WorldWideScience

Sample records for blanket system loss-of-coolant

  1. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 2: with Beam Shutdown Only

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report. This report documents the results of simulations of a Loss-of-Flow Accident (LOFA) where power is lost to all of the pumps that circulate water in the blanket region, the accelerator beam is shut off and neither the residual heat removal nor cavity flood systems operate.

  2. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 1: External HR Break Near Inlet Header

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    The APT blanket system has about 57 MW of thermal energy deposited within the blanket region under normal operating conditions from the release of neutrons and the interaction of the High energy particles with the blanket materials. This corresponds to about 48 percent of total thermal energy deposited in the APT target/blanket system. The deposited thermal energy under normal operation conditions is an important input parameter used in the thermal-hydraulic design and accident analysis.

  3. APT Blanket System Loss-of-Coolant Accident (LOCA) Based on Initial Conceptual Design - Case 4: External Pressurizer Surge Line Break Near Inlet Header

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  4. APT Blanket System Loss-of-Coolant Accident Based on Initial Conceptual Design - Case 5: External RHR Break Near Inlet Header

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  5. APT Blanket System Loss-of-Coolant Accident (LOCA) Analysis Based on Initial Conceptual Design - Case 3: External HR Break at Pump Outlet without Pump Trip

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal (HR) system. These simulations were performed for the Preliminary Safety Analysis Report.

  6. APT Blanket System Loss-of-Coolant Analysis Based on Initial Conceptual Design - Case 2: External HR Break HR Break at Pump Outlet with Pump Trip

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  7. Safety analysis of a loss-of-coolant accident in a breeding blanket for experimental fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rocco, P.; Casini, G.; Djerassi, H.; Papa, L.; Pautasso, G.; Renda, V.; Rouyer, J.L.

    1985-07-01

    A LOCA in a blanket design proposed for NET (Next European Torus) is investigated. The structural analysis of a damaged breeder unit shows that this first containment barrier has a high probability of survival to this accident. The radioactive sources involved are evaluated and an assessment is made of all containment barriers and associated protection systems.

  8. Interfacing systems LOCAs (Loss of Coolant Accidents) at boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tsong-Lun; Fitzpatrick, R.; Stoyanov, S.

    1987-01-01

    The work presented in this paper was performed by Brookhaven National Laboratory (BNL) in support of Nuclear Regulatory Commission's (NRC) effort towards the resolution of Generic Issue 105 ''Interfacing System Loss of Coolant Accidents (LOCAs) at Boiling Water Reactors (BWRs).'' For BWRs, intersystem LOCA have typically either not been considered in probabilistic risk analyses, or if considered, were judged to contribute little to the risk estimates because of their perceived low frequency of occurrence. However, recent operating experience indicates that the pressure isolation valves (PIVs) in BWRs may not adequately protect against overpressurization of low pressure systems. The objective of this paper is to present the results of a study which analyzed interfacing system LOCA at several BWRs. The BWRs were selected to best represent a spectrum of BWRs in service using industry operating event experience and plant-specific information/configurations. The results presented here include some possible changes in test requirements/practices as well as an evaluation of their reduction potential in terms of core damage frequency (CDF).

  9. Interfacing systems LOCA (loss-of-coolant accidents): Pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.

    1989-02-01

    This report summarizes a study performed by Brookhaven National Laboratory for the Office of Nuclear Regulatory Research, Reactor and Plant Safety Issues Branch, Division of Reactor and Plant Systems, US Nuclear Regulatory Commission. This study was requested by the NRC in order to provide a technical basis for the resolution of Generic Issue 105 ''Interfacing LOCA at LWRs.'' This report deals with pressurized water reactors (PWRs). A parallel report was also accomplished for boiling water reactors. This study focuses on three representative PWRs and extrapolates the plant-specific findings for their generic applicability. In addition, a generic analysis was performed to investigate the cost-benefit aspects of imposing a testing program that would require some minimum level of leak testing of the pressure isolation valves on plants that presently have no such requirements. 28 refs., 31 figs., 64 tabs.

  10. Investigation of a hydrogen mitigation system during large break loss-of-coolant accident for a two-loop pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dehjourian, Mehdi; Rahgoshay, Mohmmad; Jahanfamia, Gholamreza [Dept. of Nuclear Engineering, Science and Research Branch, Islamic Azad University of Tehran, Tehran (Iran, Islamic Republic of); Sayareh, Reza [Faculty of Electrical and Computer Engineering, Kerman Graduate University of Technology, Kerman (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Hydrogen release during severe accidents poses a serious threat to containment integrity. Mitigating procedures are necessary to prevent global or local explosions, especially in large steel shell containments. The management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen reduction system and spray system. During the course of the hypothetical large break loss-of-coolant accident in a nuclear power plant, hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel and also core concrete interaction after ejection of melt into the cavity. The MELCOR 1.8.6 was used to assess core degradation and containment behavior during the large break loss-of-coolant accident without the actuation of the safety injection system except for accumulators in Beznau nuclear power plant. Also, hydrogen distribution in containment and performance of hydrogen reduction system were investigated.

  11. Loss of Coolant Accident (LOCA) / Emergency Core Coolant System (ECCS Evaluation of Risk-Informed Margins Management Strategies for a Representative Pressurized Water Reactor (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Szilard, Ronaldo Henriques [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Risk Informed Safety Margin Characterization (RISMC) toolkit and methodology are proposed for investigating nuclear power plant core, fuels design and safety analysis, including postulated Loss-of-Coolant Accident (LOCA) analysis. This toolkit, under an integrated evaluation model framework, is name LOCA toolkit for the US (LOTUS). This demonstration includes coupled analysis of core design, fuel design, thermal hydraulics and systems analysis, using advanced risk analysis tools and methods to investigate a wide range of results.

  12. Effect of emergency core cooling system flow reduction on channel temperature during recirculation phase of large break loss-of-coolant accident at Wolsong unit 1

    Directory of Open Access Journals (Sweden)

    Seon Oh Yu

    2017-08-01

    Full Text Available The feasibility of cooling in a pressurized heavy water reactor after a large break loss-of-coolant accident has been analyzed using Multidimensional Analysis of Reactor Safety-KINS Standard code during the recirculation phase. Through evaluation of sensitivity of the fuel channel temperature to various effective recirculation flow areas, it is determined that proper cooling of the fuel channels in the broken loop is feasible if the effective flow area remains above approximately 70% of the nominal flow area. When the flow area is reduced by more than approximately 25% of the nominal value, however, incipience of boiling is expected, after which the thermal integrity of the fuel channel can be threatened. In addition, if a dramatic reduction of the recirculation flow occurs, excursions and frequent fluctuations of temperature in the fuel channels are likely to be unavoidable, and thus damage to the fuel channels would be anticipated. To resolve this, emergency coolant supply through the newly installed external injection path can be used as one alternative means of cooling, enabling fuel channel integrity to be maintained and permanently preventing severe accident conditions. Thus, the external injection flow required to guarantee fuel channel coolability has been estimated.

  13. Comparison of three small-break loss-of-coolant accident tests with different break locations using the system-integrated modular advanced reactor-integral test loop facility to estimate the safety of the smart design

    Directory of Open Access Journals (Sweden)

    Hwang Bae

    2017-08-01

    Full Text Available Three small-break loss-of-coolant accident (SBLOCA tests with safety injection pumps were carried out using the integral-effect test loop for SMART (System-integrated Modular Advanced ReacTor, i.e., the SMART-ITL facility. The types of break are a safety injection system line break, shutdown cooling system line break, and pressurizer safety valve line break. The thermal–hydraulic phenomena show a traditional behavior to decrease the temperature and pressure whereas the local phenomena are slightly different during the early stage of the transient after a break simulation. A safety injection using a high-pressure pump effectively cools down and recovers the inventory of a reactor coolant system. The global trends show reproducible results for an SBLOCA scenario with three different break locations. It was confirmed that the safety injection system is robustly safe enough to protect from a core uncovery.

  14. Loss of Coolant Accident Analysis Methodology for SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Bae, K. H.; Lee, G. H.; Yang, S. H.; Yoon, H. Y.; Kim, S. H.; Kim, H. C

    2006-02-15

    The analysis methodology on the Loss-of-coolant accidents (LOCA's) for SMART-P is described in this report. SMART-P is an advanced integral type PWR producing a maximum thermal power of 65.5 MW with metallic fuel. LOCA's are hypothetical accidents that would result from the loss of reactor coolant, at a rate in excess of the capability of the reactor coolant makeup system, from breaks in pipes in the reactor coolant pressure boundary up to and including a break equivalent in size to the double-ended rupture of the largest pipe in the reactor coolant system. Since SMART-P contains the major primary circuit components in a single Reactor Pressure Vessel (RPV), the possibility of a large break LOCA (LBLOCA) is inherently eliminated and only the small break LOCA is postulated. This report describes the outline and acceptance criteria of small break LOCA (SBLOCA) for SMART-P and documents the conservative analytical model and method and the analysis results using the TASS/SMR code. This analysis method is applied in the SBLOCA analysis performed for the ECCS performance evaluation which is described in the section 6.3.3 of the safety analysis report. The prediction results of SBLOCA analysis model of SMART-P for the break flow, system's pressure and temperature distributions, reactor coolant distribution, single and two-phase natural circulation phenomena, and the time of major sequence of events, etc. should be compared and verified with the applicable separate and integral effects test results. Also, it is required to set-up the feasible acceptance criteria applicable to the metallic fueled integral reactor of SMART-P. The analysis methodology for the SBLOCA described in this report will be further developed and validated as the design and licensing status of SMART-P evolves.

  15. Analysis of Loss-of-Coolant Accidents in the NBSR

    Energy Technology Data Exchange (ETDEWEB)

    Baek J. S.; Cheng L.; Diamond, D.

    2014-05-23

    This report documents calculations of the fuel cladding temperature during loss-of-coolant accidents in the NBSR. The probability of a pipe failure is small and procedures exist to minimize the loss of water and assure emergency cooling water flows into the reactor core during such an event. Analysis in the past has shown that the emergency cooling water would provide adequate cooling if the water filled the flow channels within the fuel elements. The present analysis is to determine if there is adequate cooling if the water drains from the flow channels. Based on photographs of how the emergency water flows into the fuel elements from the distribution pan, it can be assumed that this water does not distribute uniformly across the flow channels but rather results in a liquid film flowing downward on the inside of one of the side plates in each fuel element and only wets the edges of the fuel plates. An analysis of guillotine breaks shows the cladding temperature remains below the blister temperature in fuel plates in the upper section of the fuel element. In the lower section, the fuel plates are also cooled by water outside the element that is present due to the hold-up pan and temperatures are lower than in the upper section. For small breaks, the simulation results show that the fuel elements are always cooled on the outside even in the upper section and the cladding temperature cannot be higher than the blister temperature. The above results are predicated on assumptions that are examined in the study to see their influence on fuel temperature.

  16. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  17. Investigation on two-phase critical flow for loss-of-coolant accident of pressurized water reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    The previous investigations were mainly conducted under the condition of low pressure,however,the steam-water specific volume and the interphase evaporation rate in high pressure are much different from those in low pressure,Therefore,the new experimental and theoretical investigation are performed in Xi'an Jiaotong University.The investigation results could be directly applied to the analysis of loss-of -coolant accident for pressurized water reacor.The system transition characteristics of cold leg and hot leg break loss-of -coolant tests are described for convective circulation test loop.Two types of loss-of-coolant accident are identified for :hot leg” break,while three types for “cold leg”break and the effect parameters on the break geometries.Tests indicate that the mass flow rate with convergent-divergent nozzle reaches the maximum value among the different break sections at the same inlet fluid condition because the fluid separation does not occur.A wall surface cavity nucleation model is developed for prediction of the critical mass flow rate with water flowing in convergentdivergent nozzles.

  18. Validation of advanced NSSS simulator model for loss-of-coolant accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kao, S.P.; Chang, S.K.; Huang, H.C. [Nuclear Training Branch, Northeast Utilities, Waterford, CT (United States)

    1995-09-01

    The replacement of the NSSS (Nuclear Steam Supply System) model on the Millstone 2 full-scope simulator has significantly increased its fidelity to simulate adverse conditions in the RCS. The new simulator NSSS model is a real-time derivative of the Nuclear Plant Analyzer by ABB. The thermal-hydraulic model is a five-equation, non-homogeneous model for water, steam, and non-condensible gases. The neutronic model is a three-dimensional nodal diffusion model. In order to certify the new NSSS model for operator training, an extensive validation effort has been performed by benchmarking the model performance against RELAP5/MOD2. This paper presents the validation results for the cases of small-and large-break loss-of-coolant accidents (LOCA). Detailed comparisons in the phenomena of reflux-condensation, phase separation, and two-phase natural circulation are discussed.

  19. Simulating experimental investigation on the safety of nuclear heating reactor in loss-of-coolant accidents

    Science.gov (United States)

    Xu, Zhanjie

    1996-12-01

    The 5MW low temperature nuclear heating reactor (NHR-5) is a new and advanced type of nuclear reactor developed by Institute of Nuclear Energy Technology (INET) of Tsinghua University of China in 1989. Its main loop is a thermal-hydraulic system with natural circulation. This paper studies the safety of NHR under the condition of loss-of-coolant accidents (LOCAs) by means of simulant experiments. First, the background and necessity of the experiments are presented, then the experimental system, including the thermal-hydraulic system and the data collection system, and similarity criteria are introduced. Up to now, the discharge experiments with the residual heating power (20% rated heating power) have been carried out on the experimental system. The system parameters including circulation flow rate, system pressure, system temperature, void fraction, discharge mass and so on have been recorded and analyzed. Based on the results of the experiments, the conclusions are shown as follos: on the whole, the reactor is safe under the condition of LOCAs, but the thermal vacillations resulting from the vibration of the circulation flow rate are disadvantageous to the internal parts of the reactor core.

  20. Simulation of a large break loss of coolant (LBLOCA), without actuation of the emergency injection systems (ECCS) for a BWR-5; Simulacion de un escenario de perdida de refrigerante grande (LBLOCA), sin actuacion de los sistemas de inyeccion de emergencia (ECCS) para un reactor BWR-5

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas V, J.; Mugica R, C. A.; Lopez M, R., E-mail: jaime.cardenas@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2015-09-15

    In this paper the analysis of scenario for the loss of coolant case was realized with break at the bottom of a recirculation loop of a BWR-5 with containment type Mark II and a thermal power of 2317 MWt considering that not have coolant injection. This in order to observe the speed of progression of the accident, the phenomenology of the scenario, the time to reach the limit pressure of containment venting and the amount of radionuclides released into the environment. This simulation was performed using the MELCOR code version 2.1. The scenario posits a break in one of the shear recirculation loops. The emergency core cooling system (ECCS) and the reactor core isolation cooling (Rcic) have not credit throughout the event, which allowed achieve greater severity on scenario. The venting of the primary containment was conducted via valve of 30 inches instead of the line of 24 inches of wet well, this in order to have a larger area of exhaust of fission products directly to the reactor building. The venting took place when the pressure in the primary containment reached the 4.5 kg/cm{sup 2} and remained open for the rest of the scenario to maximize the amount released of radionuclides to the atmosphere. The safety relief valves were considered functional they do not present mechanical failure or limit their ability to release pressure due to the large number of performances in safety mode. The results of the analysis covers about 48 hours, time at which the accident evolution was observed; behavior of level, pressure in the vessel and the fuel temperature profile was analyzed. For progression of the scenario outside the vessel, the pressure and temperature of the primary containment, level and temperature of the suppression pool, the hydrogen accumulation in the container and the radionuclides mass released into the atmosphere were analyzed. (Author)

  1. Aging and loss-of-coolant accident (LOCA) testing of electrical connections

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.F. [Sandia National Labs., Albuquerque, NM (United States)

    1998-01-01

    This report presents the results of an experimental program to determine the aging and loss-of-coolant accident (LOCA) behavior of electrical connections in order to obtain an initial scoping of their performance. Ten types of connections commonly used in nuclear power plants were tested. These included 3 types of conduit seals, 2 types of cable-to-device connectors, 3 types of cable-to-cable connectors, and 2 types of in-line splices. The connections were aged for 6 months under simultaneous thermal (99 C) and radiation (46 Gy/hr) conditions. A simulated LOCA consisting of sequential high dose-rate irradiation (3 kGy/hr) and high-temperature steam exposures followed the aging. Connection functionality was monitored using insulation resistance measurements during the aging and LOCA exposures. Because only 5 of the 10 connection types passed a post-LOCA, submerged dielectric withstand test, further detailed investigation of electrical connections and the effects of cable jacket integrity on the cable-connection system is warranted.

  2. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2007-02-15

    Extensive range of experiments has been conducted in the past to quantitatively identify and understand the behaviour of fuel rod under loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs). The obtained experimental data provide the basis for the current emergency core cooling system acceptance criteria under LOCA conditions for LWRs. The results of recent experiments indicate that the cladding alloy composition and high burnup effects influence LOCA acceptance criteria margins. In this report, we review some past important and recent experimental results. We first discuss the background to acceptance criteria for LOCA, namely, clad embrittlement phenomenology, clad embrittlement criteria (limitations on maximum clad oxidation and peak clad temperature) and the experimental bases for the criteria. Two broad kinds of test have been carried out under LOCA conditions: (i) Separate effect tests to study clad oxidation, clad deformation and rupture, and zirconium alloy allotropic phase transition during LOCA. (ii) Integral LOCA tests, in which the entire LOCA sequence is simulated on a single rod or a multi-rod array in a fuel bundle, in laboratory or in a tests and results are discussed and empirical correlations deduced from these tests and quantitative models are conferred. In particular, the impact of niobium in zirconium base clad and hydrogen content of the clad on allotropic phase transformation during LOCA and also the burst stress are discussed. We review some recent LOCA integral test results with emphasis on thermal shock tests. Finally, suggestions for modelling and further evaluation of certain experimental results are made.

  3. Analysis of an AP600 intermediate-size loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, B.E.; Lime, J.F. [Los Alamos National Lab., NM (United States)

    1995-09-01

    A postulated double-ended guillotine break of an AP600 direct-vessel-injection line has been analyzed. This event is characterized as an intermediate-break loss-of-coolant accident. Most of the insights regarding the response of the AP600 safety systems to the postulated accident are derived from calculations preformed with the TRAC-PF1/MOD2 code. However, complementary insights derived from a scaled experiment conducted in the ROSA facility, as well as insights based upon calculations by other codes, are also presented. Based upon the calculated and experimental results, the AP600 will not experience a core heat up and will reach a safe shutdown state using only safety-class equipment. Only the early part of the long-term cooling period initiated by In-containment Refueling Water Storage Tank injection was evaluated. Thus, the observation that the core is continuously cooled should be verified for the later phase of the long-term cooling period when sump injection and containment cooling processes are important.

  4. Restructuring of an Event Tree for a Loss of Coolant Accident in a PSA model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ho-Gon; Han, Sang-Hoon; Park, Jin-Hee; Jang, Seong-Chul [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    Conventional risk model using PSA (probabilistic Safety Assessment) for a NPP considers two types of accident initiators for internal events, LOCA (Loss of Coolant Accident) and transient event such as Loss of electric power, Loss of cooling, and so on. Traditionally, a LOCA is divided into three initiating event (IE) categories depending on the break size, small, medium, and large LOCA. In each IE group, safety functions or systems modeled in the accident sequences are considered to be applicable regardless of the break size. However, since the safety system or functions are not designed based on a break size, there exist lots of mismatch between safety system/function and an IE, which may make the risk model conservative or in some case optimistic. Present paper proposes new methodology for accident sequence analysis for LOCA. We suggest an integrated single ET construction for LOCA by incorporating a safety system/function and its applicable break spectrum into the ET. Integrated accident sequence analysis in terms of ET for LOCA was proposed in the present paper. Safety function/system can be properly assigned if its applicable range is given by break set point. Also, using simple Boolean algebra with the subset of the break spectrum, final accident sequences are expressed properly in terms of the Boolean multiplication, the occurrence frequency and the success/failure of safety system. The accident sequence results show that the accident sequence is described more detailed compared with the conventional results. Unfortunately, the quantitative results in terms of MCS (minimal Cut-Set) was not given because system fault tree was not constructed for this analysis and the break set points for all 7 point were not given as a specified numerical quantity. Further study may be needed to fix the break set point and to develop system fault tree.

  5. ROSA-III base test series for a large break loss-of-coolant accident in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Abe, N.; Anoda, Y.; Koizumi, Y.; Shiba, M.

    1982-05-01

    The rig of safety assessment (ROSA)-III facility is a volumetrically scaled (1/424) boiling water reactor (BWR) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency core cooling system (ECCS) tests. It is confirmed from the experimental results obtained so far that the ROSA-III test facility can simulate major aspects of a BWR LOCA, such as boiling transition by lowering of the mixture level in the core, rewetting by the lower plenum flashing, and final quenching by the ECCS. The overall agreement between the calculated results by the RELAP5/ MOD0 code and the experimental results is good; however, the calculated lower plenum flashing rewetted the whole core and the calculated cladding temperature considerably underpredicts the measured value at the upper part of the core.

  6. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 1 – Aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Kerry J., E-mail: howe@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Mitchell, Lana, E-mail: lmitchell@alionscience.com [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kim, Seung-Jun, E-mail: skim@lanl.gov [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Blandford, Edward D., E-mail: edb@unm.edu [University of New Mexico, 210 University Blvd., Albuquerque, NM 87131 (United States); Kee, Ernest J., E-mail: erniekee@gmail.com [South Texas Project Nuclear Operating Company, P.O. Box 270, Wadsworth, TX 77483 (United States)

    2015-10-15

    Highlights: • Trisodium phosphate (TSP) causes aluminum corrosion to cease after 24 h of exposure. • Chloride, iron, and copper have a minimal effect on the rate of aluminum corrosion when TSP is present. • Zinc can reduce the rate of aluminum corrosion when TSP is present. • Aluminum occasionally precipitates at concentrations lower than the calculated solubility for Al(OH){sub 3}. • Corrosion and solubility equations can be used to calculate the solids generated during a LOCA. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum from metallic aluminum surfaces under conditions representative of the containment pool following a postulated loss of coolant accident at a nuclear power generating facility. The experiments showed that TSP is capable of passivating the aluminum surface and preventing continued corrosion after about 24 h at the conditions tested. A correlation that describes the rate of corrosion including the passivation effect was developed from the bench experiments and validated with a separate set of experiments from a different test system. The saturation concentration of aluminum was shown to be well described by the solubility of amorphous aluminum hydroxide for the majority of cases, but instances have been observed when aluminum precipitates at concentrations lower than the calculated aluminum hydroxide solubility. Based on the experimental data and previous literature, an equation was developed to calculate the saturation concentration of aluminum as a function of pH and temperature under conditions representative of a loss of coolant accident (LOCA) in a TSP-buffered pressurized water reactor (PWR) containment. The corrosion equation and precipitation equation can be used in concert with each other to calculate the quantity of solids that would form as a function of time during a LOCA if the temperature and pH profiles were known.

  7. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    Energy Technology Data Exchange (ETDEWEB)

    Al-Falahi, A. [Helsinki Univ. of Technology, Espoo (Finland); Haennine, M. [VTT Energy, Espoo (Finland); Porkholm, K. [IVO International, Ltd., Vantaa (Finland)

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  8. Definition of loss-of-coolant accident radiation source. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    Meaningful qualification testing of nuclear reactor components requires a knowledge of the radiation fields expected in a loss-of-coolant accident (LOCA). The overall objective of this program is to define the LOCA source terms and compare these with the output of various simulators employed for radiation qualification testing. The basis for comparison will be the energy deposition in a model reactor component. The results of the calculations are presented and some interpretation of the results given. The energy release rates and spectra were validated by comparison with other calculations using different codes since experimental data appropriate to these calculations do not exist.

  9. Conceptual design of Blanket Remote Handling System for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jianghua, E-mail: weijh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Song, Yuntao, E-mail: songyt@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2015-11-15

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  10. Development of blanket remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  11. Models and numerical methods for the simulation of loss-of-coolant accidents in nuclear reactors

    Science.gov (United States)

    Seguin, Nicolas

    2014-05-01

    In view of the simulation of the water flows in pressurized water reactors (PWR), many models are available in the literature and their complexity deeply depends on the required accuracy, see for instance [1]. The loss-of-coolant accident (LOCA) may appear when a pipe is broken through. The coolant is composed by light water in its liquid form at very high temperature and pressure (around 300 °C and 155 bar), it then flashes and becomes instantaneously vapor in case of LOCA. A front of liquid/vapor phase transition appears in the pipes and may propagate towards the critical parts of the PWR. It is crucial to propose accurate models for the whole phenomenon, but also sufficiently robust to obtain relevant numerical results. Due to the application we have in mind, a complete description of the two-phase flow (with all the bubbles, droplets, interfaces…) is out of reach and irrelevant. We investigate averaged models, based on the use of void fractions for each phase, which represent the probability of presence of a phase at a given position and at a given time. The most accurate averaged model, based on the so-called Baer-Nunziato model, describes separately each phase by its own density, velocity and pressure. The two phases are coupled by non-conservative terms due to gradients of the void fractions and by source terms for mechanical relaxation, drag force and mass transfer. With appropriate closure laws, it has been proved [2] that this model complies with all the expected physical requirements: positivity of densities and temperatures, maximum principle for the void fraction, conservation of the mixture quantities, decrease of the global entropy… On the basis of this model, it is possible to derive simpler models, which can be used where the flow is still, see [3]. From the numerical point of view, we develop new Finite Volume schemes in [4], which also satisfy the requirements mentioned above. Since they are based on a partial linearization of the physical

  12. Phenomena identification and ranking tables for Westinghouse AP600 small break loss-of-coolant accident, main steam line break, and steam generator tube rupture scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.E.; Fletcher, C.D.; Davis, C.B. [and others

    1997-06-01

    This report revision incorporates new experimental evidence regarding AP600 behavior during small break loss-of-coolant accidents. This report documents the results of Phenomena Identification and Ranking Table (PIRT) efforts for the Westinghouse AP600 reactor. The purpose of this PIRT is to identify important phenomena so that they may be addressed in both the experimental programs and the RELAP5/MOD3 systems analysis computer code. In Revision of this report, the responses of AP600 during small break loss-of-coolant accident, main steam line break, and steam generator tube rupture accident scenarios were evaluated by a committee of thermal-hydraulic experts. Committee membership included Idaho National Engineering and Environmental Laboratory staff and recognized thermal-hydraulic experts from outside of the laboratory. Each of the accident scenarios was subdivided into separate, sequential periods or phases. Within each phase, the plant behavior is controlled by, at most, a few thermal-hydraulic processes. The committee identified the phenomena influencing those processes, and ranked & influences as being of high, medium, low, or insignificant importance. The primary product of this effort is a series of tables, one for each phase of each accident scenario, describing the thermal-hydraulic phenomena judged by the committee to be important, and the relative ranking of that importance. The rationales for the phenomena selected and their rankings are provided. This document issue incorporates an update of the small break loss-of-coolant accident portion of the report. This revision is the result of the release of experimental evidence from AP600-related integral test facilities (ROSA/AP600, OSU, and SPES) and thermal-hydraulic expert review. The activities associated with this update were performed during the period from June 1995 through November 1996. 8 refs., 26 figs., 42 tabs.

  13. Prototypic Thermal-Hydraulic Experiment in NRU to Simulate Loss-of-Coolant Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, C. L.; Hesson, G. M.; Russcher, G. E.; Marsh, R. K.; King, L. L.; Wildung, N. J.; Rausch, W. N.; Bennett, W. D.

    1981-04-01

    Quick-look test results are reported for the initial test series of the Loss-of-Coolant Accident (LOCA) Simulation in the National Research Universal {NRU) test program, conducted by Pacific Northwest Laboratory (PNL) for the U.S. Nuclear Regulatory Commission (NRC). This test was devoted to evaluating the thermal-hydraulic characteristics of a full-length light water reactor (LWR) fuel bundle during the heatup, reflood, and quench phases of a LOCA. Experimental results from 28 tests cover reflood rates of 0.74 in./sec to 11 in./sec and delay times to initiate reflood of 3 sec to 66 sec. The results indicate that current analysis methods can predict peak temperatures within 10% and measured quench times for the bundle were significantly less than predicted. For reflood rates of 1 in./sec where long quench times were predicted (>2000 sec}, measured quench times of 200 sec were found.

  14. Prototypic Thermal-Hydraulic Experiment in NRU to Simulate Loss-of-Coolant Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, C. L.; Hesson, G. M.; Russcher, G. E.; Marsh, R. K.; King, L. L.; Wildung, N. J.; Rausch, W. N.; Bennett, W. D.

    1981-04-01

    Quick-look test results are reported for the initial test series of the Loss-of-Coolant Accident (LOCA) Simulation in the National Research Universal {NRU) test program, conducted by Pacific Northwest Laboratory (PNL) for the U.S. Nuclear Regulatory Commission (NRC). This test was devoted to evaluating the thermal-hydraulic characteristics of a full-length light water reactor (LWR) fuel bundle during the heatup, reflood, and quench phases of a LOCA. Experimental results from 28 tests cover reflood rates of 0.74 in./sec to 11 in./sec and delay times to initiate reflood of 3 sec to 66 sec. The results indicate that current analysis methods can predict peak temperatures within 10% and measured quench times for the bundle were significantly less than predicted. For reflood rates of 1 in./sec where long quench times were predicted (>2000 sec}, measured quench times of 200 sec were found.

  15. Results and Observations of the Integral Loss-of-coolant Accident Test with Surface Modified Claddings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun; Jung, Yang Il; Park, Jung Hwan; Kim, Hyun Gil; Yang, Jae Ho; Koo, Yang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, integral loss-of-coolant accident (LOCA) test was carried for comprehensive understanding of phenomena such as ballooning, burst failures, and oxidation for the ATF cladding during a LOCA scenario. In this section some of the experimental procedure and technical details of apparatus are described. Highlight data obtained from simulated LOCA test is also presented. Cracks can be initiated at this brittle burst tip and will propagate rapidly though the ballooned region. Therefore, the flexural strength of the ruptured tubes mainly depends on the thickness of the load bearing Zr metal at the opposite side to the rupture opening. To improve the reliability and safety of existing Zr alloy fuel cladding under LWR accident conditions, a high temperature oxidation resistant layer was coated onto the surface of Zr alloy samples using various coating techniques. The rupture temperature of the coated tube was higher than that of the uncoated cladding.

  16. Advanced Neutron Source Reactor (ANSR) phenomena identification and ranking (PIR) for large break loss of coolant accidents (LBLOCA)

    Energy Technology Data Exchange (ETDEWEB)

    Ruggles, A. E. [Oak Ridge National Lab., TN (United States); Tennessee Univ., Knoxville, TN (United States); Cheng, L. Y. [Brookhaven National Lab., Upton, NY (United States); Dimenna, R. A. [Westinghouse Savannah River Co., Aiken, SC (United States); Griffith, P. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Wilson, G. E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1994-06-01

    A team of experts in reactor analysis conducted a phenomena identification and ranking (PIR) exercise for a large break loss-of-coolant accident (LBLOCA) in the Advanced Neutron source Reactor (ANSR). The LBLOCA transient is broken into two separate parts for the PIR exercise. The first part considers the initial depressurization of the system that follows the opening of the break. The second part of the transient includes long-term decay heat removal after the reactor is shut down and the system is depressurized. A PIR is developed for each part of the LBLOCA. The ranking results are reviewed to establish if models in the RELAP5-MOD3 thermalhydraulic code are adequate for use in ANSR LBLOCA simulations. Deficiencies in the RELAP5-MOD3 code are identified and existing data or models are recommended to improve the code for this application. Experiments were also suggested to establish models for situations judged to be beyond current knowledge. The applicability of the ANSR PIR results is reviewed for the entire set of transients important to the ANSR safety analysis.

  17. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    Science.gov (United States)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-01

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility.

  18. An investigation of FeCrAl cladding behavior under normal operating and loss of coolant conditions

    Science.gov (United States)

    Gamble, K. A.; Barani, T.; Pizzocri, D.; Hales, J. D.; Terrani, K. A.; Pastore, G.

    2017-08-01

    Iron-chromium-aluminum (FeCrAl) alloys are candidates to be used as nuclear fuel cladding for increased accident tolerance. An analysis of the response of FeCrAl under normal operating and loss of coolant conditions has been performed using fuel performance modeling. In particular, recent information on FeCrAl material properties and phenomena from separate effects tests has been implemented in the BISON fuel performance code and analyses of integral fuel rod behavior with FeCrAl cladding have been performed. BISON simulations included both light water reactor normal operation and loss-of-coolant accidental transients. In order to model fuel rod behavior during accidents, a cladding failure criterion is desirable. For FeCrAl alloys, a failure criterion is developed using recent burst experiments under loss of coolant like conditions. The added material models are utilized to perform comparative studies with Zircaloy-4 under normal operating conditions and oxidizing and non-oxidizing out-of-pile loss of coolant conditions. The results indicate that for all conditions studied, FeCrAl behaves similarly to Zircaloy-4 with the exception of improved oxidation performance. Further experiments are required to confirm these observations.

  19. Long-term aging and loss-of-coolant accident (LOCA) testing of electrical cables

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C.F.; Gauthier, G.; Carlin, F. [and others

    1996-10-01

    Experiments were performed to assess the aging degradation and loss-of-coolant accident (LOCA) behavior of electrical cables subjected to long-term aging exposures. Four different cable types were tested in both the U.S. and France: (1) U.S. 2 conductor with ethylene propylene rubber (EPR) insulation and a Hypalon jacket. (2) U.S. 3 conductor with cross-linked polyethylene (XLPE) insulation and a Hypalon jacket. (3) French 3 conductor with EPR insulation and a Hypalon jacket. (4) French coaxial with polyethylene (PE) insulation and a PE jacket. The data represent up to 5 years of simultaneous aging where the cables were exposed to identical aging radiation doses at either 40{degrees}C or 70{degrees}C; however, the dose rate used for the aging irradiation was varied over a wide range (2-100 Gy/hr). Aging was followed by exposure to simulated French LOCA conditions. Several mechanical, electrical, and physical-chemical condition monitoring techniques were used to investigate the degradation behavior of the cables. All the cables, except for the French PE cable, performed acceptably during the aging and LOCA simulations. In general, cable degradation at a given dose was highest for the lowest dose rate, and the amount of degradation decreased as the dose rate was increased.

  20. LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J

    1981-02-01

    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

  1. Large-break loss-of-coolant accident phenomena identification and ranking table (PIRT) for the advanced Candu reactor

    Energy Technology Data Exchange (ETDEWEB)

    Popov, N.; Snell, V.G.; Sills, H.E.; Langman, V.J.; Boyack, B. [Atomic Energy of Canada Ltd (Canada)

    2004-07-01

    The Advanced Candu Reactor (ACR) is an evolutionary advancement of the current Candu-6 reactor, aimed at producing electrical power for a capital cost and unit-energy cost significantly less than that of current reactor designs. The ACR retains the modular concept of horizontal fuel channels surrounded by heavy water moderator, as with all Candu reactors. However, ACR uses slightly enriched uranium (SEU) fuel, compared to the natural uranium used in Candu 6. This achieves the twin goals of improved economics (e.g., via reductions in the heavy water requirements and the use of a light water coolant), as well as improved safety. This paper is focused on the double-ended guillotine critical inlet header break (CRIHB) loss-of-coolant accident (LOCA) in an ACR reactor, which is considered as a large break LOCA. Large Break LOCA in water-cooled reactors has been used historically as a design basis event by regulators, and it has attracted a very large share of safety analysis and regulatory review. The LBLOCA event covers a wide range of system behaviours and fundamental phenomena. The Phenomena Identification and Ranking Table (PIRT) for LBLOCA therefore provides a good understanding of many of the safety characteristics of the ACR design. The paper outlines the design characteristics of the ACR reactor that impact the PIRT process and computer code applicability. It also describes the LOCA phenomena, lists all components and systems that have an important role during the event, discusses the PIRT process and results, and presents the final PIRT summary table. (authors)

  2. Commissioning of the STAR test section for experimental simulation of loss of coolant accident using the EC-208 instrumented fuel assembly of the IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maprelian, Eduardo; Torres, Walmir M.; Prado, Adelk C.; Umbehaun, Pedro E.; Franca, Renato L.; Santos, Samuel C.; Macedo, Luiz A.; Sabundjian, Gaiane, E-mail: emaprel@ipen.br, E-mail: wmtorres@ipen.br, E-mail: acprado@ipen.br, E-mail: umbehaun@ipen.br, E-mail: rlfranca@ipen.br, E-mail: samuelcs@ipen.br, E-mail: lamacedo@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SO (Brazil)

    2015-07-01

    The three basic safety functions of Research Reactors (RR) are the safe shutdown of the reactor, the proper cooling of the decay heat of the fuel elements and the confinement of radioactive materials. Compared to Nuclear Power Reactors, RR power release is small, yet its three safety functions must be met to ensure the integrity of the reactor. During a loss of coolant accident (LOCA) in pool type RR, partial or complete loss of pool water may occur, with consequent partial or complete uncovering of the fuel assemblies. In such an accident, the decay heat removal safety function must not be compromised. The Test Section for Experimental Simulation of Loss of Coolant Accident (STAR) is in commissioning phase. This test section will provide experimental data on partial and total uncovering of the EC-208 instrumented fuel assembly (IFA) irradiated in the IEA-R1. Experimental results will be useful in validation of computer codes for RR safety analysis, particularly on heat removal efficiency aspects (safety function) in accident conditions. STAR comprises a base on which is installed the IFA, the cylindrical stainless steel hull, the compressed air system for the test section emptying and refilling, and the instrumentation for temperature and level measurements. The commissioning tests or pre-operational check, consist of several preliminary tests to verify experimental procedures, the difficulties during assembling of STAR in the pool, the difficulties in control the emptying and refilling velocities, as well as, the repeatability capacity, tests of equipment, valves and systems and tests of instrumentation and data acquisition system. Safety, accuracy and easiness of operation will be checked. (author)

  3. An advanced method for determination of loss of coolant accident in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, R. [Department of Engineering, Shahid Beheshti University, GC, Evin, Tehran (Iran, Islamic Republic of); Shahriari, M., E-mail: m-shahriari@sbu.ac.ir [Department of Engineering, Shahid Beheshti University, GC, Evin, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A. [Department of Engineering, Shahid Beheshti University, GC, Evin, Tehran (Iran, Islamic Republic of)

    2011-06-15

    Highlights: > The considerations of vibration signals are introduced as a new method for determination of accidents directly by detecting of vibration signals without including signals from other components and this is the superiority of the proposed method. > FFT provides an alternate way of representing data. Instead of representing vibration signal amplitude as a function of time, the signal is represented by the amount of information which is contained at different frequencies. > The most of frequencies of structure and fluid coupled are presented in the FFT of structural response and through it the dominant frequency of excitation is obtained. > The Power Spectral Density, a measurement of energy at various frequencies is worked out. MATLAB software is used to convert signals from the time to frequency domain and to obtain PSD of signals. - Abstract: A major objective in reactor design is to provide the capability to withstand a wide range of postulated events without exceeding specified safety limits. Assessment of the consequence of hypothetical loss of coolant accident (LOCA) in primary circuit is an essential element to address fulfilment of acceptance criteria. In addition, finding the position of rupture, one could manage accident in a right direction. In this work, the transient vibration signal from a pipe rupture is used to determine the position of LOCA. A finite element formulation (Galerkin Method) is implemented to include the effect of fluid-structure interaction (FSI). The coupled equations of fluid motion and pipe displacement are solved. The obtained results are in good agreement with published data. Fast Fourier transform (FFT) provides an alternate way of representing data. Instead of representing vibration signal amplitude as a function of time, the signal is represented by the amount of information, which is contained at different frequencies. The most of frequencies of structure and fluid coupled are presented in the FFT of structural

  4. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  5. Preliminary phenomena identification and ranking tables for simplified boiling water reactor Loss-of-Coolant Accident scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, P.G.; Rohatgi, U.S.; Jo, J.H.; Slovik, G.C.

    1998-04-01

    For three potential Loss-of-Coolant Accident (LOCA) scenarios in the General Electric Simplified Boiling Water Reactors (SBWR) a set of Phenomena Identification and Ranking Tables (PIRT) is presented. The selected LOCA scenarios are typical for the class of small and large breaks generally considered in Safety Analysis Reports. The method used to develop the PIRTs is described. Following is a discussion of the transient scenarios, the PIRTs are presented and discussed in detailed and in summarized form. A procedure for future validation of the PIRTs, to enhance their value, is outlined. 26 refs., 25 figs., 44 tabs.

  6. APT Blanket System Loss-of-Helium-Gas Accident Based on Initial Conceptual Design - Helium Supply Rupture into Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    The model results are used to determine if beam power shutdown is necessary (or not) as a result of the LOHGA accident to maintain the blanket system well below any of the thermal-hydraulic constraints imposed on the design. The results also provide boundary conditions to the detailed bin model to study the detailed temperature response of the hot blanket module structure. The results for these two cases are documented in the report.

  7. Design and safety analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuai; Zhou, Guangming; Lv, Zhongliang; Jin, Cheng; Chen, Hongli [University of Science and Technology of China, Anhui (China). School of Nuclear Science and Technology

    2016-05-15

    This paper reports the design and safety analysis results of the helium cooled solid breeder blanket of the Chinese Fusion Engineering Test Reactor (CFETR). Materials selection and basic structure of the blanket have been presented. Performance analysis including neutronics analysis and thermo-mechanical analysis has shown good results. And the safety analysis of the blanket under Loss Of Coolant Accident (LOCA) conditions has been described. Results showed the current design can deal well with the selected accident scenarios.

  8. RAMI analysis for DEMO HCPB blanket concept cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  9. ROSA-III double-ended break test series for a loss-of-coolant accident in a boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tasaka, K.; Anoda, Y.; Koizumi, Y.; Kumamaru, H.; Nakamura, H.; Shiba, M.; Suzuki, M.; Yonomoto, T.

    1985-01-01

    The Rig of Safety Assessment (ROSA) III facility is a volumetrically scaled (1/424) boiling water reactor (BWR) system with an electrically heated core designed for integral loss-of-coolant accident (LOCA) and emergency-core-cooling-system (ECCS) tests. Experimental results obtained so far confirm that the severest single failure assumption in ECCS is the high-pressure core spray system failure even in a large-break LOCA in a BWR. The measured peak cladding temperature was well below the present safety criterion of 1473 K, even with the single failure assumption in ECCS, and the effectiveness of ECCS for core cooling during a double-ended-break LOCA has been confirmed. The overall agreement between the results calculated by the RELAP4/MOD6/U4/J3 computer code and the experimental results is good. The similarity between the ROSA-III test and a BWR LOCA has been confirmed through the comparison of calculated results for the ROSA-III facility and a BWR system.

  10. Experimental Investigation on Small Break Loss of Coolant Accident for Direct Vessel Injection Line%DVI管小破口失水事故实验研究

    Institute of Scientific and Technical Information of China (English)

    彭传新; 张妍; 黄志刚; 昝元锋; 卓文彬; 闫晓

    2016-01-01

    在模块化小型反应堆非能动安全系统综合模拟实验装置上进行了压力容器直接注入(DVI)管小破口失水事故实验,研究了DVI管小破口失水事故过程中的热工水力现象和非能动安全系统运行特性。研究结果表明:模块化小型反应堆DVI管小破口失水事故中,非能动安全系统可对堆芯进行注水,有效导出堆芯衰变热量,保护堆芯安全。%T he small break loss of coolant accident (SBLOCA ) experiment for direct vessel injection (DVI ) line , w hich investigated the thermal‐hydraulic phenomena and the performances of passive safety system during the accident ,was performed on the passive safety system test facility for small modular reactor .The experimental results show that the passive safety system of small modular reactor can provide effective cool‐ant injection ,successful removal of core residual heat under the DVI line SBLOCA and protection to reactor core safety .

  11. Simulation of Containment Pressurization in a Large Break-Loss of Coolant Accident Using Single-Cell and Multicell Models and CONTAIN Code

    Directory of Open Access Journals (Sweden)

    Omid Noori-Kalkhoran

    2016-10-01

    Full Text Available Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model. In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code’s results.

  12. Simulation of containment pressurization in a large break-loss of coolant accident using single-cell and multicell models and CONTAIN code

    Energy Technology Data Exchange (ETDEWEB)

    Kalkahoran, Omid Noori; Ahangari, Rohollah [Reactor Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shirani, Amir Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    Since the inception of nuclear power as a commercial energy source, safety has been recognized as a prime consideration in the design, construction, operation, maintenance, and decommissioning of nuclear power plants. The release of radioactivity to the environment requires the failure of multiple safety systems and the breach of three physical barriers: fuel cladding, the reactor cooling system, and containment. In this study, nuclear reactor containment pressurization has been modeled in a large break-loss of coolant accident (LB-LOCA) by programming single-cell and multicell models in MATLAB. First, containment has been considered as a control volume (single-cell model). In addition, spray operation has been added to this model. In the second step, the single-cell model has been developed into a multicell model to consider the effects of the nodalization and spatial location of cells in the containment pressurization in comparison with the single-cell model. In the third step, the accident has been simulated using the CONTAIN 2.0 code. Finally, Bushehr nuclear power plant (BNPP) containment has been considered as a case study. The results of BNPP containment pressurization due to LB-LOCA have been compared between models, final safety analysis report, and CONTAIN code's results.

  13. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 2 – Zinc

    Energy Technology Data Exchange (ETDEWEB)

    Pease, David; LaBrier, Daniel; Ali, Amir [Department of Nuclear Engineering, University of New Mexico (United States); Blandford, Edward D., E-mail: edb@unm.edu [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry J. [Department of Civil Engineering, University of New Mexico (United States)

    2016-04-15

    Highlights: • Zinc release is limited to less than 1 mg/L in TSP-buffered solution under a variety of conditions (pH, temperature, zinc source). • Zinc release in high-temperature non-TSP-buffered environment is approximately 25 mg/L. • Long-term zinc release is controlled by passivation (without TSP) and zinc solubility (with TSP). • Precipitation and solubility of zinc phosphate limit the release of zinc. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of zinc from metallic zinc-bearing surfaces under conditions representative of the containment pool following a postulated loss of coolant accident (LOCA) at a nuclear power generating facility. The experiments showed that in non-buffered (acidic) environments, measurable quantities of zinc are released from zinc-bearing surfaces. Precipitation and solubility of phosphate-based corrosion products, such as zinc phosphate, limit the release of zinc from zinc-bearing surfaces. These experiments have found that under a variety of conditions, including variations of temperature, pH, and across different zinc-bearing surfaces, the release of zinc into solution is limited to <1 mg/L when phosphate is present. When phosphate is not present, zinc release is instead bounded by a markedly higher saturation limit which is a strong function of the solution temperature.

  14. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon, E-mail: parkjw@dongguk.ac.k [Dongguk University, 707 Seokjang-Dong, Gyeongju, 780-714 (Korea, Republic of); Park, Byung Gi [Soonchunhyang University, Asan, Chungnam, 336-745 (Korea, Republic of); Kim, Chang Hyun [Korea Hydro and Nuclear Power Co., Ltd. 25-1, Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of)

    2009-12-15

    Integral tests of head loss through an emergency core cooling filter screen are conducted, simulating reactor building environmental conditions for 30 days after a loss of coolant accident. A test rig with five individual loops each of whose chamber is established to test chemical product formation and measure the head loss through a sample filter. The screen area at each chamber and the amounts of reactor building materials are scaled down according to specific plant condition. A series of tests have been performed to investigate the effects of calcium-silicate, reactor building spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the filter screen is strongly affected by spray duration and the head loss increase is rapid at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKON{sup TM} and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

  15. Permeability and compression of fibrous porous media generated from dilute suspensions of fiberglass debris during a loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Saya, E-mail: sayalee@tamu.edu; Abdulsattar, Suhaeb S.; Vaghetto, Rodolfo; Hassan, Yassin A.

    2015-09-15

    Highlights: • Experimental investigation on fibrous debris buildup was conducted. • Head loss through fibrous media was recorded at different approach velocities. • A head loss model through fibrous media was proposed for high porosity (>0.99). • A compression model of fibrous media was developed. - Abstract: Permeability of fibrous porous media has been studied for decades in various engineering applications, including liquid purifications, air filters, and textiles. In nuclear engineering, fiberglass has been found to be a hazard during a Loss-of-Coolant Accident. The high energy steam jet from a break impinges on surrounding fiberglass insulation materials, producing a large amount of fibrous debris. The fibrous debris is then transported through the reactor containment and reaches the sump strainers. Accumulation of such debris on the surface of the strainers produces a fibrous bed, which is a fibrous porous medium that can undermine reactor core cooling. The present study investigated the buildup of fibrous porous media on two types of perforated plate and the pressure drop through the fibrous porous media without chemical effect. The development of the fibrous bed was visually recorded in order to correlate the pressure drop, the approach velocity, and the thickness of the fibrous porous media. The experimental results were compared to semi-theoretical models and theoretical models proposed by other researchers. Additionally, a compression model was developed to predict the thickness and the local porosity of a fibrous bed as a function of pressure.

  16. Strategies for reactor safety: Preventing loss of coolant accidents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lydell, B.O.Y. [RSA Technoligies, Vista (United States)

    1997-12-01

    This final report on the NKS/RAK-1.2 summarizes the main features of the PIFRAP PC-program and its intended implementation. Regardless of the preferred technical approach to LOCA frequency estimation, the analysis approach must include recognition of the following technical issues: (a) Degradation and failure mechanisms potentially affecting piping systems within the reactor coolant pressure boundary (RCPB) and the potential consequences; (b) In-service inspection practices and how they influence piping reliability; and (c) The service experience with piping systems. The report consists of six sections and one appendix. A Nordic perspective on LOCA and nuclear safety is given. It includes summaries of results from research in material sciences and current regulatory philosophies regarding piping reliability. A summary of the LOCA concept is applied in Nordic PSA studies. It includes a discussion on deterministic and probabilistic views on LOCA. The R and D on piping reliability by SKI and the PIFRAP model is summarized. Next, Section 6 presents conclusion and recommendations. Finally, Appendix A contains a list of abbreviations and acronyms, together with a glossary of technical terms. (EG) 16 refs.

  17. Large break loss-of-coolant accident analysis for China Qinshan-2 nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Yong; Ban, Chang Hwan; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Wang, Rongzhong; Yu, Hongxing [Nuclear Power Institute of China, Chengdu, SC (China)

    1994-12-01

    Large break LOCA analysis for China Qinshan-2 nuclear power plant has been performed using realistic evaluation model which has been being developed by KAERI. RELAP5/MOD3/KAERI code, which is a modified version of RELAP5/MOD3, is coupled with CONTEMPT4/MOD5 and is used as a best estimate code to predict the thermal hydraulic behavior of the system. PCT uncertainty which stems from code uncertainty, plant application uncertainty, scaling uncertainty and PCT bias are discussed. Among them, plant application uncertainty is described in detail. The licensing PCT is calculated by adding all the uncertainties to the best-estimate PCT. The result indicates the Qinshan-2 nuclear power plant has at least 37 deg C safety margin for large break LOCA. (Author) 10 refs., 47 figs., 14 tabs.

  18. Small-break loss-of-coolant accidents in the updated PIUS 600 advanced reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, B.E.; Steiner, J.L.; Harmony, S.C. [Los Alamos National Lab., Albuquerque, NM (United States)] [and others

    1995-09-01

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is normally controlled by coolant boron concentration and the temperature of the moderator coolant. ABB submitted the PIUS design to the US Nuclear Regulatory Commission (NRC) for preapplication review, and Los Alamos supported the NRC`s review effort. Baseline analyses of small-break initiators at two locations were performed with the system neutronic and thermal-hydraulic analysis code TRAC-PF1/MOD2. In addition, sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions having a very low probability of occurrence.

  19. Discrete element method study of fuel relocation and dispersal during loss-of-coolant accidents

    Science.gov (United States)

    Govers, K.; Verwerft, M.

    2016-09-01

    The fuel fragmentation, relocation and dispersal (FFRD) during LOCA transients today retain the attention of the nuclear safety community. The fine fragmentation observed at high burnup may, indeed, affect the Emergency Core Cooling System performance: accumulation of fuel debris in the cladding ballooned zone leads to a redistribution of the temperature profile, while dispersal of debris might lead to coolant blockage or to debris circulation through the primary circuit. This work presents a contribution, by discrete element method, towards a mechanistic description of the various stages of FFRD. The fuel fragments are described as a set of interacting particles, behaving as a granular medium. The model shows qualitative and quantitative agreement with experimental observations, such as the packing efficiency in the balloon, which is shown to stabilize at about 55%. The model is then applied to study fuel dispersal, for which experimental parametric studies are both difficult and expensive.

  20. International Standard Problems and Small Break Loss-of-Coolant Accident (SBLOCA

    Directory of Open Access Journals (Sweden)

    N. Aksan

    2008-01-01

    Full Text Available Best-estimate thermal-hydraulic system codes are widely used to perform safety and licensing analyses of nuclear power plants and also used in the design of advance reactors. Evaluation of the capabilities and the performance of these codes can be accomplished by comparing the code predictions with measured experimental data obtained on different test facilities. OECD/NEA Committee on the Safety of Nuclear Installations (CSNI has promoted, over the last twenty-nine years, some forty-eight international standard problems (ISPs. These ISPs were performed in different fields as in-vessel thermal-hydraulic behaviour, fuel behaviour under accident conditions, fission product release and transport, core/concrete interactions, hydrogen distribution and mixing, containment thermal-hydraulic behaviour. 80% of these ISPs were related to the working domain of principal working group no.2 on coolant system behaviour (PWG2 and were one of the major PWG2 activities for many years. A global review and synthesis on the contribution that ISPs have made to address nuclear reactor safety issues was initiated by CSNI-PWG2 and an overview on the subject of small break LOCA ISPs is given in this paper based on a report prepared by a writing group. In addition, the relevance of small break LOCA in a PWR with relation to nuclear reactor safety and the reorientation of the reactor safety program after TMI-2 accident are shortly summarized. The experiments in four integral test facilities, LOBI, SPES, BETHSY, ROSA IV/LSTF and the recorded data during a steam generator tube rupture transient in the DOEL-2 PWR (Belgium were the basis of the five small break LOCA related ISP exercises, which deal with the phenomenon typical of small break LOCAs in Western design PWRs. Some lessons learned from these small break LOCA ISPs are identified in relation to code deficiencies and capabilities, progress in the code capabilities, possibility of scaling, and various additional aspects

  1. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 4 – Integrated chemical effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Amir; LaBrier, Daniel [Department of Nuclear Engineering, University of New Mexico (United States); Blandford, Edward, E-mail: edb@unm.edu [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry [Department of Civil Engineering, University of New Mexico (United States)

    2016-04-15

    Highlights: • Integrated test explored the material release of a postulated large break LOCA. • Aluminum concentration was very low (<0.1 mg/L) throughout the test duration. • Zinc concentration was low (<1 mg/L) in TSP-buffered system. • Calcium release showed two distinguished release zones: prompt and meta-stable. • Copper and iron has no distinguishable concentration up to first 24 h of testing. - Abstract: This paper presents the results of an integrated chemical effects experiment executed under conditions representative of the containment pool following a postulated loss of coolant accident (LOCA) at the Vogtle nuclear power plant, operated by the Southern Nuclear Operating Company (SNOC). This test was conducted for closure of a series of bench scale experiments conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of aluminum (Howe et al., 2015) and zinc (Pease et al., 2015) from metallic surfaces, and calcium from NUKON fiberglass insulation (Olson et al., 2015) . The integrated test was performed in the Corrosion/Chemical Head Loss Experimental (CHLE) facility with representative amounts of zinc, aluminum, carbon steel, copper, NUKON fiberglass, and latent debris. The test was conducted using borated TSP-buffered solution under a post-LOCA prototypical temperature profile lasting for 30 days. The results presented in this article demonstrate trends for zinc, aluminum, and calcium release that are consistent with separate bench scale testing and previous integrated tests under TSP conditions. The release rate and maximum concentrations of the released materials were slightly different than the separate effect testing as a result of different experimental conditions (temperature, surface area-to-water volume ratio) and/or the presence of other metals and chemicals in the integrated test. Samples of metal coupons and fiberglass were selected for analysis using Scanning Electron Microscopy

  2. Neutron Imaging Investigations of the Secondary Hydriding of Nuclear Fuel Cladding Alloys during Loss of Coolant Accidents

    Science.gov (United States)

    Grosse, M.; Roessger, C.; Stuckert, J.; Steinbrueck, M.; Kaestner, A.; Kardjilov, N.; Schillinger, B.

    The hydrogen concentration and distribution at both sides of the burst opening of cladding tubes used in three QUENCH-LOCA simulation bundle experiments were investigated by means of neutron radiography and tomography. The quantitative correlation between the total macroscopic neutron cross-section and the atomic number density ratio between hydrogen and zirconium was determined by testing calibration specimens with known hydrogen concentrations. Hydrogen enrichments located at the end of the ballooning zone of the tested tubes were detected in the inner rods of the test bundles. Nearly all of the peripheral claddings exposed to lower temperatures do not show such enrichments. This implies that under the conditions investigated a threshold temperature exists below which no hydrogen enrichments can be formed. In order to understand the hydrogen distribution a model was developed describing the processes occurring during loss of coolant accidents after rod burst. The general shape of the hydrogen distributions with a peak each side of the ballooning region is well predicted by this model whereas the absolute concentrations are underestimated compared to the results of the neutron tomography investigations. The model was also used to discuss the influence of the alloy composition on the secondary hydrogenation. Whereas the relations for the maximal hydrogen concentrations agree well for one and the same alloy, the agreement for tests with different alloys is less satisfying, showing that material parameters such as oxidation kinetics, phase transition temperature for the zirconium oxide, and yield strength and ductility at high temperature have to be taken into account to reproduce the results of neutron imaging investigations correctly.

  3. Development of a virtual reality simulator for the ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Nobukazu [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan)], E-mail: takeda.nobukazu@jaea.go.jp; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi [Japan Atomic Energy Agency, Mukouyama 801-1, Naka, Ibaraki 311-0193 (Japan); Tesini, Alessandro [ITER International Fusion Energy Organization, 13108 St. Paul Lez Durance (France)

    2008-12-15

    The authors developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robotic simulation software, ENVISION. The simulator is connected to the control system of the manipulator, which was developed as part of the blanket maintenance system during the Engineering Design Activity (EDA), and can reconstruct the positions of the manipulator and blanket module using position data transmitted from motors through a LAN. In addition, it can provide virtual visual information (e.g., about the interface structures behind the blanket module) by making the module transparent on the screen. It can also be used for confirming a maintenance sequence before the actual operation. The simulator will be modified further, with addition of other necessary functions, and will finally serve as a prototype of the actual simulator for the blanket remote handling system, which will be procured as part of an in-kind contribution.

  4. Status of the EU test blanket systems safety studies

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu; Poitevin, Yves; Ricapito, Italo; Zmitko, Milan

    2015-10-15

    Highlights: • TBS safety demonstration files. • Safety functions and related design features – detailed TBS components classifications. • Nuclear analyses, radiation shielding and protection. • TBS radiological waste management strategy and categorization. • Selection and definition of reference accidents scenarios and accidents analyses. - Abstract: The European joint undertaking for ITER and the development of fusion energy (‘Fusion for Energy’ – F4E) provides the European contributions to the ITER international fusion energy research project. Among others it includes also the development, design, technological demonstration and implementation of the European test blanket systems (TBS) in ITER. Currently two EU TBS designs are in the phase of conceptual design – helium-cooled lithium-lead (HCLL) and helium-cooled pebble-bed (HCPB). Safety demonstration is an important part of the work devoted to the achievement of the next key project milestone the conceptual design review. The paper reveals the details of the work on EU TBS safety performed in the last couple of years: update of the TBS safety demonstration files; safety functions and related design features; detailed TBS components classifications; nuclear analyses, radiation shielding and protection; TBS radiological waste management strategy and categorization; selection and definition of reference accidents scenarios, and accidents analyses. Finally the authors share the information on on-going and planned future EU TBS safety activities.

  5. Normal Operation (NO) of APT Blanket System and its Components Based on Initial Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.

  6. First wall and blanket module safety enhancement by material selection and design decision

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems.

  7. Development of the breeding blanket and shield model for the fusion power reactors system SYCOMORE

    Energy Technology Data Exchange (ETDEWEB)

    Li-Puma, Antonella, E-mail: antonella.lipuma@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Jaboulay, Jean-Charles, E-mail: Jean-Charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Martin, Brunella, E-mail: brunella.martin@gmail.com [Incka, 19-21 Rue du 8 mai 1945, F-94110 Arcueil (France)

    2014-10-15

    SYCOMORE, a fusion reactor system code based on a modular approach is under development at CEA. Within this framework, this paper describes the relevant sub-modules which have been implemented to model the main outputs of the breeding blanket and shield block of the system code: tritium breeding ratio, peak energy deposition in toroidal field coils, reactor layout and power deposition, blanket pressure drops and materials inventory. Blanket and shield requirements are calculated by several sub-modules: the blanket assembly and layout sub-module, the neutronic sub-module, the blanket design sub-module (thermal hydraulic and thermo-mechanic pre-design tool). A power flow module has also been developed which is directly linked to the blanket thermo-dynamic performances, which is not described in this paper. For the blanket assembly and layout and the blanket module design sub-modules, explicit analytic models have been developed and implemented; for the neutronic sub-module neural networks that replicate the results of appropriate simplified 1D and 2D neutronic simulations have been built. Presently, relevant model for the Helium Cooled Lithium Lead is available. Sub-modules have been built in a way that they can run separately or coupled into the breeding blanket and shield module in order to be integrated in SYCOMORE. In the paper, the objective and main input/output parameters of each sub-module are reported and relevant models discussed. The application to previous studied reactor models (PPCS model AB, DEMO-HCLL 2006–2007 studies) is also presented.

  8. Activation Characteristics of Fuel Breeding Blanket Module in Fusion Driven Subcritical System

    Institute of Scientific and Technical Information of China (English)

    HUANG Qun-Ying; LI Jian-Gang; CHEN Yi-Xue

    2004-01-01

    @@ Shortage of energy resources and production of long-lived radioactivity wastes from fission reactors are among the main problems which will be faced in the world in the near future. The conceptual design of a fusion driven subcritical system (FDS) is underway in Institute of Plasma Physics, Chinese Academy of Sciences. There are alternative designs for multi-functional blanket modules of the FDS, such as fuel breeding blanket module (FBB)to produce fuels for fission reactors, tritium breeding blanket module to produce the fuel, i.e. tritium, for fusion reactor and waste transmutation blanket module to try to permanently dispose of long-lived radioactivity wastes from fission reactors, etc. Activation of the fuel breeding blanket of the fusion driven subcritical system (FDS-FBB) by D-T fusion neutrons from the plasma and fission neutrons from the hybrid blanket are calculated and analysed under the neutron wall loading 0.5 MW/m2 and neutron fluence 15 MW. yr/m2. The neutron spectrum is calculated with the worldwide-used transport code MCNP/4C and activation calculations are carried out with the well known European inventory code FISPACT/99 with the latest released IAEA Fusion Evaluated Nuclear Data Library FENDL-2.0 and the ENDF/B-V uranium evaluated data. Induced radioactivities, dose rates and afterheats, etc, for different components of the FDS-FBB are compared and analysed.

  9. Transient analyses on the cooling channels of the DEMO HCPB blanket concept under accidental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuming, E-mail: Yuming.chen@kit.edu; Ghidersa, Bradut-Eugen; Jin, Xue Zhou

    2016-11-01

    Highlights: • This paper presents transient CFD analyses on the cooling channels of the DEMO HCPB FW for accidental scenarios LOCA and LOFA. • In both LOCA & LOFA, the wall temperature increases quickly to an unacceptable level within seconds. • If the coolant flow rate is maintained at a half of nominal value in case of LOFA (partial LOFA), the wall temperature rises much slower, but will still leads to a damage of structure within minutes. • The simulated heat transfer coefficients were compared with empirical correlations. - Abstract: Helium Cooled Pebble Bed (HCPB) blanket concept is one of the DEMO (Demonstration Power Plant) blanket concepts running for the final DEMO design selection. In this paper, transient analyses on the cooling channels of the FW are carried out by means of CFD simulations for the selected accidental scenarios loss-of-coolant-accident (LOCA) and loss-of-flow-accident (LOFA). ANSYS-CFX is used for the simulations. The simulation results help to understand how fast the temperature of the FW can increase and what is the time window that is available until the temperature of the structural material reaches the design limit in order to be able to define a suitable protection strategy for the system. In view of later developments of the models, the heat transfer coefficients calculated with CFD are compared with the values predicted by two widely used correlations for turbulent pipe flows.

  10. Thermal-Hydraulic Integral Effect Test with ATLAS for an Intermediate Break Loss of Coolant Accident at a Pressurizer Surge Line

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyoung Ho; Seok Cho; Park, Hyun Sik; Choi, Nam Hyun; Park, Yu Sun; Kim, Jong Rok; Bae, Byoung Uhn; Kim, Yeon Sik; Kim, Kyung Doo; Choi, Ki Yong; Song, Chul Hwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The main objectives of this test were not only to provide physical insight into the system response of the APR1400 during the pressurizer surge line break accident but also to produce an integral effect test data to validate the SPACE code. In order to simulate a double-ended guillotine break of a pressurizer surge line in the APR1400, the IB-SUR-01R test was performed with ATLAS. The major thermal-hydraulic phenomena such as the system pressures, the collapsed water levels, and the break flow rate were presented and discussed. Despite the core was uncovered, no excursion in the cladding temperature was observed. The pressurizer surge line break can be classified as a hot leg break from a break location point of view. Compared with a cold leg break, coolability in the core may be better in case of a hot leg break due to the enhanced flow in the core region. This integral effect test data will be used to evaluate the prediction capability of existing safety analysis codes of the MARS and the RELAP5 as well as the SPACE code. Furthermore, this data can be utilized to identify any code deficiency for an IBLOCA simulation, especially for DVI-adapted plants. Redefinition of break size for design basis accident (DBA) based on risk information is being extensively investigated due to the potential for safety benefits and unnecessary burden reduction from current LBLOCA (large break loss of coolant accident)-based ECC (Emergency Core Cooling) Acceptance Criteria. As a transition break size (TBS), the rupture of medium-size pipe is considered to be more important than ever in risk-informed regulation (RIR)-relevant safety analysis. As plants age, are up-rated, and continue to seek improved operating efficiencies, the small break and intermediate break LOCA (IBLOCA) can become a concern. In particular, IBLOCA with DVI (Direct Vessel Injection) features will be addressed to support redefinition of a design-basis LOCA. With an aim of expanding code validation to address small

  11. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 3—Calcium

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Sterling; Ali, Amir; LaBrier, Daniel [Department of Nuclear Engineering, University of New Mexico (United States); Blandford, Edward D, E-mail: edb@unm.edu [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry [Department of Civil Engineering, University of New Mexico (United States)

    2016-04-15

    Highlights: • Calcium leaching from NUKON fiberglass in borated TSP-buffered solution is independent of the level of fiberglass destruction. • The initial calcium release rate and the maximum calcium concentration increases with increased fiber concentration. • The calcium release in solution has a repeatable pattern of four distinct regions (prompt release, metastable, autocatalytic drop, and stable region) for all experiments. • Magnesium plays a significant role in initiating calcium precipitation in TSP-buffered environment. • Head loss through multi-constituents debris beds was found to increase progressively in all calcium concentration regions. - Abstract: Calcium that leaches from damaged or destroyed NUKON fiberglass in containment post a loss of coolant accident (LOCA) could lead to the formation of chemical precipitates. These precipitates could be filtered through the accumulated fibrous debris on the sump screen and compromising the emergency core cooling system (ECCS) sump pump performance. Reduced-scale leaching experiments were conducted on three solution inventory scales—bench (0.5 L), vertical column (31.5 L), and tank (1136 L) using three different flow conditions, and fiberglass concentrations (1.18–8 g/L) to investigate calcium release from NUKON fiber. All experiments were conducted in simulated post-LOCA water chemistry. (∼220 mM boric acid with ∼5.8 mM trisodium phosphate (TSP) buffer). Prior to the leaching tests, a preliminary experiment was carried out on the bench scale to determine the effect of the fiber preparation (unaltered and blended) method on calcium leaching. Results indicate that the extent of fiberglass destruction does not affect the amount of calcium released from fiberglass. Long-term calcium leach testing at constant temperature (80 °C) in borated TSP-buffered solution had repeatable behavior on all solution scales for different fiberglass concentrations. The calcium-leaching pattern can be divided into

  12. Tritium processing for the European test blanket systems: current status of the design and development strategy

    Energy Technology Data Exchange (ETDEWEB)

    Ricapito, I.; Calderoni, P.; Poitevin, Y. [Fusion for Energy, Barcelona (Spain); Aiello, A.; Utili, M. [ENEA, Camugnano (Italy); Demange, D. [Karlsruhe Institute of Technology - KIT, Karlsruhe (Germany)

    2015-03-15

    Tritium processing technologies of the two European Test Blanket Systems (TBS), HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed), play an essential role in meeting the main objectives of the TBS experimental campaign in ITER. The compliancy with the ITER interface requirements, in terms of space availability, service fluids, limits on tritium release, constraints on maintenance, is driving the design of the TBS tritium processing systems. Other requirements come from the characteristics of the relevant test blanket module and the scientific programme that has to be developed and implemented. This paper identifies the main requirements for the design of the TBS tritium systems and equipment and, at the same time, provides an updated overview on the current design status, mainly focusing onto the tritium extractor from Pb-16Li and TBS tritium accountancy. Considerations are also given on the possible extrapolation to DEMO breeding blanket. (authors)

  13. Analysis of the steady state hydraulic behaviour of the ITER blanket cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A.; Vallone, E. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • Nominal steady state hydraulic behaviour of ITER blanket standard sector cooling system has been investigated. • Numerical simulations have been run adopting a qualified thermal-hydraulic system code. • Hydraulic characteristic functions and coolant mass flow rates, velocities and pressure drops have been assessed. • Most of the considered circuits are able to effectively cool blanket modules, meeting ITER requirements. - Abstract: The blanket system is the ITER reactor component devoted to providing a physical boundary for plasma transients and contributing to thermal and nuclear shielding of vacuum vessel, magnets and external components. It is expected to be subjected to significant heat loads under nominal conditions and its cooling system has to ensure an adequate cooling, preventing any risk of critical heat flux occurrence while complying with pressure drop limits. At the University of Palermo a study has been performed, in cooperation with the ITER Organization, to investigate the steady state hydraulic behaviour of the ITER blanket standard sector cooling system. A theoretical–computational approach based on the finite volume method has been followed, adopting the RELAP5 system code. Finite volume models of the most critical blanket cooling circuits have been set-up, realistically simulating the coolant flow domain. The steady state hydraulic behaviour of each cooling circuit has been investigated, determining its hydraulic characteristic function and assessing the spatial distribution of coolant mass flow rates, velocities and pressure drops under reference nominal conditions. Results obtained have indicated that the investigated cooling circuits are able to provide an effective cooling to blanket modules, generally meeting ITER requirements in term of pressure drop and velocity distribution, except for a couple of circuits that are being revised.

  14. Tritium recovery in Pb17Li-water cooled blanket systems

    Energy Technology Data Exchange (ETDEWEB)

    Malara, C. [Safety Technology Inst., Ispra (Italy); Casini, G. [Systems Engineering & Information Inst., Ispra (Italy); Viola, A. [Univ. of Cagliari (Italy)

    1994-12-31

    The question of tritium recovery in Pb17Li, water cooled blankets is under investigation since several years at JRC Ispra. The method which has been more extensively analyzed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging in a suited process apparatus. The design features of the process systems are related to: (1) the very low tritium solubility in Pb17Li which implies high permeation rates through the containment structures; (2) the need of keeping as low as possible the tritium concentration in the cooling water both for safety and economical reasons. A computerized model of the tritium behavior in the blanket units and in the extraction system has been developed.

  15. Post test calculation of the experiment `small break loss-of- coolant test` SBL-22 at the Finnish integral test facility PACTEL with the thermohydraulic code ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Lischke, W.; Vandreier, B. [Univ. for Applied Sciences, Zittau/Goerlitz (Germany). Dept. of Nuclear Technology

    1997-12-31

    At the University for Applied Sciences Zittau/Goerlitz (FH) calculations for the verification of the ATHLET-code for reactors of type VVER are carried out since 1991, sponsored by the German Ministry for Education, Science and Technology (BMBF). The special features of these reactors in comparison to reactors of western countries are characterized by the duct route of reactor coolant pipes and the horizontal steam generators. Because of these special features, a check of validity of the ATHLET-models is necessary. For further verification of the ATHLET-code the post test calculation of the experiment SBL-22 (Small break loss-of-coolant test) realized at the finnish facility PACTEL was carried out. The experiment served for the examination of the natural circulation behaviour of the loop over a continuous range of primary side water inventory. 5 refs.

  16. LWR fuel rod behavior during reactor tests under loss-of-coolant conditions: Results of the FR2 in-pile tests

    Energy Technology Data Exchange (ETDEWEB)

    Karb, E.H.; Sepold, L.; Hofmann, P.; Petersen, C.; Schanz, G.; Zimmermann, H. (Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.))

    1982-05-01

    Results of the FR2 in-pile tests on fuel rod behavior under loss-of-coolant accident (LOCA) conditions are presented. To investigate the possible influence of a nuclear environment on fuel rod failure mechanisms, unirradiated as well as irradiated (2500 to 35,000 MWd/tsub(U)) PWR-type test fuel rods were exposed to temperature transients simulating the second heatup phase of a LOCA. Loaded by internal overpressure, the cladding ballooned and ruptured. The burst data do not indicate major differences from results obtained out-of-pile with electrically heated fuel rod simulators, and do not show an influence of burnup. The fuel pellets in previously irradiated rods, already cracked during normal operation, crumbled completely in the regions with large cladding deformation. Post-test examinations revealed cladding mechanical behavior and oxidation to be comparable to out-of-pile results, with relatively little fission gas release during the transient.

  17. Electrically insulating coatings for V-Li self-cooled blanket in a fusion system

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Reed, C. B.; Uz, M.; Park, J. H.; Smith, D. L.

    2000-05-17

    The blanket system is one of the most important components in a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The liquid-metal blanket concept requires an electrically insulating coating on the first-wall structural material to minimize the magnetohydrodynamic pressure drop that occurs during the flow of liquid metal in a magnetic field. Based on the thermodynamics of interactions between the coating and the liquid lithium on one side and the structural V-base alloy on the other side, several coating candidates are being examined to perform the insulating function over a wide range of temperatures and lithium chemistries.

  18. Options and methods for instrumentation of Test Blanket Systems for experiment control and scientific mission

    Energy Technology Data Exchange (ETDEWEB)

    Calderoni, Pattrick, E-mail: pcalderoni@gmail.com; Ricapito, Italo; Zmitko, Milan; Panayotov, Dobromir; Vallory, Joelle; Leichtle, Dieter; Poitevin, Yves

    2014-10-15

    Highlights: • This work defined options and methods to instrument ITER TBSs based on functional categories: safety, interlock and control and scientific exploitation based on the ITER research program. • Presented the general architecture of the HCLL and HCPB Test Blanket System Instrumentation and Control. • Defined safety and interlock sensors count and technology selection based on preliminary safety analysis. • Discussed the development status of scientific instrumentation, with focus on integration with design and fulfillment of TBM research program. - Abstract: Europe is currently developing two reference breeder blankets concepts for DEMO reactor specifications that will be tested in ITER under the form of Test Blanket Modules (TBMs): the Helium-Cooled Lithium-Lead (HCLL) concept which uses the eutectic Pb-16Li as both breeder and neutron multiplier; the Helium-Cooled Pebble-Bed (HCPB) concept which features lithiated ceramic pebbles as breeder and beryllium pebbles as neutron multiplier. Each TBM is associated with several sub-systems required for their operation; together they form the Test Blanket System (TBS). This paper presents the state of HCLL and HCPB TBS instrumentation design. The discussion is based on the systems functional analysis, from which three main categories of instrumentation are defined: those relevant to safety functions; those relevant to interlock functions; those designed for the control and scientific exploitation of the devices based on the TBM program objectives.

  19. Scenarios simulation of severe accident type small loss of coolant (Loca), with the code MELCOR version 2.1 for the nuclear power plant of Laguna Verde; Simulacion de escenarios de accidente severo tipo perdida de refrigerante (Loca) pequeno, con el codigo MELCOR version 2.1 para la central nucleo-electrica de Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas V, J.; Mugica R, C. A.; Godinez S, V., E-mail: Jaime.cardenas@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    In this work was carried out the analysis of two scenarios of the accident type with loss of coolant in a recirculation loop for a break with smaller ares to 0.1 ft{sup 2} (4.6 cm{sup 2}), which is classified according to their size like small Loca. The first simulated scenario was a small Loca without action of the emergency coolant injection systems, and the second was a small Loca with only the available system LPCS. This design base accident was taken into account for its relevance with regard to the damage to the core and the hydrogen generation. Was also observed and analyzed the response of the action of the ECCS that depend of the loss of coolant reason and this in turn depends of the size and type of the pipe break. The specified scenarios were simulated by means of the use of MELCOR model for the nuclear power plant of Laguna Verde that has the Comision Nacional de Seguridad Nuclear y Salvaguardias. (Author)

  20. Feasibility study of a neutron activation system for EU test blanket systems

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Kuo, E-mail: kuo.tian@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Calderoni, Pattrick [Fusion for Energy(F4E), Barcelona (Spain); Ghidersa, Bradut-Eugen; Klix, Axel [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany)

    2016-11-01

    Highlights: • This paper summarizes the technical baseline and preliminary design of EU TBM Neutron Activation System, briefly describes the key components, and outlines the major integration challenges. - Abstract: The Neutron Activation System (NAS) for the EU Helium Cooled Lithium Lead (HCLL) and Helium Cooled Pebble Bed (HCPB) Test Blanket Systems (TBSs) is an instrument that is proposed to determine the absolute neutron fluence and absolute neutron flux with information on the neutron spectrum in selected positions of the corresponding Test Blanket Modules (TBMs). In the NAS activation probes are exposed to the ITER neutron flux for periods ranging from several tens of seconds up to a full plasma pulse length, and the induced gamma activities are subsequently measured. The NAS is composed of a pneumatic transfer system and a counting station. The pneumatic transfer system includes irradiation ends in TBMs, transfer pipes, return gas pipes, a transfer station with a distributor (carousel), and a pressurized gas driving system, while the counting station consists of gamma ray detectors, signal processing electronic devices, and data analyzing software for neutron source strength evaluation. In this paper, a brief description on the proposed TBM NAS as well as the key components is presented, and the integration challenges of TBM NAS are outlined.

  1. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  2. Equalization characteristics of an upflow sludge blanket-aerated biofilter (USB-AF) system.

    Science.gov (United States)

    Jun, H B; Park, S M; Park, J K; Lee, S H

    2005-01-01

    Equalization characteristics of the upflow sludge blanket-aerated bio-filter (USB-AF) were investigated with the fluctuated raw domestic sewage. Recycle of nitrified effluent from AF to USB triggered the equalization characteristics of the sludge blanket on both soluble and particulate organic matter. Increment of EPS in sludge blanket by nitrate recycle was detected and removal of turbidity and particulates increased at higher recycle ratios by bio-flocculation. Increased TCOD removal in the USB was due to both denitrification of recycled nitrate and entrapment of the particulate organic matter in sludge blanket. Capture of both soluble and particulate organic matter increased sludge blanket layer in the USB, which improved the reactor performances and reduced the organic load on the subsequent AF. Overall TCOD and SS removal efficiencies were about 98% and 96%, respectively in the USB-AF system. Turbidity in the USB effluent was about 44, 20 and 5.5 NTU, at recycle ratios of 0, 100 and 200%, respectively. Particle counts in the range 2-4 microm in the USB effluent were higher than those in influent without nitrate recycle, while particle counts in the range of 0.5-15 microm in the USB effluent decreased 70% at recycle ratio of 200%. The major constituent of EPS extracted from anaerobic sludge was protein and total EPS increased from 109.1 to 165.7 mg/g-VSS with nitrate recycle of 100%. Removal efficiency and concentration of T-N in the UBS-AF effluent was over 70% and below 16 mg/L, respectively.

  3. A model for the analysis of loss of decay heat removal during loss of coolant accident in MTR pool type research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bousbia-salah, Anis [Dipartimento di Ingegneria Meccanica, Nucleari e della Produzione, Facolta di Ingegneria, Universita di Pisa, Via Diotisalvi, 2, 56126 Pisa (Italy)]. E-mail: b.salah@ing.unipi.it; Meftah, Brahim [Division Reacteur - Centre de Recherche Nucleaire Draria (CRND), BP 43 Sebala DRARIA - Algiers (Algeria); Hamidouche, Tewfik [Laboratoire des Analyses de Surete, Centre de Recherche Nucleaire d' Alger (CRNA), 02 Boulevard Frantz Fanon, B.P. 399, 16000 Algiers (Algeria)]. E-mail: thamidouche@comena-dz.org; Si-Ahmed, El Khider [Laboratoire des Ecoulements Polyhpasiques, Universite des Sciences et de la Technologie d' Alger, Algiers (Algeria)

    2006-03-15

    During a loss of coolant accident leading to total emptying of the reactor pool, the decay heat could be removed through air natural convection. However, under partial pool emptying the core is partially submerged and the coolant circulation inside the fuel element could no more be possible. Under such conditions, a core overheat takes place, and the thermal energy is essentially diffused from the core to its periphery by combined thermal radiation and conduction. In order to predict fuel element temperature evolution under such conditions a mathematical model is performed. The model is based on a 3D geometry and takes into account a variety of core configurations including fuel elements (standard and control), reflector elements and grid plates. The homogeneous flow model is used and the fluid conservation equations are solved using a semi-implicit finite difference method. Preliminary tests of the developed model were made by considering a series of hypothetical accidents. In the current framework a loss of decay heat removal accidents in the IAEA benchmark open pool MTR-type research reactor is considered. It is shown that in the case of a low core immersion height no water boiling is observed and the fuel surface temperature rise remains below the melting point of the aluminium cladding.

  4. Analysis of loss-of-coolant accident for a fast-spectrum lithium-cooled nuclear reactor for space-power applications

    Science.gov (United States)

    Turney, G. E.; Petrik, E. J.; Kieffer, A. W.

    1972-01-01

    A two-dimensional, transient, heat-transfer analysis was made to determine the temperature response in the core of a conceptual space-power nuclear reactor following a total loss of reactor coolant. With loss of coolant from the reactor, the controlling mode of heat transfer is thermal radiation. In one of the schemes considered for removing decay heat from the core, it was assumed that the 4 pi shield which surrounds the core acts as a constant-temperature sink (temperature, 700 K) for absorption of thermal radiation from the core. Results based on this scheme of heat removal show that melting of fuel in the core is possible only when the emissivity of the heat-radiating surfaces in the core is less than about 0.40. In another scheme for removing the afterheat, the core centerline fuel pin was replaced by a redundant, constant temperature, coolant channel. Based on an emissivity of 0.20 for all material surfaces in the core, the calculated maximum fuel temperature for this scheme of heat removal was 2840 K, or about 90 K less than the melting temperature of the UN fuel.

  5. Hydride precipitation, fracture and plasticity mechanisms in pure zirconium and Zircaloy-4 at temperatures typical for the postulated loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnikov, Anton, E-mail: anton.pshenichnikov@kit.edu; Stuckert, Juri; Walter, Mario

    2016-05-15

    Highlights: • All δ-hydrides in Zr and Zircaloy-4 have basal or pyramidal types of habit planes. • Seven orientation relationships for δ-hydrides in Zr matrix were detected. • Decohesion fracture mechanism of hydrogenated Zr was investigated by fractography. - Abstract: The results of investigations of samples of zirconium and its alloy Zircaloy-4, hydrogenated at temperatures 900–1200 K (typical temperatures for loss-of-coolant accidents) are presented. The analyses, based on a range of complementary techniques (X-ray diffraction, scanning electron microscopy, electron backscatter diffraction) reveals the direct interrelation of internal structure transformation and hydride distribution with the degradation of mechanical properties. Formation of small-scale zirconium hydrides and their bulk distribution in zirconium and Zircaloy-4 were investigated. Fractographical analysis was performed on the ruptured samples tested in a tensile machine at room temperature. The already-known hydrogen embrittlement mechanisms based on hydride formation and hydrogen-enhanced decohesion and the applicability of them in the case of zirconium and its alloys is discussed.

  6. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric Richard; Durbin, Samuel G

    2007-04-01

    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program provided data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.

  7. Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body.

    Science.gov (United States)

    Bräuer, A; English, M J M; Steinmetz, N; Lorenz, N; Perl, T; Braun, U; Weyland, W

    2002-09-01

    Forced-air warming with upper body blankets has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with upper body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of eight complete upper body warming systems and to gain more insight into the principles of forced-air warming. Heat transfer of forced-air warmers can be described as follows: Qdot;=h. DeltaT. A, where Qdot;= heat flux [W], h=heat exchange coefficient [W m-2 degrees C-1], DeltaT=temperature gradient between the blanket and surface [ degrees C], and A=covered area [m2]. We tested eight different forced-air warming systems: (1) Bair Hugger and upper body blanket (Augustine Medical Inc. Eden Prairie, MN); (2) Thermacare and upper body blanket (Gaymar Industries, Orchard Park, NY); (3) Thermacare (Gaymar Industries) with reusable Optisan upper body blanket (Willy Rüsch AG, Kernen, Germany); (4) WarmAir and upper body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (5) Warm-Gard and single use upper body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (6) Warm-Gard and reusable upper body blanket (Luis Gibeck AB); (7) WarmTouch and CareDrape upper body blanket (Mallinckrodt Medical Inc., St. Luis, MO); and (8) WarmTouch and reusable MultiCover trade mark upper body blanket (Mallinckrodt Medical Inc.) on a previously validated copper manikin of the human body. Heat flux and surface temperature were measured with 11 calibrated heat flux transducers. Blanket temperature was measured using 11 thermocouples. The temperature gradient between the blanket and surface (DeltaT) was varied between -8 and +8 degrees C, and h was determined by linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, as similar mean skin surface temperatures have been found in volunteers. The covered area was estimated to be 0

  8. Consideration on hydrogen explosion scenario in APR 1400 containment building during small breakup loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kweonha, E-mail: khpark@kmou.ac.kr [Division of Mechanical & Energy Systems Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of); Khor, Chong Lee, E-mail: itachi_829@hotmail.com [Department of Mechanical Engineering, Korea Maritime University, Dongsam-dong, Yeongdo-gu, Busan 606-791 (Korea, Republic of)

    2015-11-15

    Highlights: • Hydrogen behavior in the containment building of APR1400 nuclear plant up to 15 h after the failure happened. • The risk of hydrogen explosion largely depends on the combination of air, hydrogen and steam in the containment. • Hydrogen explosion risk at different locations in the containment was analyzed. - Abstract: This paper describes the analytical result of the potential risk of hydrogen gas up to 15 h after the failure takes place. The major cause of the disaster occurred in Fukushima Daiichi nuclear reactor was the detonation of accumulated hydrogen in the containment by highly increased reactor core temperatures after the failure of the emergency cooling system. The hydrogen risk should be considered in severe accident strategies in current and future NPPs. A hydrogen explosion scenario is proposed. Hydrogen is accumulated on top of the dome during the hydrogen release period. At this point, there are no risk of explosion due to the steam that resides in upper part of the dome. As the hydrogen concentration increase, substantial amount of steams are released. Subsequently, hydrogen is forced into the lower part of the building with high air density—small explosion and dormant steam condensation phase are possible. The light hydrogen rises up slowly with air, gathering on top of the building with high air density. Massive hydrogen explosion is anticipated upon ignition at this stage.

  9. Analysis of a hypothetical loss of coolant accident in a Konvoi type NPP by GASFLOW and COCOSYS

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Stefan; Royl, Peter [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Band, Sebastian [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany)

    2013-07-01

    The 3D computational fluid dynamics code GASFLOW and the German containment code system COCOSYS, which is based on a lumped-parameter approach, are used to simulate the hydrogen-air-steam distribution and hydrogen mitigation in a Konvoi type nuclear power plant in a postulated hypothetical core melt accident. A break in a coolant loop and the subsequent loss of the coolant causes a strong heat-up of the core. As a consequence hydrogen is produced by oxidation of cladding tubes. The residual steam and the produced hydrogen are released into the containment through the break in the coolant loop. Without suitable counter measures, sensitive mixtures can build up with a combustion potential which could threaten the integrity of the containment. A model of a Konvoi type nuclear power plant which is equipped with passive autocatalytic recombiners is used to simulate such accident scenario. COCOSYS allows comprehensive simulation of all relevant processes of severe accidents, whereas GASFLOW is primarily designed to simulate the distribution of steam and hydrogen within the containment. This paper presents the comparison of GASFLOW and COCOSYS simulation results for the in-vessel phase of the selected accident. (orig.)

  10. Engineering challenges and development of the ITER Blanket System and Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Mario, E-mail: mario.merola@iter.org; Escourbiac, Frederic; Raffray, Alphonse Rene; Chappuis, Philippe; Hirai, Takeshi; Gicquel, Stefan

    2015-10-15

    The ITER Blanket System and the Divertor are the main components which directly face the plasma. Being the first physical barrier to the plasma, they have very demanding design requirements, which include accommodating: (1) surface heat flux and neutronic volumetric heating, (2) electromagnetic loads, (3) nuclear shielding function, (4) capability of being assembled and remote-handled, (5) interfaces with other in-vessel components, and (6) high heat flux technologies and complex welded structures in the design. The main functions of the Blanket System have been substantially expanded and it has now also to provide limiting surfaces that define the plasma boundary during startup and shutdown. As regards the Divertor, the ITER Council decided in November 2013 to start the ITER operation with a full-tungsten armour in order to minimize costs and already gain operational experience with tungsten during the non-active phase of the machine. This paper gives an overview of the design and technology qualification of the Blanket System and the Divertor.

  11. Parametric Weight Comparison of Advanced Metallic, Ceramic Tile, and Ceramic Blanket Thermal Protection Systems

    Science.gov (United States)

    Myers, David E.; Martin, Carl J.; Blosser, Max L.

    2000-01-01

    A parametric weight assessment of advanced metallic panel, ceramic blanket, and ceramic tile thermal protection systems (TPS) was conducted using an implicit, one-dimensional (I-D) finite element sizing code. This sizing code contained models to account for coatings fasteners, adhesives, and strain isolation pads. Atmospheric entry heating profiles for two vehicles, the Access to Space (ATS) vehicle and a proposed Reusable Launch Vehicle (RLV), were used to ensure that the trends were not unique to a certain trajectory. Ten TPS concepts were compared for a range of applied heat loads and substructural heat capacities to identify general trends. This study found the blanket TPS concepts have the lightest weights over the majority of their applicable ranges, and current technology ceramic tiles and metallic TPS concepts have similar weights. A proposed, state-of-the-art metallic system which uses a higher temperature alloy and efficient multilayer insulation was predicted to be significantly lighter than the ceramic tile stems and approaches blanket TPS weights for higher integrated heat loads.

  12. Simulation of a postulated loss of coolant accident due to a break in the pressurizer surge line of Angra 2 Nuclear Power Plan; Calculo do acidente postulado de perda de refrigerante por uma ruptura na linha de surto do pressurizador da central nuclear Angra 2

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Carlos V. Goulart de; Palmieri, Elcio T.; Aronne, Ivan D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: cvga@cdtn.br; etp@cdtn.br; aroneid@cdtn.br

    2005-07-01

    This work presents the simulation of a postulated loss of coolant accident due to a 437 cm{sup 2} break in the pressurizer surge line of Angra 2 Nuclear Power Plant, as described in its Final Safety Analysis Report, section 15.6.4.1.3.11. This accident is characterized by a fast depressurization of the reactor coolant system followed by the actuation of the safety injection system. This work, which aims to develop and qualify a basic Angra 2 nodalization for RELAP5, was done in the framework of a CNEN internal technical cooperation involving three of its research centers (CDTN, IPEN and IEN) and its Reactors Division. This simulation is part of a comprehensive number of accidents and transients necessary to verify the adequacy of the modeled logic of the control and protection systems as well as the performance of the modeled thermal-hydraulic systems. Therefore this work contributes to the qualification process of the developed nodalization. (author)

  13. Investigation of loss of coolant accidents in pressurized water reactors using the ''Dynamic Best-Estimate Safety Analysis'' (DYBESA) method for considering of uncertainties in TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Sporn, Michael; Hurtado, Antonio [Technische Univ. Dresden (Germany)

    2016-02-15

    Loss of coolant accident must take uncertainties with potentially strong effects on the accident sequence prediction into account. For example, uncertainties in computational model input parameters resulting from varying geometry and material data due to manufacturing tolerances or unavailable measurements should be considered. The uncertainties of physical models used by the software program are also significant. In this paper, use of the ''Dynamic Best-Estimate Safety Analysis'' (DYBESA) method to quantify the uncertainties in the TRACE thermal-hydraulic program is demonstrated. For demonstration purposes loss of coolant accidents with breaks of various types and sizes in a DN 700 reactor coolant pipe are used as an example Application.

  14. Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body.

    Science.gov (United States)

    Bräuer, A; English, M J M; Lorenz, N; Steinmetz, N; Perl, T; Braun, U; Weyland, W

    2003-01-01

    Forced-air warming has gained high acceptance as a measure for the prevention of intraoperative hypothermia. However, data on heat transfer with lower body blankets are not yet available. This study was conducted to determine the heat transfer efficacy of six complete lower body warming systems. Heat transfer of forced-air warmers can be described as follows:[1]Qdot;=h.DeltaT.A where Qdot; = heat transfer [W], h = heat exchange coefficient [W m-2 degrees C-1], DeltaT = temperature gradient between blanket and surface [ degrees C], A = covered area [m2]. We tested the following forced-air warmers in a previously validated copper manikin of the human body: (1) Bair Hugger and lower body blanket (Augustine Medical Inc., Eden Prairie, MN); (2) Thermacare and lower body blanket (Gaymar Industries, Orchard Park, NY); (3) WarmAir and lower body blanket (Cincinnati Sub-Zero Products, Cincinnati, OH); (4) Warm-Gard(R) and lower body blanket (Luis Gibeck AB, Upplands Väsby, Sweden); (5) Warm-Gard and reusable lower body blanket (Luis Gibeck AB); and (6) WarmTouch and lower body blanket (Mallinckrodt Medical Inc., St. Luis, MO). Heat flux and surface temperature were measured with 16 calibrated heat flux transducers. Blanket temperature was measured using 16 thermocouples. DeltaT was varied between -10 and +10 degrees C and h was determined by a linear regression analysis as the slope of DeltaT vs. heat flux. Mean DeltaT was determined for surface temperatures between 36 and 38 degrees C, because similar mean skin temperatures have been found in volunteers. The area covered by the blankets was estimated to be 0.54 m2. Heat transfer from the blanket to the manikin was different for surface temperatures between 36 degrees C and 38 degrees C. At a surface temperature of 36 degrees C the heat transfer was higher (between 13.4 W to 18.3 W) than at surface temperatures of 38 degrees C (8-11.5 W). The highest heat transfer was delivered by the Thermacare system (8.3-18.3 W), the

  15. Blanket comparison and selection study. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies. (MOW)

  16. Progress in the integration of Test Blanket Systems in ITER equatorial port cells and in the interfaces definition

    Energy Technology Data Exchange (ETDEWEB)

    Pascal, R., E-mail: romain.pascal@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Beloglazov, S.; Bonagiri, S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Commin, L. [CEA, IRFM, Cadarache (France); Cortes, P.; Giancarli, L.M.; Gliss, C.; Iseli, M.; Lanza, R.; Levesy, B.; Martins, J.-P. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Neviere, J.-C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Comex-Nucleaire, 13115 Saint Paul Lez Durance (France); Patisson, L.; Plutino, D.; Shu, W. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Swami, H.L. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The design integration of two test blanket systems in ITER port cell is addressed. Black-Right-Pointing-Pointer Definition of interfaces of TBSs with building and other ITER systems is done. Black-Right-Pointing-Pointer Designs of pipe forest, bioshield plug and ancillary equipment unit are described. Black-Right-Pointing-Pointer The maintenance of the two test blanket systems in ITER port cell is considered. Black-Right-Pointing-Pointer The management of the heat and tritium releases in the TBM port cell is described. - Abstract: In the framework of the TBM Program, three ITER vacuum vessel equatorial ports (no. 16, no. 18 and no. 02) have been allocated for the testing of up to six mock-ups of six different DEMO tritium breeding blankets. Each one is called a Test Blanket System (TBS). A TBS consists mainly of the Test Blanket Module (TBM), the in-vessel component facing the plasma, and several ancillary systems, in particular the cooling system and the tritium extraction system. Each port accommodates two TBMs and therefore the two TBSs have to share the corresponding port cell. This paper deals with the design integration aspects of the two TBSs in each port cell performed at ITER Organization (IO) with the corresponding definition of interfaces with other ITER systems. The performed activities have raised several issues that are discussed in the paper and for which design solutions are proposed.

  17. Sharp reduction in maximum fuel temperatures during loss of coolant accidents in a PBMR DPP-400 core, by means of optimised placement of neutron poisons

    Energy Technology Data Exchange (ETDEWEB)

    Serfontein, Dawid E., E-mail: Dawid.Serfontein@nwu.ac.za

    2014-05-01

    In a preceding study, coupled neutronics and thermo-hydraulic simulations were performed with the VSOP-A diffusion code for the standard 9.6 wt% enriched 9 g uranium fuel spheres in the 400 MWth Pebble Bed Modular Reactor Demonstration Power Plant. The axial power profile peaked at about a third from the top of the fuel core and the radial profile peaked directly adjacent to the central graphite reflector. The maximum temperature during a Depressurised Loss of Coolant (DLOFC) incident was 1581.0 °C, which is close to the limit of 1600 °C above which the leakage of radioactive fission products through the TRISO coatings around the fuel kernels may become unacceptable. This may present licensing challenges and also limits the total power output of the reactor. In this article the results of an optimisation study of the axial and radial power profiles for this reactor are reported. The main aim was to minimise the maximum DLOFC temperature. Reducing the maximum equilibrium temperature during normal operation was a lesser aim. Minimising the maximum DLOFC temperature was achieved by placing an optimised distribution of {sup 10}B neutron poison in the central reflector. The standard power profiles are sub-optimal with respect to the passive leakage of decay heat during a DLOFC. Since the radial power profile peaks directly adjacent to the central reflector, the distance that the decay heat needs to be conducted toward the outside of the reactor and the ultimate heat sink is at a maximum. The sharp axial power profile peak means that most of the decay power is concentrated in a small part of the core volume, thereby sharply increasing the required outward heat flux in this hotspot region. Both these features sharply increase the maximum DLOFC temperatures in this hotspot. Therefore the axial distribution of the neutron poisons in the central reflector was optimised so as to push the equilibrium power density profile radially outward and to suppress the axial power peak

  18. An experimental study of the corrosion and precipitation of aluminum in the presence of trisodium phosphate buffer following a loss of coolant accident (LOCA) scenario

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jun [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry J. [Department of Civil Engineering, University of New Mexico (United States); Leavitt, Janet J. [Department of Civil Engineering, University of New Mexico (United States); Alion Science and Technology (United States); Hammond, Kyle; Mitchell, Lana [Department of Civil Engineering, University of New Mexico (United States); Kee, Ernie [South Texas Project Nuclear Operating Company (STPNOC) (United States); Blandford, Edward D., E-mail: edb@unm.edu [Department of Nuclear Engineering, University of New Mexico (United States)

    2015-02-15

    Highlights: • Experimental head loss testing was conducted by aggressively promoting corrosion in loss of coolant accidents. • Blender-processed debris beds have higher head loss but tend to be less reproducible than NEI-processed debris beds. • Precipitation was observed from aluminum concentration and turbidity measurements. • Precipitation results were compared to predictions from Visual MINTEQ. - Abstract: This paper presents the results of an integrated chemical effects experiment of head loss across the sump pump screen with fibrous debris bed over a non-prototypical 10-day post-LOCA incident window. The corrosion head loss experiments (CHLE) is a reduced scaled integral effects testing facility built at the University of New Mexico (UNM) to investigate potential chemical effects on head loss across prepared fibrous debris beds. The results in this paper come from two integral effect tests performed at UNM in order to determine the chemical effects on head loss induced by a zinc source effect and an aluminum precipitation effect (T3: without Zn source case, T4: with Zn source case in containment). The tests were performed with a large surface area of aluminum coupons in the testing facility for an extended period of elevated temperature to accelerate corrosion above that expected under prototypical conditions. These conditions were sufficient to force aluminum precipitation to occur and induce the onset of chemical effects on debris bed head loss. The head loss behavior on two different types of fiber debris beds (blender-processed and NEI-processed debris bed) was evaluated in this study. It was found that the blender-processed bed is much more sensitive in filtering than the NEI-processed bed and consequently had a much higher head loss value across the beds. Aluminum precipitation was observed, with aluminum concentration and turbidity measurements, to form starting on day 7 in Test T3 and on day 6 in Test T4. The onset of aluminum precipitation

  19. Establishment of design and fabrication technology and domestic qualification for ITER blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; In, S. R.; Bae, Y. D. (and others)

    2006-02-15

    To obtain and analyze the detailed design and manufacturing technology of the blanket system for each components, the related data are collected through the various sources. And also, design processes and results of the FWs, shield blocks, and TBMs are investigated. From these analysis of the blanket R and D status of each party, we develop the KO R and D plan and it is used in the selection of manufacturing method and the materials. For the ITA16-10 subtask1, we had the official agreement with ITER IT in December 2004 for the qualification of the FW panel fabrication methods and to establish the NDT methods for the FW panel. From the technical reports we published, we compare the manufacturing methods and the proposed material for each component according to the parties. Be is proposed as a plasma facing material and most parties have interest in S-65C. Cu alloy is proposed as a heat sink material and DSCu or CuCrZr are investigated now. For the structural material, stainless steel such as SS316L(N) is investigated internationally. HIP and brazing are proposed as the manufacturing methods. In order to establish the blanket system technology, design contents of shield block by ITER IT and other parties were investigated through participating the international workshop and meeting, dispatching the researcher to the ITER IT or other parties to collect the drafting and 3D modeling files. The modification items of blanket design were investigated and a researcher was dispatched in the ITER IT and participated in the analysis on cooling problem in shield block such as front header and drilled manifold. To investigate the development status of TBM, we participated the 14th TBWG meeting and proposed the KO HCSB and HCML as candidates. And also, we obtain the R and D results of other parties and make document about the R and D status of other parties for the TBM. Finally, we establish the KO TBM R and D plan and proposed it to ITER IT and other parties. In which, the

  20. Development of radiation hard components for ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makiko, E-mail: saito.makiko@jaea.go.jp; Anzai, Katsunori; Maruyama, Takahito; Noguchi, Yuto; Ueno, Kenichi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    Highlights: • Clarify the components that will degrade by gamma ray irradiation. • Perform the irradiation tests to BRHS components. • Optimize the materials to increase the radiation hardness. - Abstract: The ITER blanket remote handling system (BRHS) will be operated in a high radiation environment (250 Gy/h max.) and must stably handle the blanket modules, which weigh 4.5 t and are more than 1.5 m in length, with a high degree of position and posture accuracy. The reliability of the system can be improved by reviewing the failure events of the system caused by high radiation. A failure mode and effects analysis (FMEA) identified failure modes and determined that lubricants, O-rings, and electric insulation cables were the dominant components affecting radiation hardness. Accordingly, we tried to optimize the lubricants and cables of the AC servo motors by using polyphenyl ether (PPE)-based grease and polyether ether ketone (PEEK), respectively. Materials containing radiation protective agents were also selected for the cable sheaths and O-rings to improve radiation hardness. Gamma ray irradiation tests were performed on these components and as a result, a radiation hardness of 8 MGy was achieved for the AC servo motors. On the other hand, to develop the radiation hardness and BRHS compatibility furthermore, the improvement of materials of cable and O ring were performed.

  1. Analysis of the containment of a compact reactor PWR submitted to loss of coolant accident; Analise da contencao de um reator PWR compacto submetido a acidente de perda de refrigerante

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Alexandre de Souza; Belchior Junior, Antonio; Guimaraes, Leonam dos Santos [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)

    2000-07-01

    In the present paper analyses were done with the computer code RELAP5/MOD2 for rising the process conditions of the containment of a compact reactor PWR of low potency, submitted to Loss of Coolant Accidents (LOCA). The main results obtained were the behavior of maximum conditions of pressure as a function of the available containment free volume. It was also studied the problem of containment sub-compartmentation, that is to say, the possibility of the rupture to happen in restricted spaces generating high sub-compartment peak pressure and, consequently, high strains on the internal structures. (author)

  2. Research and development of the tritium recovery system for the blanket of the fusion reactor in JAEA

    Science.gov (United States)

    Kawamura, Y.; Isobe, K.; Iwai, Y.; Kobayashi, K.; Nakamura, H.; Hayashi, T.; Yamanishi, T.

    2009-05-01

    A water-cooling solid breeder blanket is a prime candidate for the blanket of the fusion reactor in Japan. In this case, the blanket tritium recovery system will be composed of three processes: tritium recovery from helium sweep gas as hydrogen, that as water vapour and tritium recovery from coolant water. The authors have proposed a set of advanced systems. For tritium recovery as hydrogen, an electrochemical hydrogen pump with a ceramic proton conductor has been proposed. The correlation between the proton concentration in the ceramic and the hydrogen gas pressure has been investigated to describe the pumping performance specifically. A ceramic electrolysis cell has been proposed to process the tritiated water vapour. The authors have developed a new electrode containing cerium oxide, and it has shown fairly good electrolysis efficiency. For tritium recovery from coolant water, reduction in the processing water by tritium concentration is necessary. The authors have proposed to apply the fixed-bed adsorption process of synthetic zeolite, and have developed new zeolite. It showed unique characteristics for water adsorption and desorption. The authors have determined the potential of these systems for the blanket of the fusion DEMO reactor.

  3. Natural Circulation in the Blanket Heat Removal System During a Loss-of-Pumping Accident (LOFA) Based on Initial Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    A transient natural convection model of the APT blanket primary heat removal (HR) system was developed to demonstrate that the blanket could be cooled for a sufficient period of time for long term cooling to be established following a loss-of-flow accident (LOFA). The particular case of interest in this report is a complete loss-of-pumping accident. For the accident scenario in which pumps are lost in both the target and blanket HR systems, natural convection provides effective cooling of the blanket for approximately 68 hours, and, if only the blanket HR systems are involved, natural convection is effective for approximately 210 hours. The heat sink for both of these accident scenarios is the assumed stagnant fluid and metal on the secondary sides of the heat exchangers.

  4. Codevelopment of conceptual understanding and critical attitude: toward a systemic analysis of the survival blanket

    Science.gov (United States)

    Viennot, Laurence; Décamp, Nicolas

    2016-01-01

    One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.

  5. Finalization of the conceptual design of the auxiliary circuits for the European test blanket systems

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, A., E-mail: antonio.aiello@enea.it [ENEA UTIS – C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ghidersa, B.E. [Karlsruher Institut für Technologie (KIT) – Institut für Neutronenphysik und Reaktortechnik (INR), D-76021 Karlsruhe (Germany); Utili, M. [ENEA UTIS – C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Vala, L. [Sustainable Energy (SUSEN), Technological Experimental Circuits, Centrum vyzkumu Rez s.r.o. (CV Rez), Hlavni c.p. 130, CZ-250 68 Husinec-Rez (Czech Republic); Ilkei, T. [Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest H-1525 (Hungary); Di Gironimo, G.; Mozzillo, R.; Tarallo, A. [CREATE/University of Naples Federico II, Department of Industrial Engineering, P.le Tecchio 80, 80125 Naples (Italy); Ricapito, I.; Calderoni, P. [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-10-15

    In view of the ITER conceptual design review, the design of the ancillary systems of the European test blanket systems presented in [1] has been updated and made consistent with the ITER requirements for the present design phase. Europe is developing two concepts of TBM, the helium cooled lithium lead (HCLL) and the helium cooled pebble bed (HCPB) one, having in common the cooling media, pressurized helium at 8 MPa [2]. TBS, namely helium cooling system (HCS), coolant purification system (CPS), lead lithium loop and tritium extraction/removal system (TES–TRS) have the purpose to cool down the TBM and to remove tritium to be driven to TEP from breeder and coolant. These systems are placed in port cell 16 (PC#16), chemical and volume control system (CVCS) area and tritium building. Starting from the pre-conceptual design developed in the past, more mature technical interfaces with the ITER facility have been consolidated and iterative design activities were performed to comply with design requirements/specifications requested by IO to conclude the conceptual design phase. In this paper the present status of design of the TBS is presented together with the preliminary integration in ITER areas.

  6. Normal and Accidental Scenarios Analyses with MELCOR 1.8.2 and MELCOR 2.1 for the DEMO Helium-Cooled Pebble Bed Blanket Concept

    Directory of Open Access Journals (Sweden)

    Bruno Gonfiotti

    2015-01-01

    Full Text Available As for Light Water Reactors (LWRs, one of the most challenging accidents for the future DEMOnstration power plant is the Loss of Coolant Accident, which can trigger the pressurization of the confinement structures and components. Hence, careful analyses have to be executed to demonstrate that the confinement barriers are able to withstand the pressure peak within design limits and the residual cooling capabilities of the Primary Heat Transfer System are sufficient to remove the decay heat. To do so, severe accident codes, as MELCOR, can be employed. In detail, the MELCOR code has been developed to cope also with fusion reactors, but unfortunately, these fusion versions are based on the old 1.8.x source code. On the contrary, for LWRs, the newest 2.1.x versions are continuously updated. Thanks to the new features introduced in these latest 2.1.x versions, the main phenomena occurring in the helium-cooled blanket concepts of DEMO can be simulated in a basic manner. For this purpose, several analyses during normal and accidental DEMO conditions have been executed. The aim of these analyses is to compare the results obtained with MELCOR 1.8.2 and MELCOR 2.1 in order to highlight the differences among the results of the main thermal-hydraulic parameters.

  7. Evaluation of a postulated loss of coolant accident (LOCA) due to a 160 cm{sup 2} break in a cold leg of Angra 2 nuclear power plant[LOCA; RELAP-5/MOD3.2.2g; nodalization]; Calculo do acidente postulado de perda de refrigerante por uma ruptura de 160 cm{sup 2} na perna fria da central nuclear Angra 2

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Carlos Vicente Goulart de; Palmieri, Elcio Tadeu; Aronne, Ivan Dionysio [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)

    2002-07-01

    The development of a qualified full nodalization of Angra2 NPP for RELAP5/Mod 3.2.2 gamma, aiming at the evaluation of a comprehensive number of accidents and transients, thus providing suitable safety analysis support for licensing purposes, is being carried out within the framework of CNEN internal technical cooperation, involving some of its institutes (CDTN, IPEN and IEN) and the Reactors Coordination (CODRE). This work presents a simulation of a postulated Angra2 small cold leg break loss of coolant accident (SBLOCA). A 160 cm{sup 2} break is supposed to occur at one cold leg between the main coolant pump and the reactor vessel and is described in the Angra2 Final Safety Analysis Report, section 15.6.4.1.3.4. The simulation of several types of transients and accidents is necessary to verify the adequate performance of the modeled logic and systems. In general, the analysis of such and accident allows to demonstrate the safety Injection System performance and the reliable transition between the high pressure safety injection, the accumulator injection and the residual heat removal phases. Furthermore, it is assumed that some components are out of service due to fail or repair in order to make a conservative analysis. The results showed a compatible behavior of the molded systems and that the simulated Emergency Core Cooling System was able to provide sufficient cooling to avoid any damage to the core. (author)

  8. Numerical simulation of the transient thermal-hydraulic behaviour of the ITER blanket cooling system under the draining operational procedure

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy); Dell’Orco, G.; Furmanek, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Garitta, S. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy); Merola, M.; Mitteau, R.; Raffray, R. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Spagnuolo, G.A. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy); Vallone, E., E-mail: eug.vallone@gmail.com [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo Viale delle Scienze, 90128 Palermo (Italy)

    2015-10-15

    Highlights: • ITER blanket cooling system hydraulic behaviour is studied under draining transient. • A computational approach based on the finite volume method has been followed. • Draining efficiency has been assessed in term of transient duration and residual water. • Transient duration ranges from ∼40 to 50 s, under the reference draining scenario. • Residual water is predicted to range from few tens of gram up to few kilograms. - Abstract: Within the framework of the research and development activities supported by the ITER Organization on the blanket system issues, an intense analysis campaign has been performed at the University of Palermo with the aim to investigate the thermal-hydraulic behaviour of the cooling system of a standard 20° sector of ITER blanket during the draining transient operational procedure. The analysis has been carried out following a theoretical-computational approach based on the finite volume method and adopting the RELAP5 system code. In a first phase, attention has been focused on the development and validation of the finite volume models of the cooling circuits of the most demanding modules belonging to the standard blanket sector. In later phase, attention has been put to the numerical simulation of the thermal-hydraulic transient behaviour of each cooling circuit during the draining operational procedure. The draining procedure efficiency has been assessed in terms of both transient duration and residual amount of coolant inside the circuit, observing that the former ranges typically between 40 and 120 s and the latter reaches at most ∼8 kg, in the case of the cooling circuit of twinned modules #6–7. Potential variations to operational parameters and/or to circuit lay-out have been proposed and investigated to optimize the circuit draining performances. In this paper, the set-up of the finite volume models is briefly described and the key results are summarized and critically discussed.

  9. Nuclear maintenance strategy and first steps for preliminary maintenance plan of the EU HCLL & HCPB Test Blanket Systems

    Energy Technology Data Exchange (ETDEWEB)

    Galabert, Jose, E-mail: jose.galabert@f4e.europa.eu [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); Hopper, Dave [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom); Neviere, Jean-Cristophe [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Nodwell, David [CCFE, Culham Science Centre, Abingdon, OX14 3DB, Oxfordshire (United Kingdom); Pascal, Romain [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Poitevin, Yves; Ricapito, Italo [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); White, Gareth [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom)

    2017-03-15

    Highlights: • Nuclear maintenance strategy for the two European (EU) Test Blanket Systems (TBS): i/. Helium Cooled Lead Lithium (HCLL) and ii/. Helium Cooled Pebble Bed (HCPB). • Preliminary identification of maintenance tasks for most relevant components of the EU HCLL & HCPB TBS. • Preliminary feasibility analysis for hands-on maintenance tasks of some relevant components of the European Test Blanket Systems. • Design recommendations for enhancement of the European Test Blanket Systems maintainability. - Abstract: This paper gives an overview of nuclear maintenance strategy to be followed for the European HCLL & HCPB Test Blanket Systems (TBS) to be installed in ITER. One of the several core documents to prepare in view of their licensing is their respective ‘Maintenance Plan’. This document is fundamental for ensuring sound performance and safety of the TBS during ITER’s operational phase and shall include, amongst others, relevant information on: maintenance organization, preventive and corrective maintenance task procedures, condition monitoring for key components, maintenance work planning, and a spare parts plan, just to mention some of the key topics. In compliance with the ITER Plant Maintenance policy, first steps have been taken aimed at defining nuclear maintenance strategy for some of the most relevant HCLL & HCPB TBS components, conducted by F4E in collaboration with industry. After a brief recall of maintenance strategy of the TBM Program (PBS-56), this paper analyses main features of EU HCLL & HCPB TBS maintainability and identifies, at their conceptual design phase, a preliminary list of maintenance tasks to be developed for their most representative components. In addition, the paper also presents the first nuclear maintenance studies conducted for replacement of the Q{sub 2} Getter Beds, identifying some design recommendations for their sound maintainability.

  10. APT Blanket System Loss-of-Flow Accident (LOFA) Analysis Based on Initial Conceptual Design - Case 1: with Beam Shutdown and Active RHR

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report is one of a series of reports that document normal operation and accident simulations for the Accelerator Production of Tritium (APT) blanket heat removal system. These simulations were performed for the Preliminary Safety Analysis Report.

  11. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    Science.gov (United States)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-10-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  12. The influence of external source intensity in accelerator/target/blanket system on conversion ratio and fuel cycle

    Science.gov (United States)

    Kochurov, Boris P.

    1995-09-01

    The analysis of neutron balance relation for a subcritical system with external source shows that a high ratio of neutron utilization (conversion ratio, breeding ratio) much exceeding similar values for nuclear reactors (both thermal or fast spectrum) is reachable in accelerator/target/blanket system with high external neutron source intensity. An accelerator/target/blanket systems with thermal power in blanket about 1850 Mwt and operating during 30 years have been investigated. Continual feed up by plutonium (fissile material) and Tc-99 (transmuted material) was assumed. Accelerator beam intensity differed 6.3 times (16 mA-Case 1, and 100 mA-Case 2). Conversion ratio (CR) was defined as the ratio of Tc-99 nuclei transmuted to the number of Pu nuclei consumed. The results for two cases are as follows: Case 1Case 2CR 0.77 1.66N(LWR) 8.6 19.1Power MWt(el) 512 225 where N(LWR)-number of LWRs(3000 MWt(th)) from which yearly discharge of Tc-99 is transmuted during 30 years. High value of conversion ratio considerably exceeding 1 (CR=1.66) was obtained in the system with high source intensity as compared with low source system (CR=0.77). Net output of electric power of high source intensity system is about twice lower due to consumption of electric power for accelerator feed up. The loss of energy for Tc-99 transmutation is estimated as 40 Mev(el)/nuclei. Yet high conversion ratio (or breeding ratio) achievable in electronuclear installations with high intensity of external source can effectively be used to close fuel cycle (including incineration of wastes) or to develop growing nuclear power production system.

  13. A passively-safe fusion reactor blanket with helium coolant and steel structure

    Energy Technology Data Exchange (ETDEWEB)

    Crosswait, K.M.

    1994-04-01

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.

  14. 48 CFR 613.303 - Blanket purchase agreements (BPAs).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 613.303 Section 613.303 Federal Acquisition Regulations System DEPARTMENT OF STATE....303 Blanket purchase agreements (BPAs)....

  15. 48 CFR 1313.303 - Blanket Purchase Agreements (BPAs).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Blanket Purchase Agreements (BPAs). 1313.303 Section 1313.303 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE....303 Blanket Purchase Agreements (BPAs)....

  16. 48 CFR 13.303 - Blanket purchase agreements (BPAs).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 13.303 Section 13.303 Federal Acquisition Regulations System FEDERAL ACQUISITION... Methods 13.303 Blanket purchase agreements (BPAs)....

  17. 48 CFR 313.303 - Blanket purchase agreements.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Blanket purchase agreements. 313.303 Section 313.303 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES....303 Blanket purchase agreements....

  18. Axial Neutron Flux Evaluation in a Tokamak System: a Possible Transmutation Blanket Position for a Fusion-Fission Transmutation System

    Science.gov (United States)

    Velasquez, Carlos E.; de P. Barros, Graiciany; Pereira, Claubia; Fortini Veloso, Maria A.; Costa, Antonella L.

    2012-08-01

    A sub-critical advanced reactor based on Tokamak technology with a D-T fusion neutron source is an innovative type of nuclear system. Due to the large number of neutrons produced by fusion reactions, such a system could be useful in the transmutation process of transuranic elements (Pu and minor actinides (MAs)). However, to enhance the MA transmutation efficiency, it is necessary to have a large neutron wall loading (high neutron fluence) with a broad energy spectrum in the fast neutron energy region. Therefore, it is necessary to know and define the neutron fluence along the radial axis and its characteristics. In this work, the neutron flux and the interaction frequency along the radial axis are evaluated for various materials used to build the first wall. W alloy, beryllium, and the combination of both were studied, and the regions more suitable to transmutation were determined. The results demonstrated that the best zone in which to place a transmutation blanket is limited by the heat sink and the shield block. Material arrangements of W alloy/W alloy and W alloy/beryllium would be able to meet the requirements of the high fluence and hard spectrum that are needed for transuranic transmutation. The system was simulated using the MCNP code, data from the ITER Final Design Report, 2001, and the Fusion Evaluated Nuclear Data Library/MC-2.1 nuclear data library.

  19. Proposal for the award of a blanket contract for the supply, installation and maintenance of the LHC access control system

    CERN Document Server

    2004-01-01

    This document concerns the award of a blanket contract for the supply, installation and maintenance of the LHC access control system. Following a market survey carried out among 134 firms in fifteen Member States, a call for tenders (IT-3026/TS/LHC) was sent on 22 January 2004 to eight firms and eight consortia in six Member States. By the closing date, CERN had received nine tenders from two firms and seven consortia in five Member States. The Finance Committee is invited to agree to the negotiation of a blanket contract with the consortium CEGELEC CENTRE EST (FR) - CEGELEC (NL), the lowest technically compliant bidder, for the supply, installation and maintenance of the LHC access control system for a total amount not exceeding 4 600 000 euros (7 141 000 Swiss francs), subject to revision for inflation from 1 January 2007. The rate of exchange used is that stipulated in the tender. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: FR - ...

  20. Breeding blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Proust, E. (Commissariat a l' Energie Atomique (CEA), DRN/DMT/SERMA, CE, Saclay (France)); Anzidei, L. (ENEA/FUS, C.R.E., Frascati (Italy)); Casini, G. (Commission of the European Communities, Joint Research Center, Ispara (Italy)); Dalle Donne, M. (Kernforschungszentrum Karlsruhe GmbH (Germany)); Giancarli, L. (Commissariat a l' Energie Atomique (CEA), DRN/DMT/SERMA, CE, Saclay (France)); Malang, S. (Kernforschungszentrum Karlsruhe GmbH (Germany))

    1993-03-01

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently being investigated within the framework of the European Test-Blanket Development Programme. (orig.)

  1. Breeding blanket for Demo

    Energy Technology Data Exchange (ETDEWEB)

    Proust, E.; Giancarli, L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie; Anzidei, L. [ENEA, Frascati (Italy). Centro Ricerche Energia; Casini, G. [Commission of the European Communities, Ispra (Italy). Joint Research Centre; Dalle Donne, M.; Malang, S. [Kernforschungszentrum Karlsruhe GmbH (Germany)

    1992-12-31

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently investigated within the framework of the European Test-Blanket Development Programme.

  2. Conceptual design description for the tritium recovery system for the US ITER (International Thermonuclear Experimental Reactor) Li sub 2 O/Be water cooled blanket

    Energy Technology Data Exchange (ETDEWEB)

    Finn, P.A.; Sze, D.K. (Argonne National Lab., IL (USA). Fusion Power Program); Clemmer, R.G. (Pacific Northwest Lab., Richland, WA (USA))

    1990-11-01

    The tritium recovery system for the US ITER Li{sub 2}O/Be water cooled blanket processes two separate helium purge streams to recover tritium from the Li{sub 2}O zones and the Be zones of the blanket, to process the waste products, and to recirculate the helium back to the blanket. The components are selected to minimize the tritium inventory of the recovery system, and to minimize waste products. The system is robust to either an increase in the tritium release rate or to an in-leak of water in the purge system. Three major components were used to process these streams, first, 5A molecular sieves at {minus}196{degree}C separate hydrogen from the helium, second, a solid oxide electrolysis unit is used to reduce all molecular water, and third, a palladium/silver diffuser is used to ensure that only hydrogen (H{sub 2}, HT) species reach the cryogenic distillation unit. Other units are present to recover tritium from waste products but the three major components are the basis of the blanket tritium recovery system. 32 refs.

  3. Purchasing. They Got Out From Under Blanket Orders With a Stores-Based Buy-Out System

    Science.gov (United States)

    Deal, Ralph E.

    1974-01-01

    By having a university 'stores' set up with a blanket order with about 115 local vendors, a university has eliminated petty cash disbursements for small purchases and proliferating purchase orders. (Author/PG)

  4. Low activity aluminum blanket

    Energy Technology Data Exchange (ETDEWEB)

    Benenati, R.; Tichler, P.; Powell, J.R.

    1976-03-01

    The basic design of the breeding blanket consists of cylindrical aluminium canisters filled with a ceramic bed of moderating, shielding, and breeding materials all suitably cooled. A technical analysis of the blanket for an EPR design is given. Activation studies are presented. The effect of pulsed magnetic fields on module structure is investigated. (MOW)

  5. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab.

  6. Normal and Accidental Scenarios Analyses with MELCOR 1.8.2 and MELCOR 2.1 for the DEMO Helium-Cooled Pebble Bed Blanket Concept

    OpenAIRE

    Bruno Gonfiotti; Sandro Paci

    2015-01-01

    As for Light Water Reactors (LWRs), one of the most challenging accidents for the future DEMOnstration power plant is the Loss of Coolant Accident, which can trigger the pressurization of the confinement structures and components. Hence, careful analyses have to be executed to demonstrate that the confinement barriers are able to withstand the pressure peak within design limits and the residual cooling capabilities of the Primary Heat Transfer System are sufficient to remove the decay heat. T...

  7. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    Science.gov (United States)

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume.

  8. Progress of R&D on water cooled ceramic breeder for ITER test blanket system and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Sato, Satoshi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Konno, Chikara; Edao, Yuki; Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2016-11-01

    Highlights: • Thermo-hydraulic calculation in the TBM at the water ingress event has been done. • Shielding calculations for the ITER equatorial port #18 were conducted by using C-lite model. • Prototypic pebbles of Be{sub 17}Ti{sub 2} and Be{sub 12}V had a good oxidation property similar to Be{sub 12}Ti pebble. • Li rich Li{sub 2}TiO{sub 3} pebbles were successfully fabricated using the emulsion method by controlling sintering atmosphere. • New tritium production/recovery experiments at FNS have been started by using ionization chamber as on-line gas monitor. - Abstract: The development of a water cooled ceramic breeder (WCCB) test blanket module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and development of DEMO blanket, R&D has been performed on the module fabrication technology, breeder and multiplier pebble fabrication technology, tritium production rate evaluation, as well as structural and safety design activities. The fabrication of full-scale first wall, side walls, breeder pebble bed box and back wall was completed, and assembly of TBM with box structure was successfully achieved. Development of advanced breeder and multiplier pebbles for higher chemical stability was continued for future DEMO blanket application. From the view point of TBM test result evaluation and DEMO blanket performance design, the development of the blanket tritium transport simulation technology, investigation of the TBM neutron measurement technology and the evaluation of the tritium production and recovery test using D-T neutron in the fusion neutron source (FNS) facility has been performed. This paper provides an overview of the recent achievements of the development of the WCCB Blanket in Japan.

  9. Source Term Analysis in Severe Accident Induced by Large Break Loss of Coolant Accident Coincident With Ship Blackout for Ship Reactor%船用堆大破口失水叠加全船断电严重事故源项分析

    Institute of Scientific and Technical Information of China (English)

    张彦招; 张帆; 赵新文; 郑映峰

    2013-01-01

    以某船用压水堆为研究对象,采用M ELCOR程序建立事故分析模型,研究大破口失水事故叠加全船断电严重事故下放射性裂变产物的行为,着重分析了惰性气体和CsI的释放、迁移、滞留特点及在堆舱内的分布。结果表明,83.12%惰性气体从堆芯释放出来,并主要存在于堆舱的气空间;83.08%的CsI从堆芯释放出来,其中,72.66%滞留在堆坑熔融物与一回路内,27.34%释放到堆舱内,并主要溶解于舱底水池中。本文分析结果可为舱室剂量评估、核应急管理提供依据。%Using MELCOR code ,the accident analysis model was established for a ship reactor .The behaviors of radioactive fission products were analyzed in the case of severe accident induced by large break loss of coolant accident coincident with ship blackout . The research mainly focused on the behaviors of release ,transport ,retention and the final distribution of inert gas and CsI . T he results show that 83.12% of inert gas releases from the core , and the most of inert gas exists in the containment . About 83.08% of CsI release from the core ,72.66% of w hich is detained in the debris and the primary system ,and 27.34% releases into the containment . The results can give a reference for the evaluation of cabin dose and nuclear emergency management .

  10. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    Energy Technology Data Exchange (ETDEWEB)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse

    1988-03-01

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs.

  11. Tritium Breeding Blanket for a Commercial Fusion Power Plant - A System Engineering Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Wayne R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-04-14

    The goal of developing a new source of electric power based on fusion has been pursued for decades. If successful, future fusion power plants will help meet growing world-wide demand for electric power. A key feature and selling point for fusion is that its fuel supply is widely distributed globally and virtually inexhaustible. Current world-wide research on fusion energy is focused on the deuterium-tritium (DT for short) fusion reaction since it will be the easiest to achieve in terms of the conditions (e.g., temperature, density and confinement time of the DT fuel) required to produce net energy. Over the past decades countless studies have examined various concepts for TBBs for both magnetic fusion energy (MFE) and inertial fusion energy (IFE). At this time, the key organizations involved are government sponsored research organizations world-wide. The near-term focus of the MFE community is on the development of TBB mock-ups to be tested on the ITER tokamak currently under construction in Caderache France. TBB concepts for IFE tend to be different from MFE primarily due to significantly different operating conditions and constraints. This report focuses on longer-term commercial power plants where the key stakeholders include: electric utilities, plant owner and operator, manufacturer, regulators, utility customers, and in-plant subsystems including the heat transfer and conversion systems, fuel processing system, plant safety systems, and the monitoring control systems.

  12. Flexible armored blanket development

    Energy Technology Data Exchange (ETDEWEB)

    Roth, E.S.

    1978-05-01

    An exploratory development contract was undertaken on December 23, 1977 which had as its purpose the development and demonstration of a flexible armored blanket design suitable for providing ballistic protection to nuclear weapons during shipment. Objectives were to design and fabricate a prototype blanket which will conform to the weapon shape, is troop-handleable in the field, and which, singly or in multiple layers, can defeat a range of kinetic energy armor piercing (AP) ammunition potentially capable of damaging the critical portion of the nuclear weapon. Following empirical testing, including the firing of threat ammunition under controlled laboratory and field test conditions, materials were selected and assembled into two blanket designs, each weighing approximately 54 kg/m{sup 2} (11 lbs/ft{sup 2}) and estimated to cost from $111 to $180 per ft{sup 2} in production. A firing demonstration to evidence blanket performance against terrorist/light infantry weapons, heavy infantry weapons, and aircraft cannon was conducted for representatives of the DOD and interested Sandia employees on April 12, 1978. The blankets performed better than anticipated defeating bullets up to 7.62 mm x 51 mm AP with one layer and projectiles up to 23 mm HEI with two layers. Based on these preliminary tests it is recommended that development work be continued with the following objectives: (1) the selection by the DOD of priority applications, (2) the specific design and fabrication of sufficient quantities of armored blankets for field testing, (3) the evaluation of the blankets by DOD operational units, with reports to Sandia Laboratories to enable final design.

  13. 48 CFR 213.303 - Blanket purchase agreements (BPAs).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Blanket purchase agreements (BPAs). 213.303 Section 213.303 Federal Acquisition Regulations System DEFENSE ACQUISITION... PROCEDURES Simplified Acquisition Methods 213.303 Blanket purchase agreements (BPAs)....

  14. The Haida Button Blanket.

    Science.gov (United States)

    Johnson, Vesta

    In the Haida nation, there are two phratries, Eagle and Raven, divided into a number of clans sharing one or more emblems. These emblems, inherited from the mother's line, adorn the button blankets which are the traditional ceremonial robes that serve to identify the family of the wearer. Written instructions and diagrams guide students in…

  15. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    Science.gov (United States)

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  16. Experimental investigations of flow distribution in coolant system of Helium-Cooled-Pebble-Bed Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Ilić, M.; Schlindwein, G., E-mail: georg.schlindwein@kit.edu; Meyder, R.; Kuhn, T.; Albrecht, O.; Zinn, K.

    2016-02-15

    Highlights: • Experimental investigations of flow distribution in HCPB TBM are presented. • Flow rates in channels close to the first wall are lower than nominal ones. • Flow distribution in central chambers of manifold 2 is close to the nominal one. • Flow distribution in the whole manifold 3 agrees well with the nominal one. - Abstract: This paper deals with investigations of flow distribution in the coolant system of the Helium-Cooled-Pebble-Bed Test Blanket Module (HCPB TBM) for ITER. The investigations have been performed by manufacturing and testing of an experimental facility named GRICAMAN. The facility involves the upper poloidal half of HCPB TBM bounded at outlets of the first wall channels, at outlet of by-pass pipe and at outlets of cooling channels in breeding units. In this way, the focus is placed on the flow distribution in two mid manifolds of the 4-manifold system: (i) manifold 2 to which outlets of the first wall channels and inlet of by-pass pipe are attached and (ii) manifold 3 which supplies channels in breeding units with helium coolant. These two manifolds are connected with cooling channels in vertical/horizontal grids and caps. The experimental facility has been built keeping the internal structure of manifold 2 and manifold 3 exactly as designed in HCPB TBM. The cooling channels in stiffening grids, caps and breeding units are substituted by so-called equivalent channels which provide the same hydraulic resistance and inlet/outlet conditions, but have significantly simpler geometry than the real channels. Using the conditions of flow similarity, the air pressurized at 0.3 MPa and at ambient temperature has been used as working fluid instead of HCPB TBM helium coolant at 8 MPa and an average temperature of 370 °C. The flow distribution has been determined by flow rate measurements at each of 28 equivalent channels, while the pressure distribution has been obtained measuring differential pressure at more than 250 positions. The

  17. 48 CFR 8.405-3 - Blanket purchase agreements (BPAs).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Blanket purchase... Blanket purchase agreements (BPAs). (a)(1) Establishment. Ordering activities may establish BPAs under any..., before placing an order exceeding the micro-purchase threshold, the ordering activity shall— (i)...

  18. Technical issues related to the development of reduced-activation ferritic/martensitic steels as structural materials for a fusion blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hiroyasu, E-mail: tanigawa.hiroyasu@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Shiba, Kiyoyuki; Sakasegawa, Hideo; Hirose, Takanori; Jitsukawa, Shiro [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan)

    2011-10-15

    Reduced activation ferritic/martensitic (RAFM) steels are recognized as the primary candidate structural materials for fusion blanket systems. Because of the possibility of creating sound engineering bases, such as a suitable fabrication technology and a materials database, RAFM steels can be used as structural materials for pressure equipment. Further, the development of an irradiation database in addition to design methodologies for fusion-centered applications is critical when evaluating the applicability of RAFM steels as structural materials for fusion-neutron-irradiated pressure equipment. In the International Fusion Energy Research Centre (IFERC) project in the Broader Approach (BA) activities between the EU and Japan, R and D is underway to optimize RAFM steel fabrication and processing technologies, develop a method for estimating fusion-neutron-irradiation effects, and study the deformation behaviors of irradiated structures. The results of these research activities are expected to form the basis for the DEMO power plant design criteria and licensing. The objective of this paper is to review the BA R and D status of RAFM steel development in Japan, especially F82H (Fe-8Cr-2W-V, Ta). The key technical issues relevant to the design and fabrication of the DEMO blanket and the recent achievements in Japan are introduced.

  19. Lightweight IMM PV Flexible Blanket Assembly

    Science.gov (United States)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  20. Objectives and status of EUROfusion DEMO blanket studies

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, L.V., E-mail: lorenzo.boccaccini@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Aiello, G.; Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Bachmann, C. [EUROfusion, PPPT, Garching (Germany); Barrett, T. [CCFE, Abingdon OX14 3DB (United Kingdom); Del Nevo, A. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Demange, D. [Karlsruhe Institute of Technology (KIT) (Germany); Forest, L. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-sur-Yvette (France); Hernandez, F.; Norajitra, P. [Karlsruhe Institute of Technology (KIT) (Germany); Porempovic, G. [Fuziotech Engineering Ltd (Hungary); Rapisarda, D. [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Sardain, P. [CEA/IRFM, 13115 Saint-Paul-lès-Durance (France); Utili, M. [ENEA CR Brasimone, 40032 Camugnano, BO (Italy); Vala, L. [Centrum výzkumu Řež, 250 68 Husinec-Řež (Czech Republic)

    2016-11-01

    Highlights: • Short description of the new Breeding Blanket Project in the EUROfusion consortium for the design of the EU PPPT DEMO: objectives. • Presentation of the design approach used in the development of the Breeding Blanket design: requirements. • Breeding Blanket design; in particular the four blanket concepts included in the study are presented, recent results highlighted and the status discussed. • Auxiliary systems and related R&D programme: in particular the work areas addressed in the Project (Tritium Technology, Pb-Li and Solid Breeders Technology, First Wall Design and R&D, Manufacturing) are presented, recent results highlighted and the status discussed. - Abstract: The design of a DEMO reactor requires the design of a blanket system suitable of reliable T production and heat extraction for electricity production. In the frame of the EUROfusion Consortium activities, the Breeding Blanket Project has been constituted in 2014 with the goal to develop concepts of Breeding Blankets for the EU PPPT DEMO; this includes an integrated design and R&D programme with the goal to select after 2020 concepts on fusion plants for the engineering phase. The design activities are presently focalized around a pool of solid and liquid breeder blanket with helium, water and PbLi cooling. Development of tritium extraction and control technology, as well manufacturing and development of solid and PbLi breeders are part of the programme.

  1. CFD analysis of a Sphere-Packed Pipe for potential application in the molten salt blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Nazififard, Mohammad [Kashan Univ. (Iran, Islamic Republic of). Dept. of Energy Systems; Suh, Kune Y. [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering and PHILOSOPHIA

    2016-08-15

    This computational fluid dynamics (CFD) analysis aims to evaluate the flow structures and heat transfer characteristics in Sphere Packed Pipe (SPP) for potential application in fusion reactors. The SPP consists of metal spheres which are packed in a pipe and disturb the flow inside of the pipe to boost the heat transfer. One of the potential applications of SPP is using it at the first wall of Force Free Helical Reactors (FFHR). The numerical model has improved on the numerical model, gaps between pebbles and channel wall, and turbulent model compared to previous numerical studies. The standard κε- model, Omega Reynolds stress model, the Shear Stress Transport (SST) model and κε EARSM/BSL have been applied as turbulence model to examine the effect of turbulence model on validation of numerical results. The present numerical model can be used in the design of the blanket of fusion reactor.

  2. Development of the Helium Cooled Lithium Lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, G., E-mail: giacomo.aiello@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aubert, J.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The HCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • The new design has been developed with the aim to capitalize on TBM experience in ITER. • A new attachment system for the modules has been proposed. - Abstract: The Helium Cooled Lithium Lead (HCLL) blanket is one of the candidate European blanket concepts selected for the DEMOnstration fusion power plant that should follow ITER. In a fusion power plant, the blanket is one of the key components because of its impact on the plant performance, availability, safety and economics. In 2012, the European Fusion Development Agreement (EFDA) agency issued new specifications for DEMO: this paper describes the work performed to adapt the previous 2007 HCLL-DEMO blanket design to those specifications. A new segmentation has been defined assuming straight surfaces for all blanket modules. Following the Multi Module Segment (MMS) option, all modules are attached to a common back supporting structure which also serves as manifold for Helium and PbLi distribution. A detailed CAD design of the central outboard module has been defined. Thermo-hydraulic and thermo-mechanical analyses on of the First Wall and Breeder Zone have been carried out. For the attachment of the modules to the common backplate, a new solution based on the use of Tie Rods, derived from the design of the corresponding HCLL Test Blanket Module for ITER, has been proposed. This paper also identifies the priorities for further development of the HCLL blanket design.

  3. Tailorable Advanced Blanket Insulation (TABI)

    Science.gov (United States)

    Sawko, Paul M.; Goldstein, Howard E.

    1987-01-01

    Single layer and multilayer insulating blankets for high-temperature service fabricated without sewing. TABI woven fabric made of aluminoborosilicate. Triangular-cross-section flutes of core filled with silica batting. Flexible blanket formed into curved shapes, providing high-temperature and high-heat-flux insulation.

  4. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.

  5. The climatic impact of supervolcanic ash blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Morgan T.; Sparks, R.S.J. [University of Bristol, Department of Earth Sciences, Bristol (United Kingdom); Valdes, Paul J. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)

    2007-11-15

    Supervolcanoes are large caldera systems that can expel vast quantities of ash, volcanic gases in a single eruption, far larger than any recorded in recent history. These super-eruptions have been suggested as possible catalysts for long-term climate change and may be responsible for bottlenecks in human and animal populations. Here, we consider the previously neglected climatic effects of a continent-sized ash deposit with a high albedo and show that a decadal climate forcing is expected. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, covering much of North America. Reflectivity measurements of dry volcanic ash show albedo values as high as snow, implying that the effects of an ash blanket would be severe. The modeling results indicate major disturbances to the climate, particularly to oscillatory patterns such as the El Nino Southern Oscillation (ENSO). Atmospheric disruptions would continue for decades after the eruption due to extended ash blanket longevity. The climatic response to an ash blanket is not significant enough to investigate a change to stadial periods at present day boundary conditions, though this is one of several impacts associated with a super-eruption which may induce long-term climatic change. (orig.)

  6. Design analyses of self-cooled liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.

    1986-12-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations.

  7. Performance evaluation of the pilot scale upflow anaerobic sludge blanket - Downflow hanging sponge system for natural rubber processing wastewater treatment in South Vietnam.

    Science.gov (United States)

    Watari, Takahiro; Mai, Trung Cuong; Tanikawa, Daisuke; Hirakata, Yuga; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Nguyen, Ngoc Bich; Yamaguchi, Takashi

    2017-08-01

    A pilot-scale upflow anaerobic sludge blanket (UASB)-downflow hanging sponge system (DHS) combined with an anaerobic baffled reactor (ABR) and a settling tank (ST) was installed in a natural rubber processing factory in South Vietnam and its process performance was evaluated for 267days. The UASB reactor achieved a total removal efficiency of 55.6±16.6% for chemical oxygen demand (COD) and 77.8±10.3% for biochemical oxygen demand (BOD) with an organic loading rate of 1.7±0.6kg-COD·m(-3)·day(-1). The final effluent of the proposed system had 140±64mg·L(-1) of total COD, 31±12mg·L(-1) of total BOD, and 58±24mg-N·L(-1) of total nitrogen. The system could significantly reduce 92% of greenhouse gas emissions and 80% of hydraulic retention times compared with current treatment systems. Copyright © 2017. Published by Elsevier Ltd.

  8. Enhanced treatment of Fischer-Tropsch (F-T) wastewater using the up-flow anaerobic sludge blanket coupled with bioelectrochemical system: Effect of electric field.

    Science.gov (United States)

    Wang, Dexin; Han, Hongjun; Han, Yuxing; Li, Kun; Zhu, Hao

    2017-05-01

    The coupling of bioelectrochemical system (BES) with an up-flow anaerobic sludge blanket (UASB) was established for enhanced Fischer-Tropsch (F-T) wastewater treatment while the UASB (control group) was operated in parallel. The presence of electric field could offer system a more reductive micro-environment that lower the ORP values and maintain the appropriate pH range, resulting in the higher chemical oxygen demand (COD) removal efficiency and methane production for BES-UASB (86.8% and 2.31±0.1L/(L·d)) while those values in control group were 72.1% and 1.77±0.08L/(L·d). In addition, the coupled system could promote sludge granulation to perform a positive effect on maintaining stability of pollutants removal. The high-throughput 16S rRNA gene pyrosequencing in this study further confirmed that the promoting direct interspecies electron transfer (DIET) between Geobacter and Methanosarcina might be established in BES-UASB to improve the syntrophic degradation of propionate and butyrate, finally facilitated completely methane production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Progress on DCLL Blanket Concept

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Clement; Abdou, M.; Katoh, Yutai; Kurtz, Richard J.; Lumsdaine, A.; Marriott, Edward P.; Merrill, Brad; Morley, Neil; Pint, Bruce A.; Sawan, M.; Smolentsev, S.; Williams, Brian; Willms, Scott; Youssef, M.

    2013-09-01

    Under the US Fusion Nuclear Science and Technology Development program, we have selected the Dual Coolant Lead Lithium concept (DCLL) as a reference blanket, which has the potential to be a high performance DEMO blanket design with a projected thermal efficiency of >40%. Reduced activation ferritic/martensitic (RAF/M) steel is used as the structural material. The self-cooled breeder PbLi is circulated for power conversion and for tritium breeding. A SiC-based flow channel insert (FCI) is used as a means for magnetohydrodynamic pressure drop reduction from the circulating liquid PbLi and as a thermal insulator to separate the high-temperature PbLi (~700°C) from the helium-cooled RAF/M steel structure. We are making progress on related R&D needs to address critical Fusion Nuclear Science and Facility (FNSF) and DEMO blanket development issues. When performing the function as the Interface Coordinator for the DCLL blanket concept, we had been developing the mechanical design and performing neutronics, structural and thermal hydraulics analyses of the DCLL TBM module. We had estimated the necessary ancillary equipment that will be needed at the ITER site and a detailed safety impact report has been prepared. This provided additional understanding of the DCLL blanket concept in preparation for the FNSF and DEMO. This paper will be a summary report on the progress of the DCLL TBM design and R&Ds for the DCLL blanket concept.

  10. Tokamak blanket design study, final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.

  11. Performance of uncoated AFRSI blankets during multiple Space Shuttle flights

    Science.gov (United States)

    Sawko, Paul M.; Goldstein, Howard E.

    1992-01-01

    Uncoated Advanced Flexible Reusable Surface Insulation (AFRSI) blankets were successfully flown on seven consecutive flights of the Space Shuttle Orbiter OV-099 (Challenger). In six of the eight locations monitored (forward windshield, forward canopy, mid-fuselage, upper wing, rudder/speed brake, and vertical tail) the AFRSI blankets performed well during the ascent and reentry exposure to the thermal and aeroacoustic environments. Several of the uncoated AFRSI blankets that sustained minor damage, such as fraying or broken threads, could be repaired by sewing or by patching with a surface coating called C-9. The chief reasons for replacing or completely coating a blanket were fabric embrittlement and fabric abrasion caused by wind erosion. This occurred in the orbiter maneuvering system (OMS) pod sidewall and the forward mid-fuselage locations.

  12. A Precambrian proximal ejecta blanket from Scotland

    Science.gov (United States)

    Amor, Kenneth; Hesselbo, Stephen P.; Porcelli, Don; Thackrey, Scott; Parnell, John

    2008-04-01

    Ejecta blankets around impact craters are rarely preserved onEarth. Although impact craters are ubiquitous on solid bodiesthroughout the solar system, on Earth they are rapidly effaced,and few records exist of the processes that occur during emplacementof ejecta. The Stac Fada Member of the Precambrian Stoer Groupin Scotland has previously been described as volcanic in origin.However, shocked quartz and biotite provide evidence for high-pressureshock metamorphism, while chromium isotope values and elevatedabundances of platinum group metals and siderophile elementsindicate addition of meteoritic material. Thus, the unit isreinterpreted here as having an impact origin. The ejecta blanketreaches >20 m in thickness and contains abundant dark green,vesicular, devitrified glass fragments. Field observations suggestthat the deposit was emplaced as a single fluidized flow thatformed as a result of an impact into water-saturated sedimentarystrata. The continental geological setting and presence of groundwatermake this deposit an analogue for Martian fluidized ejecta blankets.

  13. Transmutation of 129I, 237Np, 238Pu, 239Pu, and 241Am using neutrons produced in target-blanket system `Energy plus Transmutation' by relativistic protons

    Indian Academy of Sciences (India)

    J Adam; K Katovsky; A Balabekyan; V G Kalinnikov; M I Krivopustov; H Kumawat; A A Solnyshkin; V I Stegailov; S G Stetsenko; V M Tsoupko-Sitnikov; W Westmeier

    2007-02-01

    Target-blanket facility `Energy + Transmutation' was irradiated by proton beam extracted from the Nuclotron Accelerator in Laboratory of High Energies of Joint Institute for Nuclear Research in Dubna, Russia. Neutrons generated by the spallation reactions of 0.7, 1.0, 1.5 and 2 GeV protons and lead target interact with subcritical uranium blanket. In the neutron field outside the blanket, radioactive iodine, neptunium, plutonium and americium samples were irradiated and transmutation reaction yields (residual nuclei production yields) have been determined using -spectroscopy. Neutron field's energy distribution has also been studied using a set of threshold detectors. Results of transmutation studies of 129I, 237Np, 238Pu, 239Pu and 241Am are presented.

  14. 47 CFR 22.353 - Blanketing interference.

    Science.gov (United States)

    2010-10-01

    ... are not required to resolve blanketing interference to mobile receivers or non-RF devices or... 47 Telecommunication 2 2010-10-01 2010-10-01 false Blanketing interference. 22.353 Section 22.353... Operational and Technical Requirements Technical Requirements § 22.353 Blanketing interference. Licensees of...

  15. 48 CFR 313.303-5 - Purchases under blanket purchase agreements.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Purchases under blanket purchase agreements. 313.303-5 Section 313.303-5 Federal Acquisition Regulations System HEALTH AND HUMAN... Methods 313.303-5 Purchases under blanket purchase agreements. (e)(5) HHS personnel that sign...

  16. Construction of a test platform for Test Blanket Module (TBM) systems integration and maintenance in ITER Port Cell #16

    Energy Technology Data Exchange (ETDEWEB)

    Vála, Ladislav, E-mail: ladislav.vala@cvrez.cz [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Reungoat, Mathieu, E-mail: mathieu.reungoat@cvrez.cz [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Vician, Martin [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Poitevin, Yves; Ricapito, Italo; Zmitko, Milan; Panayotov, Dobromir [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • A non-nuclear, full size facility – TBM platform – is under construction in CVR. • It is designed for tests, optimization and validation of TBS maintenance operations. • It will allow testing and validation of specific maintenance tools and RH equipment. • It reproduces ITER Port Cell #16, as well as the TBS interfaces and main equipment. • The TBM platform will be available for full operation in the first half of 2016. - Abstract: This paper describes a project of a non-nuclear, 1:1 scale testing platform dedicated to tests, optimization and validation of integration and maintenance operations for the European TBM systems in the ITER Port Cell #16. This TBM platform is currently under construction in Centrum výzkumu Řež, Czech Republic. The facility is realized within the scope of the SUSEN project and its full operation is foreseen in the first half of 2016.

  17. A numerical study on a lumped-parameter model and a CFD code coupling for the analysis of the loss of coolant accident in a reactor containment; Etude numerique 0D-multiD pour l'analyse de perte de refrigerant dans une enceinte de confinement d'un reacteur nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y.J.

    2005-12-15

    In the case of PWR severe accident (Loss of Coolant Accident, LOCA), the inner containment ambient properties such as temperature, pressure and gas species concentrations due to the released steam condensation are the main factors that determine the risk. For this reason, their distributions should be known accurately, but the complexity of the geometry and the computational costs are strong limitations to conduct full three-dimensional numerical simulations. An alternative approach is presented in this thesis, namely, the coupling between a lumped-parameter model and a CFD. The coupling is based on the introduction of a 'heat transfer function' between both models and it is expected that large decreases in the CPU-costs may be achieved. First of all, wall condensation models, such as the Uchida or the Chilton-Colburn models which are implemented in the code CAST3M/TONUS, are investigated. They are examined through steady-state calculations by using the code TONUS-0D, based on lumped parameter models. The temperature and the pressure within the inner containment are compared with those reported in the archival literature. In order to build the 'heat transfer function', natural convection heat transfer is then studied by using the code CAST3M for a partitioned cavity which represents a simplified geometry of the reactor containment. At a first step, two-dimensional natural convection heat transfer without condensation is investigated only. Either the incompressible-Boussinesq fluid flow model or the asymptotic low Mach model are considered for solving the time dependent conservation equations. The SUPG finite element method and the implicit scheme are applied for the numerical discretization. The computed results are qualified by the second-order Richardson extrapolation method which allows obtaining the so-called 'Exact values', i.e. grid size independent values. The computations are also validated through non-partitioned cavity case

  18. Crucial issues on liquid metal blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S. (Kernforschungszentrum Karlsruhe (Germany)); Leroy, P. (CEA, CEN Saclay, 91 - Gif-sur-Yvette (France)); Casini, G.P. (CEC, Joint Research Centre (JRC), Ispra (Italy)); Mattas, R.F. (Argonne National Lab., IL (United States)); Strebkov, Yu. (Research and Development Inst. of Power Engineering, Moscow (USSR))

    1991-12-01

    Typical design concepts of liquid metal breeder blankets for power reactors are explained and characterized. The major problems of these concepts are described for both water-cooled blankets and self-cooled blankets. Three crucial issues of liquid metal breeder blankets are investigated. They are in the fields of magnetohydrodynamics, tritium control and safety. The influence of the magnetic field on liquid metal flow is of special interest for self-cooled blankets. The main problems in this field and the status of the related R and D work are described. Tritium permeation losses to the cooling water is a crucial issue for water-cooled blankets. Methods for its reduction are discussed. An inherent problem of all liquid breeder blankets is the potential release of activated products in the case of chemical reactions between the breeder material and water or reactive gases. The most important issues in this field are described. (orig.).

  19. Overview of design activities for Li/V blankets

    Energy Technology Data Exchange (ETDEWEB)

    Sze, D.K.; Mattas, R.F.

    1997-12-31

    Recent fusion power plant design studies in the US have been conducted within the ARIES project. The most recent design of Li/V blankets was conducted as part of the ARIES-RS design. The ARIES-RS fusion power plant design study is based on reversed-shear (RS) physics with a Li/V (lithium breeder and vanadium structure) blanket. The reversed-shear discharge has been documented in many large tokamak experiments. The plasma in the RS mode has a high beta, low current, and low current drive requirement. Therefore, it is an attractive physics regime for a fusion power plant. The blanket system based on a Li/V has high temperature operating capability, good tritium breeding, excellent high heat flux removal capability, long structural life time, low activation, low after heat and good safety characteristics. For these reasons, the ARIES-RS reactor study selected Li/V as the reference blanket. The combination of attractive physics and attractive blanket engineering is expected to result in a superior power plant design.

  20. Composite Flexible Blanket Insulation

    Science.gov (United States)

    Kourtides, Demetrius A. (Inventor); Pitts, William C. (Inventor); Goldstein, Howard E. (Inventor); Sawko, Paul M. (Inventor)

    1991-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with the currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems are useful in providing lightweight insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  1. First wall and blanket concepts for experimental fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Biggio, M.; Cardella, A.; Daenner, W.; Farfaletti-Casali, F.; Ponti, C.; Rieger, M.; Vieider, G.

    1985-07-01

    The paper describes the progress of the studies on first wall and liquid breeder blankets for tritium production in the Next European Torus (NET). Two concepts of first wall/blanket segments are described, using 17Li83Pb as breeder and water as coolant. In both concepts the first wall is integrated in a steel box enveloping the breeder units which are cylindrical vessels with an inside heat transfer system. The thermomechanical and neutronics features of the two concepts are evaluated. Finally, the questions related to tritium permeation into coolant and tritium recovery from breeder are discussed on the basis of the analysis in progress in Europe.

  2. Packed fluidized bed blanket for fusion reactor

    Science.gov (United States)

    Chi, John W. H.

    1984-01-01

    A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.

  3. Fusion reactor blanket/shield design study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Clemmer, R.G.; Harkness, S.D.

    1979-07-01

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  4. Investigation of Space and Energy Distributions of Neutrons Generated in Lead Target and Uranium Blanket of the Electronuclear System "Energy plus Transmutation" under Irradiation with Protons at 1.5 GeV

    CERN Document Server

    Zhuk, I V; Krivopustov, M I; Sosnin, A N; Chultem, D; Vestmaer, V; Tumendelger, T; Zaveryukha, O S; Pavlyuk, A B

    2002-01-01

    The work contains the results of space-energy distributions of neutrons in U/Pb assembly, consisting of extended lead target and the model of natural uranium blanket irradiated with relativistic protons at 1.5 GeV. The research is carried out in the framework of a series of experiments using the model of subcritical heterogeneous electronuclear system at the Laboratory of High Energies, JINR, Dubna ("Investigation of Physical Aspects of Electronuclear Method of Energy Production and Transmutation of Radioactive Waste Using Beams from JINR Synchrophasotron/Nuclotron" - project "Energy plus Transmutation"). The results of measurements and calculations of ^{235}U, ^{238}U and ^{232}Th fission rate distributions as well as threshold spectral indexes {\\bar\\sigma_f^{^{232}Th}}/{\\bar\\sigma_f^{^{235}U}} and {\\bar\\sigma_f^{^{238}U}}/{\\bar\\sigma_f^{^{235}U}} along the radius of the target and model uranium blanket are presented. The results of measurements and calculations of ^{234}U, ^{236}U and ^{237}Np fission rate ...

  5. Beryllium in the ITER blanket

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C.

    1995-01-01

    This paper consists of viewgraphs used in a presentation on the application of beryllium in breeding blankets for ITER and JET. The paper brings together data on the physical, thermal, mechanical, and chemical properties of beryllium and beryllium oxide for this type of application, as well as issues of compatibility with construction materials, and irradiation experience. It includes the results from testing programs carried out to arrive at some of the information, including fabrication work, irradiation experiments, and sample tests performed both in and out of the irradiation piles.

  6. Remote handling assessment of attachment concepts for DEMO blanket segments

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Daniel, E-mail: daniel.iglesias@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Bastow, Roger; Cooper, Dave; Crowe, Robert; Middleton-Gear, Dave [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sibois, Romain [VTT, Technical Research Centre of Finland, Industrial Systems, ROViR, Tampere (Finland); Carloni, Dario [Institute of Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (KIT) (Germany); Vizvary, Zsolt; Crofts, Oliver [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Harman, Jon [EFDA Close Support Unit Garching, Boltzmannstaße 2, D-85748 Garching bei München (Germany); Loving, Antony [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2015-10-15

    Highlights: • Challenges are identified for the remote handling of blanket segments’ attachments. • Two attachment design approaches are assessed for remote handling (RH) feasibility. • An alternative is proposed, which potentially simplifies and speeds-up RH operations. • Up to three different assemblies are proposed for the remote handling of the attachments. • Proposed integrated design of upper port is compatible with the attachment systems. - Abstract: The replacement strategy of the massive Multi-Module Blanket Segments (MMS) is a key driver in the design of several DEMO systems. These include the blankets themselves, the vacuum vessel (VV) and its ports and the Remote Maintenance System (RMS). Common challenges to any blanket attachment system have been identified, such as the need for applying a preload to the MMS manifold, the effects of the decay heat and several uncertainties related to permanent deformations when removing the blanket segments after service. The WP12 kinematics of the MMS in-vessel transportation was adapted to the requirements of each of the supports during 2013 and 2014 design activities. The RM equipment envisaged for handling attachments and earth connections may be composed of up to three different assemblies. An In-Vessel Mover at the divertor level handles the lower support and earth bonding, and could stabilize the MMS during transportation. A Shield Plug crane with a 6 DoF manipulator operates the upper attachment and earth straps. And a Vertical Maintenance Crane is responsible for the in-vessel MMS transportation and can handle the removable upper support pins. A final proposal is presented which can potentially reduce the number of required systems, at the same time that speeds-up the RMS global operations.

  7. Lithium as a blanket coolant

    Energy Technology Data Exchange (ETDEWEB)

    Wells, W.M.

    1977-01-01

    Recent re-assessment of tokamak reactors which move towards smaller size and lower required field strength (higher beta)/sup 2/ change the picture as regards the magnitude of MHD effects on flow resistance for lithium coolant. Perhaps the most important consequence of this as regards use of this coolant is that of clear acceptability of such effects when the flow is predominantly transverse to the magnetic field. This permits defining a blanket that consists entirely of round tubes containing the circulated lithium with voids between the tubes. Required thermal-hydraulic calculations are then on bases which are well established, especially in view of recent results dealing with perturbations of ducts and magnetic fields. Mitigation of MHD effects is feasible through tapering of tube wall thickness or use of insulated layers, but their use was not mandatory for the assumed conditions. Blanket configurations utilizing flowing lithium in round tubes immersed in static lithium may be suitable, but calculational methods do not now exist for this situation. Use of boiling potassium or cesium appears to be prohibitive in terms of vapor flow area when temperature levels are consistent with stainless steel. Liquid sodium, in addition to not being a breeding material, requires higher velocity than lithium for the same heat removal.

  8. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2016-02-15

    Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.

  9. Design and analysis of ITER shield blanket

    Energy Technology Data Exchange (ETDEWEB)

    Ohmori, Junji; Hatano, Toshihisa; Ezato, Kouichiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-12-01

    This report includes electromagnetic analyses for ITER shielding blanket modules, fabrication methods for the blanket modules and the back plate, the design and the fabrication methods for port limiter have been investigated. Studies on the runaway electron impact for Be armor have been also performed. (J.P.N.)

  10. Classification Using Markov Blanket for Feature Selection

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Luo, Jian

    2009-01-01

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...

  11. Assessment of alkali metal coolants for the ITER blanket

    Science.gov (United States)

    Natesan, K.; Reed, C. B.; Mattas, R. F.

    1994-06-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The blanket comparison and selection study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water, and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper addresses the thermodynamics of interactions between the liquid metals (e.g., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data are used to assess the long-term performance of the first wall in a liquid metal environment. Other key issues include development of electrical insulator coatings on the first-wall structural material to MHD pressure drop, and tritium permeation/inventory in self-cooled and indirectly cooled concepts. Acceptable types of coatings (based on their chemical compatibility and physical properties) are identified, and surface-modification avenues to achieve these coatings on the first wall are discussed. The assessment examines the extent of our knowledge on structural materials performance in liquid metals and identifies needed research and development in several of the areas in order to establish performance envelopes for the first wall in a liquid-metal environment.

  12. Neutronic analyses of the preliminary design of a DCLL blanket for the EUROfusion DEMO power plant

    Energy Technology Data Exchange (ETDEWEB)

    Palermo, Iole, E-mail: iole.palermo@ciemat.es; Fernández, Iván; Rapisarda, David; Ibarra, Angel

    2016-11-01

    Highlights: • We perform neutronic calculations for the preliminary DCLL Blanket design. • We study the tritium breeding capability of the reactor. • We determine the nuclear heating in the main components. • We verify if the shielding of the TF coil is maintained. - Abstract: In the frame of the newly established EUROfusion WPBB Project for the period 2014–2018, four breeding blanket options are being investigated to be used in the fusion power demonstration plant DEMO. CIEMAT is leading the development of the conceptual design of the Dual Coolant Lithium Lead, DCLL, breeding blanket. The primary role of the blanket is of energy extraction, tritium production, and radiation shielding. With this aim the DCLL uses LiPb as primary coolant, tritium breeder and neutron multiplier and Eurofer as structural material. Focusing on the achievement of the fundamental neutronic responses a preliminary blanket model has been designed. Thus detailed 3D neutronic models of the whole blanket modules have been generated, arranged in a specific DCLL segmentation and integrated in the generic DEMO model. The initial design has been studied to demonstrate its viability. Thus, the neutronic behaviour of the blanket and of the shield systems in terms of tritium breeding capabilities, power generation and shielding efficiency has been assessed in this paper. The results demonstrate that the primary nuclear performances are already satisfactory at this preliminary stage of the design, having obtained the tritium self-sufficiency and an adequate shielding.

  13. ITER breeding blanket module design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Toshimasa; Enoeda, Mikio; Kikuchi, Shigeto [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-11-01

    The ITER breeding blanket employs a ceramic breeder and Be neutron multiplier both in small spherical pebble form. Radial-poloidal cooling panels are arranged in the blanket box to remove the nuclear heating in these materials and to reinforce the blanket structure. At the first wall, Be armor is bonded onto the stainless steel (SS) structure to provide a low Z plasma-compatible surface and to protect the first wall/blanket structure from the direct contact with the plasma during off-normal events. Thermo-mechanical analyses and investigation of fabrication procedure have been performed for this breeding blanket. To evaluate thermo-mechanical behavior of the pebble beds including the dependency of the effective thermal conductivity on stress, analysis methods have been preliminary established by the use of special calculation option of ABAQUS code, which are briefly summarized in this report. The structural response of the breeding blanket module under internal pressure of 4 MPa (in case of in-blanket LOCA) resulted in rather high stress in the blanket side (toroidal end) wall, thus addition of a stiffening rib or increase of the wall thickness will be needed. Two-dimensional elasto-plastic analyses have been performed for the Be/SS bonded interface at the first wall taking a fabrication process based on HIP bonding and thermal cycle due to pulsed plasma operation into account. The stress-strain hysteresis during these process and operation was clarified, and a procedure to assess and/or confirm the bonding integrity was also proposed. Fabrication sequence of the breeding blanket module was preliminarily developed based on the procedure to fabricate part by part and to assemble them one by one. (author)

  14. APT Blanket Detailed Bin Model Based on Initial Plate-Type Design -3D FLOWTRAN-TF Model

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    This report provides background information for a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report for the APT. This report gives a brief description of the FLOWTRAN-TF code which was used for detailed blanket bin modeling.

  15. Multifractal Framework Based on Blanket Method

    Science.gov (United States)

    Paskaš, Milorad P.; Reljin, Irini S.; Reljin, Branimir D.

    2014-01-01

    This paper proposes two local multifractal measures motivated by blanket method for calculation of fractal dimension. They cover both fractal approaches familiar in image processing. The first two measures (proposed Methods 1 and 3) support model of image with embedded dimension three, while the other supports model of image embedded in space of dimension three (proposed Method 2). While the classical blanket method provides only one value for an image (fractal dimension) multifractal spectrum obtained by any of the proposed measures gives a whole range of dimensional values. This means that proposed multifractal blanket model generalizes classical (monofractal) blanket method and other versions of this monofractal approach implemented locally. Proposed measures are validated on Brodatz image database through texture classification. All proposed methods give similar classification results, while average computation time of Method 3 is substantially longer. PMID:24578664

  16. Exploratory Study of Blanket Liquid Curtain

    Institute of Scientific and Technical Information of China (English)

    HUGang; HUANGJinhua; FENGKaiming

    2003-01-01

    Blankets and other in-vessel components are easily damaged owing to their circumstance of high radiation and high heat. To protect them, first wall design should be considered. Owing to its high heat removal nd self-refreshing capability, liquid metal first wall has been seen as a potential first wall for a fusion reactor in the future. Blanketliquid curtain is actually a special liquid metal wall to protect blanket.

  17. Thermal-Hydraulic System Study of the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM) for ITER Using System Code RELAP5

    Science.gov (United States)

    Jin, Xuezhou; R, Meyder

    2005-04-01

    The HCPB concept has been a European DEMO reference concept for nearly one decade. Detailed thermal-hydraulic study on the control behavior of the whole system is one of the important parts of this development. The thermal-hydraulic effect of the TBM-combined cooling circuit during a cyclic operation in ITER has been studied using the system code RELAP5. The RELAP5 is based on an one-dimensional, transient two-fluid model for the flow of a two-phase steam-water mixture that can contain noncondensable components like Helium. The RELAP5-models are modified to take the cyclic operation of the circulator, heat exchanger, bypass, valves etc in to account. A sequence of operational phases is investigated, starting from the cold state through the heating phase that brings the system to a stand-by condition, followed by typical power cycles applied in ITER. The results show that the implemented control mechanisms keep the inlet temperature to the TBM and the total mass flow rate at the required values through all phases.

  18. Thermal-Hydraulic System Study of the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM) for ITER Using System Code RELAP5

    Institute of Scientific and Technical Information of China (English)

    Jin Xuezhou; R. Meyder

    2005-01-01

    The HCPB concept has been a European DEMO reference concept for nearly one decade. Detailed thermal-hydraulic study on the control behavior of the whole system is one of the important parts of this development. The thermal-hydraulic effect of the TBM-combined cooling circuit during a cyclic operation in ITER has been studied using the system code RELAP5. The RELAP5 is based on an one-dimensional, transient two-fluid model for the flow of a two-phase steam-water mixture that can contain noncondensable components like Helium. The RELAP5-models are modified to take the cyclic operation of the circulator, heat exchanger, bypass, valves etc in to account. A sequence of operational phases is investigated, starting from the cold state through the heating phase that brings the system to a stand-by condition, followed by typical power cycles applied in ITER. The results show that the implemented control mechanisms keep the inlet temperature to the TBM and the total mass flow rate at the required values through all phases.

  19. Development of Thermal-hydraulic Analysis Methodology for Multi-module Breeding Blankets in K-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this paper, the purpose of the analyses is to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. Afterwards, the plan for the whole blanket system analysis using MARS-KS is introduced and the result of the multiple blanket module analysis is summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for the conceptual design of the K-DEMO breeding blanket thermal analysis. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering pressure drops arises in each module. For a feasibility test of the proposed methodology, 10 outboard blankets in a toroidal field sector were simulated, which are connected with each other through the inlet and outlet common headers. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation and thanks to the parallelization using MPI, almost linear speed-up could be obtained.

  20. Liquid lithium self-cooled breeding blanket design for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, I.R.; Sidorenkov, S.I. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Danilov, I.V.; Strebkov, Yu.S. [Research and Development Institute of Power Engineering, 101100 Moscow (Russian Federation); Mattas, R.F.; Hua, T.Q.; Smith, D.L. [Fusion Power Program, Argonne National Laboratory, Chicago, IL 60439 (United States); Gohard, Y. [ITER Garching Joint Work Site, Max-Planck-Institut fur Plasmaphysik, D-85748 Garching bei Munchen (Germany)

    1998-09-01

    To meet the technical objectives of the ITER extended performance phase (EPP) an advanced tritium breeding lithium/vanadium (Li/V) blanket was developed by two home teams (US and RF). The design is based on the use of liquid Li as coolant and breeder and vanadium alloy (V-Cr-Ti) as structural material. The first wall is coated with a beryllium protection layer. Beryllium is also integrated in the blanket for neutron multiplication and improved shielding. The use of tungsten carbide in the primary shield and in vacuum vessel provides adequate protection for toroidal field coils. A self-healing electrical insulator in the form of CaO or AlN coating layer is utilized to reduce MHD pressure drop in the system. To have a self-consistent ITER design, liquid metal cooling of the divertor and vacuum vessel is considered as well. (orig.) 16 refs.

  1. The State of the Art Report on the Development and Manufacturing Technology of Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Kim, K. H

    2006-07-15

    The main objective of the present R and D on breeder blanket is the development of test blanket modules (TBMs) to be installed and tested in International Thermonuclear Experimental Reactor (ITER). In the program of the blanket development, a blanket module test in the ITER is scheduled from the beginning of the ITER operation, and the performance test of TBM in ITER is the most important milestone for the development of the DEMO blanket. The fabrication of TBMs has been required to test the basic performance of the DEMO blanket, i.e., tritium production/recovery, high-grade heat generation and radiation shielding. Therefore, the integration of the TBM systems into ITER has been investigated with the aim to check the safety, reliability and compatibility under nuclear fusion state. For this reason, in the Test Blanket Working Group (TBWG) as an activity of the International Energy Association (IEA), a variety of ITER TBMs have been proposed and investigated by each party: helium-cooled ceramic (WSG-1), helium-cooled LiPb (WSG-2), water-cooled ceramic (WSG-3), self-cooled lithium (WSG-4) and self-cooled molten salt (WSG-5) blanket systems. Because we are still deficient in investigation of TBM development, the need of development became pressing. In this report, for the development of TBM sub-module and mock-up, it is necessary to analyze and examine the state of the art on the development of manufacturing technology of TBM in other countries. And we will be applied as basic data to establish a manufacturing technology.

  2. Blanket comparison and selection study. Final report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  3. Blanket comparison and selection study. Final report. Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concept are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concepts are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  4. Blanket comparison and selection study. Final report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1984-09-01

    The study focused on: (1) Development of reference design guidelines, evaluation criteria, and a methodology for evaluating and ranking candidate blanket concepts. (2) Compilation of the required data base and development of a uniform systems analysis for comparison. (3) Development of conceptual designs for the comparative evaluation. (4) Evaluation of leading concepts for engineering feasibility, economic performance, and safety. (5) Identification and prioritization of R and D requirements for the leading blanket concepts. Sixteen concepts (nine TMR and seven tokamak) which were identified as leading candidates in the early phases of the study, were evaluated in detail. The overall evaluation concluded that the following concepts should provide the focus for the blanket R and D program: (Breeder/Coolant/Structure), Lithium/Lithium/Vanadium Alloy, Li/sub 2/O/Helium/Ferritic Steel, LiPb Alloy/LiPb Alloy/Vanadium Alloy, and Lithium/Helium/Ferritic Steel. The primary R and D issues for the Li/Li/V concept are the development of an advanced structural alloy, resolution of MHD and corrosion problems, provision for an inert atmosphere (e.g., N/sub 2/) in the reactor building, and the development of non-water cooled near-plasma components, particularly for the tokamak. The main issues for the LiPb/LiPb/V concepts are similar to the Li/Li/V blanket with the addition of resolving the tritium recovery issue. The R and D issues for Li/sub 2/O/He/FS concept include resolution of the tritium recovery/containment issue, achieving adequate tritium breeding and resolving other solid breeder issues such as swelling and fabrication concerns. Major concerns for the Li/He/FS concept are related to its rather poor economic performance. Improvement of its economic performance will be somewhat concept-dependent and will be more of a systems engineering issue.

  5. Heat Loads Due to Small Penetrations in Multilayer Insulation Blankets

    Science.gov (United States)

    Johnson, W. L.; Heckle, K. W.; Fesmire, J. E.

    2017-01-01

    The main penetrations (supports and piping) through multilayer insulation systems for cryogenic tanks have been previously addressed by heat flow measurements. Smaller penetrations due to fasteners and attachments are now experimentally investigated. The use of small pins or plastic garment tag fasteners to each the handling and construction of multilayer insulation (MLI) blankets goes back many years. While it has long been understood that penetrations and other discontinuities degrade the performance of the MLI blanket, quantification of this degradation has generally been lumped into gross performance multipliers (often called degradation factors or scale factors). Small penetrations contribute both solid conduction and radiation heat transfer paths through the blanket. The conduction is down the stem of the structural element itself while the radiation is through the hole formed during installation of the pin or fastener. Analytical models were developed in conjunction with MLI perforation theory and Fouriers Law. Results of the analytical models are compared to experimental testing performed on a 10 layer MLI blanket with approximately 50 small plastic pins penetrating the test specimen. The pins were installed at 76-mm spacing inches in both directions to minimize the compounding of thermal effects due to localized compression or lateral heat transfer. The testing was performed using a liquid nitrogen boil-off calorimeter (Cryostat-100) with the standard boundary temperatures of 293 K and 78 K. Results show that the added radiation through the holes is much more significant than the conduction down the fastener. The results are shown to be in agreement with radiation theory for perforated films.

  6. Methodology for accident analyses of fusion breeder blankets

    Energy Technology Data Exchange (ETDEWEB)

    Dobromir Panayotov; Andrew Grief; Brad J. Merrill; Julian T. Murgatroyd; Paul Humrickhouse; Yves Poitevin; Simon Owen; Markus Iseli

    2015-06-01

    'Fusion for Energy' (F4E) develops designs and implements the European Test Blanket Systems (TBS) in ITER - Helium-Cooled Lithium-Lead (HCLL) and Helium-Cooled Pebble-Bed (HCPB). Safety demonstration is an essential element for the integration of TBS in ITER and accident analyses are one of its critical segments. A systematic approach to the accident analyses had been acquired under the F4E contract on TBS safety analyses. F4E technical requirements and AMEC and INL efforts resulted in the development of a comprehensive methodology for fusion breeding blanket accident analyses. It addresses the specificity of the breeding blankets design, materials and phenomena and at the same time is consistent with the one already applied to ITER accident analyses. Methodology consists of several phases. At first the reference scenarios are selected on the base of FMEA studies. In the second place elaboration of the accident analyses specifications we use phenomena identification and ranking tables to identify the requirements to be met by the code(s) and TBS models. Thus the limitations of the codes are identified and possible solutions to be built into the models are proposed. These include among others the loose coupling of different codes or code versions in order to simulate multi-fluid flows and phenomena. The code selection and issue of the accident analyses specifications conclude this second step. Furthermore the breeding blanket and ancillary systems models are built on. In this work challenges met and solutions used in the development of both MELCOR and RELAP5 codes models of HCLL and HCPB TBSs will be shared. To continue the developed models are qualified by comparison with finite elements analyses, by code to code comparison and sensitivity studies. Finally, the qualified models are used for the execution of the accident analyses of specific scenario. When possible the methodology phases will be illustrated in the paper by limited number of tables and

  7. Review: BNL graphite blanket design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J.A.; Powell, J.R.

    1976-03-01

    A review of the Brookhaven National Laboratory (BNL) minimum activity graphite blanket designs is made. Three designs are identified and discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a thick graphite screen (typically 30 cm or greater, depending on type as well as application-experimental power reactor or commercial reactor). Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy. This energy is then either radiated to a secondary blanket with coolant tubes, as in types A and B, or is removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the structural material of the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude by the graphite screen, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma, whatever the degree of radiation damage.

  8. Fidget Blankets: A Sensory Stimulation Outreach Program.

    Science.gov (United States)

    Kroustos, Kelly Reilly; Trautwein, Heidi; Kerns, Rachel; Sobota, Kristen Finley

    2016-01-01

    Behavioral and Psychological Symptoms of Dementia (BPSD) include behaviors such as aberrant motor behavior, agitation, anxiety, apathy, delusions, depression, disinhibition, elation, hallucinations, irritability, and sleep or appetite changes. A student-led project to provide sensory stimulation in the form of "fidget blankets" developed into a community outreach program. The goal was to decrease the use of antipsychotics used for BPSD.

  9. Tritium management and safety issues in ITER and DEMO breeding blankets

    Energy Technology Data Exchange (ETDEWEB)

    Bornschein, B., E-mail: beate.bornschein@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann v. Helmholtz Platz 1, 76344 Eggenstein Leopoldshafen (Germany); Day, C.; Demange, D. [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Tritium Laboratory Karlsruhe, Hermann v. Helmholtz Platz 1, 76344 Eggenstein Leopoldshafen (Germany); Pinna, T. [ENEA UTFUS-TEC, Via E. Fermi 45, 00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: • Different aspects of tritium management in breeder blankets were reviewed. • Safe and reliable tritium management faces unique technological challenges. • Tritium recovery efficiency in tritium extraction system (TES) is a vital issue. • Tritium tracking accuracy needs to be demonstrated for the whole fuel cycle. • Improved or new processes for TES and CPS are needed in case of DEMO. -- Abstract: Safe, reliable and efficient tritium management in the breeder blanket faces unique technological challenges. Beside the tritium recovery efficiency in the tritium extraction and coolant purification systems, the tritium tracking accuracy between the inner and outer fuel cycle shall also be demonstrated. Furthermore, it is self-evident that safe handling and confinement of tritium need to be stringently assured to evolve fusion as a reliable technique. The present paper gives an overview of tritium management in breeder blankets. After a short introduction into the tritium fuel cycle and blanket basics, open tritium issues are discussed, thereby focusing on tritium extraction from blanket, coolant detritiation and tritium analytics and accountancy, necessary for accurate and reliable processing as well as for book-keeping.

  10. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  11. Multi-Sensor Data Fusion Technologies for Blanket Jamming Localization

    Institute of Scientific and Technical Information of China (English)

    WANG Ju; WU Si-liang; ZENG Tao

    2005-01-01

    The localization of the blanket jamming is studied and a new method of solving the localization ambiguity is proposed. Radars only can acquire angle information without range information when encountering the blanket jamming. Netted radars could get position information of the blanket jamming by make use of radars' relative position and the angle information, when there is one blanket jamming. In the presence of error, the localization method and the accuracy analysis of one blanket jamming are given. However, if there are more than one blanket jamming, and the two blanket jamming and two radars are coplanar, the localization of jamming could be error due to localization ambiguity. To solve this confusion, the Kalman filter model is established for all intersections, and through the initiation and association algorithm of multi-target, the false intersection can be eliminated. Simulations show that the presented method is valid.

  12. 32 CFR Appendix C to Part 327 - DeCA Blanket Routine Uses

    Science.gov (United States)

    2010-07-01

    .... 76-07. (h) Routine Use—Disclosure to the Office of Personnel Management. A record from a system of... Personnel Management (OPM) concerning information on pay and leave, benefits, retirement deduction, and any... Blanket Routine Uses (a) Routine Use—Law Enforcement. If a system of records maintained by a DoD...

  13. Blanket selection for the Starlite project

    Energy Technology Data Exchange (ETDEWEB)

    Sze, D.K. [Argonne National Lab., IL (United States); Tillack, M.S. [Univ. of California, La Jolla, CA (United States); Sviatoslavsky, I.N.; El-Guebaly, L.A. [Univ. of Wisconsin, Madison, WI (United States); Waganer, L.M. [McDonnell Douglas Aerospace, St. Louis, MO (United States)

    1996-12-31

    The Starlite team was asked to develop a power plant study for the US Demo. To define the mission of the Demo, a Utility Advisory Committee (UAC) was organized to establish the mission and requirement for the Demo power plant. Based on this input, the Starlite team outlined a set of top level requirements based on the advice provided by the UAC. With the mission and requirements thus established, the Starlite engineering team investigated various combinations of the structural material, breeding material and coolant for the blanket and shield. The reference design selected was with V-alloy as the structural material and Li as the coolant and breeder. The ability of this blanket to satisfy the top level requirements was also assessed. 11 refs., 1 fig., 1 tab.

  14. Stellar model atmospheres with magnetic line blanketing

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2004-01-01

    Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...

  15. Chicxulub Ejecta Blanket Deposits From Belize

    Science.gov (United States)

    Ocampo, A.

    1995-01-01

    The Chicxulub impact into a thick sequence of carbonates and sulfates released over a trillion tons of volatiles. The importance of the explosive release of such a large mass of volatiles has been greatly underestimated in studies of ejecta depositional processes. Proximal Chicxulub ejecta blanket deposits recent discovered on Albion Island in Belize provide a key to understanding the role of volatile-rich target material during large impact events.

  16. Analysis of Consistency of Printing Blankets using Correlation Technique

    Directory of Open Access Journals (Sweden)

    Lalitha Jayaraman

    2010-01-01

    Full Text Available This paper presents the application of an analytical tool to quantify material consistency of offset printing blankets. Printing blankets are essentially viscoelastic rubber composites of several laminas. High levels of material consistency are expected from rubber blankets for quality print and for quick recovery from smash encountered during the printing process. The present study aims at determining objectively the consistency of printing blankets at three specific torque levels of tension under two distinct stages; 1. under normal printing conditions and 2. on recovery after smash. The experiment devised exhibits a variation in tone reproduction properties of each blanket signifying the levels of inconsistency also in thicknessdirection. Correlation technique was employed on ink density variations obtained from the blanket on paper. Both blankets exhibited good consistency over three torque levels under normal printing conditions. However on smash the recovery of blanket and its consistency was a function of manufacturing and torque levels. This study attempts to provide a new metrics for failure analysis of offset printing blankets. It also underscores the need for optimizing the torque for blankets from different manufacturers.

  17. Analysis of Consistency of Printing Blankets using Correlation Technique

    Directory of Open Access Journals (Sweden)

    Balaraman Kumar

    2010-06-01

    Full Text Available This paper presents the application of an analytical tool to quantify material consistency of offset printing blankets. Printing blankets are essentially viscoelastic rubber composites of several laminas. High levels of material consistency are expected from rubber blankets for quality print and for quick recovery from smash encountered during the printing process. The present study aims at determining objectively the consistency of printing blankets at three specific torque levels of tension under two distinct stages; 1. under normal printing conditions and 2. on recovery after smash. The experiment devised exhibits a variation in tone reproduction properties of each blanket signifying the levels of inconsistency also in thickness direction. Correlation technique was employed on ink density variations obtained from the blanket on paper. Both blankets exhibited good consistency over three torque levels under normal printing conditions. However on smash the recovery of blanket and its consistency was a function of manufacturing and torque levels. This study attempts to provide a new metrics for failure analysis of offset printing blankets. It also underscores the need for optimising the torque for blankets from different manufacturers.

  18. Detection of Breeding Blankets Using Antineutrinos

    Science.gov (United States)

    Cogswell, Bernadette; Huber, Patrick

    2016-03-01

    The Plutonium Management and Disposition Agreement between the United States and Russia makes arrangements for the disposal of 34 metric tons of excess weapon-grade plutonium. Under this agreement Russia plans to dispose of its excess stocks by processing the plutonium into fuel for fast breeder reactors. To meet the disposition requirements this fuel would be burned while the fast reactors are run as burners, i.e., without a natural uranium blanket that can be used to breed plutonium surrounding the core. This talk discusses the potential application of antineutrino monitoring to the verification of the presence or absence of a breeding blanket. It is found that a 36 kg antineutrino detector, exploiting coherent elastic neutrino-nucleus scattering and made of silicon, could determine the presence of a breeding blanket at a liquid sodium cooled fast reactor at the 95% confidence level within 90 days. Such a detector would be a novel non-intrusive verification tool and could present a first application of coherent elastic neutrino-nucleus scattering to a real-world challenge.

  19. Effects of shock 2,4-dichlorophenol (DCP) and cod loading rates on the removal of 2,4-DCP in a sequential upflow anaerobic sludge blanket/aerobic completely stirred tank reactor system.

    Science.gov (United States)

    Uluköy, A; Sponza, D T

    2008-04-01

    The treatability of 2,4-dwichlorophenol (DCP) was studied in an anaerobic/aerobic sequential reactor system. Laboratory scale upflow anaerobic sludge blanket (UASB) reactor/completely stirred tank reactors (CSTR) were operated at constant 2,4-DCP concentrations, and increasing chemical oxygen demand (COD) loading rates. The effect of shock organic loading rates on 2,4-DCP, COD removal efficiencies and methane gas production were investigated in the UASB reactor. When the organic loading rate was increased from 3.6 g l(-1) d(-1) to 30.16 g l(-1) d(-1), the COD and 2,4-DCP removal efficiencies decreased from 80 to 25% and from 99 to 60% in the UASB reactor. The optimum organic loading rates for maximum 2,4-DCP (E=99-100%) and COD (E=65-85%) removal efficiencies were 25-30 and 8-20 g-COD l(-1) d(-1), respectively. The percentage of methane of the total gas varied between 70 and 80 while the organic loadings were 18 g-COD l(-1) d(-1) and 20.36 g-COD l(-1) d(-1), respectively. During 80 days of operation, 2,4-DCP concentration was found to be below 0.5 and 0.1 mg l(-1) in aerobic reactor effluent resulting in 78 and 100% removal efficiencies. When the hydraulic retention time (HRT) was 18.72 h, the 2,4-DCP removal efficiency was 97% in the aerobic reactor. The optimum COD removal efficiency was 78.83% in anaerobic reactor effluent at an influent COD loading rate of 7.238 g-COD l(-1) d(-1) while 83.6% maximum COD removal efficiency was obtained in the aerobic reactor, resulting in a total COD removal efficiency of 96.83% in the whole system. The 2,4-DCP removal efficiency was 99% in the sequential anaerobic (UASB)/aerobic (CSTR) reactor system at COD loading rates varying between 11.46 and 30.16 g-COD l(-1) d(-1).

  20. Estimative of core damage frequency in IPEN IEA-R1 research reactor due to the initiating events of loss of flow caused by channel blockage and loss of coolant caused by a large rupture in the pipe of the primary circuit - PSA level 1

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Daniel Massami [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Sabundjian, Gaiane, E-mail: gdjian@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP) Sao Paulo, SP (Brazil)

    2011-07-01

    This work applies the methodology of Probabilistic Safety Assessment Level 1 to the research reactor IEA-R1 IPEN-CNEN/SP. Two categories of identified initiating events of accidents in the reactor are studied: loss of flow and loss of primary coolant. Among the initiating events, blockage of flow channel and loss of cooling fluid caused by large pipe rupture in the primary circuit are chosen for a detailed analysis. The event tree technique is used to analyze the evolution of the accident, including the actuation or the fail of actuation of the safety systems and the reactor damages. Using the fault tree the reliability of the following reactor safety systems is evaluated: reactor shutdown system, isolation of the reactor pool, Emergency Core Cooling System (ECCS) and the electric system. Estimative for the frequency of damage to the reactor core and the probability of failure of the analyzed systems are calculated. The estimated values for the frequencies of core damage are within the expected margins and are of the same order of magnitude as those found for similar reactors. The reliability of the reactor shutdown system, isolation of the reactor pool and ECCS are satisfactory for the conditions in which these systems are required. However, for the electric system it is suggested an upgrade to increase its reliability. (author)

  1. Numerical modelling of dynamic sludge blanket behaviour in secondary clarifiers.

    Science.gov (United States)

    Armbruster, M; Krebs, P; Rodi, W

    2001-01-01

    New developments in numerical modelling of turbulent and density-affected flow in secondary clarifiers are reported. The sludge blanket is included in the computation domain which allows us to account for sedimentation and resuspension of sludge as well as the growth and diminution of the sludge blanket and at the same time respecting mass conservation. It is shown how strongly the prediction of the sludge-blanket height depends on the approaches to describe the settling behaviour of the sludge and the rheological properties within the sludge blanket. Further, an example of dynamic simulation is presented and discussed. This demonstrates how the sludge blanket behaves during load variation and that instabilities may occur at the interface of sludge blanket and supernatant, potentially resulting in sludge wash-off during transient phases, which is not only during load increase but also during load decrease.

  2. Design of the helium cooled lithium lead breeding blanket in CEA: from TBM to DEMO

    Science.gov (United States)

    Aiello, G.; Aubert, J.; Forest, L.; Jaboulay, J.-C.; Li Puma, A.; Boccaccini, L. V.

    2017-04-01

    The helium cooled lithium lead (HCLL) blanket concept was originally developed in CEA at the beginning of 2000: it is one of the two European blanket concepts to be tested in ITER in the form of a test blanket module (TBM) and one of the four blanket concepts currently being considered for the DEMOnstration reactor that will follow ITER. The TBM is a highly optimized component for the ITER environment that will provide crucial information for the development of the DEMO blanket, but its design needs to be adapted to the DEMO reactor. With respect to the TBM design, reduction of the steel content in the breeding zone (BZ) is sought in order to maximize tritium breeding reactions. Different options are being studied, with the potential of reaching tritium breeding ratio (TBR) values up to 1.21. At the same time, the design of the back supporting structure (BSS), which is a DEMO specific component that has to support the blanket modules inside the vacuum vessel (VV), is ongoing with the aim of maximizing the shielding power and minimizing pumping power. This implies a re-engineering of the modules’ attachment system. Design changes however, will have an impact on the manufacturing and assembly sequences that are being developed for the HCLL-TBM. Due to the differences in joint configurations, thicknesses to be welded, heat dissipation and the various technical constraints related to the accessibility of the welding tools and implementation of non-destructive examination (NDE), the manufacturing procedure should be adapted and optimized for DEMO design. Laser welding instead of TIG could be an option to reduce distortions. The time-of-flight diffraction (TOFD) technique is being investigated for NDE. Finally, essential information expected from the HCLL-TBM program that will be needed to finalize the DEMO design is discussed.

  3. Multiple Module Simulation of Water Cooled Breeding Blankets in K-DEMO Using Thermal-Hydraulic Analysis Code MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A preliminary concept for the Korean fusion demonstration reactor (K-DEMO) has been studied by the National Fusion Research Institute (NFRI) based on the National Fusion Roadmap of Korea. The feasibility studies have been performed in order to establish the conceptual design guidelines of the breeding blanket. As a part of the NFRI research, Seoul National University (SNU) is conducting thermal design, evaluation and validation of the water-cooled breeding blanket for the K-DEMO reactor. The purpose of this study is to extend the capability of MARS-KS to the overall blanket system analysis which includes 736 blanket modules in total. The strategy for the multi-module blanket system analysis using MARS-KS is introduced and the analysis result of the 46 blanket modules of single sector was summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for thermal analysis of the conceptual design of the K-DEMO breeding blanket. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering the pressure drop that occurs in each module. For a feasibility test of the proposed methodology, 46 blankets in a sector, which are connected with each other through the common headers for the sector inlet and outlet, were simulated. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation. Because of parallelization using the MPI system, the computational time could be reduced significantly. In future, this methodology will be extended to an efficient simulation of multiple sectors, and further validation for transient simulation will be carried out for more practical applications.

  4. High power density self-cooled lithium-vanadium blanket.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  5. High power density self-cooled lithium-vanadium blanket.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  6. ITER solid breeder blanket materials database

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States); Dienst, W. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Material- und Festkoerperforschung; Flament, T. [CEA Centre d`Etudes de Fontenay-aux-Roses (France). Commissariat A L`Energie Atomique; Lorenzetto, P. [NET Team, Garching (Germany); Noda, K. [Japan Atomic Energy Research Inst., Takai, Ibaraki, (Japan); Roux, N. [CEA Centre d`Etudes et de Recherches Les Materiaux (France). Commissariat a L`Energie Atomique

    1993-11-01

    The databases for solid breeder ceramics (Li{sub 2},O, Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3} and LiAlO{sub 2}) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized.

  7. Fusion Blanket Coolant Section Criteria, Methodology, and Results

    Energy Technology Data Exchange (ETDEWEB)

    DeMuth, J. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Meier, W. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frantoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reyes, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-02

    The focus of this LDRD was to explore potential Li alloys that would meet the tritium breeding and blanket cooling requirements but with reduced chemical reactivity, while maintaining the other attractive features of pure Li breeder/coolant. In other fusion approaches (magnetic fusion energy or MFE), 17Li- 83Pb alloy is used leveraging Pb’s ability to maintain high TBR while lowering the levels of lithium in the system. Unfortunately this alloy has a number of potential draw-backs. Due to the high Pb content, this alloy suffers from very high average density, low tritium solubility, low system energy, and produces undesirable activation products in particular polonium. The criteria considered in the selection of a tritium breeding alloy are described in the following section.

  8. System Study: Residual Heat Removal 1998–2013

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-02-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RHR results.

  9. 75 FR 51482 - Woven Electric Blankets From China

    Science.gov (United States)

    2010-08-20

    ... publishing the notice in the Federal Register of March 11, 2010 (75 FR 11557). The hearing was held in... COMMISSION Woven Electric Blankets From China Determination On the basis of the record \\1\\ developed in the... United States is materially injured by reason of imports from China of woven electric blankets,...

  10. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-12-31

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  11. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  12. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  13. Definition of loss-of-coolant accident radiation source: summary and conclusions. [BWR; PWR

    Energy Technology Data Exchange (ETDEWEB)

    Bonzon, L.L.; Lurie, N.A.; Houston, D.H.; Naber, J.A.

    1978-05-01

    The radiation energy release rates and spectra corresponding to those sources specified in USNRC Regulatory Guide 1.89 for the radiation qualification of Class 1E equipment were calculated. The effects of several parameters (some not specific in the Guide), such as reactor fuel composition, operating duration and power level, and treatment of progeny, are evaluated. The results are presented as time-dependent beta and gamma-ray energy release rates and spectra which are fundamental quantities that are not specific to a plant design but are generally applicable to any nuclear power station.

  14. Simulation of sludge blanket height in clarifiers

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhen; WU Zhi-chao; WANG Zhi-wei; GU Guo-wei

    2009-01-01

    Sludge blanket height (SBH) is an important parameter in the clarifier design,operation and control.Based on an overview and classification of SBH algorithms,a modifed SBH algorithm is proposed by incorporating a threshold concentration limit into a relative concentration sharp change algorithm to eliminate the disturbance of compression interfaces on the correct simulation of SBH.Pilot-scale test data are adopted to compare reliability of three SBH algorithms reported in literature and the modified SBH algorithm developed in this paper.Calculated results demonstrate that the three SBH algorithms give results with large deviation (>50%) from measured SBH,especially under low solid flux conditions.The modified algorithm is computationally efficient and reliable in matching the measured data.It is incorporated into a onedimensional clarifier model for stable simulation of pilot-scale experimental clarifier data and into dynamic simulation of a full-scale wastewater treatment plant (WWTP) clarifier data.

  15. Detailed CATHENA Model of the Wolsong 1 Pressure and Inventory Control System

    Energy Technology Data Exchange (ETDEWEB)

    Cha, K.H. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    The Detailed CATHENA model of Wolsong 1 is development to be able to simulate a theramal hydraulic behavior of heat transport system(HTS) Pressure and Inventory Control System(PNIC) at any power operation condition and during transient events such as mall LOCA(small loss of coolant inventory and small breaks in the primary system piping) and non-LOCA(loss of reactivity regulation, loss of flow, loss if Class IV power, loss of PNIC). (author). 12 refs., 7 figs., 6 tabs.

  16. Heat transfer problems in gas-cooled solid blankets

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    In all fusion reactors using the deuterium-tritium fuel cycle, a large fraction approximately 80 percent of the fusion energy will be released as approximately 14 MeV neutrons which must be slowed down in a relatively thick blanket surrounding the plasma, thereby, converting their kinetic energy to high temperature heat which can be continuously removed by a coolant stream and converted in part to electricity in a conventional power turbine. Because of the primary goal of achieving minimum radioactivity, to date Brookhaven blanket concepts have been restricted to the use of some form of solid lithium, with inert gas-cooling and in some design cases, water-cooling of the shell structure. Aluminum and graphite have been identified as very promising structural materials for fusion blankets, and conceptual designs based on these materials have been made. Depending on the thermal loading on the ''first'' wall which surrounds the plasma as well as blanket design, heat transfer problems may be noticeably different in gas-cooled solid blankets. Approaches to solution of heat removal problems as well as explanation of: (a) the after-heat problems in blankets; (b) tritium breeding in solids; and (c) materials selection for radiation shields relative to the minimum activity blanket efforts at Brookhaven are discussed.

  17. Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified.

  18. Tritium transport modeling for breeding blanket: State of the art and strategy for future development in the EU fusion program

    Energy Technology Data Exchange (ETDEWEB)

    Ricapito, Italo, E-mail: italo.ricapito@f4e.europa.eu [Fusion for Energy, Barcelona (Spain); Calderoni, P.; Poitevin, Yves [Fusion for Energy, Barcelona (Spain); Sedano, Luis [CIEMAT, Madrid (Spain)

    2012-08-15

    The design of the Test Blanket Modules for ITER and the breeding blanket for DEMO requires robust and accurate modeling tools. Transport phenomena through the blanket tritium cycle are complex and involve a large number of physical properties and parameters, many of which have not been determined yet with a level of accuracy adequate for design optimization. Similarly, the use of simplified models with experimentally determined lumped coefficients allows satisfactory predictions only in very limited range of operative conditions, strongly reducing their potential to be relevant to the DEMO design. Within the European Union fusion program a road map to develop such modeling tools has been defined with the purpose of supporting the design of the ITER Tritium Blanket System and to exploit the TBM experimental testing for extrapolation to DEMO. The roadmap includes the development of the simulation tools as well as the supporting validation and verification experiments that must be carried out in parallel. This paper gives an overview of the state of the art of tritium modeling tools for blanket design, proposes a structure of the tritium modeling tools in order to facilitate their development and identifies a realistic work plan to achieve their final delivery.

  19. Preconceptual engineering design for the APT {sup 3}He target/blanket concept

    Energy Technology Data Exchange (ETDEWEB)

    Mensink, D.L. [Babcock & Wilcox Co., Naval Nuclear Fuel Division, P.O. Box 785, Mt. Athos Rd., Lynchburg, Virginia 24505-0785 (United States); Rose, S.C. Jr. [Reactor Design and Analysis, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    1995-01-20

    A preconceptual engineering design has been developed for the {sup 3}He Target/Blanket (T/B) System for the Accelerator Production of Tritium Project. This concept uses an array of pressure tubes containing tungsten rods for the neutron spallation source and {sup 3}He gas contained in a metal tank and blanket tubes as the tritium production material. The engineering design is based on a physics model optimized for efficient tritium production. Principle engineering consideration were: provisions for cooling all materials including the {sup 3}He gas; containment of the gas and radionuclides; remote handling; material compatibility; minimization of {sup 3}He, D{sub 2}O, and activated waste; modularity; and manufacturability. The design provides a basis for estimating the cost to implement the system.

  20. Safety analysis of the US dual coolant liquid lead lithium ITER test blanket module

    Science.gov (United States)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2007-07-01

    The US is proposing a prototype of a dual coolant liquid lead-lithium DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER test blanket module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER international team (IT) to address specific reactor safety concerns, such as vaccum vessel (VV) pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  1. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed Phase II research effort is to develop heterogeneous (HG) blankets for improved sound reduction in aircraft structures. Phase I...

  2. Lightweight IMM Multi-Junction Photovoltaic Flexible Blanket Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — DSS's recently completed successful NASA SBIR Phase 1 program has established a TRL 3/4 classification for an innovative IMM PV Integrated Modular Blanket Assembly...

  3. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project advanced acoustic blankets for improved low frequency interior noise control in aircraft will be developed and demonstrated. The improved performance...

  4. 18 CFR 284.402 - Blanket marketing certificates.

    Science.gov (United States)

    2010-04-01

    ... effective for an affiliated marketer with respect to transactions involving affiliated pipelines when an affiliated pipeline receives its blanket certificate pursuant to § 284.284. (2) Should a marketer...

  5. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    Optimization of up-flow anaerobic sludge blanket reactor for treatment of composite fermentation and distillation wastewater. ... treatment, biogas, granulated anaerobic sludge, industrial wastewater. African Journal of Biotechnology, Vol.

  6. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor

    NARCIS (Netherlands)

    Tawfik, A.; El-Gohary, F.; Temmink, B.G.

    2010-01-01

    The performance of a laboratory-scale sewage treatment system composed of an up-flow anaerobic sludge blanket (UASB) reactor and a moving bed biofilm reactor (MBBR) at a temperature of (22-35 A degrees C) was evaluated. The entire treatment system was operated at different hydraulic retention times

  7. Parametric fits to 1-D neutron transport calculations for lithium-vanadium fusion power plant blankets in cylindrical and spherical geometries

    Energy Technology Data Exchange (ETDEWEB)

    Petzoldt, R.W.; Perkins, L.J.

    1995-06-16

    The authors performed 1-D coupled, neutron-gamma transport calculations for lithium-vanadium blankets and lithium-sodium cauldron pot blankets in cylindrical and spherical geometries. Parametric fits to the data are supplied for subsequent use in systems code models. Scaling relationships are given for various neutronics parameters of interest, including: tritium breeding ratio, neutron energy multiplication, magnet dose rates, magnet heating rates, and integrated magnet fluence.

  8. Blanket guarantee, deposit insurance, and risk-shifting incentive: evidence from Indonesia

    OpenAIRE

    Kariastanto, Bayu

    2011-01-01

    Indonesia established a deposit insurance system to maintain stability in its banking sector after the abolishment of blanket guarantees in 2005. Since the insurance premiums are fixed and flat, deposit insurance may create an incentive for banks to take more risks and transfer the risks to the deposit insurer. Using an option pricing based model of deposit insurance, we compute the fair deposit insurance premiums for all banks listed on the Indonesian stock exchange. We find evidence that ba...

  9. Axial blanket for 16NGF Angra 1 fuel type

    Energy Technology Data Exchange (ETDEWEB)

    Sadde, Luciano Martins; Faria, Eduardo Fernandes [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil)]. E-mails: sadde@inb.gov.br; faria@inb.gov.br; Sang-Keun You [Korea Nuclear Fuel Co. Ltd. (KNFC), Taejon (Korea, Republic of)]. E-mail: skyou@knfc.co.kr

    2007-07-01

    Angra-1, Kori-2 and Krsko are nuclear power plants with the same design. However, the fuel assemblies have some differences in design due to the countries strategies and the differences in the fabrication process. The 16NGF (16x16 Next Generation Fuel) was developed by INB, KNFC and Westinghouse in order to be used in these three nuclear power plants and the 'Axial Blanket' is one of the new features for the 16NGF design. The main purpose of the Axial Blanket Optimization study is to determine which axial blanket enrichment and length would provide the better fuel cycle cost benefit. All of the calculations were performed using Gadolinium as Burnable Absorber and solid pellets type for Axial Blanket. The results indicate 1.8 w/o U235 enrichment and 8 inches length as the best option of Axial Blanket from the fuel cycle cost benefit standpoint. The economy is about 1.8%. The difference in the reload cost in the range between 1.5 and 2.6 w/o U235 enrichment and for the 6 and 8 inches length is not so significant. Due that, from the Fq limit standpoint and also for longer cycle length requirements, a higher axial blanket enrichment (2.6 w/o) and shorter length (6 inches) is recommended. (author)

  10. Risk Analysis of an interfacing system LOCA in a generic Westinghouse PWR

    OpenAIRE

    Favre, Jean-Baptiste

    2014-01-01

    This project has been developed during my internship in the field of Probabilistic Safety Assessment (PSA) in the offices of Westinghouse. These are in the enclosure of Vandellòs’ Nuclear Plant in Hospitalet de l'Infant. The goal of my internship was the modelling and computation of the frequency that an Interfacing System Loss of Coolant Accident (ISLOCA) occurs in the nuclear power plants of Vandellòs and Ascó. In order to achieve this goal, I applied a method to calculate...

  11. LOCA steam condensation loads in BWR Mark II pressure suppression containment system

    Energy Technology Data Exchange (ETDEWEB)

    Kukita, Y.; Namatame, K.; Takeshita, I.; Shiba, M.

    1987-06-01

    Hydrodynamic loads induced in the BWR Mark II pressure suppression containment system during a loss-of-coolant accident (LOCA) were investigated using a large scale test facility. The maximum-bounding loading conditions on the pressure suppression pool-boundary structures were defined by conducting experiments for a wide range of parameters. The maximum-bounding loads occurred when steam, with air concentration less than 1% in weight, was injected at moderate rates (approx. = 30 kg/m/sup 2/.s) into a low-temperature (below 310 K) pool. Such conditions are most likely to be encountered during LOCAs with intermediate break sizes.

  12. LOCA air-injection loads in BWR Mark II pressure suppression containment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kukita, Y.; Shiba, M. (Japan Atomic Energy Research Inst., Tokai, Ibaraki); Namatame, K. (Institute of Nuclear Safety, Tokyo (Japan))

    1984-02-01

    Large-scale blowdown tests were conducted to investigate the thermal-hydrodynamic response of a boiling-water reactor (BWR) Mark II pressure suppression containment system to a postulated loss-of-coolant accident. This paper presents the test results on the early blowdown transients, where air in the drywell is injected into the pressure suppression pool and induces various hydrodynamic loads onto the containment pressure boundary and internal structures. The test data are compared to predictions by analytical models used for the licensing evaluation of the hydrodynamic loads to assess these models.

  13. Effect of non-heterogeneous wetwell boundaries on pressure suppression system response. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    McCauley, E.W.; Holman, G.S.; Namatame, K.; Kukita, Y.; Shiba, M.

    1980-08-29

    The Full-Scale Mark II CRT (Containment Response Test) Program is in progress at the Tokai-Mura Establishment of the Japan Atomic Energy Research Institute (JAERI). The primary objective of the on-going CRT Program is to provide a data base for evaluation of the pressure suppression pool (wetwell) hydrodynamic loads associated with a postulated loss-of-coolant accident (LOCA) in the BWR Mark II containment system. The test facility is 1/18 of full scale in volume and has a wetwell which is a full-scale geometric replica of one 20/sup 0/-sector of a reference 1100MWe Mark II.

  14. Technical issues of reduced activation ferritic/martensitic steels for fabrication of ITER test blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, H. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)], E-mail: tanigawa.hiroyasu@jaea.go.jp; Hirose, T.; Shiba, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kasada, R. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Wakai, E. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Serizawa, H.; Kawahito, Y. [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Jitsukawa, S. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kohno, Y. [Department of Materials Science and Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan); Kohyama, A. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Katayama, S. [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mori, H.; Nishimoto, K. [Division of Materials and Manufacturing Science, Osaka University, Ibaraki, Osaka 565-0871 (Japan); Klueh, R.L.; Sokolov, M.A.; Stoller, R.E.; Zinkle, S.J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6132 (United States)

    2008-12-15

    Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems. The RAFM F82H was developed in Japan with emphasis on high-temperature properties and weldability. Extensive irradiation studies have conducted on F82H, and it has the most extensive available database of irradiated and unirradiated properties of all RAFMs. The objective of this paper is to review the R and D status of F82H and to identify the key technical issues for the fabrication of an ITER test blanket module (TBM) suggested from the recent research achievements in Japan. This work clarified that the primary issues with F82H involve welding techniques and the mechanical properties of weld joints. This is the result of the distinctive nature of the joint caused by the phase transformation that occurs in the weld joint during cooling, and its impact on the design of a TBM will be discussed.

  15. Analysis of tritium behaviour and recovery from a water-cooled Pb17Li blanket

    Energy Technology Data Exchange (ETDEWEB)

    Malara, C. [Institute Regional des Materiaux Avances, Ispra (Italy); Casini, G. [Systems Engineering and Informatics Institute, JRC Ispra, Ispra (Vatican City State, Holy See) (Italy); Viola, A. [Department of Chemical Engineering, University of Cagliari, Cagliari (Italy)

    1995-03-01

    The question of the tritium recovery in water-cooled Pb17Li blankets has been under investigation for several years at JRC Ispra. The method which has been more extensively analysed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging or vacuum degassing in a suited process apparatus. A computerized model of the tritium behaviour in the blanket units and in the extraction system was developed. It includes four submodels: (1) tritium permeation process from the breeder to the cooling water as a function of the local operative conditions (tritium concentration in Pb17Li, breeder temperature and flow rate); (2) tritium mass balance in each breeding unit; (3) tritium desorption from the breeder material to the gas phase of the extraction system; (4) tritium extraction efficiency as a function of the design parameters of the recovery apparatus. In the present paper, on the basis of this model, a parametric study of the tritium permeation rate in the cooling water and of the tritium inventory in the blanket is carried out. Results are reported and discussed in terms of dimensionless groups which describe the relative effects of the overall resistance on tritium transfer to the cooling water (with and without permeation barriers), circulating Pb17Li flow rate and extraction efficiency of the tritium recovery unit. The parametric study is extended to the recovery unit in the case of tritium extraction by helium purge or vacuum degassing in a droplet spray unit. (orig.).

  16. 76 FR 57731 - Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section...

    Science.gov (United States)

    2011-09-16

    ... Request for Blanket Section 204 Authorization; Rockland Wind Farm, LLC This is a supplemental notice in the above-referenced proceeding of Rockland Wind Farm, LLC's application for market-based rate... filings in the above-referenced proceeding are accessible in the Commission's eLibrary system by clicking...

  17. Experimental investigation of iodine removal and containment depressurization in containment spray system test facility of 700 MWe Indian pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manish [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Kandar, T.K.; Vhora, S.F.; Mohan, Nalini [Directorate of Technology Development, Nuclear Power Corporation of India Limited, Mumbai (India); Iyer, K.N. [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India)

    2017-05-15

    Highlights: • Depressurization rate in a scaled down vessel filled with air and steam is studied. • Iodine removal rate in a scaled down vessel filled with steam/air is investigated. • Effect of SMD and vessel pressure on depressurization rate is studied. • Depressurization rate decreases with the increase in the droplet size (590 μm – 1 mm) • Decrease in pressure and iodine concentration with time follow exponential trend. - Abstract: As an additional safety measure in the new 700 MWe Indian pressurized heavy water reactors, the first of a kind system called containment Spray System is introduced. The system is designed to cater/mitigate the conditions after design basis accidents i.e., loss of coolant accident and main steam line break. As a contribution to the safety analysis of condition following loss-of-coolant accidents, experiments are carried out to establish the performance of the system. The loss of coolant is simulated by injecting saturated steam and iodine vapors into the containment vessel in which air is enclosed at atmospheric and room temperature, and then the steam-air mixture is cooled by sprays of water. The effect of water spray on the containment vessel pressure and the iodine scrubbing in a scaled down facility is investigated for the containment spray system of Indian pressurized heavy water reactors. The experiments are carried out in the scaled down vessel of the diameter of 2.0 m and height of 3.5 m respectively. Experiments are conducted with water at room temperature as the spray medium. Two different initial vessel pressure i.e. 0.7 bar and 1.0 bar are chosen for the studies as they are nearing the loss of coolant accident & main steam line break pressures in Indian pressurized heavy water reactors. These pressures are chosen based on the containment resultant pressures after a design basis accident. The transient temperature and pressure distribution of the steam in the vessel are measured during the depressurization

  18. Proceedings of the sixth international workshop on ceramic breeder blanket interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji [ed.

    1998-03-01

    This report is the Proceedings of `the Sixth International Workshop on Ceramic Breeder Blanket Interactions` which was held as a workshop on ceramic breeders under Annex II of IEA Implementing Agreement on a Programme of Research and Development on Fusion Materials, and Japan-US Workshop 97FT4-01. This workshop was held in Mito city, Japan on October 22-24, 1997. About forty experts from EU, Japan, USA, and Chile attended the workshop. The scope of the workshop included the following: (1) fabrication and characterization of ceramic breeders, (2) properties data for ceramic breeders, (3) tritium release characteristics, (4) modeling of tritium behavior, (5) irradiation effects on performance behavior, (6) blanket design and R and D requirements, (7) hydrogen behavior in materials, and (8) blanket system technology and structural materials. In the workshop, information exchange was performed for fabrication technology of ceramic breeder pebbles in EU and Japan, data of various properties of Li{sub 2}TiO{sub 3}, tritium release behavior of Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} including tritium diffusion, modeling of tritium release from Li{sub 2}ZrO{sub 3} in ITER condition, helium release behavior from Li{sub 2}O, results of tritium release irradiation tests of Li{sub 4}SiO{sub 4} pebbles in EXOTIC-7, R and D issues for ceramic breeders for ITER and DEMO blankets, etc. The 23 of the papers are indexed individually. (J.P.N.)

  19. Effect of thick blanket modules on neoclassical tearing mode locking in ITER

    Science.gov (United States)

    La Haye, R. J.; Paz-Soldan, C.; Liu, Y. Q.

    2017-01-01

    The rotation of m/n  =  2/1 tearing modes can be slowed and stopped (i.e. locked) by eddy currents induced in resistive walls in conjunction with residual error fields that provide a final ‘notch’ point. This is a particular issue in ITER with large inertia and low applied torque (m and n are poloidal and toroidal mode numbers respectively). Previous estimates of tolerable 2/1 island widths in ITER found that the ITER electron cyclotron current drive (ECCD) system could catch and subdue such islands before they persisted long enough and grew large enough to lock. These estimates were based on a forecast of initial island rotation using the n  =  1 resistive penetration time of the inner vacuum vessel wall and benchmarked to DIII-D high-rotation plasmas, However, rotating tearing modes in ITER will also induce eddy currents in the blanket as the effective first wall that can shield the inner vessel. The closer fitting blanket wall has a much shorter time constant and should allow several times smaller islands to lock several times faster in ITER than previously considered; this challenges the ECCD stabilization. Recent DIII-D ITER baseline scenario (IBS) plasmas with low rotation through small applied torque allow better modeling and scaling to ITER with the blanket as the first resistive wall.

  20. Upflow Sludge Blanket Filtration (USBF: An Innovative Technology in Activated Sludge Process

    Directory of Open Access Journals (Sweden)

    R Saeedi

    2010-06-01

    Full Text Available Background: A new biological domestic wastewater treatment process, which has been presented these days in activated sludge modification, is Upflow Sludge Blanket Filtration (USBF. This process is aerobic and acts by using a sludge blanket in the separator of sedimentation tank. All biological flocs and suspended solids, which are presented in the aeration basin, pas through this blanket. The performance of a single stage USBF process for treatment of domestic wastewater was studied in laboratory scale.Methods: The pilot of USBF has been made from fiberglass and the main electromechanical equipments consisted of an air com­pressor, a mixing device and two pumps for sludge return and wastewater injection. The wastewater samples used for the experiments were prepared synthetically to have qualitative characteristics similar to a typical domestic wastewater (COD= 277 mg/l, BOD5= 250 mg/l and TSS= 1 mg/l.Results: On the average, the treatment system was capable to remove 82.2% of the BOD5 and 85.7% of COD in 6 h hydraulic re­tention time (HRT. At 2 h HRT BOD and COD removal efficiencies dramatically reduced to 50% and 46.5%, respectively.Conclusion: Even by increasing the concentrations of pollutants to as high as 50%, the removal rates of all pollutants were re­mained similar to the HRT of 6 h.

  1. Pre-conceptual design study on K-DEMO ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Sung, E-mail: jspark@nfri.re.kr [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kwon, Sungjin; Im, Kihak; Kim, Keeman [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Brown, Thomas; Neilson, George [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-11-15

    A pre-conceptual design study has been carried out for the Korean fusion demonstration reactor (K-DEMO) tokamak featured by high magnetic field (B{sub T0} = 7.4 T), R = 6.8 m, a = 2.1 m, and a steady-state operation. The design concepts of the K-DEMO blanket system considering the cooling in-vessel components with pressurized water and a solid pebble breeder are described herein. The structure of the K-DEMO blanket is toroidally subdivided into 16 inboard and 32 outboard sectors, in order to allow the vertical maintenance. Each blanket module is composed of plasma-facing first wall, layers of breeding parts, shielding and manifolds. A ceramic breeder using Li{sub 4}SiO{sub 4} pebbles with Be{sub 12}Ti as neuron multiplier is employed for study. MCNP neutronic simulations and thermo-hydraulic analyses are interactively performed in order to satisfy two key aspects: achieving a global Tritium Breeding Ratio (TBR) >1.05 and operating within the maximum allowable temperature ranges of materials.

  2. [Air conditioning units and warm air blankets in the operating room].

    Science.gov (United States)

    Kerwat, Klaus; Piechowiak, Karolin; Wulf, Hinnerk

    2013-01-01

    Nowadays almost all operating rooms are equipped with air conditioning (AC units). Their main purpose is climatization, like ventilation, moisturizing, cooling and also the warming of the room in large buildings. In operating rooms they have an additional function in the prevention of infections, especially the avoidance of postoperative wound infections. This is achieved by special filtration systems and by the creation of specific air currents. Since hypothermia is known to be an unambiguous factor for the development of postoperative wound infections, patients are often actively warmed intraoperatively using warm air blankets (forced-air warming units). In such cases it is frequently discussed whether such warm air blankets affect the performance of AC units by changing the air currents or whether, in contrast, have exactly the opposite effect. However, it has been demonstrated in numerous studies that warm air blankets do not have any relevant effect on the functioning of AC units. Also there are no indications that their use increases the rate of postoperative wound infections. By preventing the patient from experiencing hypothermia, the rate of postoperative wound infections can even be decreased thereby. © Georg Thieme Verlag Stuttgart · New York.

  3. Nuclear analysis of ITER Test Blanket Module Port Plug

    Energy Technology Data Exchange (ETDEWEB)

    Villari, Rosaria, E-mail: rosaria.villari@enea.it [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Kim, Byoung Yoon; Barabash, Vladimir; Giancarli, Luciano; Levesy, Bruno; Loughlin, Michael; Merola, Mario [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France); Moro, Fabio [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Pascal, Romain [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France); Petrizzi, Luigino [European Commission, DG Research & Innovation G5, CDMA 00/030, B-1049 Brussels (Belgium); Polunovsky, Eduard; Van Der Laan, Jaap G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France)

    2015-10-15

    Highlights: • 3D nuclear analysis of the ITER TBM Port Plug (PP). • Calculations of neutron fluxes, nuclear heating, damage and He-production in TBM PP components. • Shutdown dose rate assessment with Advanced D1S method considering different configurations. • Potential design improvements to reduce the shutdown dose rate in the port interspace. - Abstract: Nuclear analyses have been performed for the ITER Test Blanket Module Port Plug (TBM PP) using the MCNP-5 Monte Carlo Code. A detailed 3D model of the TBM Port Plug with dummy TBM has been integrated into the ITER MCNP model (B-lite v.3). Neutron fluxes, nuclear heating, helium production and neutron damage have been calculated in all the TBM PP components. Global shutdown dose rate calculations have also been performed with Advanced D1S method for different configurations of the TBM PP system. This paper presents the results of these analyses and discusses potential design improvements aiming to further reduce the shutdown dose rate in the port interspace.

  4. 75 FR 38459 - Certain Woven Electric Blankets From the People's Republic of China: Final Determination of Sales...

    Science.gov (United States)

    2010-07-02

    ... Antidumping Investigations involving Non-Market Economy Countries,'' which states: \\23\\ See Certain Woven... International Trade Administration Certain Woven Electric Blankets From the People's Republic of China: Final... Department'') has determined that certain woven electric blankets (``woven electric blankets'') from...

  5. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  6. MHD pressure drop in ferritic pipes of fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, J.; Buehler, Leo E-mail: leo.buehler@iket.fzk.de; Messadek, K.; Stieglitz, R

    2003-09-01

    Magnetohydrodynamic flows in pipes of ferromagnetic material is an important issue for liquid metal blanket concepts using MANET as wall material. Fusion relevant magnetic fields of 4-8 T cause high pressure drop in the blanket header where a massive structure of ferromagnetic material exists. It is briefly outlined that in the blanket the reduction of pressure drop due to magnetic shielding is limited to about 10%. Remarkable reduction of pressure drop is possible by means of electrical insulation that prevents currents from short-circuiting through the very thick walls of the headers. Direct contact of the insulating material with the liquid metal is excluded by using metallic liners. Results are reported on the fabrication of such a test section and corresponding pressure drop measurements confirm the effective contribution of the electrical decoupling.

  7. Development of fusion blanket technology for the DEMO reactor.

    Science.gov (United States)

    Colling, B R; Monk, S D

    2012-07-01

    The viability of various materials and blanket designs for use in nuclear fusion reactors can be tested using computer simulations and as parts of the test blanket modules within the International Thermonuclear Experimental Reactor (ITER) facility. The work presented here focuses on blanket model simulations using the Monte Carlo simulation package MCNPX (Computational Physics Division Los Alamos National Laboratory, 2010) and FISPACT (Forrest, 2007) to evaluate the tritium breeding capability of a number of solid and liquid breeding materials. The liquid/molten salt breeders are found to have the higher tritium breeding ratio (TBR) and are to be considered for further analysis of the self sufficiency timing. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Babineau, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Vaquer, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-13

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed.  The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations.  This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. 

  9. Direct LiT Electrolysis in a Metallic Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Luke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-30

    A process that simplifies the extraction of tritium from molten lithium-based breeding blankets was developed. The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fusion/fission reactors is critical in order to maintain low concentrations. This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Extraction is complicated due to required low tritium concentration limits and because of the high affinity of tritium for the blanket. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering hydrogen and deuterium through an electrolysis step at high temperatures.

  10. Effect of spray system on fission product distribution in containment during a severe accident in a two-loop pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dehjourian, Mehdi; Rahgoshay, Mohammad; Jahanfamia, Gholamreza [Dept. of Nuclear Engineering, Science and Research Branch, Islamic Azad University of Tehran, Tehran (Iran, Islamic Republic of); Sayareh, Reza [Faculty of Electrical and Computer Engineering, Kerman Graduate University of Technology, Kerman (Iran, Islamic Republic of); Shirani, Saied [Faculty of Engineering, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-08-15

    The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

  11. Effect of Spray System on Fission Product Distribution in Containment During a Severe Accident in a Two-Loop Pressurized Water Reactor

    Directory of Open Access Journals (Sweden)

    Mehdi Dehjourian

    2016-08-01

    Full Text Available The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

  12. Development of the water cooled lithium lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aiello, G.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The WCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • Preliminary CAD design of the equatorial outboard module of the WCLL blanket has been developed for DEMO. • Finite elements analyses have been carried out in order to assess the module thermal behavior in the straight part of the module. - Abstract: The water cooled lithium lead (WCLL) blanket, based on near-future technology requiring small extrapolation from present-day knowledge both on physical and technological aspect, is one of the breeding blanket concepts considered as possible candidates for the EU DEMOnstration power plant. In 2012, the EFDA agency issued new specifications for DEMO: this paper describes the work performed to adapt the WCLL blanket design to those specifications. Relatively small modules with straight surfaces are attached to a common Back Supporting Structure housing feeding pipes. Each module features reduced activation ferritic-martensitic steel as structural material, liquid Lithium-Lead as breeder, neutron multiplier and carrier. Water at typical Pressurized Water Reactors (PWR) conditions is chosen as coolant. A preliminary design of the equatorial outboard module has been achieved. Finite elements analyses have been carried out in order to assess the module thermal behavior. Two First Wall (FW) concepts have been proposed, one favoring the thermal efficiency, the other favoring the manufacturability. The Breeding Zone has been designed with C-shaped Double-Walled Tubes in order to minimize the Water/Pb-15.7Li interaction likelihood. The priorities for further development of the WCLL blanket concept are identified in the paper.

  13. Blanket-relevant liquid metal MHD channel flows: Data base and optimization simulation development

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, I.A.; Kirillov, I.R.; Sidorenkov, S.I. [D.V. Efremov Inst. of Electrophysical Apparatus, St Petersburg (Russian Federation)

    1995-12-31

    The problems of generalization and integration of test, theoretical and design data relevant to liquid metal (LM) blanket are discussed in present work. First results on MHD data base and LM blanket optimization codes are presented.

  14. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Ki Hak [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds.

  15. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system

    Energy Technology Data Exchange (ETDEWEB)

    Kuscu, Ozlem Selcuk, E-mail: oselcuk@mmf.sdu.edu.tr [Department of Environmental Engineering, Engineering and Architecture Faculty, Sueleyman Demirel University, Cuenuer Campus, 32260 Isparta (Turkey); Sponza, Delia Teresa [Dokuz Eyluel University, Engineering Faculty, Environmental Engineering Department, Buca Kaynaklar campus, Izmir (Turkey)

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  16. Application of Box-Wilson experimental design method for 2,4-dinitrotoluene treatment in a sequential anaerobic migrating blanket reactor (AMBR)/aerobic completely stirred tank reactor (CSTR) system.

    Science.gov (United States)

    Kuşçu, Özlem Selçuk; Sponza, Delia Teresa

    2011-03-15

    A sequential aerobic completely stirred tank reactor (CSTR) following the anaerobic migrating blanket reactor (AMBR) was used to treat a synthetic wastewater containing 2,4-dinitrotoluene (2,4-DNT). A Box-Wilson statistical experiment design was used to determine the effects of 2,4-DNT and the hydraulic retention times (HRTs) on 2,4-DNT and COD removal efficiencies in the AMBR reactor. The 2,4-DNT concentrations in the feed (0-280 mg/L) and the HRT (0.5-10 days) were considered as the independent variables while the 2,4-DNT and chemical oxygen demand (COD) removal efficiencies, total and methane gas productions, methane gas percentage, pH, total volatile fatty acid (TVFA) and total volatile fatty acid/bicarbonate alkalinity (TVFA/Bic.Alk.) ratio were considered as the objective functions in the Box-Wilson statistical experiment design in the AMBR. The predicted data for the parameters given above were determined from the response functions by regression analysis of the experimental data and exhibited excellent agreement with the experimental results. The optimum HRT which gave the maximum COD (97.00%) and 2,4-DNT removal (99.90%) efficiencies was between 5 and 10 days at influent 2,4-DNT concentrations 1-280 mg/L in the AMBR. The aerobic CSTR was used for removals of residual COD remaining from the AMBR, and for metabolites of 2,4-DNT. The maximum COD removal efficiency was 99% at an HRT of 1.89 days at a 2,4-DNT concentration of 239 mg/L in the aerobic CSTR. It was found that 280 mg/L 2,4-DNT transformed to 2,4-diaminotoluene (2,4-DAT) via 2-amino-4-nitrotoluene (2-A-4-NT) and 4-amino-2-nitrotoluene (4-A-2-NT) in the AMBR. The maximum 2,4-DAT removal was 82% at an HRT of 8.61 days in the aerobic CSTR. The maximum total COD and 2,4-DNT removal efficiencies were 99.00% and 99.99%, respectively, at an influent 2,4-DNT concentration of 239 mg/L and at 1.89 days of HRT in the sequential AMBR/CSTR.

  17. Technical issues for beryllium use in fusion blanket applications

    Energy Technology Data Exchange (ETDEWEB)

    McCarville, T.J.; Berwald, D.H.; Wolfer, W.; Fulton, F.J.; Lee, J.D.; Maninger, R.C.; Moir, R.W.; Beeston, J.M.; Miller, L.G.

    1985-01-01

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented.

  18. 75 FR 11557 - Woven Electric Blankets From China

    Science.gov (United States)

    2010-03-11

    ... permitted by section 201.8 of the Commission's rules, as amended, 67 FR 68036 (November 8, 2002). Even where... specified in II (C) of the Commission's Handbook on Electronic Filing Procedures, 67 FR 68168, 68173... COMMISSION Woven Electric Blankets From China AGENCY: United States International Trade Commission....

  19. First-wall/blanket materials selection for STARFIRE tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F.; Clemmer, R.G.; Davis, J.W.

    1980-01-01

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed.

  20. Ecohydrological analysis of a groundwater influenced blanket bog: occurrence of Schoenus nigricans in Roundstone Bog, Connemara, Ireland

    Directory of Open Access Journals (Sweden)

    A.P. Grootjans

    2016-04-01

    Full Text Available Since the late 1960s, the occurrence of Schoenus nigricans in Irish blanket bogs has been attributed to inputs of salt spray to the blanket bogs, due to their proximity to the coast and the predominant westerly winds from the Atlantic Ocean. To test this hypothesis we carried out an ecohydrological field study at a large blanket bog in the western part of Connemara, Ireland. We described peat profiles in two transects and sampled pore water from peat at different depths. The water samples were analysed and their macro-ionic composition was used to locate possible inputs of calcareous groundwater to the system. We found clear evidence for inflow of calcareous groundwater at various sites and depths. Inflow of rather base-rich groundwater was indicated by high values of electrical conductivity (EC, high contents of calcium and bicarbonate, and high pH of the pore water. The peat profiles contained macro-remains of reed (Phragmites australis, in most cases only in deeper layers of peat, but at one location throughout the profile. This is another indication that the blanket bog was a groundwater-fed fen for quite some time. We conclude that the occurrence of S. nigricans in the blanket bog studied could be well explained by the hypothesis that S. nigricans is a relic from former more base-rich conditions. Relatively high base saturation could have persisted due to the prevailing groundwater flow in the upper layers preventing decalcification or other loss of cations from the whole soil profile including the topsoil.

  1. A helium-cooled blanket design of the low aspect ratio reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.; Baxi, C.B.; Reis, E.E. [General Atomics, San Diego, CA (United States); Cerbone, R.; Cheng, E.T. [TSI Research, Solana Beach, CA (United States)

    1998-03-01

    An aggressive low aspect ratio scoping fusion reactor design indicated that a 2 GW(e) reactor can have a major radius as small as 2.9 m resulting in a device with competitive cost of electricity at 49 mill/kWh. One of the technology requirements of this design is a high performance high power density first wall and blanket system. A 15 MPa helium-cooled, V-alloy and stagnant LiPb breeder first wall and blanket design was utilized. Due to the low solubility of tritium in LiPb, there is the concern of tritium migration and the formation of V-hydride. To address these issues, a lithium breeder system with high solubility of tritium has been evaluated. Due to the reduction of blanket energy multiplication to 1.2, to maintain a plant Q of > 4, the major radius of the reactor has to be increased to 3.05 m. The inlet helium coolant temperature is raised to 436 C in order to meet the minimum V-alloy temperature limit everywhere in the first wall and blanket system. To enhance the first wall heat transfer, a swirl tape coolant channel design is used. The corresponding increase in friction factor is also taken into consideration. To reduce the coolant system pressure drop, the helium pressure is increased from 15 to 18 MPa. Thermal structural analysis is performed for a simple tube design. With an inside tube diameter of 1 cm and a wall thickness of 1.5 mm, the lithium breeder can remove an average heat flux and neutron wall loading of 2 and 8 MW/m(2), respectively. This reference design can meet all the temperature and material structural design limits, as well as the coolant velocity limits. Maintaining an outlet coolant temperature of 650 C, one can expect a gross closed cycle gas turbine thermal efficiency of 45%. This study further supports the use of helium coolant for high power density reactor design. When used with the low aspect ratio reactor concept a competitive fusion reactor can be projected at 51.9 mill/kWh.

  2. Experimental facility for studying MHD effects in liquid metal cooled blankets

    Science.gov (United States)

    Reed, C. B.; Picologlou, B. F.; Dauzvardis, P. V.

    The capabilities of a facility, brought into service to collect data on magnetohydrodynamic (MHD) effects, pertinent to liquid metal cooled fusion reactor blankets, are presented. The facility, design to extend significantly the existing data base on liquid metal MHD, employs eutectic NaK as the working fluid in a room temperature closed loop. The instrumentation system is capable of collecting detailed data on pressure, voltage, and velocity distributions at any axial position within the base of a 2 Tesla conventional magnet. The axial magnetic field distribution can be uniform or varying with either rapid or slow spatial variations.

  3. Conceptual design of a water cooled breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Pu, Yong; Cheng, Xiaoman [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Jia; Peng, ChangHong [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China); Ma, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Chen, Lei [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-10-15

    Highlights: • We proposed a water cooled ceramic breeder blanket with superheated steam. • Superheated steam is generated at the first wall and the front part of breeder zone. • Superheated steam has negligible impact on neutron absorption by coolant in FW and improves TBR. • The superheated steam at higher temperature can improve thermal efficiency. - Abstract: China Fusion Engineering Test Reactor (CFETR) is an ITER-like superconducting tokamak reactor. Its major radius is 5.7 m, minor radius is 1.6 m and elongation ratio is 1.8. Its mission is to achieve 50–200 MW of fusion power, 30–50% of duty time factor, and tritium breeding ratio not less than 1.2 to ensure the self-sufficiency. As one of the breeding blanket candidates for CFETR, a water cooled breeder blanket with superheated steam is proposed and its conceptual design is being carried out. In this design, sub-cooling water at 265 °C under the pressure of 7 MPa is fed into cooling plates in breeding zone and is heated up to 285 °C with saturated steam generated, and then this steam is pre-superheated up to 310 °C in first wall (FW), final, the pre-superheated steam coming from several blankets is fed into the other one blanket to superheat again up to 517 °C. Due to low density of superheated steam, it has negligible impact on neutron absorption by coolant in FW so that the high energy neutrons entering into breeder zone moderated by water in cooling plate help enhance tritium breeding by {sup 6}Li(n,α)T reaction. Li{sub 2}TiO{sub 3} pebbles and Be{sub 12}Ti pebbles are chosen as tritium breeder and neutron multiplier respectively, because Li{sub 2}TiO{sub 3} and Be{sub 12}Ti are expected to have better chemical stability and compatibility with water in high temperature. However, Be{sub 12}Ti may lead to a reduction in tritium breeding ratio (TBR). Furthermore, a spot of sintered Be plate is used to improve neutron multiplying capacity in a multi-layer structure. As one alternative option

  4. APT {sup 3}He target/blanket. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    The {sup 3}He target/blanket (T/B) preconceptual design for the 3/8-Goal facility is based on a 1000-MeV, 200-mA accelerator to produce a high-intensity proton beam that is expanded and then strikes one of two T/B modules. Each module consists of a centralized neutron source made of tungsten and lead, a proton beam backstop region made of zirconium and lead, and a moderator made of D{sub 2}O. Helium-3 gas is circulated through the neutron source region and the blanket to create tritium through neutron capture. The gas is continually processed to extract the tritium with an online separation process.

  5. Evaluation of US demo helium-cooled blanket options

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; McQuillan, B.W.; Schleicher, R.W. [and others

    1995-10-01

    A He-V-Li blanket design was developed as a candidate for the U.S. fusion demonstration power plant. This paper presents an 18 MPa helium-cooled, lithium breeder, V-alloy design that can be coupled to the Brayton cycle with a gross efficiency of 46%. The critical issue of designing to high gas pressure and the compatibility between helium impurities and V-alloy are addressed.

  6. MFTF-B Upgrade for blanket-technology testing

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, K.I.; Doggett, J.N.; Logan, B.G.

    1982-10-22

    Based on preliminary studies at Lawrence Livermore National Laboratory (LLNL), we believe the Mirror Fusion Test Facility (MFTF-B) could be upgraded for operation in a hot-ion Kelley mode in a portion of the central cell to provide fusion nuclear engineering data, particularly blanket technology information, by the end of the decade. Cost of this mode of operation would be modest compared with that of the other fusion devices considered in the last few years for such purposes.

  7. Laboratory experiments on drought and runoff in blanket peat

    OpenAIRE

    Holden, J; Burt, T. P.

    2002-01-01

    Global warming might change the hydrology of upland blanket peats in Britain. We have therefore studied in laboratory experiments the impact of drought on peat from the North Pennines of the UK. Runoff was dominated by surface and near-surface flow; flow decreased rapidly with depth and differed from one type of cover to another. Infiltration depended on the intensity of rain, and runoff responded rapidly to rain, with around 50% of rainwater emerging as overland flow. Drought changed the str...

  8. Model problem of MHD flow in a lithium blanket

    Energy Technology Data Exchange (ETDEWEB)

    Cherepanov, V.Y.

    1978-01-01

    A model problem is considered for a feasibility study concerning controlled MHD flow in the blanket of a Tokamak nuclear reactor. The fundamental equations for the steady flow of an incompressible viscous fluid in a uniform transverse magnetic field are solved in rectangular coordinates, in the zero-induction approximation and with negligible induced currents. A numerical solution obtained for a set of appropriate boundary constraints establishes the conditions under which no stagnation zones will be formed.

  9. Development of insulating coatings for liquid metal blankets

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S.; Borgstedt, H.U. [Kernforschungszentrum Karlsruhe GmbH (Germany); Farnum, E.H. [Los Alamos National Lab., NM (United States); Natesan, K. [Argonne National Lab., IL (United States); Vitkovski, I.V. [Efremov Inst., St. Petersburg (Russian Federation). MHD-Machines Lab.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed.

  10. Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, C. [EUROfusion—Programme Management Unit, Boltzmannstr. 2, 85748 Garching (Germany); Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, SERMA, LPEC, 91191 Gif-sur-Yvette (France); Moro, F. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Villari, R. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy)

    2016-11-01

    Highlights: • Breeder blanket concepts for DEMO—design features. • Neutronic characteristics of breeder blankets. • Evaluation of Tritium breeding potential. • Evaluation of shielding performance. - Abstract: This paper presents nuclear performance issues of the HCPB, HCLL, DCLL and WCLL breeder blankets, which are under development within the PPPT (Power Plant Physics and Technology) programme of EUROfusion, with the objective to assess the potential and suitability of the blankets for the application to DEMO. The assessment is based on the initial design versions of the blankets developed in 2014. The Tritium breeding potential is considered sufficient for all breeder blankets although the initial design versions of the HCPB, HCLL and DCLL blankets were shown to require further design improvements. Suitable measures have been proposed and proven to be sufficient to achieve the required Tritium Breeding Ratio (TBR) ≥ 1.10. The shielding performance was shown to be sufficient to protect the super-conducting toroidal field coil provided that efficient shielding material mixtures including WC or borated water are utilized. The WCLL blanket does not require the use of such shielding materials due to a very compact blanket support structure/manifold configuration which yet requires design verification. The vacuum vessel can be safely operated over the full anticipated DEMO lifetime of 6 full power years for all blanket concepts considered.

  11. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail: rosa.lofrano@ing.unipi.it; Aquaro, Donato; Scaletti, Luca

    2016-11-01

    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  12. Proposal to negotiate the renewal of a blanket purchase contract for the supply and maintenance of VME single-board computers for the LHC and its injectors

    CERN Document Server

    2006-01-01

    This document concerns the renewal of a blanket purchase contract for the supply and maintenance of VME single-board computers for the LHC and its injectors. The Finance Committee is invited to agree to the negotiation of the renewal of the blanket purchase contract with CREATIVE ELECTRONIC SYSTEMS (CH) for the supply and maintenance of VME single-board computers for the LHC and its injectors for an estimated total amount not exceeding 1 000 000 Swiss francs for the period 2007-2009.

  13. Summary report for ITER task - T68: MHD facility preparation for Li/V blanket option

    Energy Technology Data Exchange (ETDEWEB)

    Reed, C.B.; Haglund, R.C.; Miller, M.E. [and others

    1995-08-01

    A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the question of insulator coatings. Design calculations show that an electrically insulating layer is necessary to maintain an acceptably low MHD pressure drop. To enable experimental investigations of the MHD performance of candidate insulator materials and the technology for putting them in place, the room-temperature ALEX (Argonne`s Liquid Metal EXperiment) NaK facility was upgraded to a 300{degrees}C lithium system. The objective of this upgrade was to modify the existing facility to the minimum extent necessary, consistent with providing a safe, flexible, and easy to operate MHD test facility which uses lithium at ITER-relevant temperatures, Hartmann numbers, and interaction parameters. The facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups. The system design description for this lithium upgrade of the ALEX facility is given in this document.

  14. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  15. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F. [comps.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  16. APT Blanket Safety Analysis: Preliminary Analyses of Downflow Through a Lateral Row 1 Blanket Model Under Near RHR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L.L.

    1998-10-07

    To address a concern about a potential maldistribution of coolant flow through an APT blanket module under low flow near RHR conditions, a scoping study of downflow mixed convection in parallel channels was conducted. Buoyancy will adversely effect the flow distribution in module bins with downflow and non-uniform power distributions. This study consists of two parts: a simple analytical model of flow in a two channel network, and a lumped eleven channel FLOWTRAN-TF model of a front lateral Row-1 blanket module bin. Results from both models indicate that the concern about coolant flow in a vertical model being diverted away from high power regions by buoyancy is warranted. The FLOWTRAN-TF model predicted upflow (i.e., a flow reversal) through several of the high power channels, under some low flow conditions. The transition from the regime with downflow in all channels to a regime with upflow in some channels was abrupt.

  17. Comparison of lithium and the eutectic lead lithium alloy, two candidate liquid metal breeder materials for self-cooled blankets

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S. [Kernforschungszentrum Karlsruhe GmbH (Germany); Mattas, R. [Argonne National Lab., IL (United States)

    1994-06-01

    Liquid metals are attractive candidates for both near-term and long-term fusion applications. The subjects of this comparison are the differences between the two candidate liquid metal breeder materials Li and LiPb for use in breeding blankets in the areas of neutronics, magnetohydrodynamics, tritium control, compatibility with structural materials, heat extraction system, safety, and required R&D program. Both candidates appear to be promising for use in self-cooled breeding blankets which have inherent simplicity with the liquid metal serving as both breeders and coolant. The remaining feasibility question for both breeder materials is the electrical insulation between liquid metal and duct walls. Different ceramic coatings are required for the two breeders, and their crucial issues, namely self-healing of insulator cracks and radiation induced electrical degradation are not yet demonstrated. Each liquid metal breeder has advantages and concerns associated with it, and further development is needed to resolve these concerns.

  18. Continuous fine pattern formation by screen-offset printing using a silicone blanket

    Science.gov (United States)

    Nomura, Ken-ichi; Kusaka, Yasuyuki; Ushijima, Hirobumi; Nagase, Kazuro; Ikedo, Hiroaki; Mitsui, Ryosuke; Takahashi, Seiya; Nakajima, Shin-ichiro; Iwata, Shiro

    2014-09-01

    Screen-offset printing combines screen-printing on a silicone blanket with transference of the print from the blanket to a substrate. The blanket absorbs organic solvents in the ink, and therefore, the ink does not disperse through the material. This prevents blurring and allows fine patterns with widths of a few tens of micrometres to be produced. However, continuous printing deteriorates the pattern’s shape, which may be a result of decay in the absorption abilities of the blanket. Thus, we have developed a new technique for refreshing the blanket by substituting high-boiling-point solvents present on the blanket surface with low-boiling-point solvents. We analyse the efficacy of this technique, and demonstrate continuous fine pattern formation for 100 screen-offset printing processes.

  19. A fail–safe and cost effective fabrication route for blanket First Walls

    Energy Technology Data Exchange (ETDEWEB)

    Commin, L., E-mail: lorelei.commin@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rieth, M.; Dafferner, B.; Zimmermann, H.; Bolich, D.; Baumgärtner, S.; Ziegler, R. [Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dichiser, S.; Fabry, T.; Fischer, S.; Hildebrand, W.; Palussek, O.; Ritz, H.; Sponda, A. [Karlsruhe Institute of Technology (KIT), Technische Infrastruktur und Dienste (TID), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2013-11-15

    Helium Cooled Lithium Lead and Helium Cooled Pebble Bed concepts have been selected as European Test Blanket Modules (TBM) for ITER. The TBM fabrication will need the assembly of six Reduced Activation Ferritic Martensitic steel sub-components, namely First Wall, Caps, Stiffening Grid, Breeding Units, Back Plates/Manifolds, and Attachment system. The fabrication of the First Wall requires the production of cooling channels inside 30 mm thick bended plates. For this specific component, the main issues consist of the lack of accessibility of some areas to join, the process tolerances, the dimensional stability and the resulting assembly mechanical properties. Several fabrication routes have been already investigated, which involve diffusion welding and fusion welding (electron beam, laser beam, hybrid MIG/laser). In this study, an alternative processing method was developed, based on Hot Isostatic Pressing of inner pipes within two half-shells. This method presents some major advantages over the existing ones, in particular its inherent fail–safe design due to the application of the double containment principle, the solely use of cost effective standard fabrication processes and the resulting component dimensional stability. A four channel mock-up was fabricated and analyzed to validate the fabrication procedure. The joint quality was assessed using microstructural characterization and Charpy tests. The results confirm the predicted perfect weld lines as well as the preservation of the mechanical properties. Therefore, the presented fabrication procedure is very appropriate for the fabrication of First Walls for fusion reactor blankets.

  20. Fusion-Driven Sub-Critical Dual-Cooled Waste Transmutation Blanket:Design and Analysis

    Institute of Scientific and Technical Information of China (English)

    Wang Weihua(汪卫华); Wu Yican(吴宜灿); Ke Yan(柯严); Kang Zhicheng(康志诚); Wang Hongyan(王红艳); Huang Qunying(黄群英)

    2003-01-01

    The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB),as one the most important part of the FDS is cooled by helium and liquid metal, and have the features of safety, tritium self-sustaining, high efficiency and feasibility. Its conceptual design has been finished. This paper is mainly involved with the basic structure design and thermalhydraulics analysis of DWTB. On the basis of a three-dimensional (3-D) model of radial-toroidal sections of the segment box, thermal temperature gradients and structure analysis made with a comprehensive finite element method (FEM) have been performed with the computer code ANSYS5.7 and computational fluid dynamic finite element codes. The analysis refers to the steady-state operating condition of an outboard blanket segment. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions have been also taken into account.All the above loads have been combined as an input for a FEM stress analysis and the resulting stress distribution has been evaluated. Finally, the structure design and Pb-17Li flow velocity has been optimized according to the calculations and analysis.

  1. Prevalence of enterobiasis and its incidence after blanket chemotherapy in a male orphanage.

    Science.gov (United States)

    Sirivichayakul, C; Pojjaroen-anant, C; Wisetsing, P; Lalitphiphat, A; Chanthavanich, P; Kabkaew, K

    2000-03-01

    A prospective observational study was conducted in a male orphanage to find out the prevalence of enterobiasis and its incidence after blanket chemotherapy using mebendazole. We found that the prevalence of enterobiasis was 28.9%. The incidence density of enterobiasis after blanket chemotherapy was 379.82 per 1,000 person-years which was quite high. We suggest that blanket chemotherapy should be repeated at every 6 months interval to control enterobiasis in orphanages.

  2. The ITER EC H&CD upper launcher: Design, analysis and testing of a bolted joint for the Blanket Shield Module

    NARCIS (Netherlands)

    Gessner, R.; Aiello, G.; Grossetti, G.; Meier, A.; Ronden, D.; Spaeh, P.; Scherer, T.; Schreck, S.; Strauss, D.; Vaccaro, A.

    2013-01-01

    The final design of the structural system for the ITER EC H&CD upper launcher is in progress. Many design features of the preliminary design are under revision with the aim to achieve the built-to-print-status. This paper deals with design and analysis of a bolted joint for the Blanket Shield Mo

  3. 76 FR 44903 - Kinder Morgan Interstate Gas Transmission, LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2011-07-27

    ...-000] Kinder Morgan Interstate Gas Transmission, LLC; Notice of Request Under Blanket Authorization Take notice that on June 30, 2011 Kinder Morgan Interstate Gas Transmission, LLC (KMIGT), Post...

  4. Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Li, Min; Lv, Zhongliang; Zhou, Guangming; Liu, Qianwen; Wang, Shuai; Wang, Xiaoliang; Zheng, Jie; Ye, Minyou

    2015-10-15

    Highlights: • A helium cooled solid blanket was proposed as a candidate blanket concept for CFETR. • Material selection, basic structure and gas flow scheme of the blanket were introduced. • A series of performance analyses for the blanket were summarized. - Abstract: To bridge the gap between ITER and DEMO and to realize the fusion energy in China, a fusion device Chinese Fusion Engineering Test Reactor (CFETR) was proposed and is being designed mainly to demonstrate 50–200 MW fusion power, 30–50% duty time factor, tritium self-sustained. Because of the high demand of tritium production and the realistic engineering consideration, the design of tritium breeding blanket for CFETR is a challenging work and getting special attention. As a blanket candidate, a helium cooled solid breeder blanket has been designed with the emphasis on conservative design and realistic blanket technology. This paper introduces the basic blanket scheme, including the material selection, structural design, cooling scheme and purge gas flow path. In addition, some results of neutronics, thermal-hydraulic and stress analysis are presented.

  5. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H.; Enoeda, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  6. ITER Blanket First Wall (WBS 1.6{sub 1}A)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; Kim, H. G.; Kim, J. H. (and others)

    2008-03-15

    International Thermonuclear Experimental Reactor (ITER) project is the international collaboration one for the commercialization of nuclear fusion energy through the technical and engineering verification. In ITER project, we plan to procure the blanket systems which has the risk of technology and cost when it is newly developed. We are developing the manufacturing process and joining technology for the ITER blanket to complete the procurement with qualified blanket system. To evaluate the soundness of manufacturing process, specimen and mock-up tests are being prepared. Finally, we can obtain the key technology of nuclear fusion reactor especially on the blanket design, joining and manufacturing technology through the present project and these technologies will help the construction of Korea fusion DEMO reactor and the development of commercial nuclear fusion reactor in Korea. In 1st year, through the fabrication of the Cu/SS and Be/Cu joint specimen, fabrication procedure such as material preparation, canning, degassing, HIP (Hot Isostatic Pressing), PHHT (Post HIP heat treatment) was established. The optimized HIP conditions (1050 .deg. C, 150 MPa, 2 hr for Cu/SS and 580 - 620 .deg. C, 100-150 MPa, 2 hr for Be/Cu) were developed through the investigation on joint specimen fabricated with the various HIP conditions; the destructive tests of joint and NDT such as UT (10 MHz, 0.25 inch D, flat type) and ECT. Several mock-ups were fabricated for confirming the joint integrity and NDT. specimens fabricated with these mock-ups were used in mechanical tests including microstructure observation. The mock-ups were used in the HHF test after the developed NDT. In 2nd year, PHHT of Cu was investigated in order to recover its mechanical properties, and the pre-qualification mock-up were fabricated against the Qualification Program and sent to RF for HHF testing in TSEFEY. FW fabrication and joining procedure were documented in the form of the TSD. Qualification mock

  7. Geomorphological control of water tables in a blanket peat landscape: implications for carbon cycling

    Science.gov (United States)

    Allott, Tim; Evans, Martin; Lindsay, John; Agnew, Clive; Freer, Jim

    2010-05-01

    Water tables are an important control on carbon cycling and rates of carbon sequestration in peatland systems, and water table depth is therefore a key parameter in carbon models for blanket peat systems. Although there is a wide literature on blanket peat hydrology, including studies which specifically evaluate water table conditions, detailed data on water table behaviour and variability at the landscape scale are sparse. In particular, many British blanket peats are affected by gully erosion and this has been generally assumed to influence water table conditions. However, there has been limited evaluation of this geomomorphological control on peatland water tables. This paper presents results from a project which evaluated water table conditions in the blanket peatlands of the Peak District National Park, UK. A key aim was to quantify the impact of gully erosion on peatland water tables. A detailed programme of water table monitoring was undertaken during 2008/09, involving regular measurements of water table depth in over 530 dipwells at 19 sites across the 47 km2 peatland landscape of the Kinder Scout / Bleaklow area. This included a campaign of regular, simultaneous water table measurements from clusters of dipwells at the main sites, supplemented by continuous (hourly) water table monitoring in selected dipwells. It also included studies to evaluate within-site variation in water table conditions and local water table drawdown effects associated with gully erosion. Results indicate that gully erosion causes water table drawdown through two distinct processes. The first is local water table drawdown immediately adjacent to erosion gullies. This effect is restricted to a zone within 2 m of gully edges, and water tables within the gully edge drawdown zone are approximately 200 mm lower than in the adjacent peatland. The second effect is a more general water table lowering at eroded sites, with median water table depths at heavily eroded sites up to 300 mm lower

  8. Preliminary piping layout and integration of European test blanket modules subsystems in ITER CVCS area

    Energy Technology Data Exchange (ETDEWEB)

    Tarallo, Andrea, E-mail: andrea.tarallo@unina.it [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Mozzillo, Rocco; Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Aiello, Antonio; Utili, Marco [ENEA UTIS, C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ricapito, Italo [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • The use of human modeling tools for piping design in view of maintenance is discussed. • A possible preliminary layout for TBM subsystems in CVCS area has been designed with CATIA. • A DHM-based method to quickly check for maintainability of piping systems is suggested. - Abstract: This paper explores a possible integration of some ancillary systems of helium-cooled lithium lead (HCLL) and helium-cooled pebble-bed (HCPB) test blanket modules in ITER CVCS area. Computer-aided design and ergonomics simulation tools have been fundamental not only to define suitable routes for pipes, but also to quickly check for maintainability of equipment and in-line components. In particular, accessibility of equipment and systems has been investigated from the very first stages of the design using digital human models. In some cases, the digital simulations have resulted in changes in the initial space reservations.

  9. Degradation and Failure Characteristics of NPP Containment Protective Coating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.L.

    2001-02-22

    A research program to investigate the performance and potential for debris formation of Service Level I coating systems used in nuclear power plant containment is being performed at the Savannah River Technology Center. The research activities are aligned to address phenomena important to cause coating disbondment as identified by the Industry Coatings Expert Panel. The period of interest for performance covers the time from application of the coating through 40 years of service, followed by a medium-to-large break loss-of-coolant accident scenario, which is a design basis accident (DBA) scenario. The interactive program elements are described in this report and the application of these elements to evaluate the performance of the specific coating system of Phenoline 305 epoxy-phenolic topcoat over Carbozinc 11 primer on a steel substrate. This system is one of the predominant coating systems present on steel substrates in NPP containment.

  10. The impact of new experimental data on the design of Pb-17Li/water breeding blankets

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G. (Commission of the European Communities, Ispra (Italy). Joint Research Centre)

    1989-04-01

    The Pb-17Li/water-cooled blanket is one of the concepts being developed in Europe for testing in NET (Next European Torus). JRC-Ispra is strongly involved in this development. This paper describes the impact of the latest experimental results on the blanket design. The points considered are: breeder operating temperature and thermomechanical design: experiments on corrosion with steel 316L and liquid metal embrittlement tests have provided upper and lower limits for the breeder operating temperature (280-400/sup 0/C); tritium recovery from the breeder and permeation rate to the coolant: Ispra measurements indicate that solubility and diffusivity of hydrogen in Pb-17Li are lower as compared with the previous values used in blanket tritium analyses. The impact of these results on the design of the tritium recovery system is discussed; accident analyses: the experiments in progress at Ispra on the Pb-17Li/water interaction are reviewed and their application to a coolant pipe break accident is shown. (orig.).

  11. Detailed 3-D nuclear analysis of ITER outboard blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, Tim, E-mail: tdbohm@wisc.edu [Fusion Technology Institute, University of Wisconsin-Madison, Madison, WI (United States); Davis, Andrew; Sawan, Mohamed; Marriott, Edward; Wilson, Paul [Fusion Technology Institute, University of Wisconsin-Madison, Madison, WI (United States); Ulrickson, Michael; Bullock, James [Formerly, Fusion Technology, Sandia National Laboratories, Albuquerque, NM (United States)

    2015-10-15

    Highlights: • Nuclear analysis was performed on detailed CAD models placed in a 40 degree model of ITER. • The regions examined include BM09, the upper ELM coil region (BM11–13), the neutral beam (NB) region (BM13–16), and BM18. • The results show that VV nuclear heating exceeds limits in the NB and upper ELM coil regions. • The results also show that the level of He production in parts of BM18 exceeds limits. • These calculations are being used to modify the design of the ITER blanket modules. - Abstract: In the ITER design, the blanket modules (BM) provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40 degree partially homogenized ITER global model. The regions analyzed include BM09, BM16 near the heating neutral beam injection (HNB) region, BM11–13 near the upper ELM coil region, and BM18. For the BM16 HNB region, the VV nuclear heating behind the NB region exceeds the design limit by up to 80%. For the BM11–13 region, the nuclear heating of the VV exceeds the design limit by up to 45%. For BM18, the results show that He production does not meet the limit necessary for re-welding. The results presented in this work are being used by the ITER Organization Blanket and Tokamak Integration groups to modify the BM design in the cases where limits are exceeded.

  12. Microstructure and mechanical properties of Zircaloy-4 cladding hydrogenated at temperatures typical for loss-of-coolant accident (LOCA) conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pshenichnikov, Anton, E-mail: anton.pshenichnikov@kit.edu; Stuckert, Juri; Walter, Mario

    2015-03-15

    Highlights: • Change of Zircaloy-4 cladding microstructure during hydriding. • Cracks origination during hydrogenation at constant temperature. • Microhardness growth from 195 to 320 HV for hydrogen contents 0–10,000 wppm H. • XRD detection of unequal change of two lattice parameters. • Significant residual ductility reduction at room temperature above 700 wppm hydrogen. - Abstract: The series of single rod tests was performed at KIT in framework of the new QUENCH-LOCA programme to investigate the properties of Zircaloy-4 claddings hydrogenated at temperatures of 900, 1000, 1100, and 1200 K to hydrogen contents between 600 and 10,000 wppm H. The impact of simultaneous annealing, phase transformation and hydriding processes on the material properties was investigated. Changes in microhardness revealed the distinct transition from annealing softening to hydrogen hardening. The intermediate stages of structure transformation during hydrogenation phase were registered. The X-ray diffractometry (XRD) analysis was applied to observe the existing phases in the tested samples including possibly precipitated hydrides as well as change in the lattice parameters a and c. The presence of γ- and δ-hydrides was clearly indicated by this method; however the dimensions of hydrides correspond rather to the nano-scale and could not be observed by optical microscopy. The evolution of XRD peak intensities and peak shift was analysed to estimate the texture change and concentration of dissolved hydrogen correspondingly. Tensile test examination of tube samples at room temperatures showed significant reduction of their residual ductility already at 700 wppm H.

  13. The noncondensable gas effects on loss-of-coolant accident steam condensation loads in boiling water reactor pressure suppression pool

    Energy Technology Data Exchange (ETDEWEB)

    Kukita, Y.; Namatame, K.; Shiba, M.; Takeshita, I.

    1983-11-01

    The noncondensable gas effects on the loss-ofcoolant-accident-induced steam condensation loads in the boiling water reactor pressure suppression pool have been investigated with regard to experimental data obtained from a large-scale multivent test program. Previous studies have noted that the presence of the noncondensable gas (air), which initially fills the containment drywell space, stabilizes the direct-contact condensation in the pressure suppression pool and hampers onset of the chugging phenomenon, which induces most significant steam condensation load onto the pool boundary. This was found to be true for the tests with relatively small-break diameters, where the maximum steam mass fluxes in the vent pipe were lower than the upper threshold value for the onset of chugging. However, in the tests with the maximum vent steam mass fluxes moderately higher than the chugging upper threshold value, early depletion of the noncondensable gas tended to result in significant stabilization of steam condensation accompanied by an excursion of temperature of pool water surrounding the vent pipe outlets, which led to a delayed onset of chugging. Due to this combined influence of the noncondensable gas and nonuniform pool temperature, and due to dependence of magnitude of chugging load on the vent steam mass flux, the peak magnitude of the steam condensation load appearing in a blowdown can be very sensitive to the initial and break conditions.

  14. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Thermo- and fluid-dynamic effects

    Energy Technology Data Exchange (ETDEWEB)

    Seeliger, André, E-mail: a.seeliger@hszg.de [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Alt, Sören; Kästner, Wolfgang; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany); Kryk, Holger; Harm, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany)

    2016-08-15

    Highlights: • Borated coolant supports corrosion at zinc-coated installations in PWR after LOCA. • Dissolved zinc is injected into core by ECCS during sump recirculation phase. • Corrosion products can reach and settle at further downstream components. • Corrosion products can cause head losses at spacers and influence decay heat removal. • Preventive procedures were tested at semi-technical scale facilities. - Abstract: Within the framework of the German reactor safety research, generic experimental investigations were carried out aiming at thermal-hydraulic consequences of physicochemical mechanisms, caused by dissolution of zinc in boric acid during corrosion processes at hot-dip galvanized surfaces of containment internals at lower coolant temperatures and the subsequent precipitation of solid zinc borates in PWR core regions of higher temperature. This constellation can occur during sump recirculation operation of ECCS after LOCA. Hot-dip galvanized compounds, which are installed inside a PWR containment, may act as zinc sources. Getting in contact with boric acid coolant, zinc at their surfaces is released into coolant in form of ions due to corrosion processes. As a long-term behavior resp. over a time period of several days, metal layers of zinc and zinc alloys can dissolve extensively. First fundamental studies at laboratory scale were done at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Their experimental results were picked up for the definition of boundary conditions for experiments at semi-technical scale at the Hochschule Zittau/Görlitz (HSZG). Electrical heating rods with zircaloy cladding tubes have been used as fuel rod simulators. As near-plant core components, a 3 × 3 configuration of heating rods (HRC) and a shortened, partially heatable PWR fuel assembly dummy were applied into cooling circuits. The HRC module includes segments of spacers for a suitable representation of a heating channel geometry. Formations of different solid zinc compounds (mainly borates) were observed at the heatable zircaloy surfaces and characterized in detail during the heating-up to several coolant temperatures. As a strict consequence of their proven influence on heat removal and coolant flow behavior in the PWR core, preventive water-chemical methods were defined and tested.

  15. Risk-informed analysis of the large break loss of coolant accident and PCT margin evaluation with the RISMC methodology

    Energy Technology Data Exchange (ETDEWEB)

    Liang, T.H. [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Liang, K.S., E-mail: ksliang@alum.mit.edu [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Cheng, C.K.; Pei, B.S. [Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan (China); Patelli, E. [Institute of Risk and Uncertainty, University of Liverpool, Room 610, Brodie Tower, L69 3GQ (United Kingdom)

    2016-11-15

    Highlights: • With RISMC methodology, both aleatory and epistemic uncertainties have been considered. • 14 probabilistically significant sequences have been identified and quantified. • A load spectrum for LBLOCA has been conducted with CPCT and SP of each dominant sequence. • Comparing to deterministic methodologies, the risk-informed PCT margin can be greater by 44–62 K. • The SP of the referred sequence to cover 99% in the load spectrum is only 5.07 * 10{sup −3}. • The occurrence probability of the deterministic licensing sequence is 5.46 * 10{sup −5}. - Abstract: For general design basis accidents, such as SBLOCA and LBLOCA, the traditional deterministic safety analysis methodologies are always applied to analyze events based on a so called surrogate or licensing sequence, without considering how low this sequence occurrence probability is. In the to-be-issued 10 CFR 50.46a, the LBLOCA will be categorized as accidents beyond design basis and the PCT margin shall be evaluated in a risk-informed manner. According to the risk-informed safety margin characterization (RISMC) methodology, a process has been suggested to evaluate the risk-informed PCT margin. Following the RISMC methodology, a load spectrum of PCT for LBLOCA has been generated for the Taiwan’s Maanshan Nuclear Power plant and 14 probabilistic significant sequences have been identified. It was observed in the load spectrum that the conditional PCT generally ascends with the descending sequence occurrence probability. With the load spectrum covering both aleatory and epistemic uncertainties, the risk-informed PCT margin can be evaluated by either expecting value estimation method or sequence probability coverage method. It was found that by comparing with the traditional deterministic methodology, the PCT margin evaluated by the RISMC methodology can be greater by 44–62 K. Besides, to have a cumulated occurrence probability over 99% in the load spectrum, the occurrence probability of the sequence referred is about 5.07 * 10{sup −3}, whereas for the traditional surrogate or licensing sequence generally applied in the deterministic methodology, the occurrence probability is only about 5.46 * 10{sup −5}.

  16. A study of different cases of VVER reactor core flooding in a large break loss of coolant accident

    Directory of Open Access Journals (Sweden)

    Bezrukov Yury Alekseevich

    2016-01-01

    Full Text Available The paper covers the results of VVER core reflooding studies in fuel assembly (FA mockup of 126 fuel rod simulators with axial power peaking. The experiments were performed for two types of flooding. The first type is top flooding of the empty (steamed FA mockup. The second type is bottom flooding of the FA mockup with level of boiling water. The test parameters are as follows: the range of the supplied power to the bundle is from 40 to 320 kW, the cooling water flow rate is from 0.04 to 1.1 kg/s, the maximum temperature of the fuel rod simulator is 800 °C and the linear heat flux is from 0.1 to 1.0 kW/m. The test results were used for computer code validation.

  17. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conn, R.W.; Ghoniem, N.M.; Firestone, M.A. (eds.)

    1986-09-01

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m/sup 2/ and a surface heat flux of 1 MW/m/sup 2/. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO/sub 2/ rods. The helium coolant pressure is 5 MPa, entering the module at 297/sup 0/C and exiting at 550/sup 0/C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter.

  18. Degradation and failure characteristics of NPP containment protective coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.L.

    2000-03-30

    A research program to investigate the performance and potential for failure of Service Level 1 coating systems used in nuclear power plant containment is in progress. The research activities are aligned to address phenomena important to cause failure as identified by the industry coatings expert panel. The period of interest for performance covers the time from application of the coating through 40 years of service, followed by a medium-to-large break loss-of-coolant accident scenario, which is a design basis accident (DBA) scenario. The interactive program elements are discussed in this report and the application of these elements to the System 5 coating system (polyamide epoxy primer, carbon steel substrate) is used to evaluate performance.

  19. System approach in the investigation of coolant parametrical oscillations in passive safety injection systems (PSIS)

    Energy Technology Data Exchange (ETDEWEB)

    Proskouriakov, K.N. [Moskovskij Ehnergeticheskij Inst., Moscow (Russian Federation)

    2001-07-01

    The use of thermal-hydraulic computer codes is an important part of the work programme for activities in the field of nuclear power plants (NPP) Safety Research as it will enable to define better the test configuration and parameter range extensions and to extrapolate the results of the small scale experiments towards full scale reactor applications. The CATHARE2, RELAP5, the WCOBRA/TRAC, and APROS codes are the estimate thermal hydraulic codes for the evaluation of large and small break loss of coolant accidents (LOCA). The relatively good agreement experimental data with the calculations have been presented. There was shown also some big mistakes in predicting distribution of flow when two phase are present. Model of parametrical oscillation (P.O.) worked out gives explanation for flow oscillations and indicates that the phenomenon of P.O. appears under certain combination of thermal-hydraulic parameters and structure of heat-removal system. (orig.)

  20. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.

  1. Uranium self-shielding in fast reactor blankets

    Energy Technology Data Exchange (ETDEWEB)

    Kadiroglu, O.K.; Driscoll, M.J.

    1976-03-01

    The effects of heterogeneity on resonance self-shielding are examined with particular emphasis on the blanket region of the fast breeder reactor and on its dominant reaction--capture in /sup 238/U. The results, however, apply equally well to scattering resonances, to other isotopes (fertile, fissile and structural species) and to other environments, so long as the underlying assumptions of narrow resonance theory apply. The heterogeneous resonance integral is first cast into a modified homogeneous form involving the ratio of coolant-to-fuel fluxes. A generalized correlation (useful in its own right in many other applications) is developed for this ratio, using both integral transport and collision probability theory to infer the form of correlation, and then relying upon Monte Carlo calculations to establish absolute values of the correlation coefficients. It is shown that a simple linear prescription can be developed for the flux ratio as a function of only fuel optical thickness and the fraction of the slowing-down source generated by the coolant. This in turn permitted derivation of a new equivalence theorem relating the heterogeneous self-shielding factor to the homogeneous self-shielding factor at a modified value of the background scattering cross section per absorber nucleus. A simple version of this relation is developed and used to show that heterogeneity has a negligible effect on the calculated blanket breeding ratio in fast reactors.

  2. Elevator mode convection in liquid metal blankets for fusion reactors

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2015-11-01

    The work is motivated by the design of liquid-metal blankets for nuclear fusion reactors. Mixed convection in a downward flow in a vertical duct with strong contant-rate heating of one wall (the Grashof number up to 1012) and strong transverse magnetic field (the Hartmann number up to 104) is considered. It is found that in an infinitely long duct the flow is dominated by exponentially growing elevator modes having the form of a combination of ascending and descending jets. An analytical solution approximating the growth rate of the modes is derived. Analogous flows in finite-length pipes and ducts are analyzed using the high-resolution numerical simulations. The results of the recent experiments are reproduced and explained. It is found that the flow evolves in cycles consisting of periods of exponential growth and breakdowns of the jets. The resulting high-amplitude fluctuations of temperature is a feature potentially dangerous for operation of a reactor blanket. Financial support was provided by the US NSF (Grant CBET 1232851).

  3. Inhibition of Frying Oil Oxidation by Carbon Dioxide Blanketing.

    Science.gov (United States)

    Totani, Nagao; Inoue, Ryota; Yawata, Miho

    2016-06-01

    The oxidation of oil starts, in general, from the penetration of atmospheric oxygen into oil. Inhibition of the vigorous oxidation of oil at deep-frying temperature under carbon dioxide flow, by disrupting the contact between oil and air, was first demonstrated using oil in a round bottom flask. Next, the minimum carbon dioxide flow rate necessary to blanket 4 L of frying oil in an electric fryer (surface area 690 cm(2)) installed with nonwoven fabric cover, was found to be 40 L/h. Then deep-frying of potato was done accordingly; immediately after deep-frying, an aluminum cover was placed on top of the nonwoven fabric cover to prevent the loss of carbon dioxide and the carbon dioxide flow was shut off. In conclusion, the oxidation of oil both at deep-frying temperature and during standing was remarkably inhibited by carbon dioxide blanketing at a practical flow rate and volume. Under the deep-frying conditions employed in this study, the increase in polar compound content was reduced to half of that of the control.

  4. 76 FR 58488 - Dominion Cove Point LNG, LP; Application for Blanket Authorization to Export Previously Imported...

    Science.gov (United States)

    2011-09-21

    ... Dominion Cove Point LNG, LP; Application for Blanket Authorization to Export Previously Imported Liquefied... (Application), filed on August 8, 2011, by Dominion Cove Point LNG, LP (DCP), requesting blanket authorization to export liquefied natural gas (LNG) that previously had been imported into the United States...

  5. 75 FR 60095 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2010-09-29

    ... LNG Marketing, LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY..., by Sempra LNG Marketing, LLC (Sempra), requesting blanket authorization to export up to a total of 250 billion cubic feet (Bcf) of foreign sourced liquefied natural gas (LNG) for a two-year...

  6. 78 FR 35263 - Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously...

    Science.gov (United States)

    2013-06-12

    ... Freeport LNG Development, L.P.; Application for Blanket Authorization To Export Previously Imported... receipt of an application (Application), filed on April 19, 2013, by Freeport LNG Development, L.P. (Freeport LNG), requesting blanket authorization to export liquefied natural gas (LNG) that previously...

  7. 77 FR 76013 - Sempra LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2012-12-26

    ... LNG Marketing, LLC; Application for Blanket Authorization To Export Previously Imported Liquefied... application (Application), filed on October 26, 2012, by Sempra LNG Marketing, LLC (Sempra LNG Marketing), requesting blanket authorization to export liquefied natural gas (LNG) that previously had been imported...

  8. 75 FR 38092 - The Dow Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2010-07-01

    ... Chemical Company; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY: Office of... The Dow Chemical Company (Dow), requesting blanket authorization to export liquefied natural gas (LNG... equivalent of 390 billion cubic feet (Bcf) of natural gas on a short-term or spot market basis. The LNG...

  9. 77 FR 31004 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-05-24

    ...] Southern Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on May 9, 2012, Southern Natural Gas Company (Southern), 569 Brookwood Village, Suite 501, Birmingham, Alabama 35209, filed... Commission's regulations under the Natural Gas Act (NGA), and Southern's blanket certificate issued in...

  10. Effect of reactor size on the breeding economics of LMFBR blankets

    Energy Technology Data Exchange (ETDEWEB)

    Tagishi, A.; Driscoll, M.J.

    1975-02-01

    The effect of reactor size on the neutronic and economic performance of LMFBR blankets driven by radially-power-flattened cores has been investigated using both simple models and state-of-the-art computer methods. Reactor power ratings in the range 250 to 3000 MW(e) were considered. Correlations for economic breakeven and optimum irradiation times and blanket thicknesses have been developed for batch-irradiated blankets. It is shown that a given distance from the core-blanket interface the fissile buildup rate per unit volume remains very nearly constant in the radial blanket as (radially-power-flattened, constant-height) core size increases. As a consequence, annual revenue per blanket assembly, and breakeven and optimum irradiation times and optimum blanket dimensions, are the same for all reactor sizes. It is also shown that the peripheral core fissile enrichment, hence neutron leakage spectra, of the (radially-power-flattened, constant-height) cores remains essentially constant as core size increases. Coupled with the preceding observations, this insures that radial blanket breeding performance in demonstration-size LMFBR units will be a good measure of that in much larger commercial LMFBR's.

  11. 78 FR 4400 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2013-01-22

    ... USA Gas Marketing LLC; Application for Blanket Authorization To Export Previously Imported Liquefied... and order (Order No. 2923) that granted Eni USA Gas Marketing authority to export a cumulative total... Application, Eni USA Gas Marketing requests blanket authorization to export LNG from the Cameron Terminal...

  12. System Study: Residual Heat Removal 1998-2014

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-01

    This report presents an unreliability evaluation of the residual heat removal (RHR) system in two modes of operation (low-pressure injection in response to a large loss-of-coolant accident and post-trip shutdown-cooling) at 104 U.S. commercial nuclear power plants. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant increasing trends were identified in the RHR results. A highly statistically significant decreasing trend was observed for the RHR injection mode start-only unreliability. Statistically significant decreasing trends were observed for RHR shutdown cooling mode start-only unreliability and RHR shutdown cooling model 24-hour unreliability.

  13. Degradation and Failure Characteristics of NPP Containment Protective Coating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.L.

    2001-04-10

    Nuclear power plants (NPPs) must ensure that the emergency core cooling system (ECCS) or safety-related containment spray system (CSS) remains capable of performing its design safety function throughout the life of the plant. This requires ensuring that long-term core cooling can be maintained following a postulated loss-of-coolant accident (LOCA). Adequate safety operation can be impaired if the protective coatings which have been applied to the concrete and steel structures within the primary containment fail, producing transportable debris which could then accumulate on BWR ECCS suction strainers or PWR ECCS sump debris screens located within the containment. This document will present the data collected during the investigation of coating specimens from plants.

  14. Wash resistance and repellent properties of Africa University mosquito blankets against mosquitoes

    Directory of Open Access Journals (Sweden)

    N. Lukwa

    2013-04-01

    Full Text Available The effect of permethrin-treated Africa University (AU mosquito blankets on susceptible female Anopheles gambiae sensu lato mosquitoes was studied under laboratory conditions at Africa University Campus in Mutare, Zimbabwe. Wash resistance (ability to retain an effective dose that kills ≥80% of mosquitoes after a number of washes and repellence (ability to prevent ≥80% of mosquito bites properties were studied. The AU blankets were wash resistant when 100% mortality was recorded up to 20 washes, declining to 90% after 25 washes. Untreated AU blankets did not cause any mortality on mosquitoes. However, mosquito repellence was 96%, 94%, 97.9%, 87%, 85% and 80.7% for treated AU blankets washed 0, 5, 10, 15, 20 and 25 times, respectively. Mosquito repellence was consistently above 80% from 0-25 washes. In conclusion, AU blankets washed 25 times were effective in repelling and killing An. gambiae sl mosquitoes under laboratory conditions.

  15. Unavailability of the residual system heat removal of Angra 1 by Bayesian networks considering dependent failures

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Many R.S.; Melo, Paulo F.F.F. e, E-mail: mgomes@con.ufrj.br, E-mail: frutuoso@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Programa de Pos-Graduacao em Engenharia Nuclear

    2015-07-01

    This work models by Bayesian networks the residual heat removal system (SRCR) of Angra I nuclear power plant, using fault tree mapping for systematically identifying all possible modes of occurrence caused by a large loss of coolant accident (large LOCA). The focus is on dependent events, such as the bridge system structure of the residual heat removal system and the occurrence of common-cause failures. We used the Netica™ tool kit, Norsys Software Corporation and Python 2.7.5 for modeling Bayesian networks and Microsoft Excel for modeling fault trees. Working with dependent events using Bayesian networks is similar to the solutions proposed by other models, beyond simple understanding and ease of application and modification throughout the analysis. The results obtained for the unavailability of the system were satisfactory, showing that in most cases the system will be available to mitigate the effects of an accident as described above. (author)

  16. Influence of the blanket shield modules geometry on the operation of the ITER ICRF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Louche, F., E-mail: fabrice.louche@rma.ac.be [Laboratory for Plasma Physics, Royal Military Academy, 30, Avenue de la Renaissance, 1000 Brussels (Belgium); Dumortier, P.; Durodié, F.; Messiaen, A. [Laboratory for Plasma Physics, Royal Military Academy, 30, Avenue de la Renaissance, 1000 Brussels (Belgium)

    2013-10-15

    Highlights: ► The ITER ICRF antenna and its surrounding blanket shield modules have been modeled with the 3D electromagnetic software Microwave Studio. ► Unexpected resonances are detected in the ITER relevant range of frequencies. ► These resonances are caused by the geometry of the modules, and in particular by the cavity at the back, between the module rear face and the port plug outer face, present in the considered model. ► Simplified modeling and transmission line computations validate this interpretation. ► The resonance is strongly dependent on the detailed geometry of the modules, but large voids should be avoided. -- Abstract: Three-dimensional electromagnetic simulations of the ITER ICRF antenna have been recently performed with the commercial code CST Microwave Studio{sup ®} (MWS) [1]. A detailed model imported from the CATIA{sup ®} file has been considered: it includes the 24 straps array (CY3.1 geometry [2]) and the surrounding blanket shield modules. The transient solver in MWS has detected the presence of a very localized peak in the input impedance matrix at a frequency of approximately 51 MHz in vacuum conditions. The presence of such a resonance in the ITER operating range of frequency is of concern and should be understood as previous analysis reported in [3] concluded that TEM and non-TEM modes are not expected in this frequency band as long as the antenna is grounded to the port at 1 m back from the antenna front face. By using a simplified model of the geometry we demonstrate that the resonance is a consequence of the considered geometry of the blanket shield modules and in particular of the cavity at the back of the modules made of the module attachment and the port plug outer face. We show that the presence of such a cavity locally increases the coaxial line impedance and allows for a TEM mode in the band. This physical analysis is supported by a transmission line model where the system made of the antenna and its surrounding

  17. Thin and Automated Blanket Lamination and Encapsulation Systems (TABLES) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flexible photovoltaic array technologies require very thin and precisely controlled deposition of the polymeric films used to fabricate them. In most flexible...

  18. Scaling of the direct ECC bypass during LBLOCA reflood phase with direct vessel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Yun, B.J.; Kwon, T.S.; Song, C.H.; Jeong, J.J. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Cho, H.K.; Park, G.C. [Seoul National Univ., Dept. of Nuclear Engineering (Korea, Republic of)

    2001-07-01

    As one of the advanced design features of the Korea next generation reactor, direct vessel injection (DVI) system is being considered instead of conventional cold leg injection (CLI) system. It is known that the DVI system greatly enhances the reliability of the emergency core cooling (ECC) system. However, there is still a dispute on its performance in terms of water delivery to the reactor core during the reflood period of a large-break loss-of-coolant accident (LOCA). Thus, experimental validation is under progress. In this paper, a new scaling method, using time and velocity reduced linear scaling law, is suggested for the design of a scaled-down experimental facility to investigate the direct ECC bypass phenomena in PWR downcomer. (authors)

  19. Movement of tritiated water injected into blanket peat

    Directory of Open Access Journals (Sweden)

    R.S. Clymo

    2016-04-01

    Full Text Available In 1966, tritiated water was injected at five sites at depths between 25 and 100 cm into blanket bog at Moor House National Nature Reserve. The distribution of tritium activity on a logarithmically spaced grid around these sites was sampled in 1990, 24 years after placement. The proportions of tritium accounted for ranged from 80 % for the injection at 100 cm deep, to 20 % for the injection at 25 cm deep. Both 80 and 20 should be considered as ± 10 %. Results imply that diffusion close to the injection may have played a part in movement of tritium; evapotranspiration is not inconsistent with the losses inversely proportional to depth of placement; but the main process of movement is probably bulk (mass flow of water through the peat.

  20. Heating performances of a IC in-blanket ring array

    Science.gov (United States)

    Bosia, G.; Ragona, R.

    2015-12-01

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  1. Heating performances of a IC in-blanket ring array

    Energy Technology Data Exchange (ETDEWEB)

    Bosia, G., E-mail: gbosia@to.infn.it [Department of Physics, University of Turin (Italy); Ragona, R. [Laboratory for Plasma Physics-LPP-ERM/KMS, Brussels (Belgium)

    2015-12-10

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  2. Cosmetic wastewater treatment by upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Puyol, D.; Monsalvo, V.M.; Mohedano, A.F. [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Sanz, J.L. [Departamento de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain); Rodriguez, J.J., E-mail: juanjo.rodriguez@uam.es [Seccion de Ingenieria Quimica, Facultad de Ciencias, Universidad Autonoma de Madrid, C/ Francisco Tomas y Valiente 7, 28049, Madrid (Spain)

    2011-01-30

    Anaerobic treatment of pre-settled cosmetic wastewater in batch and continuous experiments has been investigated. Biodegradability tests showed high COD and solid removal efficiencies (about 70%), being the hydrolysis of solids the limiting step of the process. Continuous treatment was carried out in an upflow anaerobic sludge blanket reactor. High COD and TSS removal efficiencies (up to 95% and 85%, respectively) were achieved over a wide range of organic load rate (from 1.8 to 9.2 g TCOD L{sup -1} day{sup -1}). Methanogenesis inhibition was observed in batch assays, which can be predicted by means of a Haldane-based inhibition model. Both COD and solid removal were modelled by Monod and pseudo-first order models, respectively.

  3. Synthesis and Characterization of Fibre Reinforced Silica Aerogel Blankets for Thermal Protection

    Directory of Open Access Journals (Sweden)

    S. Chakraborty

    2016-01-01

    Full Text Available Using tetraethoxysilane (TEOS as the source of silica, fibre reinforced silica aerogels were synthesized via fast ambient pressure drying using methanol (MeOH, trimethylchlorosilane (TMCS, ammonium fluoride (NH4F, and hexane. The molar ratio of TEOS/MeOH/(COOH2/NH4F was kept constant at 1 : 38 : 3.73 × 10−5 : 0.023 and the gel was allowed to form inside the highly porous meta-aramid fibrous batting. The wet gel surface was chemically modified (silylation process using various concentrations of TMCS in hexane in the range of 1 to 20% by volume. The fibre reinforced silica aerogel blanket was obtained subsequently through atmospheric pressure drying. The aerogel blanket samples were characterized by density, thermal conductivity, hydrophobicity (contact angle, and Scanning Electron Microscopy. The radiant heat resistance of the aerogel blankets was examined and compared with nonaerogel blankets. It has been observed that, compared to the ordinary nonaerogel blankets, the aerogel blankets showed a 58% increase in the estimated burn injury time and thus ensure a much better protection from heat and fire hazards. The effect of varying the concentration of TMCS on the estimated protection time has been examined. The improved thermal stability and the superior thermal insulation of the flexible aerogel blankets lead to applications being used for occupations that involve exposure to hazards of thermal radiation.

  4. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Pereslavtsev, Pavel, E-mail: pavel.pereslavtsev@kit.edu [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Boltzmannstrasse 2, 85748 Garching (Germany); Fischer, Ulrich [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, {sup 6}Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  5. ORNL fusion power demonstration study: the concept of the cassette blanket

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R. W.

    1977-10-01

    The cassette blanket introduces four major improvements in fusion reactor blanket design. These are: (1) the cassette itself which by design furnishes the key unit for simplification of blanket replacement and maintenance and also isolates the lithium moderator from the plasma by enveloping it in the coolant; (2) the concept of blanket zoning, which uses to advantage the fact that radiation damage to structure decreases exponentially with distance. With the use of cassettes in series, only the front fraction of the blanket, the first cassette, need be changed due to damage over the life of the plant; (3) the rectangular blanket concept, which recognizes that blankets must envelop the plasma but need not conform to plasma shape. With this rectangular geometry, cassettes may be installed or removed by simple linear motion between magnet coils; (4) internal tritium recovery, which uses a favorable temperature gradient and ''MHD-frozen'' lithium to diffuse tritium out of the cassette. Supporting calculations and illustrative cases are provided for these four areas using two coolants: helium and HITEC, a eutectic mixture of inorganic salts (potassium nitrate, sodium nitrate, and sodium nitrite).

  6. Development of the Severe Accident Analysis DB for the Severe Accident Management Expert System (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Ahn, Kwang Il [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    This report contains analysis methodologies and calculation results of 5 initiating events of the severe accident analysis database system. The Ulchin 3,4 NPP has been selected as reference plants. Based on the probabilistic safety analysis of the corresponding plant, 54 accident scenarios, which was predicted to have more than 10-10 /ry occurrence frequency, have been analyzed as base cases for the Large loss of Coolant sequence database. The functions of the severe accident analysis database system will be to make a diagnosis of the accident by some input information from the plant symptoms, to search a corresponding scenario, and finally to provide the user phenomenological information based on the pre-analyzed results. The MAAP 4.06 calculation results in this report will be utilized as input data to develop the database system

  7. Analysis and optimization of minor actinides transmutation blankets with regards to neutron and gamma sources

    Directory of Open Access Journals (Sweden)

    Kooyman Timothée

    2017-01-01

    Full Text Available Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long- and short-term neutron and gamma source is carried out whereas in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.

  8. Preliminary Analysis of Liquid Metal MHD Pressure Drop in the Blanket for the FDS

    Institute of Scientific and Technical Information of China (English)

    王红艳; 吴宜灿; 何晓雄

    2002-01-01

    Preliminary analysis and calculation of liquid metal Li17Pb83 magnetohydrodynamic (MHD) pressure drop in the blanket for the FDS have been presented to evaluate the significance of MHD effects on the thermal-hydraulic design of the blanket. To decrease the liquid metal MHD pressure drop, Al2O3 is applied as an electronically insulated coating onto the inner surface of the ducts. The requirement for the insulated coating to reduce the additional leakage pressure drop caused by coating imperfections has been analyzed. Finally, the total liquid metal MHD pressure drop and magnetic pump power in the FDS blanket have been given.

  9. Evaluation of Cortaderia selloana (Capim-dos-pampas) blankets as sorbent materials for oil spills in simulated hydro equipment; Estudo do desempenho de tecidos e mantas para utilizacao como sorventes para petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Bonetti, T.F.; Sydenstricker, T.H.D. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil)], e-mail: thais@demec.ufpr.br; Amico, S.C. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil)

    2006-07-01

    Oil spills in aquatic environments may cause serious economy losses and severe environmental impact which both drive the development of commercial systems (e.g. sorbents) to control these accidents. One way of using sorbents is to encapsulate them with an involucre or cover, i.e. producing blankets. The focus of this research is to evaluate the key characteristics of interest (aerial density, water and oil sorption, mechanical strength and cost) of different materials to use as covers for blankets and to prepare blankets and compare their performance when made with various core materials, such as Cortaderia selloana fibers and different commercial sorbents. A simulated aqueous body with stream was used for the sorption experiments, where the oil and water phases were circulated and forced to pass under the blankets. On the sorption tests, the fibers of Cortaderia selloana reached a performance lower to that of commercial sorbents, mainly due to their low density and high volume (difficult packing), nevertheless a clear trend was noted, heavier blankets with higher sorption periods lead to higher sorption. (author)

  10. In plain sight: the Chesapeake Bay crater ejecta blanket

    Directory of Open Access Journals (Sweden)

    D. L. Griscom

    2012-02-01

    Full Text Available The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v the (overlying loam member of the upland deposits is attributable to base-surge-type deposition, (vi several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction

  11. Development of ITER shielding blanket prototype mockup by HIP bonding

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Satoshi; Furuya, Kazuyuki; Hatano, Toshihisa; Kuroda, Toshimasa; Enoeda, Mikio; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Office of ITER Project Promotion, Tokyo (Japan)

    2000-07-01

    A prototype ({approx}900{sup H} x 1700{sup W} x 350{sup T} mm) of the ITER shielding blanket module has been fabricated following the previous successful fabrication of a small-scale ({approx}500{sup H} x 400{sup W} x 150{sup T} mm) and mid-scale ({approx}800{sup H} x 500{sup W} x 350{sup T} mm) mock-ups. This prototype incorporates most of key design features essential to the fabrication of the ITER shielding blanket module such as 1) the first wall heat sink made of Al{sub 2}O{sub 3} dispersion strengthened Cu (DSCu) with built-in SS316L coolant tubes bonded to a massive SS316LN shield block, 2) toroidally curved first wall with a radius of 5106 mm while straight in poloidal direction, 3) coolant channels oriented in poloidal direction in the first wall and in toroidal direction in the shield block, 4) the first wall coolant channel routing to avoid the interference with the front access holes, 5) coolant channels drilled through the forged SS316LN-IG shield block, and 6) four front access holes of 30 mm in diameter penetrated through the first wall and the shield block. For the joining method, especially for the first wall/side wall parts and the shield block, the solid HIP (Hot Isostatic Pressing) process was applied. It is difficult to apply conventional joining methods such as field welding, brazing, explosion bonding and mechanical one-axial diffusion bonding to a wide area bonding because sufficient mechanical strengths can not be obtained and excessive deformations occurs. In order to solve these fabrication issues, HIP bonding was applied. The first wall stainless steel (SS) coolant tubes of 10 mm in inner diameter and l mm in thickness were sandwiched by semi-circular grooved DSCu plates at the first wall and the front region of the side wall, and by semi-circular grooved SS plates at the back region of the side wall. After assembling of these first wall/side wall parts with the shield block, they were simultaneously bonded by single step HIP in order to

  12. Uso de lagoa aerada facultativa como polimento do reator anaeróbio de manta de lodo UASB no tratamento de dejetos de suínos em escala laboratorial The efficiency of an aerated pond used for treating the effluent of an UASB reactor (upflow anaerobic sludge blanket reactor treating swine manure in a lab-scale system

    Directory of Open Access Journals (Sweden)

    Fernanda Ribeiro do Carmo

    2004-06-01

    Full Text Available As atividades agroindustriais têm se voltado não somente para o aumento da produtividade, mas também para a conservação do meio ambiente. A suinocultura é, sem dúvida, uma das atividades agroindustriais mais poluidoras, principalmente no Estado de Minas Gerais. Sendo assim, objetivou-se desenvolver e operar uma Lagoa Aerada Facultativa (LAF em escala de bancada (laboratorial, e como polimento de um Reator Anaeróbio de Manta de Lodo (UASB, visando a tratar os dejetos de suínos com máxima eficiência e custo mínimo. O experimento foi conduzido no Laboratório de Análise de Água do Departamento de Engenharia (LAADEG da Universidade Federal de Lavras (UFLA, sendo composto por um tanque de acidificação e equalização (TAE, um reator anaeróbio de manta de lodo (UASB e uma lagoa aerada facultativa (LAF para polimento. As análises fisico-químicas realizadas foram: pH, DBO5, DQO T, Sólidos Totais (fixos e voláteis, Temperatura, Nitrogênio, Fósforo, Alcalinidade e Acidez Total. A unidade LAF mostrou uma eficiência média de 83 e 42% de DQO T e Nitrogênio Total, respectivamente. O sistema proporcionou remoção média de 93, 84 e 85% de DQO T, DBO5 e Sólidos Totais Voláteis, respectivamente.Nowadays the agro-industry activities have not only focused its direction to the production increasing, but also, to the environmental preservation. The swine production is amo doubt, an activity, which can be considered, one of the most pollutants, mainly in the Minas Gerais State (BRAZIL. Therefore, this research aimed at developing and operating an Upflow Anaerobic Sludge Blanket Reactor (UASB, followed by an Aerobic Facultative Pound (AFP (Lab-Scale, with the objective of treating the liquid effluent originated from swine with the maximum efficiency and lower costs. The experiment was carried out in the Laboratory of Water Analysis of the Engineering Department of the Federal University of Lavras (UFLA. The system was assembled with an

  13. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: Absorption Versus Transmission

    CERN Document Server

    Doutres, Olivier; 10.1121/1.3458845

    2010-01-01

    The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound ...

  14. An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR

    Science.gov (United States)

    Yu, Guanying; Liu, Xufeng; Liu, Songlin

    2016-10-01

    The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)

  15. Facilities, testing program and modeling needs for studying liquid metal magnetohydrodynamic flows in fusion blankets

    Energy Technology Data Exchange (ETDEWEB)

    Bühler, L., E-mail: leo.buehler@kit.edu [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Mistrangelo, C.; Konys, J. [Karlsruhe Institute of Technology (KIT), Postfach 3640, 76021 Karlsruhe (Germany); Bhattacharyay, R. [Institute for Plasma Research, Gandhinagar, Gujarat 382428 (India); Huang, Q. [Institute of Nuclear Energy Safety Technology (INEST), Chinese Academy of Sciences (CAS) (China); Obukhov, D. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (NIIEFA) (Russian Federation); Smolentsev, S. [University of California Los Angeles (UCLA) (United States); Utili, M. [ENEA C.R. Brasimone, Camugnano 40032 (Italy)

    2015-11-15

    Since many years, liquid metal flows for applications in fusion blankets have been investigated worldwide. A review is given about modeling requirements and existing experimental facilities for investigations of liquid metal related issues in blankets with the focus on magnetohydrodynamics (MHD). Most of the performed theoretical and experimental works were dedicated to fundamental aspects of MHD flows under very strong magnetic fields as they may occur in generic elements of fusion blankets like pipes, ducts, bends, expansions and contractions. Those experiments are required to progressively validate numerical tools with the purpose of obtaining codes capable to predict MHD flows at fusion relevant parameters in complex blanket geometries, taking into account electrical and thermal coupling between fluid and structural materials. Scaled mock-up experiments support the theoretical activities and help deriving engineering correlations for cases which cannot be calculated with required accuracy up to now.

  16. Properties of Ejecta Blanket Deposits Surrounding Morasko Meteorite Impact Craters (Poland)

    Science.gov (United States)

    Szokaluk, M.; Muszyński, A.; Jagodziński, R.; Szczuciński, W.

    2016-08-01

    Morasko impact craters are a record of the fall of a meteorite into the soft sediments. The presented results illustrate the geological structure of the area around the crater as well as providing evidence of the occurrence of ejecta blanket.

  17. Resolution of proliferation issues for a SFR blanket with a specific application

    Energy Technology Data Exchange (ETDEWEB)

    Stauff, N.E. [31 rue baudelaire, voisins le bretonneux, 78960 (France); Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Forget, B.; Driscoll, M.J. [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2009-06-15

    The Sodium Fast Reactor is seen as the most realistic Gen-IV reactor to be built in the near future. France and the US are still developing their designs; these will require improved safety, competitive economics, and also proliferation resistance. To meet this last requirement, both French and American designers show some concerns with the use of breeding blankets. France and the USA won't need breeding blankets to produce plutonium because they already have large amounts of plutonium bred from their LWR fleet to start a new SFR fleet, thus breeding blankets are mainly of interest for minor actinide burning. On the contrary, India and China express great interest in blankets for their SFR designs, to reach a positive breeding gain. For example, the Indian PFBR, a 500 MWe oxide-fueled SFR has a breeding ratio of 1.05. Blankets are used in a Fast Reactor to increase the breeding ratio of the core, by breeding a significant amount of plutonium. The Plutonium bred within these blankets, if these are loaded with Uranium only, is generally of a very high quality, which makes it easily used in a nuclear explosive device. Our research has shown that the plutonium in breeding blankets can be made less attractive to make a nuclear explosive device than LWR-bred plutonium with a burnup of 50 MWd/Kg. Minor actinide doping and moderator addition were the two options studied, as they increase Pu{sup 238} and Pu{sup 240} production. In the work reported here, the methodology developed for securing a breeding blanket was successfully applied to the Indian PFBR. The full paper will describe a design of the PFBR breeding proliferation resistant plutonium within its blankets. The blankets were rendered secure by adding a zirconium hydride moderator and a small volume of MAs. It was demonstrated that reducing the attractiveness of the blanket plutonium would require no external MA dependency by choosing an adequate fuel cycle. The characteristics and performance of this design

  18. Climate-driven expansion of blanket bogs in Britain during the Holocene

    Directory of Open Access Journals (Sweden)

    A. V. Gallego-Sala

    2015-10-01

    Full Text Available Blanket bog occupies approximately 6 % of the area of the UK today. The Holocene expansion of this hyperoceanic biome has previously been explained as a consequence of Neolithic forest clearance. However, the present distribution of blanket bog in Great Britain can be predicted accurately with a simple model (PeatStash based on summer temperature and moisture index thresholds, and the same model correctly predicts the highly disjunct distribution of blanket bog worldwide. This finding suggests that climate, rather than land-use history, controls blanket-bog distribution in the UK and everywhere else. We set out to test this hypothesis for blanket bogs in the UK using bioclimate envelope modelling compared with a database of peat initiation age estimates. We used both pollen-based reconstructions and climate model simulations of climate changes between the mid-Holocene (6000 yr BP, 6 ka and modern climate to drive PeatStash and predict areas of blanket bog. We compiled data on the timing of blanket-bog initiation, based on 228 age determinations at sites where peat directly overlies mineral soil. The model predicts large areas of northern Britain would have had blanket bog by 6000 yr BP, and the area suitable for peat growth extended to the south after this time. A similar pattern is shown by the basal peat ages and new blanket bog appeared over a larger area during the late Holocene, the greatest expansion being in Ireland, Wales and southwest England, as the model predicts. The expansion was driven by a summer cooling of about 2 °C, shown by both pollen-based reconstructions and climate models. The data show early Holocene (pre-Neolithic blanket-bog initiation at over half of the sites in the core areas of Scotland, and northern England. The temporal patterns and concurrence of the bioclimate model predictions and initiation data suggest that climate change provides a parsimonious explanation for the early Holocene distribution and later

  19. Updated conceptual design of helium cooling ceramic blanket for HCCB-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suhao [University of Science and Technology of China, Hefei, Anhui (China); Southwestern Institute of Physics, Chengdu, Sichuan (China); Cao, Qixiang; Wu, Xinghua; Wang, Xiaoyu; Zhang, Guoshu [Southwestern Institute of Physics, Chengdu, Sichuan (China); Feng, Kaiming, E-mail: fengkm@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China)

    2016-11-15

    Highlights: • An updated design of Helium Cooled Ceramic breeder Blanket (HCCB) for HCCB-DEMO is proposed in this paper. • The Breeder Unit is transformed to TBM-like sub-modules, with double “banana” shape tritium breeder. Each sub-module is inserted in space formed by Stiffen Grids (SGs). • The performance analysis is performed based on the R&D development of material, fabrication technology and safety assessment in CN ITER TBM program. • Hot spots will be located at the FW bend side. - Abstract: The basic definition of the HCCB-DEMO plant and preliminary blanket designed by Southwestern Institution of Physics was proposed in 2009. The DEMO fusion power is 2550 MW and electric power is 800 MW. Based on development of R&D in breeding blanket, a conceptual design of helium cooled blanket with ceramic breeder in HCCB-DEMO was presented. The main design features of the HCCB-DEMO blanket were: (1) CLF-1 structure materials, Be multiplier and Li{sub 4}SiO{sub 4} breeder; (2) neutronic wall load is 2.3 MW/m{sup 2} and surface heat flux is 0.43 MW/m{sup 2} (2) TBR ≈ 1.15; (3) geometry of breeding units is ITER TBM-like segmentation; (4)Pressure of helium is 8 MPa and inlet/outlet temperature is 300/500 °C. On the basis of these design, some important analytical results are presented in aspects of (i) neutronic behavior of the blanket; (ii) design of 3D structure and thermal-hydraulic lay-out for breeding blanket module; (iii) structural-mechanical behavior of the blanket under pressurization. All of these assessments proved current stucture fulfill the design requirements.

  20. Wash resistance and repellent properties of Africa University mosquito blankets against mosquitoes

    OpenAIRE

    N. Lukwa; A. Makuwaza; T. Chiwade; Mutambu, S L; M. Zimba; P. Munosiyei

    2013-01-01

    The effect of permethrin-treated Africa University (AU) mosquito blankets on susceptible female Anopheles gambiae sensu lato mosquitoes was studied under laboratory conditions at Africa University Campus in Mutare, Zimbabwe. Wash resistance (ability to retain an effective dose that kills ≥80% of mosquitoes after a number of washes) and repellence (ability to prevent ≥80% of mosquito bites) properties were studied. The AU blankets were wash resistant when 100% mortality was recorded up t...

  1. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  2. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  3. Experimental results and validation of a method to reconstruct forces on the ITER test blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Zeile, Christian, E-mail: christian.zeile@kit.edu; Maione, Ivan A.

    2015-10-15

    Highlights: • An in operation force measurement system for the ITER EU HCPB TBM has been developed. • The force reconstruction methods are based on strain measurements on the attachment system. • An experimental setup and a corresponding mock-up have been built. • A set of test cases representing ITER relevant excitations has been used for validation. • The influence of modeling errors on the force reconstruction has been investigated. - Abstract: In order to reconstruct forces on the test blanket modules in ITER, two force reconstruction methods, the augmented Kalman filter and a model predictive controller, have been selected and developed to estimate the forces based on strain measurements on the attachment system. A dedicated experimental setup with a corresponding mock-up has been designed and built to validate these methods. A set of test cases has been defined to represent possible excitation of the system. It has been shown that the errors in the estimated forces mainly depend on the accuracy of the identified model used by the algorithms. Furthermore, it has been found that a minimum of 10 strain gauges is necessary to allow for a low error in the reconstructed forces.

  4. Liquid immersion blanket design for use in a compact modular fusion reactor

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Barnard, Harold; Haakonsen, Christian; Hartwig, Zachary; Olynyk, Geoffrey; Sierchio, Jennifer; Whyte, Dennis

    2012-10-01

    Traditional tritium breeding blankets in fusion reactor designs include a large amount of structural material. This results in complex engineering requirements, complicated sector maintenance, and marginal tritium breeding ratios (TBR). We present a conceptual design of a fully liquid blanket. To maximize tritium breeding volume, the vacuum vessel is completely immersed in a continuously recycled FLiBe blanket, with the exception of small support posts. FLiBe has a wide liquid temperature window (459 C to 1430 C), low electrical conductivity to minimize MHD effects, similar thermal/fluid characteristics to water, and is chemically inert. While tritium breeding with FLiBe in traditional blankets is poor, we use MCNP neutronics analysis to show that the immersion blanket design coupled with a beryllium neutron multiplier results in TBR > 1. FLiBe is shown to be a sufficient radiation shield for the toroidal field magnets and can be used as a coolant for the vacuum vessel and divertor, allowing for a simplified single-phase, low-pressure, single-fluid cooling scheme. When coupled with a high-field compact reactor design, the immersion blanket eliminates the need for complex sector maintenance, allows the vacuum vessel to be a replaceable component, and reduces financial cost.

  5. Application of the heterogeneous (HG) blankets for controlling the base structure vibration levels

    Science.gov (United States)

    Gautam, Ashwini; Fuller, C. R.; Carneal, James

    2005-09-01

    This work presents an extensive analysis of the properties of the heterogeneous blankets (HGs) and their effectiveness in controlling the vibration of the base structures. The HG blankets act as a distributed vibration absorbers consisting of mass inhomogeneities inside a layer of porous media (acoustic foam). To asses the effectiveness of these HG blankets in controlling the vibration of the base structure (plate), detailed finite element (FE) models of the foam, the HG blanket, and the plate have been developed. The foam has been dicretized using the eight node hexahedral elements. The HG blanket model consists of the foam model with point masses attached to the nodes of the elements. The structural (plate) domain is discretized using four node rectangular plate elements. Each of the FE models has been individually validated by comparing the numerical results with their respective analytical and experimental results. The structural and the HG blanket FE models were then combined into a larger FE model comprised of a base plate with the HG treatment on its surface. The results from this numerical model have shown that there is a significant reduction in the vibration levels of the base plate due to the HG treatment on it.

  6. Multiplier, moderator, and reflector materials for lithium-vanadium fusion blankets.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.

    1999-10-07

    The self-cooled lithium-vanadium fusion blanket concept has several attractive operational and environmental features. In this concept, liquid lithium works as the tritium breeder and coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because of its superior performance relative to other alloys for this application. However, this concept has poor attenuation characteristics and energy multiplication for the DT neutrons. An advanced self-cooled lithium-vanadium fusion blanket concept has been developed to eliminate these drawbacks while maintaining all the attractive features of the conventional concept. An electrical insulator coating for the coolant channels, spectral shifter (multiplier, and moderator) and reflector were utilized in the blanket design to enhance the blanket performance. In addition, the blanket was designed to have the capability to operate at high loading conditions of 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading. This paper assesses the spectral shifter and the reflector materials and it defines the technological requirements of this advanced blanket concept.

  7. Proposal to negotiate, without competitive tendering, the renewal of a blanket purchase contract for the supply and maintenance of VME single-board computers for the LHC and its injectors

    CERN Document Server

    2003-01-01

    This document concerns the renewal of a blanket purchase contract for the supply and maintenance of VME single-board computers for the LHC and its injectors. The Finance Committee is invited to agree to the negotiation of the renewal of a blanket purchase contract with CREATIVE ELECTRONIC SYSTEMS (CH), without competitive tendering, for the supply and maintenance of VME single-board computers for an estimated total amount not exceeding 2 500 000 Swiss francs for the period 2004-2006. The firm has indicated the following distribution by country of the contract value covered by this adjudication proposal: CH-80%, US-20%.

  8. Upflow anaerobic sludge blanket reactor--a review.

    Science.gov (United States)

    Bal, A S; Dhagat, N N

    2001-04-01

    Biological treatment of wastewater basically reduces the pollutant concentration through microbial coagulation and removal of non-settleable organic colloidal solids. Organic matter is biologically stabilized so that no further oxygen demand is exerted by it. The biological treatment requires contact of the biomass with the substrate. Various advances and improvements in anaerobic reactors to achieve variations in contact time and method of contact have resulted in development of in suspended growth systems, attached growth or fixed film systems or combinations thereof. Although anaerobic systems for waste treatment have been used since late 19th century, they were considered to have limited treatment efficiencies and were too slow to serve the needs of a quickly expanding wastewater volume, especially in industrialized and densely populated areas. At present aerobic treatment is the most commonly used process to reduce the organic pollution level of both domestic and industrial wastewaters. Aerobic techniques, such as activated sludge process, trickling filters, oxidation ponds and aerated lagoons, with more or less intense mixing devices, have been successfully installed for domestic wastewater as well as industrial wastewater treatment. Anaerobic digestion systems have undergone modifications in the last two decades, mainly as a result of the energy crisis. Major developments have been made with regard to anaerobic metabolism, physiological interactions among different microbial species, effects of toxic compounds and biomass accumulation. Recent developments however, have demonstrated that anaerobic processes might be an economically attractive alternative for the treatment of different types of industrial wastewaters and in (semi-) tropical areas also for domestic wastewaters. The anaerobic degradation of complex, particulate organic matter has been described as a multistep process of series and parallel reactions. It involves the decomposition of organic and

  9. Materials development for ITER shielding and test blanket in China

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.M., E-mail: Chenjm@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wu, J.H.; Liu, X.; Wang, P.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China); Wang, Z.H.; Li, Z.N. [Ningxia Orient Non-ferrous Metals Group Co. Ltd., P.O. Box 105, Shizuishan (China); Wang, X.S.; Zhang, P.C. [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621900 (China); Zhang, N.M.; Fu, H.Y.; Liu, D.H. [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)

    2011-10-01

    China is a member of the ITER program and is developing her own materials for its shielding and test blanket modules. The materials include vacuum-hot-pressing (VHP) Be, CuCrZr alloy, 316L(N) and China low activation ferritic/martensitic (CLF-1) steels. Joining technologies including Be/Cu hot isostatic pressing (HIP) and electron beam (EB) weldability of 316L(N) were investigated. Chinese VHP-Be showed good properties, with BeO content and ductility that satisfy the ITER requirements. Be/Cu mock-ups were fabricated for Be qualification tests at simulated ITER vertical displacement event (VDE) and heat flux cycling conditions. Fine microstructure and good mechanical strength of the CuCrZr alloy were achieved by a pre-forging treatment, while the weldability of 316L(N) by EB was demonstrated for welding depths varying from 5 to 80 mm. Fine microstructure, high strength, and good ductility were achieved in CLF-1 steel by an optimized normalizing, tempering and aging procedure.

  10. Vacuum Permeator Analysis for Extraction of Tritium from DCLL Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse, Paul Weston [Idaho National Laboratory; Merrill, Brad Johnson [Idaho National Laboratory

    2014-11-01

    It is envisioned that tritium will be extracted from DCLL blankets using a vacuum permeator. We derive here an analytical solution for the extraction efficiency of a permeator tube, which is a function of only two dimensionless numbers: one that indicates whether radial transport is limited in the PbLi or in the solid membrane, and another that is the ratio of axial and radial transport times in the PbLi. The permeator efficiency is maximized by decreasing the velocity and tube diameter, and increasing the tube length. This is true regardless of the mass transport correlation used; we review several here and find that they differ little, and the choice of correlation is not a source of significant uncertainty here. The PbLi solubility, on the other hand, is a large source of uncertainty, and we identify upper and lower bounds from the literature data. Under the most optimistic assumptions, we find that a ferritic steel permeator operating at 550 °C will need to be at least an order of magnitude larger in volume than previous conceptual designs using niobium and operating at higher temperatures.

  11. Detailed 3-D nuclear analysis of ITER blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Bohm, T.D., E-mail: tdbohm@wisc.edu [University of Wisconsin-Madison, Madison, WI (United States); Sawan, M.E.; Marriott, E.P.; Wilson, P.P.H. [University of Wisconsin-Madison, Madison, WI (United States); Ulrickson, M.; Bullock, J. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-10-15

    In ITER, the blanket modules (BM) are arranged around the plasma to provide thermal and nuclear shielding for the vacuum vessel (VV), magnets, and other components. As a part of the BM design process, nuclear analysis is required to determine the level of nuclear heating, helium production, and radiation damage in the BM. Additionally, nuclear heating in the VV is also important for assessing the BM design. We used the CAD based DAG-MCNP5 transport code to analyze detailed models inserted into a 40-degree partially homogenized ITER global model. The regions analyzed include BM01, the neutral beam injection (NB) region, and the upper port region. For BM01, the results show that He production meets the limit necessary for re-welding, and the VV heating behind BM01 is acceptable. For the NBI region, the VV nuclear heating behind the NB region exceeds the design limit by a factor of two. For the upper port region, the nuclear heating of the VV exceeds the design limit by up to 20%. The results presented in this work are being used to modify the BM design in the cases where limits are exceeded.

  12. The development of ferritic steels for DEMO blanket

    Energy Technology Data Exchange (ETDEWEB)

    Kohyama, A. [Kyoto Univ. (Japan). Inst. of Advanced Energy; Hishinuma, A.; Shiba, K. [Tokai Establishment, JAERI, Tokai, Ibaraki (Japan); Kohno, Y. [Department of Materials Science, University of Tokyo, Hongo, Tokyo 113 (Japan); Sagara, A. [National Institute for Fusion Science, Toki, Gifu (Japan)

    1998-09-01

    The development of low-activation ferritic/martensitic steels is a key to the achievement of nuclear fusion as a safe, environmentally attractive and economically competitive energy source. The Japanese and the European Fusion Materials programs have put low-activation ferritic and martensitic steels R and D at the highest priority for a demonstration reactor (DEMO) and the beyond. An international collaborative test program on low-activation ferritic/martensitic steels for fusion is in progress as an activity of the International Energy Agency (IEA) fusion materials working group to verify the feasibility of using ferritic/martensitic steels for fusion by an extensive test program covering the most relevant technical issues for the qualification of a material for a nuclear application. The development of a comprehensive data base on the representative industrially processed reduced-activation steels of type 8-9Cr-2WVTa is underway for providing designers a preliminary set of material data for the mechanical design of components, e.g. for DEMO relevant blanket modules. The current design status of FFHR and SSTR utilizing low-activation ferritic steels is reviewed and future prospects are defined. (orig.) 12 refs.

  13. Conceptual design of a First Wall mock-up experiment in preparation for the qualification of breeding blanket technologies in the Helium Loop Karlsruhe (HELOKA) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zeile, C., E-mail: christian.zeile@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Abou-Sena, A.; Boccaccini, L.V.; Ghidersa, B.E.; Kang, Q.; Kunze, A. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Lamberti, L. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Dipartimento Energia, Politecnico di Torino (Italy); Maione, I.A.; Rey, J.; Weth, A. von der [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • Experiment in preparation for the qualification of Breeding Blanket technologies in HELOKA facility is proposed. • Experimental capabilities, instrumentation of the mock-up and experimental program are presented. • Design and manufacturing of the mock-up is described. • Design of modular attachment system to obtain different stress levels and distributions on the mock-up is discussed. - Abstract: An experimental program based on a First Wall mock-up is presented as preparation for the qualification of breeding blanket mock-ups at high heat flux in the Helium Loop Karlsruhe (HELOKA) facility. Two objectives of the experimental program have been defined: testing of the experimental setup and a first validation of FE models. The design and manufacturing of mock-up representing about 1/3 of the heated zone of an ITER Test Blanket Module (TBM) First Wall is discussed. A modular attachment system concept has been developed for the fixation of the mock-up in order to be able to generate different stress distributions and levels on the plate, which is confirmed by thermo-mechanical analyses. The HELOKA facility is able to provide a TBM relevant helium cooling system and to generate the required surface heat flux by an electron beam gun. An installed IR camera can be used to measure the temperature distribution on the surface.

  14. Evaluation of reactor anaerobic sludge blanket in the treatment of wastewater slaughterhouse

    Directory of Open Access Journals (Sweden)

    Luciano dos Santos Rodrigues

    2014-10-01

    Full Text Available This study aimed to evaluate the efficiency of a full-scale treatment system effluent slaughterhouse. The full-scale Sewage Treatment Station was designed for a daily flow of 60 m³/d, corresponding to a slaughter of 60 cattle per day. The treatment system consists of a Parshall flume for flow measurement, followed by static sieve, gravimetric fat, sedimentation and anaerobic sludge blanket (UASB box and it was monitored weekly from January to August. The following parameters were analyzed: pH, alkalinity, biochemical oxygen demand (BOD, chemical oxygen demand (COD, total solids (TS, total suspended solids (TSS, ammonia nitrogen, and total nitrogen kjedhall. The average pH, COD and TSS in the UASB reactor effluent values were 6.96, 660 mg/L and 188 mg/L , respectively. The system proved to be efficient, with average removal of 96.40% to 89.92% for COD and TSS. The UASB reactor showed high performance in removing solids and organic load. Thus, this reactor becomes a viable alternative for treating wastewater slaughterhouse, offering good removal results and low cost of deployment.

  15. Proposal for the award of a blanket purchase contract for the supply of high performance ten-Gigabit Ethernet routers for the LHC

    CERN Document Server

    2005-01-01

    This document concerns the award of a blanket purchase contract for the supply of high performance ten-Gigabit Ethernet routers for the LHC. The Finance Committee is invited to agree to the negotiation of a blanket purchase contract with the consortium T-SYSTEMS (DE) â?" FORCE10 (US), the lowest bidder complying with the specification, for the supply of high performance ten-Gigabit Ethernet routers, the necessary training of CERN personnel and five yearsâ?? maintenance of the equipment for a total amount not exceeding 6 382 000 US dollars (7 593 671 Swiss francs) for a period of five years. The rate of exchange used is that stipulated in the tender.

  16. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers excellent heat transfer and corrosion properties, and most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. For this reason, over the years numerous blanket concepts have been proposed with the scope of reducing concerns associated with lithium. The European helium cooled pebble bed breeding blanket (HCPB) physically confines lithium within ceramic pebbles. The pebbles reside within a low activation martensitic ferritic steel structure and are cooled by helium. The blanket is composed of the tritium breeding lithium ceramic pebbles and neutron multiplying beryllium pebbles. Other blanket designs utilize lead to lower chemical reactivity; LiPb alone can serve as a breeder, coolant, neutron multiplier, and tritium carrier. Blankets employing LiPb coolants alongside silicon carbide structural components can achieve high plant efficiency, low afterheat, and low operation pressures. This alloy can also be used alongside of helium such as in the dual-coolant lead-lithium concept (DCLL); helium is utilized to cool the first wall and structural components made up of low-activation ferritic steel, whereas lithium-lead (LiPb) acts as a self-cooled breeder in the inner channels of the blanket. The helium-cooled steel and lead-lithium alloy are separated by flow channel inserts (usually made out of silicon carbide) which thermally insulate the self-cooled breeder region from the helium cooled steel walls. This creates a LiPb breeder with a much higher exit temperature than the steel which increases the power cycle efficiency and also lowers the magnetohydrodynamic (MHD) pressure drop [6]. Molten salt blankets with a mixture of lithium, beryllium, and fluorides (FLiBe) offer good tritium breeding

  17. Performance analysis of upflow anaerobic sludge blanket reactors in the treatment of swine wastewater

    Directory of Open Access Journals (Sweden)

    Luiz A. V. Sarmento

    2007-07-01

    Full Text Available The adoption of confined systems for swine production have been increased the use of water in these installations and, consequently, an each time greater production of wastewater. Diagnostics have been showed a high level of water pollution due the waste material release on lands without criterions and in waters without previous treatment. The utilization of anaerobic process to reduce the liquid residues pollutant power has been detaching because beyond reducing the environmental pollution they allow to recover the energetic potential as fertilizer and biogas. In this work the performance of two real scale upflow anaerobic sludge blanket reactors treating swine wastewater were evaluated through operational system analysis, physical-chemical parameters of pollution and biogas production measurement. The results permitted to verify upflow rate speeds above of the value for which these reactors were designed and hydraulic residence times under of the design value. These factors affected negatively the treatment and had reflected on the law removal of the physical-chemical parameters and biogas production. The maximum removal efficiencies reached for TSS, BOD and COD were 72,5%, 34,7% and 40,0%, respectively. The mean rate of biogas liberation was 0,011 m-³ m-².h-1.

  18. Safety assessment for electricity generation failure accident of gas cooled nuclear power plant using system dynamics (SD) method

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering

    2013-04-15

    The power production failure happens in the loss of coolant of the nuclear power plants (NPPs). The air ingress is a serious accident in gas cooled NPPs. The quantification of the study performed by the system dynamics (SD) method which is processed by the feedback algorithms. The Vensim software package is used for the simulation, which is performed by the Monte-Carlo method. Two kinds of considerations as the economic and safety properties are important in NPPs. The result shows the stability of the operation when the power can be decided. The maximum value of risk is the 11.77 in 43rd and the minimum value is 0.0 in several years. So, the success of the circulation of coolant is simulated by the dynamical values. (orig.)

  19. Key achievements in elementary R&D on water-cooled solid breeder blanket for ITER test blanket module in JAERI

    Science.gov (United States)

    Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Hayashi, K.; Tanigawa, H.; Ochiai, K.; Nishitani, T.; Tobita, K.; Akiba, M.

    2006-02-01

    This paper presents the significant progress made in the research and development (R&D) of key technologies on the water-cooled solid breeder blanket for the ITER test blanket modules in JAERI. Development of module fabrication technology, bonding technology of armours, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup and tritium release behaviour from a Li2TiO3 pebble bed under neutron-pulsed operation conditions are summarized. With the improvement of the heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H can be obtained by homogenizing it at 1150 °C followed by normalizing it at 930 °C after the hot isostatic pressing process. Moreover, a promising bonding process for a tungsten armour and an F82H structural material was developed using a solid-state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it has been confirmed that a fatigue lifetime correlation, which was developed for the ITER divertor, can be made applicable for the F82H first wall mockup. As for R&D on the breeder material, Li2TiO3, the effect of compression loads on effective thermal conductivity of pebble beds has been clarified for the Li2TiO3 pebble bed. The tritium breeding ratio of a simulated multi-layer blanket structure has successfully been measured using 14 MeV neutrons with an accuracy of 10%. The tritium release rate from the Li2TiO3 pebble has also been successfully measured with pulsed neutron irradiation, which simulates ITER operation.

  20. The state of the art report on the fabrication of FW blanket for the fusion reactor and mock-up development in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Whan; Baek, Jong Hyuk; Park, Jeong Yong; Kim, Hyun Gil; Jeong, Yong Hwan

    2004-08-01

    Blanket-shield system in ITER is the component where it directly is faced with high-heat plasma. Function of blanket is to sustain extremely high temperature environment as well as to remove heat flux generated its surface. It mainly consists of plasma facing part, heat sinking part and structural part. Plasma facing part is made of armour materials such as beryllium, tungsten and carbon fiber composite. Heat sinking part is made of copper alloy to maximize heat transfer into flowing coolant inside of blanket. Structural material is used in 316LN stainless steel. As joining such dissimilar materials emerged as an issue, many developed countries have spurred the development of joint technology. This technical report was focused on the activities of EU regarding joining beryllium, copper and stainless steel. EU have adopted to Hot Isostatic Pressing (HIP) to join beryllium, copper and stainless steel. Although brazing process is not actively investigated compared as HIP, it still investigated in some countries to support HIP. Fabrication of mock-up is accomplished by CEA in France to finish small scale mock-up in 1996, medium and large scale mock-up in 1997. In recent, FRAMATOME in EU has focused on manufacturing prototype used for ITER.

  1. Proposal for the award of blanket contracts for the supply of Intel-based desktop PCs, display monitors and portable PCs

    CERN Document Server

    2000-01-01

    This document concerns the award of blanket contracts for the supply of the three following categories of equipment for the period 2001-2004: a) desktop PCs (complete PC systems but without display monitors), b) display monitors (conventional CRTs or flat screen LCDs) and c) portable PCs (also called notebooks or laptops). Following a market survey carried out among 41 firms in fourteen Member States, an invitation to tender (IT-2692/IT) was sent on 19 May 2000 to 12 firms and three consortia, each consisting of two firms, in five Member States. By the closing date, CERN had received seven tenders, all from the Swiss subsidiaries of the firms and consortia. The Finance Committee is invited to agree to the negotiation of - blanket contracts with VOBIS (CH), ELONEX (CH) and FUJITSU-SIEMENS (CH), the three lowest bidders complying with the specification, for the supply of Desktop PCs; - blanket contracts with VOBIS (CH), SYNOPTIC (CH) and ELONEX (CH), the three lowest bidders offering display monitors manufactur...

  2. Improved structure and long-life blanket concepts for heliotron reactors

    Science.gov (United States)

    Sagara, A.; Imagawa, S.; Mitarai, O.; Dolan, T.; Tanaka, T.; Kubota, Y.; Yamazaki, K.; Watanabe, K. Y.; Mizuguchi, N.; Muroga, T.; Noda, N.; Kaneko, O.; Yamada, H.; Ohyabu, N.; Uda, T.; Komori, A.; Sudo, S.; Motojima, O.

    2005-04-01

    New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius of over 14 m is selected to permit a blanket-shield thickness of about 1 m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armour tiles that soften the neutron energy spectrum incident on the self-cooled flibe-reduced activation ferritic steel blanket. In this adaptation of the spectral-shifter and tritium breeder blanket (STB) concept a local tritium breeding ratio over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the superconducting magnet coils is also significantly improved. Using constant cross sections of a helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armour tiles. The key R&D issues for developing the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated.

  3. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin; Liu, Yi [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University System, College Station, TX 77843-3122 (United States); Olewski, Tomasz; Vechot, Luc [Mary Kay O’Connor Process Safety Center - Qatar, Texas A and M University at Qatar, PO Box 23874, Doha (Qatar); Mannan, M. Sam, E-mail: mannan@tamu.edu [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University System, College Station, TX 77843-3122 (United States)

    2014-09-15

    Highlights: • Reveal the existence of blocking effect of high expansion foam on an LNG pool. • Study the blanketing effect of high expansion foam quantitatively. • Correlate heat flux for vaporization with foam breaking rate. • Propose the physical mechanism of blanketing effect. - Abstract: With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect.

  4. Development of the Water Cooled Ceramic Breeder Test Blanket Module in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Suzuki, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Ezato, Koichiro; Seki, Yohji; Yoshikawa, Akira; Tsuru, Daigo; Akiba, Masato [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2012-08-15

    The development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and evaluation toward DEMO blanket, the module fabrication technology development by a candidate structural material, reduced activation martensitic/ferritic steel, F82H, is one of the most critical items from the viewpoint of realization of TBM testing in ITER. In Japan, fabrication of a real scale first wall, side walls, a breeder pebble bed box and assembling of the first wall and side walls have succeeded. Recently, the real scale partial mockup of the back wall was fabricated. The fabrication procedure of the back wall, whose thickness is up to 90 mm, was confirmed toward the fabrication of the real scale back wall by F82H. Important key technologies are almost clarified for the fabrication of the real scale TBM module mockup. From the view point of testing and evaluation, development of the technology of the blanket tritium recovery, development of advanced breeder and multiplier pebbles and the development of the blanket neutronics measurement technology are also performed. Also, tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been started as the verification test of tritium production performance. This paper overviews the recent achievements of the development of the WCCB TBM in Japan.

  5. Assessment of anti-fouling strategies for membrane coupled with upflow anaerobic sludge blanket (MUASB) process.

    Science.gov (United States)

    Tran, Thao Minh; Ye, Yun; Chen, Vicki; Stuetz, Richard; Le-Clech, Pierre

    2013-01-01

    In this novel process, domestic wastewater was filtered by a hollow-fibre membrane coupled with an upflow anaerobic sludge blanket (MUASB) bioreactor. To improve the process sustainability and decrease energy costs, the membranes were operated under low fluxes with little, or no, shear. The efficiency of anti-fouling strategies, including relaxation, backwashing and supply of low aeration and stir rates, was assessed through detailed characterization of the fouling layers. Results indicated that backwashing was more efficient than relaxation, even when the systems were operated under the same flux productivity. In terms of shear supply, stir provided a better fouling limitation strategy compared to aeration, at similar shear stress values. Physical and chemical cleaning methods were applied to recover three fouling fractions (i.e. cake, residual and irreversible) for better characterization of the fouling layers. Under the sustainable operating conditions used in this study, most of the fouling was easily reversible by simple rinsing. In addition, permanent and irreversible fouling, resulting in the need for frequent chemical cleanings and potential membrane degradation, is limited once small shear stresses are applied. These outcomes are expected to form the basis for the future assessment of trade-off between operation, maintenance and replacement costs of membrane filtration processes used in wastewater treatment.

  6. Thermal Performance of Composite Flexible Blanket Insulations for Hypersonic Aerospace Vehicles

    Science.gov (United States)

    Kourtides, Demetrius A.

    1993-01-01

    This paper describes the thermal performance of a Composite Flexible Blanket Insulation (C.F.B.I.) considered for potential use as a thermal protection system or thermal insulation for future hypersonic vehicles such as the National Aerospace Plane (N.A.S.P.). Thermophysical properties for these insulations were also measured including the thermal conductivity at various temperatures and pressures and the emissivity of the fabrics used in the flexible insulations. The thermal response of these materials subjected to aeroconvective heating from a plasma arc is also described. Materials tested included two surface variations of the insulations, and similar insulations coated with a Protective Ceramic Coating (P.C.C.). Surface and backface temperatures were measured in the flexible insulations and on Fibrous Refractory Composite Insulation (F.R.C.I.) used as a calibration model. The uncoated flexible insulations exhibited good thermal performance up to 35 W/sq cm. The use of a P.C.C. to protect these insulations at higher heating rates is described. The results from a computerized thermal analysis model describing thermal response of those materials subjected to the plasma arc conditions are included. Thermal and optical properties were determined including thermal conductivity for the rigid and flexible insulations and emissivity for the insulation fabrics. These properties were utilized to calculate the thermal performance of the rigid and flexible insulations at the maximum heating rate.

  7. Proposal to Negotiate, without Competitive Tendering, a Blanket Order for High-Voltage Thyratrons for the CERN Accelerators

    CERN Document Server

    2002-01-01

    This document concerns the supply of thyratrons to be used as high-voltage and high-current switches for the fast-pulsed magnet systems of the CERN accelerators and for the protection of the klystrons of RF systems. Following a market survey (MS-3136/SL/LHC) carried out among 18 firms in ten Member States, CERN entered into negotiations with one firm in one Member State. The Finance Committee is invited to agree to the negotiation, without competitive tendering, of a new blanket order with E2V TECHNOLOGIES (GB) for up to 800 000 pounds sterling to cover the supply of thyratrons for the years 2003, 2004 and 2005, subject to price revision for inflation for deliveries after 31 December 2003. At the present rate of exchange, this amount is equivalent to 1 855 000 Swiss francs. The firm has indicated the following distribution by country of the order value covered by this adjudication proposal: GB - 100%.

  8. Development of Joining Technologies for the ITER Blanket First Wall

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Kwon; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Sang Yoon; Park, Jeong Yong; Jeong, Yong Hwan; Lee, Dong Won; Kim, Suk Kwon [KAERI, Daejeon (Korea, Republic of)

    2011-01-15

    The design of the ITER blanket first wall includes the Beryllium amour tiles joined to CuCrZr heat sink with stainless steel cooling tubes. For the ITER application, the Be/CuCrZr/SS joint was proposed as a first wall material. The joining of Be/CuCrZr as well as CuCrZr/SS was generally carried out by using a hot isostatic pressing (CuC) in many countries. The joining strength for Be/CuCrZr is relatively lower than that for CuCrZr/SS, since we usually forms surface oxides (BeO) and brittle a metallics with Cu. Therefore, the joining technology for the Be/CuCrZr joint has been investigated. Be is apt to adsorb oxygen in an air atmosphere, so we should be etched to eliminate the surface pre-oxide using a chemical solution and Ar ions in a vacuum chamber. Then we is coated with a first was to prevent further oxidation. The kinds of a first we are chosen to be able to enhance the joining strength as inhibiting excessive be diffusion. The performance of the Be/CuCrZr/SS joint used for the ITER first wall is primarily dependent on the joining strength of the Be/CuCrZr interface. The Cr/Cu and Ti/Cr/Cu interlayers enabled the successful joining of be tile to CuCrZr plate. Moreover, ion-beam assisted deposition (IBAD) increased joining strength of the Be/CuCrZr joint mock-ups. IBAD induced the increased packing of depositing atoms, which resulted in denser and more adhesive interlayers. The interlayers formed by IBAD process revealed about 40% improved resistance to the scratch test. It is suggested that the improved adhesion of coating interlayers enabled tight joining of Be and CuCrZr blocks. As compared to without IBAD coating, the shear strength as well as the 4-point bend strength were increased more than 20% depending on interlayer types and coating conditions

  9. Numerical design of the Seed-Blanket Unit for the thorium nuclear fuel cycle

    Directory of Open Access Journals (Sweden)

    Oettingen Mikołaj

    2016-01-01

    Full Text Available In the paper we present the Monte Carlo modelling by the means of the Monte Carlo Continuous Energy Burn-up Code of the 17x17 Pressurized Water Reactor fuel assembly designed according to the Radkowsky Thorium Fuel concept. The design incorporates the UO2 seed fuel located in the centre and (Th,UO2 blanket fuel located in the peripheries of fuel assembly. The high power seed region supplies neutrons for the low power blanket region and thus induces breeding of fissile 233U from fertile 232Th. The both regions are physically separated and thus this approach is also known as either the heterogonous approach or the Seed-Blanket Unit. In the numerical analysis we consider the time evolutions of infinite neutron multiplication factor, axial/radial power density profile, 233U, 235U and 232Th.

  10. Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Zhu, Qingjun; Li, Jia; Liu, Songlin

    2016-07-01

    In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the water-cooled ceramic breeder blanket for CFETR. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  11. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    OpenAIRE

    Zhang, Guanheng

    2015-01-01

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the 200 Displacements per Atom (DPA) radiation damage constraint of presently verified cladding materials. The S&B core is designed to have an elongated seed (or “driver”) to maximize the fraction of neutrons that radially leak into the su...

  12. Neutronics optimization study for D-D fusion reactor blanket/shield

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, T.; Kanda, Y.; Nakashima, H.

    1985-12-01

    Position-dependent optimization calculations have been carried out on a D-D fusion reactor blanket/shield to maximize the energy gain in the blanket and to minimize the atomic displacement rate of the copper stabilizer in the superconducting magnet. The results obtained by using the optimization code SWAN indicate the advantage of D/sub 2/O coolant over H/sub 2/O coolant with respect to increasing the energy gain, and the difference in the optimal shield distributions between D-T and D-D neutron sources. The possibility of improving both the energy gain and radiation shielding characteristics is also discussed.

  13. Study of thorium-uranium based molten salt blanket in a fusion-fission hybrid reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing, E-mail: zhao_jing@mail.tsinghua.edu.cn [INET, Tsinghua University, Beijing 100084 (China); Yang Yongwei; Zhou Zhiwei [INET, Tsinghua University, Beijing 100084 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer A molten salt blanket has been designed for the fusion-fission hybrid reactor. Black-Right-Pointing-Pointer The use of Thorium in the molten salt fuels has been studied. Black-Right-Pointing-Pointer The molten salt was consisted of F-Li-Be and with the thickness of 40 cm. Black-Right-Pointing-Pointer The concentration of {sup 6}Li was chosen to be the natural enrichment ratio. Black-Right-Pointing-Pointer The result shows that TBR is greater than 1, M is about 15-16. - Abstract: Not only solid fuels, but also liquid fuels can be used for the fusion-fission symbiotic reactor blanket. The operational record of the molten salt reactor with F-Li-Be was very successful, so the F-Li-Be blanket was chosen for research. The molten salt has several features which are suited for the fusion-fission applications. The fuel material uranium and thorium were dissolved in the F-Li-Be molten salt. A combined program, COUPLE, was used for neutronics analysis of the molten salt blanket. Several cases have been calculated and compared. Not only the influence of the different fuels have been studied, but also the thickness of the molten salt, and the concentration of the {sup 6}Li in the molten salt. Preliminary studies indicate that when thorium-uranium-plutonium fuels were added into a F-Li-Be molten salt blanket and with a component of 71% LiF-2% BeF{sub 2}-13.5% ThF{sub 4}-8.5% UF{sub 4}-5% PuF{sub 3}, and also with the molten salt thickness of 40 cm and natural concentration of {sup 6}Li, the appropriate blanket energy multiplication factor and TBR can be obtained. The result shows that thorium-uranium molten salt can be used in the blanket of a fusion-fission symbiotic reactor. The research on the molten salt blanket must be valuable for the design of fusion-fission symbiotic reactor.

  14. 75 FR 62510 - Chevron U.S.A. Inc.; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2010-10-12

    ... prohibited by U.S. law or policy. The application was filed under section 3 of the Natural Gas Act (NGA) as... U.S.A. Inc.; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY: Office of..., 2010, by Chevron U.S.A. Inc. (Chevron), requesting blanket authorization to export liquefied natural...

  15. 75 FR 13755 - Freeport LNG Development, L.P.; Application To Amend Blanket Authorization To Export Liquefied...

    Science.gov (United States)

    2010-03-23

    ... Freeport LNG Development, L.P.; Application To Amend Blanket Authorization To Export Liquefied Natural Gas... application filed on March 4, 2010, by Freeport LNG Development, L.P. (Freeport LNG), requesting an amendment to its blanket authorization to export liquefied natural gas (LNG) granted by DOE/FE on May 28,...

  16. 76 FR 2093 - Eni USA Gas Marketing LLC; Application for Blanket Authorization To Export Liquefied Natural Gas

    Science.gov (United States)

    2011-01-12

    ... Gas Marketing LLC; Application for Blanket Authorization To Export Liquefied Natural Gas AGENCY... November 30, 2010, by Eni USA Gas Marketing LLC (Eni USA), requesting blanket authorization to export... and Gas Global Security and Supply, Office of Fossil Energy, Forrestal Building, Room 3E-042, 1000...

  17. Distribution of bog and heath in a Newfoundland blanket bog complex: topographic limits on the hydrological processes governing blanket bog development

    Directory of Open Access Journals (Sweden)

    P. A. Graniero

    1999-01-01

    Full Text Available This research quantified the role of topography and hydrological processes within and, hence, the development of, blanket bogs. Topographic characteristics were derived from digital elevation models (DEMs developed for the surface and underlying substrate at three blanket bog sites on the southeastern lobe of the Avalon Peninsula, Newfoundland. A multinomial logit (MNL model of the probability of bog occurrence was constructed in terms of relevant topographic characteristics. The resulting model was then used to investigate the probabilistic boundary conditions of bog occurrence within the landscape. Under average curvatures for the sites studied, substrate slopes up to 0.065 favoured blanket bog development. However, steeper slopes could, theoretically, be occupied by blanked bog where water is concentrated by convergent curvatures or large contributing areas. Near community boundaries, bog and heath communities both occupied similar topographic conditions. Since these boundary locations are capable of supporting the hydrological conditions necessary for bog development, the heath is likely to be encroached upon by bog.

  18. 76 FR 31326 - Gulf LNG Pipeline, LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2011-05-31

    ... Energy Regulatory Commission Gulf LNG Pipeline, LLC; Notice of Request Under Blanket Authorization Take notice that on May 18, 2011, Gulf LNG Pipeline, LLC (GLNG Pipeline), Colonial Brookwood Center, 569... to Margaret G. Coffman, Counsel, Gulf LNG Pipeline Company, LLC, Colonial Brookwood Center,...

  19. Stochastic modeling to determine the economic effects of blanket, selective, and no dry cow therapy

    NARCIS (Netherlands)

    Huijps, K.; Hogeveen, H.

    2007-01-01

    In many countries, blanket dry cow therapy (DCT) is the standard way to dry off cows. Because of concerns about antibiotic resistance, selective DCT is proposed as an alternative. The economic consequences of different types of DCT were studied previously, but variation between input traits and diff

  20. Fusion Reactor and Fusion Reactor Materials:Concept Design of the ITER Test Blanket Modules

    Institute of Scientific and Technical Information of China (English)

    HUANGJinhua; LIZaixing; ZHUYukun; HUGang

    2003-01-01

    Performances required: prospect to be adopted in DEMO. Shielding for V.V. and TFC in ITER. Design principles: the peak temperature and stress should not exceed technical limits. The structure of test blanket modules (TBM) should be simple for easy fabrication, and TBM should be robust for reliability.

  1. 76 FR 23808 - Colorado Interstate Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2011-04-28

    ... Authorization Take notice that on April 7, 2011, Colorado Interstate Gas Company (CIG) filed a prior notice... Station located in Sweetwater County, Wyoming, under CIG's blanket certificate issued in Docket No. CP83-21- 000.\\1\\ Specifically, CIG proposes to remove all above and below-ground facilities and the...

  2. Salted lamb meat blanket of Petrolina-Pernambuco, Brazil: process and quality

    Directory of Open Access Journals (Sweden)

    Nely de Almeida Pedrosa

    2014-03-01

    Full Text Available Salted lamb meat blanket, originated from boning, salting, and drying of whole lamb carcass, was studied aiming at obtaining information that support the search for guarantees of origin for this typical regional product from the city of Petrolina-Pernambuco-Brazil. Data from three processing units were obtained, where it was observed the use of a traditional local technology that uses salting, an ancient preservation method; however, with a peculiar boning technique, resulting in a meat product with great potential for exploitation in the form of meat blanket. Based on the values of pH (6.22 ± 0.22, water activity (0.97 ± 0.02, and moisture (69.86 ± 2.26 lamb meat blanket is considered a perishable product, and consequently it requires the use of other preservation methods combined with salt, which along with the results of the microbiological analyses (absence of Salmonella sp, score <10 MPN/g of halophilic bacteria, total coliforms between 6.7 × 10³ and 5.2 × 10(6 FUC/g, and Staphylococcus from 8.1 × 10³ CFU/g at uncountable reinforce the need of hygienic practices to ensure product safety. These results, together with the product notoriety and the organization of the sector are important factors in achieving Geographical Indication of the Salted lamb Meat blanket of Petrolina.

  3. 75 FR 17708 - Kinder Morgan Louisiana Pipeline LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-04-07

    ... Energy Regulatory Commission Kinder Morgan Louisiana Pipeline LLC; Notice of Request Under Blanket Authorization March 30, 2010. Take notice that on March 25, 2010, Kinder Morgan Louisiana Pipeline LLC (KMLP... directed to Norman Watson, Director, Business Development, Kinder Morgan Louisiana Pipeline LLC, 500...

  4. 75 FR 35019 - Kinder Morgan Interstate Gas Transmission LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-06-21

    ... Energy Regulatory Commission Kinder Morgan Interstate Gas Transmission LLC; Notice of Request Under Blanket Authorization June 11, 2010. Take notice that on June 3, 2009, Kinder Morgan Interstate Gas..., Kinder Morgan Interstate Gas Transmission LLC, P.O. Box 281304, Lakewood, Colorado 80228-8304, or...

  5. 75 FR 53966 - Kinder Morgan Interstate Gas Transmission, LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-09-02

    ... Federal Energy Regulatory Commission Kinder Morgan Interstate Gas Transmission, LLC; Notice of Request Under Blanket Authorization August 27, 2010. Take notice that on August 25, 2010, Kinder Morgan Interstate Gas Transmission, LLC (Kinder Morgan), 370 Van Gordon Street, Lakewood, Colorado 80228-8304...

  6. 75 FR 45111 - Kinder Morgan Interstate Gas Transmission LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-08-02

    ... Energy Regulatory Commission Kinder Morgan Interstate Gas Transmission LLC; Notice of Request Under Blanket Authorization July 26, 2010. Take notice that on July 20, 2010, Kinder Morgan Interstate Gas..., Vice President, Regulatory, Kinder Morgan Interstate Gas Transmission LLC, 370 Van Gordon...

  7. 78 FR 44558 - Stingray Pipeline Company, L.L.C.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-07-24

    ... Energy Regulatory Commission Stingray Pipeline Company, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on July 3, 2013, Stingray Pipeline Company, L.L.C. (Stingray), 1100 Louisiana... in the federal waters offshore Louisiana. Specifically, Stingray proposes to abandon, by sale, its...

  8. 75 FR 8327 - Golden Pass Pipeline LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-02-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Golden Pass Pipeline LLC; Notice of Request Under Blanket Authorization February 17, 2010. Take notice that on October 29, 2009, Golden Pass Pipeline, LLC (GPPL), filed in...

  9. 77 FR 48150 - Carolina Gas Transmission Corporation; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-08-13

    ... Grover Compressor Station. Carolina Gas states that it would convert the three standby compressor units... Energy Regulatory Commission Carolina Gas Transmission Corporation; Notice of Request Under Blanket Authorization Take notice that on July 25, Carolina Gas Transmission Corporation (Carolina Gas), 601 Old Taylor...

  10. 78 FR 51182 - Sea Robin Pipeline Company, LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-08-20

    ... Energy Regulatory Commission Sea Robin Pipeline Company, LLC; Notice of Request Under Blanket Authorization Take notice that on July 31, 2013, Sea Robin Pipeline Company, LLC (Sea Robin), P. O. Box 4967....205(b) and 157.216 of the Commission's Regulations under the Natural Gas Act (NGA), and Sea...

  11. Depth of Blanket. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    The determination of the thickness of a sludge blanket in primary and secondary clarifiers and in gravity thickness is important in making operational control decisions. Knowing the thickness and concentration will allow the operator to determine sludge volume and detention time. Designed for individuals who have completed National Pollutant…

  12. 77 FR 53874 - The Dow Chemical Company; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2012-09-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY The Dow... application (Application), filed on July 13, 2012, by The Dow Chemical Company (Dow), requesting blanket... on a short-term or spot market basis for a two-year period commencing on October 5, 2012.\\1\\...

  13. 75 FR 33803 - Sabine Pipe Line LLC; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-06-15

    ... Energy Regulatory Commission Sabine Pipe Line LLC; Notice of Request Under Blanket Authorization June 8, 2010. Take notice that on June 1, 2010, Sabine Pipe Line LLC (Sabine), 4800 Fournace Place, Bellaire...-free, (866) 208-3676 or TTY, (202) 502-8659. Specifically, Sabine proposes to abandon, in place,...

  14. 76 FR 18216 - Southern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2011-04-01

    ... Federal Energy Regulatory Commission Southern Natural Gas Company; Notice of Request Under Blanket Authorization Take notice that on March 16, 2011, Southern Natural Gas Company (Southern), Post Office Box 2563... and 157.216 of the Commission's Regulations under the Natural Gas Act (NGA) as amended, to abandon...

  15. 75 FR 3232 - Northern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-01-20

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Request Under Blanket Authorization January 8, 2010. Take notice that on December 30, 2009, Northern Natural Gas Company (Northern), 1111... sections 157.205 and 157.214 of the Commission's regulations under the Natural Gas Act for authorization...

  16. 75 FR 13535 - Northern Natural Gas Company; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-03-22

    ... Energy Regulatory Commission Northern Natural Gas Company; Notice of Request Under Blanket Authorization March 16, 2010. Take notice that on March 12, 2010, Northern Natural Gas Company (Northern), 1111 South... External Affairs, Northern Natural Gas Company, 1111 South 103rd Street, Omaha, Nebraska 68124, at...

  17. Acoustic contributions of a sound absorbing blanket placed in a double panel structure: absorption versus transmission.

    Science.gov (United States)

    Doutres, Olivier; Atalla, Noureddine

    2010-08-01

    The objective of this paper is to propose a simple tool to estimate the absorption vs. transmission loss contributions of a multilayered blanket unbounded in a double panel structure and thus guide its optimization. The normal incidence airborne sound transmission loss of the double panel structure, without structure-borne connections, is written in terms of three main contributions; (i) sound transmission loss of the panels, (ii) sound transmission loss of the blanket and (iii) sound absorption due to multiple reflections inside the cavity. The method is applied to four different blankets frequently used in automotive and aeronautic applications: a non-symmetric multilayer made of a screen in sandwich between two porous layers and three symmetric porous layers having different pore geometries. It is shown that the absorption behavior of the blanket controls the acoustic behavior of the treatment at low and medium frequencies and its transmission loss at high frequencies. Acoustic treatment having poor sound absorption behavior can affect the performance of the double panel structure.

  18. Analysis of Time-Dependent Tritium Breeding Capability of Water Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Gao, Fangfang; Zhang, Xiaokang; Pu, Yong; Zhu, Qingjun; Liu, Songlin

    2016-08-01

    Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor (CFETR) operating on a Deuterium-Tritium (D-T) fuel cycle. It is necessary to study the tritium breeding ratio (TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder (WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket, the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code (MCNP) and the fusion activation code FISPACT-2007. The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation. In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2015GB108002, and 2014GB119000), and by National Natural Science Foundation of China (No. 11175207)

  19. Status of the EU domestic agency electromagnetic analyses of ITER vacuum vessel and blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, P., E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy, Josep Plá n. 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Albanese, R. [Association Euratom/ENEA/CREATE, DIEL, Università Federico II di Napoli, Napoli 80125 (Italy); Lucca, F.; Roccella, M. [L.T. Calcoli S.a.S. Piazza Prinetti, 26/B, Merate, Lecco (Italy); Portone, A. [Fusion for Energy, Josep Plá n. 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Rubinacci, G. [Association Euratom/ENEA/CREATE, DIEL, Università Federico II di Napoli, Napoli 80125 (Italy); Ventre, S.; Villone, F. [Association Euratom/ENEA/CREATE, DAEIMI, Università di Cassino, Cassino 03043 (Italy)

    2013-10-15

    Highlights: Eddy and halo currents and corresponding Lorentz forces on the ITER vacuum vessel and blanket modules have been computed. VDEs and MDs belonging to cat III, II and I, and a magnet fast discharge have been simulated. The maximum vertical force in the VV (about 120 MN downwards) is experienced in VDE-DW-SLOW cat III. For the FW panel of blanket 18 the most demanding load case is the VDE downward cat III producing a radial torque of about 110 kNm. For the FW of blanket module 10 the most demanding load case is the VDE upward exp cat III producing a poloidal torque of about 130 kNm. -- Abstract: This paper presents the results of the electromagnetic analyses of the ITER vacuum vessel and blanket modules. A wide collection of electromagnetic transients has been simulated: VDEs and MDs belonging to cat III, II and I, and a magnet fast discharge. Eddy and halo currents and corresponding Lorentz forces have been computed using 3D solid FE models implemented in ANSYS and CARIDDI. The plasma equilibrium configurations (displacement and quench of the plasma current, toroidal flux variation due to the β drop and halo currents wetting the first wall) used as an input for the EM analyses have been supplied by the 2D axisymmetric code DINA. The paper describes in detail the methodology used for the analyses and the main results obtained.

  20. 18 CFR 284.284 - Blanket certificates for unbundled sales services.

    Science.gov (United States)

    2010-04-01

    ... granted a blanket certificate of public convenience and necessity pursuant to section 7 of the Natural Gas... the sales customer to arrange for any pipeline-provided service necessary to deliver gas to the customer. (e) Small customer cost-based rate. A pipeline that provided bundled sales service to a...

  1. Non-LTE Line Blanketing in Stars With Extended Outflowing Atmospheres.

    Science.gov (United States)

    Hillier, D. J.; Miller, D. L.

    1995-05-01

    With continuing advances in radiative transfer techniques, increases in computing power, and the availability of at least some of the necessary atomic data, it is now possible to consider the computation of detailed non-LTE model atmospheres in which the full effects of non-LTE line blanketing are taken into account. We discuss our own implementation of non-LTE line blanketing in a spherical non-LTE code developed for the investigation of objects with extended outflows. A partial linearization technique is used to simultaneously solve the radiative transfer equation in conjunction with the equations of statistical equilibrium. Convergence properties are similar to that obtained with an ``Optimal'' Approximate-Lambda Operator. CNO line blanketing has been incorporated without major difficulty, while Fe blanketing is currently being installed. Comparisons of model spectra with recent HST observations of an LMC WC star will be presented. When completed we anticipate the code will be applicable to the study of a wide range of phenomena exhibiting outflows including Luminous-Blue variables, Supernovae, Wold-Rayet stars and Novae. Partial support for this work was provided by NASA through grant Nos GO-5460.01-93A and GO-4550.01-92A from the Space Science Institute which is operated under the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support from NASA award NAGW-3828 is also gratefully acknowledged.

  2. ITER test blanket module error field simulation experiments at DIII-D

    NARCIS (Netherlands)

    Schaffer, M. J.; Snipes, J. A.; Gohil, P.; P. de Vries,; Evans, T. E.; Fenstermacher, M.E.; Gao, X.; Garofalo, A. M.; Gates, D. A.; Greenfield, C.M.; Heidbrink, W. W.; Kramer, G. J.; La Haye, R. J.; Liu, S.; Loarte, A.; Nave, M. F. F.; Osborne, T. H.; Oyama, N.; Park, J. K.; Ramasubramanian, N.; Reimerdes, H.; Saibene, G.; Salmi, A.; Shinohara, K.; Spong, D. A.; Solomon, W. M.; Tala, T.; Zhu, Y. B.; Boedo, J. A.; Chuyanov, V.; Doyle, E. J.; Jakubowski, M.; Jhang, H.; Nazikian, R. M.; Pustovitov, V. D.; Schmitz, O.; Srinivasan, R.; Taylor, T. S.; Wade, M. R.; You, K. I.; Zeng, L.

    2011-01-01

    Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L-H transition, the H-mode pedestal, edge localized m

  3. 77 FR 38622 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-06-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on June 4, 2012, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro,...

  4. 78 FR 68835 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-11-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on October 31, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro,...

  5. 78 FR 25264 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-04-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on April 16, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro,...

  6. 78 FR 53746 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-08-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on August 13, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro,...

  7. 77 FR 14517 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2012-03-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on February 21, 2012 Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 State Highway 56,...

  8. 78 FR 13663 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2013-02-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization Take notice that on February 11, 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, P.O. Box...

  9. 75 FR 8053 - Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization

    Science.gov (United States)

    2010-02-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Southern Star Central Gas Pipeline, Inc.; Notice of Request Under Blanket Authorization February 16, 2010. Take notice that on January 29, 2010, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700...

  10. 77 FR 25711 - Cheniere Marketing, LLC; Application for Blanket Authorization To Export Previously Imported...

    Science.gov (United States)

    2012-05-01

    ... Cheniere Marketing, LLC; Application for Blanket Authorization To Export Previously Imported Liquefied... to export * * *'' \\9\\ \\6\\ Cheniere Marketing, LLC, DOE/FE Order No 2795 at 11. \\7\\ See Dominion Cove... application (Application), filed on March 30, 2012, by Cheniere Marketing, LLC (CMI), requesting...

  11. FEPI-MB: identifying SNPs-disease association using a Markov Blanket-based approach

    Directory of Open Access Journals (Sweden)

    Han Bing

    2011-11-01

    Full Text Available Abstract Background The interactions among genetic factors related to diseases are called epistasis. With the availability of genotyped data from genome-wide association studies, it is now possible to computationally unravel epistasis related to the susceptibility to common complex human diseases such as asthma, diabetes, and hypertension. However, the difficulties of detecting epistatic interaction arose from the large number of genetic factors and the enormous size of possible combinations of genetic factors. Most computational methods to detect epistatic interactions are predictor-based methods and can not find true causal factor elements. Moreover, they are both time-consuming and sample-consuming. Results We propose a new and fast Markov Blanket-based method, FEPI-MB (Fast EPistatic Interactions detection using Markov Blanket, for epistatic interactions detection. The Markov Blanket is a minimal set of variables that can completely shield the target variable from all other variables. Learning of Markov blankets can be used to detect epistatic interactions by a heuristic search for a minimal set of SNPs, which may cause the disease. Experimental results on both simulated data sets and a real data set demonstrate that FEPI-MB significantly outperforms other existing methods and is capable of finding SNPs that have a strong association with common diseases. Conclusions FEPI-MB algorithm outperforms other computational methods for detection of epistatic interactions in terms of both the power and sample-efficiency. Moreover, compared to other Markov Blanket learning methods, FEPI-MB is more time-efficient and achieves a better performance.

  12. Thermal Hydraulic Analysis of K-DEMO Single Blanket Module for Preliminary Accident Analysis using MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Bo; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    To develop the Korean fusion commercial reactor, preliminary design concept for K-DEMO (Korean fusion demonstration reactor) has been announced by NFRI (National Fusion Research Institute). This pre-conceptual study of K-DEMO has been introduced to identify technical details of a fusion power plant for the future commercialization of fusion reactor in Korea. Before this consideration, to build the K-DEMO, accident analysis is essential. Since the Fukushima accident, which is severe accident from unexpected disaster, safety analysis of nuclear power plant has become important. The safety analysis of both fission and fusion reactors is deemed crucial in demonstrating the low radiological effect of these reactors on the environment, during severe accidents. A risk analysis of K-DEMO should be performed, as a prerequisite for the construction of a fusion reactor. In this research, thermal-hydraulic analysis of single blanket module of K-DEMO is conducted for preliminary accident analysis for K-DEMO. Further study about effect of flow distributer is conducted. The normal K-DEMO operation condition is applied to the boundary condition and simulated to verify the material temperature limit using MELCOR. MELCOR is fully integrated, relatively fast-running code developed by Sandia National Laboratories. MELCOR had been used for Light Water Reactors and fusion reactor version of MELCOR was developed for ITER accident analysis. This study shows the result of thermal-hydraulic simulation of single blanket module with MELCOR which is severe accident code for nuclear fusion safety analysis. The difference of mass flow rate for each coolant channel with or without flow distributer is presented. With flow distributer, advantage of broadening temperature gradient in the K-DEMO blanket module and increase mass flow toward first wall is obtained. This can enhance the safety of K-DEMO blanket module. Most 13 .deg. C temperature difference in blanket module is obtained.

  13. EU contribution to the procurement of the ITER blanket first wall

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetto, Patrick, E-mail: Patrick.Lorenzetto@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Boireau, Bruno [AREVA NP, Centre Technique, 71200 Le Creusot (France); Bucci, Philippe [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Cicero, Tindaro [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Conchon, Denis [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Dellopoulos, Georges [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Hardaker, Stephen [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Marshall, Paul [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Nogué, Patrice [AREVA NP, Centre Technique, 71200 Le Creusot (France); Pérez, Marcos [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Gutierrez, Leticia Ruiz [Iberdrola Ingeniería y Construcción S.A.U., Avenida Manoteras 20, 28050 Madrid (Spain); Samaniego, Fernando [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Sherlock, Paul [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Zacchia, Francesco [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain)

    2016-11-01

    Highlights: • Presentation of the blanket first wall design concept to be procured by Europe. • Presentation of the main outcome of the R&D programme with the resulting FW fabrication route. • Presentation of the ITER first wall pre-qualification programme with the results achieved so far. • Presentation of the on-going irradiation experiments. • Presentation of the EU procurement strategy. - Abstract: Fusion for Energy (F4E), the European Union’s Domestic Agency for ITER, is responsible for the procurement of about 50% of the ITER blanket first wall (FW), called normal heat flux FW. A procurement strategy has been implemented by the In-Vessel Project Team at F4E aimed at mitigating technical and commercial risks for the procurement of ITER blanket FW panels, promoting as far as possible competition among industrial partners. This procurement strategy has been supported by an extensive Research and Development (R&D) programme, implemented over more than 15 years in Europe, to develop various fabrication technologies. It includes in particular the manufacture and testing of small-scale, medium-scale mock-ups and full-scale prototypes of blanket FW panels. In this R&D programme, significant efforts have been devoted to the development of a reliable materials joining technique. Hot Isostatic Pressing was selected for the manufacture of the FW panels made from beryllium, copper–chromium–zirconium alloy and 316L(N)-IG austenitic stainless steel. This paper presents the main outcome of the on-going R&D programme, the latest results of the FW qualification programme together with the procurement strategy implemented by F4E for the supply of the European contribution to the procurement of the ITER blanket FW.

  14. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    Science.gov (United States)

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C.

  15. Results of R and D for lithium/vanadium breeding blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Mattas, R.F.; Smith, D.L.; Reed, C.B.; Park, J.H. [Argonne National Lab., IL (United States); Kirillov, I.R. [D.V. Efremov Scientific Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Strebkov, Yu.S. [Research and Development Inst. of Power Engineering, Moscow (Russian Federation); Rusanov, A.E. [Inst. of Physics and Power Engineering, Obninsk (Russian Federation); Votinov, S.N. [A.A. Bochvar Inst. of Non-Organic Materials, Moscow (Russian Federation)

    1997-04-01

    The self-cooled lithium/vanadium blanket concept has several attractive features for fusion power systems, including reduced activation, resistance to radiation damage, accommodation of high heat loads and operating to temperatures of 650--700 C. The primary issue associated with the lithium/vanadium concept is the potentially high MHD pressure drop experienced by the lithium as it flows through the high magnetic field of the tokamak. The solution to this issue is to apply a thin insulating coating to the inside of the vanadium alloy to prevent the generation of eddy currents within the structure that are responsible for the high MHD forces and pressure drop. This paper presents progress in the development of an insulator coating that is capable of operating in the severe fusion environment, progress in the fabrication development of vanadium alloys, and a summary of MHD testing. A large number of small scale tests of vanadium alloy specimens coated with CaO and AlN have been conducted in liquid lithium to determine the resistivity and stability of the coating. In-situ measurements in lithium have determined that CaO coatings, {approximately} 5 {micro}m thick, have resistivity times thickness values exceeding 10{sup 6} {Omega}-cm{sup 2}. These results have been used to identify fabrication procedures for coating a large vanadium alloy (V-4Cr-4Ti) test section that was tested in the ALEX (Argonne Liquid metal Experiment) facility. Similar test sections have been produced in both Russia and the US.

  16. ITER test blanket module error field simulation experiments at DIII-D

    Science.gov (United States)

    Schaffer, M. J.; Snipes, J. A.; Gohil, P.; de Vries, P.; Evans, T. E.; Fenstermacher, M. E.; Gao, X.; Garofalo, A. M.; Gates, D. A.; Greenfield, C. M.; Heidbrink, W. W.; Kramer, G. J.; La Haye, R. J.; Liu, S.; Loarte, A.; Nave, M. F. F.; Osborne, T. H.; Oyama, N.; Park, J.-K.; Ramasubramanian, N.; Reimerdes, H.; Saibene, G.; Salmi, A.; Shinohara, K.; Spong, D. A.; Solomon, W. M.; Tala, T.; Zhu, Y. B.; Boedo, J. A.; Chuyanov, V.; Doyle, E. J.; Jakubowski, M.; Jhang, H.; Nazikian, R. M.; Pustovitov, V. D.; Schmitz, O.; Srinivasan, R.; Taylor, T. S.; Wade, M. R.; You, K.-I.; Zeng, L.; DIII-D Team

    2011-10-01

    Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L-H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity v across the entire radial profile by as much as Δv/v ~ 60% via non-resonant braking. Changes to global Δn/n, Δβ/β and ΔH98/H98 were ~3 times smaller. These effects are stronger at higher β. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known n = 1 test field in both L- and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D n = 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few n = 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by n = 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small.

  17. Verification of dimensional stability on ITER blanket shield block after stress relieving

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa-Woong, E-mail: swkim12@nfri.re.kr; Jung, Hun-Chea; Ha, Min-Su; Shim, Hee-Jin

    2016-11-01

    Highlights: • The SB#08 FSP were manufactured by using conventional manufacturing processes such as cutting, milling, drilling and welding. • Especially, a strong back system was adopted in order to prevent welding deformation during cover plate welding process. • Post-Welding Heat Treatment (PWHT) for stress relieving and Hot He Leak Test (HHLT) were waived from the lake of huge test facility in the pre-qualification program. • The PWHT combined with the HHLT, however, were implemented to remove the residual stress and to confirm the soundness of welded parts as an internal R&D activities after the pre-qualification program. • Three dimensional inspection also carried out after the PWHT to check the dimensional stabilization. - Abstract: The tight tolerance requirement is one of key issue to manufacture the ITER blanket shield blocks (SBs) which have many interfaces with the First Wall (FW) and Vacuum Vessel (VV). Manufactured SB shall be satisfied with general tolerances (Class “C” of ISO 2768-1 and “L” of ISO 2768-2) and specific tolerance in 2D general assembly drawings. In order to fulfill the tight tolerance requirements in the final stage of SB, stress relieving after welding operations in the manufacturing process shall be performed. Hot helium leak test, Post Welding Heat Treatment (PWHT) and three-dimensional inspection before and after heat treatment were implemented by using the Full Scale Prototype (FSP) of SB in the framework of domestic R&D activities. The hot He leak test was performed at 250 °C for 30 min, and the result was satisfied the requirements. PWHT was carried out at 400 °C for 24 h by brazing furnace with test chamber. The deformation value before and after was measured by contact type coordinate measuring machine. The objective of this study is to verify dimensional stability of SB after stress relieving. The results will support to determine the machining allowance prior to welding process.

  18. Performance evaluation of an Anaerobic Migrating Blanket Reactor in the biodegradation of perchloroethylene from industrial wastewaters

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2012-01-01

    Full Text Available Aims: The aim of this study is to determine the PCE biodegradation potential in an Anaerobic Migrating Blanket Reactor (AMBR that has not been used so far for the bioremediation of this compound, in high concentration, and to evaluate the system performance. Materials and Methods: This study was an Experimental - Interventional study that was done from April 2010 to March 2011, in the Isfahan University of Medical Sciences. The AMBR was used in a type of laboratory scale, with a volume of 10 L, which was divided into four compartments, for the biological degradation of PCE in a synthetic substrate. The startup was done using anaerobic digested sewage sludge. The performance of the reactor was evaluated during four periods, with a PCE loading rate of 3.75 until 75 mg PCE/L.d. The hydraulic retention time (HRT was 32 hours. Results: Optimum chemical oxygen demand (COD removal efficiency was obtained, 98%, with an organic loading rate (OLR equal to 3.1 g COD/L.d. For PCE removal, the optimum efficiency was observed to be 99.8%, with a PCE loading rate equal to 37.5 mg PCE/L.d. The average COD and PCE removal rates for the whole activity period of the reactor were 91.4 and 99.5%, respectively; 1.1 ± 0.7% from the influent PCE was adsorbed on the biomass and 20% was found in the headspace. Conclusions: The AMBR reactor, which provides full-scale studies and uses real industrial wastewater polluted with PCE, is a simple, efficient, and reliable method for the treatment of PCE.

  19. ITER Test Blanket Module Error Field Simulation Experiments at DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, M. J. [General Atomics, San Diego; Testa, D. [CRPP, Switzerland; Snipes, J. A. [ITER Organization, Cadarache, France; Gohil, P. [General Atomics; De Vries, P. [Culham Centre for Fusion Energy, Culham, UK; Evans, T. E. [General Atomics, San Diego; Fenstermacher, M. E. [Lawrence Livermore National Laboratory (LLNL); Gao, X. [Academia Sinica, Institute of Plasma Physics, Hefei, China; Garofalo, A. [General Atomics, San Diego; Gates, D.A. [Princeton Plasma Physics Laboratory (PPPL); Greenfield, C. M. [General Atomics; Heidbrink, W. [University of California, Irvine; La Haye, R. [General Atomics, San Diego; Liu, S. [ASIPP, Hefei, China; Loarte, A. [ITER Organization, Cadarache, France; Nave, M. F. F. [Association EURATOM/IST, Lisbon, Portugal; Osborne, T.H. [General Atomics, San Diego; Oyama, N. [Japan Atomic Energy Agency (JAEA); Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Park, J. K. [Princeton Plasma Physics Laboratory (PPPL); Ramasubramanian, N. [Institute for Plasma Research, Gandhinagar, India; Reimerdes, H. [Columbia University; Saibene, G. [Fusion for Energy (F4E), Barcelona, Spain; Saimi, A. [Aalto University, Finland; Shinohara, K. [Japan Atomic Energy Agency (JAEA), Naka; Spong, Donald A [ORNL; Solomon, W. M. [Princeton Plasma Physics Laboratory (PPPL); Tala, T. [Association Euratom-Tekes, Finland; Zhu, Y. B. [University of California, Irvine; Zhai, K. [University of Wisconsin, Madison; Boedo, J. [University of California, San Diego; Chuyanov, V. [ITER Organization, Cadarache, France; Doyle, E. J. [University of California, Los Angeles; Jakubowski, M. W. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Jhang, H. [National Fusion Research Institute, Daejon, South Korea; Nazikian, Raffi [Princeton Plasma Physics Laboratory (PPPL); Pustovitov, V. D. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Schmitz, O. [Forschungszentrum Julich, Julich, Germany; Sanchez, Raul [ORNL; Srinivasan, R. [Institute for Plasma Research, Gandhinagar, India; Taylor, T. S. [General Atomics, San Diego; Wade, M. [General Atomics, San Diego; You, K. I. [National Fusion Research Institute, Daejon, South Korea; Zeng, L. [University of California, Los Angeles

    2011-01-01

    Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L-H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity v across the entire radial profile by as much as Delta upsilon/upsilon similar to 60% via non-resonant braking. Changes to global Delta n/n, Delta beta/beta and Delta H(98)/H(98) were similar to 3 times smaller. These effects are stronger at higher beta. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known n = 1 test field in both L-and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D n = 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few n = 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by n = 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small.

  20. Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors

    Science.gov (United States)

    Jolodosky, Alejandra

    The goal of this dissertation is to examine the neutronic properties of a novel type of fusion reactor blanket material in the form of lithium-based ternary alloys. Pure liquid lithium, first proposed as a blanket for fusion reactors, is utilized as both a tritium breeder and a coolant. It has many attractive features such as high heat transfer and low corrosion properties, but most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns including degradation of the concrete containment structure. The work of this thesis began as a collaboration with Lawrence Livermore National Laboratory in an effort to develop a lithium-based ternary alloy that can maintain the beneficial properties of lithium while reducing the reactivity concerns. The first studies down-selected alloys based on the analysis and performance of both neutronic and activation characteristics. First, 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and energy multiplication factor (EMF). Alloys with adequate results based on TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). The straightforward approach to obtain Monte Carlo TBR and EMF results required 231 simulations per alloy and became computationally expensive, time consuming, and inefficient. Consequently, alternate methods were pursued. A collision history-based methodology recently developed for the Monte Carlo code Serpent, calculates perturbation effects on practically

  1. Hydrodynamical modelling of upflow anaerobic sludge blanket reactors; Modelagem hidrodinamica de reatores anaerobios de escoamento ascendente e manta de lodo (UASB)

    Energy Technology Data Exchange (ETDEWEB)

    Hanisch, Werner Siegfried

    1995-12-31

    The increasing need to treat wastewater consuming a minimum amount of energy is a clear indication of the appropriateness of anaerobic processes. One of them, the upflow anaerobic sludge blanket reactor (UASB), has shown to be a feasible option to treat industrial wastewater and domestic sewage. To improve this treatment system the knowledge if of its hydrodynamic behaviour is fundamental. In this work a mathematical model is proposed to describe physical simulations that were performed in bench scale UASB reactors. The results allow to conclude that the proposed mathematical model is adequate to describe the hydrodynamical behaviour of the above mentioned reactors 27 refs., 78 figs., 12 tabs.

  2. Technical issues of RAFMs for the fabrication of ITER Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hiroyasu; Hirose, Takanori; Shiba, Kiyoyuki [Japan Atomic Energy Agency (JP)] (and others)

    2007-07-01

    Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as it has they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H and JLF-1 are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldability, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The JAEA/US collaboration program also has been conducted with the emphasis on irradiation effects of F82H. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the R and D status of F82H and to identify the key technical issues for the fabrication of ITER Test Blanket Module (TBM) suggested from the recent achievements in Japan. It is desirable to make the status of RAFMs equivalent to commercial steels to use RAFMs as the ITER-TBM structural material. This would require demonstrating the reproducibility and weldability as well as providing the database. The excellent reproducibility of F82H has been demonstrated with four 5-ton-heats, and two of them were provided as F82H-IEA heats. It has been also proved that F82H could be provided as plates (thickness of 1.5 to 55 mm), pipes and rectangular tubes. It is also important to have the excellent weldability as the TBM has about 300m length of weld line, and it was proved through TIG, EB and YAG weld test performed in air atmosphere. Various mechanical and microstructural data have been accumulated including long-term tests such as creep rupture tests and aging tests. Although F82H is a well-perceived RAFM as the ITER-TBM structural material, some issues are

  3. Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept

    Science.gov (United States)

    Ma, Xuebin; Liu, Songlin; Li, Jia; Pu, Yong; Chen, Xiangcun

    2014-04-01

    CFETR is the “ITER-like” China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT—HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits.

  4. Exploring climatic controls on blanket bog litter decomposition across an altitudinal gradient

    Science.gov (United States)

    Bell, Michael; Ritson, Jonathan P.; Clark, Joanna M.; Verhoef, Anne; Brazier, Richard E.

    2016-04-01

    The hydrological and ecological functioning of blanket bogs is strongly coupled, involving multiple ecohydrological feedbacks which can affect carbon cycling. Cool and wet conditions inhibit decomposition, and favour the growth of Sphagnum mosses which produce highly recalcitrant litter. A small but persistent imbalance between production and decomposition has led to blanket bogs in the UK accumulating large amounts of carbon. Additionally, healthy bogs provide a suite of other ecosystems services including water regulation and drinking water provision. However, there is concern that climate change could increase rates of litter decomposition and disrupt this carbon sink. Furthermore, it has been argued that the response of these ecosystems in the warmer south west and west of the UK may provide an early analogue for later changes in the more extensive northern peatlands. In order to investigate the effects of climate change on blanket bog litter decomposition, we set-up a litter bag experiment across an altitudinal gradient spanning 200 m of elevation (including a transition from moorland to healthy blanket bog) on Dartmoor, an area of hitherto unstudied, climatically marginal blanket bog in the south west of the UK. At seven sites, water table depth and soil and surface temperature were recorded continuously. Litter bags filled with the litter of three vegetation species dominant on Dartmoor were incubated just below the bog surface and retrieved over a period of 12 months. We found significant differences in the rate of decomposition between species. At all sites, decomposition progressed in the order Calluna vulgaris (dwarf shrub) > Molinia caerulea (graminoid) > Sphagnum (bryophyte). However, while soil temperature did decrease along the altitudinal gradient, being warmer in the lower altitudes, a hypothesised accompanying decrease in decomposition rates did not occur. This could be explained by greater N deposition at the higher elevation sites (estimated

  5. A study on the enhancement of the reliability in gravure offset roll printing with blanket swelling control

    Science.gov (United States)

    Eul Kim, Ga; Woo, Kyoohee; Kang, Dongwoo; Jang, Yunseok; Choi, Young-Man; Lee, Moon G.; Lee, Taik-Min; Kwon, Sin

    2016-10-01

    In roll-offset printing (patterning) technology with a PDMS blanket as a transfer medium, one of the major reliability issues is the occurrence of swelling, which involves absorption of the ink solvent in the printing blanket with repeated printing. This study developed a method to resolve blanket swelling in gravure offset roll printing and performed experiments for performance verification. The physical phenomena of mass and heat transfer were applied to fabricate a device based on convection drying. The proposed device managed to effectively control blanket swelling through drying by blowing air and additional temperature control. The experiments verified that printing quality (in particular the variation of the width of printed patterns) was maintained over 500 continuous printing.

  6. Overview on ITER and DEMO blanket fabrication activities of the KIT INR and related frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, Heiko, E-mail: heiko.neuberger@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Karlsruhe (Germany); Rey, Joerg; Weth, Axel von der; Hernandez, Francisco [Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology, Karlsruhe (Germany); Martin, Tatiana [Karlsruhe Institute of Technology (KIT), Institute for Applied materials, Karlsruhe (Germany); Zmitko, Milan [Fusion for energy, ITER Department, Test Blanket Modules and Materials Development Project Team, Barcelona (Spain); Felde, Alexander [Institut für Umformtechnik (IFU), Universität Stuttgart (Germany); Niewöhner, Reinhard [Forschungsgesellschaft Umformtechnik (FGU), Stuttgart (Germany); Krüger, Friedhelm [Krüger Erodiertechnik, Biedenkopf (Germany)

    2015-10-15

    Highlights: • Recent achievements in fabricaition within different frameworks. • First Wall mockup with erosion technology. • Manufacturing of a HCPB TBM Cooling Plate Mockup (F4E) - Abstract: Fabrication experiments have been carried out in the KIT with the goal to qualify manufacturing technologies for the realization of fusion reactor components. The main focus of the activities managed by the fabrication team in the Institute of Neutron Physics and reactor technologies (INR) has been on the Test Blanket Module for ITER. Sets of fabrication and welding procedure specifications have been demonstrated and qualified in relevant scale for TBM structural and functional components. This paper presents interactions in between the different frameworks on domestic and European level to underline backgrounds of developments. It also summarizes results of development and their relevancy for DEMO and gives an outlook on the future development strategy for the DEMO blanket fabrication.

  7. ITER (International Thermonuclear Experimental Reactor) shield and blanket work package report

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs.

  8. Fast Breeder Blanket Facility (FBBF). Annual report, January 31, 1976--December 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Ott, K.O. (ed.)

    1978-01-01

    The work performed in the reporting period was primarily concerned with the construction of the Fast Breeder Blanket Facility (FBBF), acquisition of experimental equipment, outlining the experimental program, preanalysis of the initial loading configuration and investigation of the safety of the initial loading and advanced loadings. The detailed physical description of the FBBF, operational procedures and controls, radiation shielding and experimental equipment are presented. The ability of the FBBF to simulate the blanket spectrum of a large fast breeder reactor is illustrated by comparison of spectra. The source axial distribution, reaction rate comparisons, breeding of plutonium and gamma-ray energy deposition rates are also discussed. Some of the safety aspects of the initial loading and advanced loadings are described. Experimental capabilities of the facility are outlined.

  9. Reduced activation martensitic steels as a structural material for ITER test blanket

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, K. E-mail: shiba@realab01.tokai.jaeri.go.jp; Enoeda, M.; Jitsukawa, S

    2004-08-01

    A Japanese ITER test blanket module (TBM) is planed to use reduced-activation martensitic steel F82H. Feasibility of F82H for ITER test blanket module is discussed in this paper. Several kinds of property data, including physical properties, magnetic properties, mechanical properties and neutron-irradiation data on F82H have been obtained, and these data are complied into a database to be used for the designing of the ITER TBM. Currently obtained data suggests F82H will not have serious problems for ITER TBM. Optimization of F82H improves the induced activity, toughness and HIP resistance. Furthermore, modified F82H is resistant to temperature instability during material production.

  10. Use of Ball Blanket in attention-deficit/hyperactivity disorder sleeping problems

    DEFF Research Database (Denmark)

    Hvolby, Allan; Bilenberg, Niels

    2011-01-01

    Objectives: Based on actigraphic surveillance, attention-deficit/hyperactivity disorder (ADHD) symptom rating and sleep diary, this study will evaluate the effect of Ball Blanket on sleep for a sample of 8-13-year-old children with ADHD. Design: Case-control study. Setting: A child and adolescent...... psychiatric department of a teaching hospital. Participants: 21 children aged 8-13 years with a diagnosis of ADHD and 21 healthy control subjects. Intervention: Sleep was monitored by parent-completed sleep diaries and 28 nights of actigraphy. For 14 of those days, the child slept with a Ball Blanket. Main...... outcome measures: The sleep latency, number of awakenings and total length of sleep was measured, as was the possible influence on parent- and teacher-rated ADHD symptom load. Results: The results of this study will show that the time it takes for a child to fall asleep is shortened when using a Ball...

  11. Preliminary lifetime predictions for 304 stainless steel as the LANL ABC blanket material

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.J.; Buksa, J.J.; Houts, M.G.; Arthur, E.D.

    1997-11-01

    The prediction of materials lifetime in the preconceptual Los Alamos National Laboratory (LANL) Accelerator-Based Conversion of Plutonium (ABC) is of utmost interest. Because Hastelloy N showed good corrosion resistance to the Oak Ridge National Laboratory Molten Salt Reactor Experiment fuel salt that is similar to the LANL ABC fuel salt, Hastelloy N was originally proposed for the LANL ABC blanket material. In this paper, the possibility of using 304 stainless steel as a replacement for the Hastelloy N is investigated in terms of corrosion issues and fluence-limit considerations. An attempt is made, based on the previous Fast Flux Test Facility design data, to predict the preliminary lifetime estimate of the 304 stainless steel used in the blanket region of the LANL ABC.

  12. A water cooled, lithium lead breeding blanket for a DEMO fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Rieger, M.; Biggio, M.; Farfaletti-Casali, F.; Tominetti, S.; Wu, J.; Zucchetti, M. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Labbe, P.; Baraer, L.; Gervaise, G.; Giancarli, L.; Roze, M.; Severi, Y.; Quintric-Bossy, J. (CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France))

    1991-04-01

    The main features of a tritium breeding blanket for a Demonstration Power Reactor involving the eutectic Pb-17Li as liquid breeder and water as coolant are presented. The configuration of the blanket segments and breeder modules as well as their arrangement inside the reactor vacuum vessel are outlined. The main design aspects and the corresponding design limits are reviewed, namely those related to thermomechanics, neutronics, magneto-hydrodynamics, tritium permeation and recovery. First results of safety analysis, in particular those connected with the rupture of a coolant tube in the breeder module are presented and discussed. As a conclusion, the feasibility of the concept look attractive. A problem which requires further investigation is that of the tritium self-sufficiency. It is shown that a net tritium production near to one can be obtained if berylium tiles are placed in front of the plasma, provided that they are cooled by heavy water. (orig.).

  13. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters.

    Science.gov (United States)

    Latif, Muhammad Asif; Ghufran, Rumana; Wahid, Zularisam Abdul; Ahmad, Anwar

    2011-10-15

    The UASB process among other treatment methods has been recognized as a core method of an advanced technology for environmental protection. This paper highlights the treatment of seven types of wastewaters i.e. palm oil mill effluent (POME), distillery wastewater, slaughterhouse wastewater, piggery wastewater, dairy wastewater, fishery wastewater and municipal wastewater (black and gray) by UASB process. The purpose of this study is to explore the pollution load of these wastewaters and their treatment potential use in upflow anaerobic sludge blanket process. The general characterization of wastewater, treatment in UASB reactor with operational parameters and reactor performance in terms of COD removal and biogas production are thoroughly discussed in the paper. The concrete data illustrates the reactor configuration, thus giving maximum awareness about upflow anaerobic sludge blanket reactor for further research. The future aspects for research needs are also outlined.

  14. Two-dimensional TBR calculations for conceptual compact reversed-field pinch reactor blanket

    Science.gov (United States)

    Davidson, J. W.; Battat, M. E.; Dudziak, D. J.

    A detailed two-dimensional nucleonic analysis was performed for a conceptual first wall, blanket, and shield design for the Compact Reversed-Field Pinch Reactor. The design includes significant two-dimensional aspects presented by the limiter, vacuum ducts, and coolant manifolds; these aspects seriously degrade the tritium-breeding reaction (TBR) predicted by one-dimensional calculations. A range of design change to increase the TBR were investigated within the two-dimensional analysis. The results of this investigation indicated that an adequate TBR could be achieved with a thinning copper first wall, a (6)Li enrichment near 90%, the proper selection of reflector, and a small addition to the blanket thickness, determined by the one-dimensional analysis.

  15. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yu., E-mail: juri.igitkhanov@lhm.fzk.de [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Bazylev, B.; Landman, I. [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Boccaccini, L. [Karlsruhe Institute of Technology, INR, Karlsruhe (Germany)

    2013-07-15

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ∼14 MW/m{sup 2}. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  16. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    Science.gov (United States)

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.

    2013-07-01

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  17. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  18. Microstructure and hardness of HIP-bonded regions in F82H blanket structures

    Science.gov (United States)

    Furuya, K.; Wakai, E.; Ando, M.; Sawai, T.; Nakamura, K.; Takeuchi, H.; Iwabuchi, A.

    2002-12-01

    Metallurgical examinations and hardness measurements were performed at hot isostatic pressing (HIP)-bonded regions in blanket structures made from F82H alloy in order to investigate the HIP-bondability and the influence on the microstructure due to the HIP and heat treatments which would correspond to the fabrication of an actual blanket. The metallurgical examination showed that the HIP-bonded interfaces were sufficiently diffusion-bonded without significant defects, i.e. voids and/or exfoliations, although grain coarsening was observed at a part of the HIP interfaces. Hardness was nearly equal in the coarsening region and a region without coarsening, but about a 10 Hv increase was found in a boundary in between the regions with and without coarsening. Microcrystallized grains were observed in a region about ˜6 μm from HIP interfaces, and the hardness increased by about 0.2 GPa in the region.

  19. Neutron transport-burnup code MCORGS and its application in fusion fission hybrid blanket conceptual research

    Science.gov (United States)

    Shi, Xue-Ming; Peng, Xian-Jue

    2016-09-01

    Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.

  20. Numerical analysis of heat transfer in the first wall of CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Deng, Weiping; Ge, Zhihao; Li, Yuanjie

    2016-04-15

    Highlights: • Detailed numerical analysis of heat transfer in a water-cooling first wall was carried out based on the conceptual design of CFETR WCSB blanket. • Investigation of the influences of buoyancy effect and surface roughness on heat transfer in the water-cooling first wall was presented. • Analysis of the effect of the front wall thickness on temperature was carried out for the water-cooling first wall design. • Simulation results of two 1D CFD methods were evaluated by the 3D CFD data. - Abstract: China Fusion Engineering Test Reactor (CFETR), the first fusion reactor experiment project planned in China, is now being investigated in detail. Recently, a conceptual structural design of the Water-Cooled-Solid-Breeder (WCSB) blanket was proposed as one of the breeding blanket candidates for CFETR. In this research, based on the present design of the CFETR WCSB blanket, the heat transfer performance in the first wall (FW) under the pressurized water cooling condition was analyzed. The 3D computational fluid dynamics (CFD) results show that the maximal temperature of the FW will not exceed the limited temperature under normal or even higher heat flux condition. In addition, the effect of buoyancy on heat transfer is negligible under both conditions. The influence of roughness becomes increasingly important when the roughness height lies in the fully turbulent regime. The maximal temperature increases approximately linearly as the thickness of the front wall increases. It is also found that the heat flux and the local heat transfer coefficient are extremely non-uniform in the circumferential direction. Two 1D CFD methods are also evaluated by 3D CFD data, with the conclusion that both 1D results have some differences with the 3D data. The improved 1D method is more accurate than the former one. However, we ascertain that 1D methods should be used with caution for the water-cooling FW design.

  1. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  2. Neutronics Optimization of Tritium Breeding Blan-ket for the FDS

    Institute of Scientific and Technical Information of China (English)

    郑善良; 吴宜灿; 黄群英

    2002-01-01

    Neutronics optimization calculations have been performed for thc tritium breeding blankets with solid ceramic breeder Li2O and liquid eutectie breeder Li17Pb83, respectively,based on a 2-D geometrical configuration using the Monte Carlo neutron-photon transport code MCNP/4B. The effects of beryllium, 6Li enrichment and various structural materials on Tritium Breeding Ratio have been systematically analyzed.

  3. Microbial activity and dissolved organic carbon production in drained and rewetted blanket peat

    Science.gov (United States)

    Wallage, Z. E.; Holden, J.; Jones, T.; McDonald, A. T.

    2009-04-01

    Heightened levels of degradation in response to environmental change have resulted in an increased loss of dissolved organic carbon (DOC) in the drainage waters of many peatland catchments across Europe and North America. One significant threat to peatland sustainability has been the installation of artificial drainage ditches, and although recent restoration schemes have pursued drain blocking as a possible strategy for reducing degradation and fluvial carbon losses, little is known about how such processes influence the intimate biological systems operating within these soils. This paper investigates how disturbance, in the form of drainage and drain blocking, influences the rate of microbial activity within a peat soil, and the subsequent impact this has on DOC production potential. Peat samples were extracted from three treatment sites (intact peat, drained peat and drain-blocked peat) in an upland blanket peat catchment in the UK. Microbial activity was measured via laboratory experimentation that incorporated the use of an INT-Formazan dehydrogenase enzyme assay to assess the level of electron transport system (ETS) activity occurring within each treatment. Drainage significantly lowered the height of the water table relative to the intact peat, whilst drain blocking successfully rewetted the peat, having raised the height of the water table relative to the drained site. Mean microbial activity rates at the drained site were found to be 33 % greater than the undisturbed intact peat and almost double that of the restored, drain-blocked site. These results correspond well with previously published data observing significantly greater DOC concentrations in the pore waters of the drained site and significantly lower concentrations at the blocked site, relative to the intact peat. Data from the drain-blocked treatment also provides evidence contrary to the commonly quoted hypothesis that an enzyme-latch reaction may be sustained in drained peat, even once it has

  4. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool.

    Science.gov (United States)

    Zhang, Bin; Liu, Yi; Olewski, Tomasz; Vechot, Luc; Mannan, M Sam

    2014-09-15

    With increasing consumption of natural gas, the safety of liquefied natural gas (LNG) utilization has become an issue that requires a comprehensive study on the risk of LNG spillage in facilities with mitigation measures. The immediate hazard associated with an LNG spill is the vapor hazard, i.e., a flammable vapor cloud at the ground level, due to rapid vaporization and dense gas behavior. It was believed that high expansion foam mitigated LNG vapor hazard through warming effect (raising vapor buoyancy), but the boil-off effect increased vaporization rate due to the heat from water drainage of foam. This work reveals the existence of blocking effect (blocking convection and radiation to the pool) to reduce vaporization rate. The blanketing effect on source term (vaporization rate) is a combination of boil-off and blocking effect, which was quantitatively studied through seven tests conducted in a wind tunnel with liquid nitrogen. Since the blocking effect reduces more heat to the pool than the boil-off effect adds, the blanketing effect contributes to the net reduction of heat convection and radiation to the pool by 70%. Water drainage rate of high expansion foam is essential to determine the effectiveness of blanketing effect, since water provides the boil-off effect.

  5. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

  6. Preflow stresses in Martian rampart ejecta blankets - A means of estimating the water content

    Science.gov (United States)

    Woronow, A.

    1981-01-01

    Measurements of extents of rampart ejecta deposits as a function of the size of the parent craters support models which, for craters larger than about 6 km diameter, constrain ejecta blankets to all have a similar maximum thickness regardless of the crater size. These volatile-rich ejecta blankets may have failed under their own weights, then flowed radially outward. Assuming this to be so, some of the physicomechanical properties of the ejecta deposits at the time of their emplacement can then be determined. Finite-element studies of the stress magnitudes, distributions, and directions in hypothetical Martian rampart ejecta blankets reveal that the material most likely failed when the shear stresses were less than 500 kPa and the angle of internal friction was between 26 and 36 deg. These figures imply that the ejecta has a water content between 16 and 72%. Whether the upper limit or the lower limit is more appropriate depends on the mode of failure which one presumes: namely, viscous flow of plastic deformation.

  7. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    Science.gov (United States)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  8. Comparison over the nuclear analysis of the HCLL blanket for the European DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Jaboulay, Jean-Charles, E-mail: jean-charles.jaboulay@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, Giacomo; Aubert, Julien [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Villari, Rosaria [ENEA, UTFUS-TECN, Via E. Fermi 4, 00044 Frascati, Rome (Italy); Fischer, Ulrich [Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Karlsruhe (Germany)

    2016-11-01

    Highlights: • A complete nuclear analysis of the DEMO HCLL has been carried out at CEA with the TRIPOLI-4{sup ®} Monte Carlo code. • The DEMO tokamak model was generated by the CAD import tool McCad. • The HCLL blankets were implemented using a previous MCNP model developed at ENEA. • A good agreement is observed between the results obtained at CEA with TRIPOLI-4 and JEFF-3.1.1 and whose obtained at ENEA with MCNP and FENDL-2.1. - Abstract: This paper presents the comparison over the nuclear analysis of the European DEMO with HCLL blanket carried out with the TRIPOLI-4{sup ®} Monte Carlo code and the JEFF-3.1.1 nuclear data library and with the MCNP5 Monte Carlo code and the FENDL-2.1 nuclear data library. The MCNP5 analysis was conducted firstly by ENEA with a detailed 3D model describing all the HCLL blanket internal structures. This MCNP5 model was converted into TRIPOLI-4{sup ®} representation for performing the nuclear analysis at CEA with the objective to demonstrate consistency between both analyses. A very good agreement was obtained for all of the relevant nuclear responses (neutron wall loading, tritium breeding ratio, nuclear heating, neutron flux distribution, etc.), validating CEA’s nuclear analysis approach, based on TRIPOLI-4{sup ®} Monte Carlo code and JEFF-3.1.1 nuclear data library, for the European DEMO.

  9. AB Blanket for Cities (for continual pleasant weather and protection from chemical, biological and radioactive weapons)

    CERN Document Server

    Bolonkin, Alexander

    2009-01-01

    In a series of previous articles (see references) the author offered to cover a city or other important large installations or subregions by a transparent thin film supported by a small additional air overpressure under the form of an AB Dome. The building of a gigantic inflatable AB Dome over an empty flat surface is not difficult. However, if we want to cover a city, garden, forest or other obstacle course we cannot easily deploy the thin film over building or trees. In this article is suggested a new method which solves this problem. The idea is to design a double film blanket filled by light gas (for example, methane, hydrogen, or helium). Sections of this AB Blanket are lighter then air and fly in atmosphere. They can be made on a flat area (serving as an assembly area) and delivered by dirigible or helicopter to station at altitude over the city. Here they connect to the already assembled AB Blanket subassemblies, cover the city in an AB Dome and protect it from bad weather, chemical, biological and rad...

  10. First wall fabrication of 1/3 scale china dual functional lithium lead blanket

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bo, E-mail: bo.huang@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zhai, Yutao [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zhang, Junyu [University of Science and Technology of China, Hefei, Anhui 230027 (China); Li, Chunjing; Wu, Qingsheng [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); University of Science and Technology of China, Hefei, Anhui 230027 (China)

    2014-10-15

    Highlights: • RAFM rectangular tubes were fabricated by cold drawing, and the dimensional accuracy and mechanical properties of rectangular tubes were tested. • Rectangular tubes were bent by rotary bending, and milled plates were curved by molding. Its accuracy meets the requirement for TBM assembly. • FW were pre-sealed by electron beam welding, and assembled by hot isostatic pressing–diffusion bonding. • The as-HIPed FW mock-up was tested by optical observation and X-ray detection, it revealed obviously that the tubes and plates were bonded well. - Abstract: The dual functional lithium lead blanket is chosen as one of the candidate blankets for China fusion reactor, for its advantages of tritium breeding and good heat exchange performance. As one of the most important components of the blanket, the first wall (FW) is assembled with China low activation martensitic (CLAM) rectangular tubes and plates by hot isostatic pressing (HIP)–diffusion bonding (DB). In this work, the rectangular tube fabrication and FW assembly were carried out in order to verify the feasibility of the FW fabrication scheme. The mechanical property and dimensional accuracy of CLAM rectangular tubes were tested, the microstructure observation and non-destructive detection revealed the sound of the FW mock-up, and the reliability of the FW mock-ups is under evaluation.

  11. 聚变堆液态包层提氚鼓泡器的概念设计%Conceptual design of tritium bubbler for fusion reactor liquid blanket

    Institute of Scientific and Technical Information of China (English)

    谢波; 翁葵平; 侯建平; 古梅

    2015-01-01

    The conceptual design of liquid blanket tritium bubbler (LBTB) with the gas-liquid exchange column as core was proposed, based on the works of hydrogen extraction from liquid lithium alloys by gas-liquid contact method. LBTB consists of the gas sample purifier, gas-liquid exchange column system, saturator-desorption and auxiliary system. The LBTB was Ar-H2 as carrier, and would on line monitor the tritium behavior of liquid blanket main loop, and test the tritium recovery efficiency whether or not reaching 90%after multi-column cascade.%在气-液接触法提取液态锂合金中的氢的实验基础上,提出了以气-液交换柱为核心的提氚鼓泡器(LBTB)的概念设计。LBTB 主要由气体进样纯化器、气-液交换柱系统、饱和器-解吸器和辅助系统构成。LBTB以氩氢混合气为吹洗气,其主要功能是在线监测液态包层主回路中的氚行为,并检验多柱级联后的氚回收率是否可以达到90%的期望值。

  12. Lightweight IMM Multi-Junction Photovoltaic Flexible Blanket Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems (DSS) and EMCORE as a key subcontractor will focus the proposed SBIR program on the creation and optimization of a lightweight ~33%...

  13. 47 CFR 73.318 - FM blanketing interference.

    Science.gov (United States)

    2010-10-01

    ... maximum effective radiated power (ERP), measured in kilowatts, of the maximum radiated lobe. (b) After... antenna systems, or the use of high gain antennas or antenna booster amplifiers. Mobile receivers and...

  14. Preliminary assessment of a combined passive safety system for typical 3-loop PWR CPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zijiang; Shan, Jianqiang, E-mail: jqshan@mail.xjtu.edu.cn; Gou, Junli

    2017-03-15

    Highlights: • A combined passive safety system was placed on a typical 3-loop PWR CPR1000. • Three accident analyses show the three different accident mitigation methods of the passive safety system. • The three mitigation methods were proved to be useful. - Abstract: As the development of the nuclear industry, passive technology turns out to be a remarkable characteristic of advanced nuclear power plants. Since the 20th century, much effort has been given to the passive technology, and a number of evolutionary passive systems have developed. Thoughts have been given to upgrade the existing reactors with passive systems to meet stricter safety demands. In this paper, the CPR1000 plant, which is one kind of mature pressurized water reactor plants in China, is improved with some passive systems to enhance safety. The passive systems selected are as follows: (1) the reactor makeup tank (RMT); (2) the advanced accumulator (A-ACC); (3) the in-containment refueling water storage tank (IRWST); (4) the passive emergency feed water system (PEFS), which is installed on the secondary side of SGs; (5) the passive depressurization system (PDS). Although these passive components is based on the passive technology of some advanced reactors, their structural and trip designs are adjusted specifically so that it could be able to mitigate accidents of the CPR1000. Utilizing the RELAP5/MOD3.3 code, accident analyses (small break loss of coolant accident, large break loss of coolant accident, main feed water line break accident) of this improved CPR1000 plant were presented to demonstrate three different accident mitigation methods of the safety system and to test whether the passive safety system preformed its function well. In the SBLOCA, all components of the passive safety system were put into work sequentially, which prevented the core uncover. The LBLOCA analysis illustrates the contribution of the A-ACCs whose small-flow-rate injection can control the maximum cladding

  15. Statistical analysis of the blowdown phase of a loss-of-coolant accident in a pressurized water reactor as calculated by RELAP4/MOD6

    Energy Technology Data Exchange (ETDEWEB)

    Berman, M.; Byers, R.K.; Steck, G.P.

    1979-01-01

    A statistical study is presented of the blowdown phase of a design basis accident (double-ended cold leg guillotine break) in the Zion pressurized water reactor. The response surface method was employed to generate a polynomial approximation of the peak clad temperatures calculated by RELAP4/MOD6. The nodalization was a modification of the RELAP model of Zion developed in the BE/EM study. Twenty one variables were initially selected for the study. These variables, their ranges and distributions resulted from the best engineering judgement of NRC, Sandia, INFL, and other interested and knowledgeable investigators.

  16. CHEMICAL EFFECTS ON PWR SUMP STRAINER BLOCKAGE AFTER A LOSS-OF-COOLANT ACCIDENT: REVIEW ON U.S. RESEARCH EFFORTS

    Directory of Open Access Journals (Sweden)

    CHI BUM BAHN

    2013-06-01

    Full Text Available Industry- or regulatory-sponsored research activities on the resolution of Generic Safety Issue (GSI-191 were reviewed, especially on the chemical effects. Potential chemical effects on the head loss across the debris-loaded sump strainer under a post-accident condition were experimentally evidenced by small-scale bench tests, integrated chemical effects test (ICET, and vertical loop head loss tests. Three main chemical precipitates were identified by WCAP-16530-NP: calcium phosphate, aluminum oxyhydroxide, and sodium aluminum silicate. The former two precipitates were also identified as major chemical precipitates by the ICETs. The assumption that all released calcium would form precipitates is reasonable. CalSil insulation needs to be minimized especially in a plant using trisodium phosphate buffer. The assumption that all released aluminum would form precipitates appears highly conservative because ICETs and other studies suggest substantial solubility of aluminum at high temperature and inhibition of aluminum corrosion by silicate or phosphate. The industry-proposed chemical surrogates are quite effective in increasing the head loss across the debris-loaded bed and more effective than the prototypical aluminum hydroxide precipitates generated by in-situ aluminum corrosion. There appears to be some unresolved potential issues related to GSI-191 chemical effects as identified in NUREG/CR-6988. The United States Nuclear Regulatory Commission, however, concluded that the implications of these issues are either not generically significant or are appropriately addressed, although several issues associated with downstream in-vessel effects remain.

  17. Equalisation of Transient Temperature Profile Within the Fuel Pin of a Miniature Neutron Source Reactor (MNSR During Total Loss of Coolant

    Directory of Open Access Journals (Sweden)

    Christian Amevi Adjei

    2010-10-01

    Full Text Available Transient temperature distributions in cylindrical fuel element of Ghana Research Reactor-1 (GHARR-1 Miniature Neutron Source Reactor (MNSR following sudden total loss of cooling have been investigated. The loss of cooling in the reactor core resulting from a blockage of the inner orifice of coolant flow channels was assumed to occur during normal operations and led to sudden shut dow n of the reactor. The objective was to analyse the transient behaviour by solving analytically the heat transfer equation using Bessel functions and also develop from first principle the transient temperature equations for the fuel element. Results obtained during a sudden total lost of cooling showed a high transient temperature distribution at the centre of the fuel element, with the surface of the fuel clad recording the least temperature. The transient temperature distribution decreased from the centre of the fuel element to the surface of the fuel clad and followed a parabolic decay pattern which after increase in tim e follow ed an equalisation pattern. During sudden shut down, since there w as no heat generated and decay heat , the rate at which the fuel elem ent was cooled w as directly proportional to time.

  18. Passive safety system of a super fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sutanto, E-mail: sutanto@fuji.waseda.jp [Cooperative Major in Nuclear Energy, Waseda University, Tokyo (Japan); Polytechnic Institute of Nuclear Technology—National Nuclear Energy Agency, Yogyakarta (Indonesia); Oka, Yoshiaki [The University of Tokyo, Tokyo (Japan)

    2015-08-15

    Highlights: • Passive safety system of a Super FR is proposed. • Total loss of feedwater flow and large LOCA are analyzed. • The criteria of MCST and core pressure are satisfied. - Abstract: Passive safety systems of a Super Fast Reactor are studied. The passive safety systems consist of isolation condenser (IC), automatic depressurization system (ADS), core make-up tank (CMT), gravity driven cooling system (GDCS), and passive containment cooling system (PCCS). Two accidents of total loss of feedwater flow and 100% cold-leg break large LOCA are analyzed by using the passive systems and the criteria of maximum cladding surface temperature (MCST) and maximum core pressure are satisfied. The isolation condenser can be used for mitigation of the accident of total loss of feedwater flow at both supercritical and subcritical pressures. The ADS is used for depressurization leading to a loss of coolant during line switching to operation of the isolation condenser at subcritical pressure. Use of CMT during line switching recovers the lost coolant. In case of large LOCA, GDCS can be used for core reflooding. Coolant vaporization in the core released to containment through the break is condensed by passive containment cooling system. The condensate flows to the GDCS pool by gravity force. The maximum cladding surface temperature (MCST) of the accident satisfies the criterion.

  19. Signal processing system design for improved shutdown system of CANDU{sup ®} nuclear reactors in large break LOCA events

    Energy Technology Data Exchange (ETDEWEB)

    Gabbar, Hossam A., E-mail: hossam.gabbar@uoit.ca [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, Canada L1H 7K4 (Canada); Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, Canada L1H 7K4 (Canada); Xia, Lingzhi; Isham, Manir U. [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, Canada L1H 7K4 (Canada); Ponomarev, Vladimir [Megawatt Solutions, 1235 Radom St., unit 68, Pickering, ON, Canada L1W 1J3 (Canada)

    2016-03-15

    Highlights: • Neutronic signal processing system design to improve CANDU SDS1 performance. • Reactor modeling for CANDU LLOCA transient. • MATLAB/Simulink system implementation for the SDS1 trip logic. • Increasing the SDS1 trip response. - Abstract: For CANDU reactors, several options to improve CANDU nuclear power plant operation safety margin have been investigated in this paper. A particular attention is paid to the response time of CANDU shutdown system number 1 (SDS1) in case of large break loss of coolant accident (LLOCA). Based on point kinetic method, a systematic fundamental analysis is performed to CANDU LLOCA event, and the power transient signal is generated. In order to improve the SDS1 response time during LLOCA events, an innovative power measurement and signal processing system is particularly designed. The new signal processing system is implemented with the input of the LLOCA power transient, and the simulation results of the reactor trip time and signal are compared to those of the existing system in CANDU power plants. It is demonstrated that the new signal processing system can not only achieve a shorter reactor trip time than the existing system, but also accommodate the spurious trip immunity. This will significantly enhance the safety margin for the power plant operation, or bring extra economical benefits to the power plant units.

  20. Advanced Burner Reactor with Breed-and-Burn Thorium Blankets for Improved Economics and Resource Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States)

    2015-11-04

    This study assesses the feasibility of designing Seed and Blanket (S&B) Sodium-cooled Fast Reactor (SFR) to generate a significant fraction of the core power from radial thorium fueled blankets that operate on the Breed-and-Burn (B&B) mode without exceeding the radiation damage constraint of presently verified cladding materials. The S&B core is designed to maximize the fraction of neutrons that radially leak from the seed (or “driver”) into the subcritical blanket and reduce neutron loss via axial leakage. The blanket in the S&B core makes beneficial use of the leaking neutrons for improved economics and resource utilization. A specific objective of this study is to maximize the fraction of core power that can be generated by the blanket without violating the thermal hydraulic and material constraints. Since the blanket fuel requires no reprocessing along with remote fuel fabrication, a larger fraction of power from the blanket will result in a smaller fuel recycling capacity and lower fuel cycle cost per unit of electricity generated. A unique synergism is found between a low conversion ratio (CR) seed and a B&B blanket fueled by thorium. Among several benefits, this synergism enables the very low leakage S&B cores to have small positive coolant voiding reactivity coefficient and large enough negative Doppler coefficient even when using inert matrix fuel for the seed. The benefits of this synergism are maximized when using an annular seed surrounded by an inner and outer thorium blankets. Among the high-performance S&B cores designed to benefit from this unique synergism are: (1) the ultra-long cycle core that features a cycle length of ~7 years; (2) the high-transmutation rate core where the seed fuel features a TRU CR of 0.0. Its TRU transmutation rate is comparable to that of the reference Advanced Burner Reactor (ABR) with CR of 0.5 and the thorium blanket can generate close to 60% of the core power; but requires only one sixth of the reprocessing and

  1. 32 CFR 318.14 - Blanket routine uses.

    Science.gov (United States)

    2010-07-01

    ... interest of simplicity, economy and to avoid redundancy. (b) Routine Use—Law Enforcement. If a system of... to the OMB in connection with the review of private relief legislation as set forth in OMB Circular A-19 at any stage of the legislative coordination and clearance process as set forth in that...

  2. Tritium Cycle Design for He-cooled Blankets for Demo

    Energy Technology Data Exchange (ETDEWEB)

    Sedano, L. A.

    2007-09-27

    Final goal of COMPU task is to develop a reliable tritium Process Flow Diagram (PFD) modelling tool for DEMO tritium cycle. With this aim, the COMPU task is devoted to: (1) Review of existing available documentation related on configuration layouts, and systems and tritium control process key technologies. (2) To select those validated and considered relevant as basis for code development. (3) Implement results from (1), and (2) in the PFD TRICICLO. This fi rst deliverable focuses on item (1) and is conceived as a managerial tool to: (1) establish and discuss the correct inputs, (2) to identify existing lack of basic information and (3) to establish the general demands and characteristics for the development of an advanced PFD model. Thus, in order to discuss and determine the basic information required for future new developments of the task, this report presents a review of the documentation of: (1) The outline of total cycle and system configuration with the main tritium system design specifications. (2) The ultimate processing technologies with the associated design of their implementing units. (3) Key parameters needed to describe processes and modes of operation of the system units. (4) An overview of the existing models for cycle and units with a general analysis of their performances and limitations. Thus, this report is a direct review of the base information generated previously in the context of tasks of the EU FT Programmers (reported in EFDA Green Books) and available results in open fields literature provided by parallel Programmes abroad (JP, US, RF). (Author) 102 refs.

  3. Tritium management and anti-permeation strategies for three different breeding blanket options foreseen for the European Power Plant Physics and Technology Demonstration reactor study

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D., E-mail: david.demange@kit.edu [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Boccaccini, L.V.; Franza, F. [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany); Santucci, A.; Tosti, S. [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati (RM) (Italy); Wagner, R. [Karlsruhe Institute of Technology, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Herrmann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-15

    In DT fusion reactors like DEMO, the commonly accepted tritium (T) losses through the steam generator (SG) shall not exceed about 2 mg/d that are more than 5 orders of magnitude lower than the T production rate of about 360 g/d in the breeding blanket (BB). A very effective mitigation strategy is required balancing the size and efficiency of the processes in the breeding and cooling loops, and the availability and efficiency of anti-permeation barriers. A numerical study is presented using the T permeation code FUS-TPC that computes all T flows and inventories considering the design and operation of the BB, the SG, and the T systems. Many scenarios are numerically analyzed for three breeding blankets concepts – helium cooled pebbles bed (HCPB), helium cooled lithium lead (HCLL), and water cooled lithium lead (WCLL) – varying the T processes throughput and efficiency, and the permeation regimes through the BB and SG to be either surface-limited or diffusion-limited with possible permeation reduction factor. For each BB concept, we discuss workable operation scenarios and suggest specific anti-permeation strategies.

  4. Development of a Secondary SCRAM System for Fast Reactors and ADS Systems

    Directory of Open Access Journals (Sweden)

    Simon Vanmaercke

    2012-01-01

    Full Text Available One important safety aspect of any reactor is the ability to shutdown the reactor. A shutdown in an ADS can be done by stopping the accelerator or by lowering the multiplication factor of the reactor and thus by inserting negative reactivity. In current designs of liquid-metal-cooled GEN IV and ADS reactors reactivity insertion is based on absorber rods. Although these rod-based systems are duplicated to provide redundancy, they all have a common failure mode as a consequence of their identical operating mechanism, possible causes being a largely deformed core or blockage of the rod guidance channel. In this paper an overview of existing solutions for a complementary shut down system is given and a new concept is proposed. A tube is divided into two sections by means of aluminum seal. In the upper region, above the active core, spherical neutron-absorbing boron carbide particles are placed. In case of overpower and loss of coolant transients, the seal will melt. The absorber balls are then no longer supported and fall down into the active core region inserting a large negative reactivity. This system, which is not rod based, is under investigation, and its feasibility is verified both by experiments and simulations.

  5. Prospects and problems using vanadium alloys as a structural material of the first wall and blanket of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Votinov, S.N. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Solonin, M.I. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Kazennov, Yu.I. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Kondratjev, V.P. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Nikulin, A.D. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Tebus, V.N. [RSRC, Moscow (Russian Federation). A.A. Bochvar Inst. of Inorg. Mater.; Adamov, E.O. [RDIPE, Moscow (Russian Federation); Bougaenko, S.E. [RDIPE, Moscow (Russian Federation); Strebkov, Yu.S. [RDIPE, Moscow (Russian Federation); Sidorenkov, A.V. [RDIPE, Moscow (Russian Federation); Ivanov, V.B. [Nauchno-Issledovatel`skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation); Kazakov, V.A. [Nauchno-Issledovatel`skij Inst. Atomnykh Reaktorov, Dimitrovgrad (Russian Federation); Evtikhin, V.A. [SE ``Krasnaya Zvezda``, Moscow (Russian Federation); Lyublinski, I.E. [SE ``Krasnaya Zvezda``, Moscow (Russian Federation); Trojanov, V.M. [SSC- IPPE, Obninsk (Russian Federation); Rusanov, A.E. [SSC- IPPE, Obninsk (Russian Federation); Chernov, V.M. [SSC- IPPE, Obninsk (Russian Federation); Birgevoj, G.A. [SSC- IPPE, Obninsk (Russian Federation)

    1996-10-01

    Vanadium-based alloys are most promising as low activation structural materials for DEMO. It was previously established that high priority is to be given to V-alloys of the V-Ti-Cr system as structural materials of a tritium breeding blanket and the first wall of a fusion reactor. However, there is some uncertainty in selecting a specific element ratio between the alloy components in this system. This is primarily explained by the fact that the properties of V-alloys are dictated not only by the ratio between the main alloying elements (here Ti and Cr), but also by impurities, both metallic and oxygen interstitials. Based on a number of papers today one can say that V-Ti-Cr alloys with insignificant variations in the contents of the main constituents within 5-10 mass% Ti and 4-6 mass% Cr must be taken as a base for subsequent optimization of chemical composition and thermomechanical working. However, the database is obviously insufficient to assess the ecological acceptability (activation), physical and mechanical properties, corrosion and irradiation resistance and, particularly, the commercial production of alloys. Therefore, there is a need for comprehensive studies of promising V-alloys, namely V-4Ti-4Cr and V-10Ti-5Cr. (orig.).

  6. River ecosystem response to prescribed vegetation burning on Blanket Peatland.

    Directory of Open Access Journals (Sweden)

    Lee E Brown

    Full Text Available Catchment-scale land-use change is recognised as a major threat to aquatic biodiversity and ecosystem functioning globally. In the UK uplands rotational vegetation burning is practised widely to boost production of recreational game birds, and while some recent studies have suggested burning can alter river water quality there has been minimal attention paid to effects on aquatic biota. We studied ten rivers across the north of England between March 2010 and October 2011, five of which drained burned catchments and five from unburned catchments. There were significant effects of burning, season and their interaction on river macroinvertebrate communities, with rivers draining burned catchments having significantly lower taxonomic richness and Simpson's diversity. ANOSIM revealed a significant effect of burning on macroinvertebrate community composition, with typically reduced Ephemeroptera abundance and diversity and greater abundance of Chironomidae and Nemouridae. Grazer and collector-gatherer feeding groups were also significantly less abundant in rivers draining burned catchments. These biotic changes were associated with lower pH and higher Si, Mn, Fe and Al in burned systems. Vegetation burning on peatland therefore has effects beyond the terrestrial part of the system where the management intervention is being practiced. Similar responses of river macroinvertebrate communities have been observed in peatlands disturbed by forestry activity across northern Europe. Finally we found river ecosystem changes similar to those observed in studies of wild and prescribed forest fires across North America and South Africa, illustrating some potentially generic effects of fire on aquatic ecosystems.

  7. Tar water digestion in an upflow anaerobic sludge blanket reactor

    Energy Technology Data Exchange (ETDEWEB)

    Skibsted Mogensen, A.; Angelidaki, I.; Schmidt, J.E.; Ahring, B.K. [Technical Univ., Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1998-08-01

    The water from the gasification and wet oxidised tar water has been digested anaerobically in UASB reactors and were digested in respectively 10 and 50% in batches. Though the tar water show inhibition at very low concentrations to aerobic microorganisms, the granular sludge used in UASB reactors degrades tar water in concentrations that reveal total inhibition of e.g. bacteria conducting the nitrification process. The value of waste waters are determined, showing that the tar water produces more biogas in the anaerobic digestion. A wide range of xenobiotics, especially phenolic compounds can be transformed in the anaerobic digestion process. Seven phenolic are followed in batch experiments and UASB reactor experiments, and their particular fate in the anaerobic systems embody large differences in the transformation pattern. (au) 24 refs.

  8. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  9. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin, E-mail: ymlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ku, Duck Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  10. Radar scattering mechanisms within the meteor crater ejecta blanket: Geologic implications and relevance to Venus

    Science.gov (United States)

    Garvin, J. B.; Campbell, B. A.; Zisk, S. H.; Schaber, Gerald G.; Evans, C.

    1989-01-01

    Simple impact craters are known to occur on all of the terrestrial planets and the morphologic expression of their ejecta blankets is a reliable indicator of their relative ages on the Moon, Mars, Mercury, and most recently for Venus. It will be crucial for the interpretation of the geology of Venus to develop a reliable means of distinguishing smaller impact landforms from volcanic collapse and explosion craters, and further to use the observed SAR characteristics of crater ejecta blankets (CEB) as a means of relative age estimation. With these concepts in mind, a study was initiated of the quantitative SAR textural characteristics of the ejecta blanket preserved at Meteor Crater, Arizona, the well studied 1.2 km diameter simple crater that formed approx. 49,000 years ago from the impact of an octahedrite bolide. While Meteor Crater was formed as the result of an impact into wind and water lain sediments and has undergone recognizable water and wind related erosion, it nonetheless represents the only well studied simple impact crater on Earth with a reasonably preserved CEB. Whether the scattering behavior of the CEB can provide an independent perspective on its preservation state and style of erosion is explored. Finally, airborne laser altimeter profiles of the microtopography of the Meteor Crater CEB were used to further quantify the subradar pizel scale topographic slopes and RMS height variations for comparisons with the scattering mechanisms computed from SAR polarimetry. A preliminary assessment was summarized of the L-band radar scattering mechanisms within the Meteor Crater CEB as derived from a NASA/JPL DC-8 SAR Polarimetry dataset acquired in 1988, and the dominant scattering behavior was compared with microtopographic data (laser altimeter profiles and 1:10,000 scale topographic maps).

  11. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  12. Molecule-surface interaction processes of relevance to gas blanket type fusion device divertor design

    Energy Technology Data Exchange (ETDEWEB)

    Snowdon, K.J. [Newcastle Univ. (United Kingdom). Dept. of Physics; Tawara, H.

    1997-01-01

    The mechanisms which may lead to the departure of molecular species from surfaces exposed to low energy (0.1-100 eV) particle or photon and electron irradiation are reviewed. Where possible, the charge and electronic state, angular, translational and internal energy distributions of the departing molecules are described and the physical origin of the nature of those distributions identified. The consequences, for the departing molecules, of certain material choices become apparent from such an analysis. Such information may help guide the choice of appropriate materials for plasma facing components of gas-blanket type divertors such as that recently proposed for the International Thermonuclear Experimental Reactor (ITER). (author). 71 refs.

  13. Fast Breeder Blanket Facility (FBBF). Quarterly progress report, January 1, 1976--August 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Ott, K.O. (ed.)

    1976-08-01

    The work performed was primarily concerned with the preparation of the experiments to be performed on the Fast Breeder Blanket Facility (FBBF) and the corresponding analysis. The work on the experimental program has been started. Since experiments are subject to safety constraints, a safety investigation program (for a hypothetically flooded facility) is reported. The neutronics part of the preanalysis is also reported. The testing of the first configuration has largely been prepared. The identification of the experiment need has been worked on extensively, largely through unsponsored research which had been started before the contract became effective. The work done in this area by other groups is being reviewed.

  14. Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket (UASB) Reactors

    DEFF Research Database (Denmark)

    Schmidt, Jens Ejbye; Ahring, Birgitte Kiær

    1994-01-01

    Thermal extraction was used to quantify extracellular polymers (ECP) in granules from anaerobic upflow reactors. The optimal time for extraction was determined as the time needed before the intracellular material gives a significant contribution to the extracted extracellular material due to cell...... of an upflow anaerobic sludge blanket reactor from a sugar-containing waste-water to a synthetic waste-water containing acetate, propionate and butyrate resulted in a decrease in both the protein and polysaccharide content and an increase in the lipid content of the extracellular material. Furthermore...

  15. Combination of upflow anaerobic sludge blanket (UASB) reactor and partial nitritation/anammox moving bed biofilm reactor (MBBR) for municipal wastewater treatment.

    Science.gov (United States)

    Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta

    2015-03-01

    In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems.

  16. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program (July to December 1981).

  17. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    Science.gov (United States)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  18. Analyses of Hubble Space Telescope Aluminized-Teflon Multilayer Insulation Blankets Retrieved After 19 Years of Space Exposure

    Science.gov (United States)

    de Groh, Kim K.; Perry, Bruce A.; Mohammed, Jelila S.; Banks, Bruce

    2015-01-01

    Since its launch in April 1990, the Hubble Space Telescope (HST) has made many important observations from its vantage point in low Earth orbit (LEO). However, as seen during five servicing missions, the outer layer of multilayer insulation (MLI) has become increasingly embrittled and has cracked in many areas. In May 2009, during the 5th servicing mission (called SM4), two MLI blankets were replaced with new insulation and the space-exposed MLI blankets were retrieved for degradation analyses by teams at NASA Glenn Research Center (GRC) and NASA Goddard Space Flight Center (GSFC). The retrieved MLI blankets were from Equipment Bay 8, which received direct sunlight, and Equipment Bay 5, which received grazing sunlight. Each blanket was divided into several regions based on environmental exposure and/or physical appearance. The aluminized-Teflon (DuPont, Wilmington, DE) fluorinated ethylene propylene (Al-FEP) outer layers of the retrieved MLI blankets have been analyzed for changes in optical, physical, and mechanical properties, along with chemical and morphological changes. Pristine and as-retrieved samples (materials) were heat treated to help understand degradation mechanisms. When compared to pristine material, the analyses have shown how the Al-FEP was severely affected by the space environment. Most notably, the Al-FEP was highly embrittled, fracturing like glass at strains of 1 to 8 percent. Across all measured properties, more significant degradation was observed for Bay 8 material as compared to Bay 5 material. This paper reviews the tensile and bend-test properties, density, thickness, solar absorptance, thermal emittance, x-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) elemental composition measurements, surface and crack morphologies, and atomic oxygen erosion yields of the Al-FEP outer layer of the retrieved HST blankets after 19 years of space exposure.

  19. Study on the Behaviors of a Conceptual Passive Containment Cooling System

    Directory of Open Access Journals (Sweden)

    Jianjun Wang

    2014-01-01

    Full Text Available The containment is an ultimate and important barrier to mitigate the consequences after the release of mass and energy during such scenarios as loss of coolant accident (LOCA or main steam line break (MSLB. In this investigation, a passive containment cooling system (PCCS concept is proposed for a large dry concrete containment. The system is composed of series of heat exchangers, long connecting pipes with relatively large diameter, valves, and a water tank, which is located at the top of the system and serves as the final heat sink. The performance of the system is numerically studied in detail under different conditions. In addition, the influences of condensation heat transfer conditions and containment environment temperature conditions are also studied on the behaviors of the system. The results reveal that four distinct operating stages could be experienced as follows: startup stage, single phase quasisteady stage, flashing speed-up transient stage, and flashing dominated quasisteady operating stage. Furthermore, the mechanisms of system behaviors are thus analyzed. Moreover, the feasibility of the system is also discussed to meet the design purpose for the containment integrity requirement. Considering the passive feature and the compactness of the system, the proposed PCCS is promising for the advanced integral type reactor.

  20. Improvement of Core Performance by Introduction of Moderators in a Blanket Region of Fast Reactors

    Directory of Open Access Journals (Sweden)

    Toshio Wakabayashi

    2013-01-01

    Full Text Available An application of deuteride moderator for fast reactor cores is proposed for power flattening that can mitigate thermal spikes and alleviate the decrease in breeding ratio, which sometimes occurs when hydrogen moderator is applied as a moderator. Zirconium deuteride is employed in a form of pin arrays at the inner most rows of radial blanket fuel assemblies, which works as a reflector in order to flatten the radial power distribution in the outer core region of MONJU. The power flattening can be utilized to increase core average burn-up by increasing operational time. The core characteristics have been evaluated with a continuous-energy model Monte Carlo code MVP and the JENDL-3.3 cross-section library. The result indicates that the discharged fuel burn-up can be increased by about 7% relative to that of no moderator in the blanket region due to the power flattening when the number of deuteride moderator pins is 61. The core characteristics and core safety such as void reactivity, Doppler coefficient, and reactivity insertion that occurred at dissolution of deuteron were evaluated. It was clear that the serious drawback did not appear from the viewpoints of the core characteristics and core safety.

  1. The feasibility study I on the blanket fuel options for the ATW/HYPER

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok; Meyer, M.K; Hayes, S.L

    2001-01-01

    The choice of a blanket fuel cycle technology and the fuel type for HYPER/ATW are important to develop an ADS with better economics, performance and safety. Even though several fuel types have been considered as an alternative of the blanket fuels for HYPER/ATW, the metal alloy and the dispersion fuels were selected as the candidate fuels for ADS, and the technical feasibilities for both fuels are evaluated in this report. General performance characteristics, fabrication abilities, technical aspects, safety aspects, economics, and non-proliferation aspects for each fuel type are reviewed and evaluated. And some technological problems are addressed in this report, focused on the development strategy, the roadmaps, and the flexibility to meet the missions and specific designs. This study has been performed at the first stage of conceptual design. Since it is under the lack of physical properties for each fuel material, no an attempt is made to select the best fuel option, but the more better fuel options are recommended.

  2. Octalithium plumbate as breeding blanket ceramic: Neutronic performances, synthesis and partial characterization

    Energy Technology Data Exchange (ETDEWEB)

    Colominas, S., E-mail: sergi.colominas@iqs.es [Universitat Ramon Llull, ETS Institut Quimic de Sarria, Electrochemical Methods Laboratory - Analytical Chemistry Department, Via Augusta, 390, 08017 Barcelona (Spain); Palermo, I., E-mail: iole.palermo@ciemat.es [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain); Abella, J., E-mail: jordi.abella@iqs.es [Universitat Ramon Llull, ETS Institut Quimic de Sarria, Electrochemical Methods Laboratory - Analytical Chemistry Department, Via Augusta, 390, 08017 Barcelona (Spain); Gomez-Ros, J.M., E-mail: jm.gomezros@ciemat.es [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain); Sanz, J., E-mail: jsanz@ind.uned.es [UNED, Department of Nuclear Energy, c./Juan del Rosal 12, E-28040 Madrid (Spain); Sedano, L., E-mail: luis.sedano@ciemat.es [CIEMAT, Av. Complutense 22, E-28040 Madrid (Spain)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Definition of a suitable configuration for the Li{sub 8}PbO{sub 6} breeding blanket design. Black-Right-Pointing-Pointer Demonstration of the feasibility of Li{sub 8}PbO{sub 6} as a breeding material. Black-Right-Pointing-Pointer Synthesis optimization in the Li{sub 8}PbO{sub 6} production. Black-Right-Pointing-Pointer Characterization of Li{sub 8}PbO{sub 6} by X-ray phase analysis is discussed. - Abstract: A neutronic assessment of the performances of a helium-cooled Li{sub 8}PbO{sub 6} breeding blanket (BB) for the conceptual design of a DEMO fusion reactor is given. Different BB configurations have been considered in order to minimize the amount of beryllium required for neutron multiplication, including the use of graphite as reflector material. The calculated neutronic responses: tritium breeding ratio (TBR), power deposition in TF coils and power amplification factor, indicate the feasibility of Li{sub 8}PbO{sub 6} as breeding material. Furthermore, the synthesis and characterization of Li{sub 8}PbO{sub 6} by X-ray phase analysis are also discussed.

  3. Application Effect’s Research of Vetiver Eco Blanket in Pubugou Reservoir Fluctuating Zone

    Directory of Open Access Journals (Sweden)

    Lan Huijuan

    2015-01-01

    Full Text Available To solve the ecological disasters in Pubugou Reservoir Fluctuating Zone, ecological blanket governance model is proposed in this paper, which may provide good early environment for plants’ survival in fluctuation zone, and then play the function of greening and sustainable development to ensure the slopes’ stability. Meanwhile, based on the result of vetiver ecological blanket in Hanyuan experimental zone, we find that three kinds of typical Fluctuating Zone slope’s greening effect is good, which includes the dirt piling up slope, the whole lump of rock slope and the gravel piling up slope, and it gets an average coverage of 90.3 % as well as good strength. Due to the different geological conditions, the ecological blankets’ governance effect differs from slope to slope. Using analytic hierarchy process to calculate the weight, we get the dirt piling up slope, the whole lump of rock slope and the gravel piling up slope’s weights are 0.41, 0.17, 0.42, respectively, namely, the dirt piling up slope and the gravel piling up slope have good results overall, followed by the whole lump of rock slope.

  4. Fabrication of ITER Semi-Prototype Blanket First Wall for the Final Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Kwon; Jung, Yang Il; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Suk Kwon; Lee, Don Won; Kim, Duck Hoi; Cho, Seung Yon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The ITER semi-prototype was designed to qualify the manufacturing technology for the ITER blanket first wall. According to the design of the semi-prototype, its fabrication is expected to face great difficulty. The blanket first wall consists of three different materials, i.e., beryllium (Be), CuCrZr, and stainless-steel (SS), which are joined into one part. For fabrication of these multi-layered structures, hot isostatic pressing (HIP), which is one of the diffusion bonding methods, has been considered as a promising technology to realize sufficient mechanical integrity of a joint under the anticipated high neutron and stress fields. HIP provides high dimensional accuracy, low residual stress during the joining process, and the joining of three-dimensionally complex structures in comparison with other joining methods. Even though the joining technology for the different materials had been developed in the first stage of the qualification, the joining is still a key issue for the fabrication of the semi-prototype

  5. Stellar model atmospheres with magnetic line blanketing. II. Introduction of polarized radiative transfer

    CERN Document Server

    Khan, S A

    2006-01-01

    The technique of model atmosphere calculation for magnetic Ap and Bp stars with polarized radiative transfer and magnetic line blanketing is presented. A grid of model atmospheres of A and B stars are computed. These calculations are based on direct treatment of the opacities due to the bound-bound transitions that ensures an accurate and detailed description of the line absorption and anomalous Zeeman splitting. The set of model atmospheres was calculated for the field strengths between 1 and 40 kG. The high-resolution energy distribution, photometric colors and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are compared to those of non-magnetic reference models and to the previous paper of this series. The results of modelling confirmed the main outcomes of the previous study: energy redistribution from UV to the visual region and flux depression at 5200A. However, we found that effects of enhanced line blanketing when transfer for polarized radiation take...

  6. Properties and Technology for Quasi-Composite Blanket Using Natural Reinforcement of the Metal by Strain Affected Areas

    Directory of Open Access Journals (Sweden)

    A. Kirichek

    2013-12-01

    Full Text Available Techniques for making materials with advanced performance attributes at the expense of blanket heterogeneous strengthening are considered. A new trend is defined in a multiple increase of performance attributes in metal materials by natural reinforcement with nanostructural and ultra-fine-grained fragments. The application of a wave strain hardening technique is substantiated for obtaining a heterogeneous structure in wide-area listed full-size products including bulky ones. A high carrying capacity of heavy-loaded material with a deep-strengthened blanket is determined.

  7. Strategy for solving a coupled problem of the electromagnetic load analysis and design optimization for local conducting structures to support the ITER blanket development

    Energy Technology Data Exchange (ETDEWEB)

    Rozov, Vladimir, E-mail: vladimir.rozov@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul-lez-Durance (France); Belyakov, V.; Kukhtin, V.; Lamzin, E.; Mazul, I.; Sytchevsky, S. [D.V. Efremov Scientific Research Institute, 196641 St. Petersburg (Russian Federation)

    2014-11-15

    Highlights: • We present the way of modeling transient electro-magnetic loads on local conductive domains in the large magnetic system. • Simplification is achieved by decomposing of the problem, multi-scale integral-differential modeling and use of integral parameters. • The intrinsic scale of loads on a localized conductor with eddy is quantified through the load susceptibility tensor. • Solution is searched as response of a simple equivalent dynamic simulator, using control theory methods. • The concept is exemplified with multi-scenario assessment of EM eddy loads on ITER blanket modules. - Abstract: The complexity of the electromagnetic (EM) response of the tokamak structures is one of the key and design-driving issues for the ITER. We consider the specifics of the assessment of ponderomotive forces, acting on local components of a large electro-physical device during electromagnetic transients. A strategy and approach is proposed for the operative EM loads modeling and analysis that enables design optimization at early phases of development. The paper describes a method of principal simplification of the mathematical model, based on the analysis and exploiting specific features and peculiarities of the relevant technical problem, determined by the design and operation of the device and system under consideration. The application of the method for predictive EM loads analysis and corresponding numerical calculations are exemplified for the localized ITER blanket components — shield modules. The example demonstrates the efficiency of EM load analysis in complex electromagnetic systems via a set of simplified models with different scope, contents and level of detail.

  8. An emergency water injection system (EWIS) for future CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Andre L.F. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). E-mail: momarques@uol.com.br; Todreas, Neil E.; Driscoll, Michael J. [Massachusetts Inst.of Tech., Cambridge, MA (United States). Nuclear Engineering Dept.

    2000-07-01

    This paper deals with the investigation of the feasibility and effectiveness of water injection into the annulus between the calandria tubes and the pressure tubes of CANDU reactors. The purpose is to provide an efficient decay heat removal process that avoids permanent deformation of pressure tubes severe accident conditions, such as loss of coolant accident (LOCA). The water injection may present the benefit of cost reduction and better actuation of other related safety systems. The experimental work was conducted at the Massachusetts Institute of Technology (MIT), in a setup that simulated, as close as possible, a CANDU bundle annular configuration, with heat fluxes on the order of 90 kW/m{sup 2}: the inner cylinder simulates the pressure tube and the outer tube represents the calandria tube. The experimental matrix had three dimensions: power level, annulus water level and boundary conditions. The results achieved overall heat transfer coefficients (U), which are comparable to those required (for nominal accident progression) to avoid pressure tube permanent deformation, considering current CANDU reactor data. Nonetheless, future work should be carried out to investigate the fluid dynamics such as blowdown behavior, in the peak bundle, and the system lay-out inside the containment to provide fast water injection. (author)

  9. High Flux Isotope Reactor system RELAP5 input model

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  10. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    Science.gov (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  11. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, Alejandra, E-mail: aleja311@berkeley.edu [University of California Berkeley, Berkeley, CA 94706 (United States); Kramer, Kevin [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA (United States); Meier, Wayne; DeMuth, James; Reyes, Susana [TerraPower, Bellevue, WA 98005 (United States); Fratoni, Massimiliano [University of California Berkeley, Berkeley, CA 94706 (United States)

    2016-06-15

    Highlights: • Monte Carlo calculations were performed on numerous lithium ternary alloys. • Elements with high neutron multiplication performed well with low absorbers. • Enriching lithium decreases minimum lithium concentration of alloys by 60% or more. • Alloys that performed well neutronically were selected for activation calculations. • Alloys activated, except LiBaBi, do not pose major environmental or safety concerns. - Abstract: An attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based ternary alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys in the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as Pb, Sn, and Sr, perform well with those that have high neutron multiplication such as Pb and Bi. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium with {sup 6}Li significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR

  12. A Markov blanket-based method for detecting causal SNPs in GWAS

    Directory of Open Access Journals (Sweden)

    Han Bing

    2010-04-01

    Full Text Available Abstract Background Detecting epistatic interactions associated with complex and common diseases can help to improve prevention, diagnosis and treatment of these diseases. With the development of genome-wide association studies (GWAS, designing powerful and robust computational method for identifying epistatic interactions associated with common diseases becomes a great challenge to bioinformatics society, because the study of epistatic interactions often deals with the large size of the genotyped data and the huge amount of combinations of all the possible genetic factors. Most existing computational detection methods are based on the classification capacity of SNP sets, which may fail to identify SNP sets that are strongly associated with the diseases and introduce a lot of false positives. In addition, most methods are not suitable for genome-wide scale studies due to their computational complexity. Results We propose a new Markov Blanket-based method, DASSO-MB (Detection of ASSOciations using Markov Blanket to detect epistatic interactions in case-control GWAS. Markov blanket of a target variable T can completely shield T from all other variables. Thus, we can guarantee that the SNP set detected by DASSO-MB has a strong association with diseases and contains fewest false positives. Furthermore, DASSO-MB uses a heuristic search strategy by calculating the association between variables to avoid the time-consuming training process as in other machine-learning methods. We apply our algorithm to simulated datasets and a real case-control dataset. We compare DASSO-MB to other commonly-used methods and show that our method significantly outperforms other methods and is capable of finding SNPs strongly associated with diseases. Conclusions Our study shows that DASSO-MB can identify a minimal set of causal SNPs associated with diseases, which contains less false positives compared to other existing methods. Given the huge size of genomic dataset

  13. Degradation of Methanethiol by Methylotrophic Methanogenic Archaea in a Lab-Scale Upflow Anaerobic Sludge Blanket Reactor

    NARCIS (Netherlands)

    Bok, de F.A.M.; Leerdam, van R.C.; Lomans, B.P.; Smidt, H.; Lens, P.N.L.; Janssen, A.J.H.; Stams, A.J.M.

    2006-01-01

    In a lab-scale upflow anaerobic sludge blanket reactor inoculated with granular sludge from a full-scale wastewater treatment plant treating paper mill wastewater, methanethiol (MT) was degraded at 30°C to H2S, CO2, and CH4. At a hydraulic retention time of 9 h, a maximum influent concentration of 6

  14. Relationships between anthropogenic pressures and ecosystem functions in UK blanket bogs: linking process understanding to ecosystem service valuation

    OpenAIRE

    Evans, CD; Bonn, A; Holden, J; Reed, MS; Evans, MG; Worrall, F.; J. Couwenberg; Parnell, M

    2014-01-01

    Quantification and valuation of ecosystem services are critically dependent on the quality of underpinning science. While key ecological processes may be understood, translating this understanding into quantitative relationships suitable for use in an ecosystem services context remains challenging. Using blanket bogs as a case study, we derived quantitative 'pressure-response functions' linking anthropogenic pressures (drainage, burning, sulphur and nitrogen deposition) with ecosystem functio...

  15. Preliminary structural design and thermo-mechanical analysis of helium cooled solid breeder blanket for Chinese Fusion Engineering Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Min; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Zhou, Guangming; Liu, Qianwen; Wang, Shuai; Lv, Zhongliang; Ye, Minyou

    2015-02-15

    Highlights: • A helium cooled solid breeder blanket module was designed for CFETR. • Multilayer U-shaped pebble beds were adopted in the blanket module. • Thermal and thermo-mechanical analyses were carried out under normal operating conditions. • The analysis results were found to be acceptable. - Abstract: With the aim to bridge the R&D gap between ITER and fusion power plant, the Chinese Fusion Engineering Test Reactor (CFETR) was proposed to be built in China. The mission of CFETR is to address the essential R&D issues for achieving practical fusion energy. Its blanket is required to be tritium self-sufficient. In this paper, a helium cooled solid breeder blanket adopting multilayer U-shaped pebble beds was designed and analyzed. Thermo-mechanical analysis of the first wall and side wall combined with breeder unit was carried out for normal operating steady state conditions. The results showed that the maximum temperatures of the structural material, neutron multiplier and tritium breeder pebble beds are 523 °C, 558 °C and 787 °C, respectively, which are below the corresponding limits of 550 °C, 650 °C and 920 °C. The maximum equivalent stress of the structure is under the allowable value with a margin about 14.5%.

  16. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F.J.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  17. ITER屏蔽包层活化分析%Activation analysis for ITER shielding blanket

    Institute of Scientific and Technical Information of China (English)

    杨琪; 李斌; 郑剑; 何桃; 蒋洁琼; 吴宜灿

    2016-01-01

    作为国际热核聚变实验堆(ITER)的重要部件之一,屏蔽包层承受高强度聚变中子辐照,需要定期更换和维修。当活化的屏蔽包层从 ITER 托卡马克装置移到热室时,可能会给工作人员造成严重的辐射照射,是 ITER大厅和热室屏蔽设计的重要辐射源。文中基于 ITER最新中子学分析基准模型和“二步法”停堆剂量计算方法,使用超级蒙特卡罗核计算仿真软件系统 SuperMC针对15号屏蔽包层建立精细的中子学模型,并计算分析包层的活化情况及最严重情况下的周围辐射剂量率,并初步应用于 ITER赤道窗口室的屏蔽分析。计算结果显示,单个包层周围最大剂量率为350 Sv/hr,当传送小车停留在赤道窗口室内时,窗口室屏蔽门外剂量率高于10 mSv/hr,不足以满足设计要求。%As one of the key components of the International thermonuclear experiment reactor (ITER),blankets will sustain radiation from fusion neutrons with high intensity and may need to be replaced and maintained regularly. During the maintenance,the cask with activated blankets will be transferred to hot cell from Tokamak,which will cause high level of radiation in the building and radiation exposure for workers. Employing the Super Monte Carlo Simulation Program for Nuclear and Radiation Process (SuperMC),the activation of No.1 5 shielding blanket and the shutdown dose around was analyzed based on the latest ITER neutronics model named Blite-3. The results were applied in the shielding analysis for ITER equatorial port cell. From the results,the dose rate around one activated blanket should be as high as 350 Sv/hr. When the cask carrying four activated first walls was transferred to the equatorial port cell,the dose rate in the gallery outside the port cell could be more than 10 mSv/hr,not meeting with the design criteria.

  18. Fracture toughness of irradiated candidate materials for ITER first wall/blanket structures: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J.; Pawel, J.E.; Grossbeck, M.L.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)] [and others

    1996-04-01

    Disk compact specimens of candidate materials for first wall/blanket structures in ITER have been irradiated to damage levels of about 3 dpa at nominal irradiation temperatures of either 90 250{degrees}C. These specimens have been tested over a temperature range from 20 to 250{degrees}C to determine J-integral values and tearing moduli. The results show that irradiation at these temperatures reduces the fracture toughness of austenic stainless steels, but the toughness remains quite high. The toughness decreases as the temperature increases. Irradiation at 250{degrees}C is more damaging that at 90{degrees}C, causing larger decreases in the fracture toughness. The ferritic-martensitic steels HT-9 and F82H show significantly greater reductions in fracture toughness that the austenitic stainless steels.

  19. HIP experiments on the first wall and cooling plate specimens for the EU HCPB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Norajitra, P. E-mail: prachai.norajitra@imf.fzk.de; Reimann, G.; Ruprecht, R.; Schaefer, L

    2002-12-01

    First wall and cooling plates are considered the most important structural parts of the EU HCPB blanket concept which is based on the use of ferritic-martensitic steel as structural material, Li{sub 4}SiO{sub 4} pebbles as breeder material, beryllium pebbles as neutron multiplier, and 8 MPa helium as coolant. Both the first wall and cooling plates contain complex arrays of internal He coolant channels. The favourite manufacturing technology is diffusion welding of two halves of plates applying the hot isostatic pressure (HIP) welding method that allows uniform distribution of the pressure acting on the outer surfaces of the welding objects. The HIP experiment was started with small MANET specimens with internal coolant channels. The objective of this work is to investigate the appropriate HIP technique, boundary conditions, and parameters in order to achieve good mechanical properties of the welding joints as well as to achieve a transition to test specimens of larger dimensions.

  20. Joining technologies of reduced activation ferritic/martensitic steel for blanket fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, T. [JAERI, Naka Fusion Establishment, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)]. E-mail: hiroset@fusion.naka.jaeri.go.jp; Shiba, K. [JAERI, Naka Fusion Establishment, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan); Ando, M. [JAERI, Naka Fusion Establishment, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan); Enoeda, M. [JAERI, Naka Fusion Establishment, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan); Akiba, M. [JAERI, Naka Fusion Establishment, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2006-02-15

    Reduced activation ferritic/martensitic steel, like F82H has been developed as a structural material for in vessel components because of its superior resistance to irradiation damage. As a blanket fabrication process, hot isostatic pressing (HIP) bonding has the great merit of near-net-shaping processing. The degassing conditions and surface roughness were investigated as parameters of HIP conditions. Although the surface roughness and degassing conditions had slight effects on tensile properties, the lack of degassing caused significant degradation of impact properties. A dissimilar metal joint between sintered tungsten and F82H was fabricated by a spark plasma sintering (SPS) method. The joint had no defects in spite of the large difference in thermal expansion coefficient between tungsten and F82H. It is considered that formation of a compliant layer of the ferritic phase can lead to successful bonding for the tungsten and F82H joint even without an artificial interlayer.