cases, surface values are higher than underground values for the same vibration distance. The transmission laws of surface and underground vibrations were established depending on the type of rock mass, the explosive charge, and the distance. Compared with the Chinese Safety Regulations for Blasting (GB6722-2014, the bench blasting induced vibrations would not currently cause damage to the underground tunnel. According to the maximum allowable peak particle velocities for different objects, the permitted maximum charges per delay are obtained to reduce damage to these objects at different distances.

  1. Repeated Low-Level Blast Exposure: A Descriptive Human Subjects Study.

    Science.gov (United States)

    Carr, Walter; Stone, James R; Walilko, Tim; Young, Lee Ann; Snook, Tianlu Li; Paggi, Michelle E; Tsao, Jack W; Jankosky, Christopher J; Parish, Robert V; Ahlers, Stephen T

    2016-05-01

    The relationship between repeated exposure to blast overpressure and neurological function was examined in the context of breacher training at the U.S. Marine Corps Weapons Training Battalion Dynamic Entry School. During this training, Students are taught to apply explosive charges to achieve rapid ingress into secured buildings. For this study, both Students and Instructors participated in neurobehavioral testing, blood toxin screening, vestibular/auditory testing, and neuroimaging. Volunteers wore instrumentation during training to allow correlation of human response measurements and blast overpressure exposure. The key findings of this study were from high-memory demand tasks and were limited to the Instructors. Specific tests showing blast-related mean differences were California Verbal Learning Test II, Automated Neuropsychological Assessment Metrics subtests (Match-to-Sample, Code Substitution Delayed), and Delayed Matching-to-Sample 10-second delay condition. Importantly, apparent deficits were paralleled with functional magnetic resonance imaging using the n-back task. The findings of this study are suggestive, but not conclusive, owing to small sample size and effect. The observed changes yield descriptive evidence for potential neurological alterations in the subset of individuals with occupational history of repetitive blast exposure. This is the first study to integrate subject instrumentation for measurement of individual blast pressure exposure, neurocognitive testing, and neuroimaging. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  2. NK cell-mediated killing of AML blasts. Role of histamine, monocytes and reactive oxygen metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Brune, M.; Mellqvist, U.H. [Sahlgren`s Univ. Hospital, Dept. of Medicine, Haematology Section, Goeteborg (Sweden); Hansson, M.; Hermodsson, S.; Hellstrand, K. [Sahlgren`s Univ. Hospital, Dept. of Virology, Goeteborg (Sweden)

    1996-10-01

    Blasts recovered from patients with acute myelogenous leukaemia (AML) were lysed by heterologeous natural killer (NK) cells treated with NK cell-activating cytokine-induced killing of AML blasts was inhibited by monocytes, recovered from peripheral blood by counterflow centrifugal elutriation. Histamine, at concentrations exceeding 0.1 {mu}M, abrogated the monocyte-induced inhibition of NK cells; thereby, histamine and IL-2 or histamine and IFN-{alpha} synergistically induced NK cell-mediated destruction of AML blasts. The effect of histamine was completely blocked by the histamine H2-receptor (H2R) antagonist ranitidine but not by its chemical control AH20399AA. Catalase, a scavenger of reactive oxygen metabolites (ROM), reversed the monocyte-induced inhibition of NK cell-mediated killing of blast cells, indicating that the inhibitory signal was mediated by products of the respiratory burst of monocytes. It is concluded that (i) monocytes inhibit anti-leukemic properties of NK cells, (ii) the inhibition is conveyed by monocyte-derived ROM, and (iii) histamine reverses the inhibitory signal and, thereby, synergizes with NK cell-activating cytokines to induce killing of AML blasts. (au) 19 refs.

  3. An evaluation of numerical approaches for S-wave component simulation in rock blasting

    Directory of Open Access Journals (Sweden)

    Qidong Gao

    2017-10-01

    Full Text Available The shear wave (S-wave component of the total blast vibration always plays an important role in damage to rock or adjacent structures. Numerical approach has been considered as an economical and effective tool in predicting blast vibration. However, S-wave has not yet attracted enough attention in previous numerical simulations. In this paper, three typical numerical models, i.e. the continuum-based elastic model, the continuum-based damage model, and the coupled smooth particle hydrodynamics (SPH-finite element method (FEM model, were first introduced and developed to simulate the blasting of a single cylindrical charge. Then, the numerical results from different models were evaluated based on a review on the generation mechanisms of S-wave during blasting. Finally, some suggestions on the selection of numerical approaches for simulating generation of the blast-induced S-wave were put forward. Results indicate that different numerical models produce different results of S-wave. The coupled numerical model was the best, for its outstanding capacity in producing S-wave component. It is suggested that the model that can describe the cracking, sliding or heaving of rock mass, and the movement of fragments near the borehole should be selected preferentially, and priority should be given to the material constitutive law that could record the nonlinear mechanical behavior of rock mass near the borehole.

  4. A Blast-Resistant Method Based on Wave Converters with Spring Oscillator for Underground Structures

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-01-01

    Full Text Available Researches on blast-resistant measures for underground structures such as tunnels and underground shopping malls are of great importance for their significant role in economic and social development. In this paper, a new blast-resistant method based on wave converters with spring oscillator for underground structures was put forward, so as to convert the shock wave with high frequency and high peak pressure to the periodic stress wave with low frequency and low peak pressure. The conception and calculation process of this new method were introduced. The mechanical characteristics and motion evolution law of wave converters were deduced theoretically. Based on the theoretical deduction results and finite difference software FLAC3D, the dynamic responses of the new blast-resistant structure and the traditional one were both calculated. Results showed that, after the deployment of wave converters, the peak absolute values of the bending moment, shear force, and axial force of the structure decreased generally, which verified the good blast-resistant effect of the new blast-resistant method.

  5. Wheat Blast: A New Fungal Inhabitant to Bangladesh Threatening World Wheat Production

    Directory of Open Access Journals (Sweden)

    Md. Abu Sadat

    2017-04-01

    Full Text Available World wheat production is now under threat due to the wheat blast outbreak in Bangladesh in early March 2016. This is a new disease in this area, indicating the higher possibility of this pathogen spreading throughout the Asia, the world’s largest wheat producing area. Occurrence of this disease caused ~3.5% reduction of the total wheat fields in Bangladesh. Its economic effect on the Bangladesh wheat market was little because wheat contributes to 3% of total cereal consumption, among which ~70% have been imported from other countries. However, as a long-term perspective, much greater losses will occur once this disease spreads to other major wheat producing areas of Bangladesh, India, and Pakistan due to the existing favorable condition for the blast pathogen. The wheat blast pathogen belongs to the Magnaporthe oryzae species complex causing blast disease on multiple hosts in the Poaceae family. Phylogenetic analysis revealed that the Bangladesh outbreak strains and the Brazil outbreak strains were the same phylogenetic lineage, suggesting that they might be migrated from Brazil to Bangladesh during the seed import. To protect wheat production of Bangladesh and its neighbors, several measures including rigorous testing of seed health, use of chemicals, crop rotation, reinforcement of quarantine procedures, and increased field monitoring should be implemented. Development of blast resistant wheat varieties should be a long-term solution and combination of different methods with partial resistant lines may suppress this disease for some time.

  6. Numerical Study of Damage Modes and Damage Assessment of CFST Columns under Blast Loading

    Directory of Open Access Journals (Sweden)

    Junhao Zhang

    2016-01-01

    Full Text Available Columns of frame structures are the key load-bearing components and the exterior columns are susceptible to attack in terrorist blasts. When subjected to blast loads, the columns would suffer a loss of bearing capacity to a certain extent due to the damage imparted, which may induce the collapse of them and even cause the progressive collapse of the whole structure. In this paper, the high-fidelity physics-based finite element program LS-DYNA was utilized to investigate the dynamic behavior and damage characteristics of the widely used concrete-filled steel tube (CFST columns subjected to blast loads. The established numerical model was calibrated with test data in open literatures. Possible damage modes of CFST columns under blast loading were analyzed, and the damage criterion based on the residual axial load capacity of the columns was adopted to assess the damage degree. A parametric study was conducted to investigate the effects of critical parameters such as blast conditions and column details on the damage degree of CFST columns. Based on the numerical simulation data, an empirical equation was proposed to estimate the variation of columns damage degree with the various parameters.

  7. Experimental Investigation of the Interaction of Blast Waves Generated by Exploding Wires using Background Oriented Schlieren

    Science.gov (United States)

    Gross, Jonathan; Eliasson, Veronica

    2015-11-01

    Work has been performed to experimentally characterize the interaction of a multiple blast waves. The blast waves were generated using an exploding wire system. This system can store up to 400 J of energy in a high voltage capacitor bank. By discharging the capacitors through wires of a diameter of 150 μm it was possible to produce blast waves with Mach numbers as high as 2.3 at a distance of 40 mm from the center of the blast. A parametric study was performed to measure the behavior of the shocks for a variety of wire thicknesses, voltages, and separation distances. Additionally a background oriented schlieren system was used to quantify the flowfield behind the shocks. The interaction of the shocks featured expected nonlinear phenomena such as the presence of Mach stems, and showed good agreement with results in the shock wave literature. This investigation lays the groundwork for subsequent research that will use exploding wires to experimentally reproduce conditions investigated numerically, in which the effects of multiple converging blast waves on a central target were investigated.

  8. Inheritance of blast resistance and identification of SSR marker ...

    Indian Academy of Sciences (India)

    2013-08-02

    Aug 2, 2013 ... An F2 population was developed from a cross between rice. (Oryza sativa L.) genotypes, EK 70 (highly susceptible to blast) and RDN 98-2-3-5-14 (resistant to blast), to study the inheritance of blast resistance and to identify the marker associated with resistance. The F2 population segregated in 3:1 ratio for ...

  9. VRPI Temporal Progression of Closed Globe Injury from Blast Exposure

    Science.gov (United States)

    2015-09-01

    significant increases in VEGF have been reported in many ocular disorders including diabetic retinopathy , diffuse macular edema, retinal vein...FRIEDLANDER SHAPED BLAST WAVES. FIGURE 2. BLAST WAVE MEASURED 1-IN IN FRONT OF ANIMAL LOCATION COMPARED TO PREDICTION OF BLAST FROM FRIEDLANDER WAVE

  10. Blast Impact Prediction Studies at Ghana Manganese Company ...

    African Journals Online (AJOL)

    Michael

    2015-06-01

    Jun 1, 2015 ... Amegbey, N. and Afum, B. O. (2015), Blast Impact Prediction Studies at Ghana Manganese Company (GMC). Ltd, Nsuta ... conduct safe blasting operations in the Pit C North, studies were undertaken to assess the environmental impacts of blast associated with ..... Technology for Construction and Mining,.

  11. Disruption of caudate working memory activation in chronic blast-related traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mary R. Newsome

    2015-01-01

    Full Text Available Mild to moderate traumatic brain injury (TBI due to blast exposure is frequently diagnosed in veterans returning from the wars in Iraq and Afghanistan. However, it is unclear whether neural damage resulting from blast TBI differs from that found in TBI due to blunt-force trauma (e.g., falls and motor vehicle crashes. Little is also known about the effects of blast TBI on neural networks, particularly over the long term. Because impairment in working memory has been linked to blunt-force TBI, the present functional magnetic resonance imaging (fMRI study sought to investigate whether brain activation in response to a working memory task would discriminate blunt-force from blast TBI. Twenty-five veterans (mean age = 29.8 years, standard deviation = 6.01 years, 1 female who incurred TBI due to blast an average of 4.2 years prior to enrollment and 25 civilians (mean age = 27.4 years, standard deviation = 6.68 years, 4 females with TBI due to blunt-force trauma performed the Sternberg Item Recognition Task while undergoing fMRI. The task involved encoding 1, 3, or 5 items in working memory. A group of 25 veterans (mean age = 29.9 years, standard deviation = 5.53 years, 0 females and a group of 25 civilians (mean age = 27.3 years, standard deviation = 5.81 years, 0 females without history of TBI underwent identical imaging procedures and served as controls. Results indicated that the civilian TBI group and both control groups demonstrated a monotonic relationship between working memory set size and activation in the right caudate during encoding, whereas the blast TBI group did not (p < 0.05, corrected for multiple comparisons using False Discovery Rate. Blast TBI was also associated with worse performance on the Sternberg Item Recognition Task relative to the other groups, although no other group differences were found on neuropsychological measures of episodic memory, inhibition, and general processing speed. These results

  12. An Investigation of the Mechanism of Traumatic Brain Injury Caused by Blast in the Open Field

    Science.gov (United States)

    Feng, Ke

    Blast-induced traumatic brain injury (bTBI) is a signature wound of modern warfare. The current incomplete understanding of its injury mechanism impedes the development of strategies for effective protection of bTBI. Despite a considerable amount of experimental animal studies focused on the evaluation of brain neurotrauma caused by blast exposure, there is very limited knowledge on the biomechanical responses of the gyrenecephalic brain subjected to primary free-field blast waves imposed in vivo, and the correlation analysis between the biomechanical responses and its injury outcomes. Such information is crucial to the development of injury criteria of bTBI. This study aims to evaluate the external and internal mechanical responses of the brain against different levels of blast loading with Yucatan swine in free field, and to conduct correlational studies with brain tissue damage. To better understand primary bTBI, we have implemented an open field experimental model to apply controlled shock waves on swine head. The applied pressure levels of shock waves were predicted by finite element modeling and verified with calibrated testing. Biomechanical responses of primary blasts such as intracranial pressure (ICP), head kinetics, strain rate of skull, were measured in vivo during the blasts. A positive correlation between incident overpressure (IOP) and its corresponding biomechanical responses of the brain was observed. A parallel group of non-instrumented animals were used to collect injury data 72 hours post experiment. Cellular responses governed by primary blasts, such as neuronal degeneration and apoptosis were studied via immunohistochemistry. Representative fluorescent-stained images were examined under microscope. A positive correlation was found between the amount of degenerative neurons and the blast level. Significant elevation of apoptosis was found in the high-level blast. Comparisons between brains with varies ICP readings demonstrate differences of the

  13. Blasting response of the Eiffel Tower

    Science.gov (United States)

    Horlyck, Lachlan; Hayes, Kieran; Caetano, Ryan; Tahmasebinia, Faham; Ansourian, Peter; Alonso-Marroquin, Fernando

    2016-08-01

    A finite element model of the Eiffel Tower was constructed using Strand7 software. The model replicates the existing tower, with dimensions justified through the use of original design drawings. A static and dynamic analysis was conducted to determine the actions of the tower under permanent, imposed and wind loadings, as well as under blast pressure loads and earthquake loads due to an explosion. It was observed that the tower utilises the full axial capacity of individual members by acting as a `truss of trusses'. As such, permanent and imposed loads are efficiently transferred to the primary columns through compression, while wind loads induce tensile forces in the windward legs and compressive forces in the leeward. Under blast loading, the tower experienced both ground vibrations and blast pressures. Ground vibrations induced a negligibly small earthquake loading into the structure which was ignored in subsequent analyses. The blast pressure was significant, and a dynamic analysis of this revealed that further research is required into the damping qualities of the structure due to soil and mechanical properties. In the worst case scenario, the blast was assumed to completely destroy several members in the adjacent leg. Despite this weakened condition, it was observed that the tower would still be able to sustain static loads, at least for enough time for occupant evacuation. Further, an optimised design revealed the structure was structurally sound under a 46% reduction of the metal tower's mass.

  14. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 2. 9. Blast injuries in foxholes

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, J.M.; Maupin, C.S.

    1985-04-01

    This experiment was conducted to gain information about the amount of protection from direct blast effects that may be provided by foxholes of uniform dimensions located within distances of a nuclear explosion that are recognized as lethal for combinations of thermal and ionzing radiations and indirect blast injuries. Sixteen dogs protected in foxholes were exposed in pairs to the nuclear detonation. Autopsies performed between 10 and 15 hours after the blast demonstrated mild to moderately severe lung hemorrhages and three instances of mild to moderately severe brain hemorrhage. Ruptured ear drums and blast damage to abdominal viscera were infrequent. Evidences of acute ionizing radiation injury consisted in decreases in absolute lymphocyte counts and changes in lymph nodes and spleens. Photographs and diagrams of foxholes, animals, and tissue speciments; graphs of blast pressures, gamma doses, and neutron fluxes are included.

  15. Divide and Conquer (DC BLAST: fast and easy BLAST execution within HPC environments

    Directory of Open Access Journals (Sweden)

    Won Cheol Yim

    2017-06-01

    Full Text Available Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI Basic Local Alignment Search Tool (BLAST and BLAST+ suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible and used due to the increasing availability of high-performance computing (HPC systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1 to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. This freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.

  16. Energy spectrum analysis of blast waves based on an improved Hilbert-Huang transform

    Science.gov (United States)

    Li, L.; Wang, F.; Shang, F.; Jia, Y.; Zhao, C.; Kong, D.

    2017-05-01

    Using the improved Hilbert-Huang transform (HHT), this paper investigates the problems of analysis and interpretation of the energy spectrum of a blast wave. It has been previously established that the energy spectrum is an effective feature by which to characterize a blast wave. In fact, the higher the energy spectra in a frequency band of a blast wave, the greater the damage to a target in the same frequency band. However, most current research focuses on analyzing wave signals in the time domain or frequency domain rather than considering the energy spectrum. We propose here an improved HHT method combined with a wavelet packet to extract the energy spectrum feature of a blast wave. When applying the HHT, the signal is first roughly decomposed into a series of intrinsic mode functions (IMFs) by empirical mode decomposition. The wavelet packet method is then performed on each IMF to eliminate noise on the energy spectrum. Second, a coefficient is introduced to remove unrelated IMFs. The energy of each instantaneous frequency can be derived through the Hilbert transform. The energy spectrum can then be obtained by adding up all the components after the wavelet packet filters and screens them through a coefficient to obtain the effective IMFs. The effectiveness of the proposed method is demonstrated by 12 groups of experimental data, and an energy attenuation model is established based on the experimental data. The improved HHT is a precise method for blast wave signal analysis. For other shock wave signals from blasting experiments, an energy frequency time distribution and energy spectrum can also be obtained through this method, allowing for more practical applications.

  17. Low Complexity V-BLAST MIMO-OFDM Detector by Successive Iterations Reduction

    Directory of Open Access Journals (Sweden)

    AHMED, K.

    2015-02-01

    Full Text Available V-BLAST detection method suffers large computational complexity due to its successive detection of symbols. In this paper, we propose a modified V-BLAST algorithm to decrease the computational complexity by reducing the number of detection iterations required in MIMO communication systems. We begin by showing the existence of a maximum number of iterations, beyond which, no significant improvement is obtained. We establish a criterion for the number of maximum effective iterations. We propose a modified algorithm that uses the measured SNR to dynamically set the number of iterations to achieve an acceptable bit-error rate. Then, we replace the feedback algorithm with an approximate linear function to reduce the complexity. Simulations show that significant reduction in computational complexity is achieved compared to the ordinary V-BLAST, while maintaining a good BER performance.

  18. Research on the Energy Characteristics of Battlefield Blasting Noise Based on Wavelet Packet

    Science.gov (United States)

    Ding, Kai; Yan, Shoucheng; Zhu, Yichao; Zhao, Ming; Mei, Bi

    2017-12-01

    When the acoustic fuse of smart landmines tries to detect and recognize a ground vehicle target, it is usually affected by gun shooting, explosive blasting or other similar noises on the actual battlefield. To improve the target recognition of smart landmines, it would be necessary to study the characteristics of these acoustic signals. Using sample data of the shooting noise of a certain type of rifle, the blasting noise of TNT, and the acoustic signals of a certain type of WAV, the energy characteristics of these noise signals are compared and analyzed. The result shows that the wavelet-packet energy method is effective in describing the characteristics of these acoustic signals with distinct intertype variations, and the frequency at the peak energy value can serve as a signature parameter for recognizing battlefield blasting noise signals from vehicle target signals.

  19. Blast-induced traumatic brain injury: a new trend of blast injury research.

    Science.gov (United States)

    Zhao, Yan; Wang, Zheng-Guo

    2015-01-01

    Blast injury has become the major life- and function-threatening injuries in recent warfares. There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI), which has been proved as one of the "signature wounds" in modern battlefield. We reviewed the recent progresses in bTBI-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  20. Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J; Blackman, E G

    2009-04-30

    Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.

  1. Performance Evaluation Of Modified V-Blast In Mimo System

    Science.gov (United States)

    Suneetha, Ch.; Harathi, N.; Sudha, K.

    2012-03-01

    The MIMO system (multiple Antennas at the transmitter and receiver)is a capable of very high theoretical capacities, the most popular architecture is so called vertical VBLAST. VBLAST is an effective detection method for MIMO communication system, but has large computational complexity due its successive iteration . In this paper we used modified VBLAST to lessen its computational complexity reducing the number of successive iterations. As a result of this simplification, the computational complexity of the detection is lowered significantly. Simulation results show that the proposed V-BLAST reduces calculation complexity by about 30% while achieving a very close BER performance s the original one.

  2. Spalling of concrete subjected to blast loading

    Directory of Open Access Journals (Sweden)

    Foglar M.

    2013-09-01

    Full Text Available This paper presents outcomes of the blast field tests of FRC and reinforced concrete specimens, which were performed in cooperation with the Czech Army corps and Police of the Czech Republic in the military training area Boletice. The numerical evaluation of the experiments focused on the spalling of concrete subjected to blast loading started after the first set of the tests, took almost 3 years and required further small-scale experiments performed in the labs of the Czech Technical University.

  3. Work Management Manual - Blast and Paint General

    Science.gov (United States)

    1983-08-01

    material which accelerates the har- dening of certain coatinss. Acoustic paint - paint which absorbs or deadens sound . Acrylic resin-a clear resin...AUG 1983 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Work Managemaent Manual - Blast and Paint General 5a. CONTRACT NUMBER...WORK MANAGEMENT MANUAL BLAST/ PAINT GENERAL INDEX SECTION PAGE 1.0 .1 .2 .3 .4 2.0 .1 .2 .3 .4 .5 .6 .8 .9 3.0 .1 4.0 .1 5.0 .1 7.0 .1 .3 8.0 SCOPE PLANT

  4. Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet

    Directory of Open Access Journals (Sweden)

    Liying eZhang

    2013-08-01

    Full Text Available Blast-induced traumatic brain injury has emerged as a signature injury in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH, a finite element (FE study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27-0.66 MPa from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP in the head ranged from 0.68-1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10-35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44% was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%. The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence "iso-damage" curves for brain injury are likely different than the Bowen curves

  5. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Tervola, K. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  6. A computational model of blast loading on the human eye.

    Science.gov (United States)

    Bhardwaj, Rajneesh; Ziegler, Kimberly; Seo, Jung Hee; Ramesh, K T; Nguyen, Thao D

    2014-01-01

    Ocular injuries from blast have increased in recent wars, but the injury mechanism associated with the primary blast wave is unknown. We employ a three-dimensional fluid-structure interaction computational model to understand the stresses and deformations incurred by the globe due to blast overpressure. Our numerical results demonstrate that the blast wave reflections off the facial features around the eye increase the pressure loading on and around the eye. The blast wave produces asymmetric loading on the eye, which causes globe distortion. The deformation response of the globe under blast loading was evaluated, and regions of high stresses and strains inside the globe were identified. Our numerical results show that the blast loading results in globe distortion and large deviatoric stresses in the sclera. These large deviatoric stresses may be indicator for the risk of interfacial failure between the tissues of the sclera and the orbit.

  7. Blast noise classification with common sound level meter metrics.

    Science.gov (United States)

    Cvengros, Robert M; Valente, Dan; Nykaza, Edward T; Vipperman, Jeffrey S

    2012-08-01

    A common set of signal features measurable by a basic sound level meter are analyzed, and the quality of information carried in subsets of these features are examined for their ability to discriminate military blast and non-blast sounds. The analysis is based on over 120 000 human classified signals compiled from seven different datasets. The study implements linear and Gaussian radial basis function (RBF) support vector machines (SVM) to classify blast sounds. Using the orthogonal centroid dimension reduction technique, intuition is developed about the distribution of blast and non-blast feature vectors in high dimensional space. Recursive feature elimination (SVM-RFE) is then used to eliminate features containing redundant information and rank features according to their ability to separate blasts from non-blasts. Finally, the accuracy of the linear and RBF SVM classifiers is listed for each of the experiments in the dataset, and the weights are given for the linear SVM classifier.

  8. Marker-assisted introgression of broad-spectrum blast resistance genes into the cultivated MR219 rice variety.

    Science.gov (United States)

    Miah, Gous; Rafii, Mohd Y; Ismail, Mohd R; Puteh, Adam B; Rahim, Harun A; Latif, Mohammad A

    2017-07-01

    The rice cultivar MR219 is famous for its better yield and long and fine grain quality; however, it is susceptible to blast disease. The main objective of this study was to introgress blast resistance genes into MR219 through marker-assisted selection (MAS). The rice cultivar MR219 was used as the recurrent parent, and Pongsu Seribu 1 was used as the donor. Marker-assisted foreground selection was performed using RM6836 and RM8225 to identify plants possessing blast resistance genes. Seventy microsatellite markers were used to estimate recurrent parent genome (RPG) recovery. Our analysis led to the development of 13 improved blast resistant lines with Piz, Pi2 and Pi9 broad-spectrum blast resistance genes and an MR219 genetic background. The RPG recovery of the selected improved lines was up to 97.70% with an average value of 95.98%. Selected improved lines showed a resistance response against the most virulent blast pathogen pathotype, P7.2. The selected improved lines did not express any negative effect on agronomic traits in comparison with MR219. The research findings of this study will be a conducive approach for the application of different molecular techniques that may result in accelerating the development of new disease-resistant rice varieties, which in turn will match rising demand and food security worldwide. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms.

    Directory of Open Access Journals (Sweden)

    Amy eCourtney

    2015-10-01

    Full Text Available Primary blast induced traumatic brain injury (bTBI is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs which isolate a single injury mechanism.

  10. Postconcussion symptoms reported by Operation Enduring Freedom/Operation Iraqi Freedom veterans with and without blast exposure, mild traumatic brain injury, and posttraumatic stress disorder.

    Science.gov (United States)

    O'Neil, Maya Elin; Callahan, Megan; Carlson, Kathleen F; Roost, Mai; Laman-Maharg, Benjamin; Twamley, Elizabeth W; Iverson, Grant L; Storzbach, Daniel

    2017-06-01

    This study examined symptom reporting related to the 10th Edition of the International Statistical Classification of Diseases and Related Health Problems (ICD-10) criteria for postconcussional syndrome (PCS) in Operation Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF) Veterans. Our aims were to: (a) examine relationships among PCS symptoms by identifying potential subscales of the British Columbia Postconcussion Symptom Inventory (BC-PSI); and (b) examine group differences in BC-PSI items and subscales in Veterans with and without blast exposure, mild traumatic brain injury (mTBI), and posttraumatic stress disorder (PTSD). Our sample included Veterans with blast-related mTBI history (n = 47), with blast exposure but no mTBI history (n = 20), and without blast exposure (n = 23). Overall, 37 Veterans had PTSD, and 53 did not. We conducted an exploratory factor analysis (EFA) of the BC-PSI followed by multivariate analysis of variance to examine differences in BC-PSI subscale scores by blast exposure, mTBI history, and PTSD. BC-PSI factors were interpreted as cognitive, vestibular, affective, anger, and somatic. Items and factor scores were highest for Veterans with blast exposure plus mTBI, and lowest for controls. Vestibular, affective, and somatic factors were significantly higher for Veterans with blast exposure plus mTBI than for controls, but not significantly different for those with blast exposure but no mTBI. These results remained significant when PTSD symptom severity was included as a covariate. Cognitive, anger, and somatic subscales were significantly higher for Veterans with PTSD, though there was no interaction effect of PTSD and mTBI or blast history. EFA-derived subscales of the BC-PSI differentiated Veterans based on blast exposure, mTBI history, and PTSD.

  11. RegExpBlasting (REB), a Regular Expression Blasting algorithm based on multiply aligned sequences

    OpenAIRE

    Rubino, Francesco; Attimonelli, Marcella

    2009-01-01

    Background One of the most frequent uses of bioinformatics tools concerns functional characterization of a newly produced nucleotide sequence (a query sequence) by applying Blast or FASTA against a set of sequences (the subject sequences). However, in some specific contexts, it is useful to compare the query sequence against a cluster such as a MultiAlignment (MA). We present here the RegExpBlasting (REB) algorithm, which compares an unclassified sequence with a dataset of patterns defined by...

  12. Models of Determining the Parameters of Rock Mass Oscillation Equation with Experimental and Mass Blastings

    Directory of Open Access Journals (Sweden)

    Suzana Lutovac

    2018-02-01

    Full Text Available The explosion caused by detonation of explosive materials is followed by release of a large amount of energy. Whereby, a greater part of energy is used for rock destruction, and part of energy, in the form of seismic wave, is lost in the rock mass causing rock mass oscillation. Investigations of the character and behavior of the pattern of seismic wave indicate that the intensity and nature of the seismic wave are influenced by rock mass properties, and by blasting conditions. For evaluation and control of the seismic effect of blasting operations, the most commonly used equation is that of M.A. Sadovskii. Sadovskii’s equation defines the alteration in the velocity of rock mass oscillation depending on the distance, the quantity of explosives, blasting conditions and geological characteristics of the rock mass, and it is determined based on trial blasting for a specific work environment. Thus, this paper offers analysis of the method for determination of parameters of the rock mass oscillation equation, which are conditioned by rock mass properties and blasting conditions. Practical part of this paper includes the experimental research carried out at Majdanpek open pit, located in the northern part of eastern Serbia and the investigations carried out during mass blasting at Nepričava open pit, located in central Serbia. In this paper, parameters n and K from Sadovskii’s equation were determined in three ways—models in the given work environment. It was noted that, in practice, all three models can be successfully used to calculate the oscillation velocity of the rock masses.

  13. Suspended liquid particle disturbance on laser-induced blast wave and low density distribution

    Science.gov (United States)

    Ukai, Takahiro; Zare-Behtash, Hossein; Kontis, Konstantinos

    2017-12-01

    The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency.

  14. [Certain theoretical-methodological problems of forensic medical expertise of the blast injury].

    Science.gov (United States)

    Popov, V L

    2015-01-01

    This article is devoted to the analysis of the theoretical problems facing forensic medical expertise of the blast injury. The original notions of the blast, injurious blast factors, and their traumatic consequences are proposed together with the classification of the blasts and their injurious factors. The principal lines of the further research on the forensic medical aspects of the blast injury are formulated.

  15. quality of computerized blast load simulation for non-linear dynamic

    African Journals Online (AJOL)

    STRANCOM

    one of the most critical challenges for structural engineers in ... and techniques to protect buildings has been initiated in ... important in this paper in view of the effect of the incident blast wave on the rigid boundary surface and acting perpendicular to the latter. reflected pressure incident pressure dynamic pressure ambient ...

  16. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NARCIS (Netherlands)

    Zemskov, S.V.; Ahmad, B.; Copuroglu, O.; Vermolen, F.J.

    2013-01-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate,

  17. Dynamic changes of rice blast fungus in the USA through six decades

    Science.gov (United States)

    Rice blast disease caused by the fungus Magnaporthe oryzae is a serious rice disease in the USA and worldwide. M. oryzae is highly adaptive and changeable due to the instability of its genome and resistance genes which are effective only when M. oryzae isolates contain the cognate avirulence (AVR) g...

  18. Developments in vapour cloud explosion blast modeling

    NARCIS (Netherlands)

    Mercx, W.P.M.; Berg, A.C. van den; Hayhurst, C.J.; Robertson, N.J.; Moran, K.C.

    2000-01-01

    TNT Equivalency methods are widely used for vapour cloud explosion blast modeling. Presently, however, other types of models are available which do not have the fundamental objections TNT Equivalency models have. TNO Multi-Energy method is increasingly accepted as a more reasonable alternative to be

  19. Control and documentation studies of the impact of blasting on buildings in the surroundings of open pit mines

    Directory of Open Access Journals (Sweden)

    Anna Sołtys

    2017-01-01

    Full Text Available Environmental Protection Law together with Geological and Mining Law impose on a mining plant a duty to protect its surroundings against the effects of mining operations. It also refers to the impact of vibrations on people and buildings induced by blasting works. Effective protection is possible only if the actual level of the impact is known, hence it has to be recorded. It was and still is the keynote idea of the research conducted at the AGH Laboratory of Blasting and Environmental Protection. The effect of many years of research is the development of an original and, in particular, an effective procedure to record the impact of blasting works with periodical measurements of vibration intensity or monitoring the vibrations' impact on buildings in the surrounding area. These assumptions form part of preventive actions taken by open pit mines, which are aimed at minimizing the impact of blast workings on the surroundings and are often recommended by experts. This article presents the course of action concerning control tests of vibration intensity in the surroundings of a mine. It also shows it is necessary to monitor vibrations in buildings as it is a source of knowledge for the mining plant management personnel and engineers who conduct blasting works, thus contributing to an increase in awareness of the responsible management of a mining plant. The Vibration Monitoring Station (KSMD developed by a research group, after several upgrades, has become a fully automated system for monitoring and recording the impact of blast workings on the surroundings. Moreover, it should be emphasised that without the mine management personnel's cooperation, it would be impossible to work and achieve the common goal, i.e. conducting blasting works in a way that is safe for the surroundings.

  20. IDENTIFICATION OF A MAJOR QUANTITATIVE TRAIT LOCUS CONFERRING RICE BLAST RESISTANCE USING RECOMBINANT INBRED LINES

    Directory of Open Access Journals (Sweden)

    Sobrizal Sobrizal

    2013-05-01

    Full Text Available Blast disease caused by Pyricularia oryzae is one of the limiting factors for rice production world wide. The use of resistant varieties for managing blast disease is considered as the most eco-friendly approaches. However, their resistances may be broken down within a few years due to the appearance of new virulent blast races in the field. The objective of the present study was to identify the quantitative trait locus (QTL conferring resistance to blast disease using 126 recombinant inbred (RI lines originated from a crossing of a durably resistant upland rice genotype (Laka and a highly susceptible rice accession cultivar (Kencana Bali. The RI population was developed through a single seed descent method from 1997 to 2004. Resistance of the RI lines was evaluated for blast in an endemic area of Sukabumi, West Java, in 2005. Disease intensity of the blast was examined following the standard evaluation system developed by the International Rice Research Institute (IRRI. At the same year the RI lines were analyzed with 134 DNA markers. Results of the study showed that one major QTL was found to be associated with blast resistance, and this QTL was located near RM2136 marker on the long arm of chromosome 11. This QTL explained 87% of the phenotypic variation with 37% additive effect. The map position of this QTL differed from that of a partial resistant gene, Pi34, identified previously on chromosome 11 in the Japanese durably resistant variety, Chubu 32. The QTL, however, was almost at the same position as that of the multiple allele-resistant gene, Pik. Therefore, an allelic test should be conducted to clarify the allelic relationship between QTL identified in this study and the Pik. The RI lines are the permanent segregating population that could be very useful for analysing phenotypic variations of important agronomic traits possibly owned by the RI lines. The major QTL identified in this study could be used as a genetic resource in

  1. Experimental animal models for studies on the mechanisms of blast-induced neurotrauma.

    Science.gov (United States)

    Risling, Mårten; Davidsson, Johan

    2012-01-01

    A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED) in current military conflicts. Blast-induced neurotrauma (BINT) is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. Extreme forces and their complex propagation characterize BINT. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary, and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements, or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration, and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the comparative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements, or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link between experiments

  2. Improving scaling methods to estimate eruption energies from volcanic crater structures using blast experiments

    Science.gov (United States)

    Sonder, I.; Graettinger, A. H.; Valentine, G.; Schmid, A.; Zimanowski, B.; Majji, M.; Ross, P.; White, J. D.; Taddeucci, J.; Lube, G.; Kueppers, U.; Bowman, D. C.

    2013-12-01

    In an ongoing effort to understand the relevant processes behind the formation of volcanic crater-, maar-, and diatreme structures, experiments producing craters with radii exceeding one meter were conducted at University at Buffalos Geohazards Field Station. A chemical explosive was used as energy source for the tests, and detonated in prepared test beds made from several stratified, compacted aggregates. The amount of explosive, as well as its depth of burial were varied in the twelve experiments. The detonations were recorded by a diverse set of sensors including high-speed/high-definition cameras, seismic and electric field sensors, normal- and infrasound microphones. Morphology and structures were documented after each blast by manual measurements and semi-automated photogrammetry. After all blasts were complete the structures excavated and analyzed. The measured sensor signals were evaluated and related to blast energies, depths of burial and crater morphologies. Former experiments e.g. performed by Goto et al. (2001; Geophys. Res. Lett. 28, 4287-4290) considered craters of single blasts at a given lateral position and found empirical relationships emphasizing the importance of length scaling with the cube root of the blasts energy E. For example the depth of burial producing the largest crater radius--the ';optimal' depth--is proportional to E1/3, as is the corresponding radius. Resembling natural processes creating crater and diatreme structures the experiments performed here feature several blasts at one lateral position. The dependencies on E1/3 could be roughly confirmed. Also the scaled depth correlated with the sensor signals capturing the blasts dynamics. However, significant scatter was introduced by the pre-existing morphologies. Using a suitable re-definition for the charges depth of burial (';eruption depth'), accounting for a pre-existing (crater) morphology, the measured dependencies of morphology and blast dynamics on E can be improved

  3. Air Blasts from Cased and Uncased Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, L. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-04-12

    The problem of a spherical blast in air is solved using the STUN code. For bare charges, the calculations are shown to be in excellent agreement with previous published results. It is demonstrated that, for an unconfined (uncased) chemical explosive, both range and time to effect scale inversely as the cube root of the yield and directly as the cube root of the ambient air density. It is shown that the peak overpressure decays to roughly 1/10 of ambient pressure in a scaled range of roughly 10 m/kg1/3 at sea level. At a height of 30 km, where the ambient density is a factor of 64 less, the range to the same decay increases to 40 m/kg1/3 . As a direct result of the scaling a single calculation suffices for all charge sizes and altitudes. Although the close-in results are sensitive to the nature of the explosive source and the equation of state of the air, this sensitivity is shown to virtually disappear at scaled ranges > 0.5 m/kg1/3 . For cased explosives the case thickness introduces an additional scale factor. Moreover, when the blast wave arrives at the inner case radius the case begins to expand. Fracture occurs when a critical value of the resulting hoop strain is reached, causing the case to shatter into fragments. A model is proposed to describe the size distribution of the fragments and their subsequent motion via drag interaction with the explosion products and ambient air. It is shown that a significant fraction of the charge energy is initially transmitted to the case fragments in the form of kinetic energy; for example, a 1 kg spherical charge with a 5 mm thick steel case has almost 29% of the total charge energy as initial kinetic energy of case fragments. This percentage increases with increasing case thickness and decreases with increasing charge size. The peak overpressure at a given range is 70-85% for cased explosives as compared with uncased and the peak impulse per unit area is 90-95%. The peak overpressure and

  4. Stochastic Modeling Approach for the Evaluation of Backbreak due to Blasting Operations in Open Pit Mines

    Science.gov (United States)

    Sari, Mehmet; Ghasemi, Ebrahim; Ataei, Mohammad

    2014-03-01

    Backbreak is an undesirable side effect of bench blasting operations in open pit mines. A large number of parameters affect backbreak, including controllable parameters (such as blast design parameters and explosive characteristics) and uncontrollable parameters (such as rock and discontinuities properties). The complexity of the backbreak phenomenon and the uncertainty in terms of the impact of various parameters makes its prediction very difficult. The aim of this paper is to determine the suitability of the stochastic modeling approach for the prediction of backbreak and to assess the influence of controllable parameters on the phenomenon. To achieve this, a database containing actual measured backbreak occurrences and the major effective controllable parameters on backbreak (i.e., burden, spacing, stemming length, powder factor, and geometric stiffness ratio) was created from 175 blasting events in the Sungun copper mine, Iran. From this database, first, a new site-specific empirical equation for predicting backbreak was developed using multiple regression analysis. Then, the backbreak phenomenon was simulated by the Monte Carlo (MC) method. The results reveal that stochastic modeling is a good means of modeling and evaluating the effects of the variability of blasting parameters on backbreak. Thus, the developed model is suitable for practical use in the Sungun copper mine. Finally, a sensitivity analysis showed that stemming length is the most important parameter in controlling backbreak.

  5. Efficacy of visor and helmet for blast protection assessed using a computational head model

    Science.gov (United States)

    Singh, D.; Cronin, D. S.

    2017-11-01

    Head injury resulting from blast exposure has been identified as a challenge that may be addressed, in part, through improved protective systems. Existing detailed head models validated for blast loading were applied to investigate the influence of helmet visor configuration, liner properties, and shell material stiffness. Response metrics including head acceleration and intracranial pressures (ICPs) generated in brain tissue during primary blast exposure were used to assess and compare helmet configurations. The addition of a visor was found to reduce peak head acceleration and positive ICPs. However, negative ICPs associated with a potential for injury were increased when a visor and a foam liner were present. In general, the foam liner material was found to be more significant in affecting the negative ICP response than positive ICP or acceleration. Shell stiffness was found to have relatively small effects on either metric. A strap suspension system, modeled as an air gap between the head and helmet, was more effective in reducing response metrics compared to a foam liner. In cases with a foam liner, lower-density foam offered a greater reduction of negative ICPs. The models demonstrated the "underwash" effect in cases where no foam liner was present; however, the reflected pressures generated between the helmet and head did not translate to significant ICPs in adjacent tissue, when compared to peak ICPs from initial blast wave interaction. This study demonstrated that the efficacy of head protection can be expressed in terms of load transmission pathways when assessed with a detailed computational model.

  6. Acceleration from short-duration blast

    Science.gov (United States)

    Ritzel, D. V.; Van Albert, S.; Sajja, V.; Long, J.

    2018-01-01

    The blast-induced motion of spheres has been studied experimentally where the shock wave is rapidly decaying during the period that quasi-steady acceleration would be developed in the case of a step-function shock wave as considered in most shock-tube studies. The motion of sphere models ranging from 39 to 251 mm in diameter and having a range of densities was assessed using the "free-flight" method in a simulator specially designed to replicate the decaying shock wave profile of spherical blast including negative phase and positive entropy gradient. A standardized blast-wave simulation of 125 kPa and 6-ms positive-phase duration was applied for all experiments. In all cases, there are three phases to the motion: a relatively low "kickoff" velocity from the shock diffraction, acceleration or deceleration during the positive duration, then deceleration through the negative phase and subsequent quiescent air. The unexpected deceleration of larger spheres after their kickoff velocity during the decaying yet high-speed flow of the blast wave seems associated with the persistence of a ring vortex on the downstream side of the sphere. The flow is entirely unsteady with initial forces dominated by the shock diffraction; therefore, the early motion of spheres under such conditions is not governed by quasi-steady drag as in classical aerodynamics. The work will help establish scaling rules for model studies of blast-induced motion relevant to improvised explosive devices, and preliminary results are shown for motion imparted to a human skull surrogate.

  7. Mathematical model and software for control of commissioning blast furnace

    Science.gov (United States)

    Spirin, N. A.; Onorin, O. P.; Shchipanov, K. A.; Lavrov, V. V.

    2016-09-01

    Blowing-in is a starting period of blast furnace operation after construction or major repair. The current approximation methods of blowing-in burden analysis are based on blowing-in practice of previously commissioned blast furnaces. This area is theoretically underexplored; there are no common scientifically based methods for selection of the burden composition and blast parameters. The purpose of this paper is development and scientific substantiation of the methods for selection of the burden composition and blast parameters in the blast furnace during the blowing-in period. Research methods are based on physical regularities of main processes running in the blast furnace, system analysis, and application of modern principles for development and construction of mathematical models, algorithms and software designed for automated control of complex production processes in metallurgy. As consequence of the research made by the authors the following results have been achieved: 1. A set of mathematical models for analysis of burden arrangement throughout the height of the blast furnace and for selection of optimal blast and gas dynamic parameters has been developed. 2. General principles for selection of the blowing-in burden composition and blast and gas dynamic parameters have been set up. 3. The software for the engineering and process staff of the blast furnace has been developed and introduced in the industry.

  8. Gene pyramiding enhances durable blast disease resistance in rice.

    Science.gov (United States)

    Fukuoka, Shuichi; Saka, Norikuni; Mizukami, Yuko; Koga, Hironori; Yamanouchi, Utako; Yoshioka, Yosuke; Hayashi, Nagao; Ebana, Kaworu; Mizobuchi, Ritsuko; Yano, Masahiro

    2015-01-14

    Effective control of blast, a devastating fungal disease of rice, would increase and stabilize worldwide food production. Resistance mediated by quantitative trait loci (QTLs), which usually have smaller individual effects than R-genes but confer broad-spectrum or non-race-specific resistance, is a promising alternative to less durable race-specific resistance for crop improvement, yet evidence that validates the impact of QTL combinations (pyramids) on the durability of plant disease resistance has been lacking. Here, we developed near-isogenic experimental lines representing all possible combinations of four QTL alleles from a durably resistant cultivar. These lines enabled us to evaluate the QTLs singly and in combination in a homogeneous genetic background. We present evidence that pyramiding QTL alleles, each controlling a different response to M. oryzae, confers strong, non-race-specific, environmentally stable resistance to blast disease. Our results suggest that this robust defence system provides durable resistance, thus avoiding an evolutionary "arms race" between a crop and its pathogen.

  9. Development Of Very-High-Strength and High-Performance Concrete Materials for Improvement of Barriers Against Blast and Projectile Penetration

    National Research Council Canada - National Science Library

    O'Neill, E. F., III; Cummins, T. K; Durst, B. P; Kinnebrew, P. G; Boone, R. N; Torres, R. X

    2004-01-01

    .... S. Army Engineer Research and Development Center (ERDC) is developing several high-performance concretes to mitigate the effects of blast and ballistic threats from conventional and asymmetric weapons...

  10. Effect of incorporation of fly ash and granulated blast furnace in the electrochemical behavior of concretes of commercial cement; Efecto de la incorporacion de ceniza volante y escoria de horno alto en el comportamiento electroquimico de concretos de cemento comercial

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Junco, O. J.; Pineda-Triana, Y.; Vera-Lopez, E.

    2015-07-01

    This paper presents the findings of the research properties evaluation pastes of commercial cement (CPC), mixed with fly ash (FA) and granulated blast furnace slag (GBFS). Initially, the sample of 30 combinations were evaluated in terms of compressive strength to establish the optimal proportions from raw material. After that, four optimized blends were characterized during the setting and hardening process. Electrochemical tests were performed on concrete cylinders samples prepared with cementitious materials and a structural steel rod placed in the center of the specimen. With the objective to evaluate the performance before corrosion, thermodynamic and kinetic aspects were taken into consideration. The findings showed that commercial cements blended with fly ash and blast furnace slag as the ones used in this research presents a decreased behavior in mechanical and corrosion strength regarding to CPC. (Author)

  11. Effect of air-blast drying and the presence of protectants on the viability of yeast entrapped in calcium alginate beads with an aim to improve the survival rate.

    Science.gov (United States)

    Kim, Dong-Hwan; Lee, Sae-Byuk; Park, Heui-Dong

    2017-01-01

    Five yeast strains, Saccharomyces cerevisiae D8, M12, and S13; Hanseniaspora uvarum S6; and Issatchenkia orientalis KMBL5774, isolated from Korean grapes, were entrapped in Ca-alginate beads, which are non-toxic, simple to use, and economical. Ca-alginate beads containing yeast cells were soaked in protective solutions, such as skim milk, saccharides, polyols, and nitrogen compounds, before air-blast drying to improve the yeast survival rate and storage ability. The results showed that both entrapment in Ca-alginate beads and soaking in protective agents favorably affected the survival of all strains. The microenvironment formed by the beads and protective agents can protect the yeast cells from harsh environmental conditions, such as low water (below 10 %). All the yeast strains entrapped in Ca-alginate beads showed greater than 80 % survival and less than 11 % water content after air-blast drying at 37 °C for 5 h. In addition, air-blast dried cells of S. cerevisiae D8, M12, S13; H. uvarum S6; and I. orientalis KMBL5774 entrapped in 2 % Ca-alginate beads and soaked in protective agents (10 % skim milk containing 10 % sucrose, 10 % raffinose, 10 % trehalose, 10 % trehalose, and 10 % glucose, respectively) after air-blast drying at 37 °C for 5 h showed 90, 87, 92, 90, and 87 % viability, respectively. All dried entrapped yeast cells showed survival rates of at least 51 % after storage at 4 °C for 3 months.

  12. Prediction of Near-Field Wave Attenuation Due to a Spherical Blast Source

    Science.gov (United States)

    Ahn, Jae-Kwang; Park, Duhee

    2017-11-01

    Empirical and theoretical far-field attenuation relationships, which do not capture the near-field response, are most often used to predict the peak amplitude of blast wave. Jiang et al. (Vibration due to a buried explosive source. PhD Thesis, Curtin University, Western Australian School of Mines, 1993) present rigorous wave equations that simulates the near-field attenuation to a spherical blast source in damped and undamped media. However, the effect of loading frequency and velocity of the media have not yet been investigated. We perform a suite of axisymmetric, dynamic finite difference analyses to simulate the propagation of stress waves induced by spherical blast source and to quantify the near-field attenuation. A broad range of loading frequencies, wave velocities, and damping ratios are used in the simulations. The near-field effect is revealed to be proportional to the rise time of the impulse load and wave velocity. We propose an empirical additive function to the theoretical far-field attenuation curve to predict the near-field range and attenuation. The proposed curve is validated against measurements recorded in a test blast.

  13. An Introductory Characterization of a Combat-Casualty-Care Relevant Swine Model of Closed Head Injury Resulting from Exposure to Explosive Blast

    Science.gov (United States)

    2009-07-08

    more recently in Operation Enduring Freedom(OEF). The polytraumatic nature of blast injuries is evidence of their effectiveness, and brain injury...The polytraumatic nature of blast injuries is evidence of their effectiveness, and brain injury is a frequent and debilitating form of this trauma...injury in OIF (Hoge et al., eration Iraqi Freedom (OIF). Soon after the invasion of Iraq in 2008), and they were multifocal and polytraumatic . The

  14. Review of methods to attenuate shock/blast waves

    Science.gov (United States)

    Igra, O.; Falcovitz, J.; Houas, L.; Jourdan, G.

    2013-04-01

    Quick and reliable shock wave attenuation is the goal of every protection facility and therefore it is not surprising that achieving this has drawn much attention during the past hundred years. Different options have been suggested; their usefulness varying from a reasonable protection to the opposite, a shock enhancement. An example for a suggestion for shock mitigation that turned out to be an enhancement of the impinging shock wave was the idea to cover a protected object with a foam layer. While the pressure behind the reflected shock wave from the foam frontal surface was smaller than that recorded in a similar reflection from a rigid wall [25], the pressure on the “protected” surface, attached to the foam's rear-surface, was significantly higher than that recorded in a similar reflection from a bare, rigid wall [11]. In protecting humans and installations from destructive shock and/or blast waves the prime goal is to reduce the wave amplitude and the rate of pressure increase across the wave front. Both measures result in reducing the wave harmful effects. During the past six decades several approaches for achieving the desired protection have been offered in the open literature. We point out in this review that while some of the suggestions offered are practical, others are impractical. In our discussion we focus on recent schemes for shock/blast wave attenuation, characterized by the availability of reliable measurements (notably pressure and optical diagnostics) as well as high-resolution numerical simulations.

  15. Structural dynamic and resistance to nuclear air blast

    International Nuclear Information System (INIS)

    Qureshi, S.M.

    2003-01-01

    A need exists to design protective shelters attached to specialized facilities against nuclear airbursts, explosive shocks and impacting projectiles. Designing such structures against nuclear and missile impact is a challenging task that needs to be looked into for design methodology formulation and practicability. Structures can be designed for overpressure pulsed generated by a nuclear explosion as well as the scabbing and perforation/punching of an impacting projectile. This paper discuses and formulates the methods of dynamic analysis and design required to undertake such a task. Structural resistance to peak overpressure pulse for a 20 KT weapons and smaller tactical nuclear weapons of 1 KT (16 psi, overpressure) size as a direct air blast overpressure has been considered in design of walls, beams and slabs of a special structure under review. The design of shear reinforcement as lacing is also carried out. Adopting the philosophy of strengthening and hardening can minimize the effect of air blast overpressure and projectile impact. The objective is to avoid a major structural failure. The structure then needs to be checked against ballistic penetration by a range of weapons or be required to resist explosive penetration from the charge detonated in contact with the structure. There is also a dire need to formulate protective guidelines for all existing and future critical facilities. (author)

  16. Database indexing for production MegaBLAST searches.

    Science.gov (United States)

    Morgulis, Aleksandr; Coulouris, George; Raytselis, Yan; Madden, Thomas L; Agarwala, Richa; Schäffer, Alejandro A

    2008-08-15

    The BLAST software package for sequence comparison speeds up homology search by preprocessing a query sequence into a lookup table. Numerous research studies have suggested that preprocessing the database instead would give better performance. However, production usage of sequence comparison methods that preprocess the database has been limited to programs such as BLAT and SSAHA that are designed to find matches when query and database subsequences are highly similar. We developed a new version of the MegaBLAST module of BLAST that does the initial phase of finding short seeds for matches by searching a database index. We also developed a program makembindex that preprocesses the database into a data structure for rapid seed searching. We show that the new 'indexed MegaBLAST' is faster than the 'non-indexed' version for most practical uses. We show that indexed MegaBLAST is faster than miBLAST, another implementation of BLAST nucleotide searching with a preprocessed database, for most of the 200 queries we tested. To deploy indexed MegaBLAST as part of NCBI'sWeb BLAST service, the storage of databases and the queueing mechanism were modified, so that some machines are now dedicated to serving queries for a specific database. The response time for such Web queries is now faster than it was when each computer handled queries for multiple databases. The code for indexed MegaBLAST is part of the blastn program in the NCBI C++ toolkit. The preprocessor program makembindex is also in the toolkit. Indexed MegaBLAST has been used in production on NCBI's Web BLAST service to search one version of the human and mouse genomes since October 2007. The Linux command-line executables for blastn and makembindex, documentation, and some query sets used to carry out the tests described below are available in the directory: ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/indexed_megablast [corrected] Supplementary data are available at Bioinformatics online.

  17. Gene interactions and genetics of blast resistance and yield

    Indian Academy of Sciences (India)

    Blast disease caused by the pathogen Pyricularia oryzae is a serious threat to rice production. Six generations viz., P1, P2, F1, F2, B1 and B2 of a cross between blast susceptible high-yielding rice cultivar ADT 43 and resistant near isogenic line (NIL) CT13432-3R, carrying four blast resistance genes Pi1, Pi2, Pi33 and Pi54 ...

  18. The Pre-Blast Concept for use on Armour Materials

    Science.gov (United States)

    2016-02-01

    UNCLASSIFIED UNCLASSIFIED The Pre-Blast Concept for use on Armour Materials C. Choi1, C. Peng2 and B. Dixon1 1Land Division Defence...to improve blast resistance Repeated blast test results (up to 7 times) of candidate armour materials showed that the greatest deformation...evidence of cracking in the armour steels and Crack-starter explosion bulge testing of the armour steels at -18 ºC demonstrated that the steels have

  19. Identification and detection of murine leukemia blasts by flow cytometry

    OpenAIRE

    sprotocols

    2015-01-01

    Human leukemia has been determined and classified with the help of flow cytometry for the past two decades. Past attempts to detect leukemia blasts relied on both forward and side scatter (FSC and SSC) based on cell size and granularity. However, this technique failed to show a clean separation of blasts from normal lineage cells. In 1993, Borowitz, et al developed flow cytometric analysis to distinguish human leukemia blasts from other normal lineage cells by using fluorescence-conjugated CD...

  20. Proceedings of the eighteenth annual conference on explosives and blasting technique

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This edition of the Proceedings of the Annual Conference on Explosives and Blasting Techniques is the eighteenth in a series published by the International Society of Explosives Engineers. The papers cover a wide variety of explosives and blasting techniques, including: rock mechanics, rock drilling, perimeter control handling and documenting blasting complaints, blast vibration frequencies, blasting techniques for surface and underground coal mines, explosives for permafrost blasting, lightning detection, use of slow motion video to analyze blasts, tunneling, and close-in blasting control. Papers have been processed individually for inclusion on the data base

  1. Simulation and scaling analysis of a spherical particle-laden blast wave

    Science.gov (United States)

    Ling, Y.; Balachandar, S.

    2018-02-01

    A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.

  2. Prediction of globe rupture caused by primary blast: a finite element analysis.

    Science.gov (United States)

    Liu, Xiaoyu; Wang, Lizhen; Wang, Chao; Fan, Jie; Liu, Songyang; Fan, Yubo

    2015-07-01

    Although a human eye comprises less than 0.1% of the frontal body surface area, injuries to the eye are found to be disproportionally common in survivors of explosions. This study aimed to introduce a Lagrangian-Eulerian coupling model to predict globe rupture resulting from primary blast effect. A finite element model of a human eye was created using Lagrangian mesh. An explosive and its surrounding air domain were modelled using Eulerian mesh. Coupling the two models allowed simulating the blast wave generation, propagation and interaction with the eye. The results showed that the peak overpressures caused by blast wave on the corneal apex are 2080, 932.1 and 487.3 kPa for the victim distances of 0.75, 1.0 and 1.25 m, respectively. Higher stress occurred at the limbus, where the peaks for the three victim distances are 25.5, 14.1 and 6.4 MPa. The overpressure threshold of globe rupture was determined as 2000 kPa in a small-scale explosion. The findings would provide insights into the mechanism of primary blast-induced ocular injuries.

  3. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    Directory of Open Access Journals (Sweden)

    Steven Kelly

    Full Text Available The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  4. Characterization of rue extract and its potential for controlling rice blast

    Directory of Open Access Journals (Sweden)

    Karinna Bannach Reis

    2015-12-01

    Full Text Available Abstract: The objective of this work was to purify and standardize the rue (Ruta graveolens extract and evaluate its effect on Magnaporthe oryzae as an alternative to the integrated management of rice blast. The drug was characterized, the liquid extract was obtained, and the methodology for quantifying the standard markers psoralen and bergapten was validated. Rue extract and the markers, solely or in combination, were assayed in vitro, as well as in greenhouse conditions, for their ability to suppress leaf blast, by the evaluation of mycelial growth, conidial germination, and appressorium formation. Rue extract inhibited M. oryzae mycelial growth (100%, conidial germination (LD50=0.237 mg, and the appressorium formation (LD50=0.121 mg; besides, the extract reduced leaf blast severity by 80.84%. Fluorescence microscopy showed that rue extract did not damage M. oryzae cell wall and plasma membrane, indicating another mode of action. Rue extract has a great potential for controlling rice leaf blast.

  5. Blast injury prevalence in skeletal remains: Are there differences between Bosnian war samples and documented combat-related deaths?

    Science.gov (United States)

    Dussault, Marie Christine; Hanson, Ian; Smith, Martin J

    2017-11-01

    Court cases at the International Criminal Tribunal for the Former Yugoslavia (ICTY) have seen questions raised about the recognition and causes of blast-related trauma and the relationship to human rights abuses or combat. During trials, defence teams argued that trauma was combat related and prosecutors argued that trauma was related to executions. We compared a sample of 81 cases (males between 18 and 75) from a Bosnian mass grave investigation linked to the Kravica warehouse killings to published combat-related blast injury data from World War One, Vietnam, Northern Ireland, the first Gulf War, Operation Iraqi Freedom and Afghanistan. We also compared blast fracture injuries from Bosnia to blast fracture injuries sustained in bombings of buildings in two non-combat 'civilian' examples; the Oklahoma City and Birmingham pub bombings. A Chi-squared statistic with a Holm-Bonferroni correction assessed differences between prevalence of blast-related fractures in various body regions, where data were comparable. We found statistically significant differences between the Bosnian and combat contexts. We noted differences in the prevalence of head, torso, vertebral area, and limbs trauma, with a general trend for higher levels of more widespread trauma in the Bosnian sample. We noted that the pattern of trauma in the Bosnian cases resembled the pattern from the bombing in buildings civilian contexts. Variation in trauma patterns can be attributed to the influence of protective armour; the context of the environment; and the type of munition and its injuring mechanism. Blast fracture injuries sustained in the Bosnian sample showed patterns consistent with a lack of body armour, blast effects on people standing in enclosed buildings and the use of explosive munitions. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  6. WU-Blast2 server at the European Bioinformatics Institute

    Science.gov (United States)

    Lopez, Rodrigo; Silventoinen, Ville; Robinson, Stephen; Kibria, Asif; Gish, Warren

    2003-01-01

    Since 1995, the WU-BLAST programs (http://blast.wustl.edu) have provided a fast, flexible and reliable method for similarity searching of biological sequence databases. The software is in use at many locales and web sites. The European Bioinformatics Institute's WU-Blast2 (http://www.ebi.ac.uk/blast2/) server has been providing free access to these search services since 1997 and today supports many features that both enhance the usability and expand on the scope of the software. PMID:12824421

  7. Full-scale testing and numerical modeling of a multistory masonry structure subjected to internal blast loading

    Science.gov (United States)

    Zapata, Brian Jarvis

    provided highly resolved spatio-temporal blast loading data for subsequent structural simulations. Equivalent single-degree-of-freedom (ESDOF) structural response models were then used to predict the out-of-plane deflections of blast chamber walls. A new resistance function was developed which permits a URM wall to crack at any height; numerical methodologies were also developed to compute transformation factors required for use in the ESDOF method. When combined with the CTH derived blast loading predictions, the ESDOF models were able to predict out-of-plane deflections with reasonable accuracy. Further investigations were performed using finite element models constructed in LS-DYNA; the models used elastic elements combined with contacts possessing a tension/shear cutoff and the ability to simulate fracture energy release. Using the CTH predicted blast loads and carefully selected constitutive parameters, the LS-DYNA models were able to both qualitatively and quantitatively predict blast chamber wall deflections and damage patterns. Moreover, the finite element models suggested several modes of response which cannot be modeled by current ESDOF methods; the effect of these response modes on the accuracy of ESDOF predictions warrants further study.

  8. Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to ‘composite’ blast.

    Directory of Open Access Journals (Sweden)

    Stanislav I. Svetlov

    2012-02-01

    Full Text Available A number of experimental models of blast brain injury have been implemented in rodents and larger animals. However, the variety of blast sources and the complexity of blast wave biophysics have made data on injury mechanisms and biomarkers difficult to analyze and compare. Recently, we showed the importance of rat position towards blast generated by an external shock tube. In this study, we further characterized blast producing moderate TBI and defined ‘composite’ blast and primary blast exposure set-ups. Schlieren optics visualized interaction between the head and a shock wave generated by external shock tube, revealing strong head acceleration upon positioning the rat on-axis with the shock tube (composite blast, but negligible skull movement upon peak overpressure exposure off-axis (primary blast. Brain injury signatures of a primary blast hitting the frontal head were assessed and compared to damage produced by composite blast. Low to negligible levels of neurodegeneration were found following primary blast compared to composite blast by silver staining. However, persistent gliosis in hippocampus and accumulation of GFAP/CNPase in circulation was detected after both primary and composite blast. Also, markers of vascular/endothelial inflammation integrin alpha/beta, sICAM, and L-selectin along with neurotrophic factor NGF-beta were increased in serum within 6 hours post-blasts and persisted for 7 days thereafter. In contrast, systemic IL-1, IL-10, fractalkine, neuroendocrine peptide Orexin A, and VEGF receptor Neuropilin-2 (NRP-2 were raised predominantly after primary blast exposure. In conclusion, biomarkers of major pathological pathways were elevated at all blast setups. The most significant and persistent changes in neuro-glial markers were found after composite blast, while primary blast instigated prominent systemic cytokine/chemokine, Orexin A, and Neuropilin-2 release, particularly when primary blast impacted rats with

  9. A Phased Array Approach to Rock Blasting

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Gertsch; Jason Baird

    2006-07-01

    A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

  10. The use of vibration monitoring to record the blasting works impact on buildings surrounding open-pit mines

    Science.gov (United States)

    Sołtys, Anna; Pyra, Józef; Winzer, Jan

    2018-04-01

    Environmental protection law and geological and mining law require the mineral mining plant to protect its surroundings from the effects of mining operations. This also applies to the negative impact of vibrations induced by blasting works on people and construction facilities. Effective protection is only possible if the level of this impact is known, therefore it is necessary to record it. The thesis formulated in this way has been and continues to be the guiding principle of the research works carried out in the AGH Laboratory of Blasting Work and Environmental Protection. As a result of these works are procedures for conducting preventive activities by open-pit mines in order to minimize the impact of blasting on facilities in the surrounding area. An important element of this activity is the monitoring of vibrations in constructions, which is a source of knowledge for excavation supervisors and engineers performing blasting works, thus contributing to raising the awareness of the responsible operation of the mining plant. Developed in the Laboratory of the Mine's Vibration Monitoring Station (KSMD), after several modernizations, it became a fully automated system for monitoring and recording the impact of blasting works on the surrounding environment. Currently, there are 30 measuring devices in 10 open-pit mines, and additional 8 devices are used to provide periodic measurement and recording services for the mines concerned.

  11. The use of vibration monitoring to record the blasting works impact on buildings surrounding open-pit mines

    Directory of Open Access Journals (Sweden)

    Sołtys Anna

    2018-01-01

    Full Text Available Environmental protection law and geological and mining law require the mineral mining plant to protect its surroundings from the effects of mining operations. This also applies to the negative impact of vibrations induced by blasting works on people and construction facilities. Effective protection is only possible if the level of this impact is known, therefore it is necessary to record it. The thesis formulated in this way has been and continues to be the guiding principle of the research works carried out in the AGH Laboratory of Blasting Work and Environmental Protection. As a result of these works are procedures for conducting preventive activities by open-pit mines in order to minimize the impact of blasting on facilities in the surrounding area. An important element of this activity is the monitoring of vibrations in constructions, which is a source of knowledge for excavation supervisors and engineers performing blasting works, thus contributing to raising the awareness of the responsible operation of the mining plant. Developed in the Laboratory of the Mine's Vibration Monitoring Station (KSMD, after several modernizations, it became a fully automated system for monitoring and recording the impact of blasting works on the surrounding environment. Currently, there are 30 measuring devices in 10 open-pit mines, and additional 8 devices are used to provide periodic measurement and recording services for the mines concerned.

  12. Analysis of post-blasting source mechanisms of mining-induced seismic events in Rudna copper mine, Poland

    Directory of Open Access Journals (Sweden)

    Caputa Alicja

    2015-10-01

    Full Text Available The exploitation of georesources by underground mining can be responsible for seismic activity in areas considered aseismic. Since strong seismic events are connected with rockburst hazard, it is a continuous requirement to reduce seismic risk. One of the most effective methods to do so is blasting in potentially hazardous mining panels. In this way, small to moderate tremors are provoked and stress accumulation is substantially reduced. In this paper we present an analysis of post-blasting events using Full Moment Tensor (MT inversion at the Rudna mine, Poland, underground seismic network. In addition, we describe the problems we faced when analyzing seismic signals. Our studies show that focal mechanisms for events that occurred after blasts exhibit common features in the MT solution. The strong isotropic and small Double Couple (DC component of the MT, indicate that these events were provoked by detonations. On the other hand, post-blasting MT is considerably different than the MT obtained for strong mining events. We believe that seismological analysis of provoked and unprovoked events can be a very useful tool in confirming the effectiveness of blasting in seismic hazard reduction in mining areas.

  13. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3

    International Nuclear Information System (INIS)

    Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F.

    2012-01-01

    The hydration and microstructural evolution of three alkali activated slags (AAS) with Al 2 O 3 contents between 7 and 17% wt.% have been investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na 2 SiO 3 ·5H 2 O. The formation of C(-A)–S–H and hydrotalcite was observed in all samples by X-ray diffraction, thermal analysis and scanning electron microscopy. Higher Al 2 O 3 content of the slag decreased the Mg/Al ratio of hydrotalcite, increased the Al incorporation in the C(-A)-S-H and led to the formation of strätlingite. Increasing Al 2 O 3 content of the slag slowed down the early hydration and a lower compressive strength during the first days was observed. At 28 days and longer, no significant effects of slag Al 2 O 3 content on the degree of hydration, the volume of the hydrates, the coarse porosity or on the compressive strengths were observed.

  14. Plastic Media Blasting Data Gathering Study

    Science.gov (United States)

    1986-12-01

    matt, reducing the filtering surface. 25 3) Cartridge Collectors: Cartridge dust collectors consist of a number of nonwoven tubular filters placed...by up to 90 percent. This task gathered data in five areas: chemical stripping, equipment and facilities, economics, safety and health , and surface...analyses conducted for the blast booth at Hill Air Force Base. The Safety section discusses the safety and health risks associated with PMB such as

  15. Nuclear blast and fall-out shelter

    International Nuclear Information System (INIS)

    Daroga, N.D.

    1984-01-01

    A nuclear blast and fall-out shelter is described with automatically controlled oxygen supply means, air reconditioning means to remove CO and CO 2 , a hand operated pump for introducing external air if required, an over-pressure outlet valve, and means for automatically measuring the proportion of CO and CO 2 in the air in the shelter and giving an alarm signal in case of danger. (author)

  16. Blast Performance of Four Armour Materials

    Science.gov (United States)

    2013-08-01

    Charpy V- notch impact toughness results, as well as the highest carbon content of the steels tested . 5. For all steels the greatest deformation...Explosion Bulge Test (EBT). A number of conclusions may be drawn from these investigations and are summarised as follows: All steels tested were...good toughness and greater ductility, but less hardness. Multiple blast testing showed that steel A and steel M possessed the best resistance to

  17. Blast Injuries: What Clinicians Need to Know

    Centers for Disease Control (CDC) Podcasts

    2008-11-05

    In this podcast, Dr. Richard C. Hunt, Director of the CDC’s Division of Injury Response, National Center for Injury Prevention and Control provides a brief overview for health care providers on how to respond and care for persons injured by an explosion or blast event.  Created: 11/5/2008 by National Center for Injury Prevention and Control (NCIPC), Division of Injury Response (DIR).   Date Released: 11/6/2008.

  18. Centrifugal shot blasting. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-07-01

    At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer

  19. Advanced MRI in Blast-related TBI

    Science.gov (United States)

    2012-07-01

    this study possible; the staff at the LRMC MRI clinic, including Don Al- brant, Kenny Caywood, Kelly McKay, Tim McKay, Tim Roberts, Kris Robertson...erans with persistent post-concussive symp- toms . Neuroimage 2011;54:Suppl 1:S76- S82. 12. Warden DL, French LM, Shupenko L, et al. Case report of a...Luethcke CA, Bryan CJ, Morrow CE, Isler WC. Comparison of concussive symp- toms , cognitive performance, and psycho- logical symptoms between acute blast

  20. D-BLAST OFDM with Channel Estimation

    Directory of Open Access Journals (Sweden)

    Du Jianxuan

    2004-01-01

    Full Text Available Multiple-input and multiple-output (MIMO systems formed by multiple transmit and receive antennas can improve performance and increase capacity of wireless communication systems. Diagonal Bell Laboratories Layered Space-Time (D-BLAST structure offers a low-complexity solution for realizing the attractive capacity of MIMO systems. However, for broadband wireless communications, channel is frequency-selective and orthogonal frequency division multiplexing (OFDM has to be used with MIMO techniques to reduce system complexity. In this paper, we investigate D-BLAST for MIMO-OFDM systems. We develop a layerwise channel estimation algorithm which is robust to channel variation by exploiting the characteristic of the D-BLAST structure. Further improvement is made by subspace tracking to considerably reduce the error floor. Simulation results show that the layerwise estimators require 1 dB less signal-to-noise ratio (SNR than the traditional blockwise estimator for a word error rate (WER of when Doppler frequency is 40 Hz. Among the layerwise estimators, the subspace-tracking estimator provides a 0.8 dB gain for WER with 200 Hz Doppler frequency compared with the DFT-based estimator.

  1. Blast furnace hearth lining: post mortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando, E-mail: bva@usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Neves; Elton Silva; Silva, Sidiney Nascimento [Companhia Siderugica Nacional (CSN), Rio de Janeiro, RJ (Brazil)

    2017-05-15

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10{sup 6} ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  2. Multiphase blast interaction between heterogeneous explosives

    Science.gov (United States)

    Ripley, Robert; Ryan, Sydney; Jenkins, Charles M.

    2017-06-01

    Spherical charges loaded with micrometric metal powders feature explosively dispersed particle fields. The interaction phenomena of opposing multiphase flow fields from multiple charges depend on the charge spacing, loading configuration and particle morphology. For identical heterogeneous charges with a separation distance in the near field, the multiphase blast interaction includes particle-particle collision in the shocked air and impinging detonation products between the charges. Experiments recorded using high-speed framing cameras show the blast interaction process and resolve details of the multiphase structures. Hydrocode simulations are conducted using inelastic Lagrangian particle groups with a Direct Simulation Monte Carlo particle collision model. The numerical results distinguish the multiphase interaction layer and gas dynamic boundaries, with an emphasis on the particle laden Mach stem. The experimental results provide data for comparison to the interacting front velocities and Mach stem velocity. Modeling results for twin charges are shown to be different from a single heterogeneous blast reflection due to the stochastic and dissipative particle collisions. Remaining differences between the experimental and numerical results are discussed. The numerical results are further analyzed to assess particle fragmentation and potential for enhanced reaction in the interaction region between heterogeneous charges. DISTRIBUTION A. Approved for public release; distribution is unlimited. 96TW-2017-0079.

  3. Verification of wet blasting decontamination technology

    International Nuclear Information System (INIS)

    Matsubara, Sachito; Murayama, Kazunari; Yoshida, Hirohisa; Igei, Shigemitsu; Izumida, Tatsuo

    2013-01-01

    Macoho Co., Ltd. participated in the projects of 'Decontamination Verification Test FY 2011 by the Ministry of the Environment' and 'Decontamination Verification Test FY 2011 by the Cabinet Office.' And we tested verification to use a wet blasting technology for decontamination of rubble and roads contaminated by the accident of Fukushima Daiichi Nuclear Power Plant of the Tokyo Electric Power Company. As a results of the verification test, the wet blasting decontamination technology showed that a decontamination rate became 60-80% for concrete paving, interlocking, dense-grated asphalt pavement when applied to the decontamination of the road. When it was applied to rubble decontamination, a decontamination rate was 50-60% for gravel and approximately 90% for concrete and wood. It was thought that Cs-134 and Cs-137 attached to the fine sludge scraped off from a decontamination object and the sludge was found to be separated from abrasives by wet cyclene classification: the activity concentration of the abrasives is 1/30 or less than the sludge. The result shows that the abrasives can be reused without problems when the wet blasting decontamination technology is used. (author)

  4. Blast Wave Mitigation in Granular Materials

    Science.gov (United States)

    Pontalier, Quentin; Lhoumeau, Maxime; Frost, David

    2017-06-01

    A common technique to mitigate the blast wave from a high explosive is to surround the explosive with a layer of inert particles or liquid. In the case of a powder layer in spherical geometry, the spherically expanding shock wave that propagates first within the porous powder bed has a complex structure and induces the formation of force chains through particles in contact, shock propagation in the interstitial gas, and leads to shock compaction and deformation of the particle bed. Overall, the shock accelerates the particles and heats the gas in the pores and the partition of the total energy between kinetic and internal energy is primarily a function of the layer porosity and mass ratio of material to explosive. This energy partition is explored computationally with a multiphase hydrocode as a function of the bed parameters and compared with the case of a homogeneous liquid. The results are compared with experiments which track the strength of the blast wave emerging from the material layer as well as the material velocity using high-speed photography. For a given mass ratio, the strength of the blast wave transmitted into the air and the material velocity are significantly lower for particle beds than liquid layers due to energy dissipation during compaction of the bed.

  5. Blast mines: physics, injury mechanisms and vehicle protection.

    Science.gov (United States)

    Ramasamy, A; Hill, A M; Hepper, A E; Bull, A M J; Clasper, J C

    2009-12-01

    Since World War II, more vehicles have been lost to land mines than all other threats combined. Anti-vehicular (AV) mines are capable of disabling a heavy vehicle, or completely destroying a lighter vehicle. The most common form of AV mine is the blast mine, which uses a large amount of explosive to directly damage the target. In a conventional military setting, landmines are used as a defensive force-multiplier and to restrict the movements of the opposing force. They are relatively cheap to purchase and easy to acquire, hence landmines are also potent weapons in the insurgents' armamentarium. The stand-offnature of its design has allowed insurgents to cause significant injuries to security forces in current conflicts with little personal risk. As a result, AV mines and improvised explosive devices (IEDs) have become the most common cause of death and injury to Coalition and local security forces operating in Iraq and Afghanistan. Detonation of an AV mine causes an explosive, exothermic reaction which results in the formation of a shockwave followed by a rapid expansion of gases. The shockwave is mainly reflected by the soillair interface and fractures the soil cap overthe mine. The detonation products then vent through the voids in the soil, resulting in a hollow inverse cone which consists of the detonation gases surrounded by the soil ejecta. It is the combination of the detonation products and soil ejecta that interact with the target vehicle and cause injury to the vehicle occupants. A number of different strategies are required to mitigate the blast effects of an explosion. Primary blast effects can be reduced by increasing the standoff distance between the seat of the explosion and the crew compartment. Enhancement of armour on the base of the vehicle, as well as improvements in personal protection can prevent penetration of fragments. Mitigating tertiary effects can be achieved by altering the vehicle geometry and structure, increasing vehicle mass, as

  6. Primary Blast-Induced Changes in Akt and GSK3β Phosphorylation in Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Yushan Wang

    2017-08-01

    Full Text Available Traumatic brain injury (TBI due to blast from improvised explosive devices has been a leading cause of morbidity and mortality in recent conflicts in Iraq and Afghanistan. However, the mechanisms of primary blast-induced TBI are not well understood. The Akt signal transduction pathway has been implicated in various brain pathologies including TBI. In the present study, the effects of simulated primary blast waves on the phosphorylation status of Akt and its downstream effector kinase, glycogen synthase kinase 3β (GSK3β, in rat hippocampus, were investigated. Male Sprague-Dawley (SD rats (350–400 g were exposed to a single pulse shock wave (25 psi; ~7 ms duration and sacrificed 1 day, 1 week, or 6 weeks after exposure. Total and phosphorylated Akt, as well as phosphorylation of its downstream effector kinase GSK3β (at serine 9, were detected with western blot analysis and immunohistochemistry. Results showed that Akt phosphorylation at both serine 473 and threonine 308 was increased 1 day after blast on the ipsilateral side of the hippocampus, and this elevation persisted until at least 6 weeks postexposure. Similarly, phosphorylation of GSK3β at serine 9, which inhibits GSK3β activity, was also increased starting at 1 day and persisted until at least 6 weeks after primary blast on the ipsilateral side. In contrast, p-Akt was increased at 1 and 6 weeks on the contralateral side, while p-GSK3β was increased 1 day and 1 week after primary blast exposure. No significant changes in total protein levels of Akt and GSK were observed on either side of the hippocampus at any time points. Immunohistochemical results showed that increased p-Akt was mainly of neuronal origin in the CA1 region of the hippocampus and once phosphorylated, the majority was translocated to the dendritic and plasma membranes. Finally, electrophysiological data showed that evoked synaptic N-methyl-d-aspartate (NMDA receptor activity was

  7. Numerical Investigation of Structural Response of Corrugated Blast Wall Depending on Blast Load Pulse Shapes

    Directory of Open Access Journals (Sweden)

    Jung Min Sohn

    Full Text Available Abstract Hydrocarbon explosions are one of most hazardous events for workers on offshore platforms. To protect structures against explosion loads, corrugated blast walls are typically installed. However, the profiles of real explosion loads are quite different depending on the congestion and confinement of Topside structures. As the level of congestion and confinement increases, the explosion load increases by up to 8 bar, and the rising time of the load decreases. This study primarily aims to investigate the structural behavior characteristics of corrugated blast walls under different types of explosion loadings. Four loading shapes were applied in the structural response analysis, which utilized a dynamic nonlinear finite element method.

  8. Blast/fire interactions: Asilomar conference, April 1981

    International Nuclear Information System (INIS)

    Martin, S.B.; Alger, R.S.

    1981-08-01

    This report summarizes the proceedings of the FEMA-sponsored conference on blast/fire research held April 20-24, 1981, at Asilomar, California. This conference, the fourth of our annual series, convened a select group of authorities on fire effects, airblast effects, structural responses, and related technologies to explore avenues of research for remedying the technical deficiencies that limit analytical progress and to seek means for providing interim guidance to mitigation planning and countermeasure implementation. A redirected R and D program (derived by consensus of conferee recommendations) that appears consistent with national priorities and the perceived urgency for increased national security is offered. Program elements are listed in priority order, and contingent levels of funding are provided to aid FEMA budgetary planning

  9. Studies on induction of blast-resistant mutation in rice

    International Nuclear Information System (INIS)

    Tanaka, Sachihiko; Kawai, Takeshi; Yamasaki, Yoshito; Niizeki, Hiroo; Kiyosawa, Shigehisa.

    1980-01-01

    The mutation frequency of blast resistance in rice and that of increased pathogenicity of blast fungi were examined, using the rice variety, Norin 8, which is susceptible to all races of blast fungi in Japan, and a fungus strain, Ina 168, which carries 6 virulent genes, respectively. Four different inoculation methods were employed for screening blast resistant mutants, i.e., spraying spore suspensions in growth chambers, in a greenhouse and in a field nursery, and injecting spore suspensions into newly developed tillers. The number of lesions and their types were used as the criteria of blast resistance. For screening the fungus mutants with increased pathogenicity, the spore suspensions of the fungi to be tested were sprayed on the seedlings of the blast resistant varieties, and when susceptible-type lesions were formed, single spores were isolated from these lesions, and the change in its pathogenicity was confirmed. When seeds were irradiated with gamma ray and treated with chemicals (EMS or EI), the frequency of the mutants with high resistance to blast was 5/4,575 and 4/5,851 respectively, in the M 2 generation. The frequency of dominant blast resistant mutations following gamma-ray irradiation at the pre-embryo stage of growing plants was 3/60,101 in the M 1 generation. When the spore suspensions of blast fungi were treated with X-ray, the frequency of the mutants with increased pathogenicity was about 0.5%. Thus, the mutants highly resistant against blast of rice induced by radiation or chemicals would eventually become susceptible varieties because blast fungus mutants occurred more frequently with increased pathogenicity. (Kaihara, S.)

  10. A Feasibility Study for Recycling Used Automotive Oil Filters In A Blast Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Ralph M. Smailer; Gregory L. Dressel; Jennifer Hsu Hill

    2002-01-21

    This feasibility study has indicated that of the approximately 120,000 tons of steel available to be recycled from used oil filters (UOF's), a maximum blast furnace charge of 2% of the burden may be anticipated for short term use of a few months. The oil contained in the most readily processed UOF's being properly hot drained and crushed is approximately 12% to 14% by weight. This oil will be pyrolized at a rate of 98% resulting in additional fuel gas of 68% and a condensable hydrocarbon fraction of 30%, with the remaining 2% resulting as carbon being added into the burden. Based upon the writer's collected information and assessment, there appears to be no operational problems relating to the recycling of UOF's to the blast furnace. One steel plant in the US has been routinely charging UOF's at about 100 tons to 200 tons per month for many years. Extensive analysis and calculations appear to indicate no toxic consideration as a result of the pyrolysis of the small contained oil ( in the 'prepared' UOFs) within the blast furnace. However, a hydrocarbon condensate in the ''gasoline'' fraction will condense in the blast furnace scrubber water and may require additional processing the water treatment system to remove benzene and toluene from the condensate. Used oil filters represent an additional source of high quality iron units that may be effectively added to the charge of a blast furnace for beneficial value to the operator and to the removal of this resource from landfills.

  11. Novel method to dynamically load cells in 3D-gel culture for primary blast injury studies

    Science.gov (United States)

    Sory, David; Cepa-Areias, Anabela; Overby, Darryl; Proud, William; Institute of Shock Physics, Department of Bioengineering; Royal British Legion CentreBlast I Collaboration

    2015-06-01

    For at least a century explosive devices have been reported as one of the most important causes of injuries on battlefield in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injury at the organ or tissue level, few studies have investigated the mechanism of blast injury at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses similar to those observed in blast waves. The experimental phase involved high strain rate axial compression of biological cylindrical specimens within a hermetically sealed sample holder made of a biocompatible polymer. Numerical simulations were performed in order to characterize the loading path within the sample and assess the loading conditions. A proof of concept is presented so as to establish a new window to address fundamental questions regarding primary blast injury at the cellular level. The Institute of Shock Physics acknowledges the support of AWE, Aldermaston, UK and Imperial College London. The Centre for Blast Injury Studies acknowledges the support of the Royal British Legion and Imperial College London.

  12. Defence responses in rice plants in prior and simultaneous applications of Cladosporium sp. during leaf blast suppression.

    Science.gov (United States)

    Chaibub, Amanda Abdallah; de Carvalho, Jacqueline Campos Borba; de Sousa Silva, Carlos; Collevatti, Rosane Garcia; Gonçalves, Fábio José; de Carvalho Barros Côrtes, Márcio Vinícius; de Filippi, Marta Cristina Corsi; de Faria, Fabrícia Paula; Lopes, Douglas Christian Borges; de Araújo, Leila Garcês

    2016-11-01

    An alternative method to control rice blast (Magnaporthe oryzae) is to include biological agent in the disease management strategy. The objective of this study was to assess the leaf blast-suppressing effects of rice phylloplane fungi. One Cladosporium sp. phylloplane fungus was shown to possess biocontrolling traits based on its morphological characteristics and an analysis of its 18S ribosomal DNA. Experiments aimed at determining the optimal time to apply the bioagent and the mechanisms involved in its rice blast-suppressing activities were performed under controlled greenhouse conditions. We used foliar spraying to apply the Cladosporium sp. 48 h prior to applying the pathogen, and we found that this increased the enzymatic activity. Furthermore, in vitro tests performed using isolate C24 showed that it possessed the ability to secrete endoxylanases and endoglucanases. When Cladosporium sp. was applied either prior to or simultaneous with the pathogen, we observed a significant increase in defence enzyme activity, and rice blast was suppressed by 84.0 and 78.6 %, respectively. However, some enzymes showed higher activity at 24 h while others did so at 48 h after the challenge inoculation. Cladosporium sp. is a biological agent that is capable of suppressing rice leaf blast by activating biochemical defence mechanisms in rice plants. It is highly adapted to natural field conditions and should be included in further studies aimed at developing strategies to support ecologically sustainable disease management and reduce environmental pollution by the judicious use of fungicidal sprays.

  13. Dietary Approaches to Protect Against Eye Blast Induced Oxidative Stress and Vision Loss

    Science.gov (United States)

    2016-11-01

    gained weight but did not develop diabetes . B, C) Mice on a control diet had decreased OP1 (A) and OP2 (B) amplitudes. Mice on a ketogenic diet had... ketogenic diet would be protective. We have completed at least one cohort for each experimental condition and plan to repeat the studies to confirm...effect. The ketogenic diet also did not elicit a protective effect after blast. Rather, we detected an increase in the inflammatory cytokine, IL-1

  14. Blast injury ear in a low intensity conflict.

    Science.gov (United States)

    Kakkar, A

    2001-07-01

    The Eardrum is the most sensitive organ involved i blast injury and can be ruptured at relatively low pressure differentials. This study presents 200 cases of traumatic perforation among service personnel involved in a low intensity conflict, treated in a forward zonal hospital. Most blast injuries of the tympanic membrane (TM) heal spontaneously with conservative treatment (83%).

  15. Blast injury ear in a low intensity conflict

    OpenAIRE

    Kakkar, Anil

    2001-01-01

    The Eardrum is the most sensitive organ involved i blast injury and can be ruptured at relatively low pressure differentials. This study presents 200 cases of traumatic perforation among service personnel involved in a low intensity conflict, treated in a forward zonal hospital. Most blast injuries of the tympanic membrane (TM) heal spontaneously with conservative treatment (83%).

  16. Single point methods for determining blast wave injury

    NARCIS (Netherlands)

    Teland, J.A.; Doormaal, J.C.A.M. van; Horst, M.J. van der; Svinsas, E.

    2011-01-01

    Models for calculating human injury from a blast wave are examined. The Axelsson BTD model is able to give injury estimates also for complex shock waves, but is difficult to use in practise since it requires input from four pressure sensors on a BTD (Blast Test Device) in the specific location. To

  17. Accidental hand grenade blast injuries in the Transkei region of ...

    African Journals Online (AJOL)

    The result is extensive mutilation of the body, particularly to those close to the blast. In this report the nature and .... Those who joined the liberation movements received training in firearms both within and outside the ... peak overpressures and positive-phase durations of blast waves.7 The simulated peak overpressure and ...

  18. Measurement and Modelling of Blast Movement to Reduce Ore ...

    African Journals Online (AJOL)

    This paper describes the application of the latest measurements and modelling techniques in understanding the blast dynamics and develops site specific solutions to minimise blast induced dilution and ore losses. These solutions are validated at Newmont Ahafo open pit mine through systematic trials and subsequently ...

  19. Blasting Standards for the Ghanaian Mining Industry | Amegbey ...

    African Journals Online (AJOL)

    Ghana is a well known mining nation and hard rock mining has been going on since the 10th century. Mining companies in Ghana are well aware of the regulatory requirements to carry out blasting activities such that neighbouring communities are protected from excessive impact as a result of blast vibrations amongst other ...

  20. Gene interactions and genetics of blast resistance and yield ...

    Indian Academy of Sciences (India)

    2014-08-11

    Aug 11, 2014 ... Keywords. blast; gene action; generation mean analysis; resistance; yield. Journal of Genetics, Vol. 93, No. .... Utilizing the variance of different generations, the variances of A, B, C and D scales were ...... Jia Y. 2003 Marker assisted selection for the control of rice blast disease. Pesticide Outlook 14 ...

  1. Delineating rockmass damage zones in blasting from in-field ...

    African Journals Online (AJOL)

    Delineating rockmass damage zones in blasting from in-field seismic velocity and peak particle velocity measurement. ... has been found that the integrity of rockmass is reduced significantly from pre to post blast condition due to disregard paid to the surrounding rockmass. For exercising suitable engineering controls ...

  2. Testing the blast wave model with Swift GRBs

    NARCIS (Netherlands)

    Curran, P.A.; Starling, R.L.C.; van der Horst, A.J.; Wijers, R.A.M.J.

    2009-01-01

    The complex structure of the light curves of Swift Gamma-Ray Bursts (GRBs) has made the identification of breaks, and the interpretation of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to identify breaks, which are possibly hidden, and to constrain the blast

  3. Testing the blast wave model with Swift GRBs

    NARCIS (Netherlands)

    Curran, P.A.; Starling, R.L.C.; van der Horst, A.J.; Wijers, R.A.M.J.; de Pasquale, M.; Page, M.

    2011-01-01

    The complex structure of the light curves of Swift GRBs (e.g. superimposed flares and shallow decay) has made their interpretation and that of the blast wave caused by the burst, more difficult than in the pre-Swift era. We aim to constrain the blast wave parameters: electron energy distribution, p,

  4. 30 CFR 75.1310 - Explosives and blasting equipment.

    Science.gov (United States)

    2010-07-01

    ... for use so long as the present approval is maintained. (e) Electric detonators shall be compatible... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosives and blasting equipment. 75.1310... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1310...

  5. 30 CFR 75.1316 - Preparation before blasting.

    Science.gov (United States)

    2010-07-01

    ... before blasting. (a)(1) All nonbattery-powered electric equipment, including cables, located within 50... cable or detonator circuitry shall not come in contact with energized electric equipment, including... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Preparation before blasting. 75.1316 Section 75...

  6. Fatigue behavior of Ti6Al4V and 316 LVM blasted with ceramic particles of interest for medical devices.

    Science.gov (United States)

    Barriuso, S; Chao, J; Jiménez, J A; García, S; González-Carrasco, J L

    2014-02-01

    Grit blasting is used as a cost-effective method to increase the surface roughness of metallic biomaterials, as Ti6Al4V and 316 LVM, to enhance the osteointegration, fixation and stability of implants. Samples of these two alloys were blasted by using alumina and zirconia particles, yielding rough (up to Ra~8μm) and nearly smooth (up to Ra~1μm) surfaces, respectively. In this work, we investigate the sub-surface induced microstructural effects and its correlation with the mechanical properties, with special emphasis in the fatigue behavior. Blasting with zirconia particles increases the fatigue resistance whereas the opposite effect is observed using alumina ones. As in a conventional shot penning process, the use of rounded zirconia particles for blasting led to the development of residual compressive stresses at the surface layer, without zones of stress concentrators. Alumina particles are harder and have an angular shape, which confers a higher capability to abrade the surface, but also a high rate of breaking down on impact. The higher roughness and the presence of a high amount of embedded alumina particles make the blasted alloy prone to crack nucleation. Interestingly, the beneficial or detrimental role of blasting is more intense for the Ti6Al4V alloy than for the 316 steel. It is proposed that this behavior is related to their different strain hardening exponents and the higher mass fraction of particles contaminating the surface. The low value of this exponent for the Ti6Al4V alloy justifies the expected low sub-surface hardening during the severe plastic deformation, enhancing its capability to soft during cyclic loading. © 2013 Published by Elsevier Ltd.

  7. Development and Application of Blast Casting Technique in Large-Scale Surface Mines: A Case Study of Heidaigou Surface Coal Mine in China

    Directory of Open Access Journals (Sweden)

    Li Ma

    2016-01-01

    Full Text Available Blast casting is a high-efficiency technique applied in surface mines for overburden removal and results in stripping cost savings. According to ballistic theory and center-of-mass frame basic movement principles, key factors influencing blast casting effect were analyzed, which include bench height and mining panel width, inclined angle of blast holes, explosive unit consumption (EUC, delay-time interval, presplitting, and blast hole pattern parameters. An intelligent design software was developed for obtaining better breaking and casting effect, and the error rates predicted with actual result can be controlled with 10%. Blast casting technique was successfully applied in Heidaigou Surface Coal Mine (HSCM with more than 34% of material casted into the inner dump. A ramp ditch was set within the middle inner dump for coal transportation. The procedure of stripping and excavating was implemented separately and alternately in the two sections around the middle ramp ditch. An unconstrained-nonlinear model was deduced for optimizing the shift distance of the middle ramp. The calculation results show that optimum shift distance of HSCM is 480 m, and the middle ditch should be shifted after 6 blast casting mining panels being stripped.

  8. 30 CFR 56.6404 - Separation of blasting circuits from power source.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of blasting circuits from power... MINES Explosives Electric Blasting § 56.6404 Separation of blasting circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall be locked in the open position except...

  9. 30 CFR 57.6404 - Separation of blasting circuits from power source.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Separation of blasting circuits from power... NONMETAL MINES Explosives Electric Blasting-Surface and Underground § 57.6404 Separation of blasting circuits from power source. (a) Switches used to connect the power source to a blasting circuit shall be...

  10. Survey of rice blast race identity for blast resistance gene identification in the USA and Puerto Rico

    Science.gov (United States)

    Rice blast disease is a significant threat to stable rice production in the USA and worldwide. The major resistance gene (Pi-ta) located within a cluster of resistance genes on rice chromosome 12 has been demonstrated to confer resistance to the rice blast disease. Katy, a rice cultivar released in ...

  11. Quarry blasts assessment and their environmental impacts on the nearby oil pipelines, southeast of Helwan City, Egypt

    Directory of Open Access Journals (Sweden)

    Adel M.E. Mohamed

    2013-06-01

    Full Text Available Ground vibrations induced by blasting in the cement quarries are one of the fundamental problems in the quarrying industry and may cause severe damage to the nearby utilities and pipelines. Therefore, a vibration control study plays an important role in the minimization of environmental effects of blasting in quarries. The current paper presents the influence of the quarry blasts at the National Cement Company (NCC on the two oil pipelines of SUMED Company southeast of Helwan City, by measuring the ground vibrations in terms of Peak Particle Velocity (PPV. The seismic refraction for compressional waves deduced from the shallow seismic survey and the shear wave velocity obtained from the Multi channel Analysis of Surface Waves (MASW technique are used to evaluate the closest site of the two pipelines to the quarry blasts. The results demonstrate that, the closest site of the two pipelines is of class B, according to the National Earthquake Hazard Reduction Program (NEHRP classification and the safe distance to avoid any environmental effects is 650 m, following the deduced Peak Particle Velocity (PPV and scaled distance (SD relationship (PPV = 700.08 × SD−1.225 in mm/s and the Air over Pressure (air blast formula (air blast = 170.23 × SD−0.071 in dB. In the light of prediction analysis, the maximum allowable charge weight per delay was found to be 591 kg with damage criterion of 12.5 mm/s at the closest site of the SUMED pipelines.

  12. Numerical modeling and characterization of blast waves for application in blast-induced mild traumatic brain injury research

    Science.gov (United States)

    Phillips, Michael G.

    Human exposure to blast waves, including blast-induced traumatic brain injury, is a developing field in medical research. Experiments with explosives have many disadvantages including safety, cost, and required area for trials. Shock tubes provide an alternative method to produce free field blast wave profiles. A compressed nitrogen shock tube experiment instrumented with static and reflective pressure taps is modeled using a numerical simulation. The geometry of the numerical model is simplified and blast wave characteristics are derived based upon static and pressure profiles. The pressure profiles are analyzed along the shock tube centerline and radially away from the tube axis. The blast wave parameters found from the pressure profiles provide guidelines for spatial location of a specimen. The location could be based on multiple parameters and provides a distribution of anticipated pressure profiles experience by the specimen.

  13. Slag wool manufacturing from blast furnace slag

    Directory of Open Access Journals (Sweden)

    Володимир Петрович Руських

    2016-11-01

    Full Text Available Slag wool is the most expensive and valuable product of blast furnace slag processing. Slag wool is in great demand nowadays. The article highlights the factors influencing the mineral wool quality: chemical composition that determines the acidity of the module, the temperature of the molten slag and the required slag jet thickness consistency. Mineral wool is produced by blowing air or steam into a jet of molten slag. As a result of it the slag crushes into droplets stretching. The resulting wool contains 5% slag and 95% air. The quality of the obtained slag wool depends on the module acidity of the slag. The blast furnace slags of «Ilyich iron and steel works of Mariupol» and «Azovstal iron & steel works» are the main (short slags – they give short fibers. To obtain high-quality long fiber wool it is necessary to add admixtures into basic blast furnace slag to reduce its basicity. As a result of the fuel and energy rising prices and the necessity to reduce the slag wool cost it is necessary to develop a new technology with fiery-liquid slag, with the removal of iron compounds and sulphur from the melts and the introduction of corrective additives to improve the quality of slag wool. Good thermal conductivity (about 0,03 kcal/m∙h∙°C and other indicators (resistance, volume weight make it possible to use the materials from slag wool (pads, rigid and semi-rigid plates as heat and sound insulating materials

  14. BLAST: RESOLVING THE COSMIC SUBMILLIMETER BACKGROUND

    International Nuclear Information System (INIS)

    Marsden, Gaelen; Chapin, Edward L.; Halpern, Mark; Ngo, Henry; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Bock, James J.; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Gundersen, Joshua O.; Hughes, David H.; Magnelli, Benjamin; Netterfield, Calvin B.; Olmi, Luca; Patanchon, Guillaume

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has made 1 deg 2 , deep, confusion-limited maps at three different bands, centered on the Great Observatories Origins Deep Survey South Field. By calculating the covariance of these maps with catalogs of 24 μm sources from the Far-Infrared Deep Extragalactic Legacy Survey, we have determined that the total submillimeter intensities are 8.60 ± 0.59, 4.93 ± 0.34, and 2.27 ± 0.20 nW m -2 sr -1 at 250, 350, and 500 μm, respectively. These numbers are more precise than previous estimates of the cosmic infrared background (CIB) and are consistent with 24 μm-selected galaxies generating the full intensity of the CIB. We find that the fraction of the CIB that originates from sources at z ≥ 1.2 increases with wavelength, with 60% from high-redshift sources at 500 μm. At all BLAST wavelengths, the relative intensity of high-z sources is higher for 24 μm-faint sources than that for 24 μm-bright sources. Galaxies identified as active galactic nuclei (AGNs) by their Infrared Array Camera colors are 1.6-2.6 times brighter than the average population at 250-500 μm, consistent with what is found for X-ray-selected AGNs. BzK-selected galaxies are found to be moderately brighter than typical 24 μm-selected galaxies in the BLAST bands. These data provide high-precision constraints for models of the evolution of the number density and intensity of star-forming galaxies at high redshift.

  15. Civilian blast-related burn injuries.

    Science.gov (United States)

    Patel, J N; Tan, A; Dziewulski, P

    2016-03-31

    There is limited English literature describing the experience of a civilian hospital managing blast-related burn injuries. As the largest regional burn unit, we reviewed our cases with the aim of identifying means to improve current management. A 6-year retrospective analysis of all patients coded as sustaining blast-related burns was conducted through the unit's burns database. Medical case notes were reviewed for information on burn demographics, management and outcomes. 42 patients were identified. Male to female ratio was 37:5. Age range was 12-84 years, (mean=33 years). Total body surface area (%TBSA) burn ranged from 0.25% to 60%, (median=1%). The most common burn injury was flame (31/42, 73.8%). Gas explosions were the most common mechanism of injury (19 cases; 45.2%). 7/42 cases (16.7%) had full ATLS management pre-transfer to the burns unit. The Injury Severity Score (ISS) ranged from 0-43 (median=2). 17/42 (40.4%) patients required admission. 37/36 (88.1%) patients were managed conservatively of which 1 patient later required surgery due to deeper burns. 5/42 (11.9%) patients required surgical management at presentation and these were noted to be burns with >15% TBSA requiring resuscitation. One case required emergency escharotomies and finger amputations. All patients survived their burn injuries. Blast-related burn injuries are generally uncommon in the civilian setting. Following proper assessment, most of these cases can be deemed as minor injuries and managed conservatively. Improvement in burns management education and training at local emergency departments would provide efficient patient care and avoid unnecessary referrals to a burns unit.

  16. The use of HANDIDET reg-sign non-electric detonator assemblies to reduce blast-induced overpressure at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W.

    1996-01-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada's nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD reg-sign non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure

  17. The use of HANDIDET{reg_sign} non-electric detonator assemblies to reduce blast-induced overpressure at AECL`s Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Onagi, D.P.; Keith, S.G.; Kuzyk, G.W. [AECL, Pinawa, Manitoba (Canada). Underground Research Lab.; Proudfoot, D.F. [ICI Explosives Canada, North Delta, British Columbia (Canada)

    1996-12-01

    A number of aspects of the Canadian concept for nuclear fuel waste disposal are being assessed by Atomic Energy of Canada Limited (AECL) in a series of experiments at its Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba, Canada. One of the major objectives of the work being carried out at the URL is to develop and evaluate the methods and technology to ensure safe, permanent disposal of Canada`s nuclear fuel waste. In 1994, AECL excavated access tunnels and a laboratory room for the Quarried Block Fracture Migration Experiment (QBFME) at the 240 Level of the URL. This facility will be used to study the transport of radionuclides in natural fractures in quarried blocks of granite under in-situ groundwater conditions. The experiment is being carried out under a cooperative agreement with the Japan Atomic Energy Research Institute. The excavation of the QBFME access tunnels and laboratory was carried out using controlled blasting techniques that minimized blast-induced overpressure which could have damaged or interrupted other ongoing experiments in the vicinity. The majority of the blasts used conventional long delay non-electric detonators but a number of blasts were carried out using HANDIDET 250/6000 non-electric long delay detonator assemblies and HTD{reg_sign} non-electric short delay trunkline detonator assemblies. The tunnel and laboratory excavation was monitored to determine the levels of blast-induced overpressure. This paper describes the blasting and monitoring results of the blasts using HANDIDET non-electric detonator assemblies and the effectiveness of these detonators in reducing blast-induced overpressure.

  18. Carbon Tubular Morphologies in Blast Furnace Coke

    Directory of Open Access Journals (Sweden)

    Stanislav S. Gornostayev

    2008-01-01

    Full Text Available The paper reports on the first occurrence of microscale carbon tubular morphologies (CMTs in a blast furnace (BF coke. The CMTs were probably formed as a result of the conversion of solid disordered carbon via liquid phase metal particles involving a gas phase containing a substantial amount of N2 and O2. The presence of CMTs may lie behind the generation of the smallest fraction of fines in BF exhaust dust. If the amount of CMTs present in the BF exhausts gases at any particular metallurgical site proves to be substantial, it could become a subject of environmental concern.

  19. Rock breaking methods to replace blasting

    Science.gov (United States)

    Zhou, Huisheng; Xie, Xinghua; Feng, Yuqing

    2018-03-01

    The method of breaking rock by blasting has a high efficiency and the cost is relatively low, but the associated vibration, flyrock, production of toxic gases since the 1970’s, the Western developed countries began to study the safety of breaking rock. This paper introduces different methods and their progress to safely break rock. Ideally, safe rock breaking would have little vibration, no fly stone, and no toxic gases, which can be widely used in municipal engineering, road excavation, high-risk mining, quarrying and complex environment.

  20. NASA TEERM Project: Corn Based Blast Media

    Science.gov (United States)

    Griffin, Chuck

    2009-01-01

    Coatings removal is a necessary part of the maintenance, repair, and overhaul activities at many NASA centers and contractor support sites. Sensitive substrates, such as composites and thin aluminum alloys require special handling such as the use of chemical stripping, pneumatic hand sanding, or softer blast media. Type V, acrylic based PMB is commonly used to de-coat, strip, or de-paint the delicate substrates of the Solid Rocket Boosters (SRBs) currently used in support of the Shuttle and slated to be used in support of CxP.

  1. Design of blast simulators for nuclear testing

    International Nuclear Information System (INIS)

    Mark, A.; Opalka, K.O.; Kitchens, C.W. Jr.

    1983-01-01

    A quasi-one-dimensional computational technique is used to model the flow of a large, complicated shock tube. The shock tube, or Large Blast Simulator, is used to simulate conventional or nuclear explosions by shaping the pressure history. Results from computations show favorable agreement when compared with data taken in the facility at Gramat, France. Such future shock tubes will include a thermal irradiation capability to better simulate a nuclear event. The computations point to the need for venting of the combustion products since the pressure history will be considerably altered as the shock propagates through these hot gases

  2. Explosive and accessories in rock blasting

    Energy Technology Data Exchange (ETDEWEB)

    Pingua, B.M.P.; Nabiullah, M.; Jagdish, S.; Mishra, G.D.; Singh, T.N. [Central Mining Research Institute, Dhanbad (India)

    1999-02-01

    Chemical explosives are commonly used in the mining industry. Those used in India include nitroglycerine (NG) base, ammonium nitrate fuel oil mixture (ANFO), slurry emulsion and liquid oxygen (LOX). Examples of each type and their general properties are lighted. The electric and non-electric detonating systems used are described. Two Indian companies are producing non-electric in-hole delay system. Raydet (IDL-make) and Excel (ICI-make). Their firing characteristics are listed. Tables are given for burden for different density of rock and explosive strength. Causes of bad blast are itemised. 7 refs., 4 figs., 7 tabs.

  3. Vibration response of the waste rock dump in open pit mine caused by blasting operation

    OpenAIRE

    Markéta Lednická; Zdeněk Kaláb

    2015-01-01

    Analysis of slope stability is often solved when designing and realizing waste dumps. Vibration effect needs to be taken into account, especially when the waste dump is situated in close distance to the seismic loading source. In the open pit mine near Jarnoltowek (Poland), phyllite is excavated, and rock waste is deposited on the dump directly in the mine; that is at a distance of approximately 150 m from the quarry face. Blasting operations are used as mining technology here so the...

  4. Development of a Comprehensive Blast-Related Auditory Injury Database (BRAID)

    Science.gov (United States)

    2016-05-01

    uals deployed to battle zones are increasingly at risk for NIHL, tinnitus, and other otologic injuries [4]. The effects of blast exposure on the...They attributed this higher rate to the fact that their data were extracted from an audiology clinic database. Mrena et al. assessed the otologic and...analyzed definitive clinical data, whereas we have examined occupational hearing conservation screening data. Military and civilian otologic and audio

  5. Central Mechanisms and Treatment of Blast-Induced Auditory and Vestibular Injuries

    Science.gov (United States)

    2018-01-01

    pressure of 17 - 19 psi and 4 msec positive phase duration) was generated by Valmex membrane rupture in the advanced blast simulator (ABS), which...injection of AAV-L7-GFP or Lent-L7-GFP into the cerebellum of mouse. 15 6. Products: Lay Press- none None Peer -Reviewed Scientific Journals -none...overpressure (peak static pressure of 16 psi and 4 msec positive phase duration). The effect of shockwaves on hearing was determined by testing auditory

  6. Methodology Development of Computationally-Efficient Full Vehicle Simulations for the Entire Blast Event

    Science.gov (United States)

    2015-08-06

    Baker, Director, ARL/SLAD, Aberdeen, MD  Mr. Craig Barker, Program Manager , UBM/T&E, SLAD, US Army Research Lab  Dr. Bruce Brendle, Deputy Executive...Report # ADA547566 [14] K. Williams, et. al, (2002), “Validation of a Loading Model for Simulating Blast Mine Effects on Armoured Vehicles”, 7th...Methodology (UBM) program (Program Manager : Mr. Craig Barker), managed by the U.S. Army Research Laboratory’s Survivability/Lethality Analysis

  7. Microscope-controlled glass bead blasting: a new technique

    Directory of Open Access Journals (Sweden)

    Peter Kotschy

    2011-01-01

    Full Text Available Peter Kotschy1, Sascha Virnik2, Doris Christ3, Alexander Gaggl21Private Practice, Vienna, Austria; 2Department of Oral and Maxillofacial Surgery, Central Hospital, Klagenfurt, Austria; 3Klagenfurt, AustriaObjective: The aim of periodontal therapy is the healing of periodontal inflammation; the protection of the attachment and the alveolar bone; and the regeneration of the periodontal structures. In the therapy of periodontitis, supra- and subgingival scaling and root planing plays a main role. The procedure described combines perfect root cleaning without scaling and root planing and minimal invasive periodontal surgery without a scalpel.Material and methods: Glass beads of 90 µm were used with the kinetic preparation unit PrepStart® under a pressure of 0.5–5 bar. This technique was practised only under visual control using the OPMI® PRO Magis microscope. Seven examinations were carried out at baseline after 3, 6, 12, 18, 24, and 36 months.Results: Time shows a statistically significant influence on all of the considered target variables (P < 0.0001 for all. As the according estimate is negative, probing depth decreases over time. The major decrease seems to be during the first 6 months. Considering probing depth, plaque on the main effect root shows significant influence (again, P < 0.0001 for all. Observations with high probing depth at the beginning were faster than those with low probing depth. The same characteristic appears by attachment level. Patients with more loss of attachment show more gain.Conclusions: Using microscope-controlled glass bead blasting results in a perfectly clean root surface using visual control (magnification 20×. Microscope-controlled glass bead blasting is therefore a good alternative to periodontal surgery.Keywords: periodontal therapy, microscope, periodontitis

  8. A laboratory study of explosives malfunction in blasting

    Energy Technology Data Exchange (ETDEWEB)

    Katsabanis, P.D.; Ghorbani, A. [Queen`s Univ., Kingston, Ontario (Canada)

    1995-12-31

    Explosives malfunction due to shock waves is a serious concern for successful blasting results. Malfunction includes sympathetic detonation and desensitization of explosive charges as well as the modification of firing times of conventional pyrotechnic detonators. Small diameter emulsions and detonators were tested in a laboratory environment to identify the parameters affecting malfunction. The experiments had a donor-acceptor configuration and the charges were detonated in the same sequence. Continuous velocity of detonation monitoring was used as an indicator of explosives performance and for studying the timing of the initiation of the acceptor charge and/or detonator, while distance and delay interval between the donor and acceptor were modified. Fumes from the detonating charges were analyzed in a number of experiments while a few experiments were conducted in rock confinement. It was found that both distance and delay interval are important as far as desensitization is concerned. At certain separation distances temporary desensitization, followed by temporary recovery was observed. Toxicity of the product gases was affected by desensitization although this effect ranged from negligible to pronounced and was not consistent. In many cases desensitized explosives reacted completely as evidenced by the concentration of the fumes in the blasting chamber. Conventional pyrotechnic delay detonators malfunctioned due to a shock produced by a 40mm diameter emulsion explosive at similar distances as the explosives (below 203 mm). Furthermore the experiments in granite showed that 40 mm diameter charges can malfunction at separation distances below 330 mm. This malfunction ranged from sympathetic detonation to shock desensitization; in most cases it was associated with severe loss of performance.

  9. The Hydrodynamics of Blast-Wave-Driven Instabilities

    Science.gov (United States)

    Miles, Aaron R.

    2010-05-01

    Supernova explosions are among the most dramatic in the universe. Type II supernovae follow core collapse of a massive star, while Type Ia supernovae are typically believed to be thermonuclear explosions of carbon-oxygen white dwarfs that have accreted enough material to initiate carbon burning. In both cases, the explosion dynamics are complicated by hydrodynamic instabilities that make spherical symmetry impossible. Non-planar interactions of shocks with steep density gradients result in vorticity deposition that drives Richtmyer-Meshkov (RM) instability growth. Deceleration of those same shock-accelerated interfaces drives the ubiquitous Rayleigh-Taylor (RT) instability. These processes yield highly nonlinear structures that are further modified by shear-driven Kelvin-Helmholtz (KH) instabilities, and provide elemental mixing on a wide range of scales. A broad spectrum of approaches can be applied to study the role of hydrodynamic mixing in SNe. These range from analytic treatments of the fundamental instability problems of classical RT and steady-shock RM, to complex (often multiphysics) computational and experimental systems, including numerical simulations of supernovae and laser-driven laboratory. Between these two extremes lies a third fundamental instability problem that is more relevant than either RT or RM in isolation and somewhat less complex than the full system. Namely, an idealized blast-wave-driven problem in which a localized source drives a divergent Taylor-Sedov blast wave that in turn drives a perturbed interface between heavier and lighter gamma-law fluids. Within this context, we use numerical simulations and simplified analytic models to consider the effect of the initial perturbation spectrum in determining the late-time asymptotic state of the mixing zone, the interaction of multiple unstable interfaces relevant to core-collapse supernovae, and the proximity of the forward shock to the developing instability. This work performed under the

  10. Panicle blast 1 (Pb1) resistance is dependent on at least four QTLs in the rice genome.

    Science.gov (United States)

    Inoue, Haruhiko; Nakamura, Mitsuru; Mizubayashi, Tatsumi; Takahashi, Akira; Sugano, Shoji; Fukuoka, Shuuichi; Hayashi, Nagao

    2017-12-01

    Rice blast is the most serious disease afflicting rice and there is an urgent need for the use of disease resistance (R) genes in blast tolerance breeding programs. Pb1 is classified as a quantitative resistance gene and it does not have fungal specificity. Pb1-mediated resistance develops in the latter stages of growth. However, some cultivars, such as Kanto209 (K209), cultivar name Satojiman, despite possessing Pb1, do not exert resistance to rice blast during the reproductive stage. We found that the expression of WRKY45 gene downstream of Pb1 was weakly induced by rice blast inoculation at the full heading stage in K209. Genetic analysis using the SNP-based Golden Gate assay of K209 crossing with Koshihikari Aichi SBL (KASBL) found at least four regions related to the resistance in the rice genome (Chr8, Chr9, Chr7, Chr11). Mapping of QTL related to Chr7 confirmed the existence of factors that were required for the resistance of Pb1 in the 22 to 23 Mbp region of the rice genome. We clarified how the K209 cultivar is vulnerable to the blast disease despite possessing Pb1 and found the DNA marker responsible for the quantitative resistance of Pb1. We identified the QTL loci required for Pb1-mediated resistance to rice panicle blast. Pb1 was negatively dependent on at least three QTLs, 7, 9 and 11, and positively dependent on one, QTL 8, in the K209 genome. This finding paves the way for creating a line to select optimal QTLs in order to make use of Pb1-mediated resistance more effectively.

  11. Blast Mitigation Using Water Mist

    National Research Council Canada - National Science Library

    Bailey, Jean L; Farley, John P; Williams, Frederick W; Lindsay, Michael S; Schwer, Douglas A

    2006-01-01

    A series of experiments demonstrating the mitigation of water mist on the over-pressure effects of a TNT detonation have been conducted A series of TNT charges, 0.9 kg (2 lb), 2.2 kg (5 lb) and 3.2 kg (7 lb...

  12. Distinguishing the Unique Neuropathological Profile of Blast Polytrauma

    Directory of Open Access Journals (Sweden)

    W. Brad Hubbard

    2017-01-01

    Full Text Available Traumatic brain injury sustained after blast exposure (blast-induced TBI has recently been documented as a growing issue for military personnel. Incidence of injury to organs such as the lungs has decreased, though current epidemiology still causes a great public health burden. In addition, unprotected civilians sustain primary blast lung injury (PBLI at alarming rates. Often, mild-to-moderate cases of PBLI are survivable with medical intervention, which creates a growing population of survivors of blast-induced polytrauma (BPT with symptoms from blast-induced mild TBI (mTBI. Currently, there is a lack of preclinical models simulating BPT, which is crucial to identifying unique injury mechanisms of BPT and its management. To meet this need, our group characterized a rodent model of BPT and compared results to a blast-induced mTBI model. Open field (OF performance trials were performed on rodents at 7 days after injury. Immunohistochemistry was performed to evaluate cellular outcome at day seven following BPT. Levels of reactive astrocytes (GFAP, apoptosis (cleaved caspase-3 expression, and vascular damage (SMI-71 were significantly elevated in BPT compared to blast-induced mTBI. Downstream markers of hypoxia (HIF-1α and VEGF were higher only after BPT. This study highlights the need for unique therapeutics and prehospital management when handling BPT.

  13. LTC vacuum blasting maching (concrete): Baseline report: Greenbook (Chapter)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-31

    The LTC shot blast technology was tested and is being evaluated at Florida International University (FIU) as a baseline technology. In conjuction with FIU`s evaluation of efficiency and cost, this report covers the evaluation conducted for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The LTC 1073 Vacuum Blasting Machine uses a high-capacity, direct-pressure blasting system which incorporates a continuous feed for the blast media. The blast media cleans the surface within the contained brush area of the blast. It incorporates a vacuum system which removes dust and debris from the surface as it is blasted. The safety and health evaluation during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure during maintenance activities was minimal, but due to mechanical difficulties dust monitoring could not be conducted during operation. Noise exposure was significant. Further testing for each of these exposures is recommended because of the outdoor environment where the testing demonstration took place. This may cause the results to be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed environment. In addition, other safety and health issues found were ergonomics, heat stress, tripping hazards, electrical hazards, lockout/tagout, and arm-hand vibration.

  14. Discrimination of Earthquake and Blast Seismicity in Western Alberta

    Science.gov (United States)

    Spriggs, N.; Law, A.; Yenier, E.; Reynen, A.; Baturan, D.

    2015-12-01

    Recorded seismicity in western Alberta is caused by natural and induced earthquakes or blast events from mining and quarry operations. Accurate discrimination of earthquakes from blast events is crucial for evaluating recent seismicity with respect to the historical catalog and for assessing seismic hazards associated with naturally occurring or induced seismicity. In general, blast events are discriminated from earthquakes based on their proximity to active mines and quarries in addition to day-of-week and time-of-day timing patterns. In some parts of western Alberta, however, seismicity originates in regions with active mines, historical earthquake seismicity, and hydraulic fracturing operations. Based on timing patterns or event locations alone, natural or induced seismicity may be misidentified as mining activity. Several studies report that relative differences in Fourier or response spectra can be used to discriminate blast and earthquake events. Other studies report that the relative timing and amplitude of seismic phases may provide useful metrics for classifying blast events. Here we propose an alternative method that accounts for both differences in phase spectra and phase timing and amplitude. In particular, we evaluate the normalized time integral for characteristic functions of particle motion from confirmed blast and earthquake events recorded by regional Alberta seismic networks. We then use these time-integral profiles to re-classify events that are initially categorized as suspected blasts based on timing pattern and event location indicators.

  15. Molecular evolution and strong selective sweep at the rice blast resistance gene Pi-ta during crop domestication

    Science.gov (United States)

    The Pi-ta gene in rice has been effectively deployed worldwide to prevent the infection by the blast fungus Magnaporthe oryzae in a gene for gene specificity. The genomic region spanning Pi-ta and six flanking genes in 157 rice accessions composed of seven Oryza species including US and Asian culti...

  16. Efforts and Programs of the Department of Defense Relating to the Prevention, Mitigation, and Treatment of Blast Injuries

    Science.gov (United States)

    2007-01-01

    proposed. The hybrid constructs consist of a titanium core surrounded by bioengineered enamel, dentin, cementum, and importantly, periodontal ligament...therapy into patients requiring reconstructive surgery of limbs or tissues damaged in the battlefield or for patients with vascular disease in need...Evaluation • Protection – Environmental Injury Models: Model the effects of inhaled toxic gases, including smoke and aerosols, associated with blast

  17. Modeling of aqueous foam blast wave attenuation

    Directory of Open Access Journals (Sweden)

    Domergue L.

    2011-01-01

    Full Text Available The use of aqueous foams enables the mitigation of blast waves induced by the explosion of energetic materials. The two-phase confinement gives rise to interphase interactions between the gaseous and liquid phases, which role have been emphasized in shock-tube studies with solid foams [1, 2]. Multifluid formalism enables the thermo-mechanical disequilibria between phases to be taken into account. The flow model ensures the correct estimation of the acoustic impedance of the two-phase media. As for the numerical scheme, Riemann solvers are used to describe the microscopic fluid interactions, the summation of which provides the multiphase flux. The role of the different transfer mechanisms is evaluated in the case where the liquid ligaments of the foam matrix have been shattered into droplets by the shock impingement. Characteristics of blast waves in heterogeneous media leads to a decrease of overpressure. The numerical results have been compared favorably to experimental data [3, 4].

  18. Compressive strength after blast of sandwich composite materials.

    Science.gov (United States)

    Arora, H; Kelly, M; Worley, A; Del Linz, P; Fergusson, A; Hooper, P A; Dear, J P

    2014-05-13

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene-acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson-Cranz scaled distance of 3.02 m kg(-1/3), 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411-413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast.

  19. Investigation of shock waves in explosive blasts using fibre optic pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Watson, S [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); MacPherson, W N [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Barton, J S [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Jones, J D C [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Tyas, A [Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Pichugin, A V [Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Hindle, A [Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Parkes, W [Scottish Microelectronics Centre, Kings Buildings, West Mains Road, Edinburgh EH9 3JF (United Kingdom); Dunare, C [Scottish Microelectronics Centre, Kings Buildings, West Mains Road, Edinburgh EH9 3JF (United Kingdom); Stevenson, T [Scottish Microelectronics Centre, Kings Buildings, West Mains Road, Edinburgh EH9 3JF (United Kingdom)

    2005-01-01

    We describe miniature all-optical pressure sensors, fabricated by wafer etching techniques, less than 1mm{sup 2} in overall cross-section with rise times in the {mu}s regime and pressure ranges typically 600 kPa. Their performance is suitable for experimental studies of the pressure-time history for test models exposed to shocks initiated by an explosive charge. The small size and fast response of the sensors promises higher quality data than has been previously available from conventional electrical sensors, with potential improvements to numerical models of blast effects. Provisional results from blast tests will be presented in which up to 6 sensors were multiplexed, embedded within test models in a range of orientations relative to the shock front.

  20. Investigation of shock waves in explosive blasts using fibre optic pressure sensors

    International Nuclear Information System (INIS)

    Watson, S; MacPherson, W N; Barton, J S; Jones, J D C; Tyas, A; Pichugin, A V; Hindle, A; Parkes, W; Dunare, C; Stevenson, T

    2005-01-01

    We describe miniature all-optical pressure sensors, fabricated by wafer etching techniques, less than 1mm 2 in overall cross-section with rise times in the μs regime and pressure ranges typically 600 kPa. Their performance is suitable for experimental studies of the pressure-time history for test models exposed to shocks initiated by an explosive charge. The small size and fast response of the sensors promises higher quality data than has been previously available from conventional electrical sensors, with potential improvements to numerical models of blast effects. Provisional results from blast tests will be presented in which up to 6 sensors were multiplexed, embedded within test models in a range of orientations relative to the shock front

  1. Corrosion Behavior of Aqua-Blasted and Laser-Engraved Type 316L Stainless Steel

    Science.gov (United States)

    Krawczyk, B.; Cook, P.; Hobbs, J.; Engelberg, D. L.

    2017-12-01

    The effect of aqua blasting and laser engraving on surface microstructure development, residual stress and corrosion resistance of type 316L stainless steel has been investigated. Aqua blasting resulted in a deformed near-surface microstructure containing compressive residual stresses. Subsequent laser engraving produced a surface layer with tensile residual stresses reaching to a depth of 200 microns. Changes of surface roughness topography were accompanied by the development of a thick oxide/hydroxide film after laser engraving. The atmospheric corrosion behavior of all surfaces with MgCl2-laden droplets was compared to their electrochemical response in 1M NaCl and 0.7 M HCl aqueous solutions. The measured total volume loss after atmospheric corrosion testing was similar for all investigated surface conditions. Laser-engraved surface exhibited the smallest number of corrosion sites, but the largest mean corrosion depth.

  2. Demonstration experience with an abrasive blasting technique for decontaminating concrete pads

    International Nuclear Information System (INIS)

    Devgun, J.S.; Land, R.R.; Doane, R.W.

    1990-01-01

    A demonstration was performed for decontaminating a radioactivity contaminated concrete pad with a portable abrasive blasting system. The system utilizes a rotating blast wheel that scours the concrete surface with metal abrasive. The metal abrasive, pulverized concrete dust, and contaminants rebound into a separator chamber. The reusable metal abrasive is recycled, and the pulverized media are removed to an integral dust collection system. The exhaust is HEPA filtered to minimize release of airborne contaminants. However, the technique had limited success in reducing contamination around the cracks and seams in the concrete where the higher activity levels of contamination were detected during the radiological survey before the cleanup. The technique can be successful and cost-effective in decontaminating large areas of low contamination; however, careful characterization and planning are necessary. 3 refs., 3 figs., 1 tabs

  3. Influence of venting areas on the air blast pressure inside tubular structures like railway carriages.

    Science.gov (United States)

    Larcher, Martin; Casadei, Folco; Solomos, George

    2010-11-15

    In case of a terrorist bomb attack the influence and efficiency of venting areas in tubular structures like train carriages is of interest. The pressure-time function of an air blast wave resulting from a solid charge is first compared to that of a gas or dust explosion and the capability of a venting structure to fly away is assessed. Several calculations using fluid-structure interaction are performed, which show that after a certain distance from the explosion, the air blast wave inside a tubular structure becomes one-dimensional, and that the influence of venting areas parallel to the wave propagation direction is small. The pressure peak and the impulse at certain points in a tubular structure are compared for several opening sizes. The overall influence of realistic size venting devices remains moderate and their usefulness in mitigating internal explosion effects in trains is discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. The tank's dynamic response under nuclear explosion blast wave

    International Nuclear Information System (INIS)

    Xu Mei; Wang Lianghou; Li Xiaotian; Yu Suyuan; Zhang Zhengming; Wan Li

    2005-01-01

    To weapons and equipment, blast wave is the primary destructive factor. In this paper, taken the real model-59 tank as an example, we try to transform the damage estimation problem into computing a fluid structure interaction problem with finite element method. The response of tank under nuclear explosion blast wave is computed with the general-coupling algorithm. Also, the dynamical interaction of blast wave and tank is reflected in real time. The deformation of each part of the tank is worked out and the result corresponds to the real-measured data. (authors)

  5. Relativistic blast waves in two dimensions. I - The adiabatic case

    Science.gov (United States)

    Shapiro, P. R.

    1979-01-01

    Approximate solutions are presented for the dynamical evolution of strong adiabatic relativistic blast waves which result from a point explosion in an ambient gas in which the density varies both with distance from the explosion center and with polar angle in axisymmetry. Solutions are analytical or quasi-analytical for the extreme relativistic case and numerical for the arbitrarily relativistic case. Some general properties of nonplanar relativistic shocks are also discussed, including the incoherence of spherical ultrarelativistic blast-wave fronts on angular scales greater than the reciprocal of the shock Lorentz factor, as well as the conditions for producing blast-wave acceleration.

  6. Rapid identification of rice blast resistance gene by specific length amplified fragment sequencing

    Directory of Open Access Journals (Sweden)

    Shen Chen

    2016-05-01

    Full Text Available Excavation of resistance genes is one of the most effective and environment-friendly measures to control the devastating rice disease caused by Magnaporthe oryzae. Many resistance genes have been mapped and characterized in the last century. Nevertheless, only a few of the total resistance genes could be really applied in the rice breeding program. Huazhan (HZ is a new native rice restorer line developed in China and widely used in hybrid rice in recent years. HZ and its crossed combinations usually show a broad spectrum of resistance against rice blast in different rice ecosystems in China. Dissection of the genetic background of HZ is very useful for its further application. In this study, a combined method based on bulked segregation analysis (BSA and specific length amplified fragment sequencing (SLAF-seq was used to identify blast resistance gene(s in HZ. A total of 56,187 SLAFs labels were captured and 9051 polymorphic SLAFs markers were analysed and procured in this study. One trait associated with candidate resistance genes region on chromosome 12 overlapping 10.2–17.6 Mb has been identified, in which 10 NBS-LRR (nucleotide-binding site-leucine-rich repeat coding genes were used as resistance gene candidates. Our result indicated that SLAF-seq with BSA is a rapid and effective method for initial identification of blast resistance genes. The identification of resistance gene in HZ will improve its molecular breeding and resistance variety application.

  7. Blast-induced electromagnetic fields in the brain from bone piezoelectricity.

    Science.gov (United States)

    Lee, Ka Yan Karen; Nyein, Michelle K; Moore, David F; Joannopoulos, J D; Socrate, Simona; Imholt, Timothy; Radovitzky, Raul; Johnson, Steven G

    2011-01-01

    In this paper, we show that bone piezoelectricity-a phenomenon in which bone polarizes electrically in response to an applied mechanical stress and produces a short-range electric field-may be a source of intense blast-induced electric fields in the brain, with magnitudes and timescales comparable to fields with known neurological effects. We compute the induced charge density in the skull from stress data on the skull from a finite-element full-head model simulation of a typical IED-scale blast wave incident on an unhelmeted human head as well as a human head protected by a kevlar helmet, and estimate the resulting electric fields in the brain in both cases to be on the order of 10 V/m in millisecond pulses. These fields are more than 10 times stronger than the IEEE safety guidelines for controlled environments (IEEE Standards Coordinating Committee 28, 2002) and comparable in strength and timescale to fields from repetitive Transcranial Magnetic Stimulation (rTMS) that are designed to induce neurological effects (Wagner et al., 2006a). They can be easily measured by RF antennas, and may provide the means to design a diagnostic tool that records a quantitative measure of the head's exposure to blast insult. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. A study in cost analysis of aggregate production as depending on drilling and blasting design

    Science.gov (United States)

    Bilim, Niyazi; Çelik, Arif; Kekeç, Bilgehan

    2017-10-01

    Since aggregate production has vital importance for many engineering projects-such as construction, highway and plant-mixed concrete production-this study was undertaken to determine how the costs for such production are affected by the design of drilling and blasting processes used. Aggregates are used in the production of concrete and asphalt, which are critical resources for the construction sector. The ongoing population increase and the growth of living standards around the world drive the increasing demand for these products. As demand grows, competition has naturally arisen among producers in the industry. Competition in the market has directly affected prices, which leads to the need for new measures and cost analysis on production costs. The cost calculation is one of the most important parameters in mining activities. Aggregate production operations include drilling, blasting, secondary crushing (if necessary), loading, hauling and crushing-screening, and each of these factors affects cost. In this study, drilling and blasting design parameters (such as hole diameter, hole depth, hole distance and burden) were investigated and evaluated for their effect on the total cost of quarrying these products, based on a particular quarry selected for this research. As the result of evaluation, the parameters actually driving costs have been identified, and their effects on the cost have been determined. In addition, some suggestions are presented regarding production design which may lead to avoiding increased production costs.

  9. Controlled Low-Pressure Blast-Wave Exposure Causes Distinct Behavioral and Morphological Responses Modelling Mild Traumatic Brain Injury, Post-Traumatic Stress Disorder, and Comorbid Mild Traumatic Brain Injury-Post-Traumatic Stress Disorder.

    Science.gov (United States)

    Zuckerman, Amitai; Ram, Omri; Ifergane, Gal; Matar, Michael A; Sagi, Ram; Ostfeld, Ishay; Hoffman, Jay R; Kaplan, Zeev; Sadot, Oren; Cohen, Hagit

    2017-01-01

    The intense focus in the clinical literature on the mental and neurocognitive sequelae of explosive blast-wave exposure, especially when comorbid with post-traumatic stress-related disorders (PTSD) is justified, and warrants the design of translationally valid animal studies to provide valid complementary basic data. We employed a controlled experimental blast-wave paradigm in which unanesthetized animals were exposed to visual, auditory, olfactory, and tactile effects of an explosive blast-wave produced by exploding a thin copper wire. By combining cognitive-behavioral paradigms and ex vivo brain MRI to assess mild traumatic brain injury (mTBI) phenotype with a validated behavioral model for PTSD, complemented by morphological assessments, this study sought to examine our ability to evaluate the biobehavioral effects of low-intensity blast overpressure on rats, in a translationally valid manner. There were no significant differences between blast- and sham-exposed rats on motor coordination and strength, or sensory function. Whereas most male rats exposed to the blast-wave displayed normal behavioral and cognitive responses, 23.6% of the rats displayed a significant retardation of spatial learning acquisition, fulfilling criteria for mTBI-like responses. In addition, 5.4% of the blast-exposed animals displayed an extreme response in the behavioral tasks used to define PTSD-like criteria, whereas 10.9% of the rats developed both long-lasting and progressively worsening behavioral and cognitive "symptoms," suggesting comorbid PTSD-mTBI-like behavioral and cognitive response patterns. Neither group displayed changes on MRI. Exposure to experimental blast-wave elicited distinct behavioral and morphological responses modelling mTBI-like, PTSD-like, and comorbid mTBI-PTSD-like responses. This experimental animal model can be a useful tool for elucidating neurobiological mechanisms underlying the effects of blast-wave-induced mTBI and PTSD and comorbid mTBI-PTSD.

  10. Biomarkers of Blast-Induced Neurotrauma: Profiling Molecular and Cellular Mechanisms of Blast Brain Injury

    Science.gov (United States)

    2009-06-01

    common locations are the corticome- dullary (gray matter-white matter) junction (particularly in the frontal and temporal areas), the internal capsule ...Vascular responses and dysregulation of cell adhesion molecules as bridges connecting vascular-endothelial- neural tissue disturbances, including but not...3371–3376. Lew, H.L. (2005). Rehabilitation needs of an increasing popula- tion of patients: Traumatic brain injury, polytrauma, and blast-related

  11. Environmental problems associated with blasting in mines: public apprehensions of damage due to blast vibrations - case studies

    Energy Technology Data Exchange (ETDEWEB)

    Padhi, S.N. [DGMS, Bhubaneswar (India)

    1994-12-31

    Blast vibrations may be felt in intensities as small as 1/100 of that required to cause any damage to structures. Therefore, the public response and thus complaints regarding damages are often imaginary. The paper deals with three case studies, involving alleged damage from blasting in surface and underground coal mines where public litigations and agitations resulted due to such apprehensions. The paper is written in simple technical language as the situations warranted that the blast vibration studies should be understood by the general public. 7 tabs.

  12. Blasting injuries in surface mining with emphasis on flyrock and blast area security

    Energy Technology Data Exchange (ETDEWEB)

    Bajpayee, T.S.; Rehak, T.R.; Mowrey, G.L.; Ingram, D.K. [NIOSH, Pittsburgh, PA (USA). Pittsburgh Research Lab.

    2004-07-01

    Blasting is a hazardous component of surface mining. Serious injuries and fatalities result from improper judgment or practice during rock blasting. This paper describes several fatal injury case studies, analyzes causative factors, and emphasizes preventive measures. During the 21-year period from 1978 to 1998, the mean yearly explosive-related injuries (fatal and nonfatal) for surface coal mines was 8.86 (95% CI: 6.38-11.33), and for surface metal/nonmetal mines 10.76 (95% CI: 8.39-13.14). Flyrock and lack of blast area security accounted for 68.2% of these injuries. Case studies indicate that the causative factors for fatal injuries are primarily personal and task-related and to some extent environmental. A reduction in the annual injuries in surface coal mines was observed during the 10-year period of 1989-1998 (5.80 (95% CI: 2.71-8.89)) compared to the previous 10-year period of 1979-1988 (10.90 (95% CI: 7.77-14.14)). However, such reduction was not noticed in the metal/nometal sector (i.e., 9.30 (95% CI: 6.84-11.76) for the period 1989-1998 compared with 11.00 (95% CI: 7.11-14.89) for the period 1979-1988). Discussion of case studies during safety meetings will help to mitigate fatal injuries and derive important payoffs in terms of lower risks and costs of injuries.

  13. An Operational Model for the Prediction of Jet Blast

    Science.gov (United States)

    2012-01-09

    This paper presents an operational model for the prediction of jet blast. The model was : developed based upon three modules including a jet exhaust model, jet centerline decay : model and aircraft motion model. The final analysis was compared with d...

  14. Damage to underground coal mines caused by surface blasting

    International Nuclear Information System (INIS)

    Fourie, A.B.; Green, R.W.

    1993-01-01

    An investigation of the potential damage to underground coal workings as a result of surface blasting at an opencast coal mine is described. Seismometers were installed in a worked out area of an underground mine, in the eastern Transvaal region of South Africa, and the vibration caused by nearby surface blasting recorded. These measurements were used to derive peak particle velocities. These velocities were correlated with observed damage underground in order to establish the allowable combination of the two blasting parameters of charge mass per relay, and blast-to-gage point distance. An upper limit of 110mm/sec peak particle velocity was found to be sufficient to ensure that the damage to the particular workings under consideration was minimal. It was further found that a cube-root scaling law provided a better fit to the field data than the common square-root law. 11 refs., 6 figs., 5 tabs

  15. BICARBONATE OF SODA BLASTING TECHNOLOGY FOR AIRCRAFT WHEEL PAINTING

    Science.gov (United States)

    This evaluation addressed product quality, waste reduction/pollution prevention and economics in replacing chemical solvent strippers with a bicarbonate of soda blasting technology for removal of paint from aircraft wheels. The evaluation was conducted in the Paint Stripping Sho...

  16. Spreading of sediment due to underwater blasting and dredging

    DEFF Research Database (Denmark)

    Nielsen, Morten Holtegaard; Bach, Lis; Bollwerk, Sandra

    2015-01-01

    leads to a wider spreading of the organic part of the sediment. Almost all material less than 2 μm, including surficial clay minerals and much organic material, was transported away from the construction site and its vicinity, which could imply mobilization and export of pollutants. Environmental...... impacts of suspended sediment from underwater blasting, which could include coverage of the benthos or increased turbidity, can be managed by timing the blast favourably relative to currents, waves and stratification. It is argued that the environmental impact of blasting can be minimized by decreasing...... out in connection with the construction of a new quay at the existing harbour of Sisimiut, Greenland. Subsequent to the largest of a series of underwater blasts, the distribution of suspended sediment in the water column at and around the construction site was observed using a CTD (Conductivity...

  17. Seismic stations with GSM telemetry for registration of quarry blasts

    Czech Academy of Sciences Publication Activity Database

    Brož, Milan; Číž, Radim; Málek, Jiří; Žanda, Libor

    2000-01-01

    Roč. 2000, 16 (118) (2000), s. 25-32 ISSN 1211-1910 Institutional research plan: CEZ:AV0Z3046908 Keywords : blasting * seismic station * GSM mobile modem Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  18. Crucial roles of abscisic acid biogenesis in virulence of rice blast fungus Magnaporthe oryzae

    Directory of Open Access Journals (Sweden)

    Carla eSpence

    2015-12-01

    Full Text Available Rice suffers dramatic yield losses due to blast pathogen Magnaporthe oryzae. Pseudomonas chlororaphis EA105, a bacterium that was isolated from the rice rhizosphere, inhibits M. oryzae. It was shown previously that pre-treatment of rice with EA105 reduced the size of blast lesions through JA- and ETH-mediated ISR. ABA acts antagonistically towards SA, JA, and ETH signaling, to impede plant defense responses. EA105 may be reducing the virulence of M. oryzae by preventing the pathogen from up-regulating the key ABA biosynthetic gene NCED3 in rice roots, as well as a β-glucosidase likely involved in activating conjugated inactive forms of ABA. However, changes in total ABA concentrations were not apparent, provoking the question of whether ABA concentration is an indicator of ABA signaling and response. In the rice-M. oryzae interaction, ABA plays a dual role in disease severity by increasing plant susceptibility and accelerating pathogenesis in the fungus itself. ABA is biosynthesized by M. oryzae. Further, exogenous ABA increased spore germination and appressoria formation, distinct from other plant growth regulators. EA105, which inhibits appressoria formation, counteracted the virulence-promoting effects of ABA on M. oryzae. The role of endogenous fungal ABA in blast disease was confirmed through the inability of a knockout mutant impaired in ABA biosynthesis to form lesions on rice. Therefore, it appears that EA105 is invoking multiple strategies in its protection of rice from blast including direct mechanisms as well as those mediated through plant signaling. ABA is a molecule that is likely implicated in both tactics.

  19. Liquid abrasive grit blasting literature search and decontamination scoping tests report

    International Nuclear Information System (INIS)

    Ferguson, R.L.

    1993-10-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. As decommissioning plans are developed, new decontamination methods must be used which result in higher decontamination factors and generate lower amounts of sodium-bearing secondary waste. The primary initiative of the WINCO Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals. One method that was chosen for cold scoping studies during FY-93 was abrasive grit blasting. Abrasive grit blasting has been used in many industries and a vast amount of research and development has already been conducted. However, new grits, process improvements and ICPP applicability was investigated. This evaluation report is a summary of the research efforts and scoping tests using the liquid abrasive grit blasting decontamination technique. The purpose of these scoping tests was to determine the effectiveness of three different abrasive grits: plastic beads, glass beads and alumina oxide

  20. Prediction of Backbreak in Open-Pit Blasting Operations Using the Machine Learning Method

    Science.gov (United States)

    Khandelwal, Manoj; Monjezi, M.

    2013-03-01

    Backbreak is an undesirable phenomenon in blasting operations. It can cause instability of mine walls, falling down of machinery, improper fragmentation, reduced efficiency of drilling, etc. The existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict backbreak in blasting operations of Soungun iron mine, Iran, incorporating rock properties and blast design parameters using the support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA). The coefficient of determination (CoD) and the mean absolute error (MAE) were taken as performance measures. It was found that the CoD between measured and predicted backbreak was 0.987 and 0.89 by SVM and MVRA, respectively, whereas the MAE was 0.29 and 1.07 by SVM and MVRA, respectively.

  1. Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting

    Directory of Open Access Journals (Sweden)

    Dong Sam Park

    2008-02-01

    Full Text Available For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplating as a preprocess, are considered to have some problems. In this study, we propose a new microfabrication technology which consists of micro end-milling and powder blasting. This technique could be directly applied to fabricate the metal mold without any preprocesses. The metal mold with micro-channels is machined by micro end-milling, and then, burrs generated in the end-milling process are removed by powder blasting. From the experimental results, micro end-milling combined with powder blasting could be applied effectively for fabrication of the injection mold of biochips with micro fluidic channels.

  2. Blast exposure and dual sensory impairment: an evidence review and integrated rehabilitation approach.

    Science.gov (United States)

    Saunders, Gabrielle H; Echt, Katharina V

    2012-01-01

    Combat exposures to blast can result in both peripheral damage to the ears and eyes and central damage to the auditory and visual processing areas in the brain. The functional effects of the latter include visual, auditory, and cognitive processing difficulties that manifest as deficits in attention, memory, and problem solving--symptoms similar to those seen in individuals with visual and auditory processing disorders. Coexisting damage to the auditory and visual system is referred to as dual sensory impairment (DSI). The number of Operation Iraqi Freedom/Operation Enduring Freedom Veterans with DSI is vast; yet currently no established models or guidelines exist for assessment, rehabilitation, or service-delivery practice. In this article, we review the current state of knowledge regarding blast exposure and DSI and outline the many unknowns in this area. Further, we propose a model for clinical assessment and rehabilitation of blast-related DSI that includes development of a coordinated team-based approach to target activity limitations and participation restrictions in order to enhance reintegration, recovery, and quality of life.

  3. Liquid abrasive grit blasting literature search and decontamination scoping tests report

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, R.L.

    1993-10-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. As decommissioning plans are developed, new decontamination methods must be used which result in higher decontamination factors and generate lower amounts of sodium-bearing secondary waste. The primary initiative of the WINCO Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals. One method that was chosen for cold scoping studies during FY-93 was abrasive grit blasting. Abrasive grit blasting has been used in many industries and a vast amount of research and development has already been conducted. However, new grits, process improvements and ICPP applicability was investigated. This evaluation report is a summary of the research efforts and scoping tests using the liquid abrasive grit blasting decontamination technique. The purpose of these scoping tests was to determine the effectiveness of three different abrasive grits: plastic beads, glass beads and alumina oxide.

  4. Blast Load Simulator Experiments for Computational Model Validation Report 3

    Science.gov (United States)

    2017-07-01

    establish confidence in the simulation results specific to their intended use. One method for providing experimental data for computational model...walls, to higher blast pressures required to evaluate the performance of protective construction methods . Figure 1. ERDC Blast Load Simulator (BLS... Instrumentation included 3 pressure gauges mounted on the steel calibration plate, 2 pressure gauges mounted in the wall of the BLS, and 25 pressure gauges

  5. Study of wet blasting of components in nuclear power stations

    International Nuclear Information System (INIS)

    Hall, J.

    1999-12-01

    This report looks at the method of wet blasting radioactive components in nuclear power stations. The wet blaster uses pearl shaped glass beads with the dimensions of 150-250 μm mixed with water as blasting media. The improved design, providing outer operator's positions with proper radiation protection and more efficient blasting equipment has resulted in a lesser dose taken by the operators. The main reason to decontaminate components in nuclear power plants is to enable service on these components. On components like valves, pump shafts, pipes etc. oxides form and bind radiation. These components are normally situated at some distance from the reactor core and will mainly suffer from radiation from so called activation products. When a component is to be decontaminated it can be decontaminated to a radioactive level where it will be declassified. This report has found levels ranging from 150-1000 Bq/kg allowing declassification of radioactive materials. This difference is found between different countries and different organisations. The report also looks at the levels of waste generated using wet blasting. This is done by tracking the contamination to determine where it collects. It is either collected in the water treatment plant or collected in the blasting media. At Barsebaeck the waste levels, from de-contaminating nearly 800 components in one year, results in a waste volume of about 0,250 m 3 . This waste consists of low and medium level waste and will cost about 3 600 EURO to store. The conclusions of the report are that wet blasting is an indispensable way to treat contaminated components in modern nuclear power plants. The wet blasting equipment can be improved by using a robot enabling the operators to remotely treat components from the outer operator's positions. There they will benefit from better radiation protection thus further reduce their taken dose. The wet blasting equipment could also be used to better control the levels of radioactivity on

  6. A New Middle Path Approach For Alignements In Blast

    OpenAIRE

    Garg, Deepak; Saxena, S C; Bhardwaj, L M

    2012-01-01

    This paper deals with a new middle path approach developed for reducing alignment calculations in BLAST algorithm. This is a new step which is introduced in BLAST algorithm in between the ungapped and gapped alignments. This step of middle path approach between the ungapped and gapped alignments reduces the number of sequences going for gapped alignment. This results in the improvement in speed for alignment up to 30 percent.

  7. Pellet reduction properties under different blast furnace operating conditions

    OpenAIRE

    Leimalm, Ulrika

    2006-01-01

    One of the aims of modern blast furnace (BF) ironmaking is to reduce coke consumption. One way is to increase the injection of reduction agents, such as pulverized coal. An increase in pulverized coal injection rate (PCR) will affect the blast furnace process and the conditions for iron oxide reduction. Changes in PCR influence the composition of the ascending gases and the in-furnace temperature isotherms. The performed tests involve full-scale, pilot and laboratory investigations. Raw mater...

  8. Remote operated vehicle with carbon dioxide blasting (ROVCO2)

    International Nuclear Information System (INIS)

    Resnick, A.M.

    1995-01-01

    The Remote Operated Vehicle with Carbon Dioxide Blasting (ROVCO 2 ), as shown in a front view, is a six-wheeled remote land vehicle used to decontaminate concrete floors. The remote vehicle has a high pressure Cryogenesis blasting subsystem, Oceaneering Technologies (OTECH) developed a CO 2 xY Orthogonal Translational End Effector (COYOTEE) subsystem, and a vacuum/filtration and containment subsystem. Figure 2 shows a block diagram with the various subsystems labeled

  9. PaperBLAST: Text Mining Papers for Information about Homologs.

    Science.gov (United States)

    Price, Morgan N; Arkin, Adam P

    2017-01-01

    Large-scale genome sequencing has identified millions of protein-coding genes whose function is unknown. Many of these proteins are similar to characterized proteins from other organisms, but much of this information is missing from annotation databases and is hidden in the scientific literature. To make this information accessible, PaperBLAST uses EuropePMC to search the full text of scientific articles for references to genes. PaperBLAST also takes advantage of curated resources (Swiss-Prot, GeneRIF, and EcoCyc) that link protein sequences to scientific articles. PaperBLAST's database includes over 700,000 scientific articles that mention over 400,000 different proteins. Given a protein of interest, PaperBLAST quickly finds similar proteins that are discussed in the literature and presents snippets of text from relevant articles or from the curators. PaperBLAST is available at http://papers.genomics.lbl.gov/. IMPORTANCE With the recent explosion of genome sequencing data, there are now millions of uncharacterized proteins. If a scientist becomes interested in one of these proteins, it can be very difficult to find information as to its likely function. Often a protein whose sequence is similar, and which is likely to have a similar function, has been studied already, but this information is not available in any database. To help find articles about similar proteins, PaperBLAST searches the full text of scientific articles for protein identifiers or gene identifiers, and it links these articles to protein sequences. Then, given a protein of interest, it can quickly find similar proteins in its database by using standard software (BLAST), and it can show snippets of text from relevant papers. We hope that PaperBLAST will make it easier for biologists to predict proteins' functions.

  10. prfectBLAST: a platform-independent portable front end for the command terminal BLAST+ stand-alone suite.

    Science.gov (United States)

    Santiago-Sotelo, Perfecto; Ramirez-Prado, Jorge Humberto

    2012-11-01

    prfectBLAST is a multiplatform graphical user interface (GUI) for the stand-alone BLAST+ suite of applications. It allows researchers to do nucleotide or amino acid sequence similarity searches against public (or user-customized) databases that are locally stored. It does not require any dependencies or installation and can be used from a portable flash drive. prfectBLAST is implemented in Java version 6 (SUN) and runs on all platforms that support Java and for which National Center for Biotechnology Information has made available stand-alone BLAST executables, including MS Windows, Mac OS X, and Linux. It is free and open source software, made available under the GNU General Public License version 3 (GPLv3) and can be downloaded at www.cicy.mx/sitios/jramirez or http://code.google.com/p/prfectblast/.

  11. The Potential ofStreptomycesas Biocontrol Agents against the Rice Blast Fungus,Magnaporthe oryzae(Pyricularia oryzae).

    Science.gov (United States)

    Law, Jodi Woan-Fei; Ser, Hooi-Leng; Khan, Tahir M; Chuah, Lay-Hong; Pusparajah, Priyia; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-01-01

    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae ). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyce s bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae . The ability of various S treptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae . In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.

  12. Numerical simulations of the occupant head response in an infantry vehicle under blunt impact and blast loading conditions.

    Science.gov (United States)

    Sevagan, Gopinath; Zhu, Feng; Jiang, Binhui; Yang, King H

    2013-07-01

    This article presents the results of a finite element simulation on the occupant head response in an infantry vehicle under two separated loading conditions: (1) blunt impact and (2) blast loading conditions. A Hybrid-III dummy body integrated with a previously validated human head model was used as the surrogate. The biomechanical response of the head was studied in terms of head acceleration due to the impact by a projectile on the vehicle and intracranial pressure caused by blast wave. A series of parametric studies were conducted on the numerical model to analyze the effect of some key parameters, such as seat configuration, impact velocity, and boundary conditions. The simulation results indicate that a properly designed seat and internal surface of the infantry vehicle can play a vital role in reducing the risk of head injury in the current scenarios. Comparison of the kinematic responses under the blunt impact and blast loading conditions reveals that under the current loading conditions, the acceleration pulse in the blast scenario has much higher peak values and frequency than blunt impact case, which may reflect different head response characteristics.

  13. Numerical Modelling of Reinforced Concrete Slabs under Blast Loads of Close-in Detonations Using the Lagrangian Approach

    Science.gov (United States)

    Shuaib, M.; Daoud, O.

    2015-07-01

    This paper includes an investigation for the deformations, including deflections and damage modes, which occur in reinforced concrete (RC) slabs when subjected to blast loads of explosions. The slab considered for the investigation is a one-way square RC slab with the dimensions of 1000 x 1000 x 40 mm, fixed supported at two opposite sides. It was subjected to close-in detonations of three different charge weights for a constant standoff distance. For the study, the slab was analysed using the numerical method by means of nonlinear finite element analysis. The slab was modelled as 3-D structural continuum using LS-DYNA software. For concrete modelling, two constitutive models were selected, namely the KCC and Winfrith concrete models. Blast loads were applied to the slab through the Lagrangian approach, and the blast command available in the software, namely LOAD_BLAST_ENHANCED, was selected for the application. The deflections and damage modes results obtained were compared to those from a previously published experiment. From the study, both the KCC and Winfrith concrete models effectively and satisfactorily estimated the actual slab maximum deflection. For damage modes, the KCC model appeared to be capable to capture satisfactorily the general damage mode including flexural cracks. However, the model could not capture the local shear mode at the middle of slab (spallation) because the Lagrangian approach does not simulate the interaction between the ambient air and the solid slab.

  14. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Riet, Wilma van der; Crelier, Gerard; Salomonowitz, Erich

    2010-01-01

    Purpose: To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Materials and methods: Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R = 2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Results: Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. Conclusion: We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping.

  15. H-BLAST: a fast protein sequence alignment toolkit on heterogeneous computers with GPUs.

    Science.gov (United States)

    Ye, Weicai; Chen, Ying; Zhang, Yongdong; Xu, Yuesheng

    2017-04-15

    The sequence alignment is a fundamental problem in bioinformatics. BLAST is a routinely used tool for this purpose with over 118 000 citations in the past two decades. As the size of bio-sequence databases grows exponentially, the computational speed of alignment softwares must be improved. We develop the heterogeneous BLAST (H-BLAST), a fast parallel search tool for a heterogeneous computer that couples CPUs and GPUs, to accelerate BLASTX and BLASTP-basic tools of NCBI-BLAST. H-BLAST employs a locally decoupled seed-extension algorithm for better performance on GPUs, and offers a performance tuning mechanism for better efficiency among various CPUs and GPUs combinations. H-BLAST produces identical alignment results as NCBI-BLAST and its computational speed is much faster than that of NCBI-BLAST. Speedups achieved by H-BLAST over sequential NCBI-BLASTP (resp. NCBI-BLASTX) range mostly from 4 to 10 (resp. 5 to 7.2). With 2 CPU threads and 2 GPUs, H-BLAST can be faster than 16-threaded NCBI-BLASTX. Furthermore, H-BLAST is 1.5-4 times faster than GPU-BLAST. https://github.com/Yeyke/H-BLAST.git. yux06@syr.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  16. Aeromedical evacuation-relevant hypobaria worsens axonal and neurologic injury in rats after underbody blast-induced hyperacceleration.

    Science.gov (United States)

    Proctor, Julie L; Mello, Kaitlin T; Fang, Raymond; Puche, Adam C; Rosenthal, Robert E; Fourney, William L; Leiste, Ulrich H; Fiskum, Gary

    2017-07-01

    Occupants of military vehicles targeted by explosive devices often suffer from traumatic brain injury (TBI) and are typically transported by the aeromedical evacuation (AE) system to a military medical center within a few days. This study tested the hypothesis that exposure of rats to AE-relevant hypobaria worsens cerebral axonal injury and neurologic impairment caused by underbody blasts. Anesthetized adult male rats were secured within cylinders attached to a metal plate, simulating the hull of an armored vehicle. An explosive located under the plate was detonated, resulting in a peak vertical acceleration force on the plate and occupant rats of 100G. Rats remained under normobaria or were exposed to hypobaria equal to 8,000 feet in an altitude chamber for 6 hours, starting at 6 hours to 6 days after blast. At 7 days, rats were tested for vestibulomotor function using the balance beam walking task and euthanized by perfusion. The brains were then analyzed for axonal fiber injury. The number of internal capsule silver-stained axonal fibers was greater in animals exposed to 100G blast than in shams. Animals exposed to hypobaria starting at 6 hours to 6 days after blast exhibited more silver-stained fibers than those not exposed to hypobaria. Rats exposed to 100% oxygen (O2) during hypobaria at 24 hours postblast displayed greater silver staining and more balance beam foot-faults, in comparison with rats exposed to hypobaria under 21% O2. Exposure of rats to blast-induced acceleration of 100G increases cerebral axonal injury, which is significantly exacerbated by exposure to hypobaria as early as 6 hours and as late as 6 days postblast. Rats exposed to underbody blasts and then to hypobaria under 100% O2 exhibit increased axonal damage and impaired motor function compared to those subjected to blast and hypobaria under 21% O2. These findings raise concern about the effects of AE-related hypobaria on TBI victims, the timing of AE after TBI, and whether these effects

  17. Breeding of R8012, a Rice Restorer Line Resistant to Blast and Bacterial Blight Through Marker-Assisted Selection

    Directory of Open Access Journals (Sweden)

    Xiao-deng ZHAN

    2012-03-01

    Full Text Available Genetic improvement is one of the most effective strategies to prevent rice from blast and bacterial blight (BB diseases, the two most prevalent diseases jeopardizing rice production. Rice hybrids with dural resistance to blast and BB are needed for sustainable production of food. An incomplete diallele design resulted in 25 crosses between five blast and five BB resistant germplasm accessions. Only one pair of parents, DH146 × TM487, showed polymorphism for all the markers to identify one blast resistance gene Pi25 and three BB resistance genes, Xa21, xa13 and xa5, thus it was used in the marker-assisted selection (MAS. F2 individuals of DH146 × TM487 were genotyped using flanking markers of RM3330 and sequence tagged site (STS marker SA7 for Pi25. The resistant F2 plants with Pi25 were used for pyramiding BB resistance genes Xa21, xa13 and xa5 identified by the markers pTA248, RM264 and RM153, respectively in subsequent generations. Finally, after selection for agronomic traits and restoration ability among 12 pyramided lines, we acquired an elite restorer line, R8012 including all four target genes (Pi25+Xa21+xa13+xa5. Hybrid Zhong 9A/R8012 derived from the selected line showed stronger resistance to blast and BB, and higher grain yield than the commercial checks uniformally in experimental plots, 2007 state-wide yield trial and 2008 nation-wide yield trial. This study provides a paradigmatic example to show that MAS is a practically feasible tool in effectively pyramiding multiple resistance genes. The resultant restoring line and its hybrid would play an important role in securing rice production in China.

  18. Failure and Ejection Behavior of Concrete Materials under Internal Blast

    Directory of Open Access Journals (Sweden)

    Haifu Wang

    2016-01-01

    Full Text Available In order to investigate the failure and ejection behavior of concrete materials under internal blast, the default Riedel-Hiermaier-Thoma (RHT concrete model in AUTODYN and a meshfree processor called SPH are employed in this numerical simulation. It is shown that the failure mechanisms are significantly different in these damaged zones. Crushed zone is caused by shear failure while fractured zone is induced by tensile failure, and spalled zone is formed by a combination of shear and tensile failure. In addition, the ejection velocity distribution of the fragmented concrete mass on free surface is examined. The results indicate that the ejection velocity declines monotonously with the increase of the distance to symmetry axis of computational model. On the wall of the prefabricated borehole, two types of fragmented concrete mass are analyzed, and bottom initiation is recommended to eject the fragmented concrete mass effectively. Moreover, an algorithm of average ejection speed is developed to effectively estimate the drill capacity of high velocity, energetic (HE projectiles. At last, the validity of numerical simulation is verified by physical experiments.

  19. Investigation of accretion formation in a blast furnace shaft

    Energy Technology Data Exchange (ETDEWEB)

    Klima, R.; Hoefer, O.; Chiarotti, U.; Fredman, T.; Hillmann, C.; Raipala, K.; Eriksson, J. (eds.) [BFI Duesseldorf (Germany)

    2005-07-01

    Accretions in the bosh, belly and shaft have a significant influence on blast furnace performance and on the service life of the refractory lining and the cooling system. To analyse the mechanisms of formation and dislodging of accretions, investigations were carried out at four different blast furnaces. Three blast furnaces were equipped with additional measurements to investigate the accretion formation process and to provide information for the development of accretion estimation models. Installation activities included thermocouples, heat-flux meters, staves with instrumentation for heat-flux measurement and a small horizontal lance. The distribution of accretions in the shaft was documented. Samples were taken out of accretions during blast furnace stoppages. Their acquisition was simplified with newly developed sampling devices. The samples were analysed to determine chemical and mineralogical properties and thermal conductivity. Samples were mainly made up of reduced iron or of coke and sinter structures glued together by zinc or alkali compounds. Together with a newly developed offline model for the simulation of accretion formation, different parameters influencing the formation process were identified. The main parameters are: burden material composition, blast furnace operating conditions; and the cooling system. Countermeasures to prevent excessive accretion growth were determined. They offer a better operational control of accretions. Different models to identify accretion formation were developed and an overview was presented. Different models were necessary to distinguish between the various measurement, cooling-system and blast-furnace setups. Most of the models are already implemented and in operational use. For some of them application at other blast furnaces was already realised or is possible. 9 refs., 18 figs., 20 tab.

  20. Early Clinical Predictors of 5-Year Outcome After Concussive Blast Traumatic Brain Injury.

    Science.gov (United States)

    Mac Donald, Christine L; Barber, Jason; Jordan, Mary; Johnson, Ann M; Dikmen, Sureyya; Fann, Jesse R; Temkin, Nancy

    2017-07-01

    The long-term clinical effects of wartime traumatic brain injuries (TBIs), most of which are mild, remain incompletely described. Current medical disability cost estimates from world conflicts continually surpass projections. Additional information regarding long-term functional trajectory is needed to reduce this extensive public health burden. To examine 5-year clinical outcomes leveraging existing clinical data collected at 1 year after injury in the same patients and to identify early risk factors for long-term disability. This prospective, longitudinal study enrolled active-duty US military after concussive blast injury (n = 50) in the acute to subacute stage and combat-deployed control individuals (n = 44) in Afghanistan or after medical evacuation to Germany from November 1, 2008, through July 1, 2013. One- and 5-year clinical evaluations were completed in the United States. All concussive blast injuries met the Department of Defense definition of mild, uncomplicated TBI. In-person clinical evaluations included standardized evaluations for neurobehavior, neuropsychological performance, and mental health burden that were essentially identical to the evaluations completed at 1-year follow-up. Data were analyzed from October 1 through November 30, 2016. Changes in the in-person standardized evaluations for neurobehavior, neuropsychological performance, and mental health burden from the 1- to 5-year follow-up. Predictive modeling was used to identify early risk factors for long-term disability. Among the 94 participants (87 men [93%] and 7 women [7%]; mean [SD] age, 34 [8] years), global disability, satisfaction with life, neurobehavioral symptom severity, psychiatric symptom severity, and sleep impairment were significantly worse in patients with concussive blast TBI compared with combat-deployed controls, whereas performance on cognitive measures was no different between groups at the 5-year evaluation. Logistic regression on the dichotomized Extended

  1. The nature of white matter abnormalities in blast-related mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jasmeet P. Hayes

    2015-01-01

    Full Text Available Blast-related traumatic brain injury (TBI has been a common injury among returning troops due to the widespread use of improvised explosive devices in the Iraq and Afghanistan Wars. As most of the TBIs sustained are in the mild range, brain changes may not be detected by standard clinical imaging techniques such as CT. Furthermore, the functional significance of these types of injuries is currently being debated. However, accumulating evidence suggests that diffusion tensor imaging (DTI is sensitive to subtle white matter abnormalities and may be especially useful in detecting mild TBI (mTBI. The primary aim of this study was to use DTI to characterize the nature of white matter abnormalities following blast-related mTBI, and in particular, examine the extent to which mTBI-related white matter abnormalities are region-specific or spatially heterogeneous. In addition, we examined whether mTBI with loss of consciousness (LOC was associated with more extensive white matter abnormality than mTBI without LOC, as well as the potential moderating effect of number of blast exposures. A second aim was to examine the relationship between white matter integrity and neurocognitive function. Finally, a third aim was to examine the contribution of PTSD symptom severity to observed white matter alterations. One hundred fourteen OEF/OIF veterans underwent DTI and neuropsychological examination and were divided into three groups including a control group, blast-related mTBI without LOC (mTBI - LOC group, and blast-related mTBI with LOC (mTBI + LOC group. Hierarchical regression models were used to examine the extent to which mTBI and PTSD predicted white matter abnormalities using two approaches: 1 a region-specific analysis and 2 a measure of spatial heterogeneity. Neurocognitive composite scores were calculated for executive functions, attention, memory, and psychomotor speed. Results showed that blast-related mTBI + LOC was associated with greater odds of

  2. Chronic Hypopituitarism Associated with Increased Postconcussive Symptoms Is Prevalent after Blast-Induced Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Arundhati Undurti

    2018-02-01

    Full Text Available The most frequent injury sustained by US service members deployed to Iraq or Afghanistan is mild traumatic brain injuries (mTBI, or concussion, by far most often caused by blast waves from improvised explosive devices or other explosive ordnance. TBI from all causes gives rise to chronic neuroendocrine disorders with an estimated prevalence of 25–50%. The current study expands upon our earlier finding that chronic pituitary gland dysfunction occurs with a similarly high frequency after blast-related concussions. We measured circulating hormone levels and accessed demographic and testing data from two groups of male veterans with hazardous duty experience in Iraq or Afghanistan. Veterans in the mTBI group had experienced one or more blast-related concussion. Members of the deployment control (DC group encountered similar deployment conditions but had no history of blast-related mTBI. 12 of 39 (31% of the mTBI participants and 3 of 20 (15% veterans in the DC group screened positive for one or more neuroendocrine disorders. Positive screens for growth hormone deficiency occurred most often. Analysis of responses on self-report questionnaires revealed main effects of both mTBI and hypopituitarism on postconcussive and posttraumatic stress disorder (PTSD symptoms. Symptoms associated with pituitary dysfunction overlap considerably with those of PTSD. They include cognitive deficiencies, mood and anxiety disorders, sleep problems, diminished quality of life, deleterious changes in metabolism and body composition, and increased cardiovascular mortality. When such symptoms are due to hypopituitarism, they may be alleviated by hormone replacement. These findings suggest consideration of routine post-deployment neuroendocrine screening of service members and veterans who have experienced blast-related mTBI and are reporting postconcussive symptoms.

  3. Optimization of Wet or Dry Micro-blasting on PVD Films by Various Al2O3 Grain Sizes for Improving the Coated Tools' Cutting Performance

    Directory of Open Access Journals (Sweden)

    K. -D. Bouzakis

    2011-06-01

    Full Text Available Micro-blasting on PVD coated tools is an effective technology for improving their cutting performance. Through micro-blasting, compressive stresses are induced into the film, thus increasing the coating hardness, but its brittleness too. Simultaneously, abrasion phenomena are activated, which may lead to roughness augmentation, film thickness decrease and substrate revelation. In this way, for a successful process conduct, it is pivotal to adapt, among others, the applied micro-blasting pressure to the employed medium, air or water. The paper deals with the optimization of wet or dry micro-blasting pressure by various Al2O3 grain sizes for improving the coated tool’s wear resistance. The wear behaviour of coated and variously dry or wet micro-blasted tools was investigated in milling. Considering the grains’ penetration kinematics into the coated tool surface and the film deformation mechanisms during dry or wet microblasting by fine or coarse sharp–edged Al2O3 grains, optimum process pressures can be determined.

  4. Significance of in-situ dry-ice blasting on the microstructure, crystallinity and bonding strength of plasma-sprayed hydroxyapatite coatings.

    Science.gov (United States)

    Dong, Shujuan; Zeng, Jinyan; Li, Lifen; Sun, Junbin; Yang, Xiong; Liao, Hanlin

    2017-07-01

    To obtain hydroxyapatite (HA) coatings with high crystallinity which have long-term stability in clinical applications, coarse powders were usually injected to less energetic plasma. However, the HA coatings accumulated by partly melted particles usually have high porosity and poor mechanical properties, especially poor bonding strength. In this work, by profiting its quenching and mechanical impact, dry-ice blasting was in-situ employed during plasma spray process to improve the microstructure characterization and bonding strength of HA coatings. In addition, the influence of in-situ dry-ice blasting on the phase composition and crystallinity of plasma-sprayed HA coatings was investigated. The results show that a significant reduction of porosity and an apparent increase in bonding strength are revealed in plasma-sprayed HA coatings due to the cleaning effect of dry-ice blasting on the convex unmelted particles and splashing fragments. HA coatings prepared by the combination process of plasma spraying and dry-ice blasting have a compromise structure with minimum globular pores but with pronounced microcracks. The disappearance of CaO phase and the increase in crystallinity also derive from the application of dry-ice blasting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Controlled blasting and its implications for the NNWSI project exploratory shaft

    International Nuclear Information System (INIS)

    Van Eeckhout, E.M.

    1987-09-01

    This report reviews controlled blasting techniques for shaft sinking. Presplitting and smooth blasting are the techniques of principal interest. Smooth blasting is preferred for the Nevada Nuclear Waste Storage Investigations exploratory shaft. Shaft damage can be monitored visually or by peak velocity measurements and refractive techniques. Damage into the rock should be limited to 3 ft. 40 refs., 22 figs., 7 tabs

  6. 29 CFR 1926.904 - Storage of explosives and blasting agents.

    Science.gov (United States)

    2010-07-01

    ..., electric blasting caps, detonating primers, and primed cartridges shall not be stored in the same magazine... feet of explosives and detonator storage magazine. (d) No explosives or blasting agents shall be... 29 Labor 8 2010-07-01 2010-07-01 false Storage of explosives and blasting agents. 1926.904 Section...

  7. A Monte Carlo Approach to Modeling the Breakup of the Space Launch System EM-1 Core Stage with an Integrated Blast and Fragment Catalogue

    Science.gov (United States)

    Richardson, Erin; Hays, M. J.; Blackwood, J. M.; Skinner, T.

    2014-01-01

    The Liquid Propellant Fragment Overpressure Acceleration Model (L-FOAM) is a tool developed by Bangham Engineering Incorporated (BEi) that produces a representative debris cloud from an exploding liquid-propellant launch vehicle. Here it is applied to the Core Stage (CS) of the National Aeronautics and Space Administration (NASA) Space Launch System (SLS launch vehicle). A combination of Probability Density Functions (PDF) based on empirical data from rocket accidents and applicable tests, as well as SLS specific geometry are combined in a MATLAB script to create unique fragment catalogues each time L-FOAM is run-tailored for a Monte Carlo approach for risk analysis. By accelerating the debris catalogue with the BEi blast model for liquid hydrogen / liquid oxygen explosions, the result is a fully integrated code that models the destruction of the CS at a given point in its trajectory and generates hundreds of individual fragment catalogues with initial imparted velocities. The BEi blast model provides the blast size (radius) and strength (overpressure) as probabilities based on empirical data and anchored with analytical work. The coupling of the L-FOAM catalogue with the BEi blast model is validated with a simulation of the Project PYRO S-IV destruct test. When running a Monte Carlo simulation, L-FOAM can accelerate all catalogues with the same blast (mean blast, 2 s blast, etc.), or vary the blast size and strength based on their respective probabilities. L-FOAM then propagates these fragments until impact with the earth. Results from L-FOAM include a description of each fragment (dimensions, weight, ballistic coefficient, type and initial location on the rocket), imparted velocity from the blast, and impact data depending on user desired application. LFOAM application is for both near-field (fragment impact to escaping crew capsule) and far-field (fragment ground impact footprint) safety considerations. The user is thus able to use statistics from a Monte Carlo

  8. Modelling of turbulent combustion in the blast furnace raceway

    Energy Technology Data Exchange (ETDEWEB)

    Karvinen, R.; Maekiranta, R. [Tampere Univ. (Finland). Energy and Process Engineering

    1996-12-31

    The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.

  9. Controlled Blasting for Deconstruction of a Railway Bridge Near Sahibganj

    Science.gov (United States)

    Mandal, S. K.; Ghosh, A. K.; Oraon, S.

    2018-02-01

    Some of the Indian Railway bridges require reconstruction for electrification and expansion of railway tracks. Dismantling of bridge within time schedule in densely populated area requires controlled and pre-planned blasting methodology for safe pulling down of the structure and quick removal of blasted debris for fast restoration of tracks and smooth plying of trains. The three arched railway bridge (Bridge No. 61) located between Sahibganj and Karamtola cases one such example where the bridge was dismantled and the track was restored within 4 h of blasting, though the stipulated block period for demolition and restoration of tracks was 6 h. The 25.48 m long three-arched bridge was drilled and blasted with 225 number of blastholes (32 mm diameter) and 100 kg explosive (25 mm diameter). Length of blastholes varied between 0.5 and 1.8 m with blast geometry of 0.3-0.35 m burden and 0.33 m spacing. This paper deals with the conceptual and theoretical model developed for identification of the key locations for drilling and implementation of the same. It also discusses about the precautionary measures and the drilling pattern adopted for quick demolition and speedy restoration of tracks.

  10. TREATMENT OF LOW-BLAST COUNT AML USING HYPOMETHYLATING AGENTS

    Directory of Open Access Journals (Sweden)

    Eleonora De Bellis

    2017-07-01

    Full Text Available In 2002, the WHO classification reduced the proportion of blasts in the bone marrow (BM necessary for the diagnosis of acute myeloid leukemia (AML from 30% to 20%, eliminating the RAEB-t subtype of myelodysplastic syndromes (MDS. However, this AML subtype, defined as low-blast count AML (LBC-AML, with 20-30% BM-blasts is characterized by peculiar features, as increased frequency in elderly individuals and after cytotoxic treatment for a different primary disease (therapy-related, poor-risk cytogenetics, lower white blood cell counts, and less frequent mutations of NPM1 and FLT3 genes. The clinical course of this entity is often similar to MDS with 10-19% BM-blasts. The hypomethylating agents azacitidine and decitabine have been shown to induce responses and prolong survival both in MDS and LBC-AML.  The role of these agents has been also demonstrated in AML with >30% BM-blasts, particularly in patients with poor-risk cytogenetics and in AML with myelodysplasia related changes. Most recent studies are evaluating strategies to improve outcome, including combinations of hypomethylating agents with immune-response checkpoint inhibitors, which have a role in cancer immune surveillance. Efforts are also ongoing to identify mutations which may predict response and survival in these patients.

  11. Analysis of MINIE2013 Explosion Air-Blast Data

    Energy Technology Data Exchange (ETDEWEB)

    Schnurr, Julie M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Univ. of Hawaii, Manoa, HI (United States); Rodgers, Arthur J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kim, Keehoon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ford, Sean R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ramirez, Abelardo L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-14

    We report analysis of air-blast overpressure measurements from the MINIE2013 explosive experiments. The MINIE2013 experiment involved a series of nearly 70 near-surface (height-ofburst, HOB, ranging from -1 to +4 m) low-yield (W=2-20 kg TNT equivalent) chemical highexplosives tests that were recorded at local distances (230 m – 28.5 km). Many of the W and HOB combinations were repeated, allowing for quantification of the variability in air-blast features and corresponding yield estimates. We measured canonical signal features (peak overpressure, impulse per unit area, and positive pulse duration) from the air-blast data and compared these to existing air-blast models. Peak overpressure measurements showed good agreement with the models at close ranges but tended to attenuate more rapidly at longer range (~ 1 km), which is likely caused by upward refraction of acoustic waves due to a negative vertical gradient of sound speed. We estimated yields of the MINIE2013 explosions using the Integrated Yield Determination Tool (IYDT). Errors of the estimated yields were on average within 30% of the reported yields, and there were no significant differences in the accuracy of the IYDT predictions grouped by yield. IYDT estimates tend to be lower than ground truth yields, possibly because of reduced overpressure amplitudes by upward refraction. Finally, we report preliminary results on a development of a new parameterized air-blast waveform.

  12. Diagrammatic scale for the assessment of blast on wheat spikes

    Directory of Open Access Journals (Sweden)

    João Leodato Nunes Maciel

    2013-09-01

    Full Text Available The correct quantification of blast caused by the fungus Magnaporthe oryzae on wheat (Triticum aestivum spikes is an important component to understand the development of this disease aimed at its control. Visual quantification based on a diagrammatic scale can be a practical and efficient strategy that has already proven to be useful against several plant pathosystems, including diseases affecting wheat spikes like glume blotch and fusarium head blight. Spikes showing different disease severity values were collected from a wheat field with the aim of elaborating a diagrammatic scale to quantify blast severity on wheat spikes. The spikes were photographed and blast severity was determined by using resources of the software ImageJ. A diagrammatic scale was developed with the following disease severity values: 3.7, 7.5, 21.4, 30.5, 43.8, 57.3, 68.1, 86.0, and 100.0%. An asymptomatic spike was added to the scale. Scale validation was performed by eight people who estimated blast severity by using digitalized images of 40 wheat spikes. The precision and the accuracy of the evaluations varied according to the rater (0.82blast on wheat spikes.

  13. Blasting vibrations control: The shortcomings of traditional methods

    Energy Technology Data Exchange (ETDEWEB)

    Vuillaume, P.M.; Kiszlo, M. [Institut National de l`Environnement Industriel et des Risques, Verneuil en Halatte (France); Bernard, T. [Compagnie Nouvelle de Scientifiques, Nice (France)

    1996-12-31

    In the context of its studies for the French ministry of the environment and for the French national coal board, INERIS (the French institute for the industrial environment and hazards, formerly CERCHAR) has made a complete critical survey of the methods generally used to reduce the levels of blasting vibrations. It is generally acknowledged that the main parameter to control vibrations is the so-called instantaneous charge, or charge per delay. This should be reduced as much as possible in order to diminish vibration levels. On account of this, the use of a new generation of blasting devices, such as non-electric detonators or electronic sequential timers has been developed since the seventies. INERIS has collected data from about 900 blasts in 2 quarries and 3 open pit mines. These data include input parameters such as borehole diameter, burden, spacing, charge per hole, charge per delay, total fired charge, etc ... They also include output measurements, such as vibration peak particle velocities, and main frequencies. These data have been analyzed with the help of multi variable statistical tools. Blasting tests were undertaken to evaluate new methods of vibrations control, such as the superposition of vibration signals. These methods appear to be accurate in many critical cases, but certainly would be highly improved with a better accuracy of firing delays. The development of electronic detonators seems to be the way of the future for a better blasting control.

  14. Numerical investigation of waste plastic: Injection in a blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Goto, A.; Morozumi, Y.; Hagiya, H.; Aoki, H.; Miura, T. [Tohoku University, Sendai (Japan). Dept. of Chemical Engineering

    2008-03-15

    In the present study, waste plastic injection in blast furnace processes is investigated numerically. A mathematical model developed in this study describes turbulent flows, heat and mass transfer, chemical reactions in gas, particle and coke-bed phases, and particle trajectories. In the simulation, pulverized particles of coal or plastics are injected into a blowpipe with a nitrogen gas stream, and are then supplied to the raceway region in the coke particle bed. The difference in the gasification behaviors between coal and plastic particles are discussed. The effects of the diameter of plastic particles on the gasification behavior are also investigated. Coal particles are rapidly gasified in the blowpipe because of their small size. In contrast, the gasification of plastic particles rarely occurs in the blowpipe, even if small plastic particles are injected. In addition, the flows of plastic particles are biased in the blowpipe, and consequently the reaction zone of gasification is narrow. In the raceway of the coke bed, the pulverized coal particles exit the raceway due to their small diameter, and are then discharged from the coke bed without sufficient gasification. On the other hand, the plastic particles circulate in the raceway until the diameters thereof decrease below a critical diameter. As a result, since the gasification reaction progresses during the circulation, the combustion efficiency of plastic particles remains high even though the initial diameter of the plastic particles is large.

  15. Superficial characterization of titanium league when submitted to abrasive blasting

    International Nuclear Information System (INIS)

    Suzuki, L.Y.; Leite, I.V.; Szesz, E.M.; Siqueira, C.J.M.

    2010-01-01

    Commercially pure titanium and some of its alloys exhibit a good biocompatibility. These characteristics are frequently used in the manufacture of orthopedic and dental implants. It is possible to modify its surface making it the bioactive using various methods, such as deposition of hydroxyapatite by plasma spray and increasing the roughness of the surface by abrasive blasting. This work is to modify the surface of titanium alloy Ti6Al4V ELI (ASTM F136: 02a) for abrasive blasting and study the morphology, crystallographic phases and the mechanical characteristics of the surface obtained. For such purpose, SEM images, diffraction of X-rays and tests of risk produced by nanoindenter. The sandblasting was done using alumina powder and blasting time of 6s. The morphology of the surfaces of Ti6Al4V ELI changed after sandblasting with increased roughness. It is possible to conclude that after sandblasting the titanium surface do not have a ductile behavior. (author)

  16. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    Science.gov (United States)

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa

    2002-01-01

    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results.

  17. Radiometric report for a blast furnace tracing with radioactive isotopes

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, M.

    1995-01-01

    One of the methods to monitor refractory wall of blast furnace is its tracing with radioactive isotopes. The tracer isotope can be detected by two ways: the external dosimetric measurement at the armour of the blast furnace and/or the radiometric measurement of the iron sample charge by charge. Any change in radiometric situation of tracer radioisotope is recorded in a radiometric report. This paper presents an original concept of radiometric report based upon PARADOX and CORELDRAW soft kits. Their advantage are: quick and easy changes, easy recording of current radioactivity of tracer isotope, short history of changes, visual mapping of the tracer isotope and others. In this way we monitored 6 blast furnaces and more than 180 radioactive sources

  18. Blast venting through blanket material in the HYLIFE ICF reactor

    International Nuclear Information System (INIS)

    Liu, J.C.; Peterson, P.F.; Schrock, V.E.

    1992-01-01

    This work presents a numerical study of blast venting through various blanket configurations in the HYLIFE ICF reactor design. The study uses TSUNAMI -- a multi-dimensional, high-resolution, shock capturing code -- to predict the momentum exchange and gas dynamics for blast venting in complex geometries. In addition, the study presents conservative predictions of wall loading by gas shock and impulse delivered to the protective liquid blanket. Configurations used in the study include both 2700 MJ and 350 MJ fusion yields per pulse for 5 meter and 3 meter radius reactor chambers. For the former, an annular jet array is used for the blanket geometry, while in the latter, both annular jet array as well as slab geometries are used. Results of the study indicate that blast venting and wall loading may be manageable in the HYLIFE-II design by a judicious choice of blanket configuration

  19. Contributions of In-Situ Stress Transient Redistribution to Blasting Excavation Damage Zone of Deep Tunnels

    Science.gov (United States)

    Yan, Peng; Lu, Wen-bo; Chen, Ming; Hu, Ying-guo; Zhou, Chuang-bing; Wu, Xin-xia

    2015-03-01

    With the background of construction of the headrace tunnels with the deepest buried depth in China at present, by means of carefully acoustic velocity detection and analysis of Excavation Damage Zone (EDZ), the contributions to damage zones made by the effect of in situ stress transient redistribution are studied and compared with the extent of damage caused by the explosive load. Also, the numerical simulation was adopted to verify detecting the results. It turned out that the in situ stress transient redistribution during blasting has great influence on the development of EDZ of deep tunnels. The blasting excavation-induced damage zone of deep tunnels can be divided into the inner damage zone and the outer damage zone from the excavation surface into surrounding rocks. Although this damage zone dividing method is similar to the work of Martino and Chandler (2004), the consideration of developing a mechanism of the inner damage zone, especially the contribution of in situ stress transient redistribution, is totally different. The inner damage zone, which accounts for 29-57 % of the total damage zone, is mainly caused by explosive load and in situ stress transient adjustment, while the outer damage zone can be mostly attributed to the static redistribution of in situ stress. Field tests and numerical simulation indicate that the in situ stress transient redistribution effect during blasting contributes about 16-51 % to the inner damage zone in the 2# headrace tunnel of Jinping II Hydropower Station. For general cases, it can be concluded that the in situ stress transient redistribution is one of the main contributors of an excavation damage zone, and damage caused by in situ stress transient redistribution effect may exceed the damage caused by explosion load and become the main inducing factor for damage with the rise of in situ stress levels.

  20. A multiscale analysis of blast impact mitigation on the human head

    Science.gov (United States)

    Jenson, Daniel Bryan

    The effectiveness of helmets in preventing shrapnel wounds and internal damage due to blast shock waves has been studied. Carbon nanotubes and similar nanostructures have also recently generated heightened interest due to their strength-to-weight ratio and other unique properties. Therefore, to understand and develop a helmet with improved protection, it is necessary to develop computational procedures that will enable the accurate modeling of traumatic head injuries as well as the precise measurement of the mechanical properties of nanostructures and how these characteristics behave when embedded as an advanced composite structure into a helmet. In this study, a multiscale simulation strategy is used to estimate the mechanical characteristics of advanced composite structures with embedded nanostructures. In most of the previous theoretical works, an analysis dedicated to improving the design of the helmet using composite structures was not included due to a lack of understanding of the interactions of the nanostructures with the matrix materials. In this work, the role of the helmet on the over pressurization and impulse experienced by the head during blast shock wave and blunt force trauma due to shrapnel impacts is studied. In addition, the properties of nanocomposite structures are estimated using molecular dynamics (MD) simulations and then scaled to the macroscopic level using continuum mechanic formulations. This modeling is further developed using Finite Element (FE) analysis to demonstrate the effectiveness of various types of nanostructures in energy absorption. An analysis is carried out on a model of an unprotected head to compare the results to those obtained when protected by a helmet containing different nanostructures. The developed multiscale model is used to improve the composition of helmets and the general understanding of the effects of blast shock wave and shrapnel impacts thereby leading to the mitigation and prevention of traumatic head

  1. PaperBLAST: Text Mining Papers for Information about Homologs

    International Nuclear Information System (INIS)

    Price, Morgan N.; Arkin, Adam P.

    2017-01-01

    Large-scale genome sequencing has identified millions of protein-coding genes whose function is unknown. Many of these proteins are similar to characterized proteins from other organisms, but much of this information is missing from annotation databases and is hidden in the scientific literature. To make this information accessible, PaperBLAST uses EuropePMC to search the full text of scientific articles for references to genes. PaperBLAST also takes advantage of curated resources (Swiss-Prot, GeneRIF, and EcoCyc) that link protein sequences to scientific articles. PaperBLAST’s database includes over 700,000 scientific articles that mention over 400,000 different proteins. Given a protein of interest, PaperBLAST quickly finds similar proteins that are discussed in the literature and presents snippets of text from relevant articles or from the curators. With the recent explosion of genome sequencing data, there are now millions of uncharacterized proteins. If a scientist becomes interested in one of these proteins, it can be very difficult to find information as to its likely function. Often a protein whose sequence is similar, and which is likely to have a similar function, has been studied already, but this information is not available in any database. To help find articles about similar proteins, PaperBLAST searches the full text of scientific articles for protein identifiers or gene identifiers, and it links these articles to protein sequences. Then, given a protein of interest, it can quickly find similar proteins in its database by using standard software (BLAST), and it can show snippets of text from relevant papers. We hope that PaperBLAST will make it easier for biologists to predict proteins’ functions.

  2. Blast-induced damage:a summary of SveBeFo investigations

    OpenAIRE

    Saiang, David

    2008-01-01

    This report presents a summary of the blast damage investigation carried out by SveBeFo (Swedish Rock Engineering Research) during the period 1991 to 2003 at various hard rock sites in Sweden. The objective of this report is to present a synopsis of the important factors that influence the development and extent of the blast-induced damage zone, nature and characteristics of blast-induced fractures, and a summary of the blast-damage thickness with reference to the existing perimeter blasting ...

  3. Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST

    Directory of Open Access Journals (Sweden)

    Oliver Melvin J

    2005-04-01

    Full Text Available Abstract Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST, which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN. W.ND-BLAST provides intuitive Graphic User Interfaces (GUI for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is

  4. Influence of Blasted Uranium Ore Heap on Radon Concentration in Confined Workspaces of Shrinkage Mining Stope

    Science.gov (United States)

    Ye, Y. J.; Liang, T.; Ding, D. X.; Lei, B.; Su, H.; Zhang, Y. F.

    2017-07-01

    A calculation model for radon concentration in shrinkage mining stopes under various ventilation conditions was established in this study. The model accounts for the influence of permeability and area of the blasted ore heap, ventilation air quantity, and airflow direction on radon concentration in a confined workspace; these factors work together to allow the engineer to optimize the ventilation design. The feasibility and effectiveness of the model was verified by applying it to mines with elevated radon radiation exposure. The model was found to accurately changes in radon concentration according to the array of influence factors in underground uranium mines.

  5. An HARQ scheme with antenna switching for V-BLAST system

    Directory of Open Access Journals (Sweden)

    Bonghoe Kim

    2004-12-01

    Full Text Available Bell-labs layered space-time (BLAST achieves high spectral efficiency in rich scattering environments by transmitting independent data streams via each transmit antenna. However, this high spectral efficiency is significantly reduced if the signals ate the receiver go through correlated channels. In this paper, we propose a hybrid automatic request (HARQ scheme to alleviate the adverse effect of the channel correlation by simply switching the transmission in retransmission. With the proposed scheme, we can achieve significant improvement over the correlated channels with negligible complexity increase.

  6. CFD‐DEM modelling of blast furnace tapping

    OpenAIRE

    Vango, Mathias; Pirker, Stefan; Lichtenegger, Thomas

    2017-01-01

    The campaign length of a blast furnace is limited by the hearth inner lining lifetime. In order to maximize the campaign length and ensure a good draining of hot metal and slag, a good understanding of the flow in the hearth is essential. Challenges in modelling the flow involve several continuous phases (hot metal, slag and hot blast) as well as the presence of the deadman, a dense bed of coke particles. The shape and position of the deadman depend on the weight of the burden column above an...

  7. Blasting preparation for selective mining of complex structured ore deposition

    Science.gov (United States)

    Marinin, M. A.; Dolzhikov, V. V.

    2017-10-01

    Technological features of ore mining in the open pit development for processing of complex structured ore deposit of steeply falling occurrence have been considered. The technological schemes of ore bodies mining under different conditions of occurrence, consistency and capacity have been considered and offered in the paper. These technologies permit to reduce losses and dilution, but to increase the completeness and quality of mined ore. A method of subsequent selective excavation of ore bodies has been proposed. The method is based on the complex use of buffer-blasting technology for the muck mass and the principle of trim blasting at ore-rock junctions.

  8. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    Science.gov (United States)

    2014-11-01

    correlate with se- verity of diffuse brain injury in rats. Neurosurgery 56, 582–589. 23. Robertson, C.L., Saraswati, M., and Fiskum, G. (2007). Mitochondrial...were affected in 6/9 rats in the single blast group (average severi- ty =mild) versus 8/8 rats in the double blast group (average se- verity ...D.J., Pagulayan, K., McCraw, K., Hoff, D., Hart , K., Yu, C.E., Raskind, M.A., Cook, D.G., and Min- oshima, S. (2011). Cerebrocerebellar

  9. Brain Vulnerability to Repeated Blast Overpressure and Polytrauma

    Science.gov (United States)

    2015-10-01

    least four distinct forms of alkaline phosphatase nzyme present in mammals - intestinal, placental, placental- ike and TNAP (present in liver, bone...Mahota, T. M., Xu, L., Slack, N., Windle, D., and Ahmed, F. A. (2011). The patho- biology of blast injuries and blast- induced neurotrauma as...presence of 0.33 M of gene specific primers and 0.5 l of cDNA in thermal cycler as follows; 95 ◦C × 1 min, followed by 35 cycles of 95 ◦C × 30 s, 61 ◦C

  10. THE Blast-Wave-Driven Instability as a Vehicle for Understanding Supernova Explosion Structure

    Science.gov (United States)

    Miles, Aaron R.

    2009-05-01

    Blast-wave-driven instabilities play a rich and varied role in supernovae (SNe) evolution from explosion to remnant, but interpreting their role is difficult due to the enormous complexity of stellar systems. We consider the simpler idealized problem of an interface between two constant-density fluids perturbed from spherical and driven by a central blast wave. Where valid, the existence of unified solutions suggests that general conclusions can be drawn about the likely asymptotic structure of the mixing zone. To this end, we apply buoyancy-drag and bubble merger models that include effects of divergence and compressibility. In general, these effects preclude the true self-similar evolution of classical Rayleigh-Taylor (RT), but can be incorporated into a quasi-self-similar growth model. Loss of memory of initial conditions (ICs) can occur in the model, but requires pre-explosion mode numbers higher than predicted for Type II SNe, suggesting that their late-time structure is influenced by details of the initial perturbations. Where low modes dominate, as in the Type Ia Tycho remnant, they result from initial perturbations rather than generation from smaller scales. Therefore, the structure observed now contains direct information about the explosion process. When large-amplitude modes exist in the ICs, the contribution from the Richtmyer-Meshkov (RM) instability is significant compared to RT. Such RM growth can yield proximity of the forward shock to the growing spikes and structure that strongly resembles that observed in Tycho. Laser-driven laboratory experiments offer a promising avenue for testing model and simulation descriptions of blast-wave-driven instabilities and making connections to their astrophysical counterparts.

  11. An Investigation to Optimize the Layout of Protective Blast Barriers Using Finite Element Modelling

    Science.gov (United States)

    Lawrence, V.; Ngamkhanong, C.; Kaewunruen, S.

    2017-12-01

    The past has shown that the risk of terrorism is on the rise as can be seen in many events. Terrorist attacks such as the 2004 Madrid bombings, the 2005 London bombings, the 2013 Boston bombing and the 2017 Manchester bombings have shown the impact acts of terrorism has on the public. Nowadays, terrorist attack is likely to increase in the wider area in the future together with a higher density in train passengers. Previous researches into protective measures have been focused on the structure. However, the impacts of terrorist attack on human have not been fully investigated. The needs for protective measures for the public have never been greater. This research aims to investigate the optimum layout for protective blast barriers situated on a train station platform using finite element analysis. The 3-dimensional structure is modelled and analysed using LS-DYNA.The focus is placed on an island platform at Birmingham New Street Station, which is one deemed to be at high risk of terrorist threats. Two shapes of barriers were tested, straight and angled. A total of six models were created and tested against two scenarios. Scenario one is a bomb placed on the ground, scenario two is a bomb being carried. The results focus on the impact the pressure created from the blast has on a person’s lungs and head. Both can cause the most fatalities due to bombings. The results demonstrated that the shape of the barriers had no effect on the pressure. However, it can be concluded that an increase in the number of barriers, reduced the pressure below the critical amount for lung damage. Increasing the number of intervening objects between the bomb and target has a positive effect on the reduction of blast pressure. The insight into this study will help railway and structural engineers to establish strategic preventing methods to minimise catastrophic damage to and potential losses of the public.

  12. Blast Mitigation by Water Mist, (3) Mitigation of Confined and Unconfined Blasts

    Science.gov (United States)

    2006-07-14

    Mitigation of blasts in chemical processing plants, including the fireworks and propellant industries, has also received considerable attention due to the...15.8982 02 => 15.9465 H20(l) + 21.1976 C02 + 10.3008 N2 + 2963.12 kcal 1 kg of HTA -3 contains: 0.29 kg (1.2768 gm-mol) TNT (C7H5N306) 0.22 kg (8.15419 gm...mol) Aluminum (Al) 0.49 kg (1.65429 gm-mol) HMX (C4H8N808) 1 kg HTA -3 => 9.80916 H20(l) + 4.46881 C(s) + 11.086 CO + 8.53235 N2 + 8.15419 Al(s

  13. Development and evaluation of near-isogenic lines for major blast resistance gene(s) in Basmati rice.

    Science.gov (United States)

    Khanna, Apurva; Sharma, Vinay; Ellur, Ranjith K; Shikari, Asif B; Gopala Krishnan, S; Singh, U D; Prakash, G; Sharma, T R; Rathour, Rajeev; Variar, Mukund; Prashanthi, S K; Nagarajan, M; Vinod, K K; Bhowmick, Prolay K; Singh, N K; Prabhu, K V; Singh, B D; Singh, Ashok K

    2015-07-01

    A set of NILs carrying major blast resistance genes in a Basmati rice variety has been developed. Also, the efficacy of pyramids over monogenic NILs against rice blast pathogen Magnaporthe oryzae has been demonstrated. Productivity and quality of Basmati rice is severely affected by rice blast disease. Major genes and QTLs conferring resistance to blast have been reported only in non-Basmati rice germplasm. Here, we report incorporation of seven blast resistance genes from the donor lines DHMASQ164-2a (Pi54, Pi1, Pita), IRBLz5-CA (Pi2), IRBLb-B (Pib), IRBL5-M (Pi5) and IRBL9-W (Pi9) into the genetic background of an elite Basmati rice variety Pusa Basmati 1 (PB1). A total of 36 near-isogenic lines (NILs) comprising of 14 monogenic, 16 two-gene pyramids and six three-gene pyramids were developed through marker-assisted backcross breeding (MABB). Foreground, recombinant and background selection was used to identify the plants with target gene(s), minimize the linkage drag and increase the recurrent parent genome (RPG) recovery (93.5-98.6 %), respectively, in the NILs. Comparative analysis performed using 50,051 SNPs and 500 SSR markers revealed that the SNPs provided better insight into the RPG recovery. Most of the monogenic NILs showed comparable performance in yield and quality, concomitantly, Pusa1637-18-7-6-20 (Pi9), was significantly superior in yield and stable across four different environments as compared to recurrent parent (RP) PB1. Further, among the pyramids, Pusa1930-12-6 (Pi2+Pi5) showed significantly higher yield and Pusa1633-7-8-53-6-8 (Pi54+Pi1+Pita) was superior in cooking quality as compared to RP PB1. The NILs carrying gene Pi9 were found to be the most effective against the concoction of virulent races predominant in the hotspot locations for blast disease. Conversely, when analyzed under artificial inoculation, three-gene pyramids expressed enhanced resistance as compared to the two-gene and monogenic NILs.

  14. Reduction in Temporary and Permanent Audiological Injury Through Internal Jugular Vein Compression in a Rodent Blast Injury Model.

    Science.gov (United States)

    Sindelar, Brian; Shinners, Michael; Sherman, Sydney; Erickson, Kristine; Patel, Vimal; Kubilis, Paul; Finan, John D; Bailes, Julian E

    2017-09-01

    Internal jugular vein (IJV) compression influences not only intracranial but also intracochlear physiology and has demonstrated preclinical effectiveness in reducing acute audiological injury in a rodent blast model. However, the long-term effects in this model are unknown. Blast wave-induced audiological injury from an improvised explosive device is a leading cause of morbidity among service members in theater but there are limitations to the current protective measures. For this study, we exposed 20 Sprague Dawley rats to a 16.8 ± 0.3 PSI (195.3 dB SPL) right-sided shock wave in which 10 had application of a custom IJV compression collar in place at the time of injury. IJV compression at the time of injury was shown acutely to significantly reduce the incidence of tympanic membrane rupture and the initial temporary threshold shift on otoacoustic emissions in both the right and left ears of animals who had collar application immediately after and 7 days post injury. At 28 days from injury, collared animals demonstrated a return to baseline of otoacoustic emission values while the noncollared animals had persistent threshold shifts, signifying the presence of a permanent threshold shift only in those animals without collar application. IJV compression was also found to significantly reduce hair cell loss at the base of the cochlea secondary to mechanical trauma from the blast wind. Previously observed acute protective effects of IJV compression are sustained at chronic time points. IJV compression can potentially be used to reduce long-term permanent morbidity from blast-induced audiological trauma.

  15. Improved detection of remote homologues using cascade PSI-BLAST: influence of neighbouring protein families on sequence coverage.

    Science.gov (United States)

    Kaushik, Swati; Mutt, Eshita; Chellappan, Ajithavalli; Sankaran, Sandhya; Srinivasan, Narayanaswamy; Sowdhamini, Ramanathan

    2013-01-01

    Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST. We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of ~100% and Mathew's correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families. Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for covering the search space effectively in minimal computational time. This study also

  16. Improved detection of remote homologues using cascade PSI-BLAST: influence of neighbouring protein families on sequence coverage.

    Directory of Open Access Journals (Sweden)

    Swati Kaushik

    Full Text Available BACKGROUND: Development of sensitive sequence search procedures for the detection of distant relationships between proteins at superfamily/fold level is still a big challenge. The intermediate sequence search approach is the most frequently employed manner of identifying remote homologues effectively. In this study, examination of serine proteases of prolyl oligopeptidase, rhomboid and subtilisin protein families were carried out using plant serine proteases as queries from two genomes including A. thaliana and O. sativa and 13 other families of unrelated folds to identify the distant homologues which could not be obtained using PSI-BLAST. METHODOLOGY/PRINCIPAL FINDINGS: We have proposed to start with multiple queries of classical serine protease members to identify remote homologues in families, using a rigorous approach like Cascade PSI-BLAST. We found that classical sequence based approaches, like PSI-BLAST, showed very low sequence coverage in identifying plant serine proteases. The algorithm was applied on enriched sequence database of homologous domains and we obtained overall average coverage of 88% at family, 77% at superfamily or fold level along with specificity of ~100% and Mathew's correlation coefficient of 0.91. Similar approach was also implemented on 13 other protein families representing every structural class in SCOP database. Further investigation with statistical tests, like jackknifing, helped us to better understand the influence of neighbouring protein families. CONCLUSIONS/SIGNIFICANCE: Our study suggests that employment of multiple queries of a family for the Cascade PSI-BLAST searches is useful for predicting distant relationships effectively even at superfamily level. We have proposed a generalized strategy to cover all the distant members of a particular family using multiple query sequences. Our findings reveal that prior selection of sequences as query and the presence of neighbouring families can be important for

  17. Characterization and evaluation of rice blast resistance of Chinese indica hybrid rice parental lines

    Directory of Open Access Journals (Sweden)

    Yunyu Wu

    2017-12-01

    Full Text Available The development of resistant varieties and hybrid combinations has been the most effective and economical strategy to control blast disease caused by Magnaporthe oryzae. However, the distribution of major R genes and blast resistance characterization in hybrid rice parents has not been well investigated, resulting in their limited use in hybrid rice blast-resistance breeding. In the present study, 88 elite indica hybrid rice parental lines were evaluated with 30 isolates of M. oryzae collected from the main planting area of indica hybrid rice in China and were characterized for the presence of 11 major resistance genes using molecular markers. The pathogenicity assays showed that four types of hybrid rice parent line showed some resistance to M. oryzae. However, the proportions of highly resistant lines and the mean resistance frequency (RF varied among the four types, with resistance in decreasing order shown by three-line restorer lines, three-line maintainer lines, two-line sterile lines, and two-line restorer lines. All 88 hybrid rice parental lines carried more than one R gene, but none carried the R genes Pi1 and Pi2. Although Pid3 and Pi9 were present only in three-line restorer lines and Pigm only in three-line maintainer lines, the remaining six R genes (Pib, Pid2, Pi5, Pia, Pi54, and Pita were present in the four types of hybrid rice parent with significantly different distribution frequencies. The correlation between R genes and resistance reactions was investigated. The results are expected to provide useful information for rational utilization of major R genes in hybrid rice breeding programs. Keywords: Hybrid rice parental lines, Magnaporthe oryzae, Pi genes, Resistance evaluation, Molecular markers

  18. Blast a Biofilm: A Hands-On Activity for School Children and Members of the Public

    Directory of Open Access Journals (Sweden)

    Victoria L. Marlow

    2013-08-01

    Full Text Available Microbial biofilms are very common in nature and have both detrimental and beneficial effects on everyday life. Practical and hands-on activities have been shown to achieve greater learning and engagement with science by young people (1, 4, 5. We describe an interactive activity, developed to introduce microbes and biofilms to school age children and members of the public. Biofilms are common in nature and, as the favored mode of growth for microbes, biofilms affect many parts ofeveryday life. This hands-on activity highlights the key  concepts of biofilms by allowing participants to first build, then attempt to ‘blast,’ a biofilm, thus enabling the robust nature of biofilms to become apparent. We developed the blast-a-biofilm activity as part of our two-day Magnificent Microbes event, which took place at the Dundee Science Centre-Sensation in May 2010 (6. This public engagement event was run by scientists from the Division of Molecular Microbiology at the University of Dundee. The purpose of the event was to use fun and interesting activities to make both children and adults think about how fascinating microbes are. Additionally, we aimed to develop interactive resources that could be used in future events and learning environments, of which the blast-a-biofilm activity is one such resource. Scientists and policy makers in the UK believe engaging the public with research ensures that the work of universities and research institutes is relevant to society and wider social concerns and can also help scientists actively contribute to positive social change (2. The activity is aimed at junior school age children (9–11 years and adults with little or no knowledge of microbiology. The activity is suitable for use at science festivals, science clubs, and also in the classroom, where it can serve as a tool to enrich and enhance the school curriculum.

  19. Pyramiding of blast and bacterial leaf blight resistance genes into ...

    African Journals Online (AJOL)

    Blast caused by the fungus Magnaporthe oryzae (Hebert) Barr. and bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) are two major diseases of rice (Oryza sativa). The use of varietal resistance is the most appropriate strategy for controlling the diseases, and molecular assisted selection can ...

  20. A numerical technique to design blast noise mitigation measures

    NARCIS (Netherlands)

    Berg, F. van den; Eerden, F.J.M. van der

    2007-01-01

    Large weapons, such as armor, artillery or demolitions, create a high-energy blast wave. It has a low frequency content, typically between 15 and 125 Hz, and can propagate over large distances. As a result it is a relative important cause for annoyance. Mitigation measures need to be close to the

  1. Off-center blast in a shocked medium

    Science.gov (United States)

    Duncan-Miller, G. C.; Stone, W. D.

    2017-11-01

    When multiple blasts occur at different times, the situation arises in which a blast wave is propagating into a medium that has already been shocked. Determining the evolution in the shape of the second shock is not trivial, as it is propagating into air that is not only non-uniform, but also non-stationary. To accomplish this task, we employ the method of Kompaneets to determine the shape of a shock in a non-uniform media. We also draw from the work of Korycansky (Astrophys J 398:184-189. https://doi.org/10.1086/171847, 1992) on an off-center explosion in a medium with radially varying density. Extending this to treat non-stationary flow, and making use of approximations to the Sedov solution for the point blast problem, we are able to determine an analytic expression for the evolving shape of the second shock. In particular, we consider the case of a shock in air at standard ambient temperature and pressure, with the second shock occurring shortly after the original blast wave reaches it, as in a sympathetic detonation.

  2. Off-center blast in a shocked medium

    International Nuclear Information System (INIS)

    Duncan-Miller, G. C.; Stone, W. D.

    2017-01-01

    When multiple blasts occur at different times, the situation arises in which a blast wave is propagating into a medium that has already been shocked. Determining the evolution in the shape of the second shock is not trivial, as it is propagating into air that is not only non-uniform, but also non-stationary. To accomplish this task, we employ the method of Kompaneets to determine the shape of a shock in a non-uniform media. We also draw from the work of Korycansky (Astrophys J 398:184–189, 1992) on an off-center explosion in a medium with radially varying density. Extending this to treat non-stationary flow, and making use of approximations to the Sedov solution for the point blast problem, we are able to determine an analytic expression for the evolving shape of the second shock. In particular, we consider the case of a shock in air at standard ambient temperature and pressure, with the second shock occurring shortly after the original blast wave reaches it, as in a sympathetic detonation.

  3. Multiple blast-hole stresses and measured fragmentation

    Science.gov (United States)

    Dowding, Charles H.; Aimone, Catherine T.

    1985-01-01

    A wave superposition code was developed to calculate stresses explosivley induced by long, multiple blast holes within a three dimensional rock mass. Computed stresses were found to correlate with measured fragmentation from fourteen cases in coal cyclotherm geology when actual, rather than planned, initiation times were modelled.

  4. Studying and improving blast furnace cast iron quality

    Directory of Open Access Journals (Sweden)

    Т. К. Balgabekov

    2014-10-01

    Full Text Available In the article there are presented the results of studies to improve the quality of blast furnace cast iron. It was established that using fire clay suspension for increasing the mould covering heat conductivity improves significantly pig iron salable condition and filtration refining method decreases iron contamination by nonmetallic inclusions by 50 – 70 %.

  5. Blast wave injury prediction models for complex scenarios

    NARCIS (Netherlands)

    Teland, J.A.; Doormaal, J.C.A.M. van

    2012-01-01

    Blast waves from explosions can cause lethal injuries to humans. Development of injury criteria has been ongoing for many years, but with the main focus on free field conditions. However, with terrorist actions as a new threat, explosions in urban areas have become of much more interest. Urban areas

  6. A Mathematical Model for the Comparative Study of the Blast ...

    African Journals Online (AJOL)

    This paper presents a mathematical model of the study of the blast response of aluminium and steel panels. These panels are deemed sufficient to provided protective barrier against explosions, especially from terrorists. With the maximum deflection being the damage criteria used, the behaviour of both panel is studied.

  7. Recent development in blast performance of fiber-reinforced concrete

    Science.gov (United States)

    Hajek, R.; Foglar, M.; Kohoutkova, A.

    2017-09-01

    The paper presents an overview of the recent development in blast performance of fiber reinforced concrete. The paper builds on more than ten years’ history of the research in this field by the team of the Department of Concrete and Masonry Structures of the Faculty of Civil Engineering of the Czech Technical University in Prague.

  8. Chloride ingress of carbonated blast furnace slag cement mortars

    NARCIS (Netherlands)

    Holthuizen, P.E.; Çopuroglu, O.; Polder, R.B.

    2017-01-01

    In the Netherlands civil engineering structures, such as overpasses, bridges and tunnels are generally built using blast furnace slag cement (BFSC, CEM III/B) concrete, because of its high resistance against chloride penetration. Although the Dutch experience regarding durability performance of BFSC

  9. Determination and expression of genes for resistance to blast ...

    African Journals Online (AJOL)

    Determination and expression of genes for resistance to blast (Magnaporthe oryza) in Basmati and non-Basmati indica rices (Oryza sativa L.) Naveen Kumar, D Singh, S Gupta, A Sirohi, B Ramesh, Preeti Sirohi, Parul Sirohi, Atar Singh, N Kumar, A Kumar, Rajendra Kumar, R Kumar, J Singh, P. Kumar, P. Chauhan, ...

  10. foreign body in scrotum following a boat engine blast accident

    African Journals Online (AJOL)

    David Ofori-Adjei

    1Urology Unit, 37 Military Hospital, P.O. Box KB 282, Korle-Bu, Accra, Ghana, 2Department of Surgery,. University of Ghana Medical School, PO Box 4236 ... evacuation limits complications. Keywords: Blast Injury, Scrotal ... emergency of the 37 Military Hospital for further care. Patient complained of a headache but had no ...

  11. Blasted copper slag as fine aggregate in Portland cement concrete.

    Science.gov (United States)

    Dos Anjos, M A G; Sales, A T C; Andrade, N

    2017-07-01

    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Gene interactions and genetics of blast resistance and yield ...

    Indian Academy of Sciences (India)

    2016-08-26

    Oryza sativa L.) ... four blast resistance genes Pi1, Pi2, Pi33 and Pi54 in combination were used to study the nature and magnitude of gene action for disease resistance and yield attributes. ... Please take note of this change.

  13. Development of a Strategy for Simulating Blast-Vehicle Interactions

    Science.gov (United States)

    2010-09-01

    TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 140 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified...soil model for simulating stress wave propagation due to blast loading. International Journal fro Numerical and Analytical Methods in Geomechanics , 28

  14. A research on ceramsite obtained from blast furnace slag and ...

    African Journals Online (AJOL)

    In order to solve disposal problem of solid waste, blast furnace slag (BFS) and sewage sludge (SS) were tested as components for producing ceramsite. This study investigated the feasibility of that at different preheating and sintering temperature and duration and different mass ratios (BFS: SS: clay). The results show that ...

  15. Foreign body in scrotum following a boat engine blast accident ...

    African Journals Online (AJOL)

    Male genital injuries, demand prompt management to prevent long-term sexual and psychological damage. Injuries to the scrotum and contents may produce impaired fertility.We report our experience in diagnosing and managing a case of a foreign body in the scrotum following a boat engine blast accident. This case ...

  16. Development of Experimental Tissue Models for Blast Injury

    Science.gov (United States)

    Butler, Benjamin; Bo, Chiara; Williams, Alun; Jardine, Andy; Brown, Katherine

    2013-06-01

    There is a pressing need to better understand the relationship between the intensity of a blast wave and the clinical consequences for victims of an explosion. In order to quantitatively study how these factors correlate with one another, blast injury tissue models are being developed. Sections of larynx, trachea and pulmonary tissue were excised from a recently sacrificed pig and maintained on ice prior to testing. The samples were subjected to strain rates of between 0.001 s-1 and 1000 s-1 in the laboratory by using a Split Hopkinson Pressure Bar and quasi-static testing apparatus. During high strain rate testing, samples were housed in a polycarbonate chamber which permitted experimentation on tissue held in fluid. Data were analysed using 1, 2 and 3 wave analysis software in Matlab to yield information about the material properties of both undamaged and damaged tissues. In addition, macroscopic changes in tissue organization were also visualized using histopathological techniques. This work is being extended to cellular and animal models to derive more detailed information about the underlying molecular changes relating to blast-induced damage and repair. The Royal British Legion Centre for Blast Injury Studies.

  17. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  18. Finite Element Analysis for CFST Columns under Blast Loading

    Directory of Open Access Journals (Sweden)

    Peyman Beiranvand

    2017-10-01

    Full Text Available The columns of frame structures are the key load-bearing components and the exterior columns are susceptible to attack in terrorist blasts. When subjected to blast loads, the columns would suffer a loss of bearing capacity to a certain extent due to the damage imparted which may lead to their collapse and even cause the progressive collapse of the whole structure . The concrete-filled steel columns have been extensively used in the world due to the existence of all suitable characteristics of concrete and steel, more ductility, increasing concrete confinement using the steel wall, the large energy-absorption capacity and the appropriate fire behavior. In the present study, the concrete-filled steel square columns have been simulated under the influence of the blast load using the ABAQUS software. These responses have been compared for scaled distances based on the distance to the source and the weight of the explosive material. As a result, it can be seen that although concrete deformation has been restricted using the steel tube, the inner layer of concrete has been seriously damaged and the column displacement has been decreased by increasing the scaled distance. We also concluded that the concrete-filled steel columns have the high ductility and the blast resistance.

  19. Explosively-Driven Blast Waves in Small-Diameter Tubes

    Science.gov (United States)

    Cooper, M. A.; Marinis, R. T.; Oliver, M. S.

    Studies on blast waves are motivated by the need to understand dynamic pressure loadings in accident scenarios associated with rapid energy release in confined geometries. Explosions from fuel-air mixtures, explosives and industrial accidents often occur within a range of length scales associated with ducts, pipes, corridors, and tunnels [1, 2].

  20. Granulated blast furnace slag – A boon for foundry industry

    African Journals Online (AJOL)

    In the present investigation efforts have been put together to employ Granulated Blast furnace (GBF) slag as mould material for replacement of existing silica sand either full or partial in foundry industry. Nishiyama procedure was assumed for appraising the same. The process factors reflected on for this were the % of ...