WorldWideScience

Sample records for blankets gas

  1. Divertor and gas blanket impurity control study

    Energy Technology Data Exchange (ETDEWEB)

    El Derini, Z; Stacey, Jr, W M

    1979-04-01

    A simple calculational model for the transport of particles across the scrap off region between the plasma and the wall in the presence of a divertor or a gas blanket has been developed. The model departs from previous work in including: (a) the entire impurity transport as well as its effect on the energy balance equations; (b) the recycling neutrals from the divertor, and (c) the reflected neutrals from the wall. Results obtained with this model show how the steady state impurity level in the plasma depends on the divertor parameters such as the neutral backflow from the divertor, the particle residence time and the scrape off thickness; and on the gas blanket parameters such as the neutral source strength and the gas blanket thickness. The variation of the divertor or gas blanket performance as a function of the heat and particle fluxes escaping from the plasma, the wall material and the cross field diffusion is examined and numerical examples are given.

  2. 75 FR 60095 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2010-09-29

    ... LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY..., by Sempra LNG Marketing, LLC (Sempra), requesting blanket authorization to export up to a total of... Order No. 2795, which granted Cheniere Marketing, LLC (Cheniere) blanket authorization to...

  3. 78 FR 4400 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2013-01-22

    ... USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported Liquefied... and order (Order No. 2923) that granted Eni USA Gas Marketing authority to export a cumulative total... Application, Eni USA Gas Marketing requests blanket authorization to export LNG from the Cameron Terminal...

  4. 75 FR 19954 - Cheniere Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2010-04-16

    ... Cheniere Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY... Cheniere Marketing, LLC (CMI), requesting blanket authorization to export liquefied natural gas (LNG) that... exported from the Sabine Pass LNG terminal owned by CMI's affiliate, Sabine Pass LNG, L.P., in...

  5. Neutral gas blanket effects in a gaseous divertor

    International Nuclear Information System (INIS)

    The gaseous divertor employs a neutral gas blanket to absorb the plasma heat flux in the divertor chamber. This novel method for resolving the heat loading problem in a conventional divertor system is simulated experimentally. In our operational range (nsub(e) 13 cm-3, Tsub(e) <= 5 eV) it is demonstrated that the localized plasma heat flux is scattered relatively uniformly with neutral pressures of a few microns. At large neutral pressures the plasma stream is neutralized without touching a material wall. Plasma pumping inhibits neutral backflow and can sustain a neutral pressure difference comparable to the plasma pressure. Effective divertor channel conductance is measured to be reduced by a factor of six. (orig.)

  6. 77 FR 31004 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-05-24

    ... Energy Regulatory Commission Southern Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on May 9, 2012, Southern Natural Gas Company (Southern), 569 Brookwood Village, Suite....210 of the Federal Energy Regulatory Commission's regulations under the Natural Gas Act (NGA),...

  7. 76 FR 18216 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2011-04-01

    ... Federal Energy Regulatory Commission Southern Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on March 16, 2011, Southern Natural Gas Company (Southern), Post Office Box 2563... and 157.216 of the Commission's Regulations under the Natural Gas Act (NGA) as amended, to abandon...

  8. 75 FR 13535 - Northern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-03-22

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Request Under Blanket Authorization March 16, 2010. Take notice that on March 12, 2010, Northern Natural Gas Company (Northern), 1111 South... External Affairs, Northern Natural Gas Company, 1111 South 103rd Street, Omaha, Nebraska 68124, at...

  9. 75 FR 3232 - Northern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-01-20

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Request Under Blanket Authorization January 8, 2010. Take notice that on December 30, 2009, Northern Natural Gas Company (Northern), 1111... sections 157.205 and 157.214 of the Commission's regulations under the Natural Gas Act for authorization...

  10. 76 FR 2093 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2011-01-12

    ... Gas Marketing LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY... liquefied natural gas (LNG) that previously had been imported into the United States from foreign sources in an amount up to the equivalent of 100 billion cubic feet (Bcf) of natural gas. The LNG would...

  11. 77 FR 38622 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-06-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on June 4, 2012, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro,...

  12. 78 FR 68835 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-11-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on October 31, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro,...

  13. 78 FR 25264 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on April 16, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro,...

  14. 78 FR 53746 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-08-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on August 13, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro,...

  15. 77 FR 14517 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on February 21, 2012 Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 State Highway 56,...

  16. 78 FR 13663 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-02-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on February 11, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, P.O. Box...

  17. 75 FR 8053 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization February 16, 2010. Take notice that on January 29, 2010, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700...

  18. 75 FR 38092 - The Dow Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2010-07-01

    ... The Dow Chemical Company (Dow), requesting blanket authorization to export liquefied natural gas (LNG... with its principal place of business in Midland, Michigan. Dow is an international chemical and...\\ The Dow Chemical Company, DOE/FE Order No. 2754 issued February 25, 2010. Current Application In...

  19. APT Blanket System Loss-of-Helium-Gas Accident Based on Initial Conceptual Design - Helium Supply Rupture into Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    The model results are used to determine if beam power shutdown is necessary (or not) as a result of the LOHGA accident to maintain the blanket system well below any of the thermal-hydraulic constraints imposed on the design. The results also provide boundary conditions to the detailed bin model to study the detailed temperature response of the hot blanket module structure. The results for these two cases are documented in the report.

  20. 75 FR 38093 - ConocoPhillips Alaska Natural Gas Corporation and Marathon Oil Company; Application for Blanket...

    Science.gov (United States)

    2010-07-01

    ... will not jeopardize service to the local markets into which this natural gas might otherwise be sold... critical back-up natural gas supply service for the local market in times of peak needs on the coldest days...Phillips Alaska Natural Gas Corporation and Marathon Oil Company; Application for Blanket Authorization...

  1. Molecule-surface interaction processes of relevance to gas blanket type fusion device divertor design

    Energy Technology Data Exchange (ETDEWEB)

    Snowdon, K.J. [Newcastle Univ. (United Kingdom). Dept. of Physics; Tawara, H.

    1997-01-01

    The mechanisms which may lead to the departure of molecular species from surfaces exposed to low energy (0.1-100 eV) particle or photon and electron irradiation are reviewed. Where possible, the charge and electronic state, angular, translational and internal energy distributions of the departing molecules are described and the physical origin of the nature of those distributions identified. The consequences, for the departing molecules, of certain material choices become apparent from such an analysis. Such information may help guide the choice of appropriate materials for plasma facing components of gas-blanket type divertors such as that recently proposed for the International Thermonuclear Experimental Reactor (ITER). (author). 71 refs.

  2. Economic performance of liquid-metal fast breeder reactor and gas-cooled fast reactor radial blankets

    International Nuclear Information System (INIS)

    The economic performance of the radial blanket of a liquid-metal fast breeder reactor (LMFBR) and a gas-cooled fast reactor (GCFR) has been studied based on the calculation of the net financial gain as well as the value of the levelized fuel cost. The necessary reactor physics calculations have been performed using the code CITATION, and the economic analysis has been carried out with the code ECOBLAN, which has been written for that purpose. The residence time of fuel in the blanket is the main variable of the economic analysis. Other parameters that affect the results and that have been considered are the value of plutonium, the price of heat, the effective cost of money, and the holdup time of the spent fuel before reprocessing. The results show that the radial blanket of both reactors is a producer of net positive income for a broad range of values of the parameters mentioned above. The position of the fuel in the blanket and the fuel management scheme applied affect the monetary gain. There is no significant difference between the economic performance of the blanket of an LMFBR and a GCFR

  3. The gas-cooled Li2O moderator/breeder canister blanket for fusion-synfuels

    International Nuclear Information System (INIS)

    A new integrated power and breeding blanket is described. The blanket incorporates features that make it suitable for synthetic fuel production. It is matched to the thermal and electrical requirements of the General Atomic water-splitting process for producing hydrogen. The fusion reaction is the Tandem Mirror Reactor (TMR) using Mirror Advanced Reactor Study (MARS) physics. The canister blanket is a high temperature, pressure balanced, crossflow heat exchanger contained within a low activity, independently cooled, moderate temperature, first wall structural envelope. The canister uses Li2O as the moderator/breeder and helium as the coolant. ''In situ'' tritium control, combined with slip stream processing and self-healing permeation barriers, assures a hydrogen product essentially free of tritium. The blanket is particularly adapted to synfuels production but is equally useful for electricity production or co-generation

  4. 75 FR 53966 - Kinder Morgan Interstate Gas Transmission, LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-09-02

    ... (fax), Robert_Harrington@kindermorgan.com , Ashley L. Garber, Assistant General Counsel, Kinder Morgan..., Robert F. Christin, and Shippen Howe, Van Ness Feldman, P.C., 1050 Thomas Jefferson Street, NW., 7th... Federal Energy Regulatory Commission Kinder Morgan Interstate Gas Transmission, LLC; Notice of...

  5. Breeding blanket for DEMO

    International Nuclear Information System (INIS)

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently being investigated within the framework of the European Test-Blanket Development Programme. (orig.)

  6. Breeding blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Proust, E. (Commissariat a l' Energie Atomique (CEA), DRN/DMT/SERMA, CE, Saclay (France)); Anzidei, L. (ENEA/FUS, C.R.E., Frascati (Italy)); Casini, G. (Commission of the European Communities, Joint Research Center, Ispara (Italy)); Dalle Donne, M. (Kernforschungszentrum Karlsruhe GmbH (Germany)); Giancarli, L. (Commissariat a l' Energie Atomique (CEA), DRN/DMT/SERMA, CE, Saclay (France)); Malang, S. (Kernforschungszentrum Karlsruhe GmbH (Germany))

    1993-03-01

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently being investigated within the framework of the European Test-Blanket Development Programme. (orig.)

  7. Breeding blanket for Demo

    Energy Technology Data Exchange (ETDEWEB)

    Proust, E.; Giancarli, L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Anzidei, L. [ENEA, Frascati (Italy). Centro Ricerche Energia; Casini, G. [Commission of the European Communities, Ispra (Italy). Joint Research Centre; Dalle Donne, M.; Malang, S. [Kernforschungszentrum Karlsruhe GmbH (Germany)

    1992-12-31

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently investigated within the framework of the European Test-Blanket Development Programme.

  8. Low activity aluminum blanket

    Energy Technology Data Exchange (ETDEWEB)

    Benenati, R.; Tichler, P.; Powell, J.R.

    1976-03-01

    The basic design of the breeding blanket consists of cylindrical aluminium canisters filled with a ceramic bed of moderating, shielding, and breeding materials all suitably cooled. A technical analysis of the blanket for an EPR design is given. Activation studies are presented. The effect of pulsed magnetic fields on module structure is investigated. (MOW)

  9. 75 FR 62510 - Chevron U.S.A. Inc.; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2010-10-12

    .... Chevron Global Gas is a division of Chevron that engages in the global business of marketing and trading... of Energy (FE-34), Office of Oil and Gas Global Security and Supply, Office of Fossil Energy... Global Security and Supply, Office of Fossil Energy, Forrestal Building, Room 3E-042, 1000...

  10. Flexible armored blanket development

    Energy Technology Data Exchange (ETDEWEB)

    Roth, E.S.

    1978-05-01

    An exploratory development contract was undertaken on December 23, 1977 which had as its purpose the development and demonstration of a flexible armored blanket design suitable for providing ballistic protection to nuclear weapons during shipment. Objectives were to design and fabricate a prototype blanket which will conform to the weapon shape, is troop-handleable in the field, and which, singly or in multiple layers, can defeat a range of kinetic energy armor piercing (AP) ammunition potentially capable of damaging the critical portion of the nuclear weapon. Following empirical testing, including the firing of threat ammunition under controlled laboratory and field test conditions, materials were selected and assembled into two blanket designs, each weighing approximately 54 kg/m{sup 2} (11 lbs/ft{sup 2}) and estimated to cost from $111 to $180 per ft{sup 2} in production. A firing demonstration to evidence blanket performance against terrorist/light infantry weapons, heavy infantry weapons, and aircraft cannon was conducted for representatives of the DOD and interested Sandia employees on April 12, 1978. The blankets performed better than anticipated defeating bullets up to 7.62 mm x 51 mm AP with one layer and projectiles up to 23 mm HEI with two layers. Based on these preliminary tests it is recommended that development work be continued with the following objectives: (1) the selection by the DOD of priority applications, (2) the specific design and fabrication of sufficient quantities of armored blankets for field testing, (3) the evaluation of the blankets by DOD operational units, with reports to Sandia Laboratories to enable final design.

  11. Review: BNL graphite blanket design concepts

    International Nuclear Information System (INIS)

    A review of the Brookhaven National Laboratory (BNL) minimum activity graphite blanket designs is made. Three designs are identified and discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a thick graphite screen (typically 30 cm or greater, depending on type as well as application-experimental power reactor or commercial reactor). Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy. This energy is then either radiated to a secondary blanket with coolant tubes, as in types A and B, or is removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the structural material of the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude by the graphite screen, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma, whatever the degree of radiation damage

  12. Blanket for thermonuclear device

    International Nuclear Information System (INIS)

    The blanket of the present invention can keep the temperature of breeding materials within a predetermined range even if the breeding materials are consumed and the amount of heat generated from the breeding materials is reduced, thereby enabling to release tritium stably. That is, a neutron incident amount control means is disposed to the blanket for controlling the amount of neutrons incident to the breeding materials. Alternatively, a material to form hollow layers are disposed to the periphery of the breeding materials. With such constitution, the neutron incident amount control means enables to control the incident amount of neutrons from plasmas to the breeding materials, thereby enabling to suppress the change of the amount of heat generated in the breeding materials. In addition, the hollow layers formed at the periphery of the breeding materials enables selective filling of fluids having different heat transfer characteristics thereby enabling to control heat resistance between the breeding materials and cooling tubes. Accordingly, temperature of the breeding materials can be kept constant even in any of the cases. (I.S.)

  13. Studies on steps affecting tritium residence time in solid blanket

    International Nuclear Information System (INIS)

    For the self sustaining of CTR fuel cycle, the effective tritium recovery from blankets is essential. This means that not only tritium breeding ratio must be larger than 1.0, but also high recovering speed is required for the short residence time of tritium in blankets. Short residence time means that the tritium inventory in blankets is small. In this paper, the tritium residence time and tritium inventory in a solid blanket are modeled by considering the steps constituting tritium release. Some of these tritium migration processes were experimentally evaluated. The tritium migration steps in a solid blanket using sintered breeding materials consist of diffusion in grains, desorption at grain edges, diffusion and permeation through grain boundaries, desorption at particle edges, diffusion and percolation through interconnected pores to purging stream, and convective mass transfer to stream. Corresponding to these steps, diffusive, soluble, adsorbed and trapped tritium inventories and the tritium in gas phase are conceivable. The code named TTT was made for calculating these tritium inventories and the residence time of tritium. An example of the results of calculation is shown. The blanket is REPUTER-1, which is the conceptual design of a commercial reversed field pinch fusion reactor studied at the University of Tokyo. The experimental studies on the migration steps of tritium are reported. (Kako, I.)

  14. Blanket comparison and selection study. Volume II

    International Nuclear Information System (INIS)

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies

  15. Blanket comparison and selection study. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies. (MOW)

  16. Progress on DCLL Blanket Concept

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Clement; Abdou, M.; Katoh, Yutai; Kurtz, Richard J.; Lumsdaine, A.; Marriott, Edward P.; Merrill, Brad; Morley, Neil; Pint, Bruce A.; Sawan, M.; Smolentsev, S.; Williams, Brian; Willms, Scott; Youssef, M.

    2013-09-01

    Under the US Fusion Nuclear Science and Technology Development program, we have selected the Dual Coolant Lead Lithium concept (DCLL) as a reference blanket, which has the potential to be a high performance DEMO blanket design with a projected thermal efficiency of >40%. Reduced activation ferritic/martensitic (RAF/M) steel is used as the structural material. The self-cooled breeder PbLi is circulated for power conversion and for tritium breeding. A SiC-based flow channel insert (FCI) is used as a means for magnetohydrodynamic pressure drop reduction from the circulating liquid PbLi and as a thermal insulator to separate the high-temperature PbLi (~700°C) from the helium-cooled RAF/M steel structure. We are making progress on related R&D needs to address critical Fusion Nuclear Science and Facility (FNSF) and DEMO blanket development issues. When performing the function as the Interface Coordinator for the DCLL blanket concept, we had been developing the mechanical design and performing neutronics, structural and thermal hydraulics analyses of the DCLL TBM module. We had estimated the necessary ancillary equipment that will be needed at the ITER site and a detailed safety impact report has been prepared. This provided additional understanding of the DCLL blanket concept in preparation for the FNSF and DEMO. This paper will be a summary report on the progress of the DCLL TBM design and R&Ds for the DCLL blanket concept.

  17. Thermohydraulics design and thermomechanics analysis of two European breeder blanket concepts for DEMO. Pt. 1 and Pt. 2. Pt. 1: BOT helium cooled solid breeding blanket. Pt. 2: Dual coolant self-cooled liquid metal blanket

    International Nuclear Information System (INIS)

    Two different breeding blanket concepts are being elaborated at Forschungszentrum Karlsruhe within the framework of the DEMO breeding blanket development, the concept of a helium cooled solid breeding blanket and the concept of a self-cooled liquid metal blanket. The breeder material used in the first concept is Li4SiO4 as a pebble bed arranged separate from the beryllium pebble bed, which serves as multiplier. The breeder material zone is cooled by several toroidally-radially configurated helium cooling plates which, at the same time, act as reinforcements of the blanket structures. In the liquid metal blanket concept lead-lithium is used both as the breeder material and the coolant. It flows at low velocity in poloidal direction downwards and back in the blanket front zone. In both concepts the First Wall is cooled by helium gas. This report deals with the thermohydraulics design and thermomechanics analysis of the two blanket concepts. The performance data derived from the Monte-Carlo computations serve as a basis for the design calculations. The coolant inlet and outlet temperatures are chosen with the design criteria and the economics aspects taken into account. Uniform temperature distribution in the blanket structures can be achieved by suitable branching and routing of the coolant flows which contributes to reducing decisively the thermal stress. The computations were made using the ABAQUS computer code. The results obtained of the stresses have been evaluated using the ASME code. It can be demonstrated that all maximum values of temperature and stress are below the admissible limit. (orig.)

  18. Crucial issues on liquid metal blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S. (Kernforschungszentrum Karlsruhe (Germany)); Leroy, P. (CEA, CEN Saclay, 91 - Gif-sur-Yvette (France)); Casini, G.P. (CEC, Joint Research Centre (JRC), Ispra (Italy)); Mattas, R.F. (Argonne National Lab., IL (United States)); Strebkov, Yu. (Research and Development Inst. of Power Engineering, Moscow (USSR))

    1991-12-01

    Typical design concepts of liquid metal breeder blankets for power reactors are explained and characterized. The major problems of these concepts are described for both water-cooled blankets and self-cooled blankets. Three crucial issues of liquid metal breeder blankets are investigated. They are in the fields of magnetohydrodynamics, tritium control and safety. The influence of the magnetic field on liquid metal flow is of special interest for self-cooled blankets. The main problems in this field and the status of the related R and D work are described. Tritium permeation losses to the cooling water is a crucial issue for water-cooled blankets. Methods for its reduction are discussed. An inherent problem of all liquid breeder blankets is the potential release of activated products in the case of chemical reactions between the breeder material and water or reactive gases. The most important issues in this field are described. (orig.).

  19. 77 FR 66597 - Chevron U.S.A. Inc.; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2012-11-06

    .... in Cameron Parish, Louisiana. Chevron states that DOE/FE has issued a number of blanket... U.S.A. Inc.; Application for Blanket Authorization To Export Previously Imported Liquefied Natural Gas on a Short-Term Basis AGENCY: Office of Fossil Energy, DOE. ACTION: Notice of application....

  20. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  1. Blanket comparison and selection study. Volume I

    International Nuclear Information System (INIS)

    The objectives of the Blanket Comparison and Selection Study (BCSS) can be stated as follows: (1) Define a small number (approx. 3) of blanket design concepts that should be the focus of the blanket R and D program. A design concept is defined by the selection of all materials (e.g., breeder, coolant, structure and multiplier) and other major characteristics that significantly influence the R and D requirements. (2) Identify and prioritize the critical issues for the leading blanket concepts. (3) Provide the technical input necessary to develop a blanket R and D program plan. Guidelines for prioritizing the R and D requirements include: (a) critical feasibility issues for the leading blanket concepts will receive the highest priority, and (b) for equally important feasibility issues, higher R and D priority will be given to those that require minimum cost and short time

  2. Low technology high tritium breeding blanket concept

    International Nuclear Information System (INIS)

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of ∼2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs

  3. Fusion reactor blanket/shield design study

    International Nuclear Information System (INIS)

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented

  4. Design of ITER shielding blanket

    International Nuclear Information System (INIS)

    A mechanical configuration of ITER integrated primary first wall/shield blanket module were developed focusing on the welded attachment of its support leg to the back plate. A 100 mm x 150 mm space between the legs of adjacent modules was incorporated for the working space of welding/cutting tools. A concept of coolant branch pipe connection to accommodate deformation due to the leg welding and differential displacement of the module and the manifold/back plate during operation was introduced. Two-dimensional FEM analyses showed that thermal stresses in Cu-alloy (first wall) and stainless steel (first wall coolant tube and shield block) satisfied the stress criteria following ASME code for ITER BPP operation. On the other hand, three-dimensional FEM analyses for overall in-vessel structures exhibited excessive primary stresses in the back plate and its support structure to the vacuum vessel under VDE disruption load and marginal stresses in the support leg of module No.4. Fabrication procedure of the integrated primary first wall/shield blanket module was developed based on single step solid HIP for the joining of Cu-alloy/Cu-alloy, Cu-alloy/stainless steel, and stainless steel/stainless steel. (author)

  5. ITER blanket, shield and material data base

    International Nuclear Information System (INIS)

    As part of the summary of the Conceptual Design Activities (CDA) for the International Thermonuclear Experimental Reactor (ITER), this document describes the ITER blanket, shield, and material data base. Part A, ''ITER Blanket and Shield Conceptual Design'', discusses the need for ITER of a tritium breeding blanket to supply most of the tritium for the fuel cycle of the device. Blanket and shield combined must be designed to operate at a neutron wall loading of 1MW/m2, and to provide adequate shielding of the magnets to meet the neutron energy fluence goal of 3MWa/m2 at the first wall. After a summary of the conceptual design, the following topics are elaborated upon: (1) function, design requirement, and critical issues; (2) material selection; (3) blanket and shield segmentation; (4) blanket design description; (5) design analysis; (6) shield; (7) radiation streaming analysis; and (8) a summary of benchmark calculations. Part B, ''ITER Materials Evaluation and Data Base'', treats the compilation and assessment of the available materials data base used for the selection of the appropriate materials for all major components of ITER, including (i) structural materials for the first wall, (ii) Tritium breeding materials for the blanket, (iii) plasma facing materials for the divertor and first wall armor, and (4) electric insulators for use in the blanket and divertor. Refs, figs and tabs

  6. Development of Solid Breeder Blanket at JAERI

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI) has been performing blanket development based on the long-term research program of fusion blankets in Japan, which was approved by the Fusion Council of Japan in 1999. The blanket development consists of out-pile R and D, In-pile R and D, TBM Neutronics and TPR Tests and Tritium Recovery System R and D. Based on the achievements of element technology development, the R and D program is now stepping to the engineering testing phase, in which scalable mockup tests will be performed for obtaining engineering data unique to the specific structure of the components, with the objective to define the fabrication specification of test blanket modules for ITER. This paper presents the major achievements of the element technology development of solid breeder blanket in JAERI

  7. Fast breeder reactor blanket management: comparison of LMFBR and GCFR blankets

    International Nuclear Information System (INIS)

    The economic performance of the fast breeder reactor blanket, considering different fuel management schemes was studied. To perform this, the investigation started with a standard reactor physics calculation. Then, two economic models for evaluation of the economic performance of the radial blanket were developed. These models formed the basis of a computer code, ECOBLAN, which computes the net economic gain and the levelized fuel cost due to the radial blanket. The net gain in terms of dollars and $/kgHM-y and the levelized fuel cost in mills/kWhe were obtained as a function of blanket thickness and a residence time of the fuel in the blanket. A LMFBR and a GCFR were the reactor models considered in this study. The optimum radial blanket of a GCFR consists of two rows, that of a LMFBR consists of three rows. Regarding the different fuel management schemes, the fixed blanket was found to be more favorable than reshuffled blanket. Out-in and in-out reshuffled blanket offer almost the same net gain. In all the cases, the burnup calculated for the fuel was found to be less than the acceptable limit. There is an optimum residence time for the fuel in the blanket which depends on the position of the fuel in the blanket and the fuel management scheme studied. As expected, except for very short residence times (less than 2.5 years), the radial blanket is a net income producer. There is no significant difference between the economic performance of the blanket of a LMFBR and a GCFR

  8. Multivariable optimization of fusion reactor blankets

    International Nuclear Information System (INIS)

    The optimization problem consists of four key elements: a figure of merit for the reactor, a technique for estimating the neutronic performance of the blanket as a function of the design variables, constraints on the design variables and neutronic performance, and a method for optimizing the figure of merit subject to the constraints. The first reactor concept investigated uses a liquid lithium blanket for breeding tritium and a steel blanket to increase the fusion energy multiplication factor. The capital cost per unit of net electric power produced is minimized subject to constraints on the tritium breeding ratio and radiation damage rate. The optimal design has a 91-cm-thick lithium blanket denatured to 0.1% 6Li. The second reactor concept investigated uses a BeO neutron multiplier and a LiAlO2 breeding blanket. The total blanket thickness is minimized subject to constraints on the tritium breeding ratio, the total neutron leakage, and the heat generation rate in aluminum support tendons. The optimal design consists of a 4.2-cm-thick BeO multiplier and 42-cm-thick LiAlO2 breeding blanket enriched to 34% 6Li

  9. ITER breeding blanket module design and analysis

    International Nuclear Information System (INIS)

    The ITER breeding blanket employs a ceramic breeder and Be neutron multiplier both in small spherical pebble form. Radial-poloidal cooling panels are arranged in the blanket box to remove the nuclear heating in these materials and to reinforce the blanket structure. At the first wall, Be armor is bonded onto the stainless steel (SS) structure to provide a low Z plasma-compatible surface and to protect the first wall/blanket structure from the direct contact with the plasma during off-normal events. Thermo-mechanical analyses and investigation of fabrication procedure have been performed for this breeding blanket. To evaluate thermo-mechanical behavior of the pebble beds including the dependency of the effective thermal conductivity on stress, analysis methods have been preliminary established by the use of special calculation option of ABAQUS code, which are briefly summarized in this report. The structural response of the breeding blanket module under internal pressure of 4 MPa (in case of in-blanket LOCA) resulted in rather high stress in the blanket side (toroidal end) wall, thus addition of a stiffening rib or increase of the wall thickness will be needed. Two-dimensional elasto-plastic analyses have been performed for the Be/SS bonded interface at the first wall taking a fabrication process based on HIP bonding and thermal cycle due to pulsed plasma operation into account. The stress-strain hysteresis during these process and operation was clarified, and a procedure to assess and/or confirm the bonding integrity was also proposed. Fabrication sequence of the breeding blanket module was preliminarily developed based on the procedure to fabricate part by part and to assemble them one by one. (author)

  10. Mechanical and thermal design of hybrid blankets

    International Nuclear Information System (INIS)

    The thermal and mechanical aspects of hybrid reactor blanket design considerations are discussed. This paper is intended as a companion to that of J. D. Lee of Lawrence Livermore Laboratory on the nuclear aspects of hybrid reactor blanket design. The major design characteristics of hybrid reactor blankets are discussed with emphasis on the areas of difference between hybrid reactors and standard fusion or fission reactors. Specific examples are used to illustrate the design tradeoffs and choices that must be made in hybrid reactor design. These examples are drawn from the work on the Mirror Hybrid Reactor

  11. Benchmark calculations for fusion blanket development

    International Nuclear Information System (INIS)

    Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li17Pb83 and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the tritium breeding ratio to group structure and weighting spectrum increases as the thickness and Li enrichment decrease with up to 20% discrepancies for thin natural Li17Pb83 blankets. (author)

  12. Exploratory Study of Blanket Liquid Curtain

    Institute of Scientific and Technical Information of China (English)

    HUGang; HUANGJinhua; FENGKaiming

    2003-01-01

    Blankets and other in-vessel components are easily damaged owing to their circumstance of high radiation and high heat. To protect them, first wall design should be considered. Owing to its high heat removal nd self-refreshing capability, liquid metal first wall has been seen as a potential first wall for a fusion reactor in the future. Blanketliquid curtain is actually a special liquid metal wall to protect blanket.

  13. 78 FR 53737 - ConocoPhillips Company; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2013-08-30

    ...Phillips Company; Application for Blanket Authorization To Export Previously Imported Liquefied Natural Gas... application (Application), filed on August 7, 2013, by ConocoPhillips Company (ConocoPhillips), requesting... which trade is not prohibited by U.S. law or policy. The Application was filed under section 3 of...

  14. Ceramic helium-cooled blanket test module

    Energy Technology Data Exchange (ETDEWEB)

    Leshukov, A. E-mail: leshu@entek.ru; Kovalenko, V.; Shatalov, G.; Goroshkin, G.; Obukhov, A

    2000-11-01

    The design of RF DEMO-relevant ceramic helium cooled blanket test module (CHC BTM) for testing in international thermonuclear experimental reactor (ITER) is under consideration. The RF concept of DEMO BTM is based upon the breeder inside tube (BIT)-concept. This concept suggests the use of solid breeding ceramic material, helium as coolant and tritium purge-gas, ferrite-martensite steel as structural material, and beryllium as neutron multiplier. The parameters of the primary circuit coolant are the following, pressure -8 MPa, inlet/outlet temperature -300/550 deg. C, respectively. Helium (0.1 MPa pressure) is used for tritium removal from ceramic breeder. The ITER water coolant is the secondary circuit coolant of DEMO BTM cooling system. Lithium orthosilicate (Li{sub 4}SiO{sub 4}) is used as tritium breeding material (pebbles-bed of diameter 0.5-1 mm spheres). It is planned to use the beryllium as neutron multiplier (spheres diameter 1 mm pebbles-bed or the porous beryllium). The 3-D neutronic calculations on Monte Carlo method, in accordance with FENDL-1 library of the nuclear data, have been performed for CHC BTM. To validate the CHC BTM concept, the thermal hydraulic analysis has been performed for the design elements and cooling system equipment. The preliminary stress analysis for BTM design elements has been carried out on the ASME-code and RF strength regulations. The four types of LOFA and LOCA accidents have been investigated. The parameters of cooling, coolant purification and tritium extraction systems have been determined.

  15. Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Zhu, Qingjun; Li, Jia; Liu, Songlin

    2016-07-01

    In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the water-cooled ceramic breeder blanket for CFETR. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  16. Tritium recovery in Pb17Li-water cooled blanket systems

    Energy Technology Data Exchange (ETDEWEB)

    Malara, C. [Safety Technology Inst., Ispra (Italy); Casini, G. [Systems Engineering & Information Inst., Ispra (Italy); Viola, A. [Univ. of Cagliari (Italy)

    1994-12-31

    The question of tritium recovery in Pb17Li, water cooled blankets is under investigation since several years at JRC Ispra. The method which has been more extensively analyzed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging in a suited process apparatus. The design features of the process systems are related to: (1) the very low tritium solubility in Pb17Li which implies high permeation rates through the containment structures; (2) the need of keeping as low as possible the tritium concentration in the cooling water both for safety and economical reasons. A computerized model of the tritium behavior in the blanket units and in the extraction system has been developed.

  17. European DEMO BOT solid breeder blanket

    International Nuclear Information System (INIS)

    The BOT (Breeder Outside Tube) Solid Breeder Blanket for a fusion DEMO reactor is presented. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. In the paper the reference blanket design and external loops are described as well as the results of the theoretical and experimental work in the fields of neutronics, thermohydraulics, mechanical stresses, tritium control and extraction, development and irradiation of the ceramic breeder material, beryllium development, ferromagnetic forces caused by disruptions, safety and reliability. An outlook is given on the remaining open questions and on the required R and D program. (orig.)

  18. Neutronic implications of lead-lithium blankets

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W.R.

    1982-08-01

    Lead-lithium alloys have been proposed for use in several conceptual blanket designs for both inertial and magnetic confinement fusion reactors. In most cases, Pb/sub 83/Li/sub 17/, a eutectic with a melting point of 235/sup 0/C, is the chosen composition. The primary reasons for using Pb/sub 83/Li/sub 17/ instead of Li as the tritium breeding material are the perceived safety advantages, low tritium solubility, and favorable neutronic characteristics. This paper describes the neutronic characteristics of Pb/sub 83/Li/sub 17/ blankets with emphasis on the enhanced neutron leakage through chamber ports and the degradation in blanket performance parameters that occurs as a result of the enhanced leakage.

  19. Some new ideas for Tandem Mirror blankets

    International Nuclear Information System (INIS)

    The Tandem Mirror Reactor, with its cylindrical central cell, has led to numerous blanket designs taking advantage of the simple geometry. Also many new applications for fusion neutrons are now being considered. To the pure fusion electricity producers and hybrids producing fissile fuel, we are adding studies of synthetic fuel producers and fission-suppressed hybrids. The three blanket concepts presented are new ideas and should be considered illustrative of the breadth of Livermore's application studies. They are not meant to imply fully analyzed designs

  20. Lightweight IMM PV Flexible Blanket Assembly

    Science.gov (United States)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  1. 47 CFR 22.353 - Blanketing interference.

    Science.gov (United States)

    2010-10-01

    ... Operational and Technical Requirements Technical Requirements § 22.353 Blanketing interference. Licensees of...: ER17NO94.007 where d is the radial distance to the boundary, in kilometers p is the radial effective radiated power, in kilowatts The maximum effective radiated power in the pertinent direction,...

  2. Aerogel Blanket Insulation Materials for Cryogenic Applications

    Science.gov (United States)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  3. Advanced Polymer For Multilayer Insulating Blankets

    Science.gov (United States)

    Haghighat, R. Ross; Shepp, Allan

    1996-01-01

    Polymer resisting degradation by monatomic oxygen undergoing commercial development under trade name "Aorimide" ("atomic-oxygen-resistant imidazole"). Intended for use in thermal blankets for spacecraft in low orbit, useful on Earth in outdoor applications in which sunlight and ozone degrades other plastics. Also used, for example, to make threads and to make films coated with metals for reflectivity.

  4. ITER driver blanket, European Community design

    Energy Technology Data Exchange (ETDEWEB)

    Simbolotti, G. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Zampaglione, V. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Ferrari, M. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Gallina, M. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Mazzone, G. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Nardi, C. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Petrizzi, L. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Rado, V. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Violante, V. (EURATOM-ENEA Association on Fusion Research, C.R.E., Frascati (Italy)); Daenner, W. (NET Team, Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany)); Lorenzetto, P. (NET Team, Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany)); Gierszewski, P. (CFFTP, Mississauga, ON (Canada)); Gratt

    1993-07-01

    Depending on the final decision on the operation time of ITER (International Thermonuclear Experimental Reactor), the Driver Blanket might become a basic component of the machine with the main function of producing a significant fraction (close to 0.8) of the tritium required for the ITER operation, the remaining fraction being available from external supplies. The Driver Blanket is not required to provide reactor relevant performance in terms of tritium self-sufficiency. However, reactor relevant reliability and safety are mandatory requirements for this component in order not to significantly afftect the overall plant availability and to allow the ITER experimental program to be safely and successfully carried out. With the framework of the ITER Conceptual Design Activities (CDA, 1988-1990), a conceptual design of the ITER Driver Blanket has been carried out by ENEA Fusion Dept., in collaboration with ANSALDO S.p.A. and SRS S.r.l., and in close consultation with the NET Team and CFFTP (Canadian Fusion Fuels Technology Project). Such a design has been selected as EC (European Community) reference design for the ITER Driver Blanket. The status of the design at the end of CDA is reported in the present paper. (orig.)

  5. Fidget Blankets: A Sensory Stimulation Outreach Program.

    Science.gov (United States)

    Kroustos, Kelly Reilly; Trautwein, Heidi; Kerns, Rachel; Sobota, Kristen Finley

    2016-01-01

    Behavioral and Psychological Symptoms of Dementia (BPSD) include behaviors such as aberrant motor behavior, agitation, anxiety, apathy, delusions, depression, disinhibition, elation, hallucinations, irritability, and sleep or appetite changes. A student-led project to provide sensory stimulation in the form of "fidget blankets" developed into a community outreach program. The goal was to decrease the use of antipsychotics used for BPSD.

  6. Blanket design study for a Commercial Tokamak Hybrid Reactor (CTHR)

    International Nuclear Information System (INIS)

    The results are presented of a study on two blanket design concepts for application in a Commercial Tokamak Hybrid Reactor (CTHR). Both blankets operate on the U-Pu cycle and are designed to achieve tritium self-sufficiency while maximizing the fissile fuel production within thermal and mechanical design constraints. The two blanket concepts that were evaluated were: (1) a UC fueled, stainless steel clad and structure, helium cooled blanket; and (2) a UO2 fueled, zircaloy clad, stainless steel structure, boiling water cooled blanket. Two different tritium breeding media, Li2O and LiH, were evaluated for use in both blanket concepts. The use of lead as a neutron multiplier or reflector and graphite as a reflector was also considered for both blankets

  7. Water-cooled blanket concepts for the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    The primary goal of the Blanket Comparison and Selection Study (BCSS) was to select a limited number of blanket concepts for fusion power reactors, to serve as the focus for the U.S. Department of Energy blanket research and development program. The concepts considered most seriously by the BCSS can be grouped for discussion purposes by coolant: liquid metals and alloys, pressurized water, helium, and nitrate salts. Concepts using pressurized water as the coolant are discussed. Water-cooled concepts using liquid breeders-lithium and 17Li-83Pb (LiPb)-have severe fundamental safety problems. The use of lithium and water in the blanket was considered unacceptable. Initial results of tests at Hanford Engineering Development Laboratory using steam injected into molten LiPb indicate that use of LiPb and water together in a blanket is a very serious concern from the safety standpoint. Key issues for water-cooled blankets with solid tritium breeders (Li2O, or a ternary oxide such as LiAlO2) were identified and examined: reliability against leaks, control of tritium permeation into the coolant, retention of breeder physical integrity, breeder temperature predictability, determination of allowable temperature limits for breeders, and 6Li burnup effects (for LiAlO2). The BCSS's final rankings and associated rationale for all water-cooled concepts are examined. Key issues and factors for tokamak and tandem mirror reactor versions of water-cooled solid breeder concepts are discussed. The reference design for the top-ranked concept-LiAlO2 breeder, ferritic steel structure, and beryllium neutron multiplier-is presented. Finally, some general conclusions for water-cooled blanket concepts are drawn based on the study's results

  8. Diffusive heat blanketing envelopes of neutron stars

    CERN Document Server

    Beznogov, M V; Yakovlev, D G

    2016-01-01

    We construct new models of outer heat blanketing envelopes of neutron stars composed of binary ion mixtures (H - He, He - C, C - Fe) in and out of diffusive equilibrium. To this aim, we generalize our previous work on diffusion of ions in isothermal gaseous or Coulomb liquid plasmas to handle non-isothermal systems. We calculate the relations between the effective surface temperature Ts and the temperature Tb at the bottom of heat blanketing envelopes (at a density rhob= 1e8 -- 1e10 g/cc) for diffusively equilibrated and non-equilibrated distributions of ion species at different masses DeltaM of lighter ions in the envelope. Our principal result is that the Ts - Tb relations are fairly insensitive to detailed distribution of ion fractions over the envelope (diffusively equilibrated or not) and depend almost solely on DeltaM. The obtained relations are approximated by analytic expressions which are convenient for modeling the evolution of neutron stars.

  9. Blankets for fusion reactors : materials and neutronics

    International Nuclear Information System (INIS)

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author)

  10. A Precambrian proximal ejecta blanket from Scotland

    Science.gov (United States)

    Amor, Kenneth; Hesselbo, Stephen P.; Porcelli, Don; Thackrey, Scott; Parnell, John

    2008-04-01

    Ejecta blankets around impact craters are rarely preserved onEarth. Although impact craters are ubiquitous on solid bodiesthroughout the solar system, on Earth they are rapidly effaced,and few records exist of the processes that occur during emplacementof ejecta. The Stac Fada Member of the Precambrian Stoer Groupin Scotland has previously been described as volcanic in origin.However, shocked quartz and biotite provide evidence for high-pressureshock metamorphism, while chromium isotope values and elevatedabundances of platinum group metals and siderophile elementsindicate addition of meteoritic material. Thus, the unit isreinterpreted here as having an impact origin. The ejecta blanketreaches >20 m in thickness and contains abundant dark green,vesicular, devitrified glass fragments. Field observations suggestthat the deposit was emplaced as a single fluidized flow thatformed as a result of an impact into water-saturated sedimentarystrata. The continental geological setting and presence of groundwatermake this deposit an analogue for Martian fluidized ejecta blankets.

  11. Water-cooled lithium-lead blanket

    International Nuclear Information System (INIS)

    The paper is an appendix to a study of the reactor relevance of the NET design concept. The present study examines whether the water-cooled lithium-lead blanket designed for NET can be directly extrapolated to a demonstration (DEMO) reactor. A fundamental requirement of the exercise is that the DEMO design should have a tritium breeding ratio which is higher than that in NET. The water-cooled lithium-lead blanket is discussed with respect to: neutronics design, design parameter survey and thermohydraulics, and engineering design. Results are reported of three-dimensional calculations using the Monte Carlo code MORSE-H to investigate possible neutron leakage between the poloidally disposed breeder tubes, and to determine the global tritium breeding ratio for the final double null machine design. (U.K.)

  12. Stellar model atmospheres with magnetic line blanketing

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2004-01-01

    Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...

  13. Economic evaluation of the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    The economic impact of employing the highly ranked blankets in the Blanket Comparison and Selection Study (BCSS) was evaluated in the context of both a tokamak and a tandem mirror power reactor (TMR). The economic evaluation criterion was determined to be the cost of electricity. The influencing factors that were considered are the direct cost of the blankets and related systems; the annual cost of blanket replacement; and the performance of the blanket, heat transfer, and energy conversion systems. The technical and cost bases for comparison were those of the STARFIRE and Mirror Advanced Reactor Study conceptual design power plants. The economic evaluation results indicated that the nitrate-salt-cooled blanket concept is an economically attractive concept for either reactor type. The water-cooled, solid breeder blanket is attractive for the tokamak and somewhat less attractive for the TMR. The helium-cooled, liquidlithium breeder blanket is the least economically desirable of higher ranked concepts. The remaining self-cooled liquid-metal and the helium-cooled blanket concepts represent moderately attractive concepts from an economic standpoint. These results are not in concert with those found in the other BCSS evaluation areas (engineering feasibility, safety, and research and development (R and D) requirements). The blankets faring well economically had generally lower cost components, lower pumping power requirements, and good power production capability. On the other hand, helium- and lithium-cooled systems were preferred from the standpoints of safety, engineering feasibility, and R and D requirements

  14. Analysis of Consistency of Printing Blankets using Correlation Technique

    Directory of Open Access Journals (Sweden)

    Lalitha Jayaraman

    2010-01-01

    Full Text Available This paper presents the application of an analytical tool to quantify material consistency of offset printing blankets. Printing blankets are essentially viscoelastic rubber composites of several laminas. High levels of material consistency are expected from rubber blankets for quality print and for quick recovery from smash encountered during the printing process. The present study aims at determining objectively the consistency of printing blankets at three specific torque levels of tension under two distinct stages; 1. under normal printing conditions and 2. on recovery after smash. The experiment devised exhibits a variation in tone reproduction properties of each blanket signifying the levels of inconsistency also in thicknessdirection. Correlation technique was employed on ink density variations obtained from the blanket on paper. Both blankets exhibited good consistency over three torque levels under normal printing conditions. However on smash the recovery of blanket and its consistency was a function of manufacturing and torque levels. This study attempts to provide a new metrics for failure analysis of offset printing blankets. It also underscores the need for optimizing the torque for blankets from different manufacturers.

  15. Detection of Breeding Blankets Using Antineutrinos

    Science.gov (United States)

    Cogswell, Bernadette; Huber, Patrick

    2016-03-01

    The Plutonium Management and Disposition Agreement between the United States and Russia makes arrangements for the disposal of 34 metric tons of excess weapon-grade plutonium. Under this agreement Russia plans to dispose of its excess stocks by processing the plutonium into fuel for fast breeder reactors. To meet the disposition requirements this fuel would be burned while the fast reactors are run as burners, i.e., without a natural uranium blanket that can be used to breed plutonium surrounding the core. This talk discusses the potential application of antineutrino monitoring to the verification of the presence or absence of a breeding blanket. It is found that a 36 kg antineutrino detector, exploiting coherent elastic neutrino-nucleus scattering and made of silicon, could determine the presence of a breeding blanket at a liquid sodium cooled fast reactor at the 95% confidence level within 90 days. Such a detector would be a novel non-intrusive verification tool and could present a first application of coherent elastic neutrino-nucleus scattering to a real-world challenge.

  16. TCT hybrid preconceptual blanket design studies

    Energy Technology Data Exchange (ETDEWEB)

    Aase, D.T.; Bampton, M.C.C.; Doherty, T.J.; Leonard, B.R.; McCann, R.A.; Newman, D.F.; Perry, R.T.; Stewart, C.W.

    1978-01-01

    The conceptual design of a tokamak fusion-fission (hybrid) reactor, which produces electric power and fissile material, has been performed in a cooperative effort between Princeton's Plasma Physics Laboratory (PPPL) and Battelle's Pacific Northwest Laboratories (PNL). PPPL, who had overall project lead responsibility, designed the fusion driver system. Its core consists of a tokamak plasma maintained in the two-component torus (TCT) mode by both D and T beams and having a single null poloidal divertor. The blanket concept selected by PPPL consists of a neutron multiplying converter region, containing natural Uranium Molybdenum (U-Mo) slugs followed by a fuel burning blanket region of molten salt containing PuF/sub 3/. PNL analyzed this concept to determine its structural, thermal and hydraulic performance characteristics. An adequate first wall cooling method was determined, utilizing low pressure water in a double wall design. A conceptual layout of the converter region tubes was performed, providing adequate helium cooling and the desired movement of U-Mo slugs. A thermal hydraulic analysis of the power-producing blanket regions indicated that either more helium coolant tubes are needed or the salt must be circulated to obtain adequate heat removal capability.

  17. Tokamak blanket design study, final report

    International Nuclear Information System (INIS)

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m2 and a particle heat flux of 1 MW/m2. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma

  18. Considerations on techniques for improving tritium confinement in helium-cooled ceramic breeder blankets

    International Nuclear Information System (INIS)

    Tritium control issues such as the development of permeation barriers and the choice of the coolant and purge-gas chemistry are of crucial importance for solid breeder blankets. In order to quantify these problems for the helium-cooled ceramic BIT blanket concept, the tritium leakage into the coolant was evaluated and the consequent tritium losses into the steam circuit were determined. Our results indicate that under certain specified conditions the total tritium release from the coolant can be limited to approximately 10 Ci/d, but only on the assumption that experimental data for tritium permeation barriers can be attained under realistic operating conditions. An experimental study on the impact of the gas chemistry on tritium losses is proposed. (orig.)

  19. The ITER Blanket System Design Challenge

    International Nuclear Information System (INIS)

    Full text: The blanket system is one of the most technically challenging components of the ITER machine, having to accommodate high heat fluxes from the plasma, large electromagnetic loads during off-normal events and demanding interfaces with many key components (in particular the vacuum vessel and in-vessel coils) and the plasma. Plasma scenarios impose demanding requirements on the blanket in terms of heat fluxes on various areas of the first wall during different phases of operation (inboard and outboard midplane for start-up/shut-down scenarios and the top region close to the secondary X-point during flat top) as well as large electro-magnetic (EM) loads and transient energy deposition during off-normal plasma events (such as disruptions and vertical displacement events (VDE)). The high heat fluxes resulting in some areas have necessitated the use of “enhanced heat flux” panels capable of accommodating an incident heat flux of up to 5 MW/m2 in steady state. The other regions utilize “normal heat flux” panels, which have been developed and tested for a heat flux of the order of 1 — 2 MW/m2. The FW shaping design requires a compromise between the conflicting requirements for accommodation of steady state and transient loads (energy deposition during off-normal events). A shaped surface increases the heat loads which are due to plasma particles following the field lines compared to a perfectly toroidal surface. The blanket provides a major contribution to the shielding of the vacuum vessel and coils. A challenging criterion is the need to limit the integrated heating in the toroidal field coil (TFC) to ∼ 14 kW. This is particularly severe on the inboard leg where approximately 80% of the total nuclear heat on the TFC is deposited. Several design modifications were considered and analyzed to help achieve this, including increasing the inboard blanket radial thickness and reducing the assembly gaps. This paper summarizes the latest progress in the

  20. Neutronic optimization of solid breeder blankets for STARFIRE design

    International Nuclear Information System (INIS)

    Extensive neutronic tradeoff studies were carried out to define and optimize the neutronic performance of the different solid breeder options for the STARFIRE blanket design. A set of criteria were employed to select the potential blanket materials. The basic criteria include the neutronic performance, tritium-release characteristics, material compatibility, and chemical stability. Three blanket options were analyzed. The first option is based on separate zones for each basic blanket function where the neutron multiplier is kept in a separate zone. The second option is a heterogeneous blanket type with two tritium breeder zones. In the first zone the tritium breeder is assembled in a neutron multiplier matrix behind the first wall while the second zone has a neutron moderator matrix instead of the neutron multiplier. The third blanket option is similar to the second concept except the tritium breeder and the neutron multiplier form a homogeneous mixture

  1. Fast-Breeder-Blanket Project: FBBF. Final report

    International Nuclear Information System (INIS)

    This report is the final report for DOE contract DE-AC02-76ET37237 with the Purdue Fast Breeder Blanket Project. The Project was initiated to investigate the uncertainties in Fast Breeder Reactor blanket calculations. Absolute measurements of key neutron reaction rates, neutron spectra, and gamma-ray energy depositions were made in simulated FBF blankets in the Fast Breeder Blanket Facility (FBBF), a Cf-252 driven subcritical facility. Calculation of the spectra and integral reaction rates were made using methods, computer codes, and cross section data typical of those currently used in the design of FBR's. Comparisons of calculated to experimental integral neutron reaction rates give good agreement at the inner portions of the blanket by diverge to C/E ratios of about 0.65 at the outer edge of the blanket for reactions sensitive to the neutron density

  2. A review of fusion breeder blanket technology, part 1

    International Nuclear Information System (INIS)

    This report presents the results of a study of fusion breeder blanket technology. It reviews the role of the breeder blanket, the current understanding of the scientific and engineering bases of liquid metal and solid breeder blankets and the programs now underway internationally to resolve the uncertainities in current knowledge. In view of existing national expertise and experience, a solid breeder R and D program for Canada is recommended

  3. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project advanced acoustic blankets for improved low frequency interior noise control in aircraft will be developed and demonstrated. The improved...

  4. Analysis of deficiencies in fast reactor blanket physics predictions

    International Nuclear Information System (INIS)

    This analysis addresses a deviation between experimental measurements and fast reactor blanket physics predictions. A review of worldwide results reveals that reaction rates in the blanket are underpredicted with the discrepancy increasing with penetration into the blanket. The analysis of this discrepancy involves two parts: quantifying possible error reductions using the most advanced methods and investigating deficiencies in current methodology. The source of these discrepancies was investigated by application of ''state-of-the-art'' group constant generation and flux prediction methodology to flux calculations for the Purdue University Fast Breeder Blanket Facility (FBBF). Refined group constant generation methods yielded a significant reduction in the blanket deviations; however, only about half of the discrepancy can be accounted for in this manner. Transport theory calculations were used to predict the blanket neutron transmission problem. The surprising result is that transport theory predictions utilizing diffusion theory group constants did not improve the blanket results. Transport theory predictions exhibited blanket underpredictions similar to the diffusion theory results. The residual blanket discrepancies not explained using advanced methods require a refinement of the theory. For this purpose an analysis of deficiencies in current methodology was performed

  5. High power density self-cooled lithium-vanadium blanket.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  6. ITER solid breeder blanket materials database

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States); Dienst, W. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Material- und Festkoerperforschung; Flament, T. [CEA Centre d`Etudes de Fontenay-aux-Roses (France). Commissariat A L`Energie Atomique; Lorenzetto, P. [NET Team, Garching (Germany); Noda, K. [Japan Atomic Energy Research Inst., Takai, Ibaraki, (Japan); Roux, N. [CEA Centre d`Etudes et de Recherches Les Materiaux (France). Commissariat a L`Energie Atomique

    1993-11-01

    The databases for solid breeder ceramics (Li{sub 2},O, Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3} and LiAlO{sub 2}) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized.

  7. Systematic methodology for estimating direct capital costs for blanket tritium processing systems

    International Nuclear Information System (INIS)

    This paper describes the methodology developed for estimating the relative capital costs of blanket processing systems. The capital costs of the nine blanket concepts selected in the Blanket Comparison and Selection Study are presented and compared

  8. Steady-state thermal-hydraulic of pebble bed blanket on hybrid reactor

    International Nuclear Information System (INIS)

    This paper gives thermal-hydraulic studies of pebble bed blanket on Hybrid Reactor. The concept of whole pebble bed blanket and the cooling methods are presented. The thermal-hydraulic characteristics of pebble bed are summarized. The theoretical model and code for solving heat transfer and flowing are presented. By using this code the calculation and analysis of thermal hydraulic of pebble bed Blanket of Hybrid Reactor are also given. In order to improve the flexibility, safety and economy, the authors select pebble beds not only to breed Tritium, but also to breed fission material and to multiply neutron. 5 MPa Helium is used as coolant and 0.05 MPa-0.1 MPa Helium is used as Purge gas. The heat transfer mechanisms of pebble bed are very complicated which include conduction, convection and radiation. In order to study the thermal-hydraulic of the bed, the authors just simply consider it as homogeneous and continuous binary phase medium as that used in the porous medium at the condition that the size of the bed is much greater than that of the balls. The coolant or the purge gas flowing through the bed is just considered existing a cooling source in the bed. It also significantly influences the effective conductivity's of the bed. Porous fraction, the main factor of the bed depends on the geometry position and parameters. From this model, one can obtain the thermal-hydraulic governing equations of the bed

  9. ITER blanket manifold system: Integration, assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Alex, E-mail: alex.martin@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Dellopoulos, George [F4E, EU ITER Domestic Agency, Barcelona (Spain); Edwards, Paul; Furmanek, Andreas; Gicquel, Stefan; Macklin, Brian [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Martin, Patrick [RÜECKER LYPSA, Carretera del Prat, 65, Cornellá de Llobregat (Spain); Merola, Mario; Norman, Mark; Raffray, Rene [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-10-15

    Highlights: •The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. •-The blanket manifold system has been redesigned to improve leak detection and localization. •-The redesign of the blanket manifold system into a system based on individual pipes has proven to be a major engineering challenge. -- Abstract: The ITER Tokamak Cooling Water System (TCWS) provides coolant for blankets and divertor. The blanket system consists of 440 blanket modules (BMs). The blanket manifold consists of a system of seamless pipes arranged in bundles and routed in poloidal direction from the upper ports of the Vacuum Vessel (VV) to the bottom of the machine. In each of the 18 upper ports there are 20 inlet and 20 outlet pipes, which split at the port exit in two directions, supplying cooling water to either the inboard or the outboard blanket modules. The manifold is routed between the VV and BMs. Branch pipes provide the connection between the manifold and the blanket cooling circuits through a coaxial connector welded to the shield block. A complex, sequential installation sequence has been developed in order to enable the assembly. Once installed the manifold is considered a semi-permanent component, but since failure would prevent ITER operation a maintenance strategy has been planned.

  10. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-12-31

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  11. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  12. Development of the Helium Cooled Lithium Lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, G., E-mail: giacomo.aiello@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aubert, J.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The HCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • The new design has been developed with the aim to capitalize on TBM experience in ITER. • A new attachment system for the modules has been proposed. - Abstract: The Helium Cooled Lithium Lead (HCLL) blanket is one of the candidate European blanket concepts selected for the DEMOnstration fusion power plant that should follow ITER. In a fusion power plant, the blanket is one of the key components because of its impact on the plant performance, availability, safety and economics. In 2012, the European Fusion Development Agreement (EFDA) agency issued new specifications for DEMO: this paper describes the work performed to adapt the previous 2007 HCLL-DEMO blanket design to those specifications. A new segmentation has been defined assuming straight surfaces for all blanket modules. Following the Multi Module Segment (MMS) option, all modules are attached to a common back supporting structure which also serves as manifold for Helium and PbLi distribution. A detailed CAD design of the central outboard module has been defined. Thermo-hydraulic and thermo-mechanical analyses on of the First Wall and Breeder Zone have been carried out. For the attachment of the modules to the common backplate, a new solution based on the use of Tie Rods, derived from the design of the corresponding HCLL Test Blanket Module for ITER, has been proposed. This paper also identifies the priorities for further development of the HCLL blanket design.

  13. 75 FR 51482 - Woven Electric Blankets From China

    Science.gov (United States)

    2010-08-20

    ... publishing the notice in the Federal Register of March 11, 2010 (75 FR 11557). The hearing was held in... COMMISSION Woven Electric Blankets From China Determination On the basis of the record \\1\\ developed in the... United States is materially injured by reason of imports from China of woven electric blankets,...

  14. ITER blanket manifold system: Integration, assembly and maintenance

    International Nuclear Information System (INIS)

    Highlights: •The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. •-The blanket manifold system has been redesigned to improve leak detection and localization. •-The redesign of the blanket manifold system into a system based on individual pipes has proven to be a major engineering challenge. -- Abstract: The ITER Tokamak Cooling Water System (TCWS) provides coolant for blankets and divertor. The blanket system consists of 440 blanket modules (BMs). The blanket manifold consists of a system of seamless pipes arranged in bundles and routed in poloidal direction from the upper ports of the Vacuum Vessel (VV) to the bottom of the machine. In each of the 18 upper ports there are 20 inlet and 20 outlet pipes, which split at the port exit in two directions, supplying cooling water to either the inboard or the outboard blanket modules. The manifold is routed between the VV and BMs. Branch pipes provide the connection between the manifold and the blanket cooling circuits through a coaxial connector welded to the shield block. A complex, sequential installation sequence has been developed in order to enable the assembly. Once installed the manifold is considered a semi-permanent component, but since failure would prevent ITER operation a maintenance strategy has been planned

  15. Achievements of element technology development for breeding blanket

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI) has been performing the development of breeding blanket for fusion power plant, as a leading institute of the development of solid breeder blankets, according to the long-term R and D program of the blanket development established by the Fusion Council of Japan in 1999. This report is an overview of development plan, achievements of element technology development and future prospect and plan of the development of the solid breeding blanket in JAERI. In this report, the mission of the blanket development activity in JAERI, key issues and roadmap of the blanket development have been clarified. Then, achievements of the element technology development were summarized and showed that the development has progressed to enter the engineering testing phase. The specific development target and plan were clarified with bright prospect. Realization of the engineering test phase R and D and completion of ITER test blanket module testing program, with universities/NIFS cooperation, are most important steps in the development of breeding blanket of fusion power demonstration plant. (author)

  16. Analysis of tritium behaviour and recovery from a water-cooled Pb17Li blanket

    Energy Technology Data Exchange (ETDEWEB)

    Malara, C. [Institute Regional des Materiaux Avances, Ispra (Italy); Casini, G. [Systems Engineering and Informatics Institute, JRC Ispra, Ispra (Vatican City State, Holy See) (Italy); Viola, A. [Department of Chemical Engineering, University of Cagliari, Cagliari (Italy)

    1995-03-01

    The question of the tritium recovery in water-cooled Pb17Li blankets has been under investigation for several years at JRC Ispra. The method which has been more extensively analysed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging or vacuum degassing in a suited process apparatus. A computerized model of the tritium behaviour in the blanket units and in the extraction system was developed. It includes four submodels: (1) tritium permeation process from the breeder to the cooling water as a function of the local operative conditions (tritium concentration in Pb17Li, breeder temperature and flow rate); (2) tritium mass balance in each breeding unit; (3) tritium desorption from the breeder material to the gas phase of the extraction system; (4) tritium extraction efficiency as a function of the design parameters of the recovery apparatus. In the present paper, on the basis of this model, a parametric study of the tritium permeation rate in the cooling water and of the tritium inventory in the blanket is carried out. Results are reported and discussed in terms of dimensionless groups which describe the relative effects of the overall resistance on tritium transfer to the cooling water (with and without permeation barriers), circulating Pb17Li flow rate and extraction efficiency of the tritium recovery unit. The parametric study is extended to the recovery unit in the case of tritium extraction by helium purge or vacuum degassing in a droplet spray unit. (orig.).

  17. LMFBR Blanket Physics Project progress report No. 6

    International Nuclear Information System (INIS)

    Progress is summarized in experimental and analytical investigations of the neutronics and photonics of benchmark mockups of LMFBR blankets. During the reporting period work was devoted primarily to a wide range of analytical/numerical investigations, including blanket fuel management/economics studies, evaluation of improved blanket designs, and assessment of state-of-the-art methods for gamma heating calculations. Experimental work included preparations for resumption of MIT Reactor operations, primarily fabrication of improved steel reflector assemblies for blanket mockups, and development of an improved radiophotoluminescent readout device for LiF thermoluminescent detectors. The most significant finding was that the neutronic and economic performance of radial blanket assemblies are essentially independent of core size (rating) for radially-power-flattened cores. Hence the methodology and results of current experiments and calculations should be valid for the large commercial LMFBR's of the future

  18. LMFBR Blanket Physics Project progress report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, M.J. (ed.)

    1975-06-30

    Progress is summarized in experimental and analytical investigations of the neutronics and photonics of benchmark mockups of LMFBR blankets. During the reporting period work was devoted primarily to a wide range of analytical/numerical investigations, including blanket fuel management/economics studies, evaluation of improved blanket designs, and assessment of state-of-the-art methods for gamma heating calculations. Experimental work included preparations for resumption of MIT Reactor operations, primarily fabrication of improved steel reflector assemblies for blanket mockups, and development of an improved radiophotoluminescent readout device for LiF thermoluminescent detectors. The most significant finding was that the neutronic and economic performance of radial blanket assemblies are essentially independent of core size (rating) for radially-power-flattened cores. Hence the methodology and results of current experiments and calculations should be valid for the large commercial LMFBR's of the future.

  19. MIT LMFBR blanket research project. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record.

  20. MIT LMFBR blanket research project. Final summary report

    International Nuclear Information System (INIS)

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record

  1. LMFBR Blanket Physics Project progress report No. 2

    International Nuclear Information System (INIS)

    This is the second annual report of an experimental program for the investigation of the neutronics of benchmark mock-ups of LMFBR blankets. Work was devoted primarily to measurements on Blanket Mock-Up No. 2, a simulation of a typical large LMFBR radial blanket and its steel reflector. Activation traverses and neutron spectra were measured in the blanket; calculations of activities and spectra were made for comparison with the measured data. The heterogeneous self-shielding effect for 238U capture was found to be the most important factor affecting the comparison. Optimization and economic studies were made which indicate that the use of a high-albedo reflector material such as BeO or graphite may improve blanket neutronics and economics

  2. Radiolysis Experiments for the Aqueous Self-Cooled Blanket. Final report

    International Nuclear Information System (INIS)

    The results of Fusion Technology Task NAB 1.1 (Radiolytic Experiments for the ASCB), are reported . In the Aqueous Self-Cooled Blanket (ASCB) concept, an aqueous 6Li solution in a metallic structure is used as a shielding-breeding blanket for fusion reactors. Radiolysis could be very important with respect to the design and the use of an ASCB. The objectives of this project were to quantify the radiolytic decomposition of neutron irradiated aqueous lithium solutions and to demonstrate, if possible, the suppression of this decomposition by the initial addition of a small amount of hydrogen. Closed capsules, with the solutions and an inert gas or hydrogen as cover gas, were irradiated with thermal neutrons in a fission reactor. Radiolysis products hydrogen and oxygen (from hydrogen peroxide) as well as tritium were measured after irradiation. Tritium served as an internal dosimeter. The experimental results with LiNO3 , Li2SO4 and LiOH solutions indicate that the radiolytic gas production in an ASCB is proportional to the absorbed radiation energy. The observed radiation chemical yields allow the preliminary estimation of the radiolysis effects for a specific ASCB design. Contrary to the theoretical predictions, the use of hydrogen as a cover gas at up to 1 MPa had no measurable effect on the radiolytic gas production. Probably it will thus not be possible to suppress the radiolytic decomposition of a low-pressure ASCB by the addition of H2. Catalytic recombination will be required

  3. Manufacture of blanket shield modules for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetto, P. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: Patrick.Lorenzetto@tech.efda.org; Boireau, B. [AREVA Centre Technique de Framatome, BP181, F-71200 Le Creusot (France); Boudot, C. [AREVA Centre Technique de Framatome, BP181, F-71200 Le Creusot (France); Bucci, P. [CEA, DTEN/S3ME/LMIC, 17 rue des Martyrs, F-38054 Grenoble (France); Furmanek, A. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany); Ioki, K. [ITER IT, Boltzmannstr. 2, D-85748 Garching (Germany); Liimatainen, J. [Metso Powdermet, P.O. Box 306, FIN-33101 Tampere (Finland); Peacock, A. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany); Sherlock, P. [NNC Ltd., Booths Hall, Knutsford, Cheshire WA16 8QZ (United Kingdom); Taehtinen, S. [VTT Industrial Systems, P.O. Box 1704, Espoo, FIN-02044 VTT (Finland)

    2005-11-15

    A research and development programme for the ITER blanket shield modules has been implemented in Europe to provide input for the design and the manufacture of the full-scale production components. It involves in particular the fabrication and testing of mock-ups (small scale and medium scale) and full-scale prototypes of shield blocks (SB) and first wall (FW) panels. The manufacturing feasibility of FW panels has been demonstrated for two copper alloy candidates. Two designs have been developed for the manufacture of the SB, one for a conventional fabrication route and one for a fabrication route based on the hot isostatic press technology. This paper presents the fabrication routes developed in Europe for the manufacture of the ITER Shield modules.

  4. Simulation of sludge blanket height in clarifiers

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhen; WU Zhi-chao; WANG Zhi-wei; GU Guo-wei

    2009-01-01

    Sludge blanket height (SBH) is an important parameter in the clarifier design,operation and control.Based on an overview and classification of SBH algorithms,a modifed SBH algorithm is proposed by incorporating a threshold concentration limit into a relative concentration sharp change algorithm to eliminate the disturbance of compression interfaces on the correct simulation of SBH.Pilot-scale test data are adopted to compare reliability of three SBH algorithms reported in literature and the modified SBH algorithm developed in this paper.Calculated results demonstrate that the three SBH algorithms give results with large deviation (>50%) from measured SBH,especially under low solid flux conditions.The modified algorithm is computationally efficient and reliable in matching the measured data.It is incorporated into a onedimensional clarifier model for stable simulation of pilot-scale experimental clarifier data and into dynamic simulation of a full-scale wastewater treatment plant (WWTP) clarifier data.

  5. Spacecraft thermal blanket cleaning: Vacuum bake of gaseous flow purging

    Science.gov (United States)

    Scialdone, John J.

    1990-01-01

    The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours, In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.

  6. DEMO blanket testing in ITER. Influence on reaching DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Shatalov, G. E-mail: geshat@nfi.kiae.ru

    2001-10-01

    ITER goal was specified as one step between now and the DEMO fusion reactor. One of the major issues is the tritium breeding blankets test relevant to future reactors. The major objectives of blanket modules (TBM) experiments in ITER are reduced in comparison with proposed test objectives in ITER-FDR. Thus, results of DEMO blanket designs testing in ITER will provide limited (but still useful) information that will need strong support from non-fusion facilities testing. The role of non-fusion tests is increased now to provide additional data required for DEMO blanket construction and qualification. A strategy of testing steps to DEMO blanket qualifications has to include parallel testing in ITER and in non-fusion devices. Experiments in fission reactors are able to provide essential data on materials radiation properties; tritium release, inventory and permeation; and thermomechanical behavior of the blanket breeder/multiplier. However, the volume in fission reactors is rather small and neutron spectra differ from the fusion reactor one. Nonetheless in the near future one depends primarily on fission reactor irradiation. The powerful accelerator based neutron source IFMIF could also provide useful information on radiation material properties. Plasma based neutron sources of different fusion devices could be the best choice for testing DEMO materials and blanket mock-ups. Timetable and costs of these devices are not clear now.

  7. Design analyses of self-cooled liquid metal blankets

    International Nuclear Information System (INIS)

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations

  8. AB Blanket for Cities (for continual pleasant weather and protection from chemical, biological and radioactive weapons)

    CERN Document Server

    Bolonkin, Alexander

    2009-01-01

    In a series of previous articles (see references) the author offered to cover a city or other important large installations or subregions by a transparent thin film supported by a small additional air overpressure under the form of an AB Dome. The building of a gigantic inflatable AB Dome over an empty flat surface is not difficult. However, if we want to cover a city, garden, forest or other obstacle course we cannot easily deploy the thin film over building or trees. In this article is suggested a new method which solves this problem. The idea is to design a double film blanket filled by light gas (for example, methane, hydrogen, or helium). Sections of this AB Blanket are lighter then air and fly in atmosphere. They can be made on a flat area (serving as an assembly area) and delivered by dirigible or helicopter to station at altitude over the city. Here they connect to the already assembled AB Blanket subassemblies, cover the city in an AB Dome and protect it from bad weather, chemical, biological and rad...

  9. Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978

    International Nuclear Information System (INIS)

    This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified

  10. Requirements for a helium-cooled blanket heat removal system development facility for fusion reactor research

    International Nuclear Information System (INIS)

    Existing and potential design problems associated with the helium-cooled blanket assemblies of experimental, demonstration and hybrid reactor designs considered in the Magnetic Fusion Energy (MFE) Program were assessed. It was observed that a balanced program of design, analysis and experimentation would be required to develop, verify and qualify these designs and those of related hardware and equipment. To respond to the potential experimental requirements of the first-generation reactors (the EPRs and possibly the hybrid concept), the need for a helium test facility was identified. It was determined that this facility should have the capacity for recirculating 100,000 kg/hr of helium at 70 atm and 6000C and should have 3 MW of electrical power available for simulating neutron heating. No radioactive material or processes should be used to facilitate ''hands-on'' experimentation and development. The general types of testing anticipated in this facility would include: (1) thermal and coolant flow performance of the blanket and other components in the primary cooling circuit; (2) structural adequacy of the blanket and first wall including vibration considerations; (3) capability for accommodating safety/off-normal conditions. Existing facilities worldwide were surveyed. It was determined that a number of facilities exist in foreign nations for performing the anticipated experiments. However, no large helium gas flow loop exists within the USA. Consequently, it is recommended that a helium thermal-hydraulic blanket test facility be planned and build on a schedule that will meet the unique design development and verification needs of the fusion program. This report provides the rationale and preliminary scoping of the operational characteristics and requirements for such a facility

  11. Helium-Cooled Refractory Alloys First Wall and Blanket Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Nygren, R.E.; Baxi, C.B.; Fogarty, P.; Ghoniem, N.; Khater, H.; McCarthy, K.; Merrill, B.; Nelson, B.; Reis, E.E.; Sharafat, S.; Schleicher, R.; Sze, D.K.; Ulrickson, M.; Willms, S.; Youssef, M.; Zinkel, S.

    1999-08-01

    Under the APEX program the He-cooled system design task is to evaluate and recommend high power density refractory alloy first wall and blanket designs and to recommend and initiate tests to address critical issues. We completed the preliminary design of a helium-cooled, W-5Re alloy, lithium breeder design and the results are reported in this paper. Many areas of the design were assessed, including material selection, helium impurity control, and mechanical, nuclear and thermal hydraulics design, and waste disposal, tritium and safety design. System study results show that at a closed cycle gas turbine (CCGT) gross thermal efficiency of 57.5%, a superconducting coil tokamak reactor, with an aspect ratio of 4, and an output power of 2 GWe, can be projected to have a cost of electricity at 54.6 mill/kWh. Critical issues were identified and we plan to continue the design on some of the critical issues during the next phase of the APEX design study.

  12. Conceptual design of Tritium Extraction System for the European HCPB Test Blanket Module

    International Nuclear Information System (INIS)

    Highlights: ► HCPB (Helium Cooled Pebble Bed) Test Blanket Module (TBM) to be tested in ITER. ► Tritium extraction by gas purging, removal and transfer to the Tritium Plant. ► Conceptual design of TES and revision of the previous configuration. ► Main components: adsorption column, ZrCo getter beds and PERMCAT reactor. - Abstract: The HCPB (Helium Cooled Pebble Bed) Test Blanket Module (TBM), developed in EU to be tested in ITER, adopts a ceramic containing lithium as breeder material, beryllium as neutron multiplier and helium at 80 bar as primary coolant. In HCPB-TBM the main function of Tritium Extraction System (TES) is to extract tritium from the breeder by gas purging, to remove it from the purge gas and to route it to the ITER Tritium Plant for the final tritium processing. In this paper, starting from a revision of the so far reference process considered for HCPB-TES and considering a new modeling activity aimed to evaluate tritium concentration in purge gas, an updated conceptual design of TES is reported.

  13. Conceptual design of Tritium Extraction System for the European HCPB Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Ciampichetti, A., E-mail: andrea.ciampichetti@enea.it [ENEA CR Brasimone, 40032 Camugnano (Italy); European TBM Consortium of Associates (Germany); Nitti, F.S.; Aiello, A. [ENEA CR Brasimone, 40032 Camugnano (Italy); European TBM Consortium of Associates (Germany); Ricapito, I. [Fusion for Energy, 08019 Barcelona (Spain); Liger, K. [CEA, DEN, DTN/STPA/LIPC, Cadarache, 13108 St. Paul-lez-Durance (France); European TBM Consortium of Associates (Germany); Demange, D. [Karlsruhe Institute of Technology, ITEP-TLK, Postfach 36 40, 76021 Karlsruhe (Germany); European TBM Consortium of Associates (Germany); Sedano, L.; Moreno, C. [EURATOM-CIEMAT Association, 28040 Madrid (Spain); European TBM Consortium of Associates (Germany); Succi, M. [SAES Getters Spa, 20020 Lainate (Italy)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer HCPB (Helium Cooled Pebble Bed) Test Blanket Module (TBM) to be tested in ITER. Black-Right-Pointing-Pointer Tritium extraction by gas purging, removal and transfer to the Tritium Plant. Black-Right-Pointing-Pointer Conceptual design of TES and revision of the previous configuration. Black-Right-Pointing-Pointer Main components: adsorption column, ZrCo getter beds and PERMCAT reactor. - Abstract: The HCPB (Helium Cooled Pebble Bed) Test Blanket Module (TBM), developed in EU to be tested in ITER, adopts a ceramic containing lithium as breeder material, beryllium as neutron multiplier and helium at 80 bar as primary coolant. In HCPB-TBM the main function of Tritium Extraction System (TES) is to extract tritium from the breeder by gas purging, to remove it from the purge gas and to route it to the ITER Tritium Plant for the final tritium processing. In this paper, starting from a revision of the so far reference process considered for HCPB-TES and considering a new modeling activity aimed to evaluate tritium concentration in purge gas, an updated conceptual design of TES is reported.

  14. 18 CFR 284.402 - Blanket marketing certificates.

    Science.gov (United States)

    2010-04-01

    ... effective for an affiliated marketer with respect to transactions involving affiliated pipelines when an affiliated pipeline receives its blanket certificate pursuant to § 284.284. (2) Should a marketer...

  15. Safety and personnel access aspects of low activation fusion blankets

    International Nuclear Information System (INIS)

    The use of silicon carbide and carbon materials for structural applications in fusion reactor first wall and blanket regions has been proposed and a continuing effort spent on the development of the ceramics technology. The advantages identified are an extremely low induced radioactivity inventory, a high temperature operating capability, abundant raw material resource availability, and minimized plasma impurity effects. One of the unique features of the applications of these materials to fusion reactor blanket designs is that no alloying element is needed in order to assure the specified mechanical properties such as occurs in metal alloys. The major source of long term radioactivity in these materials is impurities. The impurity elements and their concentrations carried over to the blanket structure during fabrication can be minimized by proper fabrication procedures and techniques. The safety and personnel access aspects of such fusion blankets in conjunction with the impurity element concentration are the main subjects of this paper

  16. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed Phase II research effort is to develop heterogeneous (HG) blankets for improved sound reduction in aircraft structures. Phase I...

  17. Lightweight IMM Multi-Junction Photovoltaic Flexible Blanket Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — DSS's recently completed successful NASA SBIR Phase 1 program has established a TRL 3/4 classification for an innovative IMM PV Integrated Modular Blanket Assembly...

  18. Electrical connectors for blanket modules in ITER

    International Nuclear Information System (INIS)

    Highlights: • Analysis of static and cyclic strength for L-shaped and Z-shaped ES has been performed. • Analysis results do show that for L-shaped ES static and cyclic strength criteria are not satisfied. • Static and cyclic strength criteria are met well by ES with Z-shaped elastic elements. • ES with Z-shaped elastic elements has been adopted as a new baseline design for ITER. - Abstract: Blanket electrical connectors (E-straps, ES) are low-impedance electrical bridges crossing gaps between blanket modules (BMs) and vacuum vessel (VV). Similar ES are used between two parts on each BM: the first wall panel (FW) and shield block (SB). The main functions of E-straps are to: (a) conduct halo currents intercepting some rows of BM, (b) provide grounding paths for all BMs, and (c) operate as electrical shunts which protect water cooling pipes (branch pipes) from excessive halo and eddy currents. E-straps should be elastic enough to absorb 3-D imposed displacements of BM relative VV in a scale of ±2 mm and at the same time strong enough to not be damaged by EM loads. Each electrical strap is a package of flexible conductive sheets made of CuCrZr bronze. Halo current up to 137 kA and some components of eddy currents do pass through one E-strap for a few tens or hundreds milliseconds during the plasma vertical displacement events (VDE) and disruptions. These currents deposit Joule heat and cause rather high electromagnetic loads in a strong external magnetic field, reaching 9 T. A gradual failure of ES to conduct Halo and Eddy currents with low enough impedance gradually redistributes these currents into branch pipes and cause excessive EM loads. When branch pipes will be bent so much that will touch surrounding structures, the Joule heating in accidental electrical contact spots will cause local melting and may lead to a water leak. The paper presents and compares two design options of E-straps: with L-shaped and Z-shaped elastic elements. The latter option was

  19. Blankets for tritium catalyzed deuterium (TCD) fusion reactors

    International Nuclear Information System (INIS)

    The TCD fusion fuel cycle - where the 3He from the D(D,n)3He reaction is transmuted, by neutron capture in the blanket, into tritium which is fed back to the plasma - was recently recognized as being potentially more promising than the Catalyzed Deuterium (Cat-D) fuel cycle for tokamak power reactors. It is the purpose of the present work to assess the feasibility of, and to identify promising directions for designing blankets for TCD fusion reactors

  20. Impact of prescribed burning on blanket peat hydrology

    OpenAIRE

    Holden, J; Palmer, SM; Johnston, K; Wearing, C.; Irvine, B; Brown, LE

    2015-01-01

    Fire is known to impact soil properties and hydrological flowpaths. However, the impact of prescribed vegetation burning on blanket peatland hydrology is poorly understood. We studied ten blanket peat headwater catchments. Five were subject to prescribed burning, while five were unburnt controls. Within the burnt catchments we studied plots where the last burn occurred ∼2 (B2), 4 (B4), 7 (B7) or greater than 10 years (B10+) prior to the start of measurements. These were compared with plots at...

  1. Oxide fuel element and blanket element development programs. Quarterly progress report, April-June 1978

    International Nuclear Information System (INIS)

    Approval-in-principle has been granted for run beyond breach experiment XY-2, which will incorporate an F11A series rod. Fuel microstructures and operating parameters have been tabulated for 118 specimens from the F20 power to melt experiment. Retained gas measurements have been compiled indicating 36-50 μl/gm in this high power fuel. Topical report GEFR-00367 was prepared describing F20 results. Preparation of the Test Design Description for axial blanket experiment AB-1 is proceeding on schedule (for Cycle 2 irradiation). The safety analysis calculations, showing no fuel melting nor sodium boiling in design-basis upsets, have been completed

  2. Axial blanket for 16NGF Angra 1 fuel type

    Energy Technology Data Exchange (ETDEWEB)

    Sadde, Luciano Martins; Faria, Eduardo Fernandes [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil)]. E-mails: sadde@inb.gov.br; faria@inb.gov.br; Sang-Keun You [Korea Nuclear Fuel Co. Ltd. (KNFC), Taejon (Korea, Republic of)]. E-mail: skyou@knfc.co.kr

    2007-07-01

    Angra-1, Kori-2 and Krsko are nuclear power plants with the same design. However, the fuel assemblies have some differences in design due to the countries strategies and the differences in the fabrication process. The 16NGF (16x16 Next Generation Fuel) was developed by INB, KNFC and Westinghouse in order to be used in these three nuclear power plants and the 'Axial Blanket' is one of the new features for the 16NGF design. The main purpose of the Axial Blanket Optimization study is to determine which axial blanket enrichment and length would provide the better fuel cycle cost benefit. All of the calculations were performed using Gadolinium as Burnable Absorber and solid pellets type for Axial Blanket. The results indicate 1.8 w/o U235 enrichment and 8 inches length as the best option of Axial Blanket from the fuel cycle cost benefit standpoint. The economy is about 1.8%. The difference in the reload cost in the range between 1.5 and 2.6 w/o U235 enrichment and for the 6 and 8 inches length is not so significant. Due that, from the Fq limit standpoint and also for longer cycle length requirements, a higher axial blanket enrichment (2.6 w/o) and shorter length (6 inches) is recommended. (author)

  3. The integrated-blanket-coil concept applied to the poloidal field and blanket systems of a tokamak reactor

    International Nuclear Information System (INIS)

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component. This concept, designated the ''integrated-blanket-coil'' (IBC) concept, is applied to the poloidal field and blanket systems of a tokamak reactor. An examination of resistive power losses in the IBC suggests that these losses can be limited to 10% of the fusion thermal power. By assuming a sandwich construction for the IBC walls, magnetohydrodynamic (MHD)-induced pressure drops and associated pressure stresses are shown to be modest and well below design limits. For the stainless steel reference case examined, the MHD-induced pressure drop was estimated to be about 1/3 MPa and the associated primary membrane stress was estimated to be about 47 MPa. The preliminary analyses indicate that the IBC concept offers promise as a means for making fusion reactors more compact by combining blanket and coil functions in a single component

  4. Safety Evaluation of the EVOLVE Blanket Concept

    International Nuclear Information System (INIS)

    This article summarizes the results of the safety evaluation of the Evaporation of Lithium and Vapor Extraction (EVOLVE) W-alloy first wall (FW) and blanket concept. We have analyzed the EVOLVE design response during a confinement bypass accident. A confinement bypass accident was chosen because, based on previous safety studies, this accident can produce environmental releases by breaching the primary radioactive confinement boundary of EVOLVE, which is the EVOLVE vacuum vessel (VV). As a consequence of a bypass accident, air from a room adjoining the reactor enters the plasma chamber by way of a failed VV port. This air reacts with the high temperature metals inside of the VV to release energy in the case of a lithium spill, or to mobilize radioactive material by oxidation, and then transport this material to the environment by natural convection airflow through the failed VV port. We use the MELCOR code to analyze the response of EVOLVE during this accident. Based on these results, the EVOLVE concept can meet the no-evacuation dose goal set by the DOE Fusion Safety Standard if the EVOLVE confinement building ventilation system is closed within two hours of the onset of this accident

  5. Current status of fusion reactor blanket thermodynamics

    International Nuclear Information System (INIS)

    Recent studies of liquid lithium have concentrated on its sorption characteristics for hydrogen isotopes and its interaction with common impurity elements. Hydrogen isotope sorption data (P-C-T relations, activity coefficients, Sieverts' constants, plateau pressures, isotope effects, free energies of formation, phase boundaries etc.) are presented in a tabular form that can be conveniently used to extract thermodynamic information for the α-phase of the Li-LiH, Li-LiD, and Li-LiT systems and to construct complete phase diagrams. Recent solubility data for Li3N, Li2O, and Li2C2 in liquid lithium are discussed with emphasis on the prospects for removing these species by cold-trapping methods. Current studies on the sorption of hydrogen in solid lithium alloys (e.g., Li--Al and Li--Pb), made using a new technique (the hydrogen titration method), have shown that these alloys should lead to smaller blanket-tritium inventories than are attainable with liquid lithium and that the P-C-T relationships for hydrogen in Li--M alloys can be estimated from lithium activity data for these alloys

  6. Flow characteristics of the Cascade granular blanket

    International Nuclear Information System (INIS)

    Analysis of a single granule on a rotating cone shows that for the 350 half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer

  7. Degrading the Plutonium Produced in Fast Breeder Reactor Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jor-Shan; Kuno, Yusuke [Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2009-06-15

    Plutonium quality, defined as the plutonium isotopic composition, is an important measure for proliferation-resistance (PR) of a nuclear energy system. The quality of the plutonium produced in the blanket assemblies of a fast breeder reactor could be as good as or better than the weapons-grade (WG). The presence of such good quality plutonium is a proliferation concern. There are various options to degrade the plutonium produced in the breeder blanket. The obvious one is to blend the blanket plutonium with those produced from the reactor core during reprocessing. Other options try to prevent the generation of good quality plutonium (Pu). The Protected Plutonium Production (P{sup 3}) Project proposed by Tokyo Institute of Technology (TIT)1,2,3 advocates the doping of certain amount of neptunium (Np), or americium (Am) in fresh blanket fuel for irradiation. The increased production of {sup 238}Pu, {sup 240}Pu and {sup 242}Pu by neutron capture in {sup 237}Np and Am would degrade the blanket plutonium. However, as {sup 237}Np is a controlled material according to IAEA, its use as doping material in fresh blanket fuel presents a concern for nuclear proliferation. In addition, the fabrication of fresh blanket fuel with inclusion of americium would be complicated due to the emission of intense low-energy gamma radiation from {sup 241}Am. Am is normally accompanied by Cm since the separation of those 2 elements is very difficult. Fuel containing both Am and Cm may make Safeguards measurement difficult. A variation would be doping the fresh blanket fuel with minor actinide (e.g., a group of neptunium, americium, and curium), or with separated reactor-grade (RG) plutonium. The drawback of such schemes would be the need for glove boxes in fresh blanket fuel fabrication. It is possible to fuel the breeder blankets with recycled (reprocessed) uranium oxide. The recycled uranium, recovered from reprocessing, contains {sup 236}U, which when irradiated in the blanket would

  8. Target/Blanket Design for the Accelerator Production of Tritium Plant

    International Nuclear Information System (INIS)

    The Accelerator Production of Tritium Target/Blanket (T/B) system is comprised of an assembly of tritium-producing modules supported by safety, heat removal, shielding, and retargeting systems. The T/B assembly produces tritium using a high-energy proton beam, a tungsten/lead spallation neutron source and 3He gas as the tritium-producing feedstock. The supporting heat removal systems remove the heat deposited by the proton beam during both normal and off-normal conditions. The shielding protects workers from ionizing radiation, and the retargeting systems remove and replace components that have reached their end of life. All systems reside within the T/B building, which is located at the end of a linear accelerator. For the nominal production mode, protons are accelerated to an energy of 1030 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons are expanded to a 0.19- x 1.9-m beam spot before striking a centrally located tungsten neutron source. A surrounding lead blanket produces additional neutrons from scattered high-energy particles. A total of 27 neutrons are produced per incident proton. Tritium is produced by neutron capture in 3He gas that is contained in aluminum tubes throughout the blanket. The 3He/tritium mixture is removed on a semi-continuous basis for purification in an adjacent Tritium Separation Facility. Systems and components are designed with safety as a primary consideration to minimize risk to the workers and the public. Materials and component designs were chosen based on the experiences of operating spallation neutron sources that have been designed and built for the neutron science community. An extensive engineering development and demonstration program provides detailed information for the completion of the design

  9. Impact of blanket tritium against the tritium plant of fusion reactor

    International Nuclear Information System (INIS)

    The breeder blanket and the blanket tritium recovery system are tested using test blanket modules during ITER campaign. And then, these are integrated with the tritium plant for the first time at a prototype reactor after ITER. In this work, impact to the tritium plant by integration of the solid breeder blanket was discussed. The method of tritium extraction from the blanket and the choice of the process for breeder blanket interface should be discussed not only from the viewpoint of tritium release but also from the viewpoint of the load of processing. (author)

  10. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    This report presents the conceptual design and preliminary feasibility assessment for the hybrid blanket and power conversion system of the Mirror Hybrid Fusion-Fission Reactor. Existing gas-cooled fission reactor technology is directly applicable to the Mirror Hybrid Reactor. There are a number of aspects of the present conceptual design that require further design and analysis effort. The blanket and power conversion system operating parameters have not been optimized. The method of supporting the blanket modules and the interface between these modules and the primary loop helium ducting will require further design work. The means of support and containment of the primary loop components must be studied. Nevertheless, in general, the conceptual design appears quite feasible

  11. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  12. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Babineau, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Vaquer, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-13

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed.  The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations.  This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. 

  13. Development of the water cooled lithium lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aiello, G.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The WCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • Preliminary CAD design of the equatorial outboard module of the WCLL blanket has been developed for DEMO. • Finite elements analyses have been carried out in order to assess the module thermal behavior in the straight part of the module. - Abstract: The water cooled lithium lead (WCLL) blanket, based on near-future technology requiring small extrapolation from present-day knowledge both on physical and technological aspect, is one of the breeding blanket concepts considered as possible candidates for the EU DEMOnstration power plant. In 2012, the EFDA agency issued new specifications for DEMO: this paper describes the work performed to adapt the WCLL blanket design to those specifications. Relatively small modules with straight surfaces are attached to a common Back Supporting Structure housing feeding pipes. Each module features reduced activation ferritic-martensitic steel as structural material, liquid Lithium-Lead as breeder, neutron multiplier and carrier. Water at typical Pressurized Water Reactors (PWR) conditions is chosen as coolant. A preliminary design of the equatorial outboard module has been achieved. Finite elements analyses have been carried out in order to assess the module thermal behavior. Two First Wall (FW) concepts have been proposed, one favoring the thermal efficiency, the other favoring the manufacturability. The Breeding Zone has been designed with C-shaped Double-Walled Tubes in order to minimize the Water/Pb-15.7Li interaction likelihood. The priorities for further development of the WCLL blanket concept are identified in the paper.

  14. First wall and blanket concepts for experimental fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Biggio, M.; Cardella, A.; Daenner, W.; Farfaletti-Casali, F.; Ponti, C.; Rieger, M.; Vieider, G.

    1985-07-01

    The paper describes the progress of the studies on first wall and liquid breeder blankets for tritium production in the Next European Torus (NET). Two concepts of first wall/blanket segments are described, using 17Li83Pb as breeder and water as coolant. In both concepts the first wall is integrated in a steel box enveloping the breeder units which are cylindrical vessels with an inside heat transfer system. The thermomechanical and neutronics features of the two concepts are evaluated. Finally, the questions related to tritium permeation into coolant and tritium recovery from breeder are discussed on the basis of the analysis in progress in Europe.

  15. DT neutron irradiation experiment for evaluation of tritium recovery from WCCB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Ochiai, Kentaro, E-mail: ochiai.kentaro@jaea.go.jp [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Kawamura, Yoshinori [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan); Hoshino, Tsuyoshi [Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Edao, Yuki; Takakura, Kosuke; Ohta, Masayuki; Sato, Satoshi; Konno, Chikara [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki (Japan)

    2014-10-15

    Highlights: • We have performed the tritium recovery experiment with the DT neutron source. • The recovered tritium corresponded to the calculated tritium production. • The recovered HTO was recovered at lower temperature and high water moisture. • The recovered HT increases at higher temperature and dry hydrogen circumstance. - Abstract: The Li{sub 2}TiO{sub 3} is one of candidate breeding materials of a water cooled ceramic breeding (WCCB) blanket. In order to clarify the tritium recovery property of the WCCB blanket with the Li{sub 2}TiO{sub 3} breeding material, we have performed the tritium recovery online experiment with the DT neutron source at the Fusion Neutronics Source facility in Japan Atomic Energy Agency (JAEA-FNS). We irradiated an experimental assembly simulating the WCCB blanket and recovered the tritium recovered from the Li{sub 2}TiO{sub 3} pebbles put into the assembly with a heater system, sweep gases and bubblers. The activity of the recovered tritium was measured with a liquid scintillation counter. From our tritium recovery online experiment and calculation, the followings were found out: (1) the recovered tritium corresponded to the calculated tritium production within the experimental error in the range of 573–1073 K and (2) the recovered HTO tended to be easily recovered at lower temperature and high water moisture. The recovered HT increases at higher temperature and dry hydrogen circumstance. However, the maximum level of the tritium gas recovery is around 90% even at higher temperature and 1% H{sub 2} circumstance.

  16. Maximizing fluence rate and field uniformity of light blanket for intraoperative PDT

    OpenAIRE

    LIANG, XING; Kundu, Palak; Finlay, Jarod; Goodwin, Michael; Zhu, Timothy C.

    2012-01-01

    A light blanket is designed with a system of cylindrically diffusing optical fibers, which are spirally oriented. This 25×30 cm rectangular light blanket is capable of providing uniform illumination during intraoperative photodynamic therapy. The flexibility of the blanket proves to be extremely beneficial when conforming to the anatomical structures of the patient being treated. Previous tests of light distribution from the blanket have shown significant loss of intensity with the length of ...

  17. Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO

    OpenAIRE

    Catalán, J.P.; Ogando Serrano, Francisco; Sanz Gonzalo, Javier; Palermo, I.; Veredas, G.; Gómez Ros, J. M.; Sedano, L

    2010-01-01

    A conceptual design of a DEMO fusion reactor is being developed under the Spanish Breeding Blanket Technology Programme: TECNO_FUS based on a He/LiPb dual coolant blanket as reference design option. The following issues have been analyzed to address the demonstration of the neutronic reliability of this conceptual blanket design: power amplification capacity of the blanket, tritium breeding capability for fuel self-sufficiency, power deposition due to nuclear heating in superconducting coils ...

  18. APT Blanket Safety Analysis: Counter Current Flow Limitation for Cavity Spaces

    International Nuclear Information System (INIS)

    The thermal-hydraulic modeling aspects for the APT blanket system have been broken up into two basic modeling components: (1) the blanket system and (2) the cavity flood system. In most cases these systems are modeled separately. This separate study for the coolability of the blanket modules can also be used to establish/evaluate a functional design requirement on gap size between the blanket modules

  19. Basic principles of lead and lead-bismuth eutectic application in blanket of fusion reactors

    International Nuclear Information System (INIS)

    Full text: One of the main requirements of advanced nuclear-power engineering is inherent safety of power installations. It initiates R and D of heavy liquid metals (lead, lead- bismuth eutectic) application in fission reactors as substitute of sodium. The same requirement makes advisable R and D of the lead and lead-bismuth eutectic application in blanket of fusion reactors as substitute of lithium. High magnetohydrodynamic pressure drop is an important issue for liquid metal blanket concepts. To decrease MHD-resistance authors propose to form electro-insulating coatings on internal surface of blanket ducts at any moment of fusion reactor exploitation. It may be achieved easily if lead or lead-bismuth eutectic is used and technology of oxidative potential handling is applied. A number of experiments carried out in NNSTU show the availability of the proposed technology. It bases on formation of the insulating coatings that consist of the oxides of components of the structural materials and of the coolant components. In-situ value of the electro-insulating coatings characteristics rd (r - specific resistance of coatings, d - thickness) is ∼ 10-5Ω·m2 for steels and 5, 0x10-6 - 5, 0x10-5Ω·m2 for vanadium alloys. Thermal cycling is possible during exploitation of a blanket. The experimental research of the insulating coatings properties during thermal cycling have shown that the coatings formed into the lead and lead-bismuth coolants save there electro-insulating properties. Experience of many years is an undoubted advantage of the lead-bismuth coolant and less of the lead coolant in comparison with lithium. Russian Federation possesses of experience of exploitation of the research and industrial facilities, of experience of creation of the pumps, steam generators and another equipment with heavy liquid metal coolants. The unique experience of designing, assembling and exploitation of the fission reactors with lead-bismuth coolant is also available. The problem

  20. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  1. Fusion blanket testing in MFTF-α + T

    International Nuclear Information System (INIS)

    The Mirror Fusion Test Facility-α + T (MFTF-α + T) is an upgraded version of the current MFTF-B test facility at Lawrence Livermore National Laboratory, and is designed for near-term fusion-technology-integrated tests at a neutron flux of 2 MW/m2. Currently, the fusion community is screening blanket and related issues to determine which ones can be addressed using MFTF-α + T. In this work, the minimum testing needs to address these issues are identified for the liquid-metal-cooled blanket and the solid-breeder blanket. Based on the testing needs and on the MFTF-α + T capability, a test plan is proposed for three options; each option covers a six to seven year testing phase. The options reflect the unresolved question of whether to place the research and development (R and D) emphasis on liquid-metal or solid-breeder blankets. In each case, most of the issues discussed can be addressed to a reasonable extent in MFTF-α+T

  2. 75 FR 11557 - Woven Electric Blankets From China

    Science.gov (United States)

    2010-03-11

    ... permitted by section 201.8 of the Commission's rules, as amended, 67 FR 68036 (November 8, 2002). Even where... specified in II (C) of the Commission's Handbook on Electronic Filing Procedures, 67 FR 68168, 68173... COMMISSION Woven Electric Blankets From China AGENCY: United States International Trade Commission....

  3. 18 CFR 33.1 - Applicability, definitions, and blanket authorizations.

    Science.gov (United States)

    2010-04-01

    ... the outstanding voting securities; or (iii) Any security of a subsidiary company within the holding... company subsidiary in connection with such acquisition. (4) A holding company granted blanket... subsidiaries, or associate companies within the holding company system has captive customers in the...

  4. Thermal-hydraulic and neutronic considerations for designing a lithium-cooled tokamak blanket

    International Nuclear Information System (INIS)

    A methodology for the design of lithium cooled blankets is developed. The thermal-hydraulics, neutronics and interactions between them are extensively investigated. In thermal hydraulics, two models illustrate the methodology used to obtain the acceptable ranges for a set of design parameters. The methodology can be used to identify the limiting constraints for a particular design. A complete neutronic scheme is set up for the calculations of the volumetric heating rate as a function of the distance from the first wall, the breeding ratio as a function of the amount of structural material in the blanket, and the radiation damage in terms of atom displacements and gas production rate. Different values of the volume percent of Type-316 stainless steel are assigned in four breeding zones to represent a nonuniformly distributed structural material which satisfies various thermal-hydraulic requirements. The role that the radiation damage plays in the overall design methodology is described. The product of the first wall lifetime and neutron loading is limited by the radiation damage which degrades the mechanical properties of the material

  5. Integrated-blanket-coil (IBC) concept applied to the poloidal field and blanket systems of a tokamak reactor

    International Nuclear Information System (INIS)

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component. This concept, designated the integrated-blanket-coil (IBC) concept, is applied to the poloidal field and blanket systems of a Tokamak reactor. An examination of resistive power losses in the IBC suggests that these losses can be limited to less than or equal to 10% of the fusion thermal power. By assuming a sandwich construction for the IBC walls, MHD-induced pressure drops and associated pressure stresses are shown to be modest and well below design limits. For the stainless steel reference case examined in this paper, the MHD-induced pressure drop was estimated to be approx. 1/3 MPa and the associated primary membrane stress was estimated to be approx. 47 MPa. The preliminary analyses presented in this paper indicate that the IBC concept offers promise as a means for making fusion reactors more compact by combining blanket and coils functions in a single component

  6. Conceptual design of a water cooled breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Pu, Yong; Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Jia; Peng, ChangHong [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Ma, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Chen, Lei [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-10-15

    Highlights: • We proposed a water cooled ceramic breeder blanket with superheated steam. • Superheated steam is generated at the first wall and the front part of breeder zone. • Superheated steam has negligible impact on neutron absorption by coolant in FW and improves TBR. • The superheated steam at higher temperature can improve thermal efficiency. - Abstract: China Fusion Engineering Test Reactor (CFETR) is an ITER-like superconducting tokamak reactor. Its major radius is 5.7 m, minor radius is 1.6 m and elongation ratio is 1.8. Its mission is to achieve 50–200 MW of fusion power, 30–50% of duty time factor, and tritium breeding ratio not less than 1.2 to ensure the self-sufficiency. As one of the breeding blanket candidates for CFETR, a water cooled breeder blanket with superheated steam is proposed and its conceptual design is being carried out. In this design, sub-cooling water at 265 °C under the pressure of 7 MPa is fed into cooling plates in breeding zone and is heated up to 285 °C with saturated steam generated, and then this steam is pre-superheated up to 310 °C in first wall (FW), final, the pre-superheated steam coming from several blankets is fed into the other one blanket to superheat again up to 517 °C. Due to low density of superheated steam, it has negligible impact on neutron absorption by coolant in FW so that the high energy neutrons entering into breeder zone moderated by water in cooling plate help enhance tritium breeding by {sup 6}Li(n,α)T reaction. Li{sub 2}TiO{sub 3} pebbles and Be{sub 12}Ti pebbles are chosen as tritium breeder and neutron multiplier respectively, because Li{sub 2}TiO{sub 3} and Be{sub 12}Ti are expected to have better chemical stability and compatibility with water in high temperature. However, Be{sub 12}Ti may lead to a reduction in tritium breeding ratio (TBR). Furthermore, a spot of sintered Be plate is used to improve neutron multiplying capacity in a multi-layer structure. As one alternative option

  7. Conceptual design of a water cooled breeder blanket for CFETR

    International Nuclear Information System (INIS)

    Highlights: • We proposed a water cooled ceramic breeder blanket with superheated steam. • Superheated steam is generated at the first wall and the front part of breeder zone. • Superheated steam has negligible impact on neutron absorption by coolant in FW and improves TBR. • The superheated steam at higher temperature can improve thermal efficiency. - Abstract: China Fusion Engineering Test Reactor (CFETR) is an ITER-like superconducting tokamak reactor. Its major radius is 5.7 m, minor radius is 1.6 m and elongation ratio is 1.8. Its mission is to achieve 50–200 MW of fusion power, 30–50% of duty time factor, and tritium breeding ratio not less than 1.2 to ensure the self-sufficiency. As one of the breeding blanket candidates for CFETR, a water cooled breeder blanket with superheated steam is proposed and its conceptual design is being carried out. In this design, sub-cooling water at 265 °C under the pressure of 7 MPa is fed into cooling plates in breeding zone and is heated up to 285 °C with saturated steam generated, and then this steam is pre-superheated up to 310 °C in first wall (FW), final, the pre-superheated steam coming from several blankets is fed into the other one blanket to superheat again up to 517 °C. Due to low density of superheated steam, it has negligible impact on neutron absorption by coolant in FW so that the high energy neutrons entering into breeder zone moderated by water in cooling plate help enhance tritium breeding by 6Li(n,α)T reaction. Li2TiO3 pebbles and Be12Ti pebbles are chosen as tritium breeder and neutron multiplier respectively, because Li2TiO3 and Be12Ti are expected to have better chemical stability and compatibility with water in high temperature. However, Be12Ti may lead to a reduction in tritium breeding ratio (TBR). Furthermore, a spot of sintered Be plate is used to improve neutron multiplying capacity in a multi-layer structure. As one alternative option, in spite of lower TBR, Pb is taken into

  8. Double ionization chamber as neutron flux monitor and for tritium breeding studies in fusion blanket experiments

    International Nuclear Information System (INIS)

    A new method for direct determination of tritium breeding, specially suited to thermal blankets is presented. The method can provide true tritium events even in the presence of a reasonable fraction of high energy neutrons. There exists no transfer or recovery losses and also the method exhibits good efficiency, in addition to being an on-line one. The detector consist of two identical chambers separated by a common earthing ring which supports a thin nickel foil loaded with Li6F covered with a thin gold layer acting as a conducting electrode. Two nickel discs are held symmetrically on either side of the central electrode as charge collectors. The chambers can be filled with a suitable inert gas. The system response to thermal neutrons was calculated by both analytical as well Monte Carlo method and is in good agreement with experimental results

  9. Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors.

    Science.gov (United States)

    Batstone, D J; Hernandez, J L A; Schmidt, J E

    2005-08-01

    Laboratory-scale upflow anaerobic sludge blanket (UASB) reactors are often used as test platforms to evaluate full-scale applications. However, for a given volume specific hydraulic loading rate and geometry, the gas and liquid flows increase proportionally with the cube root of volume. In this communication, we demonstrate that a laboratory-scale reactor had plug-flow hydraulics, while a full-scale reactor had mixed flow hydraulics. The laboratory-scale reactor could be modeled using an existing biochemical model, and parameters identified, but because of computational speed with plug-flow hydraulics, mixed systems are instead recommended for parameter identification studies. Because of the scaling issues identified, operational data should not be directly projected from laboratory-scale results to the full-scale design. PMID:15977253

  10. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T., E-mail: tjk@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  11. Engineering test station for TFTR blanket module experiments

    International Nuclear Information System (INIS)

    A conceptual design has been carried out for an Engineering Test Station (ETS) which will provide structural support and utilities/instrumentation services for blanket modules positioned adjacent to the vacuum vessel of the TFTR (Tokamak Fusion Test Reactor). The ETS is supported independently from the Test Cell floor. The ETS module support platform is constructed of fiberglass to eliminate electromagnetic interaction with the pulsed tokamak fields. The ETS can hold blanket modules with dimensions up to 78 cm in width, 85 cm in height, and 105 cm in depth, and with a weight up to 4000 kg. Interfaces for all utility and instrumentation requirements are made via a shield plug in the TFTR igloo shielding. The modules are readily installed or removed by means of TFTR remote handling equipment

  12. Blanket comparison and selection study. Final report. Volume 2

    International Nuclear Information System (INIS)

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li2O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N2) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li2O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  13. Blanket comparison and selection study. Final report. Volume 1

    International Nuclear Information System (INIS)

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li2O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N2) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li2O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  14. Blanket comparison and selection study. Final report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  15. MFTF-B Upgrade for blanket-technology testing

    International Nuclear Information System (INIS)

    Based on preliminary studies at Lawrence Livermore National Laboratory (LLNL), we believe the Mirror Fusion Test Facility (MFTF-B) could be upgraded for operation in a hot-ion Kelley mode in a portion of the central cell to provide fusion nuclear engineering data, particularly blanket technology information, by the end of the decade. Cost of this mode of operation would be modest compared with that of the other fusion devices considered in the last few years for such purposes

  16. Helium-3 blankets for tritium breeding in fusion reactors

    Science.gov (United States)

    Steiner, Don; Embrechts, Mark; Varsamis, Georgios; Vesey, Roger; Gierszewski, Paul

    1988-01-01

    It is concluded that He-3 blankets offers considerable promise for tritium breeding in fusion reactors: good breeding potential, low operational risk, and attractive safety features. The availability of He-3 resources is the key issue for this concept. There is sufficient He-3 from decay of military stockpiles to meet the International Thermonuclear Experimental Reactor needs. Extraterrestrial sources of He-3 would be required for a fusion power economy.

  17. Blanket comparison and selection study. Final report. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concepts are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  18. Blanket comparison and selection study. Final report. Volume 3

    International Nuclear Information System (INIS)

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li2O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N2) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li2O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concepts are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue

  19. Model problem of MHD flow in a lithium blanket

    Energy Technology Data Exchange (ETDEWEB)

    Cherepanov, V.Y.

    1978-01-01

    A model problem is considered for a feasibility study concerning controlled MHD flow in the blanket of a Tokamak nuclear reactor. The fundamental equations for the steady flow of an incompressible viscous fluid in a uniform transverse magnetic field are solved in rectangular coordinates, in the zero-induction approximation and with negligible induced currents. A numerical solution obtained for a set of appropriate boundary constraints establishes the conditions under which no stagnation zones will be formed.

  20. Blanket comparison and selection study. Final report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  1. Tritium transport analysis in HCPB DEMO blanket with the FUS-TPC Code (KIT Scientific Reports ; 7642)

    OpenAIRE

    Franza, Fabrizio

    2013-01-01

    In thermonuclear fusion reactors, the fuel is an high temperature deuterium-tritium plasma, in which tritium is bred by lithium isotopes present inside solid ceramic breeder (e.g. Li-Orthosilicate) or inside liquid eutectic alloys (e.g. Pb-16Li alloy). In the breeding areas a significant fraction of the tritium produced is extracted out from the Breeding Zone by the He gas purging the breeding ceramic in the Helium Cooled Pebble Bed (HCPB) blanket concept or transported in solution by the owi...

  2. Investigation of aqueous slurries as fusion reactor blankets

    International Nuclear Information System (INIS)

    Numerical and experimental studies were carried out to assess the feasibility of using an aqueous slurry, with lithium in its solid component, to meet the tritium breeding, cooling, and shielding requirements of a controlled thermonuclear reactor (CTR). The numerical studies were designed to demonstrate the theoretical ability of a conceptual slurry blanket to breed adequate tritium to sustain the CTR. The experimental studies were designed to show that the tritium retention characteristics of likely solid components for the slurry were conducive to adequate tritium recovery without the need for isotopic separation. The numerical portion of this work consisted in part of using ANISN, a one-dimensional finite difference neutron transport code, to model the neutronic performance of the slurry blanket concept. The parameters governing tritium production and retention in a slurry were computed and used to modify the results of the ANISN computer runs. The numerical work demonstrated that the slurry blanket was only marginally capable of breeding sufficient tritium without the aid of a neutron multiplying region. The experimental portion of this work consisted of several neutron irradiation experiments, which were designed to determine the retention abilities of LiF particles

  3. APT Blanket Safety Analysis: Preliminary Analyses of Downflow Through a Lateral Row 1 Blanket Model Under Near RHR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    To address a concern about a potential maldistribution of coolant flow through an APT blanket module under low flow near RHR conditions, a scoping study of downflow mixed convection in parallel channels was conducted. Buoyancy will adversely effect the flow distribution in module bins with downflow and non-uniform power distributions. This study consists of two parts: a simple analytical model of flow in a two channel network, and a lumped eleven channel FLOWTRAN-TF model of a front lateral Row-1 blanket module bin. Results from both models indicate that the concern about coolant flow in a vertical model being diverted away from high power regions by buoyancy is warranted. The FLOWTRAN-TF model predicted upflow (i.e., a flow reversal) through several of the high power channels, under some low flow conditions. The transition from the regime with downflow in all channels to a regime with upflow in some channels was abrupt.

  4. Two dimensional distribution of tritium breeding ratio and induced activity in Japanese water cooled and helium cooled test blanket modules

    International Nuclear Information System (INIS)

    Solid breeder blankets are regarded as a near-at-hand blanket concept for a fusion power demonstration plant in Japan. Test blanket module (TBM) to be tested in ITER is the most important milestone to establish the fusion demonstration blanket. For the candidate TBM's, two types of TBM, water cooled solid breeder TBM, and a helium gas cooled solid breeder TBM have been proposed and designed in JAERI. For detailed performance study under operation and after shut down, detailed neutronics analysis gives the most important design conditions, such as, distribution of tritium breeding ratio, nuclear heating rate during operation, and induced activation and decay heat after termination of irradiation. In the analysis, neutron and gamma transportation was calculated by two dimensional analysis code, DOT3.5, for two TBMs. Nuclear reaction rate and induced activation rate were evaluated by APPLE-3 and ACT-4, respectively. The analysis model included configurations of thermo-mechanical test modules and surrounding common frames for both of He cooled and water cooled TBMs. By the neutronics analysis, TBR and contact dose rate by induced activation till one year after termination of the module testing have been evaluated. For the evaluation of induced activation level change and decay heat change, the transient decreases in one year after termination of the module testing have been calculated. The time duration of the module testing before termination of testing is assumed to be 133 continuous days of full power operation. The result of TBR analysis showed that TBR distribution in the toroidal direction of TBM is not significant, however, the neutron flux decreases in the region of sidewall of common frame made of SS and water. This result shows that there is relatively large neutron loss from the TBM to the common frame. Thus, it is considered that the TBR value observed in the TBM testing may be smaller than the estimation by one dimensional neutronics analysis which does

  5. Axial blanket fuel design and demonstration. First semi-annual progress report, January-September 1980

    International Nuclear Information System (INIS)

    The axial blanket fuel design in this program, which is retrofittable in operating pressurized water reactors, involves replacing the top and bottom of the enriched fuel column with low-enriched (less than or equal to 1.0 wt % 235U) fertile uranium. This repositioning of the fissile inventory in the fuel rod leads to decreased axial leakage and increased discharge burnups in the enriched fuel. Various axial blanket fuel designs, with blanket thicknesses from 0 to 10 inches and blanket enrichments from 0.2 to 1.0 wt % 235U, were investigated to determine the relationship between uranium utilization and power peaking. Analyses were preformed to assess the nuclear, mechanical, and thermal-hydraulic effects arising from the use of axial blankets. Four axial blanket lead test assemblies are being fabricated for scheduled irradiation in cycle 5 of Sacramento Municipal Utility District's Rancho Seco pressurized water reactor. Analyses to support licensing cycle 5 are in progress

  6. Exchange reaction of hydrogen isotopes on proton conductor ceramic of hydrogen pump for blanket tritium recovery system

    International Nuclear Information System (INIS)

    Electrochemical hydrogen pump using ceramic proton conductor has been investigated to discuss its application for the blanket tritium recovery system of the nuclear fusion reactor. As the series of those work, the transportation experiments of H2-D2 mixture via ceramic proton conductor membrane have been carried out. Then, the phenomenon that was caused by the exchange reaction between the deuterium in the ceramic and the hydrogen in the gas phase has been observed. So, the ceramic proton conductor which doped deuterium was exposed to hydrogen under the control of zero current, and the effluent gas was analyzed. It is considered that the hydrogen in the gas phase is taken as proton to the ceramic by isotope exchange reaction, and penetrates to the ceramic by diffusion with replacement of deuteron. (author)

  7. Design and safety analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuai; Zhou, Guangming; Lv, Zhongliang; Jin, Cheng; Chen, Hongli [University of Science and Technology of China, Anhui (China). School of Nuclear Science and Technology

    2016-05-15

    This paper reports the design and safety analysis results of the helium cooled solid breeder blanket of the Chinese Fusion Engineering Test Reactor (CFETR). Materials selection and basic structure of the blanket have been presented. Performance analysis including neutronics analysis and thermo-mechanical analysis has shown good results. And the safety analysis of the blanket under Loss Of Coolant Accident (LOCA) conditions has been described. Results showed the current design can deal well with the selected accident scenarios.

  8. Design and safety analysis of the helium cooled solid breeder blanket for CFETR

    International Nuclear Information System (INIS)

    This paper reports the design and safety analysis results of the helium cooled solid breeder blanket of the Chinese Fusion Engineering Test Reactor (CFETR). Materials selection and basic structure of the blanket have been presented. Performance analysis including neutronics analysis and thermo-mechanical analysis has shown good results. And the safety analysis of the blanket under Loss Of Coolant Accident (LOCA) conditions has been described. Results showed the current design can deal well with the selected accident scenarios.

  9. Tritium isolation from lithium inorganic compounds applicable to thermonuclear reactor breeding blanket

    International Nuclear Information System (INIS)

    Tritium separation from inorganic lithium compounds: Li2O, LiAlO2, Li2SiO3, Li4SiO4, LiF, LiBeF3, Li2BeF4 irradiated with a beam of a gamma facility and a nuclear reactor, has been studied. In the first case the gas phase is absent. In the latter one- the tritium amount in the gas does not exceed 1-2% of its total amount in the salt. Based on the EPR spectra of irradiated salts the concentrations of paramagnetic centres are calculated. It is shown that during thermal annealing the main portion of tritium in the gas phase is in the form of oxide (HTO, T2O). Tritium is separated from lithium fluoroberyllates in the form of hydrogen (HT, T2). The kinetics of tritium oxide isolation from irradiated lithium oxide aluminate, metha- and orthosilicates, lithium sulphate has been studied. The activation energies of tritium oxide separation process are presented. A supposition is made that chemical reaction of the HTO (T2O) or HT(T2) or HF(TF) formation is a limiting stage. Clarification of the process stage limiting the rate of tritium recovery will permit to evaluate conditions for the optimum work of lithium material in the blanket, lithium zone to select the lithium element structure and temperature regime of irradiation

  10. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H.; Enoeda, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  11. Conceptual study on high performance blanket in a spherical tokamak fusion-driven transmuter

    International Nuclear Information System (INIS)

    A preliminary conceptual design on high performance dual-cooled blanket of fusion-driven transmuter is presented based on neutronic calculation. The dual-cooled system has some attractive advantages when utilized in transmutation of HLW (High Level Wastes). The calculation results show that this kind of blanket could safely transmute about 6 ton minor actinides (produced by 170 GW(e) Year PWRs approximately) and 0.4 ton fission products per year, and output 12 GW thermal power. In addition, the variation of power and critical factor of this blanket is relatively little during its 1-year operation period. This blanket is also tritium self-sustainable

  12. A Feasible DEMO Blanket Concept Based on Water Cooled Solid Breeder

    International Nuclear Information System (INIS)

    Full text: JAEA has conducted the conceptual design study of blanket for a fusion DEMO reactor SlimCS. Considering DEMO specific requirements, we place emphasis on a blanket concept with durability to severe irradiation, ease of fabrication for mass production, operation temperature of blanket materials, and maintainability using remote handling equipment. This paper present a promising concept satisfying these requirements, which is characterized by minimized welding lines near the front, a simplified blanket interior consisting of cooling tubes and a mixed pebble bed of breeder and neutron multiplier, and approximately the same outlet temperature for all blanket modules. Neutronics calculation indicated that the blanket satisfies a self-sufficient production of tritium. An important finding is that little decrease is seen in tritium breeding ratio even when the gap between neighboring blanket modules is as wide as 0.03 m. This means that blanket modules can be arranged with such a significant clearance gap without sacrifice of tritium production, which will facilitate the access of remote handling equipment for replacement of the blanket modules and improve the access of diagnostics. (author)

  13. Hazard report update. ECRI Institute revises its recommendation for temperature limits on blanket warmers.

    Science.gov (United States)

    2009-07-01

    ECRI Institute now recommends that temperature settings on blanket warming cabinets be limited to 130 degrees F (54 degrees C). We had previously recommended a limit of 110 degrees F (43 degrees C) because solutions were often being warmed in the same cabinets as blankets, and the lower temperature eliminated the serious burn risk presented by excessively heated solutions. With increasing recognition in the healthcare community that solutions should be kept at lower temperatures than--and therefore heated separately from--blankets, we believe that our recommendation for blankets can be made less stringent. We continue to recommend that solution warming cabinets be limited to 110 degrees F. PMID:20848953

  14. The impact of blanket design on activation and thermal safety

    International Nuclear Information System (INIS)

    Activation and thermal safety analyses for experimental and power reactors are presented. The effects of a strong neutron absorber, B4C, on activation and temperature response of experimental reactors to Loss-of-Cooling Accidents are investigated. Operational neutron fluxes, radioactivities of elements and thermal transients are calculated using the codes ONEDANT, REAC and THIOD, respectively. The inclusion of a small amount of B4C in the steel blanket of an experimental reactor reduces its activation and the post LOCA temperature escalation significantly. Neither the inclusion of excessive amounts of B4C nor enriched 10B in the first walls of an experimental reactor bring much advantage. The employment of a 2 cm graphite tile liner before the first wall helps to limit the post LOCA escalation of first wall temperature. The effect of replacing a 20 cm thick section of a steel shield of a fusion power reactor with B4C is also analyzed. The first wall temperature peak is reduced by 100 degree C in the modified blanket. The natural convection effect on thermal safety of a liquid lithium cooled blanket are investigated. Natural convection has no impact at all, unless the magnetic field can be reduced. If magnets can be shut off rapidly after the accident, then the temperature escalation of the first wall will be limited. Upflow of the coolant is better than the initial downflow design from a thermal safety point of view. Activities of three structural materials, OTR stainless steel, SS-316 and VCrTi are compared. Although VCrTi has higher activity for a period of two hours after the accident, it has one to two orders of magnitude less activity than those of the steels in the mid- and long-terms. 29 refs., 42 figs., 9 tabs

  15. The current status of fusion reactor blanket thermodynamics

    International Nuclear Information System (INIS)

    The available thermodynamic information is reviewed for three categories of materials that meet essential criteria for use as breeding blankets in D-T fuelled fusion reactors: liquid lithium, solid lithium alloys, and lithium-containing ceramics. The leading candidate, liquid lithium, which also has potential for use as a coolant, has been studied more extensively than have the solid alloys or ceramics. Recent studies of liquid lithium have concentrated on its sorption characteristics for hydrogen isotopes and its interaction with common impurity elements. Hydrogen isotope sorption data (P-C-T relations, activity coefficients, Sieverts' constants, plateau pressures, isotope effects, free energies of formation, phase boundaries, etc.) are presented in a tabular form that can be conveniently used to extract thermodynamic information for the α-phases of the Li-LiH, Li-LiD and Li-LiT systems and to construct complete phase diagrams. Recent solubility data for Li3N, Li2O, and Li2C2 in liquid lithium are discussed with emphasis on the prospects for removing these species by cold-trapping methods. Current studies on the sorption of hydrogen in solid lithium alloys (e.g. Li-Al and Li-Pb), made using a new technique (the hydrogen titration method), have shown that these alloys should lead to smaller blanket-tritium inventories than are attainable with liquid lithium and that the P-C-T relationships for hydrogen in Li-M alloys can be estimated from lithium activity data for these alloys. There is essentially no refined thermodynamic information on the prospective ceramic blanket materials. The kinetics of tritium release from these materials is briefly discussed. Research areas are pointed out where additional thermodynamic information is needed for all three material categories. (author)

  16. Impact of prescribed burning on blanket peat hydrology

    Science.gov (United States)

    Holden, Joseph; Palmer, Sheila M.; Johnston, Kerrylyn; Wearing, Catherine; Irvine, Brian; Brown, Lee E.

    2015-08-01

    Fire is known to impact soil properties and hydrological flow paths. However, the impact of prescribed vegetation burning on blanket peatland hydrology is poorly understood. We studied 10 blanket peat headwater catchments. Five were subject to prescribed burning, while five were unburnt controls. Within the burnt catchments, we studied plots where the last burn occurred ˜2 (B2), 4 (B4), 7 (B7), or greater than 10 years (B10+) prior to the start of measurements. These were compared with plots at similar topographic wetness index locations in the control catchments. Plots subject to prescribed vegetation burning had significantly deeper water tables (difference in means = 5.3 cm) and greater water table variability than unburnt plots. Water table depths were significantly different between burn age classes (B2 > B4 > B7 > B10+) while B10+ water tables were not significantly different to the unburnt controls. Overland flow was less common on burnt peat than on unburnt peat, recorded in 9% and 17% of all runoff trap visits, respectively. Storm lag times and hydrograph recession limb periods were significantly greater (by ˜1 and 13 h on average, respectively) in the burnt catchments overall, but for the largest 20% of storms sampled, there was no significant difference in storm lag times between burnt and unburnt catchments. For the largest 20% of storms, the hydrograph intensity of burnt catchments was significantly greater than those of unburnt catchments (means of 4.2 × 10-5 and 3.4 × 10-5 s-1, respectively), thereby indicating a nonlinear streamflow response to prescribed burning. Together, these results from plots to whole river catchments indicate that prescribed vegetation burning has important effects on blanket peatland hydrology at a range of spatial scales.

  17. Recovery of tritium from a liquid lithium blanket

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, J.B.

    1981-01-01

    The sorption of tritium on yttrium from liquid lithium and the subsequent release of tritium from yttrium by thermal regeneration of the metal sorbent were investigated to study such a tritium-recovery process for a fusion reactor blanket of liquid lithium. Recent static sorption experiments have shown the effects of lithium temperature and possible impurities on the sorption of tritium. Diffusivity data, obtained from previous tritium recovery experiments, were evaluated to show the importance of the yttrium surface condition in controlling the release of tritium.

  18. Magnetohydrodynamic research in fusion blanket engineering and metallurgical processing

    International Nuclear Information System (INIS)

    A review of recent research activities in liquid metal magnetohydrodynamics (LM-MHDs) is presented in this article. Two major reserach areas are discussed. The first topic involves the thermomechanical design issues in a proposed tokamak fusion reactor. The primary concerns are in the magneto-thermal-hydraulic performance of a self-cooled liquid metal blanket. The second topic involves the application of MHD in material processing in the metallurgical and semiconductor industries. The two representative applications are electromagnetic stirring (EMS) of continuously cast steel and the Czochralski (CZ) method of crystal growth in the presence of a magnetic field. (author) 24 figs., 10 tabs., 136 refs

  19. R and D activities of the liquid breeder blanket in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won, E-mail: dwlee@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Eo Hwak; Kim, Suk Kwon; Yoon, Jae Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer MARS and GAMMA were developed for He coolant and liquid breeder analysis. Black-Right-Pointing-Pointer FMS/FMS and Be/FMS joining methods were developed and verified with high heat flux test. Black-Right-Pointing-Pointer High temperature and pressure nitrogen and He loops were constructed for heat transfer experiment for developed codes validation. Black-Right-Pointing-Pointer A PbLi breeder loop was constructed for components, MHD, and corrosion tests. Black-Right-Pointing-Pointer A chamber for tritium extraction with a gas-liquid contact method was constructed. - Abstract: A liquid breeder blanket has been developed in parallel with the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) program in Korea. The Korea Atomic Energy Research Institute (KAERI) has developed the common fields of a solid TBM such as design tools, structural material, fabrication methods, and He cooling technology to support this concept for the ITER. Also, other fields such as a liquid breeder technology and tritium extraction have been developed from the designed liquid TBM. For design tools, system codes for safety analysis such as Multi-dimensional Analysis of Reactor Safety (MARS) and GAs Multi-component Mixture Analysis (GAMMA) were developed for He coolant and liquid breeder. For the fabrication methods, Ferritic Martensitic Steel (FMS) to FMS and Be to FMS joinings with a Hot Isostatic Pressing (HIP) were developed and verified with a high heat flux test of up to 0.5-1.0 MW/m{sup 2}. Moreover, three mockups were successfully fabricated and a 10-channel prototype is being fabricated to make a rectangular channel FW. For the integrity of the joining, two high heat flux test facilities were constructed, and one using an electron beam has been constructed. With the 6 MPa nitrogen loop, a basic heat transfer experiment for code validation was performed. From the verification of the components such as preheater and

  20. Beryllium usage in fusion blankets and beryllium data needs

    International Nuclear Information System (INIS)

    Increasing numbers of designers are choosing beryllium for fusion reactor blankets because it, among all nonfissile materials, produces the highest number (2.5 neutron in an infinite media) of neutrons per 14-MeV incident neutron. In amounts of about 20 cm of equivalent solid density, it can be used to produce fissile material, to breed all the tritium consumed in ITER from outboard blankets only, and in designs to produce Co-60. The problem is that predictions of neutron multiplication in beryllium are off by some 10 to 20% and appear to be on the high side, which means that better multiplication measurements and numerical methods are needed. The n,2n reactions result in two helium atoms, which cause radiation damage in the form of hardening at low temperatures (300/degree/C). The usual way beryllium parts are made is by hot pressing the powder. A lower cost method is to cold press and then sinter. There is no radiation damage data on this form of beryllium. The issues of corrosion, safety relative to the release of the tritium built-up inside beryllium, and recycle of used beryllium are also discussed. 10 figs

  1. Fission power flattening in hybrid blankets using mixed fuel

    International Nuclear Information System (INIS)

    In a source-driven fissionable blanket, a flat fission power density (FPD) is achieved by using a mixed fuel (ThO2 and natural UO2) with the thoriumuranium ratio changing from front to back in the ten fuel rows along the radial direction. A straightforward graphic method is used. The temporal behavior of the FPD has been observed for an operation period of 6 months and for a plant load factor of 75% by applying a fusion driver neutron flux of 1014 14-MeV neutrons(cm2 . s) at the first wall, corresponding to --2.25 MWm2. To keep the power density flat, it is necessary to replace the fuel in rows 1, 2, and 3, close to the first wall. The time intervals for this operation increase, counting from initial start-up, typically, 2 months, 6 months, etc. One result of this study is that plutonium produced in such a hybrid blanket contains very low amounts of even isotopic components even over very long operation times of --3 yr. Hence, if fusion reactors are introduced into the energy market, special regulations are needed for international safeguarding

  2. Damage Identification of Continuum Structures Using Blanketing Effect

    International Nuclear Information System (INIS)

    A damage identification method for the continuum structures with making use of the blanketing effect is proposed in this paper. The conventional damage indicator methods such as flexibility matrix method are difficult to deal with the damage identification of complex continuum structure such as multi-span beam. The presented method takes the change rates according to certain diagonal elements of the damaged structure flexibility matrix as identification indicator function. The 'blanketing effect' of the indicator function with respect to the damage factors makes it easy to identify the damage of multi-span beam and plate structures. Some useful formulas are derived and the sensitivity matrix of the identification indicator function is studied. The numerical simulation is performed and the identification results of several damage status are compared. Both beam and plate structures are used for numerical simulation. The results show that the presented indicator function method is very brevity and effective. It is especially suitable for the damage identification of the multi-span beam and plate structures such as bridges and floor

  3. Elevator mode convection in liquid metal blankets for fusion reactors

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2015-11-01

    The work is motivated by the design of liquid-metal blankets for nuclear fusion reactors. Mixed convection in a downward flow in a vertical duct with strong contant-rate heating of one wall (the Grashof number up to 1012) and strong transverse magnetic field (the Hartmann number up to 104) is considered. It is found that in an infinitely long duct the flow is dominated by exponentially growing elevator modes having the form of a combination of ascending and descending jets. An analytical solution approximating the growth rate of the modes is derived. Analogous flows in finite-length pipes and ducts are analyzed using the high-resolution numerical simulations. The results of the recent experiments are reproduced and explained. It is found that the flow evolves in cycles consisting of periods of exponential growth and breakdowns of the jets. The resulting high-amplitude fluctuations of temperature is a feature potentially dangerous for operation of a reactor blanket. Financial support was provided by the US NSF (Grant CBET 1232851).

  4. Fusion blanket materials development and recent R and D activities

    International Nuclear Information System (INIS)

    Development of structural materials plays an important role in the feasibility of fusion power plant. The candidate structural materials for future fusion reactors are Reduced Activation Ferritic Martensitic (RAFM) steel, nano structured ODS Steel, vanadium alloys and SiC/SiCf composite etc. RAFM steel is presently considered as the structural material for Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) because of its high void swelling resistance and improved thermal properties compared to austenitic steel. Development of RAFM steel in India is being carried out in full swing in collaboration with various research laboratories and steel industries. This paper presents an overview of the Indian activities on fusion blanket materials and describes in brief the efforts made to develop IN-RAFM steel as structural material for the LLCB TBM. In future, due to enhanced properties of vanadium base alloy and nano structured materials like ODS RAFMS, RAFM steel may be replaced by these materials for its application in DEMO relevant fusion reactor. Future R and D activities will be specifically towards the development of these structural materials for fusion reactor

  5. Annual report of the CTR Blanket Engineering research facility in 1994

    International Nuclear Information System (INIS)

    This is an annual report of the studies on Controlled Thermo-nuclear Reactor(CTR) Blanket Engineering which have been carried out in the Faculty of Engineering, the University of Tokyo, in FY 1994. This research facility on the CTR Blanket Engineering is located in the Nuclear Engineering Research Laboratory, the Tokai-mura branch of the Faculty of Engineering. (author)

  6. Conceptual design of an electricity generating tritium breeding blanket sector for INTOR/NET

    International Nuclear Information System (INIS)

    A study is made of a fusion reactor power blanket and its associated equipment with the objective of producing a conceptual design for a blanket sector of INTOR, or one of its national variants (e.g. NET), from which electricity could be generated simultaneously with the breeding of tritium. (author)

  7. Development and analysis of fusion breeder blanket neutronics. Progress report, November 1, 1983-October 31, 1984

    International Nuclear Information System (INIS)

    The following activities are briefly described: (a) the IBM versions of the computer codes FORSS, PUFF-II, ONETRAN, TWOTRAN-II, and DOT4.3 were obtained from the Radiation Shielding Information Center (RSIC) and have been implemented on the UCLA local computer, the IBM 3033; (b) mathematical and computational models to describe the time-dependent transport and inventory of tritium in individual components of a fusion reactor system have been developed; (c) extensive cross-section sensitivity and uncertainty analysis was carried out to evaluate an estimate for the uncertainty associated with the TBR (both from 6Li and 7Li, individually) in four of the leading blanket concepts (the Li2O/HT-9 helium-cooled blanket, the 17Li-83Pb/PCA self-cooled blanket, the LiAlO2/He/FS/Be blanket, and the flibe/He/FS/Be blanket); (d) as far as the TBR obtain able in various blanket concepts is concerned, a comparative analysis was carried out to estimate the change in TBR in a particular blanket module when placed in a tokamak machine [R (first wall) approx. 2 m] as opposed to adopting the same blanket in a mirror machine [R (first wall) approx. 50 cm] with the same wall loading

  8. 77 FR 76013 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2012-12-26

    ... LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported Liquefied.... 2885, which granted Sempra LNG Marketing authority to export a cumulative total of ] 250 Bcf of... Marketing requests blanket authorization to export LNG from the Cameron Terminal that has been...

  9. Stability of LMR oxide pins and blanket rods during run-beyond-cladding-break (RBCB) operation

    International Nuclear Information System (INIS)

    Since 1981, the U.S. Department of Energy and the Power Reactor and Nuclear Fuel Development Corporation of Japan have collaborated on an operational reliability testing program in the Experimental Breeder Reactor II. The tests were designed to determine the irradiation behavior of liquid-metal reactor (LMR) oxide pins and blanket rods during steady-state, transient, and run-beyond-claddin-breach (RBCB) operation. Phase I tests completed in 1987 involved current LMR oxide designs and claddings; the phase II tests begun in 1988 concentrate on advanced LMR designs, large-diameter pins (7.5 mm), and advance cladding alloys. The cladding breaches in these tests have been readily detected by fission-gas and delayed-neutron (DN) precursor release. The condition of the fuel pin has been monitored by these releases during RBCB operation. A variety of failures have been intentionally studied in the RBCB portion of the program for operating times of up to 142 full-power days; also, several failure types have been incidentally experienced during the transient tests. Types of failure have included those induced by gas-pressure loading either naturally or by prethinning of the cladding defects, and fuel-cladding mechanical interaction (FCMI)-induced failures or secondary failures caused by the formation of low-density fuel-sodium reaction product (FSRP). This paper summarizes this experience with regard to LMR oxide fuel stability during RBCB operation

  10. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    Science.gov (United States)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding.

  11. Wash resistance and repellent properties of Africa University mosquito blankets against mosquitoes

    Directory of Open Access Journals (Sweden)

    N. Lukwa

    2013-04-01

    Full Text Available The effect of permethrin-treated Africa University (AU mosquito blankets on susceptible female Anopheles gambiae sensu lato mosquitoes was studied under laboratory conditions at Africa University Campus in Mutare, Zimbabwe. Wash resistance (ability to retain an effective dose that kills ≥80% of mosquitoes after a number of washes and repellence (ability to prevent ≥80% of mosquito bites properties were studied. The AU blankets were wash resistant when 100% mortality was recorded up to 20 washes, declining to 90% after 25 washes. Untreated AU blankets did not cause any mortality on mosquitoes. However, mosquito repellence was 96%, 94%, 97.9%, 87%, 85% and 80.7% for treated AU blankets washed 0, 5, 10, 15, 20 and 25 times, respectively. Mosquito repellence was consistently above 80% from 0-25 washes. In conclusion, AU blankets washed 25 times were effective in repelling and killing An. gambiae sl mosquitoes under laboratory conditions.

  12. Resonance self-shielding in the blanket of a hybrid reactor

    International Nuclear Information System (INIS)

    Three sets of energy group cross sections were obtained using various approximations for resonance self shielding. The three models used in obtaining the cross sections were: (a) infinitely dilute model, (b) homogeneous-medium resonance self shielding, and (c) heterogeneous-medium resonance self shielding. The effects on the blanket performance of fusion--fission hybrid reactors, and in particular, on the performance of the current reference Westinghouse Demonstration Tokamak Hybrid Reactor blanket, were compared and analyzed for a variety of fuel-coolant combinations. It has been concluded that (1) the infinitely dilute cross sections can be used to produce preliminary crude estimates for beginning-of-life (BOL) only, (2) the resonance absorber finite dilution should be considered for BOL, poorly moderated blankets and well moderated blankets with low fissile material content situations, and (3) the spacial details should be considered in high fissile content, well moderated blanket situations

  13. Blanket design and performance for the LOTUS fusion-fission hybrid test facility

    International Nuclear Information System (INIS)

    This report summarizes the results of studies performed during 1982 to design an optimized blanket for the initial series of experiments to be conducted in the LOTUS test facility at the Swiss Federal Institute of Technology in Lausanne (EPFL). The experiments are expected to begin in early 1984. An Overview of different hybrid blanket design concepts proposed to date is first given. The technological and economic implications of the different blanket design philosophies are discussed to provide the basis and rationale for the thorium fast-fission blanket design concept selected for the first series of experiments. Detailed description, dimensions, and characteristics of the selected blanket design are given. The neutronic optimization studies on which the design is based are described in detail. Instrumentation and measurement techniques to be used in LOTUS are described elsewhere

  14. 77 FR 3764 - Kinder Morgan Interstate Gas Transmission LLC

    Science.gov (United States)

    2012-01-25

    ... Robert F. Harrington, Vice President, Regulatory, Kinder Morgan Interstate Gas Transmission LLC, P.O. Box... Energy Regulatory Commission Kinder Morgan Interstate Gas Transmission LLC Notice of Request Under Blanket Authorization Take notice that on January 6, 2012, Kinder Morgan Interstate Gas Transmission...

  15. Preliminary thermo-mechanical analysis of ITER breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shigeto; Kuroda, Toshimasa; Enoeda, Mikio [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1999-01-01

    Thermo-mechanical analysis has been conducted on ITER breeding blanket taking into account thermo-mechanical characteristics peculiar to pebble beds. The features of the analysis are to adopt an elasto-plastic constitutive model for pebble beds and to take into account spatially varying thermal conductivity and heat transfer coefficient, especially in the Be pebble bed, depending on the stress. ABAQUS code and COUPLED TEMPERATURE-DISPLACEMENT procedure of the code are selected so that thermal conductivity is automatically calculated in each calculation point depending on the stress. The modified DRUCKER-PRAGER/Cap plasticity model for granular materials of the code is selected so as to deal with such mechanical features of pebble bed as shear failure flow and hydrostatic plastic compression, and capability of the model is studied. The thermal property-stress correlation used in the analysis is obtained based on the experimental results at FZK and the results of additional thermo-mechanical analysis performed here. The thermo-mechanical analysis of an ITER breeding blanket module has been performed for four conditions: case A; nominal case with spatial distribution of thermal conductivity and heat transfer coefficient in Be pebble bed depending on the stress, case B; constant thermal conductivity, case C; thermal conductivity = -20% of nominal case, and case D; thermal conductivity = +20% of nominal case. In the nominal case the temperature of breeding material (Li{sub 2}ZrO{sub 3}) ranges from 317degC to 554degC and the maximum temperature of Be pebble bed is 446degC. It is concluded that the temperature distribution is within the current design limits. Though the analyses performed here are preliminary, the results exhibit well the qualitative features of the pebble bed mechanical behaviors observed in experiments. For more detail quantitative estimates of the blanket performance, further investigation on mechanical properties of pebble beds by experiment

  16. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  17. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meier, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frantoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reyes, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  18. Heating performances of a IC in-blanket ring array

    Science.gov (United States)

    Bosia, G.; Ragona, R.

    2015-12-01

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  19. Heating performances of a IC in-blanket ring array

    Energy Technology Data Exchange (ETDEWEB)

    Bosia, G., E-mail: gbosia@to.infn.it [Department of Physics, University of Turin (Italy); Ragona, R. [Laboratory for Plasma Physics-LPP-ERM/KMS, Brussels (Belgium)

    2015-12-10

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  20. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    International Nuclear Information System (INIS)

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L-1 day-1). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  1. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puyol, D.; Monsalvo, V.M.; Mohedano, A.F. [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Sanz, J.L. [Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Rodriguez, J.J., E-mail: juanjo.rodriguez@uam.es [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain)

    2011-01-30

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L{sup -1} day{sup -1}). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  2. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    inorganic matter in the absence of molecular oxygen. Complex polymeric materials such as polysaccharides, proteins, and lipids (fat and grease) are first hydrolyzed to soluble products by extracellular enzymes, secreted by microorganisms, so as to facilitate their transport or diffusion across the cell membrane. These relatively simple, soluble compounds are fermented or anaerobically oxidized, further to short-chain fatty acids, alcohols, carbon dioxide, hydrogen, and ammonia. The short-chain fatty acids (other than acetate) are converted to acetate, hydrogen gas, and carbon dioxide. Methanogenesis finally occurs from the reduction of carbon dioxide and acetate by hydrogen. The initial stage of anaerobic degradation, i.e. acid fermentation is essentially a constant BOD stage because the organic molecules are only rearranged. The first stage does not stabilize the organics in the waste. However this step is essential for the initiation of second stage methane fermentation as it converts the organic material to a form, usable by the methane producing bacteria. The second reaction is initiated when anaerobic methane forming bacteria act upon the short chain organic acids produced in the 1st stage. Here these acids undergo methane fermentation with carbon dioxide acting as hydrogen acceptor and getting reduced to methane. The methane formed, being insoluble in water, escapes from the system and can be tapped and used as an energy source. The production and subsequent escape of methane causes the stabilization of the organic material. The methane-producing bacteria consist of several different groups. Each group has the ability to ferment only specific compounds. Therefore, the bacterial consortia in a methane producing system should include a number of different groups. When the rate of bacterial growth is considered, then the retention time of the solids becomes important parameter. The acid fermentation stage is faster as compared to the methane fermentation stage. This

  3. JAERI/U.S. collaborative program on fusion blanket neutronics

    International Nuclear Information System (INIS)

    Phase IIa and IIb experiments of JAERI/U.S. Collaborative Program on Fusion Blanket Neutronics have been performed using the FNS facility at JAERI. The phase IIa experimental systems consist of the Li2O test region, the rotating neutron target and the Li2CO3 container. In phase IIb, a beryllium layer is added to the inner wall to investigate a multiplier effect. Measured parameters are source characteristics by a foil activation method and spectrum measurements using both NE-213 and proton recoil counters. The measurements inside the Li2O region included tritium production rates, reaction rate by foil activation and neutron spectrum measurements. Analysis for these parameters was performed by using two dimensional discrete ordinate codes DOT3.5 and DOT-DD, and a Monte Carlo code MORSE-DD. The nuclear data used were based on JENDL3/PR1 and PR2. ENDF/B-IV, V and the FNS file were used as activation cross sections. The configurations analysed for the test region were a reference, a beryllium front and a beryllium sandwiched systems in phase IIa, and a reference and a beryllium front with first wall systems in phase IIb. This document describes the results of analysis and comparison between the calculations and the measurements. The prediction accuracy of key parameters in a fusion reactor blanket are examined. The tritium production rates can be well predicted in the reference systems but are fairly underestimated in the system with a beryllium multiplier. Details of experiments and the experimental techniques are described separately in the another report. (author)

  4. Neutronic studies of fissile and fusile breeding blankets

    International Nuclear Information System (INIS)

    In light of the need of convincing motivation substantiating expensive and inherently applied research (nuclear energy), first a simple comparative study of fissile breeding economics of fusion fission hybrids, spallators and also fast breeder reactors has been carried out. As a result, the necessity of maximization of fissile production (in the first two ones, in fast breeders rather the reprocessing costs should be reduced) has been shown, thus indicating the design strategy (high support ratio) for these systems. In spite of the uncertainty of present projections onto further future and discrepancies in available data even quite conservative assumptions indicate that hybrids and perhaps even earlier - spallators can become economic at realistic uranium price increase and successfully compete against fast breeders. Then on the basis of the concept of the neutron flux shaping aimed at the correlation of the selected cross-sections with the neutron flux, the indications for the maximization of respective reaction rates has been formulated. In turn, these considerations serve as the starting point for the guidelines of breeding blanket nuclear design, which are as follows: 1) The source neutrons must face the multiplying layer (of proper thickness) of possibly low concentration of nuclides attenuating the neutron multiplication (i.e. structure materials, nongaseous coolants). 2) For the most effective trapping of neutrons within the breeding zone (leakage and void streaming reduction) it must contain an efficient moderator (not valid for fissile breeding blankets). 3) All regions of significant slow flux should contain 6Li in order to reduce parasite neutron captures in there. (orig./HP)

  5. Eddy current induced electromagnetic loads on shield blankets during plasma disruptions in ITER: A benchmark exercise

    International Nuclear Information System (INIS)

    According to recent updates of ITER shield blanket design, electromagnetic loads during the plasma disruption are being evaluated to verify the mechanical confidence and reliability. As a course of such evaluations, a benchmark activity for the electromagnetic analysis, coordinated by ITER Organization, is underway between ITER parties to compare the calculation results for disruption loads on the blankets. In this paper, we present calculation results for the electromagnetic loads on the simplified but practical model of ITER shield blankets with respect to six representative disruption scenarios of which ITER distributes simulation results based on the DINA code as a reference of the design and analysis. Commercial finite element method software, ANSYS/EmagTM, was employed to evaluate the eddy current on the blanket modules with the 40o sector model for major conducting structure of the tokamak including double-walled vacuum vessel, triangular support, and vertical targets of divertors. An interface between ANSYS/EmagTM and plasma simulator was implemented with a conversion tool assigning the plasma current density on the ANSYS elements corresponding to the current filaments in DINA outputs. Discussions are made of the possible improvement of the blanket model taking more realistic blanket configuration into account at the cost of the moderate increase in computational time. A final remark is given of the possibility of incorporating halo currents into ANSYS disruption simulations, which are major sources of electromagnetic loads on in-vessel components including blankets.

  6. Synthesis and Characterization of Fibre Reinforced Silica Aerogel Blankets for Thermal Protection

    Directory of Open Access Journals (Sweden)

    S. Chakraborty

    2016-01-01

    Full Text Available Using tetraethoxysilane (TEOS as the source of silica, fibre reinforced silica aerogels were synthesized via fast ambient pressure drying using methanol (MeOH, trimethylchlorosilane (TMCS, ammonium fluoride (NH4F, and hexane. The molar ratio of TEOS/MeOH/(COOH2/NH4F was kept constant at 1 : 38 : 3.73 × 10−5 : 0.023 and the gel was allowed to form inside the highly porous meta-aramid fibrous batting. The wet gel surface was chemically modified (silylation process using various concentrations of TMCS in hexane in the range of 1 to 20% by volume. The fibre reinforced silica aerogel blanket was obtained subsequently through atmospheric pressure drying. The aerogel blanket samples were characterized by density, thermal conductivity, hydrophobicity (contact angle, and Scanning Electron Microscopy. The radiant heat resistance of the aerogel blankets was examined and compared with nonaerogel blankets. It has been observed that, compared to the ordinary nonaerogel blankets, the aerogel blankets showed a 58% increase in the estimated burn injury time and thus ensure a much better protection from heat and fire hazards. The effect of varying the concentration of TMCS on the estimated protection time has been examined. The improved thermal stability and the superior thermal insulation of the flexible aerogel blankets lead to applications being used for occupations that involve exposure to hazards of thermal radiation.

  7. Trade-off study of liquid-metal self-cooled blankets

    International Nuclear Information System (INIS)

    A trade-off study of liquid-metal self-cooled blankets was carried out to define the performance of these blankets with respect to the main functions in a fusion reactor, and to determine the potential to operate at the maximum possible values of the performance parameters. The main purpose is to improve the reactor economics by maximizing the blanket energy multiplication factor, reduce the capital cost of the reactor, and satisfy the design requirements. The main parameters during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the 6Li enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, the impact of different reactor design choices on the performance parameters was analyzed. The effect of the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, the coolant choice for the nonbreeding inboard blanket, and the neutron source distribution were part of the trade-off study. In addition, tritium breeding benchmark calculations were performed to study the impact of the use of different transport codes and nuclear data libraries. The importance and the negative effect of high TBR on the energy multiplication motivated the benchmark calculations

  8. A passively-safe fusion reactor blanket with helium coolant and steel structure

    International Nuclear Information System (INIS)

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m2. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ''beryllium-joint'' concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket

  9. Attachment system for helium-cooled blanket of RF DEMO fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Leshukov, A. E-mail: leshu@entek.ru; Blinov, Y.; Kovalenko, V.; Shatalov, G.; Strebkov, Y.; Strizhov, A

    2002-11-01

    The development of DEMO thermonuclear reactor is a part of Russian national program on the fusion process mastering. The DEMO-S (stationary thermonuclear reactor) should be the logic continuation of the ITER-type projects (pulse thermonuclear reactors) and the prototype for commercial power plants. DEMO reactor layout suggests to use the segmented blanket with mounting/dismounting procedure through the vacuum vessel vertical ports. Taking into account this layout the blanket attachment system has been developed and the present paper is devoted to this subject. The considered attachment system includes the lower and upper toroidal support assemblies which connect all the blanket segments in the enclosed ring. In it's turn the lower support assemblies attached to the vacuum vessel through the system of hinged support pillars. The heights of support pillars for inboard and outboard blankets are selected so that to indemnify the blanket massif thermal expansions in vertical and radial directions. The support pillars have been calculated on strength taking into account the electromagnetic loads from the plasma disruptions and blanket mass. The selection of high-strength chromium steel as a structural material for the support pillars could be considered as the results of strength analysis. The conclusions on the possibility to apply this attachment system for fusion reactor blanket and the critical issues are contained in this paper too.

  10. Development of the breeding blanket and shield model for the fusion power reactors system SYCOMORE

    Energy Technology Data Exchange (ETDEWEB)

    Li-Puma, Antonella, E-mail: antonella.lipuma@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Jaboulay, Jean-Charles, E-mail: Jean-Charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Martin, Brunella, E-mail: brunella.martin@gmail.com [Incka, 19-21 Rue du 8 mai 1945, F-94110 Arcueil (France)

    2014-10-15

    SYCOMORE, a fusion reactor system code based on a modular approach is under development at CEA. Within this framework, this paper describes the relevant sub-modules which have been implemented to model the main outputs of the breeding blanket and shield block of the system code: tritium breeding ratio, peak energy deposition in toroidal field coils, reactor layout and power deposition, blanket pressure drops and materials inventory. Blanket and shield requirements are calculated by several sub-modules: the blanket assembly and layout sub-module, the neutronic sub-module, the blanket design sub-module (thermal hydraulic and thermo-mechanic pre-design tool). A power flow module has also been developed which is directly linked to the blanket thermo-dynamic performances, which is not described in this paper. For the blanket assembly and layout and the blanket module design sub-modules, explicit analytic models have been developed and implemented; for the neutronic sub-module neural networks that replicate the results of appropriate simplified 1D and 2D neutronic simulations have been built. Presently, relevant model for the Helium Cooled Lithium Lead is available. Sub-modules have been built in a way that they can run separately or coupled into the breeding blanket and shield module in order to be integrated in SYCOMORE. In the paper, the objective and main input/output parameters of each sub-module are reported and relevant models discussed. The application to previous studied reactor models (PPCS model AB, DEMO-HCLL 2006–2007 studies) is also presented.

  11. First wall and blanket module safety enhancement by material selection and design decision

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems.

  12. Preliminary Analysis of Liquid Metal MHD Pressure Drop in the Blanket for the FDS

    Institute of Scientific and Technical Information of China (English)

    王红艳; 吴宜灿; 何晓雄

    2002-01-01

    Preliminary analysis and calculation of liquid metal Li17Pb83 magnetohydrodynamic (MHD) pressure drop in the blanket for the FDS have been presented to evaluate the significance of MHD effects on the thermal-hydraulic design of the blanket. To decrease the liquid metal MHD pressure drop, Al2O3 is applied as an electronically insulated coating onto the inner surface of the ducts. The requirement for the insulated coating to reduce the additional leakage pressure drop caused by coating imperfections has been analyzed. Finally, the total liquid metal MHD pressure drop and magnetic pump power in the FDS blanket have been given.

  13. First adaptation of the European ceramic B. I. T. blanket design to the updated DEMO specifications

    Energy Technology Data Exchange (ETDEWEB)

    Anzidei, L.; Cecchi, P.; Cevolani, S.; Gallina, M.; Petrizzi, L.; Rado, V.; Talarico, C.; Violante, V.; Vettraino, V.; Zampaglione, V. (Associazione Euratom-ENEA sulla Fusione, Frascati (Italy)); Proust, E.; Giancarli, L.; Raepsaet, X.; Szczepanski, J.; Vallette, F.; Baraer, L.; Bielak, B.; Mercier, J. (Commissariat a l' Energie Atomique, DRN/DMT/SERMA, C.E.N. Saclay, 91 - Gif-sur-Yvette (France))

    1991-12-01

    The DEMO specifications defined so as to ensure the consistency of the various blanket conceptual design studies performed within the framework of the European Test Blanket Programme have been recently updated. A very first attempt has been made to adapt the European Ceramic Breeder Inside-Tube DEMO blanket to these new specifications. Two solutions have been investigated. The first would ensure tritium self-sufficiency of the plant with a large safety margin. The other one, which fully preserves the design simplicity and reliability of the initial design, appears to be somewhat marginal from the tritium breeding capability point of view, but to offer good improvement prospects. (orig.).

  14. Beryllium data base for in-pile mockup test on blanket of fusion reactor, (1)

    International Nuclear Information System (INIS)

    Beryllium has been used in the fusion blanket designs with ceramic breeder as a neutron multiplier to increase the net tritium breeding ratio (TBR). The properties of beryllium, that is physical properties, chemical properties, thermal properties, mechanical properties, nuclear properties, radiation effects, etc. are necessary for the fusion blanket design. However, the properties of beryllium have not been arranged for the fusion blanket design. Therefore, it is indispensable to check and examine the material data of beryllium reported previously. This paper is the first one of the series of papers on beryllium data base, which summarizes the reported material data of beryllium. (author)

  15. Realization of a flat fission power density in a hybrid blanket over long operation periods

    International Nuclear Information System (INIS)

    A straightforward numerical graphical method is applied to achieve a flat fission power density (FPD) in a hybrid blanket by using a mixed fuel (ThO2 and natural UO2) with variable fractions of the fuel components in the radial direction. The neutronic analysis is carried out on a blanket with a hard neutron spectrum in the fissionable zone by simply omitting the moderating beryllium neutron multiplier. Mainly due to this precaution in the blanket design, the FPD could be kept quasi-constant over a relatively long plant lifetime

  16. STARTUP OF UPELOW ANAEROBIC SLUDGE BLANKET REACTOR FOR INDUSTRIAL WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    A.R. Mesdaghinia

    1994-06-01

    Full Text Available Up flow anaerobic sludge blanket (UASB reactors have been increasingly used for industrial wastewater treatment. Because of existing problems in startup step of these reactors, in this research the startup of a UASB in pilot scale and room temperature condition was studied. The total height of UASB reactor was 270 cm and effective height was 240 cm. Diameter of the reactor in lower part was 20 cm (reaction zone and 40 cm in upper part (solid-gas-liquid separator five sampling ports with interval of 32 cm were provided and the effective volume of the reactor was 100 liters. Septic tank digested sludge and cow manure were used for the seeding of UASB reactor. In the startup step of the reactor, volumetric loading was increased step by step. After 155 days granule formation was observed and after 215 days of the study the removal rate increased to 4.62 kg COD/m/ day. More than 98% of soluble COD removal was achieved in lower 160 cm of reactor.

  17. The coolant purification system of the European test blanket modules: Preliminary design

    Energy Technology Data Exchange (ETDEWEB)

    Ciampichetti, A., E-mail: andrea.ciampichetti@enea.i [ENEA CR Brasimone, FPN-FISING, 40032 Camugnano (Bolivia, Plurinational State of) (Italy); Aiello, A.; Coccoluto, G. [ENEA CR Brasimone, FPN-FISING, 40032 Camugnano (Bolivia, Plurinational State of) (Italy); Ricapito, I. [Fusion for Energy, 08019 Barcelona (Spain); Liger, K. [CEA, DEN, DTN/STPA/LPC, Cadarache, 13108 St Paul-lez-Durance (France); Demange, D. [Karlsruhe Institute of Technology, ITEP-TLK, Postfach 36 40, 76021 Karlsruhe (Germany); Moreno, C. [EURATOM-CIEMAT Association, 28040 Madrid (Spain)

    2010-12-15

    The HCPB (Helium Cooled Pebble Bed) and HCLL (Helium Cooled Lithium Lead) Test Blanket Modules (TBMs), developed in EU to be tested in ITER, adopt helium at 80 bar as primary coolant. This paper contains a conceptual design of the TBMs Coolant Purification System (CPS) based on the need to remove permeated tritium and gas impurities. The following steps have been considered: identification of CPS design requirements; review of the purification systems developed for Helium Cooled Fission Reactors and proposed for DEMO Fusion Reactor; selection of the most promising technologies for CPS; indications on instrumentation and procedures for tritium balance. The proposed solution is a three-stage process constituted by an oxidiser to convert Q{sub 2} and CO to Q{sub 2}O and CO{sub 2}, an adsorption step, performed on molecular sieve at room temperature to remove Q{sub 2}O and CO{sub 2}, and a final step performed on a heated getter to remove residual impurities.

  18. 聚变堆液态包层提氚鼓泡器的概念设计%Conceptual design of tritium bubbler for fusion reactor liquid blanket

    Institute of Scientific and Technical Information of China (English)

    谢波; 翁葵平; 侯建平; 古梅

    2015-01-01

    The conceptual design of liquid blanket tritium bubbler (LBTB) with the gas-liquid exchange column as core was proposed, based on the works of hydrogen extraction from liquid lithium alloys by gas-liquid contact method. LBTB consists of the gas sample purifier, gas-liquid exchange column system, saturator-desorption and auxiliary system. The LBTB was Ar-H2 as carrier, and would on line monitor the tritium behavior of liquid blanket main loop, and test the tritium recovery efficiency whether or not reaching 90%after multi-column cascade.%在气-液接触法提取液态锂合金中的氢的实验基础上,提出了以气-液交换柱为核心的提氚鼓泡器(LBTB)的概念设计。LBTB 主要由气体进样纯化器、气-液交换柱系统、饱和器-解吸器和辅助系统构成。LBTB以氩氢混合气为吹洗气,其主要功能是在线监测液态包层主回路中的氚行为,并检验多柱级联后的氚回收率是否可以达到90%的期望值。

  19. Test blanket module maintenance operations between port plug and ancillary equipment unit in ITER

    International Nuclear Information System (INIS)

    In collaboration between the FZK and KFKI-RMKI, in the frame of the activities of the EU Breeder Blanket Programme a concept for test blanket module (TBM) integration, maintenance schedules and all required special purpose equipments has been developed. During the first 10 years of ITER operation four different plasma scenarios will be used. Hence it will be possible to investigate the characteristics (e.g. tritium breeding performance) of different TBM concepts which will be installed during operation for the different phases of ITER operation in the equatorial ports 2, 16 and 18. In every port two TBMs will be accommodated, in the port 16 will be the European helium-cooled pebble bed blanket. In different phases of ITER operation different TBMs will be used. Therefore a complex maintenance process is necessary for the exchange of TBMs. Two TBMs are mounted onto one common frame, into a port plug (PP), which offers a standardised interface to the vacuum vessel (VV). It is cantilevered with a flange to VV port extension. This attachment system is the same in every equatorial port, so the exchange process of this structure with the TBMs is also the standard operation of ITER. Several components of the helium cooling system of the EU breeder modules, valves, pipes, gas mixers, thermal sleeves, pipes for tritium extraction, measurement system are integrated into the ancillary equipment unit (AEU), which during the operation will connect the port plug to the subsystems. The bigger part of the AEU is accommodated in the port cell and the rest part of it is penetrated into the interspace inside the bioshield and reach the back plane of the installed PP. The remote handling operations for connection/disconnection of an interface between the PP of the EU-TBMs and the AEU are investigated with the goal to reach a quick and simple TBM exchange procedure. The current design of the EU-TBMs foresees up to 18 supply lines for both TBMs. These lines have to be connected here. A

  20. Test blanket module maintenance operations between port plug and ancillary equipment unit in ITER

    International Nuclear Information System (INIS)

    In collaboration between the FZK and KFKI-RMKI, in the frame of the activities of the EU Breeder Blanket Programme a concept for Test Blanket Module (TBM) integration, maintenance schedules and all required special purpose equipments has been developed. During the first 10 years of ITER operation 4 different plasma scenarios will be used. Hence it will be possible to investigate the characteristics (e.g. tritium breeding performance) of different TBM concepts which will be installed during operation for the different phases of ITER operation in the equatorial ports 2, 16 and 18. In every port will be two TBMs accomodated, in the port 16 will be the the European Helium Cooled Pebble Bed blanket. In the different phases of ITER operation different TBMs will be used. Therefore a complex maintenance process is necessary for exchange the TBMs. Two TBMs are mounted into one common frame, into a Port Plug (PP), which offers a standardised interface to the Vacuum Vessel (VV). It is cantilevered with a flange to VV Port Extension. This attachment system is the same in every equatorial port, so the exchange process of this structure with the TBMs are also standard operation of ITER. Several components of the Helium cooling system of the EU breeder modules, valves, pipes, gas mixers, thermal sleeves, pipes for tritium extraction, measurement system, etc. All of them is integrated into the Ancillary Equipment Unit (AEU) which during operation will connect the port plug to the sub systems. The bigger part of the AEU is accomodated in the Port Cell and the rest part of it is penetrate to the interspace inside the bioshield and reach the back plane of the installed PP. The remote handling operations for connection / disconnection of an interface between the PP of the EU-TBMs and the AEU are investigated with the goal to reach a quick and simple TBM exchange procedure. The current design of the EU-TBMs foresees up to 18 supply lines for both TBMs. These lines have to be connected

  1. Development of ITER shielding blanket prototype mockup by HIP bonding

    International Nuclear Information System (INIS)

    A prototype (∼900H x 1700W x 350T mm) of the ITER shielding blanket module has been fabricated following the previous successful fabrication of a small-scale (∼500H x 400W x 150T mm) and mid-scale (∼800H x 500W x 350T mm) mock-ups. This prototype incorporates most of key design features essential to the fabrication of the ITER shielding blanket module such as 1) the first wall heat sink made of Al2O3 dispersion strengthened Cu (DSCu) with built-in SS316L coolant tubes bonded to a massive SS316LN shield block, 2) toroidally curved first wall with a radius of 5106 mm while straight in poloidal direction, 3) coolant channels oriented in poloidal direction in the first wall and in toroidal direction in the shield block, 4) the first wall coolant channel routing to avoid the interference with the front access holes, 5) coolant channels drilled through the forged SS316LN-IG shield block, and 6) four front access holes of 30 mm in diameter penetrated through the first wall and the shield block. For the joining method, especially for the first wall/side wall parts and the shield block, the solid HIP (Hot Isostatic Pressing) process was applied. It is difficult to apply conventional joining methods such as field welding, brazing, explosion bonding and mechanical one-axial diffusion bonding to a wide area bonding because sufficient mechanical strengths can not be obtained and excessive deformations occurs. In order to solve these fabrication issues, HIP bonding was applied. The first wall stainless steel (SS) coolant tubes of 10 mm in inner diameter and l mm in thickness were sandwiched by semi-circular grooved DSCu plates at the first wall and the front region of the side wall, and by semi-circular grooved SS plates at the back region of the side wall. After assembling of these first wall/side wall parts with the shield block, they were simultaneously bonded by single step HIP in order to minimize thermal effects on the mechanical properties and to reduce the number

  2. Fast Breeder Blanket Facility FBBF. Annual report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    This annual report contains a summmary of fission rate, spectra, and gamma-ray heating rate measurements made in the first blanket of the Purdue Fast Breeder Blanket Facility. The first blanket consisted of aluminum clad, natural UO2 fuel rods with a secondary cladding of stainless steel or aluminum. The blanket was arranged in two concentric regions around the neutron source and converter regions. A neutron diffusion code, 2DB, and a Monte Carlo code, VIM, both using homogeneous cross section groups have been used to calculate the reaction rates. Calculated to experimental values for a number of important reactions are presented. A modified method of applying Bondarenko self-shielding factors to correct for the self shielding of resonance energy neutrons in aluminum, stainless steel and UO2 has improved the agreement between the calculations and experiment, but does not account for all of the differences

  3. Integrated-blanket-coil (IBC) concept applied to the OH-coil for spherical tori

    International Nuclear Information System (INIS)

    This concept combines blanket and coil functions into a single component. The objectives of the concept are to: (1) provide design options, (2) simplify overall configuration, (3) enhance compactness, and (4) reduce costs. Some drawings of the system are given

  4. Main maintenance operations for Test Blanket Systems in ITER TBM port cells

    International Nuclear Information System (INIS)

    Highlights: • The Test Blanket System components layout in Port Cell room is described. • The maintenance of the two Test Blanket Systems in ITER port cell is addressed. • The overall replacement/maintenance strategy is defined. • The main maintenance tasks of the systems are discussed. • The maintenance strategy and required tools are presented. -- Abstract: Each Test Blanket System in ITER is formed by an in-vessel component, the Test Blanket Module, and several associated ancillary systems (coolant and Tritium systems, instrumentation and control systems). The paper describes the overall replacement/maintenance strategy and the main maintenance tasks that have to be considered in the design of the systems. It shows that there are no critical issues

  5. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: Absorption Versus Transmission

    CERN Document Server

    Doutres, Olivier; 10.1121/1.3458845

    2010-01-01

    The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound ...

  6. An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR

    Science.gov (United States)

    Yu, Guanying; Liu, Xufeng; Liu, Songlin

    2016-10-01

    The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)

  7. Normal Operation (NO) of APT Blanket System and its Components Based on Initial Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  8. Proceedings of the fifteenth international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    This report is the Proceedings of 'the Fifteenth International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors. This workshop was held in Sapporo, Japan on 3-4, Sept. 2009. Twenty six participants from EU, Japan, India, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket development. By this workshop, advance of key technologies for solid breeder blanket development was shared among the participants. Also, desired direction of further investigation and development was recognized. The 20 of the presented papers are indexed individually. (J.P.N.)

  9. A high tritium breeding ratio (TBR) blanket concept and requirements for nuclear data relating to TBR

    International Nuclear Information System (INIS)

    Significance of developing a blanket having a sufficiently larger tritium breeding ratio (TBR) than 1.0 is discussed. For this purpose, a high TBR blanket with a front breeder zone just before the multiplier is introduced together with conventional blankets. From discussion of TBR characteristics in these blankets, the necessity of improving on nuclear data, i.e. reducing uncertainties is presented as follows; σs, σnp and σnα of structural and coolant materials, and σn2n of the multiplier at higher energies above several MeV, and σnγ of these materials and σnαT of 6Li at energies from several hundred keV to thermal energy. (author)

  10. Resolution of proliferation issues for a SFR blanket with a specific application

    Energy Technology Data Exchange (ETDEWEB)

    Stauff, N.E. [31 rue baudelaire, voisins le bretonneux, 78960 (France); Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Forget, B.; Driscoll, M.J. [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2009-06-15

    The Sodium Fast Reactor is seen as the most realistic Gen-IV reactor to be built in the near future. France and the US are still developing their designs; these will require improved safety, competitive economics, and also proliferation resistance. To meet this last requirement, both French and American designers show some concerns with the use of breeding blankets. France and the USA won't need breeding blankets to produce plutonium because they already have large amounts of plutonium bred from their LWR fleet to start a new SFR fleet, thus breeding blankets are mainly of interest for minor actinide burning. On the contrary, India and China express great interest in blankets for their SFR designs, to reach a positive breeding gain. For example, the Indian PFBR, a 500 MWe oxide-fueled SFR has a breeding ratio of 1.05. Blankets are used in a Fast Reactor to increase the breeding ratio of the core, by breeding a significant amount of plutonium. The Plutonium bred within these blankets, if these are loaded with Uranium only, is generally of a very high quality, which makes it easily used in a nuclear explosive device. Our research has shown that the plutonium in breeding blankets can be made less attractive to make a nuclear explosive device than LWR-bred plutonium with a burnup of 50 MWd/Kg. Minor actinide doping and moderator addition were the two options studied, as they increase Pu{sup 238} and Pu{sup 240} production. In the work reported here, the methodology developed for securing a breeding blanket was successfully applied to the Indian PFBR. The full paper will describe a design of the PFBR breeding proliferation resistant plutonium within its blankets. The blankets were rendered secure by adding a zirconium hydride moderator and a small volume of MAs. It was demonstrated that reducing the attractiveness of the blanket plutonium would require no external MA dependency by choosing an adequate fuel cycle. The characteristics and performance of this design

  11. Climate-driven expansion of blanket bogs in Britain during the Holocene

    Directory of Open Access Journals (Sweden)

    A. V. Gallego-Sala

    2015-10-01

    Full Text Available Blanket bog occupies approximately 6 % of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland, Wales and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre-Neolithic blanket-bog initiation at over half of the sites in the core areas of Scotland, and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later

  12. Wash resistance and repellent properties of Africa University mosquito blankets against mosquitoes

    OpenAIRE

    Lukwa, N; A. Makuwaza; T. Chiwade; S.L. Mutambu; M. Zimba; P. Munosiyei

    2013-01-01

    The effect of permethrin-treated Africa University (AU) mosquito blankets on susceptible female Anopheles gambiae sensu lato mosquitoes was studied under laboratory conditions at Africa University Campus in Mutare, Zimbabwe. Wash resistance (ability to retain an effective dose that kills ≥80% of mosquitoes after a number of washes) and repellence (ability to prevent ≥80% of mosquito bites) properties were studied. The AU blankets were wash resistant when 100% mortality was recorded up t...

  13. Application Effect’s Research of Vetiver Eco Blanket in Pubugou Reservoir Fluctuating Zone

    OpenAIRE

    Lan Huijuan; Zheng Kaiyuan; Ni Fuquan; Deng Yu; Liu Dengyu; Yang Xinwei; Wang Tao

    2015-01-01

    To solve the ecological disasters in Pubugou Reservoir Fluctuating Zone, ecological blanket governance model is proposed in this paper, which may provide good early environment for plants’ survival in fluctuation zone, and then play the function of greening and sustainable development to ensure the slopes’ stability. Meanwhile, based on the result of vetiver ecological blanket in Hanyuan experimental zone, we find that three kinds of typical Fluctuating Zone slope’s greening effect is good, w...

  14. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  15. The State of the Art Report on the Development and Manufacturing Technology of Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Kim, K. H

    2006-07-15

    The main objective of the present R and D on breeder blanket is the development of test blanket modules (TBMs) to be installed and tested in International Thermonuclear Experimental Reactor (ITER). In the program of the blanket development, a blanket module test in the ITER is scheduled from the beginning of the ITER operation, and the performance test of TBM in ITER is the most important milestone for the development of the DEMO blanket. The fabrication of TBMs has been required to test the basic performance of the DEMO blanket, i.e., tritium production/recovery, high-grade heat generation and radiation shielding. Therefore, the integration of the TBM systems into ITER has been investigated with the aim to check the safety, reliability and compatibility under nuclear fusion state. For this reason, in the Test Blanket Working Group (TBWG) as an activity of the International Energy Association (IEA), a variety of ITER TBMs have been proposed and investigated by each party: helium-cooled ceramic (WSG-1), helium-cooled LiPb (WSG-2), water-cooled ceramic (WSG-3), self-cooled lithium (WSG-4) and self-cooled molten salt (WSG-5) blanket systems. Because we are still deficient in investigation of TBM development, the need of development became pressing. In this report, for the development of TBM sub-module and mock-up, it is necessary to analyze and examine the state of the art on the development of manufacturing technology of TBM in other countries. And we will be applied as basic data to establish a manufacturing technology.

  16. Implementation of two-phase tritium models for helium bubbles in HCLL breeding blanket modules

    OpenAIRE

    Fradera, Jordi; Sedano, L.A.; Mas de les Valls Ortiz, Elisabet; Batet Miracle, Lluís

    2011-01-01

    Tritium self-sufficiency requirement of future DT fusion reactors involves large helium production rates in the breeding blankets; this might impact on the conceptual design of diverse fusion power reactor units, such as Liquid Metal (LM) blankets. Low solubility, long residence-times and high production rates create the conditions for Helium nucleation, which could mean effective T sinks in LM channels. A model for helium nano-bubble formation and tritium conjugate transport phen...

  17. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  18. 77 FR 55201 - Notice of Orders Granting Applications to Import and Export Natural Gas and Vacating Prior...

    Science.gov (United States)

    2012-09-07

    ... July 2012; J. Aron & Company; Iberdrola Renewables, LLC AGENCY: Office of Fossil Energy, Department of.... Aron & Company..... Order granting blanket authority to import/export natural gas from/to...

  19. Neutronics Optimization of LiPb-He Dual-Cooled Fuel Breeding Blanket for the Fusion-Driven sub-critical System

    Institute of Scientific and Technical Information of China (English)

    郑善良; 吴宜灿

    2002-01-01

    The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR >1.05) and annual output of 100 kg or more fissile 239Pu (FBR>0.238) as objective parameters, and based on the three-dimensional Monte Carlo neutron-photon transport code MCNP/4A, a neutronics-optimizated calculation of different cases was carried out and the concept is proved feasible. In addition, the total breeding ratio ( BR = TBR + FBR ) is listed corresponding to different cases.

  20. Neutronics optimization of LiPb-He dual-cooled fuel breeding blanket for the fusion-driven sub-critical system

    International Nuclear Information System (INIS)

    The concept of the liquid Li17Pb83 and Helium gas dual-cooled Fuel Breeding Blanket (FBB) for the Fusion-Driven sub-critical System (FDS) is presented and analyzed. Taking self-sustaining tritium (TBR > 1.05) and annual output of 100 kg or more fissile 239Pu (FBR > 0.238) as objective parameters, and based on the three-dimensional Monte Carlo neutron-photon transport code MCNP/4A, a neutronics-optimized calculation of different cases was carried out and the concept is proved feasible. In addition, the total breeding ratio (Br = Tbr + Fbr) is listed corresponding to different cases

  1. Preliminary neutronics design and analysis of helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Zhongliang; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Chen, Chong; Li, Min; Zhou, Guangming

    2015-06-15

    Highlights: • Neutronics design of a helium cooled solid breeder blanket for CFETR was presented. • The breeding zones parallel to FW and perpendicular to FW were optimized. • A series of neutronics analyses for the proposed blanket were shown. - Abstract: Chinese Fusion Engineering Test Reactor (CFETR) is a test tokamak reactor being designed in China to bridge the gap between ITER and future fusion power plant. Tritium self-sufficiency is one of the most important issues for CFETR and the tritium breeding ratio (TBR) is recommended not less than 1.2. As one of the candidates, a helium cooled solid breeder blanket for CFETR superconducting tokamak option was proposed. In the concept, radial arranged U-shaped breeding zones are adopted for higher TBR and simpler structure. In this work, three-dimensional neutronics design and analysis of the blanket were performed using the Monte Carlo N-Particle transport code MCNP with IAEA data library FENDL-2.1. Tritium breeding capability of the proposed blanket was assessed and the breeding zones parallel to first wall (FW) and perpendicular to FW were optimized. Meanwhile, the nuclear heating analysis and shielding performance were also presented for later thermal and structural analysis. The results showed that the blanket could well meet the tritium self-sufficiency target and the neutron shield could satisfy the design requirements.

  2. Activation Characteristics of Fuel Breeding Blanket Module in Fusion Driven Subcritical System

    Institute of Scientific and Technical Information of China (English)

    HUANG Qun-Ying; LI Jian-Gang; CHEN Yi-Xue

    2004-01-01

    @@ Shortage of energy resources and production of long-lived radioactivity wastes from fission reactors are among the main problems which will be faced in the world in the near future. The conceptual design of a fusion driven subcritical system (FDS) is underway in Institute of Plasma Physics, Chinese Academy of Sciences. There are alternative designs for multi-functional blanket modules of the FDS, such as fuel breeding blanket module (FBB)to produce fuels for fission reactors, tritium breeding blanket module to produce the fuel, i.e. tritium, for fusion reactor and waste transmutation blanket module to try to permanently dispose of long-lived radioactivity wastes from fission reactors, etc. Activation of the fuel breeding blanket of the fusion driven subcritical system (FDS-FBB) by D-T fusion neutrons from the plasma and fission neutrons from the hybrid blanket are calculated and analysed under the neutron wall loading 0.5 MW/m2 and neutron fluence 15 MW. yr/m2. The neutron spectrum is calculated with the worldwide-used transport code MCNP/4C and activation calculations are carried out with the well known European inventory code FISPACT/99 with the latest released IAEA Fusion Evaluated Nuclear Data Library FENDL-2.0 and the ENDF/B-V uranium evaluated data. Induced radioactivities, dose rates and afterheats, etc, for different components of the FDS-FBB are compared and analysed.

  3. Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.

    1999-10-07

    The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.

  4. Detailed 3-D nuclear analysis of ITER blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, T.D., E-mail: tdbohm@wisc.edu [University of Wisconsin-Madison, Madison, WI (United States); Sawan, M.E.; Marriott, E.P.; Wilson, P.P.H. [University of Wisconsin-Madison, Madison, WI (United States); Ulrickson, M.; Bullock, J. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-10-15

    In ITER, the blanket modules (BM) are arranged around the plasma to provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. As a part of the BM design process, nuclear analysis is required to determine the level of nuclear heating, helium production, and radiation damage in the BM. Additionally, nuclear heating in the VV is also important for assessing the BM design. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40-degree partially homogenized ITER global model. The regions analyzed include BM01, the neutral beam injection (NB) region, and the upper port region. For BM01, the results show that He production meets the limit necessary for re-welding, and the VV heating behind BM01 is acceptable. For the NBI region, the VV nuclear heating behind the NB region exceeds the design limit by a factor of two. For the upper port region, the nuclear heating of the VV exceeds the design limit by up to 20%. The results presented in this work are being used to modify the BM design in the cases where limits are exceeded.

  5. Vacuum Permeator Analysis for Extraction of Tritium from DCLL Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse, Paul Weston [Idaho National Laboratory; Merrill, Brad Johnson [Idaho National Laboratory

    2014-11-01

    It is envisioned that tritium will be extracted from DCLL blankets using a vacuum permeator. We derive here an analytical solution for the extraction efficiency of a permeator tube, which is a function of only two dimensionless numbers: one that indicates whether radial transport is limited in the PbLi or in the solid membrane, and another that is the ratio of axial and radial transport times in the PbLi. The permeator efficiency is maximized by decreasing the velocity and tube diameter, and increasing the tube length. This is true regardless of the mass transport correlation used; we review several here and find that they differ little, and the choice of correlation is not a source of significant uncertainty here. The PbLi solubility, on the other hand, is a large source of uncertainty, and we identify upper and lower bounds from the literature data. Under the most optimistic assumptions, we find that a ferritic steel permeator operating at 550 °C will need to be at least an order of magnitude larger in volume than previous conceptual designs using niobium and operating at higher temperatures.

  6. Physics aspects of metal fuelled fast reactors with thorium blanket

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, D.K., E-mail: dina@igcar.gov.in; Singh, S.S.; Riyas, A.; Mohanakrishnan, P.

    2013-12-15

    Metal fuelled fast breeder reactors (MFBR) with high breeding ratio will play a major role in meeting the high nuclear power growth envisaged in India. In this regard several conceptual reactor designs with alloys of U–Pu–Zr fuel have been suggested for commercial operations. This study focusses on the physics design aspects of a sodium cooled U–Pu–6%Zr fuelled 1000 MWe fast breeder reactor, which can attain a breeding ratio of nearly 1.5. The calculation results on reactor kinetics and safety parameters of the 1000 MWe MFBR are presented. The changes in the breeding ratio by introduction of thorium in the blankets of the MFBR are also investigated. Burnup analyses are carried out to compare the core burnup effects in MOX and metal fuelled FBRs. Since the MOX fuelled 500 MWe prototype fast breeder is getting constructed at IGCAR, for burnup comparisons a MFBR of similar design is considered. The results of this study indicate that the loss of reactivity in the metal core with burnup is less than half that of a MOX core and its breeding ratio remains nearly constant. It is also found that the isotopic composition of plutonium (Pu-vector composition) remains more steady with burnup in a metal core.

  7. Surface property variations in Venusian fluidized ejecta blanket craters

    Science.gov (United States)

    Johnson, Jeffrey R.; Baker, Victor R.

    1994-01-01

    A comprehensive study of Magellan Cycles 1 and 2 radar data from Venus reveals surface roughness and dielectric variations associated with fluidized ejecta blanket (FEB) craters that help illuminate styles of flow ejecta emplacement. This study develops new procedures of digital unit mapping and polygon-filling algorithms using Magellan synthetic aperture radar (SAR), altimetry, and radiometry data. These techniques allow the extraction of radiophysical information for FEB crater materials, nearby plains, and lava flows. Backscatter curve slopes of the FEBs studied here are consistent with surface textures that are transitional between a'a and pahoehoe-like. Average surface property values of ejecta units are relatively similar for a given crater, but are discernibly different from other craters. Individual crater ejecta reflectivity and emissivity values are relatively similar to those for the surrounding plains, which may suggest a link between plains material and ejecta dielectric properties. Increasing FEB roughness downflow are interpreted to be associated with more lava-like flows, while decreasing roughness are more similar to trends typical of gravity (pyroclastic-like or debris-like) flows. Most commonly, FEB crater flow materials exhibit transitions from proximal, lava/melt-like flow styles to distal, gravity flow-like styles. Some FEBs show more complicated behavior, however, or appear to be more dominated by dielectric differences downflow, as inferred from correlations between the data sets. Such transitions may result from changes in local topography or from overlapping of flow lobes during FEB emplacement.

  8. 77 FR 38790 - Noble Americas Gas & Power Corp., LNG Development Company, LLC, LNG Development Company, LLC (d/b...

    Science.gov (United States)

    2012-06-29

    ... Americas Gas & Power Corp., LNG Development Company, LLC, LNG Development Company, LLC (d/b/a Oregon LNG); Notice of Orders Granting Authority To Import and Export Natural Gas and Liquefied Natural Gas During May... Holder Description of Action 3098 05/03/12 12-21-NG Noble Americas Gas & Order granting blanket...

  9. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding

  10. Proceedings of the eleventh international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    This report is the Proceedings of 'the Eleventh International Workshop on Ceramic Breeder Blanket Interactions' which was held as a workshop on ceramic breeders Under the IEA Implementing Agreement on the Nuclear Technology of Fusion Reactors, and the Japan-US Fusion Collaboration Framework. This workshop was held in Tokyo, Japan on December 15-17, 2003. About thirty experts from China, EU, Japan, Korea, Latvia, Russia and USA attended the workshop. The scope of the workshop included 1) evolutions in ceramic breeder blanket design, 2) progress in ceramic breeder material development, 3) irradiation testing, 4) breeder material properties, 5) out-of-pile pebble bed experiment, 6) modeling of the thermal, mechanical and tritium transfer behavior of pebble beds and 7) interfacing issues of solid breeder blanket. In the workshop, information exchange was performed for designs of solid breeder blankets and test blankets in EU, Russia and Japan, recent results of irradiation tests, HICU, EXOTIC-8 and the irradiation tests by IVV-2M, modeling study on tritium release behavior of Li2TiO3 and so on, fabrication technology developments and characterization of the Li2TiO3 and Li4SiO4 pebbles, research on measurements and modeling of thermo-mechanical behaviors of Li2TiO3 and Li4SiO4 pebbles, and interfacing issues, such as, fabrication technology for blanket box structure, neutronics experiments of blanket mockups by fusion neutron source and tritium recovery system. The 26 of the presented papers are indexed individually. (J.P.N.)

  11. Requirements for helium cooled pebble bed blanket and R and D activities

    Energy Technology Data Exchange (ETDEWEB)

    Carloni, D., E-mail: dario.carloni@kit.edu; Boccaccini, L.V.; Franza, F.; Kecskes, S.

    2014-10-15

    This work aims to give an outline of the design requirements of the helium cooled pebble bed (HCPB) blanket and its associated R and D activities. In DEMO fusion reactor the plasma facing components have to fulfill several requirements dictated by safety and process sustainability criteria. In particular the blanket of a fusion reactor shall transfer the heat load coming from the plasma to the cooling system and also provide tritium breeding for the fuel cycle of the machine. KIT has been investigating and developed a helium-cooled blanket for more than three decades: the concept is based on the adoption of separated small lithium orthosilicate (tritium breeder) and beryllium (neutron multiplier) pebble beds, i.e. the HCPB blanket. One of the test blanket modules of ITER will be a HCPB type, aiming to demonstrate the soundness of the concept for the exploitation in future fusion power plants. A discussion is reported also on the development of the design criteria for the blanket to meet the requirements, such as tritium environmental release, also with reference to the TBM. The selection of materials and components to be used in a unique environment as the Tokamak of a fusion reactor requires dedicated several R and D activities. For instance, the performance of the coolant and the tritium self-sufficiency are key elements for the realization of the HCPB concept. Experimental campaigns have been conducted to select the materials to be used inside the solid breeder blanket and R and D activities have been carried out to support the design. The paper discusses also the program of future developments for the realization of the HCPB concept, also focusing to the specific campaigns necessary to qualify the TBM for its implementation in the ITER machine.

  12. Requirements for helium cooled pebble bed blanket and R and D activities

    International Nuclear Information System (INIS)

    This work aims to give an outline of the design requirements of the helium cooled pebble bed (HCPB) blanket and its associated R and D activities. In DEMO fusion reactor the plasma facing components have to fulfill several requirements dictated by safety and process sustainability criteria. In particular the blanket of a fusion reactor shall transfer the heat load coming from the plasma to the cooling system and also provide tritium breeding for the fuel cycle of the machine. KIT has been investigating and developed a helium-cooled blanket for more than three decades: the concept is based on the adoption of separated small lithium orthosilicate (tritium breeder) and beryllium (neutron multiplier) pebble beds, i.e. the HCPB blanket. One of the test blanket modules of ITER will be a HCPB type, aiming to demonstrate the soundness of the concept for the exploitation in future fusion power plants. A discussion is reported also on the development of the design criteria for the blanket to meet the requirements, such as tritium environmental release, also with reference to the TBM. The selection of materials and components to be used in a unique environment as the Tokamak of a fusion reactor requires dedicated several R and D activities. For instance, the performance of the coolant and the tritium self-sufficiency are key elements for the realization of the HCPB concept. Experimental campaigns have been conducted to select the materials to be used inside the solid breeder blanket and R and D activities have been carried out to support the design. The paper discusses also the program of future developments for the realization of the HCPB concept, also focusing to the specific campaigns necessary to qualify the TBM for its implementation in the ITER machine

  13. Neutronic and thermomechanical analysis of the water-cooled lithium-lead blanket design for a DEMONET reactor

    International Nuclear Information System (INIS)

    Within the framework of the European DEMO blanket study programme, CEA and the JRC of Ispra are jointly developing a water-cooled lithium-lead blanket concept. The new DEMONET reactor configuration released in Spring 1990 and currently specified in the EC programme is the basis of neutronic and thermomechanical studies for the proposed box-shaped blanket concept. Considering the high blanket coverage, it is now possible to reach tritium self-sufficiency without making use of beryllium (neutronic calculations indicate a global tritium breeding ratio of the order of 1.16). (orig.)

  14. Characterization of the effects of continuous salt processing on the performance of molten salt fusion breeder blankets

    International Nuclear Information System (INIS)

    Several continuous salt processing options are available for use in molten salt fusion breeder blanket designs. The effects of processing on blanket performance have been assessed for three levels of processing and various equilibrium uranium concentrations in the salt. A one-dimensional model of the blanket was used in the neutronics analysis which incorporated transport calculations with time-dependent isotope generation and depletion calculations. The level of salt processing was found to have little effect on the behavior of the blanket during reactor operation; however, significant effects were observed during the decay period after reactor shutdown

  15. 75 FR 8245 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2010-02-24

    ... Energy Regulatory Commission 18 CFR Part 157 Natural Gas Pipelines; Project Cost and Annual Limits...) computes and publishes the project cost and annual limits for natural gas pipelines blanket construction... Part 157 Administrative practice and procedure, Natural gas, Reporting and recordkeeping...

  16. 76 FR 8293 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2011-02-14

    ... Energy Regulatory Commission 18 CFR Part 157 Natural Gas Pipelines; Project Cost and Annual Limits...) computes and publishes the project cost and annual limits for natural gas pipelines blanket construction... practice and procedure, Natural Gas, Reporting and recordkeeping requirements. Jeff C. Wright,...

  17. 77 FR 8724 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2012-02-15

    ... Energy Regulatory Commission 18 CFR Part 157 Natural Gas Pipelines; Project Cost and Annual Limits... (OEP) computes and publishes the project cost and annual limits for natural gas pipelines blanket..., Natural gas, Reporting and recordkeeping requirements. Jeff C. Wright, Director, Office of Energy...

  18. 78 FR 8389 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2013-02-06

    ... Energy Regulatory Commission 18 CFR Part 157 Natural Gas Pipelines; Project Cost and Annual Limits AGENCY... publishes the project cost and annual limits for natural gas pipelines blanket construction certificates for... CFR Part 157 Administrative practice and procedure, Natural Gas, Reporting and...

  19. Development of the Water Cooled Ceramic Breeder Test Blanket Module in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Suzuki, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Ezato, Koichiro; Seki, Yohji; Yoshikawa, Akira; Tsuru, Daigo; Akiba, Masato [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2012-08-15

    The development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and evaluation toward DEMO blanket, the module fabrication technology development by a candidate structural material, reduced activation martensitic/ferritic steel, F82H, is one of the most critical items from the viewpoint of realization of TBM testing in ITER. In Japan, fabrication of a real scale first wall, side walls, a breeder pebble bed box and assembling of the first wall and side walls have succeeded. Recently, the real scale partial mockup of the back wall was fabricated. The fabrication procedure of the back wall, whose thickness is up to 90 mm, was confirmed toward the fabrication of the real scale back wall by F82H. Important key technologies are almost clarified for the fabrication of the real scale TBM module mockup. From the view point of testing and evaluation, development of the technology of the blanket tritium recovery, development of advanced breeder and multiplier pebbles and the development of the blanket neutronics measurement technology are also performed. Also, tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been started as the verification test of tritium production performance. This paper overviews the recent achievements of the development of the WCCB TBM in Japan.

  20. R and D status on Water Cooled Ceramic Breeder Blanket Technology

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp; Tanigawa, Hisashi; Hirose, Takanori; Nakajima, Motoki; Sato, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Hayashi, Takumi; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji; Yokoyama, Kenji

    2014-10-15

    Japan Atomic Energy Agency (JAEA) is performing the development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) as one of the most important steps toward DEMO blanket. Regarding the blanket module fabrication technology development using F82H, the fabrication of a real scale mockup of the back wall of TBM was completed. In the design activity of the TBM, electromagnetic analysis under plasma disruption events and thermo-mechanical analysis under steady state and transient state of tokamak operation have been performed and showed bright prospect toward design justification. Regarding the development of advanced breeder and multiplier pebbles for DEMO blanket, fabrication technology development of Li rich Li{sub 2}TiO{sub 3} pebble and BeTi pebble was performed. Regarding the research activity on the evaluation of tritium generation performance, the evaluation of tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been performed. This paper overviews the recent achievements of the development of the WCCB Blanket in JAEA.

  1. Technical evaluation of major candidate blanket systems for fusion power reactor

    International Nuclear Information System (INIS)

    The key functions required for tritium breeding blankets for a fusion power reactor are: (1) self-sufficient tritium breeding, (2) in-situ tritium recovery and low tritium inventory, (3) high temperature cooling giving a high efficiency of electricity generation and (4) thermo-mechanical reliability and simplified remote maintenance to obtain high plant availability. Blanket performance is substantially governed by materials selection. Major options of structure/breeder/coolant/neutron multiplier materials considered for the present design study are PCA/Li2O/H2O/Be, Mo-alloy/Li2O/He/Be, Mo-alloy/LiAlO2/He/Be, V-alloy/Li/Li/none, and Mo-alloy/Li/He/none. In addition, remote maintenance of blankets, tritium recovery system, heat transport and energy conversion have been investigated. In this report, technological problems and critical R and D issues for power reactor blanket development are identified and a comparison of major candidate blanket concepts is discussed in terms of the present materials data base, economic performance, prospects for future improvements, and engineering feasibility and difficulties based on the results obtained from individual design studies. (author)

  2. Thermal Analysis on Conceptual K-DEMO Breeding Blanket on parallel flow configuration

    International Nuclear Information System (INIS)

    The feasibility study consists the design guidelines and requirements for the K-DEMO(the Korean Fusion DEMOnstration reactor). It is possible to design flexible and realistic concepts of the demonstration fusion power plant. As a part of the NFRI research, Seoul National University (SNU) is conducting thermal design, evaluation and validation of the breeding blanket for the K-DEMO reactor. Recently, a new breeding blanket concept has been proposed for the K-DEMO reactor, and preliminary feasibility studies are actively ongoing. Design concept of parallel plate-type blanket of K-DEMO and thermal limits on components was identified, in this study. It was concluded that an acceptable thermal design was achieved in the proposed breeding blanket design. However, some design improvements in the geometry of the breeding blanket are ongoing. In aspect of pressure drop and outlet temperature, some analysis need to be conducted. Stage of study on the K-DEMO reactor is in the preliminary concept definition

  3. The integrated-blanket-coil concept applied to the spherical torus

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate the potential of reactor embodiments based on the combination of two novel concepts, the integrated-blanket-coil (IBC) concept and the spherical torus (ST) concept. The IBC concept involves the combination of blanket and coil functions into a single component. The ST concept is based on the operation of the tokamak magnetic configuration at low aspect ratio. Two applications of the IBC concept to the ST are presented: (1) the IBC as the outer blanket and TF coil return legs (Application 1); and (2) the IBC as the inner blanket and OH solenoid coil set (Application 2). The application 1 IBC/ST yields reactor embodiments operating with high mass power density (≅500 kWe/MT) while, at the same time, yielding moderate neutron wall loading (≅5 MW/m/sup 2/) and modest electrical output (400-500 MWe). It is anticipated that fusion reactors operating in the above parameter space will exhibit attractive economic potential. When compared with a conventional ST design (copper TF coils and separate blanket), the Aplication 1 IBC/ST design exhibits a factor of two improvement in mass power density. The Application 2 IBC/ST provides an inductive current drive option which yields burn times in the range 3-4 minutes with no penalties in inboard breeding and energy recovery

  4. Concept for a vertical maintenance remote handling system for multi module blanket segments in DEMO

    International Nuclear Information System (INIS)

    Highlights: •A conceptual architectural model for a vertical maintenance DEMO is presented. •Novel concepts for a set of DEMO remote handling equipment are put forward. •Remote maintenance of a multi module segment blanket is found to be feasible. •The criticality of space in the vertical port is highlighted. -- Abstract: The anticipated high neutron flux, and the consequent damage to plasma-facing components in DEMO, results in the need to regularly replace the tritium breeding and radiation shielding blanket. The current European multi module segment (MMS) blanket concept favours a less invasive small port entry maintenance system over large sector transport concepts, because of the reduced impact on other tokamak systems – particularly the magnetic coils. This paper presents a novel conceptual remote maintenance strategy for a Vertical Maintenance Scheme DEMO, incorporating substantiated designs for an in-vessel mover, to detach and attach the blanket segments, and cask-housed vertical maintenance devices to open and close access ports, cut and join service connections, and extract blanket segments from the vessel. In addition, a conceptual architectural model for DEMO was generated to capture functional and spatial interfaces between the remote maintenance equipment and other systems. Areas of further study are identified in order to comprehensively establish the feasibility of the proposed maintenance system

  5. Optimized mass flow rate distribution analysis for cooling the ITER Blanket System

    International Nuclear Information System (INIS)

    Highlights: • Optimized water distribution in ITER blanket modules is presented. • All key challenging constraints are included. • The methodology and the successful result are presented. - Abstract: This paper presents the rationale to the optimization of water distribution in ITER blanket modules, meeting both Blanket System requirements and interface compliance requirements. The key challenging constraints include to: be compatible with the overall water allocation (3140 kg/s for 440 wall mounted BMs); meet the critical heat flux margin of 1.4 in the plasma facing units; meet a maximum temperature increase of 70 °C at the outlet of each single BM; and ensure that water velocity is less than 7 m/s in all manifolds, and that the pressure drops of all BMs can be equilibrated. The methodology and the successful result are presented

  6. High temperature blankets for non-electrical/electrical applications of fusion reactors: Annual report, [1983

    International Nuclear Information System (INIS)

    During FY '83 the Li2O solid-breeder, helium-cooled canister blanket emerged as the LLNL-UW choice for driving the low-temperature (2, high-temperature outer zone for driving the GA hydrogen synfuel process. Providing 3-dimensional neutronics analysis of power deposition and tritium breeding in both blankets was an important part of the UW-Rowe and Assoc. work. In both the LLNL-UW and MARS studies, the fusion driver as the Axi-Cell, A-cell version of the tandem mirror reactor (TMR). Physics parameters consistent with the synfuel interface were determined as part of the work. Defining and analyzing the thermal-electric interfaces between the TMR and the synfuel process continues to be of prime importance. The analysis of thermal transport and energy conversion in the interface, as well as thermal hydraulics analysis of the blanket, were part of the UW-Rowe Assoc. work

  7. Tritium processing for the European test blanket systems: current status of the design and development strategy

    International Nuclear Information System (INIS)

    Tritium processing technologies of the two European Test Blanket Systems (TBS), HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed), play an essential role in meeting the main objectives of the TBS experimental campaign in ITER. The compliancy with the ITER interface requirements, in terms of space availability, service fluids, limits on tritium release, constraints on maintenance, is driving the design of the TBS tritium processing systems. Other requirements come from the characteristics of the relevant test blanket module and the scientific programme that has to be developed and implemented. This paper identifies the main requirements for the design of the TBS tritium systems and equipment and, at the same time, provides an updated overview on the current design status, mainly focusing onto the tritium extractor from Pb-16Li and TBS tritium accountancy. Considerations are also given on the possible extrapolation to DEMO breeding blanket. (authors)

  8. Tritium processing for the European test blanket systems: current status of the design and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ricapito, I.; Calderoni, P.; Poitevin, Y. [Fusion for Energy, Barcelona (Spain); Aiello, A.; Utili, M. [ENEA, Camugnano (Italy); Demange, D. [Karlsruhe Institute of Technology - KIT, Karlsruhe (Germany)

    2015-03-15

    Tritium processing technologies of the two European Test Blanket Systems (TBS), HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed), play an essential role in meeting the main objectives of the TBS experimental campaign in ITER. The compliancy with the ITER interface requirements, in terms of space availability, service fluids, limits on tritium release, constraints on maintenance, is driving the design of the TBS tritium processing systems. Other requirements come from the characteristics of the relevant test blanket module and the scientific programme that has to be developed and implemented. This paper identifies the main requirements for the design of the TBS tritium systems and equipment and, at the same time, provides an updated overview on the current design status, mainly focusing onto the tritium extractor from Pb-16Li and TBS tritium accountancy. Considerations are also given on the possible extrapolation to DEMO breeding blanket. (authors)

  9. Assessment of the integration of a He-cooled divertor system in the power conversion system for the dual-coolant blanket concept (TW2-TRP-PPCS12D8)

    Energy Technology Data Exchange (ETDEWEB)

    Norajitra, P.; Kruessmann, R.; Malang, S.; Reimann, G.

    2002-12-01

    Application of a helium-cooled divertor together with the dual-coolant blanket concept is considered favourable for achieving a high thermal efficiency of the power plant due to its relatively high coolant outlet temperature. A new FZK He-cooled modular divertor concept with integrated pin arrays (HEMP) is introduced. Its main features and function are described in detail. The result of the thermalhydraulic analysis shows that the HEMP divertor concept has the potential of resisting, a heat flow density of at least 10-15 MW/m{sup 2} at a reachable heat transfer coefficient of approx. 60 kW/m{sup 2}K and a reasonable pumping power. Integration of this divertor concept into the power conversion system using a closed Brayton gas turbine system with three-stage compression leads to a net efficiency of the blanket/divertor cycle of about 43%. (orig.)

  10. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  11. Neutronic Analysis of Flux Dispersion in a Multi-Layered, (D-T) Driven Hybrid Blanket

    OpenAIRE

    İPEK, Osman

    2000-01-01

    The concept of `hybrid blanket' is based on the placement of the nuclear fuel layer, which is a fertile material and fissionable by the fusion neutrons, at the front or the rear sides of the tritium breeding zone so that, in addition to gaining fission energy, a fissile fuel is produced. The neutronic flux distribution (neutron spectrum) along the radial direction varies with the type of material and the geometry used in the blanket, and also according to whether it is multi-layered or s...

  12. Use of Ball Blanket in attention-deficit/hyperactivity disorder sleeping problems

    DEFF Research Database (Denmark)

    Hvolby, Allan; Bilenberg, Niels

    2011-01-01

    Objectives: Based on actigraphic surveillance, attention-deficit/hyperactivity disorder (ADHD) symptom rating and sleep diary, this study will evaluate the effect of Ball Blanket on sleep for a sample of 8-13-year-old children with ADHD. Design: Case-control study. Setting: A child and adolescent...... psychiatric department of a teaching hospital. Participants: 21 children aged 8-13 years with a diagnosis of ADHD and 21 healthy control subjects. Intervention: Sleep was monitored by parent-completed sleep diaries and 28 nights of actigraphy. For 14 of those days, the child slept with a Ball Blanket. Main...

  13. Study on compact design of remote handling equipment for ITER blanket maintenance

    International Nuclear Information System (INIS)

    In the ITER, the neutrons created by D-T reactions activate structural materials, and thereby, the circumstance in the vacuum vessel is under intense gamma radiation field. Thus, the in-vessel components such as blanket are handled and replaced by remote handling equipment. The objective of this report is to study the compactness of the remote handling equipment (a vehicle/manipulator) for the ITER blanket maintenance. In order to avoid the interferences between the blanket and the equipment during blanket replacement in the restricted vacuum vessel, a compact design of the equipment is required. Therefore, the compact design is performed, including kinematic analyses aiming at the reduction of the sizes of the vehicle equipped with a manipulator handling the blanket and the rail for the vehicle traveling in the vacuum vessel. Major results are as follows: 1. The compact vehicle/manipulator is designed concentration on the reduction of the rail size and simplification of the guide roller mechanism as well as the reduction of the gear diameter for vehicle rotation around the rail. Height of the rail is reduced from 500 mm to 400 mm by a parameter survey for weight, stiffness and stress of the rail. The roller mechanism is divided into two simple functional mechanisms composed of rollers and a pad, that is, the rollers support relatively light loads during rail deployment and vehicle traveling while a pad supports heavy loads during blanket replacement. Regarding the rotation mechanism, the double helical gear is adopted, because it has higher contact ratio than the normal spur gear and consequently can transfer higher force. The smaller double helical gear, 996 mm in diameter, can achieve 26% higher output torque, 123.5 kN·m, than that of the original spur gear of 1,460 mm in diameter, 98 kN·m. As a result, the manipulator becomes about 30% lighter, 8 tons, than the original weight, 11.2 tons. 2. Based on the compact design of the vehicle/manipulator, the

  14. Activation Analysis for a He/LiPb dual Coolant Blanket for DEMO Reactor

    OpenAIRE

    Catalán, J.P.; Ogando Serrano, Francisco; Sanz Gonzalo, Javier

    2010-01-01

    The objective of the Spanish national project TECNO_FUS is to generate a conceptual design of a DCLL (Dual-Coolant Lithium-Lead) blanket for the DEMO fusion reactor. The dually-cooled breeding zone is composed of He/Pb-15.7 6Li and SiC as liquid metal flow channel inserts. Structural materials are ferritic-martensitic steel (Eurofer-97) for the blanket and austenitic steel (316LN) for the Vacuum Vessel (VV). The goal of this work is to analyze the radioactive waste production by the neutron-i...

  15. RF test blanket sub-module with ceramic breeder and helium cooling for test in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, V. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation)]. E-mail: koval@nikiet.ru; Kapyshev, V. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Leshukov, A. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Poliksha, V. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Shatalov, G. [Russian Research Center ' Kurchatov Institute' , Kurchatov Square 1, 123182 Moscow (Russian Federation); Strebkov, Yu. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Strizhov, A. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation); Sviridenko, M. [N.A. Dollezhal Research and Development Institute of Power Engineering, P.O. Box 788, Moscow 101000 (Russian Federation)

    2006-02-15

    International thermonuclear experimental reactor (ITER) is anticipated as the only one step to DEMO fusion reactor. One of its main objectives is to demonstrate the availability and integration of technologies essential for a fusion reactor by testing of components for a future reactor including the test blanket modules (TBM) with different types of breeding materials. RF proposed to divide the TBM on two parts and to use two independent test blanket sub-modules (TBSM) which fixed on the frame in ITER horizontal experimental port for testing. CHC TBSM design description, its mechanical attachment on the frame, and principle schemes of helium cooling system and tritium cycle system are presented in this paper.

  16. Blanket concept of water-cooled lithium lead with beryllium for the SlimCS fusion DEMO reactor

    International Nuclear Information System (INIS)

    As an advanced option for SlimCS blanket, conceptual design study of water-cooled lithium lead (WCLL) blanket was performed. In SlimCS, the net tritium breeding ratio (TBR) supplied from WCLL blanket was not enough because the thickness of blanket in SlimCS was limited to about 0.5 m so as to allocate the conducting shell position near the plasma for high beta access and vertical stability of plasma. Therefore, the beryllium (Be) pebble bed was adopted as additional multiplier to reach a required TBR (≥ 1.05). Considering the operating temperature of blanket materials, a double pipe structure was adopted. The nuclear and thermal analysis were carried out by a nuclear-thermal-coupled code, ANIHEAT and DOHEAT so that blanket materials were appropriately arranged to satisfy the acceptable operation temperatures. The temperatures of materials were kept in appropriate range for the neutron wall load Pn = 5 MW/m2. It was found that the local TBR of WCLL with Be blanket was comparable with that of solid breeder blanket. (author)

  17. Development of Thermal-hydraulic Analysis Methodology for Multi-module Breeding Blankets in K-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this paper, the purpose of the analyses is to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. Afterwards, the plan for the whole blanket system analysis using MARS-KS is introduced and the result of the multiple blanket module analysis is summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for the conceptual design of the K-DEMO breeding blanket thermal analysis. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering pressure drops arises in each module. For a feasibility test of the proposed methodology, 10 outboard blankets in a toroidal field sector were simulated, which are connected with each other through the inlet and outlet common headers. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation and thanks to the parallelization using MPI, almost linear speed-up could be obtained.

  18. APT Blanket Detailed Bin Model Based on Initial Plate-Type Design -3D FLOWTRAN-TF Model

    International Nuclear Information System (INIS)

    This report provides background information for a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report for the APT. This report gives a brief description of the FLOWTRAN-TF code which was used for detailed blanket bin modeling

  19. APT Blanket Detailed Bin Model Based on Initial Plate-Type Design -3D FLOWTRAN-TF Model

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report provides background information for a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report for the APT. This report gives a brief description of the FLOWTRAN-TF code which was used for detailed blanket bin modeling.

  20. Distribution of bog and heath in a Newfoundland blanket bog complex: topographic limits on the hydrological processes governing blanket bog development

    Directory of Open Access Journals (Sweden)

    P. A. Graniero

    1999-01-01

    Full Text Available This research quantified the role of topography and hydrological processes within and, hence, the development of, blanket bogs. Topographic characteristics were derived from digital elevation models (DEMs developed for the surface and underlying substrate at three blanket bog sites on the southeastern lobe of the Avalon Peninsula, Newfoundland. A multinomial logit (MNL model of the probability of bog occurrence was constructed in terms of relevant topographic characteristics. The resulting model was then used to investigate the probabilistic boundary conditions of bog occurrence within the landscape. Under average curvatures for the sites studied, substrate slopes up to 0.065 favoured blanket bog development. However, steeper slopes could, theoretically, be occupied by blanked bog where water is concentrated by convergent curvatures or large contributing areas. Near community boundaries, bog and heath communities both occupied similar topographic conditions. Since these boundary locations are capable of supporting the hydrological conditions necessary for bog development, the heath is likely to be encroached upon by bog.

  1. On the use of double-walled tubes as a means to improve safety and availability of the EU DEMO Water-Cooled Pb-17Li blanket

    International Nuclear Information System (INIS)

    The impact on the blanket reliability and availability of both double-walled tube and welded joint failures in the Water-Cooled Pb-17Li Demo Single-Box blanket reference design is examined. The pertinence of employing a leak detection system is analysed and its contribution to the blanket safety and availability is evaluated. The contribution of welded joints to the blanket safety and availability is evaluated in normal operation. (orig.)

  2. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 1: External HR Break Near Inlet Header

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    The APT blanket system has about 57 MW of thermal energy deposited within the blanket region under normal operating conditions from the release of neutrons and the interaction of the High energy particles with the blanket materials. This corresponds to about 48 percent of total thermal energy deposited in the APT target/blanket system. The deposited thermal energy under normal operation conditions is an important input parameter used in the thermal-hydraulic design and accident analysis.

  3. Options and methods for instrumentation of Test Blanket Systems for experiment control and scientific mission

    International Nuclear Information System (INIS)

    Highlights: • This work defined options and methods to instrument ITER TBSs based on functional categories: safety, interlock and control and scientific exploitation based on the ITER research program. • Presented the general architecture of the HCLL and HCPB Test Blanket System Instrumentation and Control. • Defined safety and interlock sensors count and technology selection based on preliminary safety analysis. • Discussed the development status of scientific instrumentation, with focus on integration with design and fulfillment of TBM research program. - Abstract: Europe is currently developing two reference breeder blankets concepts for DEMO reactor specifications that will be tested in ITER under the form of Test Blanket Modules (TBMs): the Helium-Cooled Lithium-Lead (HCLL) concept which uses the eutectic Pb-16Li as both breeder and neutron multiplier; the Helium-Cooled Pebble-Bed (HCPB) concept which features lithiated ceramic pebbles as breeder and beryllium pebbles as neutron multiplier. Each TBM is associated with several sub-systems required for their operation; together they form the Test Blanket System (TBS). This paper presents the state of HCLL and HCPB TBS instrumentation design. The discussion is based on the systems functional analysis, from which three main categories of instrumentation are defined: those relevant to safety functions; those relevant to interlock functions; those designed for the control and scientific exploitation of the devices based on the TBM program objectives

  4. 75 FR 33803 - Sabine Pipe Line LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-06-15

    ... Energy Regulatory Commission Sabine Pipe Line LLC; Notice of Request Under Blanket Authorization June 8, 2010. Take notice that on June 1, 2010, Sabine Pipe Line LLC (Sabine), 4800 Fournace Place, Bellaire... L. Kirk, Regulatory Specialist, Chevron Pipe Line Company, 4800 Fournace Place, Bellaire,...

  5. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  6. 32 CFR Appendix D to Part 505 - Exemptions; Exceptions; and DoD Blanket Routine Uses

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 3 2010-07-01 2010-07-01 true Exemptions; Exceptions; and DoD Blanket Routine Uses D Appendix D to Part 505 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY AID OF CIVIL AUTHORITIES AND PUBLIC RELATIONS ARMY PRIVACY ACT PROGRAM Pt. 505, App. D Appendix D...

  7. Study of the effects of corrugated wall structures due to blanket modules around ICRH antennas

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Pierre; Louche, Fabrice; Messiaen, André; Vervier, Michel [LPP-ERM/KMS, EURATOM-Belgian State Association, TEC partner, B-1000 Brussels (Belgium)

    2014-02-12

    In future fusion reactors, and in ITER, the first wall will be covered by blanket modules. These blanket modules, whose dimensions are of the order of the ICRF wavelengths, together with the clearance gaps between them will constitute a corrugated structure which will interact with the electromagnetic waves launched by ICRF antennas. The conditions in which the grooves constituted by the clearance gaps between the blanket modules can become resonant are studied. Simple analytical models and numerical simulations show that mushroom type structures (with larger gaps at the back than at the front) can bring down the resonance frequencies, which could lead to large voltages in the gaps between the blanket modules and perturb the RF properties of the antenna if they are in the ICRF operating range. The effect on the wave propagation along the wall structure, which is acting as a spatially periodic (toroidally and poloidally) corrugated structure, and hence constitutes a slow wave structure modifying the wall boundary condition, is examined.

  8. Transient electromagnetic and dynamic structural analyses of a blanket structure with coupling effects

    International Nuclear Information System (INIS)

    Transient electromagnetic and dynamic structural analyses of a blanket structure in the fusion experimental reactor (FER) under a plasma disruption event and a vertical displacement event (VDE) have been performed to investigate the dynamic structural characteristics and the feasibility of the structure. Coupling effects between eddy currents and dynamic deflections have also been taken into account in these analyses. In this study, the inboard blanket was employed because of our computer memory limitation. A 1/192 segment model of a full torus was analyzed using the analytical code, EDDYCUFF. In the plasma disruption event, the maximum magnetic pressure caused by eddy currents and poloidal fields was 1.2MPa. The maximum stress intensity by this magnetic pressure was 114MPa. In the VDE, the maximum magnetic pressure was 2.4MPa and the maximum stress intensity was 253MPa. This stress was somewhat beyond the allowable stress limit. Therefore, the blanket structure and support design should be reviewed to reduce the stress to a suitable value. In summary, the dynamic structural characteristics and design issues of the blanket structure have been identified. (orig.)

  9. Stochastic modeling to determine the economic effects of blanket, selective, and no dry cow therapy

    NARCIS (Netherlands)

    Huijps, K.; Hogeveen, H.

    2007-01-01

    In many countries, blanket dry cow therapy (DCT) is the standard way to dry off cows. Because of concerns about antibiotic resistance, selective DCT is proposed as an alternative. The economic consequences of different types of DCT were studied previously, but variation between input traits and diff

  10. 77 FR 53874 - The Dow Chemical Company; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2012-09-04

    ... application (Application), filed on July 13, 2012, by The Dow Chemical Company (Dow), requesting blanket... comments are invited. \\1\\ The Dow Chemical Company, DOE/FE Order No. 2859 (October 5, 2010) extends through... chemical and plastics manufacturing company with operations in a number of U.S. states. Dow owns...

  11. Overview of requirements and design integration for the ITER EU Test Blanket Systems instrumentation

    International Nuclear Information System (INIS)

    The ITER project aims at building a fusion device with the general goal of demonstrating the scientific and technical feasibility of fusion power. The testing of Tritium Breeder Blanket concepts is one of the ITER missions and has been recognized as an essential milestone in the development of a future fusion reactor ensuring tritium self-sufficiency, extraction of high grade heat and electricity production. Europe is currently developing two reference breeder blankets concepts for DEMO reactor specifications that will be tested in ITER under the form of Test Blanket Modules (TBMs): the Helium-Cooled Lithium-Lead (HCLL) concept and the Helium-Cooled Pebble-Bed (HCPB) concept. The strategy for the development of the instrumentation of the HCLL and HCPB Test Blanket Systems, which include the TBMs and their Ancillary Systems, is briefly recalled in this paper, along with the overview of the requirements coming from the harsh operational environment and the main challenges related to the integration with the complex design of the TBS components. (authors)

  12. Proceedings of the sixth international workshop on ceramic breeder blanket interactions

    International Nuclear Information System (INIS)

    This report is the Proceedings of ''the Sixth International Workshop on Ceramic Breeder Blanket Interactions'' which was held as a workshop on ceramic breeders under Annex II of IEA Implementing Agreement on a Programme of Research and Development on Fusion Materials, and Japan-US Workshop 97FT4-01. This workshop was held in Mito city, Japan on October 22-24, 1997. About forty experts from EU, Japan, USA, and Chile attended the workshop. The scope of the workshop included the following: 1) fabrication and characterization of ceramic breeders, 2) properties data for ceramic breeders, 3) tritium release characteristics, 4) modeling of tritium behavior, 5) irradiation effects on performance behavior, 6) blanket design and R and D requirements, 7) hydrogen behavior in materials, and 8) blanket system technology and structural materials. In the workshop, information exchange was performed for fabrication technology of ceramic breeder pebbles in EU and Japan, data of various properties of Li2TiO3, tritium release behavior of Li2TiO3 and Li2ZrO3 including tritium diffusion, modeling of tritium release from Li2ZrO3 in ITER condition, helium release behavior from Li2O, results of tritium release irradiation tests of Li4SiO4 pebbles in EXOTIC-7, R and D issues for ceramic breeders for ITER and DEMO blankets, etc. The 23 of the papers are indexed individually. (J.P.N.)

  13. Two-dimensional cross-section sensitivity and uncertainty analysis for fusion reactor blankets

    International Nuclear Information System (INIS)

    A two-dimensional sensitivity and uncertainty analysis for the heating of the TF coil for the FED (fusion engineering device) blanket was performed. The uncertainties calculated are of the same order of magnitude as those resulting from a one-dimensional analysis. The largest uncertainties were caused by the cross section uncertainties for chromium

  14. 32 CFR Appendix C to Part 327 - DeCA Blanket Routine Uses

    Science.gov (United States)

    2010-07-01

    ... Blanket Routine Uses (a) Routine Use—Law Enforcement. If a system of records maintained by a DoD Component, to carry out its functions, indicates a violation or potential violation of law, whether civil... decision concerning the hiring or retention of an employee, the issuance of a security clearance,...

  15. Salted lamb meat blanket of Petrolina-Pernambuco, Brazil: process and quality

    Directory of Open Access Journals (Sweden)

    Nely de Almeida Pedrosa

    2014-03-01

    Full Text Available Salted lamb meat blanket, originated from boning, salting, and drying of whole lamb carcass, was studied aiming at obtaining information that support the search for guarantees of origin for this typical regional product from the city of Petrolina-Pernambuco-Brazil. Data from three processing units were obtained, where it was observed the use of a traditional local technology that uses salting, an ancient preservation method; however, with a peculiar boning technique, resulting in a meat product with great potential for exploitation in the form of meat blanket. Based on the values of pH (6.22 ± 0.22, water activity (0.97 ± 0.02, and moisture (69.86 ± 2.26 lamb meat blanket is considered a perishable product, and consequently it requires the use of other preservation methods combined with salt, which along with the results of the microbiological analyses (absence of Salmonella sp, score <10 MPN/g of halophilic bacteria, total coliforms between 6.7 × 10³ and 5.2 × 10(6 FUC/g, and Staphylococcus from 8.1 × 10³ CFU/g at uncountable reinforce the need of hygienic practices to ensure product safety. These results, together with the product notoriety and the organization of the sector are important factors in achieving Geographical Indication of the Salted lamb Meat blanket of Petrolina.

  16. 77 FR 25711 - Cheniere Marketing, LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2012-05-01

    ... Cheniere Marketing, LLC; Application for Blanket Authorization To Export Previously Imported Liquefied... to export * * *'' \\9\\ \\6\\ Cheniere Marketing, LLC, DOE/FE Order No 2795 at 11. \\7\\ See Dominion Cove... application (Application), filed on March 30, 2012, by Cheniere Marketing, LLC (CMI), requesting...

  17. Blanket and vacuum vessel design of the next tokamak. (Swimming pool type)

    International Nuclear Information System (INIS)

    The structural design study of a reactor module for a swimming pool type reactor (SPTR) was conducted. Since pool water plays the role of radiation shielding in the SPTR, the module does not have a solid shield. It consists of tritium breeding blankets, divertor collector plates and a vacuum vessel. The object of this study is to show the reactor module design which has a simple structure and a sufficient tritium breeding ratio. A large coverage of the plasma chamber surface with tritium breeding blanket is essential in order to obtain a high tritium breeding ratio. A breeding blanket is also placed behind the divertor collector plate, i.e. in the upper and lower region, as well as in the outboard and inboard regions of the module. A concept in which the first wall is an integral part of the blanket is employed to minimize the thickness of structural and cooling material brazed in front of the breeding material (Li2O) and to enhance the tritium breeding capability. In order to simplify the module structure the vacuum vessel and breeding blanket is also integrated in the inboard region. One of the features inherent in the swimming pool type reactor is an additional external force on the vacuum vessel, namely hydraulic pressure. A detailed structural analysis of the vacuum vessel is performed. Divertor collector plates are assemblies of co-axial tubes. They minimize the electromagnetic force on the plate induced by the plasma disruption. A thermal and structural analysis and life time estimation of the first wall and divertor collector plates are performed. (author)

  18. Initial meetings of the re-established Test Blanket Working Group

    International Nuclear Information System (INIS)

    The ITER Test Blanket Working Group (TBWG) was first established in 1995. Its activities covered successively the final part of the ITER EDA and the extension period, the main results being a preliminary assessment of the breeding blanket testing capabilities of ITER and a proposal of a coherent test blanket programme, reported in 2001, that optimized the sharing of the three available testing ports between the three Parties present in 2001 (EU, JA and RF) taking into account the different coolant characteristics. The TBWG was re-established by the ITER Interim Project Leader in September 2003, with the support of the Participant Team Leaders. It is now comprised of four members from the ITER International Team and up to three members from each of the six ITER Participant Teams. The International Team delegation is led by Dr. V. Chuyanov, who has also been appointed as TBWG Co-Chair, while the six Participant Team delegations are led by Prof. M. Abdou (US), Dr. M. Akiba (JA), Dr. A. Cardella (EU), Dr. B.G. Hong (KO), Dr. C. Pan (CN) and Dr.Y. Strebkov (RF). The revised TBWG charter defines the four missions of the activities: i) provide the Design Description Document (DDD) of the Test Blanket Module (TBM) systems proposed by the participants, including the description of the interfaces with the main ITER machine, ii) promote cooperation among participants on the associated R and D programmes, iii) verify the integration of TBM testing in ITER site safety and environmental evaluations, and finally, iv) develop and propose coordinated TBM test programmes taking into account ITER operation planning. TBMs have to be representative of the breeding blanket for DEMO (the next reactor after ITER), capable of ensuring tritium-breeding self-sufficiency and of accommodating high-grade coolants for electricity production

  19. Equalization characteristics of an upflow sludge blanket-aerated biofilter (USB-AF) system.

    Science.gov (United States)

    Jun, H B; Park, S M; Park, J K; Lee, S H

    2005-01-01

    Equalization characteristics of the upflow sludge blanket-aerated bio-filter (USB-AF) were investigated with the fluctuated raw domestic sewage. Recycle of nitrified effluent from AF to USB triggered the equalization characteristics of the sludge blanket on both soluble and particulate organic matter. Increment of EPS in sludge blanket by nitrate recycle was detected and removal of turbidity and particulates increased at higher recycle ratios by bio-flocculation. Increased TCOD removal in the USB was due to both denitrification of recycled nitrate and entrapment of the particulate organic matter in sludge blanket. Capture of both soluble and particulate organic matter increased sludge blanket layer in the USB, which improved the reactor performances and reduced the organic load on the subsequent AF. Overall TCOD and SS removal efficiencies were about 98% and 96%, respectively in the USB-AF system. Turbidity in the USB effluent was about 44, 20 and 5.5 NTU, at recycle ratios of 0, 100 and 200%, respectively. Particle counts in the range 2-4 microm in the USB effluent were higher than those in influent without nitrate recycle, while particle counts in the range of 0.5-15 microm in the USB effluent decreased 70% at recycle ratio of 200%. The major constituent of EPS extracted from anaerobic sludge was protein and total EPS increased from 109.1 to 165.7 mg/g-VSS with nitrate recycle of 100%. Removal efficiency and concentration of T-N in the UBS-AF effluent was over 70% and below 16 mg/L, respectively.

  20. Integral neutronics experiments in analytical mockups for blanket of a hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rong, E-mail: liurongzy@163.com; Zhu, Tonghua; Lu, Xinxin; Wang, Xinhua; Yan, Xiaosong; Feng, Song; Yang, Yiwei; Wang, Mei; Jiang, Li

    2014-12-15

    Highlights: • For checking property of the hybrid blanket by integral experiments, three mockups are established. • In spherical mockup with depleted uranium and cubic mockup with natural uranium, the plutonium production rates and uranium fission rates are measured. • In spherical mockup with depleted uranium and LiPb, tritium production rates are measured. • The measured results are compared to the calculated ones with MCNP-4B code and ENDF/B-VI library data. - Abstract: The paper describes recent progress in integral neutronics experiments in the analytical mockups for the blanket in a fusion-fission hybrid energy reactor. A conceptual blanket of the hybrid reactor is mainly loaded with natural uranium and lithium material. In the fission fuel region, uranium material and light water are arranged alternately. The mockups of the conceptual blanket are designed and used for checking neutron property of the blanket by integral experiments. Based on materials available, the spherical fission mockup for fission research and plutonium production consists of three layers of depleted uranium shells and several layers of polyethylene and graphite shells. The spherical lithium mockup for tritium production consists of depleted uranium and LiPb alloy shells. The cubic mockup consists of natural uranium and polyethylene and its structure is basically consistent with one of the fuel region. In the mockups with the D-T neutron source, the plutonium production rates, uranium fission rates and tritium production rates are measured, separately. The measured results are compared to the calculated ones with MCNP-4B code and ENDF/B-VI library data.

  1. 77 FR 51794 - East Tennessee Natural Gas, LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-08-27

    ... abandon in place two standby compressor units and abandon in place or remove related appurtenant equipment at its Glade Spring ] Compressor Station in Washington County, Virginia, under East Tennessee's...). East Tennessee proposes to abandon in place two standby 660 horsepower reciprocating natural...

  2. 78 FR 2394 - Columbia Gas Transmission, LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-01-11

    ... its Seneca Compressor Station located in Pendleton County, WV. Columbia also seeks authorization to abandon by removal an existing 6,200 horsepower compressor unit at its Seneca Compressor Station....

  3. Tritium self-sufficiency time and inventory evolution for solid-type breeding blanket materials for DEMO

    Science.gov (United States)

    Packer, L. W.; Pampin, R.; Zheng, S.

    2011-10-01

    One of the primary functions of a fusion blanket is to generate enough tritium to make a fusion power plant (FPP) self-sufficient. To ensure that there is satisfactory tritium production in a real plant the tritium breeding ratio (TBR) in the blanket must be greater than 1 + M, where M is the breeding margin. For solid-type blanket designs, the initial TBR must be significantly higher than 1 + M, since the blanket TBR will be reduced over time as the lithium fuel is consumed. The rate of TBR reduction will impact on the overall blanket self-sufficiency time, the time in which the net tritium inventory of the system is positive. DEMO relevant blanket materials, Li 4SiO 4 and Li 2TiO 3, are investigated by computational simulation using radiation transport tools coupled with time-dependent inventory calculations. The results include tritium inventory assessments and depletion of breeding materials over time, which enable self-sufficiency times and maximum surplus tritium inventories to be evaluated, which are essential quantities to determine to allow one to design a credible FPP using solid-type breeding material concepts. The blanket concepts investigated show self-sufficiency times of several years in some cases and maximum surplus inventories of up to a few tens of kg.

  4. Burnup calculations of light water-cooled pressure tube blanket for a fusion-fission hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Tiejun, E-mail: tiejun@mail.xjtu.edu.cn; Wu, Hongchun; Zheng, Youqi; Cao, Liangzhi

    2014-06-15

    Highlights: • Detailed burnup calculations are performed on pressurized water cooled blankets with pressure tube assemblies. • The blanket is fueled with simple fuel, namely spent nuclear fuel discharged from light water reactors or natural uranium oxide. • The refueling strategies are proposed, and the uranium resource utilization rate can reach 5–6%. - Abstract: A fusion-fission hybrid reactor (FFHR) with pressure tube blanket has recently been proposed based on an ITER-type tokamak fusion neutron source and the well-developed pressurized water cooling technologies. In this paper, detailed burnup calculations are carried out on an updated blanket. Two different blankets respectively fueled with the spent nuclear fuel (SNF) discharged from light water reactors (LWRs) or natural uranium oxide is investigated. In the first case, a three-batch out-to-in refueling strategy is designed. In the second case, some SNF assemblies are loaded into the blanket to help achieve tritium self-sufficiency. And a three-batch in-to-out refueling strategies is adopted to realize direct use of natural uranium oxide fuel in the blanket. The results show that only about 80 tonnes of SNF or natural uranium are needed every 1500 EFPD (Equivalent Full Power Day) with a 3000 MWth output and tritium self-sufficiency (TBR > 1.15), while the required maximum fusion powers are lower than 500 MW for both the two cases. Based on the proposed refueling strategies, the uranium utilization rate can reach about 4.0%.

  5. Neutronic evaluation of fissile fuel breeding blankets for the fission-suppressed Tandem-Mirror Hybrid Reactor

    International Nuclear Information System (INIS)

    A computational study was performed on the blanket design of the Lawrence Livermore National Laboratory (LLNL) fission-suppressed Tandem Mirror Hybrid Reactor (TMHR) to qualify the methods and data bases available at Oak Ridge National Laboratory (ORNL) for use in analyzing the neutronic performance of fissile fuel breeding blankets. The eventual goal of the study was to establish the capability for analysis and optimization of advanced fissile fuel production blanket designs. Discrete ordinates radiation transport calculations were performed in one-dimensional cylindrical geometry to obtain the blanket spatial distribution and energy spectra of the neutron and gamma-ray fluxes resulting from the monoenergetic (14.1 MeV) fusion first wall source. Key macroscopic cross sections of the blanket materials were then folded with the flux spectra to obtain reaction rates critical to evaluating blanket feasibility. Finally, a time-dependent depletion analysis was performed to evaluate the blanket performance during equilibrium cycle conditions. The results of the study are presented both as graphs and tables

  6. Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept

    International Nuclear Information System (INIS)

    CFETR is the “ITER-like” China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT—HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits. (fusion engineering)

  7. Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept

    Science.gov (United States)

    Ma, Xuebin; Liu, Songlin; Li, Jia; Pu, Yong; Chen, Xiangcun

    2014-04-01

    CFETR is the “ITER-like” China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT—HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits.

  8. Proposal for the award of a blanket purchase contract for the supply of foundry services for semiconductor technologies

    CERN Document Server

    2006-01-01

    This document concerns the award of a blanket purchase contract for the supply of foundry services for semiconductor technologies. The Finance Committee is invited to agree to the negotiation of a blanket purchase contract with IBM SWITZERLAND (CH), the lowest bidder complying with the specification, for the supply of foundry services for semiconductor technologies for a period of four years, for a total amount not exceeding 4 000 000 US dollars, not subject to revision. At the present rate of exchange, the total amount of the blanket purchase contract is equivalent to approximately 5 000 000 Swiss francs. CERN's financial contribution will not exceed 1 000 000 Swiss francs.

  9. Improving proliferation resistance of high breeding gain generation 4 reactors using blankets composed of light water reactor waste

    Energy Technology Data Exchange (ETDEWEB)

    Hellesen, C.; Grape, S.; Haakanson, A.; Jacobson Svaerd, S.; Jansson, P. [Division of Applied Nuclear Physics, Uppsala University, Aangstroemlaboratoriet Laegerhyddsvaegen 1, 751 20 Uppsala (Sweden)

    2013-07-01

    Fertile blankets can be used in fast reactors to enhance the breeding gain as well as the passive safety characteristics. However, such blankets typically result in the production of weapons grade plutonium. For this reason they are often excluded from Generation IV reactor designs. In this paper we demonstrate that using blankets manufactured directly from spent light water (LWR) reactor fuel it is possible to produce a plutonium product with non-proliferation characteristics on a par with spent LWR fuel of 30-50 MWd/kg burnup. The beneficial breeding and safety characteristics are retained. (authors)

  10. 78 FR 19696 - Orders Granting Authority To Import and Export Natural Gas, To Import Liquefied Natural Gas, To...

    Science.gov (United States)

    2013-04-02

    ... C.V 12-162-NG MEXICANA DE COBRE, S.A. DE C.V 12-163-NG ARIZONA PUBLIC SERVICE 12-165-NG CHENIERE... to export natural gas to Mexico. 3206 12/03/12 12-163-NG Mexicana de Cobre, Order granting blanket...

  11. Exploring climatic controls on blanket bog litter decomposition across an altitudinal gradient

    Science.gov (United States)

    Bell, Michael; Ritson, Jonathan P.; Clark, Joanna M.; Verhoef, Anne; Brazier, Richard E.

    2016-04-01

    The hydrological and ecological functioning of blanket bogs is strongly coupled, involving multiple ecohydrological feedbacks which can affect carbon cycling. Cool and wet conditions inhibit decomposition, and favour the growth of Sphagnum mosses which produce highly recalcitrant litter. A small but persistent imbalance between production and decomposition has led to blanket bogs in the UK accumulating large amounts of carbon. Additionally, healthy bogs provide a suite of other ecosystems services including water regulation and drinking water provision. However, there is concern that climate change could increase rates of litter decomposition and disrupt this carbon sink. Furthermore, it has been argued that the response of these ecosystems in the warmer south west and west of the UK may provide an early analogue for later changes in the more extensive northern peatlands. In order to investigate the effects of climate change on blanket bog litter decomposition, we set-up a litter bag experiment across an altitudinal gradient spanning 200 m of elevation (including a transition from moorland to healthy blanket bog) on Dartmoor, an area of hitherto unstudied, climatically marginal blanket bog in the south west of the UK. At seven sites, water table depth and soil and surface temperature were recorded continuously. Litter bags filled with the litter of three vegetation species dominant on Dartmoor were incubated just below the bog surface and retrieved over a period of 12 months. We found significant differences in the rate of decomposition between species. At all sites, decomposition progressed in the order Calluna vulgaris (dwarf shrub) > Molinia caerulea (graminoid) > Sphagnum (bryophyte). However, while soil temperature did decrease along the altitudinal gradient, being warmer in the lower altitudes, a hypothesised accompanying decrease in decomposition rates did not occur. This could be explained by greater N deposition at the higher elevation sites (estimated

  12. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 1: Self-cooled liquid metal breeder blanket. Vol. 2. Detailed version

    International Nuclear Information System (INIS)

    A self-cooled liquid metal breeder blanket for a fusion DEMO-reactor and the status of the development programme is described as a part of the European development programme of DEMO relevant test blankets for NET/ITER. Volume 1 (KfK 4907) contains a summary. Volume 2 (KfK 4908) a more detailed version of the report. Both volumes contain sections on previous studies on self-cooled liquid metal breeder blankets, the reference blanket design for a DEMO-reactor, a typical test blanket design including the ancillary loop system and the building requirements for NET/ITER together with the present status of the associated RandD-programme in the fields of neutronics, magnetohydrodynamics, tritium removal and recovery, liquid metal compatibility and purification, ancillary loop system, safety and reliability. An outlook is given regarding the required RandD-programme for the self-cooled liquid metal breeder blanket prior to tests in NET/ITER and the relevant test programme to be performed in NET/ITER. (orig.)

  13. Status of R&D on Tritium Permeation Barrier Coatings for Tritium Breeding Blanket of Fusion Reactor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The paper overviewed the recent progress in the application of several typical tritium permeation barrier (TPB) coatings and their corresponding fabrication technologies for tritium breeding blanket of fusion reactor. According to the design requirements of

  14. A study on the enhancement of the reliability in gravure offset roll printing with blanket swelling control

    Science.gov (United States)

    Eul Kim, Ga; Woo, Kyoohee; Kang, Dongwoo; Jang, Yunseok; Choi, Young-Man; Lee, Moon G.; Lee, Taik-Min; Kwon, Sin

    2016-10-01

    In roll-offset printing (patterning) technology with a PDMS blanket as a transfer medium, one of the major reliability issues is the occurrence of swelling, which involves absorption of the ink solvent in the printing blanket with repeated printing. This study developed a method to resolve blanket swelling in gravure offset roll printing and performed experiments for performance verification. The physical phenomena of mass and heat transfer were applied to fabricate a device based on convection drying. The proposed device managed to effectively control blanket swelling through drying by blowing air and additional temperature control. The experiments verified that printing quality (in particular the variation of the width of printed patterns) was maintained over 500 continuous printing.

  15. ITER [International Thermonuclear Experimental Reactor] shield and blanket work package report

    International Nuclear Information System (INIS)

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs

  16. Influence of start up and pulsed operation on tritium release and inventory of NET ceramic blanket

    International Nuclear Information System (INIS)

    A first estimate for the tritium release behaviour of a ceramic breeder blanket in pulsed operation is obtained by assuming a linear steady state temperature distribution and taking into account the time constant of the thermal behaviour. The release behaviour of the breeder exposed to consecutive periods of tritium generation is described with an analytical solution of the diffusion equation. The results are compared with a simple exponential approach valid for surfacte desorption controlled release. The exponential model is used to simulate a blanket with aluminate as breeder material, which takes longest to reach steady state. The simulation demonstrates that a significant fraction (>67%) of steady state can be achieved after a testing time of about one day. (author). 7 refs.; 8 figs.; 3 tabs

  17. Efficient COD removal and nitrification in an upflow microaerobic sludge blanket reactor for domestic wastewater.

    Science.gov (United States)

    Zheng, Shaokui; Cui, Cancan

    2012-03-01

    The treatment performance of an upflow microaerobic sludge blanket reactor (UMSB) for synthetic domestic wastewater was investigated at two dissolved oxygen (DO) levels, 0.3-0.5 and 0.7-0.9 mg l(-1), focusing on nitrification performance. The higher DO level induced complete nitrification of ammonia nitrogen (NH(3)-N), achieving chemical oxygen demand and NH(3)-N removals of 97 and 92%, respectively. There were consistently significantly higher nitrate nitrogen (NO(3)-N) and nitrite nitrogen (NO(2)-N) levels in the effluent, with ~66% of newly-produced oxidised nitrogen as NO(2)-N. Despite the high nitrification efficiency, only about 23% of the removed NH(3)-N amount from the influent was ultimately transformed into oxidised nitrogen due to the simultaneous nitrification-denitrification. Sludge blanket development and granulation occurred simultaneously in the UMSB. PMID:22105554

  18. An analysis of electron beam welds in a dual coolant liquid metal breeder blanket

    International Nuclear Information System (INIS)

    Numerical simulation of electron beam welding of blanket segments was performed using non-linear finite element code ABAQUS. The thermal and stress fields were assumed uncoupled, while preserving the temperature dependency of all material parameters. The martensite-austenite and austenite-martensite transformations were taken into account through volume shrinking/expansion effects, which is consistent with available data. The distributions of post welding residual stress in a complex geometry of the first wall are obtained. Also, the effects of preheating and post-welding heat treatment were addressed. Time dependent temperature and stress-strain fields obtained provide good insight into the welding process. They may be used directly to support reliability and life-time studies of blanket structures. On the other hand, they provide useful hints about the feasibility of the geometrical configurations as proposed by different design concepts. (orig.)

  19. Integrated-blanket-coil (IBC) applications to the TITAN reversed-field pinch reactor

    International Nuclear Information System (INIS)

    The Integrated-Blanket-Coil (IBC) concept has been adopted for use in the toroidal field and divertor coil systems of the TITAN-I lithium/vanadium design. The IBC approach combines the breeding and energy recovery functions of the blanket with the magnetic field production of the coils into a single component. This is accomplished by passing the current through the liquid metal coolant, lithium, which flows poloidally around the plasma. A reversed-field pinch (RFP) reactor offers an attractive context for IBC coils since the low toroidal field at the plasma surface (-- 0.36 T) leads to relatively low coil currents. Examination of nuclear, magnetic, thermal-hydraulic, electrical and design integration issues indicates that the IBC coils are a viable and attractive option for the TITAN reactor

  20. Applications of the Integrated-Blanket-Coil concept to the compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    A design of a compact fusion reactor is proposed based on the reversed field pinch and utilizing the ''Integrated-Blanket-Coil'' (IBC) concept. The IBC is applied to the toroidal field and divertor systems, with liquid metal used for cooling both the first wall and blanket. This simplifies the overall design by requiring only a single coolant cycle. In addition, safety is increased by eliminating any possible lithium-water interaction in the fusion power core. Finally, replacing conventional copper divertor coils with IBC components enhances tritium breeding and energy recovery. A generic problem with liquid metal coolants is their reduced heat transfer capabilities in magnetic fields. In this context, the use of liquid metal coolants may limit the allowable neutron wall loading to a value of 10 MW/m/sup 2/. Above this value it may be necessary to use water cooling for the first wall and divertor surfaces

  1. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  2. Preliminary lifetime predictions for 304 stainless steel as the LANL ABC blanket material

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.J.; Buksa, J.J.; Houts, M.G.; Arthur, E.D.

    1997-11-01

    The prediction of materials lifetime in the preconceptual Los Alamos National Laboratory (LANL) Accelerator-Based Conversion of Plutonium (ABC) is of utmost interest. Because Hastelloy N showed good corrosion resistance to the Oak Ridge National Laboratory Molten Salt Reactor Experiment fuel salt that is similar to the LANL ABC fuel salt, Hastelloy N was originally proposed for the LANL ABC blanket material. In this paper, the possibility of using 304 stainless steel as a replacement for the Hastelloy N is investigated in terms of corrosion issues and fluence-limit considerations. An attempt is made, based on the previous Fast Flux Test Facility design data, to predict the preliminary lifetime estimate of the 304 stainless steel used in the blanket region of the LANL ABC.

  3. Two-dimensional TBR calculations for conceptual compact reversed-field pinch reactor blanket

    Science.gov (United States)

    Davidson, J. W.; Battat, M. E.; Dudziak, D. J.

    A detailed two-dimensional nucleonic analysis was performed for a conceptual first wall, blanket, and shield design for the Compact Reversed-Field Pinch Reactor. The design includes significant two-dimensional aspects presented by the limiter, vacuum ducts, and coolant manifolds; these aspects seriously degrade the tritium-breeding reaction (TBR) predicted by one-dimensional calculations. A range of design change to increase the TBR were investigated within the two-dimensional analysis. The results of this investigation indicated that an adequate TBR could be achieved with a thinning copper first wall, a (6)Li enrichment near 90%, the proper selection of reflector, and a small addition to the blanket thickness, determined by the one-dimensional analysis.

  4. Four loss-of-flow accidents in the SEAFP first wall/blanket cooling system

    International Nuclear Information System (INIS)

    This report presents the thermal-hydraulic analysis of four Loss-of-Flow Accidents (LOFAs) in the first wall/blanket cooling system of the alternative SEAFP reactor design. The LOFAs considered result from a loss of electrical power for the recirculation pump in the primary cooling circuit. The analyses have been performed using the thermal-hydraulic system analysis code RELAP5/MOD3. In the analyses, special attention has been paid to the transient thermal-hydraulic behaviour of the cooling system and the temperature development in the first wall and blanket. For the LOFA without plasma shutdown, significant loss of heat removal due to dryout occurs at the midplane of the outboard first wall cooling pipes about 41 s after pump trip. For the three LOFA cases with emergency plasma shutdown that have been studied, the temperature increase in the Be-coating at the midplane of the outboard first wall is limited to about 30 K. (orig.)

  5. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    International Nuclear Information System (INIS)

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ∼14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface

  6. Tauro: a ceramic composite structural material self-cooled Pb-17Li breeder blanket concept

    International Nuclear Information System (INIS)

    The use of a low-activation (LA) ceramic composite (CC) as structural material appears essential to demonstrate the potential of fusion power reactors for being inherently or, at least, passively safe. Tauro is a self-cooled Pb-17Li breeder blanket with a SiC/SiC composite as structure. This study determines the required improvements for existing industrial LA composites (mainly SiC/SiC) in order to render them acceptable for blanket operating conditions. 3D SiC/SiC CC, recently launched on the market, is a promising candidate. A preliminary evaluation of a possible joining technique for SiC/SiC is also described. (orig.)

  7. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  8. A water cooled, lithium lead breeding blanket for a DEMO fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Rieger, M.; Biggio, M.; Farfaletti-Casali, F.; Tominetti, S.; Wu, J.; Zucchetti, M. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Labbe, P.; Baraer, L.; Gervaise, G.; Giancarli, L.; Roze, M.; Severi, Y.; Quintric-Bossy, J. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))

    1991-04-01

    The main features of a tritium breeding blanket for a Demonstration Power Reactor involving the eutectic Pb-17Li as liquid breeder and water as coolant are presented. The configuration of the blanket segments and breeder modules as well as their arrangement inside the reactor vacuum vessel are outlined. The main design aspects and the corresponding design limits are reviewed, namely those related to thermomechanics, neutronics, magneto-hydrodynamics, tritium permeation and recovery. First results of safety analysis, in particular those connected with the rupture of a coolant tube in the breeder module are presented and discussed. As a conclusion, the feasibility of the concept look attractive. A problem which requires further investigation is that of the tritium self-sufficiency. It is shown that a net tritium production near to one can be obtained if berylium tiles are placed in front of the plasma, provided that they are cooled by heavy water. (orig.).

  9. Two-dimensional TBR calculations for conceptual compact reversed-field pinch reactor blanket

    International Nuclear Information System (INIS)

    A detailed two-dimensional nucleonic analysis was performed for a conceptual first wall, blanket, and shield design for the Compact Reversed-Field Pinch Reactor. The design includes significant two-dimensional aspects presented by the limiter, vacuum ducts, and coolant manifolds; these aspects seriously degrade the tritium-breeding reaction (TBR) predicted by one-dimensional calculations. A range of design change to increase the TBR were investigated within the two-dimensional analysis. The results of this investigation indicated that an adequate TBR could be achieved with a thinner copper first wall, a 6Li enrichment near 90%, the proper selection of reflector, and a small addition to the blanket thickness, determined by the one-dimensional analysis

  10. Mechanical design and analysis for a EPR first wall/blanket/shield system

    International Nuclear Information System (INIS)

    Continuing studies are in progress at ANL to expand upon the design of a first wall/blanket/shield FW/B/S system and power conversion for a tokamak type Experimental Power Reactor (EPR). The FW/B/S system has evolved from an earlier design for a low beta, circular cross section plasma (major radius = 6 m) to one for a higher beta elongated plasma with a 4.7 m major radius. Basic mechanical design and layout features of the old and new EPR designs showing some of the more important design developments are given. These developments are aimed at simplifying the design, reducing the costs and in addition, improving the plant thermal efficiency and overall maintainability. In the area of the reactor blanket, significant thermal hydraulic and stress analysis have been performed to substantiate the integrity of the chosen concept. This paper deals with the discussion of these improved features

  11. Mechanical design and analysis for a EPR first wall/blanket/shield system

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, H.C.; Misra, B.; Youngdahl, C.K.

    1977-01-01

    Continuing studies are in progress at ANL to expand upon the design of a first wall/blanket/shield FW/B/S system and power conversion for a tokamak type Experimental Power Reactor (EPR). The FW/B/S system has evolved from an earlier design for a low beta, circular cross section plasma (major radius = 6 m) to one for a higher beta elongated plasma with a 4.7 m major radius. Basic mechanical design and layout features of the old and new EPR designs showing some of the more important design developments are depicted. These developments are aimed at simplifying the design, reducing the costs and, in addition, improving the plant thermal efficiency and overall maintainability. In the area of the reactor blanket, significant thermal hydraulic and stress analysis have been performed to substantiate the integrity of the chosen concept. This paper deals with the discussion of these improved features.

  12. Microstructure and hardness of HIP-bonded regions in F82H blanket structures

    Science.gov (United States)

    Furuya, K.; Wakai, E.; Ando, M.; Sawai, T.; Nakamura, K.; Takeuchi, H.; Iwabuchi, A.

    2002-12-01

    Metallurgical examinations and hardness measurements were performed at hot isostatic pressing (HIP)-bonded regions in blanket structures made from F82H alloy in order to investigate the HIP-bondability and the influence on the microstructure due to the HIP and heat treatments which would correspond to the fabrication of an actual blanket. The metallurgical examination showed that the HIP-bonded interfaces were sufficiently diffusion-bonded without significant defects, i.e. voids and/or exfoliations, although grain coarsening was observed at a part of the HIP interfaces. Hardness was nearly equal in the coarsening region and a region without coarsening, but about a 10 Hv increase was found in a boundary in between the regions with and without coarsening. Microcrystallized grains were observed in a region about ˜6 μm from HIP interfaces, and the hardness increased by about 0.2 GPa in the region.

  13. Tidal Volume Estimation Using the Blanket Fractal Dimension of the Tracheal Sounds Acquired by Smartphone

    OpenAIRE

    Natasa Reljin; Reyes, Bersain A.; Chon, Ki H

    2015-01-01

    In this paper, we propose the use of blanket fractal dimension (BFD) to estimate the tidal volume from smartphone-acquired tracheal sounds. We collected tracheal sounds with a Samsung Galaxy S4 smartphone, from five (N = 5) healthy volunteers. Each volunteer performed the experiment six times; first to obtain linear and exponential fitting models, and then to fit new data onto the existing models. Thus, the total number of recordings was 30. The estimated volumes were compared to the true val...

  14. Modeling and Analysis of Tritium Transport in Multi-Region Lead-Lithium Liquid Metal Blankets

    OpenAIRE

    Zhang, Hongjie

    2014-01-01

    It is critical to be able to predict tritium transport in lead-lithium liquid metal (LM) blankets with great accuracy to provide information for fusion reactor safety and economy analyses. However, tritium transport processes are complex and affected by multiple physics such as magnetohydrodynamic (MHD) flow, yet there is no single computer code capable of simulating these phenomena inclusively. Thus the objectives of this research are: 1) to develop mathematical models and computational code...

  15. Design requirements for SiC/SiC composites structural material in fusion power reactor blankets

    International Nuclear Information System (INIS)

    This paper recalls the main features of the TAURO blanket, a self-cooled Pb-17Li concept using SiC/SiC composites as structural material, developed for FPR. The objective of this design activity is to compare the characteristics of present-day industrial SiC-SiC composites with those required for a fusion power reactor blanket (FPR) and to evaluate the main needs of further R and D. The performed analyses indicated that the TAURO blanket would need the availability of SiC/SiC composites approximately 10 mm thick with a thermal conductivity through the thickness of approximately 15 Wm-1K-1 at 1000 C and a low electrical conductivity. A preliminary MHD analysis has indicated that the electrical conductivity should not be greater than 500 Ω-1m-1. Irradiation effects should be included in these figures. Under these conditions, the calculated pressure drop due to the high Pb-17Li velocity (approximately 1 m s-1) is much lower then 0.1 MPa. The characteristics and data base of the recently developed 3D-SiC/SiC composite, Cerasep trademark N3-1, are reported and discussed in relation to the identified blanket design requirements. The progress on joining techniques is briefly reported. For the time being, the best results have been obtained using Si-based brazing systems initially developed for SiC ceramics and whose major issue is the higher porosity of the SiC/SiC composites. (orig.)

  16. Lightweight solar array blanket tooling, laser welding and cover process technology

    Science.gov (United States)

    Dillard, P. A.

    1983-01-01

    A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.

  17. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  18. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  19. MHD pressure drop at bare welding positions in pipes of DCLL blankets (KIT Scientific Reports ; 7636)

    OpenAIRE

    Bühler, Leo

    2013-01-01

    A systematic parametric analysis has been performed using asymptotic numerical methods for determination of MHD flows near gaps of electrically insulating inserts in well conducting pipes. Such gaps could be present at several positions in fusion blankets, where cutting and rewelding by remotely controlled tools is foreseen. Gaps in the insulation provide additional current paths which leads to increased current density and braking electromagnetic Lorentz forces.

  20. Oxygen plasma damage to blanket and patterned ultralow-κ surfaces

    International Nuclear Information System (INIS)

    Oxygen plasma damage to blanket and patterned ultralow-κ (ULK) dielectric surfaces was investigated by examining the effect of plasma species and dielectric materials. Blanket ULK films and patterned structures were treated by O2 plasma in a remote plasma chamber where the ions and radicals from the plasma source can be separately controlled to study their respective roles in the damage process. The plasma damage was characterized by angle resolved x-ray photoelectron spectroscopy, x-ray reflectivity, and Fourier transform infrared spectroscopy. Studies of the angle dependence of oxygen plasma damage to blanket ULK films indicated that damage by ions was anisotropic while that by radicals was isotropic. Ions were found to play an important role in assisting carbon depletion by oxygen radicals on the blanket film surface. More plasma damage was observed with increasing porosity in ultralow-κ films. Probable reaction paths were proposed by analyzing the reaction by-products. Plasma damage to the sidewall of low-κ trenches was examined by electron energy loss (EELS) analysis. The depletion depth of carbon was found to be related to the penetration of radical species into the porous dielectric and the distribution at the sidewall and trench bottom was affected by the trench pattern geometry, i.e., the aspect ratio, which can be correlated with the electron potential distribution and subsequent trajectory of ions. Vapor silylation was applied for dielectric recovery of trench structure and the result was examined by EELS. The trimethylchlorosilane was found to be effective for recovery of the sidewall carbon loss. The recovery was better for loss induced by radical O2 than by hybrid O2 and the difference was attributed to the surface densification by ions limiting the mass transport of vapor chemicals.

  1. Proceedings of the sixth international workshop on ceramic breeder blanket interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji [ed.

    1998-03-01

    This report is the Proceedings of `the Sixth International Workshop on Ceramic Breeder Blanket Interactions` which was held as a workshop on ceramic breeders under Annex II of IEA Implementing Agreement on a Programme of Research and Development on Fusion Materials, and Japan-US Workshop 97FT4-01. This workshop was held in Mito city, Japan on October 22-24, 1997. About forty experts from EU, Japan, USA, and Chile attended the workshop. The scope of the workshop included the following: (1) fabrication and characterization of ceramic breeders, (2) properties data for ceramic breeders, (3) tritium release characteristics, (4) modeling of tritium behavior, (5) irradiation effects on performance behavior, (6) blanket design and R and D requirements, (7) hydrogen behavior in materials, and (8) blanket system technology and structural materials. In the workshop, information exchange was performed for fabrication technology of ceramic breeder pebbles in EU and Japan, data of various properties of Li{sub 2}TiO{sub 3}, tritium release behavior of Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} including tritium diffusion, modeling of tritium release from Li{sub 2}ZrO{sub 3} in ITER condition, helium release behavior from Li{sub 2}O, results of tritium release irradiation tests of Li{sub 4}SiO{sub 4} pebbles in EXOTIC-7, R and D issues for ceramic breeders for ITER and DEMO blankets, etc. The 23 of the papers are indexed individually. (J.P.N.)

  2. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    International Nuclear Information System (INIS)

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available

  3. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

  4. Neutronic design analyses for a dual-coolant blanket concept: Optimization for a fusion reactor DEMO

    International Nuclear Information System (INIS)

    Highlights: ► Dual-Coolant He/Pb15.7Li breeding blanket for a DEMO fusion reactor is studied. ► An iterative process optimizes neutronic responses minimizing reactor dimension. ► A 3D toroidally symmetric geometry has been generated from the CAD model. ► Overall TBR values support the feasibility of the conceptual model considered. ► Power density in TF coils is below load limit for quenching. - Abstract: The generation of design specifications for a DEMO reactor, including breeding blanket (BB), vacuum vessel (VV) and magnetic field coils (MFC), requires a consistent neutronic optimization of structures between plasma and MFC. This work targets iteratively to generate these neutronic specifications for a Dual-Coolant He/Pb15.7Li breeding blanket design. The iteration process focuses on the optimization of allowable space between plasma scrapped-off-layer and VV in order to generate a MFC/VV/BB/plasma sustainable configuration with minimum global system volumes. Two VV designs have been considered: (1) a double-walled option with light-weight stiffeners and (2) a thick massive one. The optimization process also involves VV materials, looking to warrant radiation impact operational limits on the MFC. The resulting nuclear responses: peak nuclear heating in toroidal field (TF) coil, tritium breeding ratio (TBR), power amplification factor and helium production in the structural material are provided.

  5. Integrated-blanket-coil applications in the TITAN-I reversed-field pinch reactor

    International Nuclear Information System (INIS)

    The TITAN-I Reversed-Field Pinch reactor incorporates the Integrated-Blanket-Coil (IBC) concept for the toroidal field and divertor field coil systems. The IBC approach combines the breeding and energy recovery functions of the blanket with the magnetic field production of the coils in a single component. This is accomplished by passing the current through the liquid metal coolant, lithium, which flows poloidally around the plasma. A reversed-field pinch reactor offers an attractive context for IBC coils since the low toroidal field at the plasma surface (∼0.36 T) leads to relatively low coil currents. Design of IBC components addresses four areas: (1) Neutronics, including tritium breeding and blanket energy multiplication; (2) thermal hydraulics, including magnetohydrodynamic (MHD) pressure drops; (3) magnetics, including field magnitude and topology; and (4) electrical engineering of the circuit determining the power supply requirements. The TF-IBC approach, in comparison to copper coils, offers several advantages for a compact RFP reactor: Increased access for coolant and auxiliary services, improved viability for single-piece maintenance, and reduced magnetic ripple in the toroidal magnetic field. In the divertor system, improved magnetic coupling and additional energy recovery and tritium breeding enhance the attractiveness of the IBC relative to copper coils. (orig.)

  6. Robot vision system R and D for ITER blanket remote-handling system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Takahito, E-mail: maruyama.takahito@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system.

  7. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    Science.gov (United States)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  8. Convertible liquid metal blankets for ITER with Pb-17Li as breeding material

    International Nuclear Information System (INIS)

    A convertible blanket concept is proposed for ITER, where, without replacement of the blanket structure, a non-breeding Pb alloy is used during the basic performance phase and the eutectic Pb-17Li during the enhanced performance phase. The concept is based on austenitic steel as structural material, an average neutron wall load of 1MWm-2 and either helium or water as coolant. The same design concept was used for both coolant options with respect to a stiff blanket segment box, direct cooling of the first wall using toroidal ducts, poloidal hairpin tubes to cool the quasi-stagnant liquid metal and tritium removal outside the vacuum vessel.Various design options were considered for the first-wall and pool cooling and corresponding headers. Owing to the different coolant properties, different combinations were selected for the two versions. The performance of the two versions was assessed among other things with respect to tritium breeding and control, reliability and R and D needs. (orig.)

  9. [Air conditioning units and warm air blankets in the operating room].

    Science.gov (United States)

    Kerwat, Klaus; Piechowiak, Karolin; Wulf, Hinnerk

    2013-01-01

    Nowadays almost all operating rooms are equipped with air conditioning (AC units). Their main purpose is climatization, like ventilation, moisturizing, cooling and also the warming of the room in large buildings. In operating rooms they have an additional function in the prevention of infections, especially the avoidance of postoperative wound infections. This is achieved by special filtration systems and by the creation of specific air currents. Since hypothermia is known to be an unambiguous factor for the development of postoperative wound infections, patients are often actively warmed intraoperatively using warm air blankets (forced-air warming units). In such cases it is frequently discussed whether such warm air blankets affect the performance of AC units by changing the air currents or whether, in contrast, have exactly the opposite effect. However, it has been demonstrated in numerous studies that warm air blankets do not have any relevant effect on the functioning of AC units. Also there are no indications that their use increases the rate of postoperative wound infections. By preventing the patient from experiencing hypothermia, the rate of postoperative wound infections can even be decreased thereby.

  10. Water-cooled, fire boom blanket, test and evaluation for system prototype development

    International Nuclear Information System (INIS)

    Initial development of actively cooled fire booms indicated that water-cooled barriers could withstand direct oil fire for several hours with little damage if cooling water were continuously supplied. Despite these early promising developments, it was realized that to build reliable full-scale system for Navy host salvage booms would require several development tests and lengthy evaluations. In this experiment several types of water-cooled fire blankets were tested at the Oil and Hazardous Materials Simulated Test Tank (OHMSETT). After the burn test the blankets were inspected for damage and additional tests were conducted to determine handling characteristics for deployment, recovery, cleaning and maintenance. Test results showed that water-cooled fire boom blankets can be used on conventional offshore oil containment booms to extend their use for controlling large floating-oil marine fires. Results also demonstrated the importance of using thermoset rubber coated fabrics in the host boom to maintain sufficient reserve seam strength at elevated temperatures. The suitability of passively cooled covers should be investigated to protect equipment and boom from indirect fire exposure. 1 ref., 2 tabs., 8 figs

  11. First wall fabrication of 1/3 scale china dual functional lithium lead blanket

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bo, E-mail: bo.huang@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zhai, Yutao [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zhang, Junyu [University of Science and Technology of China, Hefei, Anhui 230027 (China); Li, Chunjing; Wu, Qingsheng [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-10-15

    Highlights: • RAFM rectangular tubes were fabricated by cold drawing, and the dimensional accuracy and mechanical properties of rectangular tubes were tested. • Rectangular tubes were bent by rotary bending, and milled plates were curved by molding. Its accuracy meets the requirement for TBM assembly. • FW were pre-sealed by electron beam welding, and assembled by hot isostatic pressing–diffusion bonding. • The as-HIPed FW mock-up was tested by optical observation and X-ray detection, it revealed obviously that the tubes and plates were bonded well. - Abstract: The dual functional lithium lead blanket is chosen as one of the candidate blankets for China fusion reactor, for its advantages of tritium breeding and good heat exchange performance. As one of the most important components of the blanket, the first wall (FW) is assembled with China low activation martensitic (CLAM) rectangular tubes and plates by hot isostatic pressing (HIP)–diffusion bonding (DB). In this work, the rectangular tube fabrication and FW assembly were carried out in order to verify the feasibility of the FW fabrication scheme. The mechanical property and dimensional accuracy of CLAM rectangular tubes were tested, the microstructure observation and non-destructive detection revealed the sound of the FW mock-up, and the reliability of the FW mock-ups is under evaluation.

  12. Robot vision system R and D for ITER blanket remote-handling system

    International Nuclear Information System (INIS)

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system

  13. 244CmO2/nat.-UO2 hybrid blanket with flat fission power production

    International Nuclear Information System (INIS)

    In the present study, 244CmO2 is mixed with nat.-UO2 for the purpose of power flattening in a hybrid blanket with a reasonably high energy multiplication factor. Also, the temporal variations of the fission power density (FPD) are observed during an 18-month plant operation period. The main conclusion drawn from this work is that it became possible to keep a flat fission power profile (FPP) over a very long plant operation period of 18 months by simply omitting the beryllium multiplier in the blanket and keeping the neutron spectrum fairly unchanged throughout the fission zone. This reduced the efforts for fuel management to a minimum. A further observation focused on only minor variations of the integral neutronic data over longer plant operation periods. Among others, the fission power generation increase is also very modest. This results in an optimum investment for the nonnuclear island. The blanket burns up high-level nuclear waste 244Cm effectively, with efficient electricity production and breeding of a new type of nuclear fuel 245Cm with very superior nuclear properties. Finally, a warning should be issued for the careful international safeguarding of such a hybrid plant due to the extremely high quality of the bred plutonium fuel

  14. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  15. Activation analysis and waste management for blanket materials of multi-functional experimental fusion–fission hybrid reactor (FDS-MFX)

    International Nuclear Information System (INIS)

    The preliminary studies of the activation analysis and waste management for blanket materials of the multi-functional experimental fusion–fission hybrid reactor, i.e. Multi-Functional eXperimental Fusion Driven Subcritical system named FDS-MFX, were performed. The neutron flux of the FDS-MFX blanket was calculated using VisualBUS code and Hybrid Evaluated Nuclear Data Library (HENDL) developed by FDS Team. Based on these calculated neutron fluxes, the activation properties of blanket materials were analyzed by the induced radioactivity, the decay heat and the contact dose rate for different regions of the FDS-MFX blanket. The safety and environment assessment of fusion power (SEAFP) strategy, which was developed in Europe, was applied to FDS-MFX blanket for the management of activated materials. Accordingly, the classification and management strategy of activated materials after different cooling time were proposed for FDS-MFX blanket

  16. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    inorganic matter in the absence of molecular oxygen. Complex polymeric materials such as polysaccharides, proteins, and lipids (fat and grease) are first hydrolyzed to soluble products by extracellular enzymes, secreted by microorganisms, so as to facilitate their transport or diffusion across the cell membrane. These relatively simple, soluble compounds are fermented or anaerobically oxidized, further to short-chain fatty acids, alcohols, carbon dioxide, hydrogen, and ammonia. The short-chain fatty acids (other than acetate) are converted to acetate, hydrogen gas, and carbon dioxide. Methanogenesis finally occurs from the reduction of carbon dioxide and acetate by hydrogen. The initial stage of anaerobic degradation, i.e. acid fermentation is essentially a constant BOD stage because the organic molecules are only rearranged. The first stage does not stabilize the organics in the waste. However this step is essential for the initiation of second stage methane fermentation as it converts the organic material to a form, usable by the methane producing bacteria. The second reaction is initiated when anaerobic methane forming bacteria act upon the short chain organic acids produced in the 1st stage. Here these acids undergo methane fermentation with carbon dioxide acting as hydrogen acceptor and getting reduced to methane. The methane formed, being insoluble in water, escapes from the system and can be tapped and used as an energy source. The production and subsequent escape of methane causes the stabilization of the organic material. The methane-producing bacteria consist of several different groups. Each group has the ability to ferment only specific compounds. Therefore, the bacterial consortia in a methane producing system should include a number of different groups. When the rate of bacterial growth is considered, then the retention time of the solids becomes important parameter. The acid fermentation stage is faster as compared to the methane fermentation stage. This

  17. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 2: BOT helium cooled solid breeder blanket. Vol. 2

    International Nuclear Information System (INIS)

    The BOT (Breeder Outside Tube) Helium Cooled Solid Breeder Blanket for a fusion Demo reactor and the status of the R and D program is presented. This is the KfK contribution to the European Program for the Demo relevant test blankets to be irradiated in NET/ITER. Volume 1 (KfK 4928) contains the summary, volume 2 (KfK 4929) a more detailed version of the report. In both volumes are described the reasons for the selected design, the reference blanket design for the Demo reactor, the design of the test blanket including the ancillary systems together with the present status of the relative R and D program in the fields of neutronic and thermohydraulic calculations, of the electromagnetic forces caused by disruptions, of the development and irradiation of the ceramic breeder material, of the tritium release and recovery, and of the technological investigations. An outlook is given on the required R and D program for the BOT Helium Cooled Solid Breeder Blanket prior to tests in NET/ITER and the proposed test program in NET/ITER. (orig.)

  18. Effect of channel wall conductance on the performance characteristics of self-cooled liquid metal fusion reactor blankets

    International Nuclear Information System (INIS)

    One of the critical issues in self-cooled liquid metal tritium breeding blankets in magnetically confined fusion reactors is strong MHD effects particularly when the channel walls are not electrically insulated from the flowing liquid metals. Another critical issue is the cooling of the first wall which is subjected to intense heat load from the fusion plasma. In this work we investigate the effect of channel wall conductance on the friction factor and Nusselt number. It is shown by solving the indication and linear momentum equations that even for relatively small channel wall conductance ratios, the friction factor increases by an order of magnitude for the typical Hartmann numbers encountered in fusion reactor blankets. Furthermore, by solving the temperature equation, it is shown that channel wall conductance has negligible effect on Nusselt number in spite of high velocity jets developing near the side walls. Taking into account these limitations, it is shown however, that the self-cooled liquid metal blankets remain a feasible proposition for both first wall heat extraction and bulk heat removal from the blanket. The most important thermal-hydraulic performance parameter -the heat removal rate to pumping power ratio- can still be kept quite high by suitably choosing the design variables of the liquid metal cooling system. The results are presented and compared for the three prime candidates for self-cooled liquid metal breeding blankets, i.e., lithium, lead-lithium, and tin-lithium alloys. (author)

  19. INDRA: a program system for calculating the neutronics and photonics characteristics of a fusion reactor blanket

    International Nuclear Information System (INIS)

    INDRA is a program system for calculating the neutronics and photonics characteristics of fusion reactor blankets. It incorporates a total of 19 different codes and 5 large data libraries. 10 of the codes are available from the code distribution organizations. Some of them, however, have been slightly modified in order to permit a convenient transfer of information from one program module to the next. The remaining 9 programs have been prepared by the authors to complete the system with respect to flexibility and to facilitate the handling of the results. (orig./WBU)

  20. A grid of low metallicity line-blanketed LTE model stellar atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, I.D. (University Coll., London (UK). Dept. of Physics and Astronomy Joint Inst. for Lab. Astrophysics, Boulder, CO (USA)); Lynas-Gray, A.E. (University Coll., London (UK). Dept. of Physics and Astronomy)

    1989-10-01

    Emergent fluxes are given for a grid of low metal abundance (Z=0.1 solar Z) line-blanketed ATLAS6 model atmospheres, together with corresponding UBV data and Zanstra integrals. The grid contains 101 models covering the temperature range 10,000 to 50,000 K at steps of 2000 K and log(g) from 4.5 (cgs) to the Eddington limit at steps of 0.5, with special attention paid to securing a converged model at the lowest possible log(g) for each temperature. (author).

  1. A grid of low metallicity line-blanketed LTE model stellar atmospheres

    International Nuclear Information System (INIS)

    Emergent fluxes are given for a grid of low metal abundance (Z=0.1 solar Z) line-blanketed ATLAS6 model atmospheres, together with corresponding UBV data and Zanstra integrals. The grid contains 101 models covering the temperature range 10,000 to 50,000 K at steps of 2000 K and log(g) from 4.5 (cgs) to the Eddington limit at steps of 0.5, with special attention paid to securing a converged model at the lowest possible log(g) for each temperature. (author)

  2. Stress and lifetime calculations for first wall and blanket structural components. Pt. 1

    International Nuclear Information System (INIS)

    In this report the lifetime of first wall and blanket structures of fusion reactors is investigated. The extension of small pre-existing cracks by the cyclic operation of a fusion reactor seems to be the most important failure mode. The special application of the present investigation are tubes acting directly as parts of the first wall and affected by various radiation effects. The outer surface is asymmetrically heated and by combination of thermal extension, swelling, irradiation creep and internal pressure a complex time dependent stress distribution results. Crack growth until failure caused by cyclic operation of the reactor is computed by application of fracture mechanical methods. (orig.)

  3. Establishment of design and fabrication technology and domestic qualification for ITER blanket system

    International Nuclear Information System (INIS)

    To obtain and analyze the detailed design and manufacturing technology of the blanket system for each components, the related data are collected through the various sources. And also, design processes and results of the FWs, shield blocks, and TBMs are investigated. From these analysis of the blanket R and D status of each party, we develop the KO R and D plan and it is used in the selection of manufacturing method and the materials. For the ITA16-10 subtask1, we had the official agreement with ITER IT in December 2004 for the qualification of the FW panel fabrication methods and to establish the NDT methods for the FW panel. From the technical reports we published, we compare the manufacturing methods and the proposed material for each component according to the parties. Be is proposed as a plasma facing material and most parties have interest in S-65C. Cu alloy is proposed as a heat sink material and DSCu or CuCrZr are investigated now. For the structural material, stainless steel such as SS316L(N) is investigated internationally. HIP and brazing are proposed as the manufacturing methods. In order to establish the blanket system technology, design contents of shield block by ITER IT and other parties were investigated through participating the international workshop and meeting, dispatching the researcher to the ITER IT or other parties to collect the drafting and 3D modeling files. The modification items of blanket design were investigated and a researcher was dispatched in the ITER IT and participated in the analysis on cooling problem in shield block such as front header and drilled manifold. To investigate the development status of TBM, we participated the 14th TBWG meeting and proposed the KO HCSB and HCML as candidates. And also, we obtain the R and D results of other parties and make document about the R and D status of other parties for the TBM. Finally, we establish the KO TBM R and D plan and proposed it to ITER IT and other parties. In which, the

  4. Thermal-hydraulic analysis of a cylindrical blanket module using ATHENA code

    International Nuclear Information System (INIS)

    ATHENA (Advanced Thermal-Hydraulic Energy Network Analyzer) is a new computer code for thermal-hydraulic analyses of many energy systems. Multiple-loop and multiple-fluid capabilities have been emphasized during the code development. A pilot version of ATHENA has incorporated a fusion kinetic package to model the effect of first wall temperature variation on the reactor conditions. The capability has been demonstrated by analyzing the performance under various conditions of a cylindrical fusion blanket module. The results have shown the viability of using ATHENA for fusion reactor design and safety analyses

  5. Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket (UASB) Reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1994-01-01

    Thermal extraction was used to quantify extracellular polymers (ECP) in granules from anaerobic upflow reactors. The optimal time for extraction was determined as the time needed before the intracellular material gives a significant contribution to the extracted extracellular material due to cell...... of an upflow anaerobic sludge blanket reactor from a sugar-containing waste-water to a synthetic waste-water containing acetate, propionate and butyrate resulted in a decrease in both the protein and polysaccharide content and an increase in the lipid content of the extracellular material. Furthermore...

  6. Establishment of design and fabrication technology and domestic qualification for ITER blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; In, S. R.; Bae, Y. D. (and others)

    2006-02-15

    To obtain and analyze the detailed design and manufacturing technology of the blanket system for each components, the related data are collected through the various sources. And also, design processes and results of the FWs, shield blocks, and TBMs are investigated. From these analysis of the blanket R and D status of each party, we develop the KO R and D plan and it is used in the selection of manufacturing method and the materials. For the ITA16-10 subtask1, we had the official agreement with ITER IT in December 2004 for the qualification of the FW panel fabrication methods and to establish the NDT methods for the FW panel. From the technical reports we published, we compare the manufacturing methods and the proposed material for each component according to the parties. Be is proposed as a plasma facing material and most parties have interest in S-65C. Cu alloy is proposed as a heat sink material and DSCu or CuCrZr are investigated now. For the structural material, stainless steel such as SS316L(N) is investigated internationally. HIP and brazing are proposed as the manufacturing methods. In order to establish the blanket system technology, design contents of shield block by ITER IT and other parties were investigated through participating the international workshop and meeting, dispatching the researcher to the ITER IT or other parties to collect the drafting and 3D modeling files. The modification items of blanket design were investigated and a researcher was dispatched in the ITER IT and participated in the analysis on cooling problem in shield block such as front header and drilled manifold. To investigate the development status of TBM, we participated the 14th TBWG meeting and proposed the KO HCSB and HCML as candidates. And also, we obtain the R and D results of other parties and make document about the R and D status of other parties for the TBM. Finally, we establish the KO TBM R and D plan and proposed it to ITER IT and other parties. In which, the

  7. Forces on liquid lithium modules in a tokamak blanket due to the pulsed poloidal magnetic field

    International Nuclear Information System (INIS)

    This paper treats cylindrical modules filled with liquid lithium in the presence of a steady toroidal magnetic field and a time-dependent poloidal field. Solutions for liquid lithium flows and formulas for the forces on the modules are presented for both axial and transverse poloidal fields. Numerical examples are presented for the design in the ORNL/Westinghouse Tokamak Blanket Study. The initial analysis ignores the ends of the modules and treats infinitely long pipes, but the effects of the ends are also treated. Calculations and conclusions based on the solutions for infinitely long pipes are not significantly altered by end effects

  8. Neutronics analysis on helium-cooled blanket of a fusion-driven spent fuel burner

    International Nuclear Information System (INIS)

    Neutronics design and analysis of helium-cooled spent fuel burning blanket for a fusion driven sub-critical system are performed to ensure the system be able to meet the requirements of energy production (>1 GWe), more fuel breeding, more waste transmutation and long period run with deep subcritical (Keff <0.95), tritium sustainable, reasonable power density (<100 MW · m-3), which is based on 1-D burnup calculations with home-developed code VisualBUS and the data library HENDL. (authors)

  9. Analysis on tritium controlling of the dual-cooled lithium lead blanket for fusion power reactor FDS-II

    International Nuclear Information System (INIS)

    A tritium flow model of the entire FDS-II blanket system was developed and the preliminary analysis on tritium permeation and extraction for FDS-II blanket system were done by using Tritium Analysis Software (TAS). The factors which affected tritium extraction and permeation were calculated and evaluated, such as tritium permeation reduction factor in blanket, proportion of LiPb flow in tritium extraction system and helium leakage rate, etc. The results of the presented analysis shows that further R and D efforts are still required to guarantee the tritium self-sufficient and safety, for example high quality tritium permeation barriers, efficiency of tritium extraction from LiPb and fabrication technology of the LiPb heat exchanger, etc.

  10. Analysis on tritium controlling of the dual-cooled lithium lead blanket for fusion power reactor FDS-II

    Energy Technology Data Exchange (ETDEWEB)

    Song Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)], E-mail: ysong@ipp.ac.cn; Huang Qunying [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Wang Yongliang [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Ni Muyi [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2009-06-15

    A tritium flow model of the entire FDS-II blanket system was developed and the preliminary analysis on tritium permeation and extraction for FDS-II blanket system were done by using Tritium Analysis Software (TAS). The factors which affected tritium extraction and permeation were calculated and evaluated, such as tritium permeation reduction factor in blanket, proportion of LiPb flow in tritium extraction system and helium leakage rate, etc. The results of the presented analysis shows that further R and D efforts are still required to guarantee the tritium self-sufficient and safety, for example high quality tritium permeation barriers, efficiency of tritium extraction from LiPb and fabrication technology of the LiPb heat exchanger, etc.

  11. 外科梗阻性黄疸综合治疗现状%Surgical Obstructive Jaundice Blanket Treatment Prorogation

    Institute of Scientific and Technical Information of China (English)

    王晓琳

    2002-01-01

    Objective To probe efficacy of blanket through summary of disease on surgical obstructive jaundice.Methods To analyze the material of varied pathogeny and treatment approaches to obstructive jaundice. Results Choosingthe superlative treatment method for early diagnose and blanket treatment based on varied pathogeny, situation of disease andthe doctor's techonical circumstance, will be major method of diagnose and treatment at present and even long time in thefuture. Conclustion With accurate choice of approaches on blanket treatment to obstructive jaundice surgery, to yiled variedand positive efficacy on both malignity and benign patients, and to improve the living quality of patients with malignityobstructive jaundice and prolong their life span. Therefore, we may set up more and better opportunities to operational treatmentfor obetructive jaundice patients,and rise the ratio of successful operation.

  12. Analyses of Hubble Space Telescope Aluminized-Teflon Multilayer Insulation Blankets Retrieved After 19 Years of Space Exposure

    Science.gov (United States)

    de Groh, Kim K.; Perry, Bruce A.; Mohammed, Jelila S.; Banks, Bruce

    2015-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become increasingly embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The retrieved MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket was divided into several regions based on environmental exposure and/or physical appearance. The aluminized-Teflon (DuPont, Wilmington, DE) fluorinated ethylene propylene (Al-FEP) outer layers of the retrieved MLI blankets have been analyzed for changes in optical, physical, and mechanical properties, along with chemical and morphological changes. Pristine and as-retrieved samples (materials) were heat treated to help understand degradation mechanisms. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. Most notably, the Al-FEP was highly embrittled, fracturing like glass at strains of 1 to 8 percent. Across all measured properties, more significant degradation was observed for Bay 8 material as compared to Bay 5 material. This paper reviews the tensile and bend-test properties, density, thickness, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) elemental composition measurements, surface and crack morphologies, and atomic oxygen erosion yields of the Al-FEP outer layer of the retrieved HST blankets after 19 years of space exposure.

  13. Travel Blankets

    Science.gov (United States)

    Coy, Mary

    2009-01-01

    Spry Middle School's annual eighth-grade trip to Washington, District of Columbia, coincided with the opening of the National Museum of the American Indian. The museum, with its distinctive curvilinear architecture covered in Kasota limestone, stands as a wonderful testament to the rich culture and history of the many and diverse Native American…

  14. 78 FR 30295 - Constellation Energy Commoditiesgroup, Inc., ENI USA Gas Marketing LLC, Sequent Energy Canada...

    Science.gov (United States)

    2013-05-22

    ... Marketing, LLC, Trunkline LNG Export, LLC, Gasfin Development USA LLC, Louis Dreyfus Energy Services L.P... import/export Marketing, LLC. natural gas from/to Canada. 3252 03/07/13 13-04-LNG....... Trunkline LNG.../13 13-27-NG........ Gazprom Order granting blanket Marketing & authority to import/export Trading...

  15. Occurrence of the blanketing sporadic E layer during the recovery phase of the October 2003 superstorm

    Science.gov (United States)

    Denardini, Clezio Marcos; Resende, Laysa Cristina Araújo; Moro, Juliano; Chen, Sony Su

    2016-05-01

    We have routinely monitored the total frequency ( ftEs) and the blanketing frequency ( fbEs) of sporadic E layers with the digital sounder under the magnetic equator in the Brazilian sector. Sporadic layers appear in the equatorial region (Esq) at heights between 90 and 130 km, mainly due to irregularities in the equatorial electrojet current. However, during the recovery phase of the October 2003 superstorm, an anomalous intensification of the ionospheric density that exceeded the normal ambient background values for local time and location was observed. The parameter fbEs rose to almost 7.5 MHz during this event, due to a type "c" blanketing sporadic layer (Esc), which is driven by wind shear. This result is discussed in terms of the atmosphere dynamics based on magnetic signature of the equatorial electrojet current using magnetometer data. Also, using data measured by sensors onboard the Geostationary Operational Environmental Satellite (GOES) 10 we analyze the possible influence of the solar flare-associated X-ray flux as an additional source of ionization.

  16. Study on Fission Blanket Fuel Cycling of a Fusion-Fission Hybrid Energy Generation System

    International Nuclear Information System (INIS)

    Full text: Direct application of ITER-scale tokamak as a neutron driver in a subcritical fusion-fission hybrid reactor to generate electric power is of great potential in predictable future. This paper reports a primary study on neutronic and fuel cycle behaviors of a fission blanket for a new type of fusion-driven system (FDS), namely a subcritical fusion-fission hybrid reactor for electric power generation aiming at energy generation fueled with natural or depleted uranium. Using COUPLE2 developed at INET of Tsinghua University by coupling the MCNP code with the ORIGEN code to study the neutronic behavior and the refueling scheme, this paper focuses on refueling scheme of the fissionable fuel while keeping some important parameters such as tritium breeding ratio (TBR) and energy gain. Different fission fuels, coolants and their volumetric ratios arranged in the fission blanket satisfy the requirements for power generation. The results show that soft neutron spectrum with optimized fuel to moderator ratio can yield an energy amplifying factor of M> 20 while maintaining the TBR > 1.1 and the CR > 1 (the conversion ratio of fissile materials) in a reasonably long refueling cycle. Using an in-site fuel recycle plant, it will be an attractive way to realize the goal of burning 238U with such a new type of fusion-fission hybrid reactor system to generate electric power. (author)

  17. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  18. Application Effect’s Research of Vetiver Eco Blanket in Pubugou Reservoir Fluctuating Zone

    Directory of Open Access Journals (Sweden)

    Lan Huijuan

    2015-01-01

    Full Text Available To solve the ecological disasters in Pubugou Reservoir Fluctuating Zone, ecological blanket governance model is proposed in this paper, which may provide good early environment for plants’ survival in fluctuation zone, and then play the function of greening and sustainable development to ensure the slopes’ stability. Meanwhile, based on the result of vetiver ecological blanket in Hanyuan experimental zone, we find that three kinds of typical Fluctuating Zone slope’s greening effect is good, which includes the dirt piling up slope, the whole lump of rock slope and the gravel piling up slope, and it gets an average coverage of 90.3 % as well as good strength. Due to the different geological conditions, the ecological blankets’ governance effect differs from slope to slope. Using analytic hierarchy process to calculate the weight, we get the dirt piling up slope, the whole lump of rock slope and the gravel piling up slope’s weights are 0.41, 0.17, 0.42, respectively, namely, the dirt piling up slope and the gravel piling up slope have good results overall, followed by the whole lump of rock slope.

  19. Applications of the integrated-blanket-coil concept to the compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    Compact reactors, by their nature, are high-power-density devices. They place a premium on space usage within the system volume, and access to the fusion power core components is limited. The integrated-blanket-coil (IBC) concept relaxes some of these requirements by combining the functions of the breeding blanket with those of the magnet systems. In this paper, the IBC potential is analyzed for the compact reversed-field pinch reactor (CRFPR) coil sets: (a) the toroidal field (TF) system; (b) the polidal field (PF) system; (c) the ohmic heating (OH) subsystem of the PF system; and (d) the divertor coils in the impurity control system. Use is made of the Los Alamos National Laboratory (LANL) RFP systems code with suitable modifications, to estimate ohmic losses, coil masses, and economic (cost of electricity) impact of the different configurations. Preliminary evaluations indicate that a symmetric toroidal divertor would be suitable for the CRFPR. This presents a special attraction for use of IBC divertor coils. Since the minority field (TF) is < 1 T at the plasma edge, the required nulling current is modest. In addition, IBC coils can be placed closer to the plasma, allowing a trade-off between the higher resistive losses and reduced current requirements. Perhaps most importantly, use of IBC divertor coils would improve the tritium breeding ratio, which is somewhat marginal with copper divertor coils

  20. Application of the Integrated-Blanket-Coil concept to a compact reversed-field pinch reactor

    International Nuclear Information System (INIS)

    The Integrated-Blanket-Coil (IBC) concept has been examined in the context of a compact reversed-field pinch (RFP) fusion reactor. The IBC approach is novel in that the functions of the blanket (tritium breeding and energy recovery) and the coil (magnetic field production) are fulfilled in a single component. This combination of functions is accomplished by using lithium metal as the coolant, breeding medium, and electrical conductor. Economics and physics modeling indicates that the toroidal field and divertor coil systems are appropriate applications for IBC components. Conceptual designs for the TF-IBC and IBC divertor systems are developed, based on parameters generated by the TITAN RFP Reactor Design Study. Design of the IBC divertor is similar to the TF-IBC, but with the added concern for proper mapping of the field lines. Improved magnetic coupling and additional energy recovery and tritium breeding enhance the attractiveness of the IBC divertor relative to copper coils. Both the TF and divertor IBC systems are capable of operating compatibly with the Oscillating Field Current Drive (OFCD). The conceptual design process indicates that the TF-IBC and IBC divertor are technically feasible. As such, they represent viable alternatives for a compact RFP reactor

  1. Application of the integrated blanket-coil concept (IBC) to fusion reactors

    International Nuclear Information System (INIS)

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component and several unique applications to fusion reactor embodiments are identified. The proposed concept takes advantage of the fact that lithium is a good electrical conductor in addition to being a unique tritium-breeding material capable of energy recovery and transport at high temperatures. This concept, designated the ''integrated-blanket-coil (IBC) concept'' has the potential for: allowing fusion reactor embodiments which are easier to maintain; making fusion reactors more compact with an intrinsic ultra-high mass power density (net kW/sub E//metric tonne); and enhancing the tritium breeding potential for special coil applications such as ohmic heating and bean identation. By assuming a sandwich construction for the IBC walls (i.e., a layered combination of a thin wall of structural material, insulator and structural materials) the magnetohydrodynamic (MHD)-induced pressure drops and associated pressure stresses are modest and well below design limits. Possible unique applications of the IBC concept have been investigated and include the IBC concept applied to the poloidal field (PF) coils, toroidal field (TF) coils, divertor coils, ohmic heating (OH) coils, and identation coils for bean shaping

  2. The feasibility study I on the blanket fuel options for the ATW/HYPER

    International Nuclear Information System (INIS)

    The choice of a blanket fuel cycle technology and the fuel type for HYPER/ATW are important to develop an ADS with better economics, performance and safety. Even though several fuel types have been considered as an alternative of the blanket fuels for HYPER/ATW, the metal alloy and the dispersion fuels were selected as the candidate fuels for ADS, and the technical feasibilities for both fuels are evaluated in this report. General performance characteristics, fabrication abilities, technical aspects, safety aspects, economics, and non-proliferation aspects for each fuel type are reviewed and evaluated. And some technological problems are addressed in this report, focused on the development strategy, the roadmaps, and the flexibility to meet the missions and specific designs. This study has been performed at the first stage of conceptual design. Since it is under the lack of physical properties for each fuel material, no an attempt is made to select the best fuel option, but the more better fuel options are recommended

  3. Fusion-Driven Sub-Critical Dual-Cooled Waste Transmutation Blanket:Design and Analysis

    Institute of Scientific and Technical Information of China (English)

    Wang Weihua(汪卫华); Wu Yican(吴宜灿); Ke Yan(柯严); Kang Zhicheng(康志诚); Wang Hongyan(王红艳); Huang Qunying(黄群英)

    2003-01-01

    The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB),as one the most important part of the FDS is cooled by helium and liquid metal, and have the features of safety, tritium self-sustaining, high efficiency and feasibility. Its conceptual design has been finished. This paper is mainly involved with the basic structure design and thermalhydraulics analysis of DWTB. On the basis of a three-dimensional (3-D) model of radial-toroidal sections of the segment box, thermal temperature gradients and structure analysis made with a comprehensive finite element method (FEM) have been performed with the computer code ANSYS5.7 and computational fluid dynamic finite element codes. The analysis refers to the steady-state operating condition of an outboard blanket segment. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions have been also taken into account.All the above loads have been combined as an input for a FEM stress analysis and the resulting stress distribution has been evaluated. Finally, the structure design and Pb-17Li flow velocity has been optimized according to the calculations and analysis.

  4. Experimental estimate of tritium production parameters for RF test blanket module

    International Nuclear Information System (INIS)

    Tritium breeding ratio (TBR) is a most value among controlled fusion reactor parameters. One in targets of test blanket module (TBM) program is experimental investigation of the value. On the whole TBR can be submitted for consideration TBR = BTB/BTP (BTB: breaded tritium in blanket; BTP: burned tritium in plasma). To investigate a numerator of the formula a tritium production in breeding zone (TBZ) of the TBM has to be measured under ITER plasma experiments. Tritium and neutron monitoring system with some lithium and neutron sensors are proposed. Lithium ortho-silicate and lithium carbonate and the neutron detectors fit the task. Differences isotope lithum-6 and lithium-7 can be applied. For delivery/withdrawal of the detectors into/from the TBZ a pneumatic concept is suggested with using canals allocated in module. The canals pass through the module back wall and reach the attended area. These canals allow the insertion of activation foil and capsules with material probes during the dwell time or operational pauses. Casks for the detectors and the canal for conveying of the casks in the TBM before pulse and extraction after pulse are presented in this paper

  5. The feasibility study I on the blanket fuel options for the ATW/HYPER

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok; Meyer, M.K; Hayes, S.L

    2001-01-01

    The choice of a blanket fuel cycle technology and the fuel type for HYPER/ATW are important to develop an ADS with better economics, performance and safety. Even though several fuel types have been considered as an alternative of the blanket fuels for HYPER/ATW, the metal alloy and the dispersion fuels were selected as the candidate fuels for ADS, and the technical feasibilities for both fuels are evaluated in this report. General performance characteristics, fabrication abilities, technical aspects, safety aspects, economics, and non-proliferation aspects for each fuel type are reviewed and evaluated. And some technological problems are addressed in this report, focused on the development strategy, the roadmaps, and the flexibility to meet the missions and specific designs. This study has been performed at the first stage of conceptual design. Since it is under the lack of physical properties for each fuel material, no an attempt is made to select the best fuel option, but the more better fuel options are recommended.

  6. Analysis of the thorium axial blanket experiments in the proteus reactor

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.; Ingersoll, D.T.

    1980-12-01

    Detailed analysis has been completed for the ThO/sub 2/ and Th-metal axial blanket experiments performed at the Swiss PROTEUS critical facility in order to compare reaction rates and neutron spectra measured in prototypic GCFR configurations with calculated results. The PROTEUS configurations allowed the analysis of infinitely dilute thorium data in a PuO/sub 2//UO/sub 2/ fast lattice spectrum at core center as well as the analysis of resonance self-shielding effects in the thorium-bearing axial blankets. These comparisons indicate that significant deficiencies still exist in the latest evaluated infinitely dilute thorium data file. Specifically, the analysis showed that the /sup 232/Th capture is underpredicted by ENDF/B-IV data, and the discrepancies are further exaggerated by ENDF/B-V data. On the other hand, ENDF/B-V /sup 232/Th fission data appear to be significantly improved relative to ENDF/B-IV data, while discrepancies are extremely large for the (n,2n) process in both data files. Finally, the (n,n') cross sections for thorium also appear improved in ENDF/B-V, except for a small energy range just above the 50 keV threshold. Therefore, these combined data deficiencies suggest that relatively large uncertainties should be associated with many of the results obtained from recent fast reactor alternate fuel cycle analyses. 38 figures, 12 tables.

  7. A fail–safe and cost effective fabrication route for blanket First Walls

    Energy Technology Data Exchange (ETDEWEB)

    Commin, L., E-mail: lorelei.commin@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rieth, M.; Dafferner, B.; Zimmermann, H.; Bolich, D.; Baumgärtner, S.; Ziegler, R. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dichiser, S.; Fabry, T.; Fischer, S.; Hildebrand, W.; Palussek, O.; Ritz, H.; Sponda, A. [Karlsruhe Institute of Technology (KIT), Technische Infrastruktur und Dienste (TID), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-11-15

    Helium Cooled Lithium Lead and Helium Cooled Pebble Bed concepts have been selected as European Test Blanket Modules (TBM) for ITER. The TBM fabrication will need the assembly of six Reduced Activation Ferritic Martensitic steel sub-components, namely First Wall, Caps, Stiffening Grid, Breeding Units, Back Plates/Manifolds, and Attachment system. The fabrication of the First Wall requires the production of cooling channels inside 30 mm thick bended plates. For this specific component, the main issues consist of the lack of accessibility of some areas to join, the process tolerances, the dimensional stability and the resulting assembly mechanical properties. Several fabrication routes have been already investigated, which involve diffusion welding and fusion welding (electron beam, laser beam, hybrid MIG/laser). In this study, an alternative processing method was developed, based on Hot Isostatic Pressing of inner pipes within two half-shells. This method presents some major advantages over the existing ones, in particular its inherent fail–safe design due to the application of the double containment principle, the solely use of cost effective standard fabrication processes and the resulting component dimensional stability. A four channel mock-up was fabricated and analyzed to validate the fabrication procedure. The joint quality was assessed using microstructural characterization and Charpy tests. The results confirm the predicted perfect weld lines as well as the preservation of the mechanical properties. Therefore, the presented fabrication procedure is very appropriate for the fabrication of First Walls for fusion reactor blankets.

  8. Tritium and heat management in ITER Test Blanket Systems port cell for maintenance operations

    International Nuclear Information System (INIS)

    Highlights: •The ITER TBM Program is one of the ITER missions. •We model a TBM port cell with CFD to optimize the design choices. •The heat and tritium releases management in TBM port cells has been optimized. •It is possible to reduce the T-concentration below one DAC in TBM port cells. •The TBM port cells can have human access within 12 h after shutdown. -- Abstract: Three ITER equatorial port cells are dedicated to the assessment of six different designs of breeding blankets, known as Test Blanket Modules (TBMs). Several high temperature components and pipework will be present in each TBM port cell and will release a significant quantity of heat that has to be extracted in order to avoid the ambient air and concrete wall temperatures to exceed allowable limits. Moreover, from these components and pipes, a fraction of the contained tritium permeates and/or leaks into the port cell. This paper describes the optimization of the heat extraction management during operation, and the tritium concentration control required for entry into the port cell to proceed with the required maintenance operations after the plasma shutdown

  9. Study on electromagnetic-structural behavior of first wall/blanket structure for tokamak fusion reactor

    International Nuclear Information System (INIS)

    The electromagnetic problems related to the structural design of the first wall/blanket structure, which is a major component of Fusion Reactor, have been studied. The electromagnetic load, which is characteristic and very important of Tokamak type, is necessary for the evaluation of the structural integrity at the last item of the design process. A transient electromagnetic phenomena, which include the measurement of the eddy current obtained by the simulated plasma disruption experiment, the vibration behavior of the beam-plate by the dynamic electromagnetic load and the verification of the numerical codes, have been clarified. A static electromagnetic phenomena have been studied to evaluate the applicability of the ferromagnetic material to the first wall/blanket structure of Tokamak Power Reactor. The numerical code, which can calculate the magnetic field of the finite ferromagnetic body, has been developed and the magnetic field distortions inside and outside the materials has been studied. The deformation by the magnetic torque, which generates inside the ferromagnetic material placed in the magnetic field, has been studied. The effects of the magnetic stiffness and the saturated magnetic field to the deformation has been also clarified. (author)

  10. A ceramic breeder in a poloidal tube blanket for a tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Amici, A.; Anzidei, L.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.; Zampaglione, V.; Petrizzi, L. (Associazione Euratom-CNEN sulla Fusione, Centro di Frascati (Italy))

    1989-04-01

    A conceptual study of a helium-cooled solid breeder blanket for a tokamak reactor is presented. Tritium breeding capability together with system reliability are taken as the main design criteria. The blanket consists of tubular poloidal modules made of a central bundle of ceramic rods ({gamma}LiAlO/sub 2/) with a coaxial distribution of the inlet/outlet coolant flow (He) surrounded by a multiplier material (Be) in the form of bored bricks. The Be to {gamma}LiAlO/sub 2/ volume ratio is 4/1. The He inlet and outlet branches are cooling Be and {gamma}LiAlO/sub 2/, respectively. A purge He flow running through small central holes of the ceramic rods is derived from the main flow. Under the typical conditions of a tokamak reactor (neutron wall load=2 MW/m/sup 2/), a full coverage tritium breeding ratio of 1.47 is achieved for the following design and operating parameters: outlet He temperature=570/sup 0/C; inlet He temperature=250/sup 0/; total extracted power=2700 MW; He pumping power percentage=2%; minimum/maximum {gamma}LiAlO/sub 2/ temperature=400/900/sup 0/C; maximum structural temperature=475/sup 0/C; and maximum Be temperature=525/sup 0/C. (orig.).

  11. Beryllium and lithium resource requirements for solid blanket designs for fusion reactors

    International Nuclear Information System (INIS)

    The lithium and beryllium requirements are analyzed for an economy of 106 MW(e) CTR3 capacity using solid blanket fusion reactors. The total lithium inventory in fusion reactors is only approximately 0.2 percent of projected U. S. resources. The lithium inventory in the fusion reactors is almost entirely 6Li, which must be extracted from natural lithium. Approximately 5 percent of natural lithium can be extracted as 6Li. Thus the total feed of natural lithium required is approximately 20 times that actually used in fusion reactors, or approximately 4 percent of U. S. resources. Almost all of this feed is returned to the U. S. resource base after 6Li is extracted, however. The beryllium requirements are on the order of 10 percent of projected U. S. resources. Further, the present cost of lithium and the cost of beryllium extraction could both be increased tenfold with only minor effects on CTR capital cost. Such an increase should substantially multiply the economically recoverable resources of lithium and beryllium. It is concluded that there are no lithium or beryllium resource limitations preventing large-scale implementation of solid blanket fusion reactors. (U.S.)

  12. Fabrication of ITER Semi-Prototype Blanket First Wall for the Final Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Kwon; Jung, Yang Il; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Suk Kwon; Lee, Don Won; Kim, Duck Hoi; Cho, Seung Yon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The ITER semi-prototype was designed to qualify the manufacturing technology for the ITER blanket first wall. According to the design of the semi-prototype, its fabrication is expected to face great difficulty. The blanket first wall consists of three different materials, i.e., beryllium (Be), CuCrZr, and stainless-steel (SS), which are joined into one part. For fabrication of these multi-layered structures, hot isostatic pressing (HIP), which is one of the diffusion bonding methods, has been considered as a promising technology to realize sufficient mechanical integrity of a joint under the anticipated high neutron and stress fields. HIP provides high dimensional accuracy, low residual stress during the joining process, and the joining of three-dimensionally complex structures in comparison with other joining methods. Even though the joining technology for the different materials had been developed in the first stage of the qualification, the joining is still a key issue for the fabrication of the semi-prototype

  13. Conceptual study on high performance dual-cooled blanket in a spherical tokamak fusion-driven transmuter

    International Nuclear Information System (INIS)

    A preliminary conceptual design of high performance dual-cooled blanket in a spherical tokamak fusion-driven transmuter has been proposed based on the core D-T plasma parameter level achieved or to be achieved in the near future. The calculation shows that this kind of blanket is tritium self-sustainable and could safely transmute the long-lived actinides produced by 102 GWe·year PWRs, with several tons of fission products per year and 11600 MW thermal power output

  14. Experimental investigations on the substantiation of the conception of tokamak blanket cooling with a lead-lithium eutectic

    International Nuclear Information System (INIS)

    One describes the experiments to look into possible application of Pb-Li eutectic to cool tokamak blanket. One investigated into effect of Pb-Li eutectic on characteristics of insulating coatings (IC) of structural materials. One investigated, as well, into MHD resistance of Pb-Li eutectic and into interaction within structural material - IC - Li(17)Pb(83) eutectic - H2O, O2, H2, Bi impurities system. The derived results are used to justify application of the mentioned coolant to cool tokamak blanket

  15. Kinetics of para-nitrophenol and chemical oxygen demand removal from synthetic wastewater in an anaerobic migrating blanket reactor.

    Science.gov (United States)

    Kuşçu, Ozlem Selçuk; Sponza, Delia Teresa

    2009-01-30

    A laboratory scale anaerobic migrating blanket reactor (AMBR) was operated at different HRTs (1-10.38 days) in order to determine the para-nitrophenol (p-NP) and COD removal kinetic constants. The reactor was fed with 40 mg L(-1)p-NP and 3000 mg L(-1) glucose-COD. Modified Stover-Kincannon and Grau second-order kinetic models were applied to the experimental data. The predicted p-NP and COD concentrations were calculated using the kinetic constants. It was found that these data were in better agreement with the observed ones in the modified Stover-Kincannon compared to Grau second-order model. The kinetic constants calculated according to Stover-Kincannon model are as follows: the saturation value constant (K(B)) and maximum utilization rate constants (R(max)) were found as 31.55 g CODL(-1)day(-1), 29.49 g CODL(-1)day(-1) for COD removal and 0.428 g p-NPL(-1)day(-1), 0.407 g p-NPL(-1)day(-1) for p-NP removal, respectively (R(2)=1). The values of (a) and (b) were found to be 0.096 day and 1.071 (dimensionless) with high correlation coefficients of R(2)=0.85 for COD removal. Kinetic constants for specific gas production rate were evaluated using modified Stover-Kincannon, Van der Meer and Heerrtjes and Chen and Hasminoto models. It was shown that Stover-Kincannon model is more appropriate for calculating the effluent COD, p-NP concentrations in AMBR compared to the other models. The maximum specific biogas production rate, G(max), and proportionality constant, G(B), were found to be 1666.7 mL L(-1) day(-1) and 2.83 (dimensionless), respectively in modified Stover-Kincannon gas model. The bacteria had low Haldane inhibition constants (K(ID)=14 and 23 mg L(-1)) for p-NP concentrations higher than 40 mg L(-1) while the half velocity constant (K(s)) increased from 10 to 60 and 118 mg L(-1) with increasing p-NP concentrations from 40 to 85 and 125 mg L(-1).

  16. Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO

    International Nuclear Information System (INIS)

    A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module and blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the ITER Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket

  17. Optimization of separate hydrogen and methane production from cassava wastewater using two-stage upflow anaerobic sludge blanket reactor (UASB) system under thermophilic operation.

    Science.gov (United States)

    Intanoo, Patcharee; Rangsanvigit, Pramoch; Malakul, Pomthong; Chavadej, Sumaeth

    2014-12-01

    The objective of this study was to investigate the separate hydrogen and methane productions from cassava wastewater by using a two-stage upflow anaerobic sludge blanket (UASB) system under thermophilic operation. Recycle ratio of the effluent from methane bioreactor-to-feed flow rate was fixed at 1:1 and pH of hydrogen UASB unit was maintained at 5.5. At optimum COD loading rate of 90 kg/m3 d based on the feed COD load and hydrogen UASB volume, the produced gas from the hydrogen UASB unit mainly contained H2 and CO2 which provided the maximum hydrogen yield (54.22 ml H2/g COD applied) and specific hydrogen production rate (197.17 ml/g MLVSSd). At the same optimum COD loading rate, the produced gas from the methane UASB unit mainly contained CH4 and CO2 without H2 which were also consistent with the maximum methane yield (164.87 ml CH4/g COD applied) and specific methane production rate (356.31 ml CH4/g MLVSSd). The recycling operation minimized the use of NaOH for pH control in hydrogen UASB unit. PMID:25306229

  18. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers.

  19. Multiple Module Simulation of Water Cooled Breeding Blankets in K-DEMO Using Thermal-Hydraulic Analysis Code MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A preliminary concept for the Korean fusion demonstration reactor (K-DEMO) has been studied by the National Fusion Research Institute (NFRI) based on the National Fusion Roadmap of Korea. The feasibility studies have been performed in order to establish the conceptual design guidelines of the breeding blanket. As a part of the NFRI research, Seoul National University (SNU) is conducting thermal design, evaluation and validation of the water-cooled breeding blanket for the K-DEMO reactor. The purpose of this study is to extend the capability of MARS-KS to the overall blanket system analysis which includes 736 blanket modules in total. The strategy for the multi-module blanket system analysis using MARS-KS is introduced and the analysis result of the 46 blanket modules of single sector was summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for thermal analysis of the conceptual design of the K-DEMO breeding blanket. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering the pressure drop that occurs in each module. For a feasibility test of the proposed methodology, 46 blankets in a sector, which are connected with each other through the common headers for the sector inlet and outlet, were simulated. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation. Because of parallelization using the MPI system, the computational time could be reduced significantly. In future, this methodology will be extended to an efficient simulation of multiple sectors, and further validation for transient simulation will be carried out for more practical applications.

  20. Gas tagging system development in Japan

    International Nuclear Information System (INIS)

    The Gas tagging method has been considered to be most desirable for a failed fuel location system for the fast breeder reactor, regarding the component reduction in the reactor vessel and rapid location during reactor operation. The gas tagging system has been designed by referring to R and D results obtained in Japan and other countries. The designed system is comprised of tag gas filling pins, cover gas sampling system, tag gas recovery and enrichment system, tag gas analyzer and system control and data handling computers. The main specifications for this system have been decided as follows; 1) Main function is location of failed fuels in core and a part of blanket region, 2) Identification capability is each subassembly, 3) Time for identification is within a few days, 4) Continuous operation with automatic start at fuel failure, 5) Detection sensitivity must cover both gas leak and pin burst. In designing the gas tagging system, the following R and D items were selected; 1) System design study, 2) Tag gas capsule development, 3) Modeling the tag gas behavior in reactor primary cooling system, 4) Tag gas recovery and enrichment system, 5) Computer code development for tag gas isotope ratio change estimation. Details of the Japanese gas tagging system development appear in this paper. (author)

  1. Gas core reactors for actinide transmutation. [uranium hexafluoride

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.

    1979-01-01

    The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.

  2. A Markov blanket-based method for detecting causal SNPs in GWAS

    Directory of Open Access Journals (Sweden)

    Han Bing

    2010-04-01

    Full Text Available Abstract Background Detecting epistatic interactions associated with complex and common diseases can help to improve prevention, diagnosis and treatment of these diseases. With the development of genome-wide association studies (GWAS, designing powerful and robust computational method for identifying epistatic interactions associated with common diseases becomes a great challenge to bioinformatics society, because the study of epistatic interactions often deals with the large size of the genotyped data and the huge amount of combinations of all the possible genetic factors. Most existing computational detection methods are based on the classification capacity of SNP sets, which may fail to identify SNP sets that are strongly associated with the diseases and introduce a lot of false positives. In addition, most methods are not suitable for genome-wide scale studies due to their computational complexity. Results We propose a new Markov Blanket-based method, DASSO-MB (Detection of ASSOciations using Markov Blanket to detect epistatic interactions in case-control GWAS. Markov blanket of a target variable T can completely shield T from all other variables. Thus, we can guarantee that the SNP set detected by DASSO-MB has a strong association with diseases and contains fewest false positives. Furthermore, DASSO-MB uses a heuristic search strategy by calculating the association between variables to avoid the time-consuming training process as in other machine-learning methods. We apply our algorithm to simulated datasets and a real case-control dataset. We compare DASSO-MB to other commonly-used methods and show that our method significantly outperforms other methods and is capable of finding SNPs strongly associated with diseases. Conclusions Our study shows that DASSO-MB can identify a minimal set of causal SNPs associated with diseases, which contains less false positives compared to other existing methods. Given the huge size of genomic dataset

  3. TO THE SUBSTANTIATION OF CALCULATION PRINCIPLES OF ROAD CONSTRUCTION STRENGTH HAVING BLANKET REGULATING WATER-THERMIC REGIME

    OpenAIRE

    Savenko, V.; Petrovich, V.; Chechuga, O.

    2005-01-01

    Principles of road construction strength with the blanket regulating water-thermal conditions are surveyed. The affect of dampness on a general module of elasticity as well as the basic activities which promote necessary frost resistance of the construction are considered. Synthetic fibre application is surveyed.

  4. Analysis on tritium management in FLiBe blanket for LHD-type helical reactor FFHR2

    International Nuclear Information System (INIS)

    In FFHR2 (LHD-type helical reactor) design, FLiBe has been selected as a self-cooling tritium breeder for low reactivity with oxygen and water and lower conductivity. Considering the fugacity of the tritium, particular care and adequate mitigation measures should be applied for the effectively extracting tritium from breeder and controlling the tritium release to the environment. In this paper, a tritium analysis model of the FLiBe blanket system was developed and the preliminary analysis on tritium permeation and extraction for FLiBe blanket system were done. The results of the analysis showed that it was reasonable to select W alloy as heat exchanger (HX) material, the proportion of FLiBe flow in tritium recover system (TRS) was 0.2, the efficiency of TRS was 0.85 and tritium permeation reduction factor (TPRF) was 20 in blanket etc.. In addition, further R and D efforts were required for FFHR2 tritium system to guarantee the tritium self-sufficient and safety, for example reasonable quality of tritium permeation barriers on blanket, requirement for the TRS and fabrication technology of the heat exchanger etc.. (author)

  5. Analysis on tritium management in FLiBe blanket for force-free helical reactor FFHR2

    International Nuclear Information System (INIS)

    In FFHR2 design, FLiBe has been selected as a self-cooling tritium breeder for low reactivity with oxygen and water and lower conductivity. Considering the fugacity of the tritium, particular care and adequate mitigation measures should be applied for the effectively extract tritium from breeder and control the tritium release to the environment. In this paper, a tritium analysis model of the FLiBe blanket system was developed and the preliminary analysis on tritium permeation and extraction for FLiBe blanket system were done. The factors which affected tritium extraction and permeation were calculated and evaluated, such as the heat exchanger material, tritium permeation reduction factor (TPRF) in blanket, proportion of FLiBe flow in tritium recover system (TRS) and efficiency of TRS etc. The results of the analysis showed that further R and D efforts were required for FFHR2 tritium system to guarantee the tritium self-sufficient and safety, for example reasonable quality of tritium permeation barriers on blanket, requirement for the TRS and fabrication technology of the heat exchanger etc.. (author)

  6. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    NARCIS (Netherlands)

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times

  7. Safety analysis of a loss-of-coolant accident in a breeding blanket for experimental fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rocco, P.; Casini, G.; Djerassi, H.; Papa, L.; Pautasso, G.; Renda, V.; Rouyer, J.L.

    1985-07-01

    A LOCA in a blanket design proposed for NET (Next European Torus) is investigated. The structural analysis of a damaged breeder unit shows that this first containment barrier has a high probability of survival to this accident. The radioactive sources involved are evaluated and an assessment is made of all containment barriers and associated protection systems.

  8. 76 FR 33746 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Liquefied Natural...

    Science.gov (United States)

    2011-06-09

    ..., which granted the Dow Chemical Company blanket authorization to export up to an amount equivalent to 390....'' \\7\\ \\7\\ The Dow Chemical Company, DOE/FE Order No. 2859, issued October 5, 2010. Additionally...) Texas LNG Holdings, LLC, a Delaware limited liability company and wholly-owned subsidiary of The...

  9. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F.J.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  10. Investigations of neutron characteristics for salt blanket models; integral fission cross section measurements of neptunium, plutonium, americium and curium isotopes

    International Nuclear Information System (INIS)

    Neutron characteristics of salt blanket micromodels containing eutectic mixtures of sodium, zirconium, and uranium fluorides were measured on FKBN-2M, BIGR and MAKET facilities. The effective fission cross sections of neptunium, plutonium, americium, and curium isotopes were measured on the neutron spectra formed by micromodels. (author)

  11. Tritium self-sufficiency of HCPB blanket modules for DEMO considering time-varying neutron flux spectra and material compositions

    Energy Technology Data Exchange (ETDEWEB)

    Aures, A., E-mail: Alexander.Aures@ccfe.ac.uk; Packer, L.W.; Zheng, S.

    2013-10-15

    Highlights: • Simulations on the tritium breeding performance of HCPB blanket modules were done. • MCNP5 and FISPACT were used for coupled transport and activation calculations. • Material transmutation affects the neutron flux spectra within the blanket modules. • The consequences of time-dependent spectra on TBR and tritium self-sufficiency were investigated. -- Abstract: Significant transmutation of solid-type breeding blanket materials affects the time and spatial variation of neutron energy within such materials. This has an impact on simulation assumptions required to accurately assess tritium surplus quantities for conceptual power plant devices. This paper details an investigation, via simulation, of the consequences for the tritium breeding ratio and the tritium self-sufficiency of a DEMO concept with homogeneous Helium-Cooled Pebble Bed blanket modules containing Li{sub 4}SiO{sub 4} ceramic breeder material. For this purpose, a code was developed to couple MCNP5 and FISPACT to supply material compositions from activation calculations to the neutron transport calculation in an iterative loop covering several time steps. Simulation results are presented for a simple 1D spherical device model and a DEMO tokamak model.

  12. A fail-safe and cost effective fabrication route for blanket First Walls

    Science.gov (United States)

    Commin, L.; Rieth, M.; Dafferner, B.; Zimmermann, H.; Bolich, D.; Baumgärtner, S.; Ziegler, R.; Dichiser, S.; Fabry, T.; Fischer, S.; Hildebrand, W.; Palussek, O.; Ritz, H.; Sponda, A.

    2013-11-01

    Helium Cooled Lithium Lead and Helium Cooled Pebble Bed concepts have been selected as European Test Blanket Modules (TBM) for ITER. The TBM fabrication will need the assembly of six Reduced Activation Ferritic Martensitic steel sub-components, namely First Wall, Caps, Stiffening Grid, Breeding Units, Back Plates/Manifolds, and Attachment system. The fabrication of the First Wall requires the production of cooling channels inside 30 mm thick bended plates. For this specific component, the main issues consist of the lack of accessibility of some areas to join, the process tolerances, the dimensional stability and the resulting assembly mechanical properties. Several fabrication routes have been already investigated, which involve diffusion welding and fusion welding (electron beam, laser beam, hybrid MIG/laser).

  13. Nitriding treatment of reduced activation ferritic steel as functional layer for liquid breeder blanket

    International Nuclear Information System (INIS)

    The development of functional layers such as a tritium permeation barrier and an anti-corrosion layer is the essential technology for the development of a molten salt type self cooled fusion blanket. In the present study, the characteristics of a nitriding treatment on a reduced activation ferritic steel, JLF-1 (Fe-9Cr-2W-0.1C) as the functional layer were investigated. The steel surface was nitrided by an ion nitriding treatment or a radical nitriding treatment. The nitridation characteristic of the steel surface was made clear based on the thermodynamic stability. The thermal diffusivity, the hydrogen permeability and the chemical stability in the molten salt Flinak were investigated. The results indicated that the nitriding treatment can improve the compatibility in the Flinak without the decrease of the thermal diffusivity, though there was little improvement as the hydrogen permeation barrier. (author)

  14. Preliminary piping layout and integration of European test blanket modules subsystems in ITER CVCS area

    Energy Technology Data Exchange (ETDEWEB)

    Tarallo, Andrea, E-mail: andrea.tarallo@unina.it [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Mozzillo, Rocco; Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Aiello, Antonio; Utili, Marco [ENEA UTIS, C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ricapito, Italo [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • The use of human modeling tools for piping design in view of maintenance is discussed. • A possible preliminary layout for TBM subsystems in CVCS area has been designed with CATIA. • A DHM-based method to quickly check for maintainability of piping systems is suggested. - Abstract: This paper explores a possible integration of some ancillary systems of helium-cooled lithium lead (HCLL) and helium-cooled pebble-bed (HCPB) test blanket modules in ITER CVCS area. Computer-aided design and ergonomics simulation tools have been fundamental not only to define suitable routes for pipes, but also to quickly check for maintainability of equipment and in-line components. In particular, accessibility of equipment and systems has been investigated from the very first stages of the design using digital human models. In some cases, the digital simulations have resulted in changes in the initial space reservations.

  15. Limb-darkening coefficients from line-blanketed non-LTE hot-star model atmospheres

    CERN Document Server

    Reeve, D C

    2015-01-01

    We present grids of limb-darkening coefficients computed from non-LTE, line-blanketed TLUSTY model atmospheres, covering effective-temperature and surface-gravity ranges of 15--55kK and 4.75 dex (cgs) down to the effective Eddington limit, at 1x, 1x, 0.5x (LMC), 0.2x (SMC), and 0.1x solar. Results are given for the Bessell UBVRIJKHL, Sloan ugriz, Stromgren ubvy, WFCAM ZYJHK, Hipparcos, Kepler, and Tycho passbands, in each case characterized by several different limb-darkening `laws'. We examine the sensitivity of limb darkening to temperature, gravity, metallicity, microturbulent velocity, and wavelength, and make a comparison with LTE models. The dependence on metallicity is very weak, but limb darkening is a moderately strong function of log(g) in this temperature regime.

  16. Fracture toughness of irradiated candidate materials for ITER first wall/blanket structures: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J.; Pawel, J.E.; Grossbeck, M.L.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-04-01

    Disk compact specimens of candidate materials for first wall/blanket structures in ITER have been irradiated to damage levels of about 3 dpa at nominal irradiation temperatures of either 90 250{degrees}C. These specimens have been tested over a temperature range from 20 to 250{degrees}C to determine J-integral values and tearing moduli. The results show that irradiation at these temperatures reduces the fracture toughness of austenic stainless steels, but the toughness remains quite high. The toughness decreases as the temperature increases. Irradiation at 250{degrees}C is more damaging that at 90{degrees}C, causing larger decreases in the fracture toughness. The ferritic-martensitic steels HT-9 and F82H show significantly greater reductions in fracture toughness that the austenitic stainless steels.

  17. Mechanical characteristics and position control of vehicle/manipulator for ITER blanket remote maintenance

    International Nuclear Information System (INIS)

    In International Thermonuclear Experimental Reactor (ITER), blanket maintenance requires the 4-tonne module handling with high positioning accuracy of ±2 mm. In order to meet this requirement, it is essential to suppress the dynamic deflection and vibration of the remote handling equipment due to sudden transfer of the module weight from/to the back-plate supports to/from the equipment itself during installation and removal. A new control scheme was proposed and tested so as to suppress the dynamic behaviors. As a result, the dynamic deflection of the rail and the acceleration of the manipulator were successfully decreased to nearly zero. Based on the test results, the proposed control scheme was concluded to be effective so as to suppress this kind of dynamic effect during heavy component handling

  18. Verification test results of a cutting technique for the ITER blanket cooling pipes

    International Nuclear Information System (INIS)

    For replacement of the first wall (FW) of the international thermonuclear experimental reactor (ITER), cutting and welding tools for the cooling pipes must be able to access a pipe from the surface side of the FW and cut/weld the pipe from the inside the cooling pipe (inner diameter: 42.72 mm, thickness: 2.77 mm). The cutting tool for the pipe end is required to cut a flat plate circularly from the surface side of the FW (cutting diameter: approximately 44 mm, plate thickness: 5 mm). To determine the specifications for both the tools and the blanket hydraulic connections, the ITER Organization (IO) and the Japan Domestic Agency (JADA) conducted research and development activities regarding the FW replacement. This paper describes the current status of the development of cutting tools for the cooling pipe connection.

  19. Maintaining granulation in a denitrifying upflow sludge-blanket reactor treating groundwater with low hardness.

    Science.gov (United States)

    Rouse, Joseph D; Nakashima, Takahiro; Furukawa, Kenji

    2003-01-01

    Maintenance of denitrifying granular sludge for treating soft groundwater (total hardness = 75 mg calcium carbonate/L) in an upflow sludge-blanket reactor was demonstrated with complete removal of applied nitrate (20 mg N/L) over extended operation and a hydraulic residence time of 34 minutes. A high pH of approximately 9.0 was shown to be important for generation of mineral precipitation needed for production of heavy granular sludge with good retention characteristics. As a method of increasing precipitation potential, pH adjustment was determined to be more economically favorable than calcium or alkalinity supplementation. In addition, temporary increases in substrate loading were shown to be effective for enhancing biomass levels in a manageable granular sludge. The significance of biomass in promoting mineral precipitation was discussed.

  20. A granulation model using diosgenin wastewater in an upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    Jianguo BAO; Hui LIU; Yanxin WANG; Lijun ZHANG

    2009-01-01

    An enhanced start-up of an upfiow anaerobic sludge blanket (UASB) reactor for diosgenin wastewater treatment was designed and experimentally tested. Gran-ular sludge was formed on day 35 in the reactor with high concentrations of chloride (4000-7000 mg/L) and COD (5000-13000mg/L) as substrate. A new model for the granulation was proposed which divides the formation of anaerobic granules into six consecutive stages; they include semi-embryonic granule formation, embryonic granule formation, single-nucleus granule formation, multi-nuclei granule formation, granule growth and granule maturation. A model of the granule structure was also proposed based on scanning electron microscope observation. The microspores occurring on the surface and further leading into the interior of the granules were considered as the channels and the passage of the materials and the products of the microorganisms' metabolism inside the granules.

  1. An aqueous lithium salt self-cooled blanket and shield for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Sawan, M.E.; Sviatoslavsky, I.N.; Kulcinski, G.L.

    1989-03-01

    A low cost low risk tritium breeding concept has been developed for ITER. This concept is based on dissolving lithium compounds in the water coolant. This makes it possible to breed tritium in all the shield zones, and results in tritium self-efficiency as well as enhanced magnet protection. The design that maximizes the outboard tritium breeding ratio utilizes a 40 cm thick zone of Be balls followed by an 80 cm thick zone of steel balls. Single size balls are used to minimize the pressure drop. The overall TBR excluding tritium bred in the test modules is 1.1. The inlet coolant temperature is 40/sup 0/C and the temperature rise is 15/sup 0/C in the first wall and 35/sup 0/C in the blanket.

  2. Microbiological sampling of spacecraft cabling, antennas, solar panels and thermal blankets

    Science.gov (United States)

    Koukol, R. C.

    1973-01-01

    Sampling procedures and techniques described resulted from various flight project microbiological monitoring programs of unmanned planetary spacecraft. Concurrent with development of these procedures, compatibility evaluations were effected with the cognizant spacecraft subsystem engineers to assure that degradation factors would not be induced during the monitoring program. Of significance were those areas of the spacecraft configuration for which special handling precautions and/or nonstandard sample gathering techniques were evolved. These spacecraft component areas were: cabling, high gain antenna, solar panels, and thermal blankets. The compilation of these techniques provides a historical reference for both the qualification and quantification of sampling parameters as applied to the Mariner Spacecraft of the late 1960's and early 1970's.

  3. ITER屏蔽包层活化分析%Activation analysis for ITER shielding blanket

    Institute of Scientific and Technical Information of China (English)

    杨琪; 李斌; 郑剑; 何桃; 蒋洁琼; 吴宜灿

    2016-01-01

    作为国际热核聚变实验堆(ITER)的重要部件之一,屏蔽包层承受高强度聚变中子辐照,需要定期更换和维修。当活化的屏蔽包层从 ITER 托卡马克装置移到热室时,可能会给工作人员造成严重的辐射照射,是 ITER大厅和热室屏蔽设计的重要辐射源。文中基于 ITER最新中子学分析基准模型和“二步法”停堆剂量计算方法,使用超级蒙特卡罗核计算仿真软件系统 SuperMC针对15号屏蔽包层建立精细的中子学模型,并计算分析包层的活化情况及最严重情况下的周围辐射剂量率,并初步应用于 ITER赤道窗口室的屏蔽分析。计算结果显示,单个包层周围最大剂量率为350 Sv/hr,当传送小车停留在赤道窗口室内时,窗口室屏蔽门外剂量率高于10 mSv/hr,不足以满足设计要求。%As one of the key components of the International thermonuclear experiment reactor (ITER),blankets will sustain radiation from fusion neutrons with high intensity and may need to be replaced and maintained regularly. During the maintenance,the cask with activated blankets will be transferred to hot cell from Tokamak,which will cause high level of radiation in the building and radiation exposure for workers. Employing the Super Monte Carlo Simulation Program for Nuclear and Radiation Process (SuperMC),the activation of No.1 5 shielding blanket and the shutdown dose around was analyzed based on the latest ITER neutronics model named Blite-3. The results were applied in the shielding analysis for ITER equatorial port cell. From the results,the dose rate around one activated blanket should be as high as 350 Sv/hr. When the cask carrying four activated first walls was transferred to the equatorial port cell,the dose rate in the gallery outside the port cell could be more than 10 mSv/hr,not meeting with the design criteria.

  4. Reaction rates in blanket assemblies of a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    To validate neutronics calculation for the blanket design of fusion-fission hybrid reactor, experiments for measuring reaction rates inside two simulating assemblies are performed. Two benchmark assemblies were developed for the neutronics experiments. A D-T fusion neutron source is placed at the center of the setup. One of them consists of three layers of depleted uranium shells and two layers of polyethylene shells, and these shells are arranged alternatively. The 238U capture reaction rates are measured using depleted uranium foils and an HPGe gamma spectrometer. The fission reaction rates are measured using a fission chamber coated with depleted uranium. The other assembly consists of depleted uranium and LiH shells. The tritium production rates are measured using the lithium glass scintillation detector which is placed in the LiH region of the assembly. The measured reaction rates are compared with the calculated ones predicted using MCNP code, and C/E values are obtained. (authors)

  5. The LA-0 project of experimental investigations of ADTT blankets with fluoride salts

    International Nuclear Information System (INIS)

    There was an idea of experimental investigations of accelerator-driven transmuter blanket cores with fluoride salts on the experimental reactor LR-0 in the Nuclear Research Institute Rez plc, the Czech Republic, which has been further developed and elaborated. The results of a preliminary proposal and assessment of possibility of a reconstruction of the LR-0 core for experiments simulating blankets with molten fluoride salt fuel were reported. There is a brief survey of essential conclusions of both those stages presented in this paper. The current status of the complex project called LA-0 which has been proposed to start in 1996 will be given in some details. The project consists of all the basic regions -neutron source and subcritical assembly design and other engineering problems including fluoride chemical technology - of such a system. Nevertheless, the main attention, in this paper, is focused on the methodology of all the regions, i.e. methods of neutronic characteristic predictions, both computational and experimental, as well as some methods selected in the other topical regions are mentioned. Among the methods being taken into account for the first phases of the experimental program the measurements of neutronic characteristics by use of oscillating samples method will be given at the first position. There is also an illustrative description of the existing LR-0 experimental reactor given in the paper. Finally, there are future stages of the project outlined in a rough frame only and their benefits as well as drawbacks critically discussed in the concluding part of the paper. 5 refs., 4 figs

  6. Codevelopment of conceptual understanding and critical attitude: toward a systemic analysis of the survival blanket

    Science.gov (United States)

    Viennot, Laurence; Décamp, Nicolas

    2016-01-01

    One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.

  7. Biological nutrient removal by internal circulation upflow sludge blanket reactor after landfill leachate pretreatment.

    Science.gov (United States)

    Abood, Alkhafaji R; Bao, Jianguo; Abudi, Zaidun N

    2013-10-01

    The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A2/O), recycling sludge without air (low oxygen) and a combination of both (A2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efficiencies of COD and NH3-N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading. PMID:24494501

  8. Resting oxygen consumption of premature infants covered with a plastic thermal blanket.

    Science.gov (United States)

    Darnall, R A; Ariagno, R L

    1979-04-01

    Premature infants in single-wall incubators covered with "thermal blankets" made of plastic packing material have large reductions in insensible water loss (IWL) compared with naked infants. We postulated that such reductions inevaporative heat loss would not result in decreases in caloric expenditure if body temperature were maintained by a servocontrolled heat source. Using an open-circuit technique, we measured oxygen consumption (VO2), carbon dioxide production (VCO2), heart rate (HR), respiratory rate (RR), and abdominal skin (Tabd), cheek, thigh, rectal, incubator air, wall, and room air temperatures in ten infants less than 37 weeks gestational age and from 2 to 24 days of age both naked and covered with a plastic thermal blanket. Tabd temperature was maintained between 36.2 and 36.8 C and rectal temperature between 36.8 and 37.2 C in each environment by manual or automatic servocontrol. A "resting state" was defined by using a combination of subjective and objective criteria. The mean values of VO2 during the "resting state" were 7.31 and 7.59 cc/kg of body weight per minute for naked and covered infants, respectively. There were no significant differences between mean values of VCO2, respiratory quotient, HR, RR, abdominal, cheek, thigh, or rectal temperatures in the two environments. Operant temperatures averaged 0.5 C lower when the infants were covered. These data support the hypothesis that decreases in insensible water loss do not necessarily imply reductions in caloric requirements in infants where Tabd is maintained by servocontrol. PMID:440864

  9. Achievements of the water cooled solid breeder test blanket module of Japan to the milestones for installation in ITER

    International Nuclear Information System (INIS)

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, Water Cooled Solid Breeder (WCSB) TBM is being developed. Six TBMs will be tested in ITER simultaneously, under the leadership of different countries. To ensure the installation of reliable TBMs, it is necessary to show feasibility on the TBM milestones for installation in ITER. This paper shows the recent achievements toward the milestones of ITER TBMs prior to the installation, that consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, it is necessary to show the consistency with ITER design on time with ITER design progress, targeting the detailed design final report in 2012. Structure design of the interfacing components between the WCSB TBM structure and the interfacing components (Common Frame and Backside Shielding) that are placed in a test port of ITER has been developed. The design work also consists of procedures of fabrication and replacement of TBM, the consistency with ITER port structure and TBM interface structure, and the layouts of the auxiliary systems of TBMs including the tritium extraction system and water cooling system. As for the module qualification, it is necessary to show fabrication capability and the integrity of prototypical size mockup in corresponding operation condition before the delivery of the TBM to ITER. A real scale first wall mock-up was successfully fabricated by using Hot Isostatic Pressing (HIP) method by structural material of reduced activation martensitic ferritic steel, F82H. High heat flux test with real cooling water condition is planned using this mock-up. Other essential R and Ds for the WCSB TBM also showed steady progress on investigation of mechanical behavior of breeder pebble beds, development of advanced breeder/multiplier pebble, neutron measurement technology for TBM and purge gas tritium recovery technology. As for safety milestones

  10. TRISO Fuel Performance: Modeling, Integration into Mainstream Design Studies, and Application to a Thorium-fueled Fusion-Fission Hybrid Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Jeffrey James [Univ. of California, Berkeley, CA (United States)

    2011-11-30

    at a system power level of 2000 MWth, took about 3.5 years to reach full plateau power, and was capable of an End of Plateau burnup of 38.7 %FIMA if considering just the neutronic constraints in the system design; however, fuel performance constraints led to a maximum credible burnup of 12.1 %FIMA due to a combination of internal gas pressure and irradiation effects on the TRISO materials (especially PyC) leading to SiC pressure vessel failures. The optimal neutron spectrum for the thorium-fueled blanket options evaluated seemed to favor a hard spectrum (low but non-zero neutron multiplier thicknesses and high TRISO packing fractions) in terms of neutronic performance but the fuel performance constraints demonstrated that a significantly softer spectrum would be needed to decrease the rate of accumulation of fast neutron fluence in order to improve the maximum credible burnup the system could achieve.

  11. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 4: External Pressurizer Surge Line Break Near Inlet Header

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  12. APT Blanket System Loss-of-Flow Accident (LOFA) Analysis Based on Initial Conceptual Design - Case 1: with Beam Shutdown and Active RHR

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  13. APT Blanket System Loss-of-Coolant Accident Based on Initial Conceptual Design - Case 5: External RHR Break Near Inlet Header

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  14. APT Blanket System Loss-of-Coolant Analysis Based on Initial Conceptual Design - Case 2: External HR Break HR Break at Pump Outlet with Pump Trip

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  15. APT Blanket System Loss-of-Coolant Accident (LOCA) Analysis Based on Initial Conceptual Design - Case 3: External HR Break at Pump Outlet without Pump Trip

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal (HR) system. These simulations were performed for the Preliminary Safety Analysis Report.

  16. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 3: External HR Break at Pump Outlet without Pump Trip

    International Nuclear Information System (INIS)

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal (HR) system. These simulations were performed for the Preliminary Safety Analysis Report

  17. APT Blanket System Loss-of-Flow Accident (LOFA) Analysis Based on Initial Conceptual Design - Case 1: with Beam Shutdown and Active RHR

    International Nuclear Information System (INIS)

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report

  18. Solar cycle dependent characteristics of the equatorial blanketing Es layers and associated irregularities

    Science.gov (United States)

    Devasia, C. V.; Sreeja, V.; Ravindran, S.

    2006-11-01

    The occurrence of blanketing type Es (Esb) layers and associated E-region irregularities over the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip ~0.5°) during the summer solstitial months of May, June, July and August has been investigated in detail for the period 1986-2000 to bring out the variabilities in their characteristics with the solar cycle changes. The study has been made using the ionosonde and magnetometer data of Trivandrum from 1986-2000 along with the available data from the 54.95 MHz VHF backscatter radar at Trivandrum for the period 1995-2000. The appearance of blanketing Es layers during these months is observed to be mostly in association with the occurrence of afternoon Counter Electrojet (CEJ) events. The physical process leading to the occurrence of a CEJ event is mainly controlled by the nature of the prevailing electro dynamical/neutral dynamical conditions before the event. Hence it is natural that the Esb layer characteristics like the frequency of occurrence, onset time, intensity, nature of gradients in its top and bottom sides etc are also affected by the nature of the background electro dynamical /neutral dynamical processes which in turn are strongly controlled by the solar activity changes. The occurrence of Esb layers during the solstitial months is found to show very strong solar activity dependence with the occurrence frequency being very large during the solar minimum years and very low during solar maximum years. The intensity of the VHF radar backscattered signals from the Esb irregularities is observed to be controlled by the relative roles of the direction and magnitude of the prevailing vertical polarization electric field and the vertical electron density gradient of the prevailing Esb layer depending on the phase of the solar cycle. The gradient of the Esb layer shows a more dominant role in the generation of gradient instabilities during solar minimum periods while it is the electric field that has a

  19. Solar cycle dependent characteristics of the equatorial blanketing Es layers and associated irregularities

    Directory of Open Access Journals (Sweden)

    S. Ravindran

    2006-11-01

    Full Text Available The occurrence of blanketing type Es (Esb layers and associated E-region irregularities over the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip ~0.5° during the summer solstitial months of May, June, July and August has been investigated in detail for the period 1986–2000 to bring out the variabilities in their characteristics with the solar cycle changes. The study has been made using the ionosonde and magnetometer data of Trivandrum from 1986–2000 along with the available data from the 54.95 MHz VHF backscatter radar at Trivandrum for the period 1995–2000. The appearance of blanketing Es layers during these months is observed to be mostly in association with the occurrence of afternoon Counter Electrojet (CEJ events. The physical process leading to the occurrence of a CEJ event is mainly controlled by the nature of the prevailing electro dynamical/neutral dynamical conditions before the event. Hence it is natural that the Esb layer characteristics like the frequency of occurrence, onset time, intensity, nature of gradients in its top and bottom sides etc are also affected by the nature of the background electro dynamical /neutral dynamical processes which in turn are strongly controlled by the solar activity changes. The occurrence of Esb layers during the solstitial months is found to show very strong solar activity dependence with the occurrence frequency being very large during the solar minimum years and very low during solar maximum years. The intensity of the VHF radar backscattered signals from the Esb irregularities is observed to be controlled by the relative roles of the direction and magnitude of the prevailing vertical polarization electric field and the vertical electron density gradient of the prevailing Esb layer depending on the phase of the solar cycle. The gradient of the Esb layer shows a more dominant role in the generation of gradient instabilities during solar minimum periods while it is the

  20. New progress on design and R and D for solid breeder test blanket module in China

    Energy Technology Data Exchange (ETDEWEB)

    Feng, K.M., E-mail: fengkm@swip.ac.cn; Zhang, G.S.; Hu, G.; Chen, Y.J.; Feng, Y.J.; Li, Z.X.; Wang, P.H.; Zhao, Z.; Ye, X.F.; Xiang, B.; Zhang, L.; Wang, Q.J.; Cao, Q.X.; Zhao, F.C.; Wang, F.; Liu, Y.; Zhang, M.C.

    2014-10-15

    Highlights: • The new progress on design and R and D of Chinese solid breeder TBM are introduced. • The mock-up fabrication and component tests for Chinese HCCB TBM have being developed. • The neutron multiplier Be pebbles, tritium breeder Li{sub 4}SiO{sub 4} pebbles, and structure material CFL-1 are being prepared. • The fabrication of 1/3 sized mock-up is being carried-out. • The key technology development is proceeding to the large-scale mock-up fabrication. - Abstract: ITER will be used to test tritium breeding module concepts, which will lead to the design of DEMO fusion reactor demonstrating tritium self-sufficiency and the extraction of high grade heat for electricity production. China plans to test the HCCB TBM modules during different operation phases. Related design and R and D activities for each TBM module with the auxiliary system are introduced. The helium-cooled ceramic breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. The preliminary conceptual design of CN HCCB TBM has been completed. A modified design to reduce the RAFM material mass to 1.3 ton has been carried out based on the ITER technical requirement. Basic characteristics and main design parameters of CN HCCB TBM are introduced briefly. The mock-up fabrication and component tests for Chinese test blanket module are being developed. Recent status of the components of CN HCCB TBM and fabrication technology development are also reported. The neutron multiplier Be pebbles, tritium breeder Li{sub 4}SiO{sub 4} pebbles, and structure material CLF-1 of ton-class are being prepared in laboratory scale. The fabrication of pebble bed container and experiment of tritium breeder pebble bed will be started soon. The fabrication technology development is proceeding as the large-scale mock-up fabrication enters into the R and D stage and demonstration tests toward TBM testing on ITER test port are being done as scheduled.

  1. Hybrid fusion-fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Science.gov (United States)

    Shmelev, A. N.; Kulikov, G. G.; Kurnaev, V. A.; Salahutdinov, G. H.; Kulikov, E. G.; Apse, V. A.

    2015-12-01

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa-232U-233U-Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  2. Proposal for the Award of a Blanket Purchase Contract for the Supply of Water-Cooled Cables for the LHC

    CERN Document Server

    2002-01-01

    This document concerns the award of a blanket purchase contract for the supply of water-cooled cables for the LHC. Following a market survey carried out among 26 firms in six Member States, a call for tenders (IT-3008/ST/LHC) was sent on 18 February 2002 to four firms in three Member States. By the closing date, CERN had received two tenders from two firms in two Member States. The Finance Committee is invited to agree to the negotiation of a blanket purchase contract with BRAR (IT), the only compliant bidder, for the supply of water-cooled cables for the LHC for a total amount not exceeding 1 720 000 euros (2 529 805 Swiss francs), subject to revision for inflation from 1 January 2004. The rate of exchange which has been used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: IT - 100%.

  3. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    International Nuclear Information System (INIS)

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the 231Pa–232U–233U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of 232U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production

  4. Thermal-hydraulics analyses and external circuits layout for the EU DEMO water-cooled Pb-17Li blanket concept

    International Nuclear Information System (INIS)

    This paper describes the detailed thermal-hydraulics analyses performed on the EU reference design for DEMO water-cooled Pb-17Li blanket. It includes the calculation of pressure drops and flow-rates in the main fluid circuits (first-wall and Pb-17Li-pool water-cooling circuits and Pb-17Li circuit, for both inboard and outboard segments), and an Out-of-Vessel Loss-Of-Coolant Accident (LOCA) analysis showing that a LOCA in one of the two independent cooling-circuits does not lead to unacceptable temperatures in all parts of the blanket. A preliminary description of the external circuits layout (out-of-vessel) is also given in the paper. (orig.)

  5. Blanket concept with liquid Li/sub 17/Pb/sub 83/ for tritium breeding in INTOR-NET

    Energy Technology Data Exchange (ETDEWEB)

    Airola, J.; Biggio, M.; Casini, G.; Farfaletti-Casali, F.; Li Bassi, P.; Ponti, C.; Rieger, M. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Piana, C. (Milan Univ. (Italy))

    1984-04-01

    A blanket concept with eutectic Li/sub 17/Pb/sub 83/ as liquid breeder, suited for tritium production in an experimental Tokamak power reactor is outlined and discussed. This design has been developed to satisfy the INTOR-Phase-I specifications, in particular: (I) modular arrangement of the blanket units inside the vacuum vessel; (II) no use of the heat deposited for electricity production, (III) a net tritium breeding of a least 60%. In this article the main results of the neutronics and thermohydraulics analysis are reviewed and the problems identified. Methods to keep liquid in the breeder during operation are proposed and discussed. The consequences of a coolant tube rupture in a breeder unit appears to be the most serious problem.

  6. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shmelev, A. N., E-mail: shmelan@mail.ru; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kurnaev, V. A., E-mail: kurnaev@yandex.ru; Salahutdinov, G. H., E-mail: saip07@mail.ru; Kulikov, E. G., E-mail: egkulikov@mephi.ru; Apse, V. A., E-mail: apseva@mail.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  7. Study of MHD Corrosion and Transport of Corrosion Products of Ferritic/Martensitic Steels in the Flowing PbLi and its Application to Fusion Blanket

    OpenAIRE

    Saeidi, Sheida

    2014-01-01

    Two important components of a liquid breeder blanket of a fusion power reactor are the liquid breeder/coolant and the steel structure that the liquid is enclosed in. One candidate combination for such components is Lead-Lithium (PbLi) eutectic alloy and advanced Reduced Activation Ferritic/Martensitic (RAFM) steel. Implementation of RAFM steel and PbLi in blanket applications still requires material compatibility studies as many questions related to physical/chemical interactions in the RAFM...

  8. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    International Nuclear Information System (INIS)

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.)

  9. Loss-of-coolant and loss-of-flow accident in the ITER-EDA first wall/blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Komen, E.M.J.; Koning, H.

    1995-05-01

    This report presents the analysis of the transient thermal-hydraulic system behaviour inside the first wall/blanket cooling system and the resulting temperature response inside the first wall and blanket of the ITER-EDA (International Thermonuclear Experimental Reactor - Engineering Design Activities) reactor design during a: - Loss-of-coolant accident caused by a reputure of the pump suction pipe; - loss-of-flow accident caused by a trip of the recirculation pump. (orig.).

  10. Influence of thermal performance on design parameters of a He/LiPb dual coolant DEMO concept blanket design

    International Nuclear Information System (INIS)

    Spanish Breeding Blanket Technology Programme TECNOFUS is exploring the technological capabilities of a Dual-Coolant He/Pb15.7Li breeding blanket for DEMO and studying new breeding blanket design specifications. The progress of the channel conceptual design is being conducted in parallel with the extension of MHD computational capabilities of CFD tools and the underlying physics of MHD models. A qualification of MHD effects under present blanket design specifications and some approaches to their modelling were proposed by the authors in . The analysis was accomplished with the 2D transient algorithm from Sommeria and Moreau and implemented in the OpenFOAM CFD toolbox . The thermal coupling was implemented by means of the Boussinesq hypothesis. Previous analyses showed the need of improvement of FCI thickness and thermal properties in order to obtain a desirable liquid metal temperature gain of 300 °C. In the present study, an assessment through sensitivity and parametric analyses of the required FCI thickness is performed. Numerical simulations have been carried out considering a Robin-type thermal boundary condition which assumes 1D steady state thermal balance across the solid FCI and Eurofer layers. Such boundary condition has been validated with a fluid–solid coupled domain analysis. Results for the studied flow conditions and channel dimensions show that, in order to obtain a liquid metal temperature gain of about 300 °C, the required FCI material should have a very small effective heat transfer coefficient ((k/δ) ≤ 1 W/m2K) and fluid velocities should be about 0.2 m/s or less. Moreover, special attention has to be placed on the temperature difference across the FCI layer. However, for a maximised liquid metal thermal gain, higher velocities would be preferable, what would also imply a reduced temperature difference across the FCI layer.

  11. Influence of thermal performance on design parameters of a He/LiPb dual coolant DEMO concept blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Mas de les Valls, E., E-mail: elisabet.masdelesvalls@gits.ws [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Department of Heat Engines, Barcelona (Spain); Batet, L. [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Department of Physics and Nuclear Engineering, Barcelona (Spain); Medina, V. de [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Sediment Transport Research Group, Department of Engineering Hydraulic, Marine and Environmental Engineering, Barcelona (Spain); Fradera, J. [Technical University of Catalonia (UPC), Jordi Girona 1-3, 08034 Barcelona (Spain); Technology for Fusion (T4F) Research Group, GREENER, Department of Physics and Nuclear Engineering, Barcelona (Spain); Sanmarti, M. [bFUS-IREC, Jardins de les Dones de Negre 1, 08930 Sant Adria del Besos (Spain); Sedano, L.A. [EURATOM-CIEMAT Association, 28040 Madrid (Spain)

    2012-08-15

    Spanish Breeding Blanket Technology Programme TECNO{sub F}US is exploring the technological capabilities of a Dual-Coolant He/Pb15.7Li breeding blanket for DEMO and studying new breeding blanket design specifications. The progress of the channel conceptual design is being conducted in parallel with the extension of MHD computational capabilities of CFD tools and the underlying physics of MHD models. A qualification of MHD effects under present blanket design specifications and some approaches to their modelling were proposed by the authors in . The analysis was accomplished with the 2D transient algorithm from Sommeria and Moreau and implemented in the OpenFOAM CFD toolbox . The thermal coupling was implemented by means of the Boussinesq hypothesis. Previous analyses showed the need of improvement of FCI thickness and thermal properties in order to obtain a desirable liquid metal temperature gain of 300 Degree-Sign C. In the present study, an assessment through sensitivity and parametric analyses of the required FCI thickness is performed. Numerical simulations have been carried out considering a Robin-type thermal boundary condition which assumes 1D steady state thermal balance across the solid FCI and Eurofer layers. Such boundary condition has been validated with a fluid-solid coupled domain analysis. Results for the studied flow conditions and channel dimensions show that, in order to obtain a liquid metal temperature gain of about 300 Degree-Sign C, the required FCI material should have a very small effective heat transfer coefficient ((k/{delta}) {<=} 1 W/m{sup 2}K) and fluid velocities should be about 0.2 m/s or less. Moreover, special attention has to be placed on the temperature difference across the FCI layer. However, for a maximised liquid metal thermal gain, higher velocities would be preferable, what would also imply a reduced temperature difference across the FCI layer.

  12. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F. [comps.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  13. ITER-FEAT vacuum vessel and blanket design features and implications for the R and D programme

    International Nuclear Information System (INIS)

    A tight fitting configuration of the VV to the plasma aids the passive plasma vertical stability, and ferromagnetic material in the VV reduces the TF ripple. The blanket modules are supported directly by the VV. A full-scale VV sector model has provided critical information related to fabrication technology, and the magnitude of welding distortions and achievable tolerances. This R and D validated the fundamental feasibility of the double-wall VV design. The blanket module configuration consists of a shield body to which a separate first wall is mounted. The separate first wall has a facet geometry consisting of multiple flat panels, where 3-D machining will not be required. A configuration with deep slits minimizes the induced eddy currents and loads. The feasibility and the robustness of solid HIP joining was demonstrated in R and D, by manufacturing and testing several small and medium scale mock-ups and finally two prototypes. Remote handling tests and assembly tests of a blanket module have demonstrated the basic feasibility of its installation and removal. (author)

  14. Thermo-fluid dynamics and corrosion analysis of a self cooled lead lithium blanket for the HiPER reactor

    Science.gov (United States)

    Juárez, R.; Zanzi, C.; Hernández, J.; Sanz, J.

    2015-09-01

    The HiPER reactor is the HiPER project phase devoted to power production. To reach a preliminary reactor design, tritium breeding schemes need to be adapted to the HiPER project technologies selection: direct drive ignition, 150 \\text{MJ}/\\text{shot}× 10 Hz of power released through fusion reactions, and the dry first wall scheme. In this paper we address the main challenge of the HiPER EUROFER-based self cooled lead lithium blanket, which is related to the corrosive behavior of Pb-15.7Li in contact with EUROFER. We evaluate the cooling and corrosion behavior of the so-called separated first wall blanket (SFWB) configuration by performing thermo-fluid dynamics simulations using a large eddy simulation approach. Despite the expected improvement over the integrated first wall blanket, we still find an unsatisfactory cooling performance, expressed as a low outlet Pb-15.7Li temperature plus too high corrosion rates derived from local Pb-15.7Li high temperature and velocity, which can mainly be attributed to the geometry of the channels. Nevertheless, the analysis allowed us to devise future modifications of the SFWB to overcome the limitations found with the present design.

  15. Proposal for a blanket purchase agreement for the supply and repair of subracks for the LHC experiments

    CERN Document Server

    2002-01-01

    This document concerns the award of a blanket purchase agreement for the supply and repair of subracks for the LHC experiments. Following a market survey carried out among 27 firms in seven Member States and one firm in a non-Member State, a call for tenders (IT-2916/EP) was sent on 9 November 2001 to 16 firms in five Member States. By the closing date, CERN had received six tenders. The Finance Committee is invited to agree to the negotiation of a blanket purchase agreement with WIENER, PLEIN & BAUS (DE) for the supply of subracks for a period of four years and a repair service for a period of ten years after expiry of the initial two year guarantee period, for a total amount not exceeding 5 600 000 euros, subject to revision for inflation from 1 January 2003. At the present rate of exchange, the total amount of the blanket purchase agreement is equivalent to approximately 8 300 000 Swiss francs. This requirement will be financed by the collaborating institutes of the LHC experiments and by CERN. CERN's ...

  16. Effective Thermal Property Estimation of Unitary Pebble Beds Based on a CFD-DEM Coupled Method for a Fusion Blanket

    Science.gov (United States)

    Chen, Lei; Chen, Youhua; Huang, Kai; Liu, Songlin

    2015-12-01

    Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors. To characterize the fusion solid blanket thermal performance, studies of the effective thermal properties, i.e. the effective thermal conductivity and heat transfer coefficient, of the pebble beds are necessary. In this paper, a 3D computational fluid dynamics discrete element method (CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties. The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws. Based on this geometric topology, a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties. The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature. supported by National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2015GB108002, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  17. The impact of new experimental data on the design of Pb-17Li/water breeding blankets

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)

    1989-04-01

    The Pb-17Li/water-cooled blanket is one of the concepts being developed in Europe for testing in NET (Next European Torus). JRC-Ispra is strongly involved in this development. This paper describes the impact of the latest experimental results on the blanket design. The points considered are: breeder operating temperature and thermomechanical design: experiments on corrosion with steel 316L and liquid metal embrittlement tests have provided upper and lower limits for the breeder operating temperature (280-400/sup 0/C); tritium recovery from the breeder and permeation rate to the coolant: Ispra measurements indicate that solubility and diffusivity of hydrogen in Pb-17Li are lower as compared with the previous values used in blanket tritium analyses. The impact of these results on the design of the tritium recovery system is discussed; accident analyses: the experiments in progress at Ispra on the Pb-17Li/water interaction are reviewed and their application to a coolant pipe break accident is shown. (orig.).

  18. Assessment of titanium for use in the 1st wall/blanket structure of fusion power reactors

    International Nuclear Information System (INIS)

    This report describes a portion of the work that was performed as part of a First Wall/Blanket Systems Analysis Study. The objective of this part of the study was to assess the suitability of using titanium alloys in the first wall/blanket structure of commercial controlled thermonuclear reactors (CTR). While the purpose of this study was not to recommend a specific titanium alloy, but to examine titanium alloys, in general, two near-alpha titanium alloys were selected for an indepth examination. These alloys were Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo. Using properties important to the CTR first wall/blanket structures application, these titanium alloys were compared with five other candidate structural materials (2219 aluminum, 316 stainless steel, V-20 Ti, Nb-1Zr, and Mo-0.5 Ti-0.08 Zr (TZM)). The results of this study revealed that titanium offers potential for use in a CTR from strength, minimum radioactivity, and resources standpoints and should be considered in future fusion reactor studies

  19. Development of pipe welding, cutting and inspection tools for the ITER blanket

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Ito, Akira; Taguchi, Kou; Takiguchi, Yuji; Takahashi, Hiroyuki; Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-07-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, internal access pipe welding/cutting/inspection tools for manifolds and branch pipes are being developed according to the agreement of the ITER R and D task (T329). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In the same way, a design concept of inspection head with a non-destructive inspection probe (including a leak-testing probe) has been developed and the basic characteristic tests are performed using welded stainless steel pipes. In this report, the details of welding/cutting/inspection heads for manifolds and branch pipes are described, together with the basic experiment results relating to the welding/cutting and inspection. In addition, details of a composite type optical fiber, which can transmit both the high-power YAG laser and visible rays, is described. (author)

  20. In-vessel remote handling machine for blanket replacement in the demo fusion reactor

    International Nuclear Information System (INIS)

    The paper presents the current state of investigations concerning the adaptation of the ITER in-vessel remote handling system of 1998 to DEMO conditions. The outline of the concept is the following: a rail is built up in the middle of the vessel along the major radius forming a full circle. It is supported from the four equatorial ports by long radial arms connected perpendicularly to the rail. On the rail four manipulators with telescopic arms are operating each being responsible for a 90 deg section of the rail. Within their section the manipulators are capable of reaching and removing every element, and can manipulate 10 t elements at 3,5 m distance with great precision. Element exchange will take place through the lower section of the ports. Great advantage of the system is that it is only supported from the ports, thus the maintenance of the divertor and blanket can be planned independently. For this reason the system is preferred for DEMO, but there are challenges to face, and they come from the large and heavy elements having to be inserted through the ports of limited size, the complicated installation process and the need for precision. The results of this work indicate that this adaptation can be done, although more investigation is necessary regarding the manipulator design (author)

  1. Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    International Nuclear Information System (INIS)

    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mockup of two Test Blanket Modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam-ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot which is predicted to be different among the various codes.

  2. Hazardous Traffic Event Detection Using Markov Blanket and Sequential Minimal Optimization (MB-SMO).

    Science.gov (United States)

    Yan, Lixin; Zhang, Yishi; He, Yi; Gao, Song; Zhu, Dunyao; Ran, Bin; Wu, Qing

    2016-01-01

    The ability to identify hazardous traffic events is already considered as one of the most effective solutions for reducing the occurrence of crashes. Only certain particular hazardous traffic events have been studied in previous studies, which were mainly based on dedicated video stream data and GPS data. The objective of this study is twofold: (1) the Markov blanket (MB) algorithm is employed to extract the main factors associated with hazardous traffic events; (2) a model is developed to identify hazardous traffic event using driving characteristics, vehicle trajectory, and vehicle position data. Twenty-two licensed drivers were recruited to carry out a natural driving experiment in Wuhan, China, and multi-sensor information data were collected for different types of traffic events. The results indicated that a vehicle's speed, the standard deviation of speed, the standard deviation of skin conductance, the standard deviation of brake pressure, turn signal, the acceleration of steering, the standard deviation of acceleration, and the acceleration in Z (G) have significant influences on hazardous traffic events. The sequential minimal optimization (SMO) algorithm was adopted to build the identification model, and the accuracy of prediction was higher than 86%. Moreover, compared with other detection algorithms, the MB-SMO algorithm was ranked best in terms of the prediction accuracy. The conclusions can provide reference evidence for the development of dangerous situation warning products and the design of intelligent vehicles. PMID:27420073

  3. Progress of R and D and design of blanket remote handling equipment for ITER

    International Nuclear Information System (INIS)

    The design of in-vessel transporter (IVT) including vehicle manipulator has been updated according to the design changes such as blanket segmentation and structure, taking account of the interface between modules and vehicle manipulator. In particular, the updated design of the vehicle manipulator and rail has been carried out because of collision avoidance between modules and vehicle manipulator. According to the updated design, the vehicle manipulator has been reduced by about 30% in weight, compared with the reference design. In parallel with design activities, the R and D to clarify the specifications of the IVT design in detail is also performed, i.e., simulation system to provide the visual information during maintenance, dry lubricant to prevent the lubricant oil from spreading in the vacuum vessel (VV). The rail connection and cable handling in the transfer cask, which are critical issues for IVT system, are under preparation of the demonstration tests to finalize the design of the IVT system. Connection of the rail joint and cable handling test facilities are planned and under fabrication now. These test facility will be installed by the end of March 2008, and the performance tests will be carried out from April 2008

  4. Development of pipe welding, cutting and inspection tools for the ITER blanket

    International Nuclear Information System (INIS)

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, internal access pipe welding/cutting/inspection tools for manifolds and branch pipes are being developed according to the agreement of the ITER R and D task (T329). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In the same way, a design concept of inspection head with a non-destructive inspection probe (including a leak-testing probe) has been developed and the basic characteristic tests are performed using welded stainless steel pipes. In this report, the details of welding/cutting/inspection heads for manifolds and branch pipes are described, together with the basic experiment results relating to the welding/cutting and inspection. In addition, details of a composite type optical fiber, which can transmit both the high-power YAG laser and visible rays, is described. (author)

  5. Non-destructive assay of EBR-II blanket elements using resonance transmission analysis

    International Nuclear Information System (INIS)

    Resonance transmission analysis utilizing a faltered reactor beam was examined as a means of determining the 239Pu content in Experimental Breeder Reactor-II depleted uranium blanket elements. The technique uses cadmium and gadolinium falters along with a 239Pu fission chamber to isolate the 0.3 eV resonance in 239Pu. In the energy range of this resonance (0.1 eV to 0.5 ev), the total microscopic cross-section of 239Pu is significantly greater than the cross-sections of 238U and 235U. This large difference allows small changes in the 239Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and 239Pu foils indicate a significant change in response based on the 239Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of 239Pu up to approximately two weight percent

  6. An experimental study of the heterogeneous LMFBR core using FCA assemblies with axial internal blanket

    International Nuclear Information System (INIS)

    To investigate physics properties of the heterogeneous LMFBR core and to examine the reliability of the current data and method for heterogeneous core configuration, an experimental study has been made on FCA VII-3 assemblies which have an internal blanket (IB) at midplane of the cylindrical core. Systematic experiments were carried out on the heterogeneous cores whose IBs were different in composition and thickness. A homogeneous core was also built to compare the results with those obtained on the heterogeneous cores. The sodium-void worth is not sensitive to the composition of IB. The positive void worth in the core of the 40 cm IB is lowered by about 40% compared with that in the homogeneous core. The analysis was made using the JAERI-Fast Set Version II and the diffusion code CITATION. Directional diffusion coefficients were used to take account of the axial streaming. To evaluate transport effects, the S4 calculation was made. Comparison between the calculated and experimental results reveals the following: ksub(eff) and Pu worth in the core are not well predicted for the heterogeneous core, although they are represented satisfactorily for the homogeneous core. Reaction rates sensitive to the low-energy neutron are underestimated in the IB when they are normalized in the core. Sodium-void worths are fairly well predicted. However, the positive void worth in the heterogeneous core is underestimated, while that in the homogeneous core is overestimated. (author)

  7. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    International Nuclear Information System (INIS)

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as 'canonical',) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  8. Simultaneous degradation of cyanide and phenol in upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Kumar, M Suresh; Mishra, Ram Sushil; Jadhav, Shilpa V; Vaidya, A N; Chakrabarti, T

    2011-07-01

    Coal coking, precious metals mining and nitrile polymer industries generate over several billion liters of cyanide-containing waste annually. Economic and environmental considerations make biological technologies attractive for treatment of wastes containing high organic content, in which the microbial cultures can remove concentrations of organics and cyanide simultaneously. For cyanide and phenol bearing waste treatment, an upflow anaerobic sludge blanket reactor has been developed, which successfully removed free cyanide 98% (with feed concentration of 20 mg 1(-1)) in presence of phenol. The effect of cyanide on phenol degradation was studied with varying concentrations of phenol as well as cyanide under anaerobic conditions. This study revealed that the methanogenic degradation of phenol can occur in the presence of cyanide concentration 30-38 mg 1(-1). Higher cyanide concentration inhibited the phenol degradation rate. The inhibition constant Ki was found to be 38 mg 1(-1) with phenol removal rate of 9.09 mg 1(-1.) x h.

  9. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    Energy Technology Data Exchange (ETDEWEB)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  10. Analysis of the separation of protium from blanket tritium-product streams

    International Nuclear Information System (INIS)

    The case is considered in which the blanket product stream has been purified to the point where only protium, tritium, and a small quantity of deuterium remain. A cryogenic distillation cascade concept developed specifically to handle this enrichment problem is shown. The concept is based on a series of distillation columns and equilibrators capable of producing a protium-rich stream containing less than 1000 appm T and a tritium-rich stream containing less than 2000 appm H. It is envisioned that both of these streams could be blended with streams of comparable composition in the mainstream position of the fuel cycle without further processing. The computational analysis of the cascade was based on a fixed arrangement of columns and equilibrators and a fixed number of theoretical plates per columns, since these features are less easily varied in an actual system than reflux ratios and flow rates. In order to test the flexibility of this conceptual enruchment system to adjust to variations of the H/T ratio in the feed, H/T values of 0.333, 1.00, and 3.00 were investigated

  11. ATP as an indicator of biomass activity in thermophilic upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This work investigated the biomass activity in a thermophilic upflow anaerobic sludge blanket (UASB) reactor of wastewater treatment. Synthetic textile wastewater with pH 10-11, COD level of 2000-3000 mg/L was tested. Cellular adenosine triphosphate (ATP) in volatile solids (VS; mg ATP/gVS) was measured and expressed as specific ATP content to compare the biomass activity in up zone and lower zone in UASB reactor. The result shows that the specific ATP content based on total volatile solids (VS)in lower zone (0. 046 mgATP/gVS average) is much lower than that in up zone (0.62 mgATP/gVS average) due to high content of inactive biomass and high pH in lower zone. The SATP in up zone increases as HRT increases and approaches to a maximum value of 0.85 mgATP/gVS at HRT of 7h, then decreases. It shows most of the total VS in up zone represent active bacterial biomass at HRT of 7h. Rate of subtract utilization is directly related to the activity of microorganisms in the reactor. The effect of HRT on SATP in lower zone is not as significant as on SATP in up zone. The buffer capacity of the thermophilic UASB reactor is very good. It is the activity of sludge granules in lower zone that give the UASB reactor such a good buffer capacity to the inlet high pH.

  12. Performance analysis of upflow anaerobic sludge blanket reactors in the treatment of swine wastewater

    Directory of Open Access Journals (Sweden)

    Luiz A. V. Sarmento

    2007-07-01

    Full Text Available The adoption of confined systems for swine production have been increased the use of water in these installations and, consequently, an each time greater production of wastewater. Diagnostics have been showed a high level of water pollution due the waste material release on lands without criterions and in waters without previous treatment. The utilization of anaerobic process to reduce the liquid residues pollutant power has been detaching because beyond reducing the environmental pollution they allow to recover the energetic potential as fertilizer and biogas. In this work the performance of two real scale upflow anaerobic sludge blanket reactors treating swine wastewater were evaluated through operational system analysis, physical-chemical parameters of pollution and biogas production measurement. The results permitted to verify upflow rate speeds above of the value for which these reactors were designed and hydraulic residence times under of the design value. These factors affected negatively the treatment and had reflected on the law removal of the physical-chemical parameters and biogas production. The maximum removal efficiencies reached for TSS, BOD and COD were 72,5%, 34,7% and 40,0%, respectively. The mean rate of biogas liberation was 0,011 m-³ m-².h-1.

  13. Microbial populations of an upflow anaerobic sludge blanket reactor treating wastewater from a gelatin industry.

    Science.gov (United States)

    Vieira, A M; Bergamasco, R; Gimenes, M L; Nakamura, C V; Dias Filho, B P

    2001-12-01

    The microbial populations of an upflow anaerobic sludge blanket reactor, used for treating wastewater from the gelatin industry, were studied by microbiological methods and phase-contrast and electron microscopy. Microscopy examination of the sludge showed a complex mixture of various rod-shaped and coccoid bacterial pluslong filaments and verymobile curved rods. In addition free-living anaerobic ciliates and flagellates were also observed. The trophic group population observed in decreasing order of dominance were hydrolytic and acetogenic at 10(6) and sulfate reducing and methanogenic at 10(5). The rate of methane production in anaerobic granular sludge cultivated in growth medium supplement with formate pressurized with H2:CO2 showed a significant increase in methane yield compared with theseed culture containingthe same substrate and atmosphere of N2:CO2. Similar rates of methane production were observed when the growth medium was supplemented with acetate pressurized either with H2:CO2 or N2:CO2. The number of total anaerobic bacteria at 10(7), fecal coliforms and total coliforms at 10(6), and fecal streptococci at 10(3) is based on colony counts on solid media. The four prevalent species of facultative anaerobic gram-negative bacteria that belong to the family of Enterobacteriaceae were identified as Escherichia coli, Esherichia fergusonii, Klebsiella oxytoca, and Citrobacter freundii. The species Aeromonas hydrophila, Aeromonas veronii, Acinetobacter iwoffi and Stenotrophomonas maltophila were the most frequently isolated glucose fermenting and nonfermenting gram-negative bacilli.

  14. Evaluation of compatibility of flowing liquid lithium curtain for blanket with core plasma in fusion reactors

    International Nuclear Information System (INIS)

    A global model analysis of the compatibility of flowing liquid lithium curtain for blanket with core plasma has been performed. The relationships between the surface temperature of lithium curtain and mean effective plasma charges, fuel dilution and produced fusion power have been obtained. Results show that under normal circumstances, the evaporation of liquid lithium does not affect Zeff seriously, but affects fuel dilution and fusion power sensitively. The authors have investigated the relationships between the flow velocity of liquid lithium and its surface temperature rise based on the conditions of the option II of the fusion experimental breeder (FEB-E) design with reversed shear configuration and fairly high power density. The authors concluded that the effects of evaporation from liquid lithium curtain for FEB-E on plasma are negligible even if the flow velocity of liquid lithium is as low as 0.5 m·s-1. Finally, the sputtering yield of liquid lithium saturated by hydrogen isotopes is briefly discussed

  15. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Nietert, R.E.

    1983-02-01

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten.

  16. Landfill Leachate Treatment Using Hybrid Up-Flow Anaerobic Sludge Blanket (HUASB Reactor

    Directory of Open Access Journals (Sweden)

    Mohd Bharudin Ridzuan

    2013-11-01

    Full Text Available Abstract: The Effect of the development process in the country would lead the increment of the solid wastes production. Malaysia as a developing country is also could not escape from the problem in its solid waste management. An important problem that associated to landfill is the production of leachate. Leachate contains dangerous substances such as organic matters, heavy metals, Nitrogen Ammonia and other materials that could pollute underground water source. The aim of the paper was to study landfill leachate treatment efficiency using Hybrid Upflow Anaerobic Sludge Blanket (HUASB reactor in lab-scale. This research was investigate the pollutant content in landfill leachate and determines the percentage of nutrient removal. Parameters used for this research, were Biochemical Oxygen Demand (BOD, Chemical Oxygen Demand (COD, Suspended Solid (SS, Total Nitrogen (TN, and Total Phosphorus (TP. The experiments were carried out in lab scaled constructed reactor,  30 days duration which samples for test had been taken each 3 days intervals. The results showed that HUASB reactor were capable in removal several parameters. It has great ability in removal of Total Phosphorus and Suspended Solid with 90.60% and 80.70% each. The result of COD removal showed an encouraging removal graph, with average percentage removal 73.70%. Average percentage removal for BOD is 64%. Total Nitrogen was less remove nutrient with average percentage removal 50.32%. From the results, it showed that HUASB reactor capable to remove organic pollutants from landfill leachate.

  17. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    International Nuclear Information System (INIS)

    The heat-transfer characteristics of flowing and stationary packed-particle beds have recently become of interest in connection with conceptual designs of fusion reactor blankets. A detailed literature survey has shown that the processes taking place in such beds are not fully understood despite their widespread use in the chemical industry and other engineering disciplines for more than five decades. In this study, two experimental investigations were pursued. In the first, a heat-transfer loop was constructed through which glass microspheres were allowed to flow by rgravity at controlled rates through an electrically heated stainless steel tubular test section. In the second, an annular packed bed was constructed in which heat was applied through the outer wall by electric heating of a stainless steel tube. Cooling occurred at the inner wall of the annular bed by flowing air through the central tube. A second air stream was allowed to flow through the voids of the packed bed. An error-minimization technique was utilized in order to obtain the two-dimensional one-parameter effective conductivity for the bed by comparing the experimental and theoretically predicted temperature profiles. Experiments were conducted for various modified Reynolds numbers less than ten

  18. Hazardous Traffic Event Detection Using Markov Blanket and Sequential Minimal Optimization (MB-SMO)

    Science.gov (United States)

    Yan, Lixin; Zhang, Yishi; He, Yi; Gao, Song; Zhu, Dunyao; Ran, Bin; Wu, Qing

    2016-01-01

    The ability to identify hazardous traffic events is already considered as one of the most effective solutions for reducing the occurrence of crashes. Only certain particular hazardous traffic events have been studied in previous studies, which were mainly based on dedicated video stream data and GPS data. The objective of this study is twofold: (1) the Markov blanket (MB) algorithm is employed to extract the main factors associated with hazardous traffic events; (2) a model is developed to identify hazardous traffic event using driving characteristics, vehicle trajectory, and vehicle position data. Twenty-two licensed drivers were recruited to carry out a natural driving experiment in Wuhan, China, and multi-sensor information data were collected for different types of traffic events. The results indicated that a vehicle’s speed, the standard deviation of speed, the standard deviation of skin conductance, the standard deviation of brake pressure, turn signal, the acceleration of steering, the standard deviation of acceleration, and the acceleration in Z (G) have significant influences on hazardous traffic events. The sequential minimal optimization (SMO) algorithm was adopted to build the identification model, and the accuracy of prediction was higher than 86%. Moreover, compared with other detection algorithms, the MB-SMO algorithm was ranked best in terms of the prediction accuracy. The conclusions can provide reference evidence for the development of dangerous situation warning products and the design of intelligent vehicles. PMID:27420073

  19. Tidal volume estimation using the blanket fractal dimension of the tracheal sounds acquired by smartphone.

    Science.gov (United States)

    Reljin, Natasa; Reyes, Bersain A; Chon, Ki H

    2015-01-01

    In this paper, we propose the use of blanket fractal dimension (BFD) to estimate the tidal volume from smartphone-acquired tracheal sounds. We collected tracheal sounds with a Samsung Galaxy S4 smartphone, from five (N = 5) healthy volunteers. Each volunteer performed the experiment six times; first to obtain linear and exponential fitting models, and then to fit new data onto the existing models. Thus, the total number of recordings was 30. The estimated volumes were compared to the true values, obtained with a Respitrace system, which was considered as a reference. Since Shannon entropy (SE) is frequently used as a feature in tracheal sound analyses, we estimated the tidal volume from the same sounds by using SE as well. The evaluation of the performed estimation, using BFD and SE methods, was quantified by the normalized root-mean-squared error (NRMSE). The results show that the BFD outperformed the SE (at least twice smaller NRMSE was obtained). The smallest NRMSE error of 15.877% ± 9.246% (mean ± standard deviation) was obtained with the BFD and exponential model. In addition, it was shown that the fitting curves calculated during the first day of experiments could be successfully used for at least the five following days. PMID:25923929

  20. Tidal Volume Estimation Using the Blanket Fractal Dimension of the Tracheal Sounds Acquired by Smartphone

    Directory of Open Access Journals (Sweden)

    Natasa Reljin

    2015-04-01

    Full Text Available In this paper, we propose the use of blanket fractal dimension (BFD to estimate the tidal volume from smartphone-acquired tracheal sounds. We collected tracheal sounds with a Samsung Galaxy S4 smartphone, from five (N = 5 healthy volunteers. Each volunteer performed the experiment six times; first to obtain linear and exponential fitting models, and then to fit new data onto the existing models. Thus, the total number of recordings was 30. The estimated volumes were compared to the true values, obtained with a Respitrace system, which was considered as a reference. Since Shannon entropy (SE is frequently used as a feature in tracheal sound analyses, we estimated the tidal volume from the same sounds by using SE as well. The evaluation of the performed estimation, using BFD and SE methods, was quantified by the normalized root-mean-squared error (NRMSE. The results show that the BFD outperformed the SE (at least twice smaller NRMSE was obtained. The smallest NRMSE error of 15.877% ± 9.246% (mean ± standard deviation was obtained with the BFD and exponential model. In addition, it was shown that the fitting curves calculated during the first day of experiments could be successfully used for at least the five following days.

  1. 77 FR 34380 - CenterPoint Energy Gas Transmission Company, LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-06-11

    ... TYY, (202) 502-8659. The Ruston Storage Compressor Station (Ruston) was constructed in 1969 and consists of one 4,000 horsepower (hp) Worthington MLV-14 reciprocating compressor unit which was originally... facilities at the Ruston Storage Compressor Station located in Lincoln Paris, Louisiana, all as more...

  2. Natural gas; Gas Natural

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Carlos A.; Moraes, Claudia C.D. [Eletricidade de Sao Paulo S.A. (ELETROPAULO), Sao Paulo, SP (Brazil); Fonseca, Carlos H.F. [Centrais Eletricas de Santa Catarina S.A., Florianopolis, SC (Brazil); Silva, Clecio Fabricio da; Alves, Ricardo P. [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil); Sposito, Edivaldo Soares; Hulle, Lutero [Espirito Santo Centrais Eletricas S.A. (ESCELSA), Vitoria, ES (Brazil); S. Martins, Icaro da [Centrais Eletricas do Norte do Brasil S.A. (ELETRONORTE), Belem, PA (Brazil); Vilhena, Joao Luiz S. de [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil); Fagundes, Zaluar Aquino [Companhia Estadual de Energia Eletrica do Estado do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1996-12-31

    An increase in the consumption of natural gas in Brazil is an expected fact in what concerns energetic planning. This work presents the existing situation in what concerns natural gas utilization in the main world economies, as well as an analysis of the participation of this fuel among the energy final consumption per sources. The Brazilian consumption of natural gas is also analysed as well as the international agreement between Brazil and Bolivia for natural gas commercialization. Some legal, institutional and political aspects related to natural gas commercialization are also discussed. Finally, several benefits to be brought by the utilization of natural gas are presented 10 refs., 3 tabs.

  3. Results of R and D for lithium/vanadium breeding blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Mattas, R.F.; Smith, D.L.; Reed, C.B.; Park, J.H. [Argonne National Lab., IL (United States); Kirillov, I.R. [D.V. Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Strebkov, Yu.S. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Rusanov, A.E. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation); Votinov, S.N. [A.A. Bochvar Inst. of Non-Organic Materials, Moscow (Russian Federation)

    1997-04-01

    The self-cooled lithium/vanadium blanket concept has several attractive features for fusion power systems, including reduced activation, resistance to radiation damage, accommodation of high heat loads and operating to temperatures of 650--700 C. The primary issue associated with the lithium/vanadium concept is the potentially high MHD pressure drop experienced by the lithium as it flows through the high magnetic field of the tokamak. The solution to this issue is to apply a thin insulating coating to the inside of the vanadium alloy to prevent the generation of eddy currents within the structure that are responsible for the high MHD forces and pressure drop. This paper presents progress in the development of an insulator coating that is capable of operating in the severe fusion environment, progress in the fabrication development of vanadium alloys, and a summary of MHD testing. A large number of small scale tests of vanadium alloy specimens coated with CaO and AlN have been conducted in liquid lithium to determine the resistivity and stability of the coating. In-situ measurements in lithium have determined that CaO coatings, {approximately} 5 {micro}m thick, have resistivity times thickness values exceeding 10{sup 6} {Omega}-cm{sup 2}. These results have been used to identify fabrication procedures for coating a large vanadium alloy (V-4Cr-4Ti) test section that was tested in the ALEX (Argonne Liquid metal Experiment) facility. Similar test sections have been produced in both Russia and the US.

  4. Manufacturing and testing of full scale prototype for ITER blanket shield block

    International Nuclear Information System (INIS)

    Highlights: • 316L(N)-IG forged steel was successfully fabricated and qualified. • Related R&D activities were implemented to resolve the fabrication issues. • SB #8 FSP was successfully manufactured with conventional fabrication techniques. • All of the validation tests were carried out and met the acceptance criteria. - Abstract: Based on the preliminary design of the ITER blanket shield block (SB) #8, the full scale prototype (FSP) has been manufactured and tested in accordance with pre-qualification program, and related R&D was performed to resolve the technical issues of fabrication. The objective of the SB pre-qualification program is to demonstrate the acceptable manufacturing quality by successfully passing the formal test program. 316L(N)-IG stainless steel forging blocks with 1.80L × 1.12W × 0.43t (m) were developed by using an electric arc furnace, and as a result, the material properties were satisfied with technical specification. In the course of applying conventional fabrication techniques such as cutting, milling, drilling and welding of the forged stainless steel block for the manufacturing of the SB #8 FSP, several technical problems have been addressed. And also, the hydraulic connector of cross-forged material re-melted by electro slag or vacuum arc requires the application of advanced joining techniques such as automatic bore TIG and friction welding. Many technical issues – drilling, welding, slitting, non-destructive test and so on – have been raised during manufacturing. Associated R&D including the computational simulation and coupon testing has been done in collaboration with relevant industries in order to resolve these engineering issues. This paper provides technical key issues and their possible resolutions addressed during the manufacture and formal test of the SB #8 FSP, and related R&D

  5. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  6. Membrane installation for enhanced up-flow anaerobic sludge blanket (UASB) performance.

    Science.gov (United States)

    Liu, Yin; Zhang, Kaisong; Bakke, Rune; Li, Chunming; Liu, Haining

    2013-09-01

    It is postulated that up-flow anaerobic sludge blanket (UASB) reactor efficiency can be enhanced by a membrane immersed in the reactor to operate it as an anaerobic membrane bioreactor (AnMBR) for low-strength wastewater treatment. This postulate was tested by comparing the performance with and without a hollow fiber microfiltration membrane module immersed in UASB reactors operated at two specific organic loading rates (SOLR). Results showed that membrane filtration enhanced process performance and stability, with over 90% total organic carbon (TOC) removal consistently achieved. More than 91% of the TOC removal was achieved by suspended biomass, while less than 6% was removed by membrane filtration and digestion in the membrane attached biofilm during stable AnMBRs operation. Although the membrane and its biofilm played an important role in initial stage of the high SOLR test, linear increased TOC removal by bulk sludge mainly accounted for the enhanced process performance, implying that membrane led to enhanced biological activity of the suspended sludge. The high retention of active fine sludge particles in suspension was the main reason for this significant improvement of performance and biological activity, which led to decreased SOLR with time to a theoretical optimal level around 2  g COD/g MLVSS·d and the establishment of a microbial community dominated by Methanothrix-like microbes. It was concluded that UASB process performance can be enhanced by transforming such to AnMBR operation when the loading rate is too high for sufficient sludge retention, and/or when the effluent water quality demands are especially stringent. PMID:23578587

  7. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C. PMID:22097038

  8. ITER test blanket module error field simulation experiments at DIII-D

    Science.gov (United States)

    Schaffer, M. J.; Snipes, J. A.; Gohil, P.; de Vries, P.; Evans, T. E.; Fenstermacher, M. E.; Gao, X.; Garofalo, A. M.; Gates, D. A.; Greenfield, C. M.; Heidbrink, W. W.; Kramer, G. J.; La Haye, R. J.; Liu, S.; Loarte, A.; Nave, M. F. F.; Osborne, T. H.; Oyama, N.; Park, J.-K.; Ramasubramanian, N.; Reimerdes, H.; Saibene, G.; Salmi, A.; Shinohara, K.; Spong, D. A.; Solomon, W. M.; Tala, T.; Zhu, Y. B.; Boedo, J. A.; Chuyanov, V.; Doyle, E. J.; Jakubowski, M.; Jhang, H.; Nazikian, R. M.; Pustovitov, V. D.; Schmitz, O.; Srinivasan, R.; Taylor, T. S.; Wade, M. R.; You, K.-I.; Zeng, L.; DIII-D Team

    2011-10-01

    Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L-H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity v across the entire radial profile by as much as Δv/v ~ 60% via non-resonant braking. Changes to global Δn/n, Δβ/β and ΔH98/H98 were ~3 times smaller. These effects are stronger at higher β. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known n = 1 test field in both L- and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D n = 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few n = 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by n = 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small.

  9. Mathematical modeling of upflow anaerobic sludge blanket (UASB) reactor treating domestic wastewater.

    Science.gov (United States)

    Elmitwalli, Tarek

    2013-01-01

    Although the upflow anaerobic sludge blanket (UASB) reactor has been widely applied for domestic wastewater treatment in many developing countries, there is no sufficient mathematical model for proper design and operation of the reactor. An empirical model based on non-linear regression was developed to represent the physical and chemical removal of suspended solids (SS) in the reactor. Moreover, a simplified dynamic model based on ADM1 and the empirical model for SS removal was developed for anaerobic digestion of the entrapped SS and dissolved matter in the wastewater. The empirical model showed that effluent suspended chemical oxygen demand (COD(ss)) concentration is directly proportional to the influent COD(ss) concentration and inversely proportional to both the hydraulic retention time (HRT) of the reactor and wastewater temperature. For obtaining sufficient COD(ss) removal, the HRT of the UASB reactor must be higher than 4 h, and higher HRT than 12 h slightly improved COD(ss) removal. The dynamic model results showed that the required time for filling the reactor with sludge mainly depends on influent total chemical oxygen demand (COD(t)) concentration and HRT. The influent COD(t) concentration, HRT and temperature play a crucial role on the performance of the reactor. The results indicated that shorter HRT is needed for optimization of COD(t) removal, as compared with optimization of COD(t) conversion to methane. Based on the model results, the design HRT of the UASB reactor should be selected based on the optimization of wastewater conversion and minimization of biodegradable SS accumulation in the sludge bed, not only based on COD removal, to guarantee a stable reactor performance.

  10. Manufacturing and testing of full scale prototype for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa-Woong, E-mail: swkim12@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Duck-Hoi; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Sung-Ki [WONIL Co., Ltd., Haman (Korea, Republic of); Kang, Sung-Chan [POSCO Specialty Steel Co., Ltd., Changwon (Korea, Republic of); Zhang, Fu; Kim, Byoung-Yoon [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ahn, Hee-Jae; Lee, Hyeon-Gon; Jung, Ki-Jung [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-04-15

    Highlights: • 316L(N)-IG forged steel was successfully fabricated and qualified. • Related R&D activities were implemented to resolve the fabrication issues. • SB #8 FSP was successfully manufactured with conventional fabrication techniques. • All of the validation tests were carried out and met the acceptance criteria. - Abstract: Based on the preliminary design of the ITER blanket shield block (SB) #8, the full scale prototype (FSP) has been manufactured and tested in accordance with pre-qualification program, and related R&D was performed to resolve the technical issues of fabrication. The objective of the SB pre-qualification program is to demonstrate the acceptable manufacturing quality by successfully passing the formal test program. 316L(N)-IG stainless steel forging blocks with 1.80L × 1.12W × 0.43t (m) were developed by using an electric arc furnace, and as a result, the material properties were satisfied with technical specification. In the course of applying conventional fabrication techniques such as cutting, milling, drilling and welding of the forged stainless steel block for the manufacturing of the SB #8 FSP, several technical problems have been addressed. And also, the hydraulic connector of cross-forged material re-melted by electro slag or vacuum arc requires the application of advanced joining techniques such as automatic bore TIG and friction welding. Many technical issues – drilling, welding, slitting, non-destructive test and so on – have been raised during manufacturing. Associated R&D including the computational simulation and coupon testing has been done in collaboration with relevant industries in order to resolve these engineering issues. This paper provides technical key issues and their possible resolutions addressed during the manufacture and formal test of the SB #8 FSP, and related R&D.

  11. Thermal and structural design issues of breeding blankets for testing in the Next European Torus (NET)

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.

    1988-05-01

    A review of the breeding blankets under study in Europe for testing in the Next European Torus is presented. In many concepts, the breeder modules are enclosed in boxes whose side walls in front of the plasma act as the first wall of the machine. Various types of breeder modules are investigated, involving both liquid and solid breeders, namely: - Pb-17Li liquid breeder concepts, the coolant being either water or Pb-17Li itself; - solid (ceramic) breeder concepts, the coolant being in all cases helium. The various ceramic concepts differ in the breeder/coolant arrangement (breeder-out-of-tube and breeder-in-tube), the orientation of the coolant tubes (poloidal or toroidal) and the breeder geometry (rods, plates or pebble bed). For each of these concepts the main design features are shown and the thermomechanical problems are discussed. The problems related to a coolant tube rupture are in many cases the most severe from the structural design point of view. The first wall box enclosing the breeder modules appears to be a weak secondary containment barrier. The liquid breeder-water cooled concept looks manageable from the thermal and structural design of point view. In the case of the self-cooled liquid breeder concept, the main problems are related to the magnetohydrodynamic effects. Solutions are envisaged to overcome these difficulties. In the case of ceramic breeders, the use of plates implies small dimensions in order to limit the thermal stresses and a poor exploitation of the permitted temperature operation window. Solutions involving rods associated with a multipass cooling scheme or pebble bed enable achievement of better thermomechanical conditions and, therefore, are preferred in the current investigations. However, they lead to design complications and require experimental verification which is in progress at the European laboratories.

  12. Blanket peatland restoration leads to reduced storm runoff from headwater systems

    Science.gov (United States)

    Shuttleworth, Emma; Allott, Tim; Evans, Martin; Pilkington, Mike

    2016-04-01

    This paper presents data on the impact of largescale peatland restoration on catchment runoff from peatlands in northern England. The blanket peatlands of the Pennine hills are important sources of water supply and form the headwaters of major river systems. These peatlands are severely eroded with extensive gullying and bare peat resulting from the impacts of industrial pollution, overgrazing, wildfire and climatic change over the last millennium. In the last decade there has been a major programme of peatland restoration through re-vegetation and blocking of drainage lines in these systems. The Making Space for Water project has collected hydrological data from five micro-catchments(two restoration treatments, a bare peat control, a vegetated control and a previously restored site) over a four year period. This has allowed for both Before-After-Control-Intervention and Space for Time analysis of the impact of restoration on downstream runoff. Catchments became wetter following re-vegetation, water tables rose by 35 mm and overland flow production increased by 18%. Storm-flow lag times in restored catchments increased by up to 267 %, while peak storm discharge decreased by up to 37%. There were no statistically significant changes in percentage runoff, indicating limited changes to within-storm catchment storage. Natural flood management solutions are typically focussed around one of two main mechanisms, either enhanced storage of water in catchments or measures which slow transmission of water to channels and within channels. Upland peatlands are often mischaracterised as sponges and assumed to mitigate downstream runoff through additional storage. The results of this study suggest that whilst restoration of upland peatlands can lead to significant reductions in peak discharge, and has potential to contribute to natural flood risk management, the mechanism is an increase in catchment roughness and an associated decrease in flow velocities.

  13. Biomethane production from vinasse in upflow anaerobic sludge blanket reactors inoculated with granular sludge.

    Science.gov (United States)

    Barros, Valciney Gomes de; Duda, Rose Maria; Oliveira, Roberto Alves de

    2016-01-01

    The main objective of this study was to evaluate the anaerobic conversion of vinasse into biomethane with gradual increase in organic loading rate (OLR) in two upflow anaerobic sludge blanket (UASB) reactors, R1 and R2, with volumes of 40.5 and 21.5L in the mesophilic temperature range. The UASB reactors were operated for 230 days with a hydraulic detection time (HDT) of 2.8d (R1) and 2.8-1.8d (R2). The OLR values applied in the reactors were 0.2-7.5gtotalCOD (Ld)(-1) in R1 and 0.2-11.5gtotalCOD (Ld)(-1) in R2. The average total chemical oxygen demand (totalCOD) removal efficiencies ranged from 49% to 82% and the average conversion efficiencies of the removed totalCOD into methane were 48-58% in R1 and 39-65% in R2. The effluent recirculation was used for an OLR above 6gtotalCOD (Ld)(-1) in R1 and 8gtotalCOD (Ld)(-1) in R2 and was able to maintain the pH of the influent in R1 and R2 in the range from 6.5 to 6.8. However, this caused a decrease for 53-39% in the conversion efficiency of the removed totalCOD into methane in R2 because of the increase in the recalcitrant COD in the influent. The largest methane yield values were 0.181 and 0.185 (L) CH4 (gtotalCOD removed)(-1) in R1 and R2, respectively. These values were attained after 140 days of operation with an OLR of 5.0-7.5gtotalCOD (Ld)(-1) and totalCOD removal efficiencies around 70 and 80%. PMID:27289246

  14. The influence of external source intensity in accelerator/target/blanket system on conversion ratio and fuel cycle

    Science.gov (United States)

    Kochurov, Boris P.

    1995-09-01

    The analysis of neutron balance relation for a subcritical system with external source shows that a high ratio of neutron utilization (conversion ratio, breeding ratio) much exceeding similar values for nuclear reactors (both thermal or fast spectrum) is reachable in accelerator/target/blanket system with high external neutron source intensity. An accelerator/target/blanket systems with thermal power in blanket about 1850 Mwt and operating during 30 years have been investigated. Continual feed up by plutonium (fissile material) and Tc-99 (transmuted material) was assumed. Accelerator beam intensity differed 6.3 times (16 mA-Case 1, and 100 mA-Case 2). Conversion ratio (CR) was defined as the ratio of Tc-99 nuclei transmuted to the number of Pu nuclei consumed. The results for two cases are as follows: Case 1Case 2CR 0.77 1.66N(LWR) 8.6 19.1Power MWt(el) 512 225 where N(LWR)-number of LWRs(3000 MWt(th)) from which yearly discharge of Tc-99 is transmuted during 30 years. High value of conversion ratio considerably exceeding 1 (CR=1.66) was obtained in the system with high source intensity as compared with low source system (CR=0.77). Net output of electric power of high source intensity system is about twice lower due to consumption of electric power for accelerator feed up. The loss of energy for Tc-99 transmutation is estimated as 40 Mev(el)/nuclei. Yet high conversion ratio (or breeding ratio) achievable in electronuclear installations with high intensity of external source can effectively be used to close fuel cycle (including incineration of wastes) or to develop growing nuclear power production system.

  15. Preliminary Study on Melting and Reaction with Liquid Metal Breeders for Developing the Korean Test Blanket Module in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. W.; Yoon, J. S.; Kim, S. K.; Lee, E. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, H. G. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A liquid breeder blanket has been developed in parallel with the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) program in Korea. The Korea Atomic Energy Research Institute (KAERI) has developed the liquid TBM. In the Korean liquid TBM and breeder blanket, liquid lithium (Li) and lead-lithium (PbLi) are considered as breeders. Related research has been performed: an Experimental Loop for a Liquid breeder (ELLI) constructed to develop an electromagnetic (EM) pump for circulating the liquid breeder, a magnetohydrodynamic (MHD) experiment, and a flow corrosion test. In the ELLI, Pb-15.7Li, where Li is 15.7 at % (called PbLi hereafter), is used as the breeding material. It was purchased from Stachow Metall Company, Germany, and its impurities are shown in Table 1. An EM pump circulates the material in the loop with a maximum flow rate of 60 lpm. The operating pressure and temperature in the loop are 0.4 MPa and 300 .deg. C, respectively, and the maximum operating pressure and temperature are 0.5 MPa and 550 .deg. C Before the loop operation, the melting and solidifying temperatures of the PbLi were measured for ascertaining whether it will show a consistent value for the many cycles of heating and cooling at various conditions of the loop operation. We can also investigate the contamination of PbLi according to the cyclic use. Of the liquid type breeder materials, PbLi is much safer than Li itself, as liquid metal can be ignited when it meets with water or air. There is still a concern regarding the use of PbLi, and it has not been fully proven whether it will react with water or air when it is in a molten state, as it contains lithium. Therefore, reaction tests of Li and PbLi with air and water were performed for safety reasons using the prepared test chamber

  16. Progress in studies of Li/sub 17/Pb/sub 83/ as liquid breeder for fusion reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.

    1983-09-01

    A review of the experimental and conceptual design work in progress at JRC-Ispra to investigate the feasibility of the eutectic Li/sub 17/Pb/sub 83/ as a liquid breeder for experimental power reactors is presented. Results of recent measurements to implement the data base of this material are given in the following areas: physical parameters, hydrogen solubility and recovery, chemical reactivity with air and water, compatibility with steel. The studies carried out on blanket concepts for the INTOR (International Tokamak Reactor)/NET (Next European Torus) projects are outlined and discussed.

  17. Direct simulation of MHD flows in dual-coolant liquid metal fusion blanket using a consistent and conservative scheme

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Direct simulation of 3-D MHD(magnetohydrodynamics) flows in liquid metal fusion blanket with flow channel insert(FCI) has been conducted.Two kinds of pressure equilibrium slot (PES) in FCI,which are used to balance the pressure difference between the inside and outside of FCI,are considered with a slot in Hartmann wall or a slot in side wall,respectively.The velocity and pressure distribution of FCI made of SiC/SiC_f are numerically studied to illustrate the 3-D MHD flow effects,which clearly show that t...

  18. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    OpenAIRE

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times (HRT's) of 13.3, 10 and 5.0 h. An overall reduction of 80-86% for CODtotal; 51-73% for CODcolloidal and 20-55% for CODsoluble was found at a total HRT of 5-10 h, respectively. By prolonging the HRT...

  19. Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building

    Energy Technology Data Exchange (ETDEWEB)

    Lata

    1996-09-26

    This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

  20. Application of the MIT two-channel model to predict flow recirculation in WARD 61-pin blanket tests

    International Nuclear Information System (INIS)

    The preliminary application of MIT TWO-CHANNEL MODEL to WARD sodium blanket tests was presented in this report. Our criterion was employed to predict the recirculation for selected completed (transient and steady state) and proposed (transient only) tests. The heat loss was correlated from the results of the WARD zero power tests. The calculational results show that our criterion agrees with the WARD tests except for WARD RUN 718 for which the criterion predicts a different result from WARD data under bundle heat loss condition. However, if the test assembly is adiabatic, the calculations predict an operating point which is marginally close to the mixed-to-recirculation transition regime