WorldWideScience

Sample records for blanket shield module

  1. Manufacture of blanket shield modules for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetto, P. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany)]. E-mail: Patrick.Lorenzetto@tech.efda.org; Boireau, B. [AREVA Centre Technique de Framatome, BP181, F-71200 Le Creusot (France); Boudot, C. [AREVA Centre Technique de Framatome, BP181, F-71200 Le Creusot (France); Bucci, P. [CEA, DTEN/S3ME/LMIC, 17 rue des Martyrs, F-38054 Grenoble (France); Furmanek, A. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany); Ioki, K. [ITER IT, Boltzmannstr. 2, D-85748 Garching (Germany); Liimatainen, J. [Metso Powdermet, P.O. Box 306, FIN-33101 Tampere (Finland); Peacock, A. [EFDA CSU Garching, Boltzmannstr. 2, D-85748 Garching (Germany); Sherlock, P. [NNC Ltd., Booths Hall, Knutsford, Cheshire WA16 8QZ (United Kingdom); Taehtinen, S. [VTT Industrial Systems, P.O. Box 1704, Espoo, FIN-02044 VTT (Finland)

    2005-11-15

    A research and development programme for the ITER blanket shield modules has been implemented in Europe to provide input for the design and the manufacture of the full-scale production components. It involves in particular the fabrication and testing of mock-ups (small scale and medium scale) and full-scale prototypes of shield blocks (SB) and first wall (FW) panels. The manufacturing feasibility of FW panels has been demonstrated for two copper alloy candidates. Two designs have been developed for the manufacture of the SB, one for a conventional fabrication route and one for a fabrication route based on the hot isostatic press technology. This paper presents the fabrication routes developed in Europe for the manufacture of the ITER Shield modules.

  2. ITER blanket module 17 shield block design and analysis

    International Nuclear Information System (INIS)

    The shield block reference design of the typical ITER blanket module has a number of grave disadvantages, precarious with relation to nuclear safety of the reactor. The main problems may arise when innage of the parallel cooling passages both in the first wall and in the shield block. Vapor locking in a radial channel with flow insert driver is very probable. Another problem, as a result of the same reason, is draining and dehydration of the coolant system. Then the highly dense packing of the radial channels in the collector array brings an essential flow irregularity. Customary as a rule, the lack of coolant is observed in the last channels, nearest to the outside, most heated surface of the shield block. A local boiling is possible in these dead spaces of coolant system. In consequence of the radial flow irregularity the cooling in the upper box header, directly under the first wall, may be extremely poor. Among the other imperfections one should note the large frontal figured lids, which overburden at welding and give to rise of stresses and shrinkages, and as a result, the large share of irreparable spoilage. The paper represents an alternative design of the shield block coolant system with predominantly sequential flow circuit. The cooling channels are drilled from the frontal side as inclined transverse holes. The open drilling ends are combined in pairs with milled grooves and welded with small lids. This gain the following advantages: the lids may have smaller thickness (7 mm instead 20 mm), the cooling passengers are placed closer to the lateral and upper sides and make cooling better, the welding stress and shrinkages are reduced, there are no any dead spaces of coolant, and the water fillup and draining are substantially improved. The listed hydraulic and thermo mechanical problems have been analysed with help of 3D models in ANSYS CFX program. The models include both the cooling space filled by water and the solid part of shield block. Thus the

  3. Japanese contribution to the design of primary module of shielding blanket in ITER-FEAT

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Toshimasa; Hatano, Toshihisa; Miki, Nobuharu; Hiroki, Seiji; Enoeda, Mikio; Ohmori, Junji; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Shinichi [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    2003-02-01

    Japanese contributions to the design activity on the shielding blanket module consisting of the separable first wall and the shield block for ITER-FEAT are compiled. Temperature and stress distributions in the first wall and the shield block are analyzed and evaluated with 2-D and 3-D models for steady state and also for transient condition according to plasma ramp-up and ramp-down. While temperatures and stresses in the first wall satisfy their allowable values, those in a front part of the shield block exceed the allowable guideline. Based on this result, design improvements are suggested. Coolant flow and pressure distributions along the complicated coolant channel in the shield block are preliminary analyzed. Though heat removal is satisfactory in all coolant channels, back flows due to choking in coolant collectors are found. Design improvements to avoid the choking are suggested. Electromagnetic forces acting on blanket modules are analyzed with detailed 3-D models of solid elements for different disruption scenarios. The maximum moment around radial axis is 1.36 MNm on module no.5 under fast upward VDE, and the maximum moment around vertical axis is 1.47 MNm on module no.1 under fast downward VDE. The supporting beam of the first wall with welded attachment to the shield block is designed. Required welding thickness and support conditions to withstand electromagnetic forces are estimated. Strength of the shield block at the region mating the flexible cartridge is also estimated. Though the shield block surface attached by the flexible cartridge shows sufficient strength, the internal thread mating the Inconel bolt would need more length. In addition, water-to-water leak detection system in case main supply/return manifolds are located within the vacuum vessel is designed. By using Kr as the tracer material, the possibility of water-to-water leak detection and the concept of the detection system are shown. The design of the shielding blanket of ITER-FEAT has

  4. Japanese contribution to the design of primary module of shielding blanket in ITER-FEAT

    International Nuclear Information System (INIS)

    Japanese contributions to the design activity on the shielding blanket module consisting of the separable first wall and the shield block for ITER-FEAT are compiled. Temperature and stress distributions in the first wall and the shield block are analyzed and evaluated with 2-D and 3-D models for steady state and also for transient condition according to plasma ramp-up and ramp-down. While temperatures and stresses in the first wall satisfy their allowable values, those in a front part of the shield block exceed the allowable guideline. Based on this result, design improvements are suggested. Coolant flow and pressure distributions along the complicated coolant channel in the shield block are preliminary analyzed. Though heat removal is satisfactory in all coolant channels, back flows due to choking in coolant collectors are found. Design improvements to avoid the choking are suggested. Electromagnetic forces acting on blanket modules are analyzed with detailed 3-D models of solid elements for different disruption scenarios. The maximum moment around radial axis is 1.36 MNm on module no.5 under fast upward VDE, and the maximum moment around vertical axis is 1.47 MNm on module no.1 under fast downward VDE. The supporting beam of the first wall with welded attachment to the shield block is designed. Required welding thickness and support conditions to withstand electromagnetic forces are estimated. Strength of the shield block at the region mating the flexible cartridge is also estimated. Though the shield block surface attached by the flexible cartridge shows sufficient strength, the internal thread mating the Inconel bolt would need more length. In addition, water-to-water leak detection system in case main supply/return manifolds are located within the vacuum vessel is designed. By using Kr as the tracer material, the possibility of water-to-water leak detection and the concept of the detection system are shown. The design of the shielding blanket of ITER-FEAT has

  5. Numerical Analyses of Electromagnetic Forces on the ITER Blanket Module Shield Block During Major Disruptions

    International Nuclear Information System (INIS)

    Electromagnetic (EM) load is one of the key design drivers for the blanket shield block (SB) and other in-vessel components. In this article, an EM analysis method was developed to address the EM force on the SB. The plasma currents, which vary spatially and temporally, are loaded as a filament at each time point. The standard blanket module No.04 (BM04) under major disruption (MD) is selected to perform the analyses. The analyses results are validated by comparing currents on the passive structure. To better understand the effects of cooling channels and slits on the EM force, the case of SB without cooling channel and the case without slits are calculated to make comparisons. The results show that the slits play an important role in controlling the EM load on SB. (fusion engineering)

  6. Design and analysis of ITER shield blanket

    International Nuclear Information System (INIS)

    This report includes electromagnetic analyses for ITER shielding blanket modules, fabrication methods for the blanket modules and the back plate, the design and the fabrication methods for port limiter have been investigated. Studies on the runaway electron impact for Be armor have been also performed. (J.P.N.)

  7. Design of ITER shielding blanket

    International Nuclear Information System (INIS)

    A mechanical configuration of ITER integrated primary first wall/shield blanket module were developed focusing on the welded attachment of its support leg to the back plate. A 100 mm x 150 mm space between the legs of adjacent modules was incorporated for the working space of welding/cutting tools. A concept of coolant branch pipe connection to accommodate deformation due to the leg welding and differential displacement of the module and the manifold/back plate during operation was introduced. Two-dimensional FEM analyses showed that thermal stresses in Cu-alloy (first wall) and stainless steel (first wall coolant tube and shield block) satisfied the stress criteria following ASME code for ITER BPP operation. On the other hand, three-dimensional FEM analyses for overall in-vessel structures exhibited excessive primary stresses in the back plate and its support structure to the vacuum vessel under VDE disruption load and marginal stresses in the support leg of module No.4. Fabrication procedure of the integrated primary first wall/shield blanket module was developed based on single step solid HIP for the joining of Cu-alloy/Cu-alloy, Cu-alloy/stainless steel, and stainless steel/stainless steel. (author)

  8. Prototyping of the Blanket Shield Module for the ITER EC H and CD Upper launcher

    International Nuclear Information System (INIS)

    Highlights: • ITER EC H and CD prototype of structural In-vessel components manufactured and analyzed. • Preliminary design was adapted according to manufacturing requirements. • Analysis of flow characteristics for cooling system has been performed. Design was optimized according to this analysis. - Abstract: The design of the ITER Electron Cyclotron Heating and Current Drive (ECH and CD) Upper launcher is recently in the first of two final design phases. The first phase deals with the finalization of all FCS (First Confinement System) components as well as with specific design progress for the remaining In-vessel components. The most outstanding structural In-vessel component of an ECH and CD Upper launcher is the Blanket Shield Module (BSM) with the First Wall Panel (FWP). Both of them form the plasma facing part of the launcher, which has to meet strong demands on dissipation of nuclear heat loads and mechanical rigidity. Nuclear heat loads from 3 MW/m3 at the First Wall Panel’ surface, decaying down to a tenth in a distance of 0.5 m behind of it will affect the BSM and the FWP. Additional heating of maximum 0.5 MW/m2 due to plasma radiation must be dissipated from the FWP. To guarantee save and homogenous removal of such extensive heat loads, the BSM is designed as a welded steel-case with specific cooling channels inside its wall structure. Attached to its face side is the FWP with a high-power cooling structure. Based on computational analysis the optimum cooling channel geometry has been investigated. Specific pre-prototype tests have been made and associated assembly parameters have been determined in order to identify optimum manufacturing processes and joining techniques, which guarantee a robust design with maximum geometrical accuracy. This paper describes the design, manufacturing and testing of a full-size mock-up of the BSM. The study was carried out in an industrial cooperation with MAN Diesel and Turbo SE

  9. Prototyping of the Blanket Shield Module for the ITER EC H and CD Upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Spaeh, Peter, E-mail: peter.spaeh@kit.edu [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, G. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Binni, A. [MAN Diesel and Turbo SE, Deggendorf (Germany); Gessner, R. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Goldmann, A. [MAN Diesel and Turbo SE, Deggendorf (Germany); Grossetti, G. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Kroiss, A. [MAN Diesel and Turbo SE, Deggendorf (Germany); Meier, A. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Obermeier, C. [MAN Diesel and Turbo SE, Deggendorf (Germany); Scherer, T.; Schreck, S.; Strauss, D.; Vaccaro, A. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2014-10-15

    Highlights: • ITER EC H and CD prototype of structural In-vessel components manufactured and analyzed. • Preliminary design was adapted according to manufacturing requirements. • Analysis of flow characteristics for cooling system has been performed. Design was optimized according to this analysis. - Abstract: The design of the ITER Electron Cyclotron Heating and Current Drive (ECH and CD) Upper launcher is recently in the first of two final design phases. The first phase deals with the finalization of all FCS (First Confinement System) components as well as with specific design progress for the remaining In-vessel components. The most outstanding structural In-vessel component of an ECH and CD Upper launcher is the Blanket Shield Module (BSM) with the First Wall Panel (FWP). Both of them form the plasma facing part of the launcher, which has to meet strong demands on dissipation of nuclear heat loads and mechanical rigidity. Nuclear heat loads from 3 MW/m{sup 3} at the First Wall Panel’ surface, decaying down to a tenth in a distance of 0.5 m behind of it will affect the BSM and the FWP. Additional heating of maximum 0.5 MW/m{sup 2} due to plasma radiation must be dissipated from the FWP. To guarantee save and homogenous removal of such extensive heat loads, the BSM is designed as a welded steel-case with specific cooling channels inside its wall structure. Attached to its face side is the FWP with a high-power cooling structure. Based on computational analysis the optimum cooling channel geometry has been investigated. Specific pre-prototype tests have been made and associated assembly parameters have been determined in order to identify optimum manufacturing processes and joining techniques, which guarantee a robust design with maximum geometrical accuracy. This paper describes the design, manufacturing and testing of a full-size mock-up of the BSM. The study was carried out in an industrial cooperation with MAN Diesel and Turbo SE.

  10. Neutronic shielding analysis of the water-cooled lithium lead test blanket module in the ITER machine

    International Nuclear Information System (INIS)

    During the operations of the next experimental fusion machine three breeding test blanket modules (TBM) for a power reactor will be inserted in the horizontal ports and their performance examined. The insertion will change the overall shielding capability of the structure and thus the regular operability of the machine could be affected. In this paper, I report the Monte Carlo simulations made to account for the water-cooled lithium lead TBM insertion in the international thermonuclear experimental reactor (ITER) machine. A 9 deg. torus sector of ITER is modelled comprising a detailed description of the TBM located in position, with an additional shield in the back. Results show that the present project of the WCLL TBM, with an additional backshield, is suitable for testing in ITER and does not interfere with the regular operations of the machine

  11. Strength analysis results for the RF 'modified' option of the shielding block for ITER blanket module

    International Nuclear Information System (INIS)

    In accordance with the combined analysis of 'reference' shield block (SB) design option the RF specialist have adopted the decision to develop the 'modified' one. The present article contains the results of strength analysis for 'modified' shield block design developed by the RF Domestic Agency. This stage of analysis is devoted to strength analysis of 'lid-SB'-welded joint for elastic and elasto-plastic approach. There two welding types have been considered: electron beam welding (EB-welding) and thermal welding in inert gas (TIG-welding). These results together with the technological R and D will be useful for final decision on the shield block manufacturing technology.

  12. ITER blanket, shield and material data base

    International Nuclear Information System (INIS)

    As part of the summary of the Conceptual Design Activities (CDA) for the International Thermonuclear Experimental Reactor (ITER), this document describes the ITER blanket, shield, and material data base. Part A, ''ITER Blanket and Shield Conceptual Design'', discusses the need for ITER of a tritium breeding blanket to supply most of the tritium for the fuel cycle of the device. Blanket and shield combined must be designed to operate at a neutron wall loading of 1MW/m2, and to provide adequate shielding of the magnets to meet the neutron energy fluence goal of 3MWa/m2 at the first wall. After a summary of the conceptual design, the following topics are elaborated upon: (1) function, design requirement, and critical issues; (2) material selection; (3) blanket and shield segmentation; (4) blanket design description; (5) design analysis; (6) shield; (7) radiation streaming analysis; and (8) a summary of benchmark calculations. Part B, ''ITER Materials Evaluation and Data Base'', treats the compilation and assessment of the available materials data base used for the selection of the appropriate materials for all major components of ITER, including (i) structural materials for the first wall, (ii) Tritium breeding materials for the blanket, (iii) plasma facing materials for the divertor and first wall armor, and (4) electric insulators for use in the blanket and divertor. Refs, figs and tabs

  13. Fusion reactor blanket/shield design study

    International Nuclear Information System (INIS)

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented

  14. Thermal-hydraulic performance and structural thermal stress analysis for ITER shield blanket module nearby NB rejoin

    International Nuclear Information System (INIS)

    Hydraulic and thermal analysis of the International Thermonuclear Experimental Reactor (ITER) standard neutral beam (NB) blanket module was carried out in order to check whether the latest design meets ITER requirements. Minor-loss coefficients were estimated with a CFD code, and friction factors of straight channels were obtained using existing formulas. The effects of different radial hole's diameter, length of the back of the radial hole, size of clearance, type of flow driver, branch velocity and flow direction on minor-loss coefficients for radial holes were investigated. Since total mass flow rate and dimensions of the cooling channels were given, when pressure drop due to intersection of the radial hole with back drilled collector was ignored, we can obtain pressure drop, flow rate, velocity and heat transfer coefficient in each radial hole. An improved calculation without neglecting the pressure drop caused by the intersection was also done to compare with the simplified one. Finally, maximum temperature, thermal stress and deformation were evaluated according to FEM thermal analysis. The results of the latest hydraulic and thermal analysis indicate that the current design meets ITER requirements well, except that flow distribution is not so uniform when different types of flow drivers are used, and temperature in the front head surface is a little high. Improved design is necessary in the further. (authors)

  15. Development of the breeding blanket and shield model for the fusion power reactors system SYCOMORE

    International Nuclear Information System (INIS)

    SYCOMORE, a fusion reactor system code based on a modular approach is under development at CEA. Within this framework, this paper describes the relevant sub-modules which have been implemented to model the main outputs of the breeding blanket and shield block of the system code: tritium breeding ratio, peak energy deposition in toroidal field coils, reactor layout and power deposition, blanket pressure drops and materials inventory. Blanket and shield requirements are calculated by several sub-modules: the blanket assembly and layout sub-module, the neutronic sub-module, the blanket design sub-module (thermal hydraulic and thermo-mechanic pre-design tool). A power flow module has also been developed which is directly linked to the blanket thermo-dynamic performances, which is not described in this paper. For the blanket assembly and layout and the blanket module design sub-modules, explicit analytic models have been developed and implemented; for the neutronic sub-module neural networks that replicate the results of appropriate simplified 1D and 2D neutronic simulations have been built. Presently, relevant model for the Helium Cooled Lithium Lead is available. Sub-modules have been built in a way that they can run separately or coupled into the breeding blanket and shield module in order to be integrated in SYCOMORE. In the paper, the objective and main input/output parameters of each sub-module are reported and relevant models discussed. The application to previous studied reactor models (PPCS model AB, DEMO-HCLL 2006–2007 studies) is also presented

  16. Development of the breeding blanket and shield model for the fusion power reactors system SYCOMORE

    Energy Technology Data Exchange (ETDEWEB)

    Li-Puma, Antonella, E-mail: antonella.lipuma@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Jaboulay, Jean-Charles, E-mail: Jean-Charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Martin, Brunella, E-mail: brunella.martin@gmail.com [Incka, 19-21 Rue du 8 mai 1945, F-94110 Arcueil (France)

    2014-10-15

    SYCOMORE, a fusion reactor system code based on a modular approach is under development at CEA. Within this framework, this paper describes the relevant sub-modules which have been implemented to model the main outputs of the breeding blanket and shield block of the system code: tritium breeding ratio, peak energy deposition in toroidal field coils, reactor layout and power deposition, blanket pressure drops and materials inventory. Blanket and shield requirements are calculated by several sub-modules: the blanket assembly and layout sub-module, the neutronic sub-module, the blanket design sub-module (thermal hydraulic and thermo-mechanic pre-design tool). A power flow module has also been developed which is directly linked to the blanket thermo-dynamic performances, which is not described in this paper. For the blanket assembly and layout and the blanket module design sub-modules, explicit analytic models have been developed and implemented; for the neutronic sub-module neural networks that replicate the results of appropriate simplified 1D and 2D neutronic simulations have been built. Presently, relevant model for the Helium Cooled Lithium Lead is available. Sub-modules have been built in a way that they can run separately or coupled into the breeding blanket and shield module in order to be integrated in SYCOMORE. In the paper, the objective and main input/output parameters of each sub-module are reported and relevant models discussed. The application to previous studied reactor models (PPCS model AB, DEMO-HCLL 2006–2007 studies) is also presented.

  17. Development of ITER shielding blanket prototype mockup by HIP bonding

    International Nuclear Information System (INIS)

    A prototype (∼900H x 1700W x 350T mm) of the ITER shielding blanket module has been fabricated following the previous successful fabrication of a small-scale (∼500H x 400W x 150T mm) and mid-scale (∼800H x 500W x 350T mm) mock-ups. This prototype incorporates most of key design features essential to the fabrication of the ITER shielding blanket module such as 1) the first wall heat sink made of Al2O3 dispersion strengthened Cu (DSCu) with built-in SS316L coolant tubes bonded to a massive SS316LN shield block, 2) toroidally curved first wall with a radius of 5106 mm while straight in poloidal direction, 3) coolant channels oriented in poloidal direction in the first wall and in toroidal direction in the shield block, 4) the first wall coolant channel routing to avoid the interference with the front access holes, 5) coolant channels drilled through the forged SS316LN-IG shield block, and 6) four front access holes of 30 mm in diameter penetrated through the first wall and the shield block. For the joining method, especially for the first wall/side wall parts and the shield block, the solid HIP (Hot Isostatic Pressing) process was applied. It is difficult to apply conventional joining methods such as field welding, brazing, explosion bonding and mechanical one-axial diffusion bonding to a wide area bonding because sufficient mechanical strengths can not be obtained and excessive deformations occurs. In order to solve these fabrication issues, HIP bonding was applied. The first wall stainless steel (SS) coolant tubes of 10 mm in inner diameter and l mm in thickness were sandwiched by semi-circular grooved DSCu plates at the first wall and the front region of the side wall, and by semi-circular grooved SS plates at the back region of the side wall. After assembling of these first wall/side wall parts with the shield block, they were simultaneously bonded by single step HIP in order to minimize thermal effects on the mechanical properties and to reduce the number

  18. Recent developments in fusion first wall, blanket, and shield technology

    International Nuclear Information System (INIS)

    This brief overview of first wall, blanket and shield technology reviews the changes and trends in important design issues in first wall, blanket and shield design and related technology from the 1970's to the 1980's. The emphasis is on base technology rather than either systems engineering or materials development. The review is limited to the two primary confinement systems, tokamaks and mirrors, and production of electricity as the primary goal for development

  19. Fabrication of prototype mockups of ITER shielding blanket with separable first wall

    International Nuclear Information System (INIS)

    Design of shielding blanket for ITER-FEAT applies the first wall which has the separable structure from the shield block for the purpose of radio-active waste reduction in the maintenance work and cost reduction in fabrication process. Also, it is required to have various types of slots in both of the first wall and the shield block, to reduce the eddy current for reduction of electro-magnetic force in disruption events. This report summarizes the demonstrative fabrication of the ITER shielding blanket with separable first wall performed for the shielding blanket fabrication technology development, under the task agreement of G 16 TT 108 FJ (T420-2) in ITER Engineering Design Activity Extension Period. The objectives of the demonstrative fabrication are: to demonstrate the comprehensive fabrication technique in a large scale component (e.g the joining techniques for the beryllium armor/copper alloy and copper alloy/SS, and the slotting method of the FW and shield block); to develop an improved fabrication method for the shielding blanket based on the ITER-FEAT updated design. In this work, the fabrication technique of full scale separable first wall shield blanket was confirmed by fabricating full width Be armored first wall panel, full scale of 1/2 shield block with poloidal cooling channels. As the R and D for updated cooling channel configuration, the fabrication technique of the radial channel shield block was also demonstrated. Concluding to the all R and D results, it was demonstrated successfully that the fabrication technique and optimized conditions in the results obtained under the task agreement of G 16 TT 95 FJ (T420-1) was applicable to the prototype of the separable first wall blanket module. Additionally, basic echo data of ultra-sonic test method (UT) was obtained to show the applicability of UT method for in tube access detection of defect on the Cu alloy/SS tube interface. (author)

  20. Remote handling demonstration of ITER blanket module replacement

    International Nuclear Information System (INIS)

    In ITER, the in-vessel components such as blanket are to be maintained or replaced remotely since they will be activated by 14 MeV neutrons, and a complete exchange of shielding blanket with breeding blanket is foreseen after the Basic Performance Phase. The blanket is segmented into about seven hundred modules to facilitate remote maintainability and allow individual module replacement. For this, the remote handing equipment for blanket maintenance is required to handle a module with a dead weight of about 4 tonne within a positioning accuracy of a few mm under intense gamma radiation. According to the ITER R and D program, a rail-mounted vehicle manipulator system was developed and the basic feasibility of this system was verified through prototype testing. Following this, development of full-scale remote handling equipment has been conducted as one of the ITER Seven R and D Projects aiming at a remote handling demonstration of the ITER blanket. As a result, the Blanket Test Platform (BTP) composed of the full-scale remote handling equipment has been completed and the first integrated performance test in March 1998 has shown that the fabricate remote handling equipment satisfies the main requirements of ITER blanket maintenance. (author)

  1. Nuclear performance analyses for HCPB test blanket modules in ITER

    International Nuclear Information System (INIS)

    Neutronic, shielding and activation analyses have been performed for recent design variants of the Helium Cooled Pebble Bed (HCPB) test blanket module (TBM) in ITER on the basis of 3D Monte Carlo calculations. The main objective has been to assess and optimise the nuclear performance of the HCPB test blanket modules in terms of the tritium generation, the nuclear heating and the radiation shielding and provide, among others, the data required for the engineering design of the test modules. The shielding efficiency of the TBM system was shown to be sufficient to allow access of work personnel to the port extension after a waiting time of 10 days after shut down as required by ITER. The activation analyses provided the afterheat and activation data for quality assured safety analyses assuming a representative irradiation scenario

  2. The ITER EC H and CD upper launcher: Design, analysis and testing of a bolted joint for the Blanket Shield Module

    Energy Technology Data Exchange (ETDEWEB)

    Gessner, Robby, E-mail: robby.gessner@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, Gaetano; Grossetti, Giovanni; Meier, Andreas [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Ronden, Dennis [DIFFER – Dutch Institute for Fundamental Energy Physics, P.O. Box 1207, NL-3430 BE Nieuwegein (Netherlands); Spaeh, Peter; Scherer, Theo; Schreck, Sabine; Strauss, Dirk; Vaccaro, Alessandro [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2013-10-15

    Highlights: ► The BSM of the ECH Launcher is attached to the Launcher Main Frame by a bolted joint. ► The bolts were designed as “captive” in order to avoid their accidental removal from the joint. ► The bolted flange connection using two sets of 15 captive bolts (M22 × 2) placed along the sides. ► The captive bolt design is based on a concept that uses a dedicated spring ring, a standard spiral spring and a tensioning screw with two threads to secure the bolts in a form-locking stop. -- Abstract: The final design of the structural system for the ITER EC H and CD upper launcher is in progress. Many design features of the preliminary design are under revision with the aim to achieve the built-to-print-status. This paper deals with design and analysis of a bolted joint for the Blanket Shield Module with special perspective on Remote Handling capability. The BSM of the ECH Launcher is attached to the Launcher Main Frame by a bolted joint conceived so that in the Hot Cell Facility, RH maintenance can be performed on internal components. The joint must be capable to resist very high Electro-Magnetic loads from disruptions, while it has to sustain substantial thermal cycling during operation. Thus the need for a rigid and reliable design is essential. Beside the set of pre-stressed bolts the flanges were therefore equipped with additional shear keys to divert radial moments away from the bolts. Main focus of the work performed was the mechanical design of the joint and the assessment of the structural integrity with respect to the loads applied and its capability for maintenance by RH procedures. To fulfill a major aspect of the RH requirements, the bolts were designed as “captive” in order to avoid their accidental removal from the joint. The captive bolt design is based on a concept that uses a dedicated spring ring, a standard spiral spring and a tensioning screw with two threads to secure the bolts in a form-locking stop. The final approval phase of

  3. GCFR radial blanket and shield experiment: objectives, preanalysis, and specifications

    International Nuclear Information System (INIS)

    An integral experiment has been designed for the verification of radiation transport methods and nuclear data used for the design of the radial shield for the proposed 300 MW(e) gas-cooled fast breeder reactor (GCFR). The scope of the experiment was chosen to include a thorium oxide radial blanket mockup as well as several shield configurations in order to reduce the uncertainties in the calculated source terms for the radial shield, and to reduce the uncertainties in the calculated radiation damage to the prestressed concrete reactor vessel (PCRV). Additionally, the measurements are intended to bound the uncertainties in calculated gamma-ray heating rates within the blanket and shield. Although designed specifically for the GCFR, the experiment will provide generic data regarding deep penetration in ThO2 and common shield materials, which should also benefit LMFBR designers

  4. Engineering test station for TFTR blanket module experiments

    International Nuclear Information System (INIS)

    A conceptual design has been carried out for an Engineering Test Station (ETS) which will provide structural support and utilities/instrumentation services for blanket modules positioned adjacent to the vacuum vessel of the TFTR (Tokamak Fusion Test Reactor). The ETS is supported independently from the Test Cell floor. The ETS module support platform is constructed of fiberglass to eliminate electromagnetic interaction with the pulsed tokamak fields. The ETS can hold blanket modules with dimensions up to 78 cm in width, 85 cm in height, and 105 cm in depth, and with a weight up to 4000 kg. Interfaces for all utility and instrumentation requirements are made via a shield plug in the TFTR igloo shielding. The modules are readily installed or removed by means of TFTR remote handling equipment

  5. Nuclear Performance Analyses for HCPB Test Blanket Modules in ITER

    International Nuclear Information System (INIS)

    The Helium-Cooled Pebble Bed (HCPB) blanket is one of two breeder blanket concepts developed in the framework of the European Fusion Technology Programme for performance tests in ITER. The related efforts currently focus on the design optimisation of suitable Test Blanket Modules (TBM) and associated R-and-D activities. Four different HCPB TBM types are considered for addressing issues related to (i) electromagnetic transients (EM), (ii) neutronics and Tritium (NT), (iii) thermo-mechanical properties of the pebble beds (TM), and (iv) the integral performance of the blanket module (Plant Integration, PI). The lay-out of the NT and the PI modules has been entirely revised to represent the latest HCPB breeder blanket concept for fusion power reactors. A HCPB TBM consists of a steel box with an internal stiffening grid and small breeder units. The stiffening grid forms radially running open cells accommodating the breeder units (BU). The BU consists of a back plate with attached breeder canisters providing space for the breeder pebble beds. The space between the canisters and the stiffening plates is filled with Beryllium pebbles for the neutron multiplication. The latest design assumes two vertically arranged breeder containers per BU with a toroidal bed height of 10 and 24 mm, for NT and PI modules, respectively. Li4SiO4 is assumed as breeder material at 6Li enrichment levels between 40 at % (NT) and 90 at % (PI). This work is devoted to the neutronic, shielding and activation analyses performed recently for NT and PI variants of the HCPB TBM in ITER. The analyses are based on three-dimensional neutronic and activation calculations making use of a 20 degree torus sector model of ITER developed for Monte Carlo calculations with the MCNP code. The model includes a proper representation of the horizontal ITER test blanket port, the water cooled support frame with two integrated HCPB blanket test modules, the radiation shield and the port environment. Monte Carlo

  6. Eddy current induced electromagnetic loads on shield blankets during plasma disruptions in ITER: A benchmark exercise

    International Nuclear Information System (INIS)

    According to recent updates of ITER shield blanket design, electromagnetic loads during the plasma disruption are being evaluated to verify the mechanical confidence and reliability. As a course of such evaluations, a benchmark activity for the electromagnetic analysis, coordinated by ITER Organization, is underway between ITER parties to compare the calculation results for disruption loads on the blankets. In this paper, we present calculation results for the electromagnetic loads on the simplified but practical model of ITER shield blankets with respect to six representative disruption scenarios of which ITER distributes simulation results based on the DINA code as a reference of the design and analysis. Commercial finite element method software, ANSYS/EmagTM, was employed to evaluate the eddy current on the blanket modules with the 40o sector model for major conducting structure of the tokamak including double-walled vacuum vessel, triangular support, and vertical targets of divertors. An interface between ANSYS/EmagTM and plasma simulator was implemented with a conversion tool assigning the plasma current density on the ANSYS elements corresponding to the current filaments in DINA outputs. Discussions are made of the possible improvement of the blanket model taking more realistic blanket configuration into account at the cost of the moderate increase in computational time. A final remark is given of the possibility of incorporating halo currents into ANSYS disruption simulations, which are major sources of electromagnetic loads on in-vessel components including blankets.

  7. Materials development for ITER shielding and test blanket in China

    International Nuclear Information System (INIS)

    China is a member of the ITER program and is developing her own materials for its shielding and test blanket modules. The materials include vacuum-hot-pressing (VHP) Be, CuCrZr alloy, 316L(N) and China low activation ferritic/martensitic (CLF-1) steels. Joining technologies including Be/Cu hot isostatic pressing (HIP) and electron beam (EB) weldability of 316L(N) were investigated. Chinese VHP-Be showed good properties, with BeO content and ductility that satisfy the ITER requirements. Be/Cu mock-ups were fabricated for Be qualification tests at simulated ITER vertical displacement event (VDE) and heat flux cycling conditions. Fine microstructure and good mechanical strength of the CuCrZr alloy were achieved by a pre-forging treatment, while the weldability of 316L(N) by EB was demonstrated for welding depths varying from 5 to 80 mm. Fine microstructure, high strength, and good ductility were achieved in CLF-1 steel by an optimized normalizing, tempering and aging procedure.

  8. Preliminary Safety Analysis of Korea HCSB Test Blanket Module

    International Nuclear Information System (INIS)

    A Helium Cooled Solid Breeder (HCSB) blanket has been considered as one of the promising blanket for the fusion power demonstration plant. Therefore HCSB Test Blanket Module (TBM) testing in ITER is the most important milestone for the development of the blanket of the DEMO plant. Korea has developed the HCSB TBM with some features such as graphite reflector and simplified flow passage. The objective of this study was to evaluate the thermal and structural integrity of the HCSB TBM under the hypothetical accidental conditions such as cooling pipe break in TBM. The safety analysis was performed under conservative conditions based on the TBM design, which can be assumed by the similarity of the safety analysis of the ITER shielding blanket. Transient analysis model was used to calculate the temperature distribution for Loss of Coolant Accident (LOCA). Simplified analysis conditions were a) simultaneous plasma shutdown and LOCA b) LOCA and then after FW temperature reaches 1150 deg. plasma shutdown. Helium circuit behavior during the different LOCA scenarios was also evaluated. Finally the design modifications based on the analysis result and the related R-and-D of the HCSB blanket design for the application in a DEMO reactor were mentioned. (author)

  9. ITER breeding blanket module design and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Toshimasa; Enoeda, Mikio; Kikuchi, Shigeto [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1998-11-01

    The ITER breeding blanket employs a ceramic breeder and Be neutron multiplier both in small spherical pebble form. Radial-poloidal cooling panels are arranged in the blanket box to remove the nuclear heating in these materials and to reinforce the blanket structure. At the first wall, Be armor is bonded onto the stainless steel (SS) structure to provide a low Z plasma-compatible surface and to protect the first wall/blanket structure from the direct contact with the plasma during off-normal events. Thermo-mechanical analyses and investigation of fabrication procedure have been performed for this breeding blanket. To evaluate thermo-mechanical behavior of the pebble beds including the dependency of the effective thermal conductivity on stress, analysis methods have been preliminary established by the use of special calculation option of ABAQUS code, which are briefly summarized in this report. The structural response of the breeding blanket module under internal pressure of 4 MPa (in case of in-blanket LOCA) resulted in rather high stress in the blanket side (toroidal end) wall, thus addition of a stiffening rib or increase of the wall thickness will be needed. Two-dimensional elasto-plastic analyses have been performed for the Be/SS bonded interface at the first wall taking a fabrication process based on HIP bonding and thermal cycle due to pulsed plasma operation into account. The stress-strain hysteresis during these process and operation was clarified, and a procedure to assess and/or confirm the bonding integrity was also proposed. Fabrication sequence of the breeding blanket module was preliminarily developed based on the procedure to fabricate part by part and to assemble them one by one. (author)

  10. ITER breeding blanket module design and analysis

    International Nuclear Information System (INIS)

    The ITER breeding blanket employs a ceramic breeder and Be neutron multiplier both in small spherical pebble form. Radial-poloidal cooling panels are arranged in the blanket box to remove the nuclear heating in these materials and to reinforce the blanket structure. At the first wall, Be armor is bonded onto the stainless steel (SS) structure to provide a low Z plasma-compatible surface and to protect the first wall/blanket structure from the direct contact with the plasma during off-normal events. Thermo-mechanical analyses and investigation of fabrication procedure have been performed for this breeding blanket. To evaluate thermo-mechanical behavior of the pebble beds including the dependency of the effective thermal conductivity on stress, analysis methods have been preliminary established by the use of special calculation option of ABAQUS code, which are briefly summarized in this report. The structural response of the breeding blanket module under internal pressure of 4 MPa (in case of in-blanket LOCA) resulted in rather high stress in the blanket side (toroidal end) wall, thus addition of a stiffening rib or increase of the wall thickness will be needed. Two-dimensional elasto-plastic analyses have been performed for the Be/SS bonded interface at the first wall taking a fabrication process based on HIP bonding and thermal cycle due to pulsed plasma operation into account. The stress-strain hysteresis during these process and operation was clarified, and a procedure to assess and/or confirm the bonding integrity was also proposed. Fabrication sequence of the breeding blanket module was preliminarily developed based on the procedure to fabricate part by part and to assemble them one by one. (author)

  11. Fabrication of the full scale separable first wall of ITER shielding blanket

    International Nuclear Information System (INIS)

    Shielding blanket for ITER-FEAT applies the unique first wall structure which is separable from the shield block for the purpose of radio-active waste reduction in the maintenance work and cost reduction in fabrication process. Also, it is required to have various types of slots in both of the first wall and the shield block, to reduce the eddy current for reduction of electro-magnetic force in disruption events. Such unique features of blanket structure required technological clarification from the technical base of the previous achievement of the blanket module fabrication development. Previously, within the EDA Task T216+, a prototype for the no.4 Primary Wall Module of the ITER Shield Blanket with integrated first wall has been manufactured by forging and drilling and the first wall has been manufactured and joined to the shield block by Hot Isostatic Pressing (HIP) in one step process. This work has been performed to clarify the remaining R and D issues which have not been covered in the previous R and D. This report summarizes the demonstrative fabrication of the real scale separable first wall for ITER shielding blanket designed for ITER-FEAT, together with the essential technology developments such as, the slit grooving of the first wall with beryllium armor and SS shield block and fabrication of a partial mockup of beryllium armored first wall panel with built-in cooling channels. This work has been performed under the task agreement of G 16 TT 95 FJ (T420-1) in ITER Engineering Design Activity Extension Period. By the demonstration of the Be armor joining to the first wall panel, the joining technique of Be and DSCu developed previously, was shown to be applicable to the realistic structure of first wall panel. Also, the slit grooving by an end-mill method and an electron discharge machining method have been applied to the first wall mockup with Be armor tiles and demonstrated the applicability within the design tolerance. As the slit grooving technique

  12. Electrical connectors for blanket modules in ITER

    International Nuclear Information System (INIS)

    Highlights: • Analysis of static and cyclic strength for L-shaped and Z-shaped ES has been performed. • Analysis results do show that for L-shaped ES static and cyclic strength criteria are not satisfied. • Static and cyclic strength criteria are met well by ES with Z-shaped elastic elements. • ES with Z-shaped elastic elements has been adopted as a new baseline design for ITER. - Abstract: Blanket electrical connectors (E-straps, ES) are low-impedance electrical bridges crossing gaps between blanket modules (BMs) and vacuum vessel (VV). Similar ES are used between two parts on each BM: the first wall panel (FW) and shield block (SB). The main functions of E-straps are to: (a) conduct halo currents intercepting some rows of BM, (b) provide grounding paths for all BMs, and (c) operate as electrical shunts which protect water cooling pipes (branch pipes) from excessive halo and eddy currents. E-straps should be elastic enough to absorb 3-D imposed displacements of BM relative VV in a scale of ±2 mm and at the same time strong enough to not be damaged by EM loads. Each electrical strap is a package of flexible conductive sheets made of CuCrZr bronze. Halo current up to 137 kA and some components of eddy currents do pass through one E-strap for a few tens or hundreds milliseconds during the plasma vertical displacement events (VDE) and disruptions. These currents deposit Joule heat and cause rather high electromagnetic loads in a strong external magnetic field, reaching 9 T. A gradual failure of ES to conduct Halo and Eddy currents with low enough impedance gradually redistributes these currents into branch pipes and cause excessive EM loads. When branch pipes will be bent so much that will touch surrounding structures, the Joule heating in accidental electrical contact spots will cause local melting and may lead to a water leak. The paper presents and compares two design options of E-straps: with L-shaped and Z-shaped elastic elements. The latter option was

  13. First wall/blanket/shield design and optimization system

    International Nuclear Information System (INIS)

    First wall/blanket/shield design and optimization system (BSDOS) has been developed to provide a state-of-the-art design tool for fast accurate analysis. In addition, it has been designed to perform several other functions: (1) allowing comparison and evaluation studies for different concepts using the same data bases and ground rules, (2) permitting the use of any figure of merit in the evaluation studies, (3) optimizing the first wall/blanket/shield design parameters for any figure of merit under several design constraints, (4) permitting the use of different reactor parameters in the evaluation and optimization analyses, (5) allowing the use of improved eingineering data bases to study the impact on the design performance for planning future research and development, and (6) evaluating the effect of the data base uncertainties on the design performance. BSDOS is the first design and optimization system to couple the highly interacting neutronics, heat transfer, thermal hydraulics, stress analysis, radioactivity and decay-heat analyses, tritium balance, and capital cost. A brief description of the main features of BSDOS is given in this paper. Also, results from using BSDOS to perform design analysis for several reactor components are presented. 17 refs., 1 fig., 2 tabs

  14. Resonance self-shielding in the blanket of a hybrid reactor

    International Nuclear Information System (INIS)

    Three sets of energy group cross sections were obtained using various approximations for resonance self shielding. The three models used in obtaining the cross sections were: (a) infinitely dilute model, (b) homogeneous-medium resonance self shielding, and (c) heterogeneous-medium resonance self shielding. The effects on the blanket performance of fusion--fission hybrid reactors, and in particular, on the performance of the current reference Westinghouse Demonstration Tokamak Hybrid Reactor blanket, were compared and analyzed for a variety of fuel-coolant combinations. It has been concluded that (1) the infinitely dilute cross sections can be used to produce preliminary crude estimates for beginning-of-life (BOL) only, (2) the resonance absorber finite dilution should be considered for BOL, poorly moderated blankets and well moderated blankets with low fissile material content situations, and (3) the spacial details should be considered in high fissile content, well moderated blanket situations

  15. Remote-handling concept for target/blanket modules in the accelerator production of tritium

    International Nuclear Information System (INIS)

    The accelerator production of tritium (APT) has been proposed as the source of tritium for the United States in the next century. The APT will accelerate protons that will strike replaceable tungsten target modules. The tungsten target modules generate neutrons that pass through blanket modules and other modules where He gas is turned into tritium. The target and blanket modules are predicted to require replacement every 1 to 10 yr, depending on their location. The target modules may weigh as much as 78.8 tonnes (85 t) each. All of the modules will be contained in a target/blanket vessel, which is in a shielded facility. The spent modules will be very radioactive so that remote replacement is required. A proposed concept is to use a remotely operated bridge crane and a remotely operated, bridge-mounted manipulator to perform the entire replacement operation. This will require removing/replacing the vessel lid, installing/removing temporary water cooling, closing/opening valves on manifolds and modules, draining of jumpers, removing/replacing jumpers, removing/replacing shielding keys, and removing/replacing the modules. This application is unique because of the size and weight of the modules, the precision required, the type of connectors required, and the complexity of the entire operation. A three-dimensional simulation of the entire module replacement operation has been developed to help understand, communicate, and refine the concepts

  16. Design of test blanket system for ITER module testing

    International Nuclear Information System (INIS)

    Test blanket systems to be installed in ITER for developing demo blankets have been investigated. One of the main engineering goals of ITER is to test tritium breeding blankets relevant to a power reactor. The test foreseen on modules include the demonstration of a breeding capability that would lead to tritium self-sufficiency in a reactor and extraction of a high grade heat suitable for electricity generation. To accomplish these goals, several ITER equatorial ports are available to test the test blanket systems, both in the basic performance phase (BPP) and the enhanced performance phase (EPP). Test blanket systems for water-cooled and helium-cooled type DEMO blankets with ceramic breeders, developed in Japan have been designed. The design activities include the neutronics, thermal and hydraulic analyses, and mechanical configuration considering port sharing, cooling systems and tritium recovery systems, and test blanket system compatible with the current ITER design has been developed. (author)

  17. Engineering studies for integration of the test blanket module (TBM) systems inside an ITER equatorial port plug

    Energy Technology Data Exchange (ETDEWEB)

    Madeleine, S. [CEA Cadarache, DSM/IRFM, F-13108 Saint Paul Lez Durance (France)], E-mail: sylvain.madeleine@cea.fr; Saille, A.; Martins, J.-P. [CEA Cadarache, DSM/IRFM, F-13108 Saint Paul Lez Durance (France); Salavy, J.-F.; Jonqueres, N.; Rampal, G. [CEA Saclay, DEN/DM2S, F-91191 Gif sur Yvette (France); Bede, O. [HAS - KFKI-RMKI, P.O. Box 49, H-1525, Budapest (Hungary); Neuberger, H.; Boccaccini, L. [FZK/Karlsruhe, IRS - Forschungszentrum Karlsruhe GmbH Karlsruhe (Germany); Doceul, L. [CEA Cadarache, DSM/IRFM, F-13108 Saint Paul Lez Durance (France)

    2009-06-15

    The European test blanket module (EU-TBM), first prototype of the breeding blanket concepts under development for the future DEMO power plant to produce the tritium, will be developed to be tested in three equatorial ports of ITER dedicated to this. The CEA Cadarache under the contract of Association EURATOM/CEA and in close relation with Association EURATOM/HAS works on the integration of the EU-TBM inside ITER tokamak. The installation of the TBM into the vacuum vessel is made with the help of a port plug, constituted with two components: the Shield module and the Port-Plug frame. The Shield module provides the neutron shielding inside the Port-Plug frame, which maintains in cantilever position the TBM and its shield module and closes the vacuum vessel port. This paper will describe the EU-TBM design and integration activities on the cooled shield module and on its interface with the TBM component. A particular attention, in term of thermal and mechanical studies, is dedicated to the design of the shield and test blanket module attachment, and also to the shield design and its internal cooling system.

  18. Engineering studies for integration of the test blanket module (TBM) systems inside an ITER equatorial port plug

    International Nuclear Information System (INIS)

    The European test blanket module (EU-TBM), first prototype of the breeding blanket concepts under development for the future DEMO power plant to produce the tritium, will be developed to be tested in three equatorial ports of ITER dedicated to this. The CEA Cadarache under the contract of Association EURATOM/CEA and in close relation with Association EURATOM/HAS works on the integration of the EU-TBM inside ITER tokamak. The installation of the TBM into the vacuum vessel is made with the help of a port plug, constituted with two components: the Shield module and the Port-Plug frame. The Shield module provides the neutron shielding inside the Port-Plug frame, which maintains in cantilever position the TBM and its shield module and closes the vacuum vessel port. This paper will describe the EU-TBM design and integration activities on the cooled shield module and on its interface with the TBM component. A particular attention, in term of thermal and mechanical studies, is dedicated to the design of the shield and test blanket module attachment, and also to the shield design and its internal cooling system.

  19. Integral approach for neutronics analyses of the European test blanket modules in ITER

    International Nuclear Information System (INIS)

    An advanced integral approach has been implemented for neutronic analyses of the European test blanket modules (TBMs) in ITER. The central element of this approach is the use of the geometry conversion tool McCad for the generation of Monte Carlo analysis models from CAD geometry data. Following this approach, an MCNP model of the test blanket port plug with HCPB and HCLL TBM assemblies, elaborated by the European TBM Consortium of Associates (CA), was generated and integrated into the Alite MCNP model of ITER. Neutronic performance and shielding analyses were conducted on the basis of MCNP-5 calculations for the HCPB and HCLL TBMs and the entire shield system. The results indicated the need for a further optimization of the shield system complemented by a rigorous shutdown dose rate analysis.

  20. Design study on water- and gas-cooled outboard shield blankets for NET

    International Nuclear Information System (INIS)

    The Karlsruhe Nuclear Research Center entered into an agreement with the Commission of the European Communities on execution of development work geared to shielding blankets for NET. The concept to be investigated concerned water-cooled shielding blankets and, as a backup solution, a variation with helium cooling. The NET standard version as of late 1985 was considered as the basis of the investigations. The results of the study prepared in cooperation with the Sulzer company, Winterthur, and relating to the outboard blanket are contained in this report, which shows that it is relatively easy to fabricate water-cooled blankets. The stresses acting on the material during operation as a result of temperature gradients and coolant pressure are low. By addition of lithium salts to the coolant a great potential of tritium generation is offered. On the other hand, helium cooling is associated with some difficulties in design and with higher expenditure in fabrication. However, these difficulties can probably be overcome. (orig.)

  1. The State of the Art Report on the Development and Manufacturing Technology of Test Blanket Module

    International Nuclear Information System (INIS)

    The main objective of the present R and D on breeder blanket is the development of test blanket modules (TBMs) to be installed and tested in International Thermonuclear Experimental Reactor (ITER). In the program of the blanket development, a blanket module test in the ITER is scheduled from the beginning of the ITER operation, and the performance test of TBM in ITER is the most important milestone for the development of the DEMO blanket. The fabrication of TBMs has been required to test the basic performance of the DEMO blanket, i.e., tritium production/recovery, high-grade heat generation and radiation shielding. Therefore, the integration of the TBM systems into ITER has been investigated with the aim to check the safety, reliability and compatibility under nuclear fusion state. For this reason, in the Test Blanket Working Group (TBWG) as an activity of the International Energy Association (IEA), a variety of ITER TBMs have been proposed and investigated by each party: helium-cooled ceramic (WSG-1), helium-cooled LiPb (WSG-2), water-cooled ceramic (WSG-3), self-cooled lithium (WSG-4) and self-cooled molten salt (WSG-5) blanket systems. Because we are still deficient in investigation of TBM development, the need of development became pressing. In this report, for the development of TBM sub-module and mock-up, it is necessary to analyze and examine the state of the art on the development of manufacturing technology of TBM in other countries. And we will be applied as basic data to establish a manufacturing technology

  2. Optimisation of hot isostatic pressing bonded SS/SS joints conditions for ITER blanket shield

    International Nuclear Information System (INIS)

    In the engineering design activity of international thermonuclear experimental reactor (ITER), stainless steels are being considered as candidates materials for several module type structures. Hot isostatic pressing (HIP) technique is expected for the fabrication of these modules. Stainless steel powders are simultaneously consolidated as mono-material block or/and joined in bi-material module. This paper reviews the manufacturing stages, non-destructive examination and the developments of the HIP bonded joints of 316L SS (powder and solid) for application to the ITER shield blanket. It is well known that the powder surface oxidation negatively influences the impact toughness of raw material and joints consolidated by this way. In order to get acceptable mechanical properties of materials, a study on the effect of reducing the powder oxygen content has been launched. To evaluate susceptibility to the oxygen content of HIPed joint specimens, tensile and toughness tests have been performed. From this study, optimal conditions of HIP were fitted and the influence of oxygen was mastered to obtain good mechanical properties of the consolidated powder material as well as for HIPed junction.

  3. Concept for a vertical maintenance remote handling system for multi module blanket segments in DEMO

    International Nuclear Information System (INIS)

    Highlights: •A conceptual architectural model for a vertical maintenance DEMO is presented. •Novel concepts for a set of DEMO remote handling equipment are put forward. •Remote maintenance of a multi module segment blanket is found to be feasible. •The criticality of space in the vertical port is highlighted. -- Abstract: The anticipated high neutron flux, and the consequent damage to plasma-facing components in DEMO, results in the need to regularly replace the tritium breeding and radiation shielding blanket. The current European multi module segment (MMS) blanket concept favours a less invasive small port entry maintenance system over large sector transport concepts, because of the reduced impact on other tokamak systems – particularly the magnetic coils. This paper presents a novel conceptual remote maintenance strategy for a Vertical Maintenance Scheme DEMO, incorporating substantiated designs for an in-vessel mover, to detach and attach the blanket segments, and cask-housed vertical maintenance devices to open and close access ports, cut and join service connections, and extract blanket segments from the vessel. In addition, a conceptual architectural model for DEMO was generated to capture functional and spatial interfaces between the remote maintenance equipment and other systems. Areas of further study are identified in order to comprehensively establish the feasibility of the proposed maintenance system

  4. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  5. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    International Nuclear Information System (INIS)

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available

  6. Mechanical design and analysis for a EPR first wall/blanket/shield system

    International Nuclear Information System (INIS)

    Continuing studies are in progress at ANL to expand upon the design of a first wall/blanket/shield FW/B/S system and power conversion for a tokamak type Experimental Power Reactor (EPR). The FW/B/S system has evolved from an earlier design for a low beta, circular cross section plasma (major radius = 6 m) to one for a higher beta elongated plasma with a 4.7 m major radius. Basic mechanical design and layout features of the old and new EPR designs showing some of the more important design developments are given. These developments are aimed at simplifying the design, reducing the costs and in addition, improving the plant thermal efficiency and overall maintainability. In the area of the reactor blanket, significant thermal hydraulic and stress analysis have been performed to substantiate the integrity of the chosen concept. This paper deals with the discussion of these improved features

  7. Mechanical design and analysis for a EPR first wall/blanket/shield system

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, H.C.; Misra, B.; Youngdahl, C.K.

    1977-01-01

    Continuing studies are in progress at ANL to expand upon the design of a first wall/blanket/shield FW/B/S system and power conversion for a tokamak type Experimental Power Reactor (EPR). The FW/B/S system has evolved from an earlier design for a low beta, circular cross section plasma (major radius = 6 m) to one for a higher beta elongated plasma with a 4.7 m major radius. Basic mechanical design and layout features of the old and new EPR designs showing some of the more important design developments are depicted. These developments are aimed at simplifying the design, reducing the costs and, in addition, improving the plant thermal efficiency and overall maintainability. In the area of the reactor blanket, significant thermal hydraulic and stress analysis have been performed to substantiate the integrity of the chosen concept. This paper deals with the discussion of these improved features.

  8. ITER [International Thermonuclear Experimental Reactor] shield and blanket work package report

    International Nuclear Information System (INIS)

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs

  9. Overview of the Last Progresses for the European Test Blanket Modules Projects

    International Nuclear Information System (INIS)

    The long-term objective of the EU Breeding Blankets programme is the development of DEMO breeding blankets, which shall assure tritium self-sufficiency, an economically attractive use of the heat produced inside the blankets for electricity generation and a sufficiently high shielding of the superconducting magnets for long time operation. In the short-term so-called DEMO relevant Test Blanket Modules (TBMs) of these breeder blanket concepts shall be designed, manufactured, tested, installed, commissioned and operated in ITER for first tests in a fusion environment. The Helium Cooled Lithium-Lead (HCLL) breeder blanket and the Helium Cooled Pebble Bed (HCPB) concepts are the two breeder blanket lines presently developed by the EU. The main objective of the EU test strategy related to TBMs in ITER is to provide the necessary information for the design and fabrication of breeding blankets for a future DEMO reactor. EU TBMs shall therefore use the same structural and functional materials, apply similar fabrication technologies, and test adequate processes and components. This paper gives an overview of the last progresses in terms of system design, calculations, test program, safety and R-and-D done these last two years in order to cope with the ambitious objective to introduce two EU TBM systems for day-1 of ITER operation. The engineering design of the two systems is mostly concluded and the priority is now on the development and qualification of the fabrication technologies. From calculations point of view, the last modelling efforts related to the thermal-hydraulic of the first wall, the tritium behaviour, and the box thermal and mechanical resistance in accidental conditions are presented. Last features of the TBM and cooling system designs and integration in ITER reactor are highlighted. In particular, this paper also describes the safety and licensing analyses performed for each concept to be able to include the TBM systems in the ITER preliminary safety report

  10. Overview of the Last Progresses for the European Test Blanket Modules Projects

    International Nuclear Information System (INIS)

    The long-term objective of the EU Breeding Blankets programme is the development of DEMO breeding blankets, which shall assure tritium self-sufficiency, an economically attractive use of the heat produced inside the blankets for electricity generation and a sufficiently high shielding of the superconducting magnets for long time operation. In the short-term so-called DEMO relevant Test Blanket Modules (TBMs) of these breeder blanket concepts shall be designed, manufactured, tested, installed, commissioned and operated in ITER for first tests in a fusion environment. The Helium Cooled Lithium-Lead (HCLL) breeder blanket and the Helium Cooled Pebble Bed (HCPB) concepts are the two breeder blanket lines presently developed by the EU. The main objective of the EU test strategy related to TBMs in ITER is to provide the necessary information for the design and fabrication of breeding blankets for a future DEMO reactor. EU TBMs shall therefore use the same structural and functional materials, apply similar fabrication technologies, and test adequate processes and components. This paper gives an overview of the last progresses in terms of system design, calculations, test program, safety and R(and)D done these last two years in order to cope with the ambitious objective to introduce two EU TBM systems for day-1 of ITER operation. The engineering design of the two systems is mostly concluded and the priority is now on the development and qualification of the fabrication technologies. From calculations point of view, the last modelling efforts related to the thermal-hydraulic of the first wall, the tritium behaviour, and the box thermal and mechanical resistance in accidental conditions are presented. Last features of the TBM and cooling system designs and integration in ITER reactor are highlighted. In particular, this paper also describes the safety and licensing analyses performed for each concept to be able to include the TBM systems in the ITER preliminary safety report

  11. Self-shielding in the NET fusion reactor blanket and effects on uncertainty calculations

    International Nuclear Information System (INIS)

    In this report the results are presented of an analysis of a NET iron/water inboard shielding blanket using energy self-shielded cross sections. Coupled (n,γ) transport calculations have been performed in an S8P8 approximation with the code ANISN using cross sections in the 121-group GAM-II structure. Basic cross sections were obtained from the 217-group MAT175 library, which is based on JEF-1 and EFF-1. Energy self-shielding was taken into account using the Bondarenko method. The results of this analysis are compared with those obtained in report ECN-C--90-034, in which a similar analysis had been presented using infinite dilute cross sections. It is shown that the effect of energy self-shielding on the neutron flux in the coils of the NET design is considerable, whereas the γ-flux is hardly influenced. Also the effect of using energy self-shielded cross sections in sensitivity and uncertainty analyses was studied. In these analyses the sensitivity of the total nuclear heating in the innermost interval of the inboard coils to the total cross sections of Fe, Cr and Ni has been studied. The analyses have been performed using an ECN-modified version of the code SENSIT. Due to the effect of self-shielding not only the value of the response parameter changes (the total nuclear heating in the coil increases with 13%), but also the associated relative uncertainty (the relative uncertainty due to uncertainties in the total cross sections of Fe, Cr and Ni decreases with 8%; the absolute value of the uncertainty increases however). The conclusion is that for reliable calculations of the nuclear heating the effects of self-shielding should be taken into account; for the uncertainty estimates this is less important. (author). 15 refs.; 15 figs.; 6 tabs

  12. Evaluation of electromagnetic forces on Chinese Dual Functional Lithium Lead Test Blanket Module in ITER

    International Nuclear Information System (INIS)

    The Dual Functional Lithium Lead (DFLL) TBM (Test Blanket Module) concept, using the RAFM steel as structural material, was proposed by Chinese Party as one alternative option of two main blanket concepts for testing in ITER. Because electromagnetic load is one of the main concerns for the ITER in-vessel components, the electromagnetic analysis of DFLL-TBM was implemented using ANSYS code. For transient electromagnetic analysis with the latest disruption scenarios, the complex FEM model was developed including the vacuum vessel, shielding blanket, equatorial port, and divertor of ITER. The goal of this analysis was principally to investigate the eddy current and quantify electromagnetic force on DFLL-TBM at plasma disruption; the peak value of Lorentz force reached 170 kN. Furthermore, the static electromagnetic analysis was carried out with the reference operation scenario II, the magnetization forces on DFLL-TBM due to magnetization were investigated. By the mechanical analysis, the results show the DFLL-TBM can accommodate the calculated loads.

  13. Test Blanket Module Pipe Forest integration in ITER equatorial port

    International Nuclear Information System (INIS)

    ITER Test Blanket Modules (TBMs) will allow testing Breeding Blanket concepts for a future application in DEMO. IRFM (Institut de Recherche sur la Fusion Magnetique) contribution to this test program consists in the integration of the 2 European TBMs (Helium Cooled Lithium Lead and Helium Cooled Pebble Bed) in a dedicated equatorial port. The two Breeding Blanket concepts use Helium gas as a coolant, liquid PbLi as breeder (for HCLL process) and Helium gas for Tritium extraction (for HCPB process). These materials are passing through the cryostat interspace forming a pipe network called the Pipe Forest. The main structural function of the Pipe Forest is to absorb the thermal expansion due to the Vacuum Vessel and due to the pipe system itself. The Pipe Forest has to cope with several design issues. In this study, the different key parameters of the Pipe Forest design are identified and their relative influence is analysed. Several design options were investigated and compared based on: -Thermo-mechanical finite element calculations -Pipe Forest integration within the cryostat interspace -Interface management -Assembly and maintenance scenarios -Complex pipe routing due to the expansion bends -RCC-MR 2007 requirements The chosen thermal compensation solution (thermal expansion loops) led to a Pipe Forest design. The CAE analysis of this Pipe Forest showed that it fulfills the requirements of the RCC-MR 2007, which is the reference design and construction code selected for the European TBM.

  14. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.

  15. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    International Nuclear Information System (INIS)

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li2O) and lithium zirconate (Li2ZrO3) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers

  16. Manufacture of a shield prototype for primary wall modules

    International Nuclear Information System (INIS)

    In the frame of the BLANKET MODULE (BM) development for ITER, an R and D programme was implemented for the manufacture of a shield prototype by powder Hot Isostatic Pressing (HIPping). The manufactured shield is a full scale module No. 11a. Starting from a forged block of 1200 x 1200 x 500 mm, the main machining steps as deep drilling (1200 mm), 3D machining and sawing were performed. Tubes were 3D bent and large number of small parts were designed and machined. By welding together all the sub-parts we erected the main part of the water coolant circuit. Once the water circuit was built; the shield was completed using powder HIPping together with forged block embedding the tubes and their in a final solid part. The powder/solid HIP is used to minimize the number of BM seal welds in front of plasma. It increases the reliability of the components during operation. About 300 kg of stainless steel powder was densified together with the forged block. 3D measurement was done before and after the HIP cycle to collect the data to be compared with theoretical model. It allows to predict the main distortions of the solid bulk. Ultrasonic examination of the densified powder on the Stainless steel bulk and around the bended tubes was performed as well as mechanical characterization of the samples. The recess for stub key attachment on the vacuum vessel side, the hydraulic connector, the key for the primary wall panel attachment on the front side and the link between the four parallel water coolant circuits were then machined to achieve the shield prototype. (orig.)

  17. Manufacture of a shield prototype for primary wall modules

    International Nuclear Information System (INIS)

    In the frame of the blanket module (BM) development for ITER, an R and D programme was implemented for the manufacture of a shield prototype by powder hot isostatic pressing (HIPping). The manufactured shield is a full-scale module No. 11a. Starting from a forged block of 1350 mm x 1300 mm x 450 mm, the main machining steps as deep drilling (1200 mm), 3D machining and sawing were performed. Tubes were 3D bent and large number of small parts were designed and machined. By welding together all the sub-parts we erected the main part of the water coolant circuit. Once the water circuit was built; the shield was completed using powder HIPping together with forged block embedding the tubes in a final solid part. The powder/solid HIP is used to minimize the number of BM seal welds in front of plasma. It increases the reliability of the components during operation. About 300 kg of stainless steel powder was densified together with the forged block. 3D measurement was done before and after the HIP cycle to collect the data to be compared with theoretical model. It allows to predict the main distortions of the solid bulk. Ultrasonic examination of the densified powder on the stainless steel bulk and around the bended tubes was performed as well as mechanical characterization of the samples. The recess for stub key attachment on the vacuum vessel side, the hydraulic connector, the key for the primary wall panel attachment on the front side and the link between the four parallel water coolant circuits were then machined to achieve the shield prototype

  18. Fabrication techniques development of test blanket module based on CLAM

    International Nuclear Information System (INIS)

    The Reduced Activation Ferritic/Martensitic steels (RAFMs) are considered as the primary candidate structural material for the DEMO fusion reactor and the first fusion power plant. China Low Activation Martensitic (CLAM) steel, a version of RAFMs, is being developed in ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences), under wide collaboration with many institutes and universities in China and overseas. The designs of FDS (Fusion Design Study) series liquid LiPb blankets for fusion reactors and corresponding Dual Functional Lithium Lead (DFLL) Test Blanket Module (TBM) in International Thermonuclear Experimental Reactor (ITER) are being carried out in ASIPP. And CLAM steel is chosen as the primary candidate structural material in these designs. So the fabrication techniques for DFLL TBM with CLAM are or urgently needed to be studied in detail. The fabrication of DFLL TBM mainly includes the manufacturing of the First Wall (FW), the Cooling Plates (CP) and the joining of the FW and CPs. Currently, solid Hot Isostatic Pressing (HIP) bonding and uniaxial diffusion bonding method are the most promising candidate fabrication method for the FW and CP. Experiments of HIP and unixial diffusion bonding of CLAM/CLAM were carried out and good joints were obtained. As for the joining technique of FW and CPs, the fusion welding techniques such as Tungsten Inert Gas welding, Laser welding and Electron Beam welding are candidates. Preliminary experiments on these welding techniques were performed. The simulation of thermal process by Gleeble 2000 was also carried out. Results of these experiments are summarized and further R and D plan on blanket fabrication techniques is also stated. (authors)

  19. Welding techniques development of CLAM steel for Test Blanket Module

    International Nuclear Information System (INIS)

    Fabrication techniques for Test Blanket Module (TBM) with CLAM are being under development. Effect of surface preparation on the HIP diffusion bonding joints was studied and good joints with Charpy impact absorbed energy close to that of base metal have been obtained. The mechanical properties test showed that effect of HIP process on the mechanical properties of base metal was little. Uniaxial diffusion bonding experiments were carried out to study the effect of temperature on microstructure and mechanical properties. And preliminary experiments on Electron Beam Welding (EBW), Tungsten Inert Gas (TIG) Welding and Laser Beam Welding (LBW) were performed to find proper welding techniques to assemble the TBM. In addition, the thermal processes assessed with a Gleeble thermal-mechanical machine were carried out as well to assist the fusion welding research.

  20. The effect of self-shielding of resonance cross sections on the performance of some promising fusion blanket designs

    International Nuclear Information System (INIS)

    The effect of self-shielding of resonance cross sections on the tritium breeding ratio was investigated for three promising fusion blanket designs with liquid lithium, lithium oxide and lithium-lead breeders. Calculations were performed using ANISN and MCNP transport codes with the ENDF/B-V based nuclear data libraries. It is found that the self-shielding effect cannot be neglected in the blanket design if the blanket is neutron leaky in the case when the blanket is thin or with lower Li-6 enrichment in Li. This may result in an underestimate of the tritium breeding ratio if the cross sections are infinitely diluted. This is due to the resonances in the structure materials in which the absorption cross sections are enhanced in the infinitely diluted case. Thus the effect of self-shielding of resonance cross sections should be considered in neutronics calculations of fusion reactors. It is shown that the MCNP results are better reproduced by those from the transport code with the infinitely diluted library. This is probably due to the weight function used to generate the library and to the number of groups considered. Thus for fusion applications it is recommanded to collapse broad group cross sections with the spectrum obtained from an accurate calculation based on many fine groups. (author)

  1. Safety analysis on the Korean He-Cooled Molten Lithium Test Blanket Module for the ITER

    International Nuclear Information System (INIS)

    Through a consideration of the requirements for a DEMO-relevant blanket concept, a He Cooled Molten Lithium (HCML) blanket with Ferritic Steel (FS) as a structural material is proposed to be tested in the International Thermonuclear Experimental Reactor (ITER). The HCML Test Blanket Module (TBM) uses He as a coolant at an inlet temperature of 300 deg C and an outlet temperature up to 376 deg C and Li is used as a tritium breeder by considering its potential advantages. Two layers of a graphite reflector are inserted as a reflector in the breeder zone to increase the Tritium Breeding Ratio (TBR) and the shielding performances. A 3-D Monte Carlo analysis is performed with the MCCARD code for the neutronics and the total TBM power is designed to be 0.739 MW at a normal heat flux from the plasma side. From the analysis results with CFX-10 for the thermal-hydraulics, the He cooling path is optimized and it shows that the maximum temperature of the first wall does not exceed 550 deg C at the structural materials and the coolant velocities are 45 m/sec and 8.2 m/sec in the first wall and breeding zone, respectively. The obtained temperature data is used in the thermal-mechanical analysis with ANSYS-10. The maximum von Mises equivalent stress of the first wall is 123 MPa and the maximum deformation of it is 3.73 mm, which is lower than the maximum allowable stress. The KO HCML is being designed and optimized from the current design. Since the safety analysis related to the postulated accident is essential for both licensing and acceptance for installation in ITER, the relatively severe cases were assumed for the safety assessment; (1) active plasma shut-down after delayed accident detection with disruption and (2) no active plasma shut-down. The safety analysis performed for both cases show the capability of decay heat removal in both cases. (author)

  2. A Helium Cooled Molten Lithium test blanket module for the ITER in Korea

    International Nuclear Information System (INIS)

    Through a consideration of the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He Cooled Molten Lithium (HCML) blanket with Ferritic Steel (FS) as a structural material as part of the International Thermonuclear Experimental Reactor (ITER) program. The preliminary design and the performance of the KO HCML Test Blanket Module (TBM) are introduced in this paper. It uses He as a coolant at an inlet temperature of 300 C and an outlet temperature up to 400 C and Li is used as a tritium breeder by considering its potential advantages. Two layers of graphite are inserted as a reflector in the breeder zone to increase the Tritium Breeding Ratio (TBR) and the shielding performances. A 3-D Monte Carlo analysis is performed with the MCCARD code for the neutronics evaluation of the KO HCML and the total TBM power is designed to be 0.739 MW at a normal heat flux from the plasma side. From the analysis results with CFX-10 for the thermal-hydraulics evaluation, the He cooling path is determined and it shows that the maximum temperature of the first wall does not exceed 550 C for the structural materials and the coolant velocities are 45 m/sec and 8.2 m/sec for the first wall and breeding zone, respectively. The obtained temperature data was used in the thermal-mechanical analysis with ANSYS-10. The maximum von Mises equivalent stress of the first wall was 123 MPa and the maximum deformation of it was 3.73 mm, which is lower than the maximum allowable stress. And also, for the several accident scenarios such as a Loss of Coolant Accident (LOCA), a safety analysis is being performed. (orig.)

  3. Activated corrosion products in ITER first wall and shielding blanket heat transfer system

    International Nuclear Information System (INIS)

    Corrosion and erosion phenomena play an important role in mobilizing activated materials in fusion machines. This paper deals with the assessment of the activated corrosion products (ACPs) related to the primary heat transfer system (PHTS) of the first wall/shielding blanket (FW/SB) of the ITER plant. ACPs could be a cause for concern in terms of occupational radiation exposure (ORE) in maintenance scenarios. They could also be relevant in the case of severe accidents, such as ex-vessel LOCAs. The assessment mainly refers to the TAC-4 design developed for ITER. The mobilization of the activated material has been estimated with the qualified CEA code PACTOLE. It considers all the chemical and physical phenomena responsible for corrosion, activation and transport of corrosion products in cooling loops. The XSDNRPM-S code is used for neutronic calculations; the ANITA-2 code for activation calculations. The results obtained show the improvement gained, in terms of corrosion and radioactive inventory reduction, by avoiding the use of the boron as additive. Results obtained point out the impact of the main water chemistry parameters (e.g., water temperature and pH) on ACP production, transport and deposition. A parametric comparison has been carried out considering the coolant flowing during dwell periods, two different in-vessel FW/SB AISI 316L compositions and two fluences: 0.3 and 3 MW·y/m2

  4. Development of blanket remote maintenance system

    International Nuclear Information System (INIS)

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  5. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  6. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  7. First wall and blanket module safety enhancement by material selection and design decision

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems.

  8. US DCLL test blanket module design and relevance to DEMO

    International Nuclear Information System (INIS)

    Full text: In the design of Test Blanket Modules (TBMs) for ITER, it is required to provide a design concept that is demonstration power reactor (DEMO) relevant. It should be noted that in the US, DEMO is defined to be a good representation of the first generation fusion power reactor. In order to evaluate the potential of the US TBM design for DEMO, a system evaluation of DEMO design was performed with an improved GA system code, and the physics results were benchmarked to ITER. With the selection of ferritic steel as the structural material, the maximum neutron wall loading is limited to 3 MW/m2. When designed to a 3 GW fusion device the optimum aspect ratio is found to be in the range of 2.5 to 3. Results show that the US dual coolant lead-lithium (DCLL) blanket can satisfy all the DEMO design requirements. On the chamber wall material, for the ITER-TBM design, the design guidance is to apply a 2 mm Be layer onto the plasma facing surface. When extrapolated to the DEMO design, the Be layer will not be suitable due to radiation damage. Similarly, a carbon surface will not be suitable due to high physical and chemical sputtering rates, radiation damage of the material and potential large retention of tritium. Unfortunately, the remaining commonly proposed material, tungsten (W), would suffer radiation damage from alpha particle implantation and, with blistering, W transport to the plasma core could severely limit the core performance. To resolve this potential impasse, different innovative options were evaluated. All high performance tokamak experiments presently use boron or silicon to condition the first wall. To use boron in DEMO, it is found that in-situ boronization will be required in order to maintain a boronized layer on the chamber wall. This boronized layer could also protect the W substrate, while retaining low-Z wall characteristics. Further innovative ideas are being evaluated to handle transient events like ELMs and disruptions. TOPICS: (PPCA) Power

  9. Manufacturing and testing of full scale prototype for ITER blanket shield block

    International Nuclear Information System (INIS)

    Highlights: • 316L(N)-IG forged steel was successfully fabricated and qualified. • Related R&D activities were implemented to resolve the fabrication issues. • SB #8 FSP was successfully manufactured with conventional fabrication techniques. • All of the validation tests were carried out and met the acceptance criteria. - Abstract: Based on the preliminary design of the ITER blanket shield block (SB) #8, the full scale prototype (FSP) has been manufactured and tested in accordance with pre-qualification program, and related R&D was performed to resolve the technical issues of fabrication. The objective of the SB pre-qualification program is to demonstrate the acceptable manufacturing quality by successfully passing the formal test program. 316L(N)-IG stainless steel forging blocks with 1.80L × 1.12W × 0.43t (m) were developed by using an electric arc furnace, and as a result, the material properties were satisfied with technical specification. In the course of applying conventional fabrication techniques such as cutting, milling, drilling and welding of the forged stainless steel block for the manufacturing of the SB #8 FSP, several technical problems have been addressed. And also, the hydraulic connector of cross-forged material re-melted by electro slag or vacuum arc requires the application of advanced joining techniques such as automatic bore TIG and friction welding. Many technical issues – drilling, welding, slitting, non-destructive test and so on – have been raised during manufacturing. Associated R&D including the computational simulation and coupon testing has been done in collaboration with relevant industries in order to resolve these engineering issues. This paper provides technical key issues and their possible resolutions addressed during the manufacture and formal test of the SB #8 FSP, and related R&D

  10. Manufacturing and testing of full scale prototype for ITER blanket shield block

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa-Woong, E-mail: swkim12@nfri.re.kr [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Kim, Duck-Hoi; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Sung-Ki [WONIL Co., Ltd., Haman (Korea, Republic of); Kang, Sung-Chan [POSCO Specialty Steel Co., Ltd., Changwon (Korea, Republic of); Zhang, Fu; Kim, Byoung-Yoon [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ahn, Hee-Jae; Lee, Hyeon-Gon; Jung, Ki-Jung [ITER Korea, National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-04-15

    Highlights: • 316L(N)-IG forged steel was successfully fabricated and qualified. • Related R&D activities were implemented to resolve the fabrication issues. • SB #8 FSP was successfully manufactured with conventional fabrication techniques. • All of the validation tests were carried out and met the acceptance criteria. - Abstract: Based on the preliminary design of the ITER blanket shield block (SB) #8, the full scale prototype (FSP) has been manufactured and tested in accordance with pre-qualification program, and related R&D was performed to resolve the technical issues of fabrication. The objective of the SB pre-qualification program is to demonstrate the acceptable manufacturing quality by successfully passing the formal test program. 316L(N)-IG stainless steel forging blocks with 1.80L × 1.12W × 0.43t (m) were developed by using an electric arc furnace, and as a result, the material properties were satisfied with technical specification. In the course of applying conventional fabrication techniques such as cutting, milling, drilling and welding of the forged stainless steel block for the manufacturing of the SB #8 FSP, several technical problems have been addressed. And also, the hydraulic connector of cross-forged material re-melted by electro slag or vacuum arc requires the application of advanced joining techniques such as automatic bore TIG and friction welding. Many technical issues – drilling, welding, slitting, non-destructive test and so on – have been raised during manufacturing. Associated R&D including the computational simulation and coupon testing has been done in collaboration with relevant industries in order to resolve these engineering issues. This paper provides technical key issues and their possible resolutions addressed during the manufacture and formal test of the SB #8 FSP, and related R&D.

  11. Activation Characteristics of Fuel Breeding Blanket Module in Fusion Driven Subcritical System

    Institute of Scientific and Technical Information of China (English)

    HUANG Qun-Ying; LI Jian-Gang; CHEN Yi-Xue

    2004-01-01

    @@ Shortage of energy resources and production of long-lived radioactivity wastes from fission reactors are among the main problems which will be faced in the world in the near future. The conceptual design of a fusion driven subcritical system (FDS) is underway in Institute of Plasma Physics, Chinese Academy of Sciences. There are alternative designs for multi-functional blanket modules of the FDS, such as fuel breeding blanket module (FBB)to produce fuels for fission reactors, tritium breeding blanket module to produce the fuel, i.e. tritium, for fusion reactor and waste transmutation blanket module to try to permanently dispose of long-lived radioactivity wastes from fission reactors, etc. Activation of the fuel breeding blanket of the fusion driven subcritical system (FDS-FBB) by D-T fusion neutrons from the plasma and fission neutrons from the hybrid blanket are calculated and analysed under the neutron wall loading 0.5 MW/m2 and neutron fluence 15 MW. yr/m2. The neutron spectrum is calculated with the worldwide-used transport code MCNP/4C and activation calculations are carried out with the well known European inventory code FISPACT/99 with the latest released IAEA Fusion Evaluated Nuclear Data Library FENDL-2.0 and the ENDF/B-V uranium evaluated data. Induced radioactivities, dose rates and afterheats, etc, for different components of the FDS-FBB are compared and analysed.

  12. The thermo-mechanical design of the water cooled PB-17Li test blanket module for ITER

    International Nuclear Information System (INIS)

    The Water Cooled Lithium Lead (WCLL) blanket is one of the two European concepts to be further developed. A Test Blanket Module (TBM) representative of the DEMO blanket shall be tested in ITER. This paper reports on the activities related to the thermo-mechanical design analysis, taking into account the electromagnetic and neutronic loads in normal and off normal conditions. These loads were applied to a finite elements model of the structure, and the structural response was compared to the allowable value, dependent on the operating conditions. Besides the loads assumed by the design specifications (pressure, temperature, etc), electro-mechanical and thermal loads have been evaluated. A model of the TBM has been performed to compute the loads related to the electromagnetic effects of a centered plasma disruption. The thermal loads have been evaluated considering the heat deposition from the plasma and from the neutrons. The neutronic analysis has been carried out also in order to evaluate the shielding characteristics of the TBM. Taking into account the thermal and mechanical loads a fracture mechanics analysis has been carried out. From this analysis the JIc parameter was evaluated at the crack tip and compared with the allowable value. The work carried out showed that the TBM present design fulfills ITER normal operation requirements. (authors)

  13. Design and preliminary safety analysis of a helium cooled molten lithium test blanket module for the ITER in Korea

    International Nuclear Information System (INIS)

    Through a consideration of the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He cooled molten lithium (HCML) blanket with ferritic steel (FS) as a structural material in the International Thermonuclear Experimental Reactor (ITER) program. The design and the performance of the KO HCML test blanket module (TBM) and the preliminary results of the safety analyses such as activation, decay heat, and accident analysis by a loss of coolant are introduced briefly in this paper. KO HCML TBM uses He as a coolant and Li is used as a tritium breeder by considering its potential advantages. Two layers of graphite are inserted as a reflector in the breeder zone to increase the tritium breeding ratio (TBR) and the shielding performances. Performance analyses were performed with the MCCARD code for the neutronics, the CFX-10 code for the thermal-hydraulics, and with the ANSYS-10 code for the thermal-mechanical analysis. For the safety analyses, the activation and decay heat were obtained from the MCCARD and Origen codes. From the obtained decay heat, an accident analysis was performed

  14. Program element 2: Blanket and shield thermal-hydraulic and thermomechanical testing of the first Wall/Blanket/Shield program: Final report

    International Nuclear Information System (INIS)

    Two single-effect scoping tests were performed in Phase 1 of this project. These tests included the measurement of heat transfer contact resistance between a Li2O breeder pellet and stainless steel clad in argon gas - in the temperature range of 5000 to 7000C. The effective heat transfer coefficient was found to lie in the range of 1100 to 1700 W/m2-K which is acceptable for the design of Li2O solid breeder blankets. This effective heat transfer coefficient is expected to improve in helium gas, which has a much higher thermal conductivity than argon. In the second set of tests, the thermomechanical behavior of Li2O pellets was determined under simulated blanket conditions, including thermal cycling, in the presence of a helium gas purge flow of controlled moisture content. The results showed that at a temperature below 8000C and with a reasonable purge flow moisture content of ≅10 ppM, Li2O pellet sintering and pore closure, pellet-clad interaction and vapor phase transport of LiOH are minimal. A multiple-effects solid breeder blanket integral simulation test, followed by an engineering-scale nuclear test are the proposed next steps in this series of tests. Preliminary designs for these experiments were completed. Fabrication techniques for the manufacturing of microspheres as an alternate fuel form for solid breeder fuel were also investigated in the study. Microspheres of LiAlO2 from <30 μm to 180 μm were fabricated by the plasma spray technique. Production of ∼650 μm spheres by a sol-gel process was demonstrated and feasibility was indicated from the production of spheres from ∼100 μm to ∼800 μm in diameter

  15. Physical investigation for neutron consumption and multiplication in fusion–fission hybrid test blanket module

    International Nuclear Information System (INIS)

    Highlights: • Preliminary design of hybrid test blanket module was done for ITER. • Blanket performance was analyzed for five fuel types with Li and LiPb coolants. • Detailed neutronic analysis was performed by computing neutron production and loss factors. • Inelastic neutron source factor of LiPb caused major change in blanket performance. • TiC reflector improved performance in TRU transmutation and tritium breeding. - Abstract: Inelastic scattering of high energy fusion neutrons does affect the performance of fusion blanket based on the choice of different materials. It will also affect the behavior of source neutrons in a subcritical fusion fission hybrid blanket and consequently the transmutation and tritium breeding performance. A fusion fission hybrid test blanket module (HTBM) is designed which is presumed to be tested in a large sized tokamak and plasma neutron source is similar to ITER. In this preliminary design of HTBM the neutron source and loss factors are computed for the detailed neutronic performance analysis. The neutronic analysis of hybrid blanket module is performed for five different TRU fuel types: TRU-Zr, TRU-Mo, TRU-Oxide, TRU-Carbide and TRU-Nitride. In this module design, it is aimed to burn and transmute the TRU nuclides from high-level radioactive waste of PWR spent fuel. The effect of TiC reflector on transmutation and tritium breeding performance of HTBM is also quantified. MCNPX is used for neutronic computations. Neutron spectrum, capture to fission ratio and waste transmutation ratio of each fuel type are compared to evaluate their waste transmutation performance. Tritium breeding ratio is also compared for two coolant options: Li and LiPb eutectic

  16. Transient thermal and stress analyses of the ITER shielding blanket/first wall under off-normal conditions

    International Nuclear Information System (INIS)

    Transient thermal and stress analyses have been conducted with the following three off-normal conditions for the shielding blanket and first wall (FW) structure of International Thermonuclear Experimental Reactor (ITER). (1) Loss of Flow Accident (LOFA) (2) Loss of Coolant Accident (LOCA) (3) Power Excursion Condition (PEC) The main results obtained are as follows : 1) In case of FW LOFA/LOCA, time to reach 400degC is 18 s at Beryllium surface, in case of shield LOFA/LOCA, time to reach 400degC is 90 s at 316SS internal rib, and in case of FW and shield LOFA/LOCA, time to reach 400degC is 17 s at Beryllium surface. 2) In case of FW LOFA/LOCA, maximum temperatures to satisfy 3Sm limits are 280degC for FW Cu alloy and 285degC for 316SS internal rib and in case of shield LOFA/LOCA, maximum temperatures to satisfy 3Sm limits are 248degC for FW Cu alloy and 170degC for 316SS internal rib. However, detail design guideline for off-normal conditions should be established and the stress should be reevaluated in future. 3) In case of FW LOFA/LOCA, plasma must be shut-down in a few seconds after the initiation of these events so as to prevent excursion of FW temperature and stress, while plasma shut-down requirement could be relatively relaxed in case of shield LOFA/LOCA. 4) Stresses and displacements during FW LOFA and FW LOCA are nearly equal. So are those during shield LOFA and LOCA. 5) Power excursion up to 1.8 GW shows no problem. (author)

  17. Experimental lithium-lead module for neutronics studies of fusion blankets

    International Nuclear Information System (INIS)

    In a (D,T) type fusion machine, about 80% of the fusion energy is transported by neutrons outside the reactor's core and deposited in the blanket, an assembly of materials surrounding the machine. Tritium breeders, such as lithium and lithium-lead (LiPb) eutectic alloys, mainly dictate the design of fusion blankets. Neutronics studies, on blanket module assemblies, form an initial step towards real construction of one or another blanket. Within the framework of this dissertation, different blanket elements: first wall/structural material, tritium breeder etc., and leading fusion blanket concepts are briefly reviewed. Lithium-lead eutectic is of particular interest since the neutron multiplication takes place in the breeder, where tritium is produced. Therefore, one-dimensional optimization calculations were performed to study the use of Li17Pb83, with natural lithium abundance. Generally, this breeder is used with very high Li6 enrichment. It was found that it would be difficult to design compact blankets and to achieve reasonable tritium production, with Li17Pb83 eutectic having natural lithium isotopic composition. Either the breeder should be highly enriched in Li6 or another enriched lithium zone should follow. This study, however, led to the design and construction of the Experimental Lithium-Lead Module (EL2M). The EL2M was also used for International Comparison on Measuring Techniques of Tritium Production Rate (TPR) for Fusion Neutronics Experiments, a program initiated by JAERI (Japan Atomic Energy Research Institute) in which eight international research institutions joined. (author) figs., tabs., 124 refs

  18. Development of Thermal-hydraulic Analysis Methodology for Multi-module Breeding Blankets in K-DEMO

    International Nuclear Information System (INIS)

    In this paper, the purpose of the analyses is to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. Afterwards, the plan for the whole blanket system analysis using MARS-KS is introduced and the result of the multiple blanket module analysis is summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for the conceptual design of the K-DEMO breeding blanket thermal analysis. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering pressure drops arises in each module. For a feasibility test of the proposed methodology, 10 outboard blankets in a toroidal field sector were simulated, which are connected with each other through the inlet and outlet common headers. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation and thanks to the parallelization using MPI, almost linear speed-up could be obtained

  19. Development of Thermal-hydraulic Analysis Methodology for Multi-module Breeding Blankets in K-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In this paper, the purpose of the analyses is to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. Afterwards, the plan for the whole blanket system analysis using MARS-KS is introduced and the result of the multiple blanket module analysis is summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for the conceptual design of the K-DEMO breeding blanket thermal analysis. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering pressure drops arises in each module. For a feasibility test of the proposed methodology, 10 outboard blankets in a toroidal field sector were simulated, which are connected with each other through the inlet and outlet common headers. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation and thanks to the parallelization using MPI, almost linear speed-up could be obtained.

  20. Status of the EU domestic agency electromagnetic analyses of ITER vacuum vessel and blanket modules

    International Nuclear Information System (INIS)

    Highlights: Eddy and halo currents and corresponding Lorentz forces on the ITER vacuum vessel and blanket modules have been computed. VDEs and MDs belonging to cat III, II and I, and a magnet fast discharge have been simulated. The maximum vertical force in the VV (about 120 MN downwards) is experienced in VDE-DW-SLOW cat III. For the FW panel of blanket 18 the most demanding load case is the VDE downward cat III producing a radial torque of about 110 kNm. For the FW of blanket module 10 the most demanding load case is the VDE upward exp cat III producing a poloidal torque of about 130 kNm. -- Abstract: This paper presents the results of the electromagnetic analyses of the ITER vacuum vessel and blanket modules. A wide collection of electromagnetic transients has been simulated: VDEs and MDs belonging to cat III, II and I, and a magnet fast discharge. Eddy and halo currents and corresponding Lorentz forces have been computed using 3D solid FE models implemented in ANSYS and CARIDDI. The plasma equilibrium configurations (displacement and quench of the plasma current, toroidal flux variation due to the β drop and halo currents wetting the first wall) used as an input for the EM analyses have been supplied by the 2D axisymmetric code DINA. The paper describes in detail the methodology used for the analyses and the main results obtained

  1. Preliminary design of a helium cooled molten lithium test blanket module for the ITER test in Korea

    International Nuclear Information System (INIS)

    Through a consideration of the requirements for a DEMO-relevant blanket concept, Korea (KO) has proposed a He cooled molten lithium (HCML) blanket with ferritic steel (FS) as a structural material in the International Thermonuclear Experimental Reactor (ITER) program. The preliminary design and its performance of KO HCML test blanket module (TBM) are introduced in this paper. It uses He as a coolant at an inlet temperature of 300 deg. C and an outlet temperature up to 400 deg. C and Li is used as a tritium breeder by considering its potential advantages. Two layers of graphite are inserted as a reflector in the breeder zone to increase the tritium breeding ratio (TBR) and the shielding performances. A 3-D Monte Carlo analysis is performed with the MCCARD code for the neutronics and the total TBM power is designed to be 0.739 MW at a normal heat flux from the plasma side. From the analysis results with CFX-10 for the thermal-hydraulics, the He cooling path is determined and it shows that the maximum temperature of the first wall does not exceed 550 deg. C at the structural materials and the coolant velocities are 45 and 11.5 m/s in the first wall and breeding zone, respectively. The obtained temperature data is used in the thermal-mechanical analysis with ANSYS-10. The maximum von Mises equivalent stress of the first wall is 123 MPa and the maximum deformation of it is 3.73 mm, which is lower than the maximum allowable stress

  2. Heatup event analyses of the water cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Water Cooled Solid Breeder (WCSB) Test Blanket Module (TBM) is being designed by JAEA as a primary candidate TBM of Japan. From the viewpoint of the safety, the TBM should be designed so that it does not damage the soundness of the vacuum vessel, the primary barrier for radioisotopes of the ITER. One of the major concerns on the safety of the TBM is temperature elevation due to coolant leakage into the neutron multiplier layer, beryllium, of the TBM. Since the chemical reaction of beryllium and water is an exothermic reaction and the reaction rate exponentially increases with the temperature increase, there is a possibility that the temperature of the TBM exceeds the maximum allowable temperature of its structural material. This paper describes the safety evaluation on the heatup events of the WCSB TBM and proposes the basic strategy to ensure safety, especially incorporating the chemical reaction between beryllium and water. Failure Mode Effect Analysis (FMEA) has been carried out to select the severest heatup events of the WCSB TBM, followed by one-dimensional analyses to evaluate the selected events. The analysis model includes thermal conduction in the TBM, thermal radiation from the TBM to a common frame, and thermal radiation from the TBM first wall to the first wall of the opposite blankets (shield blanket etc.). The sequences of the selected events are shown as follows; Loss of cooling of the TBM during plasma operation is assumed as an initial event. Temperature of the TBM totally increases, then a plasma disruption takes place when the temperature of the first wall armor reaches at a certain value, for example, its melting point of 1273 C. After the plasma disruption, temperature of the TBM decreases according to time and the event converges. However, if the pipe of cooling system in the TBM ruptures due to high temperature, chemical reaction between beryllium and water is activated and the TBM structure is possibly destroyed in the worst case. Therefore

  3. Heatup event analyses of the water cooled solid breeder test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Tsuru, Daigo; Enoeda, Mikio; Akiba, Masato [Japan Atomic Energy Agency (Japan)

    2007-07-01

    Water Cooled Solid Breeder (WCSB) Test Blanket Module (TBM) is being designed by JAEA as a primary candidate TBM of Japan. From the viewpoint of the safety, the TBM should be designed so that it does not damage the soundness of the vacuum vessel, the primary barrier for radioisotopes of the ITER. One of the major concerns on the safety of the TBM is temperature elevation due to coolant leakage into the neutron multiplier layer, beryllium, of the TBM. Since the chemical reaction of beryllium and water is an exothermic reaction and the reaction rate exponentially increases with the temperature increase, there is a possibility that the temperature of the TBM exceeds the maximum allowable temperature of its structural material. This paper describes the safety evaluation on the heatup events of the WCSB TBM and proposes the basic strategy to ensure safety, especially incorporating the chemical reaction between beryllium and water. Failure Mode Effect Analysis (FMEA) has been carried out to select the severest heatup events of the WCSB TBM, followed by one-dimensional analyses to evaluate the selected events. The analysis model includes thermal conduction in the TBM, thermal radiation from the TBM to a common frame, and thermal radiation from the TBM first wall to the first wall of the opposite blankets (shield blanket etc.). The sequences of the selected events are shown as follows; Loss of cooling of the TBM during plasma operation is assumed as an initial event. Temperature of the TBM totally increases, then a plasma disruption takes place when the temperature of the first wall armor reaches at a certain value, for example, its melting point of 1273 C. After the plasma disruption, temperature of the TBM decreases according to time and the event converges. However, if the pipe of cooling system in the TBM ruptures due to high temperature, chemical reaction between beryllium and water is activated and the TBM structure is possibly destroyed in the worst case. Therefore

  4. Measurement and analysis of neutron and gamma-ray flux spectra in a neutronics mock-up of the HCPB Test Blanket Module

    International Nuclear Information System (INIS)

    Neutron and γ-ray flux spectra were measured with a NE 213 spectrometer in the rear block of a mock-up of the HCPB Test Blanket Module. The flux of the slow neutrons was investigated by time-of-arrival spectroscopy with a pulsed D-T neutron source. The experimental results were compared versus calculations performed with the Monte Carlo code MCNP and the data libraries EFF-3, FENDL-2.0 and FENDL-2.1, and are discussed with respect to the shielding capability of the TBM and to tritium breeding

  5. Overview of Helium Cooled Ceramic Reflector Test Blanket Module development in Korea

    International Nuclear Information System (INIS)

    Korea plans to install and test Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) in the ITER, because the HCCR blanket concept is one of options of the DEMO blanket. Currently, many design and R and D activities have been performed to develop the Korean HCCR TBM. An integrated design tool for a fusion breeder blanket has been developed based on nuclear technologies including a safety analysis for obtaining a license for testing in the ITER. A half-scale sub-module mockup of the first wall with the manifold was fabricated, and the manufacturability and thermo-hydraulic performances were evaluated. High heat load and helium cooling test facilities have been constructed. Next, the recent status of TBM material development in Korea was introduced including Reduced Activation Ferritic Martensitic (RAFM) steel, lithium ceramic pebbles and silicon carbide (SiC) coated graphite pebbles. Several fabrication methods of RAFM steel, lithium ceramic pebbles, and silicon carbide coating on graphite pebbles were investigated. Recent design and R and D progress on these areas are introduced here

  6. Safety assessment of the helium-cooled pebble bed test blanket module for ITER

    International Nuclear Information System (INIS)

    The European helium-cooled pebble bed blanket is one of six candidates to be tested in ITER. The corresponding test module and cooling system have been analysed for off-normal accident scenarios, involving large in-vessel and ex-vessel coolant leaks, leaks inside the module, and complete loss of flow. The methods involve transient systems analyses, local FE temperature analyses, 1 D heat transport calculations and chemical reaction estimates. Results are summarised with view to pressure evolution in ITER compartments, short and long-term temperature history in the module, decay heat removal and chemical reaction rates. (authors)

  7. Forces on liquid lithium modules in a tokamak blanket due to the pulsed poloidal magnetic field

    International Nuclear Information System (INIS)

    This paper treats cylindrical modules filled with liquid lithium in the presence of a steady toroidal magnetic field and a time-dependent poloidal field. Solutions for liquid lithium flows and formulas for the forces on the modules are presented for both axial and transverse poloidal fields. Numerical examples are presented for the design in the ORNL/Westinghouse Tokamak Blanket Study. The initial analysis ignores the ends of the modules and treats infinitely long pipes, but the effects of the ends are also treated. Calculations and conclusions based on the solutions for infinitely long pipes are not significantly altered by end effects

  8. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    International Nuclear Information System (INIS)

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ∼14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface

  9. Nuclear data for design analyses of the test blanket modules in ITER: Review and recommendations for EFF/JEFF evaluations

    International Nuclear Information System (INIS)

    This ppt-presentation gives an overview of ITER materials for nuclear analysis (Test Blanket Modules (TBM); Shield modules, vacuum vessel, plasma facing components; superconducting magnet, minor importance materials), a review of available nuclear data evaluations (EFF-3/JEFF-3.0 (EU); FENDL-2.0, JENDL-3.3, ENDF/B-VI; MF=6 data, co-variances, γ-production; benchmark analyses (data quality)) and recommendations for evaluations (priorities for EFF data evaluations in FP6; update/revision/completion of data evaluations according to needs for TBM design; extension for E > 20 MeV (IFMIF application)) for the isotopes 9Be, natPb, 204Pb, 206Pb, 208Pb, 6Li, 7Li, 28Si, 29Si, 30Si, 16O, 54Fe, 56Fe, 57Fe, 58Fe, 50Cr, 52Cr, 53Cr, 54Cr, natW, 182W, 183W, 184W, 186W, 181Ta, 63Cu, 65Cu, natTi, 46Ti, 47Ti, 48Ti, 49Ti, 12C, 23Na, 39K, 1H and many more

  10. The Karlsruhe solid breeder blanket and the test module to be irradiated in ITER/NET

    International Nuclear Information System (INIS)

    The blanket for the DEMO reactor should operate at an average neutron flux of 2.2 MW/m2 for 20000 h. This requires the use of a structural material which can withstand high neutron fluences without swelling. The ferritic steel Manet was chosen for this purpose. The breeder material is in the form of Li4SiO4 pebbles of 0.35 to 0.6 mm diameter. The 6 mm thick beds of pebbles are placed between beryllium plates which are cooled by high pressure helium flowing inside steel tubes. Breeder material and beryllium are contained in radial canisters, placed inside boxes. The coolant helium enters the blanket at 250deg C, cools first the box walls and then the breeder and multiplier, and leaves the blanket at 450deg C. The maximum temperature in the first wall steel is 550deg C, while the minimum and maximum temperatures in the breeder are 380 and 820deg C, respectively. The resulting total tritium inventory in the breeder is only 10 g, and the real tridimensional tritium breeding ratio is 1.11. The conceptual design of the test module, of its extraction system and of the required out-of-reactor ancillary systems has allowed an estimate of the time constants of the various components and thus allowed an assessment of the requirements given by the testing of the modules on the NET/ITER machine. (orig.)

  11. ZZ SHAMSI, Coupled 43-Neutron 14-Gamma P3 Cross-Section Library for Fusion Blanket or Shield Calculations

    International Nuclear Information System (INIS)

    1 - Description of program or function: - Format: ANISN; - Number of groups: 34 neutron groups - 14 gamma groups; - Nuclides: (2)H, D, (3)O, Li6, Li7, B10, B11, C, Al, Si, Ti, V, Cr, Mn-55, Fe, Ni, Cu, Nb, Mo, W, Pb, (4)SS. - Origin: ENDF/B (DLC-0037); Weighting spectrum: 1/E weighted for neutron energies exceeding 0.345 eV, below this energy a Maxwellian distribution peaked at 800 K is used. The photon interaction cross sections are flat weighted. A P3 48-group coupled neutron and gamma-ray (34 neutron groups - 14 gamma groups) cross section library for neutronic studies in fusion reactor blankets or shield for the following 28 elements: (2)H, D, (3)O, Li6, Li7, B10, B11, C, Al, Si, Ti, V, Cr, Mn55, Fe, Ni, Cu, Nb, Mo, W, Pb, (4)SS. The cross section data are given in ANISN card image format. 4. Method of solution: The library has been produced by collapsing DLC-37, 100 neutron and 21 gamma groups to 34 neutron and 14 gamma groups. A rather fine mesh is maintained in the higher energy range where gamma production, activation and heat deposition are relatively more important. One of the files contains in the first position of the Po the kerma factor instead of absorption. Kerma factors were obtained from MACKLIB-IV

  12. Nuclear analyses for two 'look-alike' helium-cooled pebble bed test blanket sub-modules proposed by the US for testing in ITER

    International Nuclear Information System (INIS)

    The US is proposing two 'look-alike' sub-modules, based on helium-cooled pebble bed (HCPB) ceramic breeder, to be tested in the same test blanket module (TBM) that will occupy a quarter of a port in ITER and placed next to the Japanese TBM. The TBM has a toroidal width of 73 cm, a radial depth of 60 cm and a poloidal height of 91 cm. The ceramic breeder is made of Li4SiO4 with 75% Li-6 enrichment (60% packing factor) and beryllium is used as the multiplier. The two sub-modules are arranged in two configurations, namely a layered configuration and an edge-on configuration. In the present work, we analyze these two sub-modules using two-dimensional discrete ordinates transport codes in R-θ model that accounts for the presence of the ITER shielding blanket and the surrounding frame of the port. The objectives are: (1) to examine the profiles of heating and tritium production rates in the two sub-modules, both in the radial and toroidal direction, in order to identify locations where neutronics measurements can be best performed with least perturbation from the surroundings (2) to provide both local and integrated values for nuclear heating rates required for subsequent thermo-mechanics analysis, and (3) to compare the tritium production capabilities of two variants for the HCPB blanket concept, mainly the parallel and the edge-on configurations. We present the main findings from this study in this paper

  13. Comprehending the structure of a vacuum vessel and in-vessel components of fusion machines. 3. Comprehending the blanket structure

    International Nuclear Information System (INIS)

    The functions and structure design of shield blanket of ITER and test blanket module (TBM) are stated. The design of shield blanket of ITER is finished and beginning its supply. ITER shield blanket consists of the first wall and shielding block made of SUS316LN-IG, of which design and joint method are explained in details. TBM is used for engineering test of nuclear fusion reactor. The fuel breeding function, power function and structure design of TBM are described. The cooling conditions of shield blanket, TBM and fusion reactor, structure of TBM, structure of the first wall, results of stress analysis of TBM first wall, heat and mechanical behavior measurement device of pebble packed layer, the effective thermal conductivity, and relation between stress and compressive strain of Li2TiO3 pebble packed layer, and distribution of Tresca stress on the first wall are illustrated. (S.Y.)

  14. Thermal-hydraulic analysis of a cylindrical blanket module using ATHENA code

    International Nuclear Information System (INIS)

    ATHENA (Advanced Thermal-Hydraulic Energy Network Analyzer) is a new computer code for thermal-hydraulic analyses of many energy systems. Multiple-loop and multiple-fluid capabilities have been emphasized during the code development. A pilot version of ATHENA has incorporated a fusion kinetic package to model the effect of first wall temperature variation on the reactor conditions. The capability has been demonstrated by analyzing the performance under various conditions of a cylindrical fusion blanket module. The results have shown the viability of using ATHENA for fusion reactor design and safety analyses

  15. Experimental estimate of tritium production parameters for RF test blanket module

    International Nuclear Information System (INIS)

    Tritium breeding ratio (TBR) is a most value among controlled fusion reactor parameters. One in targets of test blanket module (TBM) program is experimental investigation of the value. On the whole TBR can be submitted for consideration TBR = BTB/BTP (BTB: breaded tritium in blanket; BTP: burned tritium in plasma). To investigate a numerator of the formula a tritium production in breeding zone (TBZ) of the TBM has to be measured under ITER plasma experiments. Tritium and neutron monitoring system with some lithium and neutron sensors are proposed. Lithium ortho-silicate and lithium carbonate and the neutron detectors fit the task. Differences isotope lithum-6 and lithium-7 can be applied. For delivery/withdrawal of the detectors into/from the TBZ a pneumatic concept is suggested with using canals allocated in module. The canals pass through the module back wall and reach the attended area. These canals allow the insertion of activation foil and capsules with material probes during the dwell time or operational pauses. Casks for the detectors and the canal for conveying of the casks in the TBM before pulse and extraction after pulse are presented in this paper

  16. Effect of heat cycling on microstructure and thermal property of boron carbide sintered bulk as a shielding material for fusion blanket

    International Nuclear Information System (INIS)

    In the Force Free Helical Reactor (FFHR) design activity in NIFS, metallic carbides and hydrides are considered as candidate shielding materials for the fusion blankets. These materials are expected to have some advantages on neutronic and thermo-physical properties. In order to promote the blanket design, it is necessary to clarify thermal properties of the candidate materials. We studied microstructure and thermal property of boron carbide (B4C), which is one of the promising candidates shielding materials, including the effect of heat cycling. By the laser-flash method, thermal diffusivity, which is one of the properties necessary for evaluating thermal conductivity, was measured precisely for B4C samples. The thermal diffusivity of B4C around 200degC decreased to 1/3 (5 × 10-6 m2 S-1) compared with that at room temperature. The sintering density of B4C bulk was decreased slightly by the thermal cycling. It was suggested that the B4C bulk has high thermal stability and soundness of microstructure during the life-time of blanket system. (author)

  17. Conceptual design of Tritium Extraction System for the European HCPB Test Blanket Module

    International Nuclear Information System (INIS)

    Highlights: ► HCPB (Helium Cooled Pebble Bed) Test Blanket Module (TBM) to be tested in ITER. ► Tritium extraction by gas purging, removal and transfer to the Tritium Plant. ► Conceptual design of TES and revision of the previous configuration. ► Main components: adsorption column, ZrCo getter beds and PERMCAT reactor. - Abstract: The HCPB (Helium Cooled Pebble Bed) Test Blanket Module (TBM), developed in EU to be tested in ITER, adopts a ceramic containing lithium as breeder material, beryllium as neutron multiplier and helium at 80 bar as primary coolant. In HCPB-TBM the main function of Tritium Extraction System (TES) is to extract tritium from the breeder by gas purging, to remove it from the purge gas and to route it to the ITER Tritium Plant for the final tritium processing. In this paper, starting from a revision of the so far reference process considered for HCPB-TES and considering a new modeling activity aimed to evaluate tritium concentration in purge gas, an updated conceptual design of TES is reported.

  18. Numerical simulation of turbulent flow of coolant in a test blanket module of nuclear fusion reactor

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency has been performing the research, development and design of a test blanket module with a water-cooled solid breeder for ITER. For our design, the TBM is mainly composed of a first wall, two side walls, a back wall and membrane panels of bulkhead sections for pebbles. The temperature of a coolant pressurized up to 15 MPa is designed as 553 K and 598 K in an inlet and an outlet of the test blanket module, respectively. Establishment of estimation methods of the flow phenomena is important for designs of the channel network and predictions of the material corrosion and erosion. A purpose of our research is to establish and verify the method for the prediction of the flow phenomena. In this study, the Large-eddy simulation and Reynolds averaged Navier-Stokes simulation have been performed to predict the flow rates in the channels of the side wall. It results the inhomogeneous flow rates in each channel. At viewpoint of the heat removal capability, however, the smallest flow-rates near the first wall are evaluated with satisfying acceptance criteria. Moreover, the results of the numerical simulation correspond with those of experiment performed for the real size mockup. (author)

  19. Neutronics analysis for the test blanket modules proposed for EAST and ITER

    International Nuclear Information System (INIS)

    The Dual-Functional Lithium Lead - Test Blanket Module (DFLL-TBM) system, which is designated to demonstrate the integrated technologies of both He single coolant (SLL) blanket and He- LiPb dual coolant (DLL) blanket, is proposed for test in ITER to check and validate the feasibility of the Chinese LiPb blankets. So far, the construction and operation of ITER will still take a period of ten years, but EAST, the superconducting tokamak device, in China, has been in operation. In EAST D-D phase, the neutron yield is about 1015 ∼ 1017 n/s and about 1017 ∼ 1018 n/s in ITER D-D phase. Therefore, EAST is expected to serve as a valuable pre-testing platform for TBMs, which is not only for electro-magnetics (EM) and thermo-mechanics but also for neutronics. The neutronics analysis for the TBMs is performed by using the coupled three-dimensional (3D) Monte Carlo - Deterministic code MCSN and the nuclear data library FENDL2.1. The activation calculations will be carried out with the home-developed multi-functional neutronics analysis code system VisualBUS and multi-group data library HENDL. The real 3D neutronics calculation model of the middle-scale (1/3 size-reduced) TBM testing in the EAST super-conducting tokamak and full-scale consecutive TBM testing in the ITER machine have been developed with the Chinese home-developed CAD/MCNP interface code MCAM, which can be used as a converter of large complex 3D CAD models into MCNP models and vice versa as well as an analysis tool of MCNP models by the way of visualization to contribute the QA of neutronics analysis. Neutronics calculations, which include neutron spectra and flux distributions, tritium generation, nuclear energy deposition and D-D phase activation, of the TBMs in EAST are carried out and be made an analogy to those in ITER for the close extent of the neutron yield in D-D phase. Further, the foreseen D-D operations in ITER can be treated as an initial nuclear phase including D-T operation. So the presented

  20. Preliminary piping layout and integration of European test blanket modules subsystems in ITER CVCS area

    International Nuclear Information System (INIS)

    Highlights: • The use of human modeling tools for piping design in view of maintenance is discussed. • A possible preliminary layout for TBM subsystems in CVCS area has been designed with CATIA. • A DHM-based method to quickly check for maintainability of piping systems is suggested. - Abstract: This paper explores a possible integration of some ancillary systems of helium-cooled lithium lead (HCLL) and helium-cooled pebble-bed (HCPB) test blanket modules in ITER CVCS area. Computer-aided design and ergonomics simulation tools have been fundamental not only to define suitable routes for pipes, but also to quickly check for maintainability of equipment and in-line components. In particular, accessibility of equipment and systems has been investigated from the very first stages of the design using digital human models. In some cases, the digital simulations have resulted in changes in the initial space reservations

  1. Preliminary piping layout and integration of European test blanket modules subsystems in ITER CVCS area

    Energy Technology Data Exchange (ETDEWEB)

    Tarallo, Andrea, E-mail: andrea.tarallo@unina.it [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Mozzillo, Rocco; Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Aiello, Antonio; Utili, Marco [ENEA UTIS, C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ricapito, Italo [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • The use of human modeling tools for piping design in view of maintenance is discussed. • A possible preliminary layout for TBM subsystems in CVCS area has been designed with CATIA. • A DHM-based method to quickly check for maintainability of piping systems is suggested. - Abstract: This paper explores a possible integration of some ancillary systems of helium-cooled lithium lead (HCLL) and helium-cooled pebble-bed (HCPB) test blanket modules in ITER CVCS area. Computer-aided design and ergonomics simulation tools have been fundamental not only to define suitable routes for pipes, but also to quickly check for maintainability of equipment and in-line components. In particular, accessibility of equipment and systems has been investigated from the very first stages of the design using digital human models. In some cases, the digital simulations have resulted in changes in the initial space reservations.

  2. New progress on design and R and D for solid breeder test blanket module in China

    Energy Technology Data Exchange (ETDEWEB)

    Feng, K.M., E-mail: fengkm@swip.ac.cn; Zhang, G.S.; Hu, G.; Chen, Y.J.; Feng, Y.J.; Li, Z.X.; Wang, P.H.; Zhao, Z.; Ye, X.F.; Xiang, B.; Zhang, L.; Wang, Q.J.; Cao, Q.X.; Zhao, F.C.; Wang, F.; Liu, Y.; Zhang, M.C.

    2014-10-15

    Highlights: • The new progress on design and R and D of Chinese solid breeder TBM are introduced. • The mock-up fabrication and component tests for Chinese HCCB TBM have being developed. • The neutron multiplier Be pebbles, tritium breeder Li{sub 4}SiO{sub 4} pebbles, and structure material CFL-1 are being prepared. • The fabrication of 1/3 sized mock-up is being carried-out. • The key technology development is proceeding to the large-scale mock-up fabrication. - Abstract: ITER will be used to test tritium breeding module concepts, which will lead to the design of DEMO fusion reactor demonstrating tritium self-sufficiency and the extraction of high grade heat for electricity production. China plans to test the HCCB TBM modules during different operation phases. Related design and R and D activities for each TBM module with the auxiliary system are introduced. The helium-cooled ceramic breeder (HCCB) test blanket module (TBM) is the primary option of the Chinese TBM program. The preliminary conceptual design of CN HCCB TBM has been completed. A modified design to reduce the RAFM material mass to 1.3 ton has been carried out based on the ITER technical requirement. Basic characteristics and main design parameters of CN HCCB TBM are introduced briefly. The mock-up fabrication and component tests for Chinese test blanket module are being developed. Recent status of the components of CN HCCB TBM and fabrication technology development are also reported. The neutron multiplier Be pebbles, tritium breeder Li{sub 4}SiO{sub 4} pebbles, and structure material CLF-1 of ton-class are being prepared in laboratory scale. The fabrication of pebble bed container and experiment of tritium breeder pebble bed will be started soon. The fabrication technology development is proceeding as the large-scale mock-up fabrication enters into the R and D stage and demonstration tests toward TBM testing on ITER test port are being done as scheduled.

  3. Tritium self-sufficiency of HCPB blanket modules for DEMO considering time-varying neutron flux spectra and material compositions

    Energy Technology Data Exchange (ETDEWEB)

    Aures, A., E-mail: Alexander.Aures@ccfe.ac.uk; Packer, L.W.; Zheng, S.

    2013-10-15

    Highlights: • Simulations on the tritium breeding performance of HCPB blanket modules were done. • MCNP5 and FISPACT were used for coupled transport and activation calculations. • Material transmutation affects the neutron flux spectra within the blanket modules. • The consequences of time-dependent spectra on TBR and tritium self-sufficiency were investigated. -- Abstract: Significant transmutation of solid-type breeding blanket materials affects the time and spatial variation of neutron energy within such materials. This has an impact on simulation assumptions required to accurately assess tritium surplus quantities for conceptual power plant devices. This paper details an investigation, via simulation, of the consequences for the tritium breeding ratio and the tritium self-sufficiency of a DEMO concept with homogeneous Helium-Cooled Pebble Bed blanket modules containing Li{sub 4}SiO{sub 4} ceramic breeder material. For this purpose, a code was developed to couple MCNP5 and FISPACT to supply material compositions from activation calculations to the neutron transport calculation in an iterative loop covering several time steps. Simulation results are presented for a simple 1D spherical device model and a DEMO tokamak model.

  4. Achievements of the water cooled solid breeder test blanket module of Japan to the milestones for installation in ITER

    International Nuclear Information System (INIS)

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, Water Cooled Solid Breeder (WCSB) TBM is being developed. Six TBMs will be tested in ITER simultaneously, under the leadership of different countries. To ensure the installation of reliable TBMs, it is necessary to show feasibility on the TBM milestones for installation in ITER. This paper shows the recent achievements toward the milestones of ITER TBMs prior to the installation, that consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, it is necessary to show the consistency with ITER design on time with ITER design progress, targeting the detailed design final report in 2012. Structure design of the interfacing components between the WCSB TBM structure and the interfacing components (Common Frame and Backside Shielding) that are placed in a test port of ITER has been developed. The design work also consists of procedures of fabrication and replacement of TBM, the consistency with ITER port structure and TBM interface structure, and the layouts of the auxiliary systems of TBMs including the tritium extraction system and water cooling system. As for the module qualification, it is necessary to show fabrication capability and the integrity of prototypical size mockup in corresponding operation condition before the delivery of the TBM to ITER. A real scale first wall mock-up was successfully fabricated by using Hot Isostatic Pressing (HIP) method by structural material of reduced activation martensitic ferritic steel, F82H. High heat flux test with real cooling water condition is planned using this mock-up. Other essential R and Ds for the WCSB TBM also showed steady progress on investigation of mechanical behavior of breeder pebble beds, development of advanced breeder/multiplier pebble, neutron measurement technology for TBM and purge gas tritium recovery technology. As for safety milestones

  5. Improved cast stainless steels for shield module applications

    International Nuclear Information System (INIS)

    Full text of publication follows: Casting of austenitic stainless steels offers the possibility of directly producing large and/or relatively complex structures, such as the first wall shield modules or the divertor cassette for the International Tokamak Experimental Reactor (ITER). Casting offers major cost savings when compared to fabrication via welding together quarter modules machined from large forgings. However, because of the large grain size, low dislocation density and extensive segregation of alloying elements, the strength properties of such cast components are frequently inferior to those of conventionally forged and annealed components. To improve and validate cast stainless steel as a substitute for wrought stainless steel for shield module applications, a series of test cast steels based on the commercially available CF3M specification have been designed and fabricated. These modifications utilize combinations of Mn and N,which are expected to synergistically result in significant increases in strength. In addition, two other alloys will enhance solid solution strengthening with Cu and W additions to increase strength. It will be necessary to demonstrate that these compositional modifications do not adversely affect performance in the ITER water corrosion and radiation environments Computational thermodynamics and solidification modeling predict that these improved cast steel compositions to be fully austenitic throughout the solidification process. Post-cast heat treatments are a second-route for improving strength and properties of cast materials. Homogenizing treatments to remove second particles have also been explored as means of improving strength in cast stainless steel. In this paper, the physical metallurgy, mechanical properties, and irradiation tolerance of the improved cast stainless steel compositions and heat treatments will be compared to standard cast stainless steel. Fracture toughness, weldability, and non-destructive analysis of

  6. ITER blanket manifold system: Integration, assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Alex, E-mail: alex.martin@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Dellopoulos, George [F4E, EU ITER Domestic Agency, Barcelona (Spain); Edwards, Paul; Furmanek, Andreas; Gicquel, Stefan; Macklin, Brian [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Martin, Patrick [RÜECKER LYPSA, Carretera del Prat, 65, Cornellá de Llobregat (Spain); Merola, Mario; Norman, Mark; Raffray, Rene [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-10-15

    Highlights: •The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. •-The blanket manifold system has been redesigned to improve leak detection and localization. •-The redesign of the blanket manifold system into a system based on individual pipes has proven to be a major engineering challenge. -- Abstract: The ITER Tokamak Cooling Water System (TCWS) provides coolant for blankets and divertor. The blanket system consists of 440 blanket modules (BMs). The blanket manifold consists of a system of seamless pipes arranged in bundles and routed in poloidal direction from the upper ports of the Vacuum Vessel (VV) to the bottom of the machine. In each of the 18 upper ports there are 20 inlet and 20 outlet pipes, which split at the port exit in two directions, supplying cooling water to either the inboard or the outboard blanket modules. The manifold is routed between the VV and BMs. Branch pipes provide the connection between the manifold and the blanket cooling circuits through a coaxial connector welded to the shield block. A complex, sequential installation sequence has been developed in order to enable the assembly. Once installed the manifold is considered a semi-permanent component, but since failure would prevent ITER operation a maintenance strategy has been planned.

  7. ITER blanket manifold system: Integration, assembly and maintenance

    International Nuclear Information System (INIS)

    Highlights: •The ITER in-vessel components have experienced a major redesign since the ITER Design Review of 2007. •-The blanket manifold system has been redesigned to improve leak detection and localization. •-The redesign of the blanket manifold system into a system based on individual pipes has proven to be a major engineering challenge. -- Abstract: The ITER Tokamak Cooling Water System (TCWS) provides coolant for blankets and divertor. The blanket system consists of 440 blanket modules (BMs). The blanket manifold consists of a system of seamless pipes arranged in bundles and routed in poloidal direction from the upper ports of the Vacuum Vessel (VV) to the bottom of the machine. In each of the 18 upper ports there are 20 inlet and 20 outlet pipes, which split at the port exit in two directions, supplying cooling water to either the inboard or the outboard blanket modules. The manifold is routed between the VV and BMs. Branch pipes provide the connection between the manifold and the blanket cooling circuits through a coaxial connector welded to the shield block. A complex, sequential installation sequence has been developed in order to enable the assembly. Once installed the manifold is considered a semi-permanent component, but since failure would prevent ITER operation a maintenance strategy has been planned

  8. Normal operation and maintenance safety lessons from the ITER US PbLi test blanket module program for a US FNSF and DEMO

    International Nuclear Information System (INIS)

    A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module and blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the ITER Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket

  9. Achievements in the development of the Water Cooled Solid Breeder Test Blanket Module of Japan to the milestones for installation in ITER

    Science.gov (United States)

    Tsuru, Daigo; Tanigawa, Hisashi; Hirose, Takanori; Mohri, Kensuke; Seki, Yohji; Enoeda, Mikio; Ezato, Koichiro; Suzuki, Satoshi; Nishi, Hiroshi; Akiba, Masato

    2009-06-01

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, a water cooled solid breeder (WCSB) TBM is being developed. This paper shows the recent achievements towards the milestones of ITER TBMs prior to the installation, which consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, targeting the detailed design final report in 2012, structure designs of the WCSB TBM and the interfacing components (common frame and backside shielding) that are placed in a test port of ITER and the layout of the cooling system are presented. As for the module qualification, a real-scale first wall mock-up fabricated by using the hot isostatic pressing method by structural material of reduced activation martensitic ferritic steel, F82H, and flow and irradiation test of the mock-up are presented. As for safety milestones, the contents of the preliminary safety report in 2008 consisting of source term identification, failure mode and effect analysis (FMEA) and identification of postulated initiating events (PIEs) and safety analyses are presented.

  10. Achievements in the development of the Water Cooled Solid Breeder Test Blanket Module of Japan to the milestones for installation in ITER

    International Nuclear Information System (INIS)

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, a water cooled solid breeder (WCSB) TBM is being developed. This paper shows the recent achievements towards the milestones of ITER TBMs prior to the installation, which consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, targeting the detailed design final report in 2012, structure designs of the WCSB TBM and the interfacing components (common frame and backside shielding) that are placed in a test port of ITER and the layout of the cooling system are presented. As for the module qualification, a real-scale first wall mock-up fabricated by using the hot isostatic pressing method by structural material of reduced activation martensitic ferritic steel, F82H, and flow and irradiation test of the mock-up are presented. As for safety milestones, the contents of the preliminary safety report in 2008 consisting of source term identification, failure mode and effect analysis (FMEA) and identification of postulated initiating events (PIEs) and safety analyses are presented.

  11. Test blanket module maintenance operations between port plug and ancillary equipment unit in ITER

    International Nuclear Information System (INIS)

    In collaboration between the FZK and KFKI-RMKI, in the frame of the activities of the EU Breeder Blanket Programme a concept for test blanket module (TBM) integration, maintenance schedules and all required special purpose equipments has been developed. During the first 10 years of ITER operation four different plasma scenarios will be used. Hence it will be possible to investigate the characteristics (e.g. tritium breeding performance) of different TBM concepts which will be installed during operation for the different phases of ITER operation in the equatorial ports 2, 16 and 18. In every port two TBMs will be accommodated, in the port 16 will be the European helium-cooled pebble bed blanket. In different phases of ITER operation different TBMs will be used. Therefore a complex maintenance process is necessary for the exchange of TBMs. Two TBMs are mounted onto one common frame, into a port plug (PP), which offers a standardised interface to the vacuum vessel (VV). It is cantilevered with a flange to VV port extension. This attachment system is the same in every equatorial port, so the exchange process of this structure with the TBMs is also the standard operation of ITER. Several components of the helium cooling system of the EU breeder modules, valves, pipes, gas mixers, thermal sleeves, pipes for tritium extraction, measurement system are integrated into the ancillary equipment unit (AEU), which during the operation will connect the port plug to the subsystems. The bigger part of the AEU is accommodated in the port cell and the rest part of it is penetrated into the interspace inside the bioshield and reach the back plane of the installed PP. The remote handling operations for connection/disconnection of an interface between the PP of the EU-TBMs and the AEU are investigated with the goal to reach a quick and simple TBM exchange procedure. The current design of the EU-TBMs foresees up to 18 supply lines for both TBMs. These lines have to be connected here. A

  12. Test blanket module maintenance operations between port plug and ancillary equipment unit in ITER

    International Nuclear Information System (INIS)

    In collaboration between the FZK and KFKI-RMKI, in the frame of the activities of the EU Breeder Blanket Programme a concept for Test Blanket Module (TBM) integration, maintenance schedules and all required special purpose equipments has been developed. During the first 10 years of ITER operation 4 different plasma scenarios will be used. Hence it will be possible to investigate the characteristics (e.g. tritium breeding performance) of different TBM concepts which will be installed during operation for the different phases of ITER operation in the equatorial ports 2, 16 and 18. In every port will be two TBMs accomodated, in the port 16 will be the the European Helium Cooled Pebble Bed blanket. In the different phases of ITER operation different TBMs will be used. Therefore a complex maintenance process is necessary for exchange the TBMs. Two TBMs are mounted into one common frame, into a Port Plug (PP), which offers a standardised interface to the Vacuum Vessel (VV). It is cantilevered with a flange to VV Port Extension. This attachment system is the same in every equatorial port, so the exchange process of this structure with the TBMs are also standard operation of ITER. Several components of the Helium cooling system of the EU breeder modules, valves, pipes, gas mixers, thermal sleeves, pipes for tritium extraction, measurement system, etc. All of them is integrated into the Ancillary Equipment Unit (AEU) which during operation will connect the port plug to the sub systems. The bigger part of the AEU is accomodated in the Port Cell and the rest part of it is penetrate to the interspace inside the bioshield and reach the back plane of the installed PP. The remote handling operations for connection / disconnection of an interface between the PP of the EU-TBMs and the AEU are investigated with the goal to reach a quick and simple TBM exchange procedure. The current design of the EU-TBMs foresees up to 18 supply lines for both TBMs. These lines have to be connected

  13. Program plan for the DOE Office of Fusion Energy First Wall/Blanket/Shield Engineering Technology Program. Volume I. Summary, objectives and management. Revision 2

    International Nuclear Information System (INIS)

    This document defines a plan for conducting selected aspects of the engineering testing required for magnetic fusion reactor FWBS components and systems. The ultimate product of this program is an established data base that contributes to a functional, reliable, maintainable, economically attractive, and environmentally acceptable commercial fusion reactor first wall, blanket, and shield system. This program plan updates the initial plan issued in November of 1980 by the DOE/Office of Fusion Energy (unnumbered report). The plan consists of two parts. Part I is a summary of activities, responsibilities and program management including reporting and interfaces with other programs. Part II is a compilation of the Detailed Technical Plans for Phase I (1982 to 1984) developed by the participants during Phase 0 of the program

  14. Major achievements of the European shield blanket R and D during the ITER EDA, and their relevance for future next step machines

    International Nuclear Information System (INIS)

    In the frame of the international thermonuclear experimental reactors (ITER) collaboration, the European home team (EU HT) has committed significant efforts on the R and D for the Shield Blanket. This paper summarises the main achievements of this programme, which have been obtained over the last 7 years. The depth of R and D extends from generic activities up to the manufacture of prototypes, but has, in accordance with the design progress, reached different stages of maturity for the various components. New ITER options being considered since early 1998 have not made these activities irrelevant. With few exceptions, the results are still applicable for less ambitious next step machines, or transferable to components with similar functions or requirements

  15. Major achievements of the European shield blanket R and D during the ITER EDA, and their relevance for future next step machines

    Energy Technology Data Exchange (ETDEWEB)

    Daenner, W. E-mail: daenner@ipp.mpg.de; Cardella, A.; Jones, L.; Lorenzetto, P.; Maisonnier, D.; Malavasi, G.; Peacock, A.; Rodgers, E.; Tavassoli, F

    2000-11-01

    In the frame of the international thermonuclear experimental reactors (ITER) collaboration, the European home team (EU HT) has committed significant efforts on the R and D for the Shield Blanket. This paper summarises the main achievements of this programme, which have been obtained over the last 7 years. The depth of R and D extends from generic activities up to the manufacture of prototypes, but has, in accordance with the design progress, reached different stages of maturity for the various components. New ITER options being considered since early 1998 have not made these activities irrelevant. With few exceptions, the results are still applicable for less ambitious next step machines, or transferable to components with similar functions or requirements.

  16. Assessment on F/W electrical cutting for reduction of electromagnetic force on the blanket module

    International Nuclear Information System (INIS)

    For mitigating the electromagnetic (EM) force acting on the first wall (F/W) during plasma disruption, effects of toroidally electrical cutting slits on copper heat sink of F/W have been investigated by EM analysis of the blanket module designed for the International Thermonuclear Experimental Reactor (ITER). The analytical studies include 1) effects of F/W material and its thickness on eddy current reduction, and 2) effects of number of toroidal cutting slits on copper heat sink and of gap length of the slit on the eddy current reduction in the copper heat sink. The following conclusions were obtained and the effectiveness of toroidal cutting of copper heat sink was clarified by a series of analyses; a)A change of F/W material from copper alloy (DSCu) to SS316 decreases the eddy current and electromagnetic force on the F/W at plasma disruption. In the case of SS316, reduction effect is remarkable in the range of the thickness less than 50mm. b)Toroidal cutting on F/W DSCu region can reduce total eddy current acting on the F/W. By increasing number of toroidal slits with 1mm gap length up to 17 (corresponding to maximum limit), about 60% of the eddy current in the F/W runs away through the SS316 support plate located at the behind of copper alloy heat sink. (author)

  17. Fast-ion effects during test blanket module simulation experiments in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); Budny, R. V. [Princeton Plasma Physics Laboratory (PPPL); Ellis, R. [Princeton Plasma Physics Laboratory (PPPL); Gorelenkova, M. [Princeton Plasma Physics Laboratory (PPPL); Heidbrink, W. [University of California, Irvine; Kurki-Suonio, T. [Aalto University, Finland; Nazikian, Raffi [Princeton Plasma Physics Laboratory (PPPL); Saimi, A. [Aalto University, Finland; Schaffer, M. J. [General Atomics, San Diego; Shinohara, K. [Japan Atomic Energy Agency (JAEA), Naka; Snipes, J. A. [ITER Organization, Cadarache, France; Spong, Donald A [ORNL; Koskela, T. [Aalto University, Finland; Van Zeeland, Michael [General Atomics

    2011-01-01

    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mock-up of two test blanket modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot, predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot, which is predicted to be different among the various codes.

  18. Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, G J; Ellis, R; Gorelenkova, M; Heidbrink, W W; Kurki-Suonio, T; Nazikian, R; Salmi, A; Schaffer, M J; Shinohara, K; Snipes, J A; Spong, D A; Koskela, T

    2011-06-03

    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mockup of two Test Blanket Modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam-ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot which is predicted to be different among the various codes.

  19. Fast-ion effects during test blanket module simulation experiments in DIII-D

    International Nuclear Information System (INIS)

    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mock-up of two test blanket modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot, predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot, which is predicted to be different among the various codes.

  20. Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    International Nuclear Information System (INIS)

    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mockup of two Test Blanket Modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam-ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot which is predicted to be different among the various codes.

  1. Mechanical properties and microstructure evolution of CLAM Steel in tube fabrication and test blanket module assembly

    International Nuclear Information System (INIS)

    The first wall of the China dual functional lithium lead–test blanket module (DFLL–TBM) will be assembled with China low activation martensitic (CLAM) steel rectangular tubes and plates by hot isostatic pressing (HIP) – diffusion welding. The objective of this study is to evaluate CLAM rectangular tubes and investigate mechanical property and microstructure evolution of CLAM steel in tube fabrication and TBM assembly. In this work, CLAM rectangular tubes with lengths of 1500 mm were fabricated, and the dimensional accuracy met the requirement for HIP joining. In the tube fabrication process, the CLAM steel was annealed to improve its ductility. In addition, the anisotropy in mechanical properties and microstructure introduced by tube rolling was eliminated according to the simulation of HIP heat treatment in TBM preparation. The tensile strength of the CLAM tubes with final heat treatment was slightly higher than that of CLAM steel with the published standard heat treatment, while the total elongation was reduced. This revealed that a post-HIP heat treatment was required before the final heat treatment

  2. Two dimensional distribution of tritium breeding ratio and induced activity in Japanese water cooled and helium cooled test blanket modules

    International Nuclear Information System (INIS)

    Solid breeder blankets are regarded as a near-at-hand blanket concept for a fusion power demonstration plant in Japan. Test blanket module (TBM) to be tested in ITER is the most important milestone to establish the fusion demonstration blanket. For the candidate TBM's, two types of TBM, water cooled solid breeder TBM, and a helium gas cooled solid breeder TBM have been proposed and designed in JAERI. For detailed performance study under operation and after shut down, detailed neutronics analysis gives the most important design conditions, such as, distribution of tritium breeding ratio, nuclear heating rate during operation, and induced activation and decay heat after termination of irradiation. In the analysis, neutron and gamma transportation was calculated by two dimensional analysis code, DOT3.5, for two TBMs. Nuclear reaction rate and induced activation rate were evaluated by APPLE-3 and ACT-4, respectively. The analysis model included configurations of thermo-mechanical test modules and surrounding common frames for both of He cooled and water cooled TBMs. By the neutronics analysis, TBR and contact dose rate by induced activation till one year after termination of the module testing have been evaluated. For the evaluation of induced activation level change and decay heat change, the transient decreases in one year after termination of the module testing have been calculated. The time duration of the module testing before termination of testing is assumed to be 133 continuous days of full power operation. The result of TBR analysis showed that TBR distribution in the toroidal direction of TBM is not significant, however, the neutron flux decreases in the region of sidewall of common frame made of SS and water. This result shows that there is relatively large neutron loss from the TBM to the common frame. Thus, it is considered that the TBR value observed in the TBM testing may be smaller than the estimation by one dimensional neutronics analysis which does

  3. Thermal hydraulics and mechanics research on fusion blanket system

    International Nuclear Information System (INIS)

    In-vessel components such as Blanket and Divertor in a fusion reactor have a function of exhausting high heat and particle loads in order to maintain the structural soundness of the reactor. In the International Thermonuclear Experimental Reactor called ITER, build by ITER Organization under the framework of collaboration of seven parties including Japan, there are two kinds of blanket systems will be install. One is a shield blanket, which consists of a first wall (FW) and a block module shielding against neutron flux to a vacuum chamber and a superconducting magnet system. The other blanket system is called as a Test Blanket Module (TBM). TBM is a kind of prototype blanket for a fusion power plant and has functions of breeding of tritium (T) and extraction of energy from fusion plasma. TBM consists of FW and T-breeding / neutron (n)-multiplier zone. A concept of TBM developed by JAEA is water-cooled pebble-bed type, which means that FW and other structures are cooled by pressurized high temperature water and T-breeding / n-multiplier zone consists of multiple layers of pebble bed made of T-breeding and n-multiplier material. This paper describes the status of R and Ds on FW and pebble beds from the view of thermo-hydraulics and mechanics. (author)

  4. Implementation of two-phase tritium models for helium bubbles in HCLL breeding blanket modules

    OpenAIRE

    Fradera, Jordi; Sedano, L.A.; Mas de les Valls Ortiz, Elisabet; Batet Miracle, Lluís

    2011-01-01

    Tritium self-sufficiency requirement of future DT fusion reactors involves large helium production rates in the breeding blankets; this might impact on the conceptual design of diverse fusion power reactor units, such as Liquid Metal (LM) blankets. Low solubility, long residence-times and high production rates create the conditions for Helium nucleation, which could mean effective T sinks in LM channels. A model for helium nano-bubble formation and tritium conjugate transport phen...

  5. Recent progress in safety assessments of Japanese water cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Water Cooled Solid Breeder Test Blanket Module (WCSB TBM) is being designed by JAEA for the primary candidate TBM of Japan, and the safety evaluation of WCSB TBM has been performed. This reports presents summary of safety evaluation activities of the Japanese WCSB TBM, including nuclear analysis, source of RI, waste evaluation, occupational radiolysis exposure (ORE), failure mode effect analysis (FMEA) and postulated initiating event (PIE). For the purpose of basic evaluation of source terms on nuclear heating and radioactivity generation, two-dimensional nuclear analysis has been carried out. By the nuclear analysis, distributions of neutron flux, tritium breeding ratio (TBR), nuclear heat, decay heat and induced activity are calculated. Tritium production is calculated by the nuclear analysis by integrating distributions of TBR values, as about 0.2 g-T/FPD. With respect to the radioactive waste, the induced activity of the irradiated TBM is estimated. For the purpose of occupational radiolysis exposure (ORE), RI inventory is estimated. Tritium inventory in pebble bed of TBM is about 3 x 1012 Bq, and tritium in purge gas is about 3 x 1011 Bq. FMEA has been carried out to identify the PIEs that need safety evaluation. PIEs are summarized into three groups, i.e., heating, pressurization and release of RI. PIEs of local heating are converged without any special cares. With respect to heating of whole module, two PIEs are selected as the most severe events, i.e., loss of cooling of TBM during plasma operation and ingress of coolant into TBM during plasma operation. With respect to PIEs about pressurization, the PIEs of pressurization of the compartment nearby the pipes of cooling system are evaluated, because rupture of the pipes result pressurization of such compartments, i.e., box structure of TBM, purge gas loop, TRS, VV, port cell and TCWS vault. Box structure of TBM is designed to withstand the maximum pressure of the cooling system. At other compartments

  6. Technical issues of RAFMs for the fabrication of ITER Test Blanket Module

    International Nuclear Information System (INIS)

    Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as it has they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H and JLF-1 are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldability, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The JAEA/US collaboration program also has been conducted with the emphasis on irradiation effects of F82H. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the R and D status of F82H and to identify the key technical issues for the fabrication of ITER Test Blanket Module (TBM) suggested from the recent achievements in Japan. It is desirable to make the status of RAFMs equivalent to commercial steels to use RAFMs as the ITER-TBM structural material. This would require demonstrating the reproducibility and weldability as well as providing the database. The excellent reproducibility of F82H has been demonstrated with four 5-ton-heats, and two of them were provided as F82H-IEA heats. It has been also proved that F82H could be provided as plates (thickness of 1.5 to 55 mm), pipes and rectangular tubes. It is also important to have the excellent weldability as the TBM has about 300m length of weld line, and it was proved through TIG, EB and YAG weld test performed in air atmosphere. Various mechanical and microstructural data have been accumulated including long-term tests such as creep rupture tests and aging tests. Although F82H is a well-perceived RAFM as the ITER-TBM structural material, some issues are

  7. Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements

    International Nuclear Information System (INIS)

    The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

  8. Measurement and Analysis of the Neutron and Gamma-Ray Flux Spectra in a Neutronics Mock-Up of the HCPB Test Blanket Module

    International Nuclear Information System (INIS)

    The nuclear parameters of a breeding blanket, such as tritium production rate, nuclear heating, activation and dose rate, are calculated by integral folding of an energy dependent cross section (or coefficient) with the neutron (or gamma-ray) flux energy spectra. The uncertainties of the designed parameters are determined by the uncertainties of both the cross section data and the flux spectra obtained by transport calculations. Also the analysis of possible discrepancies between measured and calculated integral nuclear parameter represents a two-step procedure. First, the energy region and the amount of flux discrepancies has to be found out and second, the cross section data have to be checked. To this end, neutron and gamma-ray flux spectra in a mock-up of the EU Helium-Cooled Pebble Bed (HCPB) breeder Test Blanket Module (TBM), irradiated with 14 MeV neutrons, were measured and analysed by means of Monte Carlo transport calculations. The flux spectra were determined for the energy ranges that are relevant for the most important nuclear parameters of the TBM, which are the tritium production rate and the shielding capability. The fast neutron flux which determines the tritium production on 7Li and dominates the shield design was measured by the pulse-height distribution obtained from an organic liquid scintillation detector. Simultaneously, the gamma-ray flux spectra were measured. The neutron flux at lower energies, down to thermal, which determines the tritium production on 6Li, was measured with time-of-arrival spectroscopy. For this purpose, the TUD neutron generator was operated in pulsed mode (pulse width 10 μs, frequency 1 kHz) and the neutrons arriving at a 3He proportional counter in the mock-up were recorded as a function of time after the source neutron pulse. The spectral distributions for the two positions in the mock-up, where measurements were carried out, were calculated with the Monte Carlo code MCNP, version 5, and nuclear data from the

  9. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  10. Welding and cutting characteristics of blanket/first wall module to back plate for fusion experimental reactor

    International Nuclear Information System (INIS)

    A modular blanket/first wall has been proposed for a fusion experimental reactor, e.g., International Thermonuclear Experimental Reactor (ITER), with support ribs connecting to a strong back plate. For the connection method, a welding approach has been investigated. Welding and cutting tests of the support ribs have been performed with three types of test specimens; flat plate (200 mm x 400 mm), partial model (700 mm x 200 mm), and full-box model (600 mm x 1000 mm x 430 mm). The support ribs were made of type 316L austenitic stainless steel with the thickness of 50 mm in all these tests. The welding method applied to these tests was narrow gap TIG, and water jet for cutting. Through these tests, engineering data including optimum welding conditions, welding distortion, and welding/cutting speeds have been obtained. Transverse shrinkage was about 10 mm for the welding of 50 mm thick rib. However, the difference in distortion at the first wall surface was within 1--2 mm. Therefore, the blanket/first wall module can be installed with quite a high accuracy by taking into account the module moving to the back plate during the welding

  11. Nuclear analyses of Indian LLCB test blanket system in ITER

    International Nuclear Information System (INIS)

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no. 2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radio-active waste management, equipments maintenance and replacement strategies and nuclear safety. To predict the nuclear behaviour of LLCB test blanket module in ITER, nuclear responses like tritium production, nuclear heating, neutron fluxes and radiation damages are estimated. As a part of ITER machine, LLCB TBS has to follow certain nuclear shielding requirements i.e. shutdown dose rates should not exceed the defined limits in ITER premises (inside bio-shield ∼100 μSv/hr after 12 days cooling and outside bio-shield ∼10 μSv/hr after 1 day cooling). Hence nuclear analyses are performed to assess and optimize the shielding capability of LLCB TBS inside and outside bio-shield. To state the radio-activity level of LLCB TBS components which support the rad-waste and safety assessment, nuclear activation analyses are executed. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.1). The paper describes comprehensive nuclear performance of LLCB TBS in ITER. (author)

  12. Preliminary Study on Melting and Reaction with Liquid Metal Breeders for Developing the Korean Test Blanket Module in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D. W.; Yoon, J. S.; Kim, S. K.; Lee, E. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, H. G. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    A liquid breeder blanket has been developed in parallel with the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) program in Korea. The Korea Atomic Energy Research Institute (KAERI) has developed the liquid TBM. In the Korean liquid TBM and breeder blanket, liquid lithium (Li) and lead-lithium (PbLi) are considered as breeders. Related research has been performed: an Experimental Loop for a Liquid breeder (ELLI) constructed to develop an electromagnetic (EM) pump for circulating the liquid breeder, a magnetohydrodynamic (MHD) experiment, and a flow corrosion test. In the ELLI, Pb-15.7Li, where Li is 15.7 at % (called PbLi hereafter), is used as the breeding material. It was purchased from Stachow Metall Company, Germany, and its impurities are shown in Table 1. An EM pump circulates the material in the loop with a maximum flow rate of 60 lpm. The operating pressure and temperature in the loop are 0.4 MPa and 300 .deg. C, respectively, and the maximum operating pressure and temperature are 0.5 MPa and 550 .deg. C Before the loop operation, the melting and solidifying temperatures of the PbLi were measured for ascertaining whether it will show a consistent value for the many cycles of heating and cooling at various conditions of the loop operation. We can also investigate the contamination of PbLi according to the cyclic use. Of the liquid type breeder materials, PbLi is much safer than Li itself, as liquid metal can be ignited when it meets with water or air. There is still a concern regarding the use of PbLi, and it has not been fully proven whether it will react with water or air when it is in a molten state, as it contains lithium. Therefore, reaction tests of Li and PbLi with air and water were performed for safety reasons using the prepared test chamber

  13. A European proposal for an ITER water-cooled solid breeder blanket

    International Nuclear Information System (INIS)

    The water-cooled solid breeder blanket concept proposed here aims to replace the shielding blanket for the enhanced performance phase of the international thermonuclear experimental reactor (ITER). The nominal performances are as follows: an average neutron wall load of 1 MW m-2 which corresponds to a fusion power of about 1.5 GW, and an average neutron fluence of 1 MWy m-2. The proposed blanket concept has been designed to accept a power increase of about 30% and power transients up to 3-5 GW for a short time. This blanket concept is based on a breeder inside tube (BIT)-type blanket with poloidal breeding elements made of 316 L-type stainless steel and filled with lithium metazirconate and beryllium pebbles. Inlet and outlet water temperatures of 160 and 200 C have been considered with a medium-pressure cooling system during plasma burn. The diameters of the breeding elements are compatible with the space available in test fission reactor core channels, making in-pile testing, required for blanket development and qualification, easier. A conservative approach using qualified materials, a blanket concept easily testable in fission reactors and on-going mock-up testing, which can be qualified using the blanket test module during the basic performance phase of ITER, will allow the blanket reliability required for the enhanced performance phase to be achieved. (orig.)

  14. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, D.J., E-mail: d.hughes@warwick.ac.uk [WMG, University of Warwick, Coventry CV4 7AL (United Kingdom); Koukovini-Platia, E. [CERN, CH-1211 Geneva 23 (Switzerland); Heeley, E.L. [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2014-02-15

    Highlights: • Residual stresses were determined in a welded EUROFER blanket assembly with integrated cooling channels. • Good agreement was seen between experimentally determined and predicted stresses. • We show that microstructure changes that occur in EUROFER steels during welding must be considered for residual stress determination. • An experimental route is proposed for validation of predicted stresses in reactor components using non-destructive diffraction techniques. - Abstract: Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  15. Pb-17Li auxiliary and purification systems: design of the auxiliary Pb-Li loop for helium cooled lithium lead test blanket module

    International Nuclear Information System (INIS)

    This technical report describes the Pb-17Li auxiliary system proposed for Helium Cooled Lithium Lead (HCLL) Test Blanket Module (TBM) that will be installed and tested in ITER. The Pb-17Li auxiliary should ensure feeding and circulation of Pb-17Li liquid metal in this breeding blanket and removal of tritium produced by a nuclear reaction in TBM. The container with the Pb-17Li auxiliary system (dimensions HxLxW: 2.315 m x 2.19 m x 1.6 m) will be placed as close as possible to the TBM to prevent tritium permeation from the connection piping. The report describes developed design of the Pb-17Li auxiliary system that is from the functional point of view divided into the following parts: main circuit, detritization unit and cold trap, dosing and sampling systems, heating and cooling systems, and shielding and insulation. The Pb-17Li circuit is a closed loop with forced circulation of Pb-17Li. From the tank that, at the same time, is a Pb-17Li storage tank, liquid metal is pumped into the TBM where tritium is produced. The flow velocity in the Pb-17Li system will be controlled in the range of 0.1 to 1 kg/s. Pb-17Li outlet temperature from the TBM is 550 deg C. Tritium is removed from Pb-17Li in a detritiation unit. Corrosion products and impurities are removed in a cold trap. Design of the key system components as well as their structure material are described. The technical report determines and describes the Pb-17Li auxiliary system operating modes such as filling, start-up, operation at nominal parameters, shut-down, emergency operation and sampling. Also, the limits and terms of the Pb-17Li auxiliary system safe operation are defined. Requirements for the Pb-17Li auxiliary system installation, testing and maintenance are discussed. In conclusion, recommendations for further developments of the Pb-17Li auxiliary system are proposed. (author)

  16. ANL ITER high-heat-flux blanket-module heat transfer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.E.

    1992-02-01

    An Argonne National Laboratory facility for conducting tests on multilayered slab models of fusion blanket designs is being developed; some of its features are described. This facility will allow testing under prototypic high heat fluxes, high temperatures, thermal gradients, and variable mechanical loadings in a helium gas environment. Steady and transient heat flux tests are possible. Electrical heating by a two-sided, thin stainless steel (SS) plate electrical resistance heater and SS water-cooled cold panels placed symmetrically on both sides of the heater allow achievement of global one-dimensional heat transfer across blanket specimen layers sandwiched between the hot and cold plates. The heat transfer characteristics at interfaces, as well as macroscale and microscale thermomechanical interactions between layers, can be studied in support of the ITER engineering design effort. The engineering design of the test apparatus has shown that it is important to use multidimensional thermomechanical analysis of sandwich-type composites to adequately analyze heat transfer. This fact will also be true for the engineering design of ITER.

  17. ANL ITER high-heat-flux blanket-module heat transfer experiments. Fusion Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.E.

    1992-02-01

    An Argonne National Laboratory facility for conducting tests on multilayered slab models of fusion blanket designs is being developed; some of its features are described. This facility will allow testing under prototypic high heat fluxes, high temperatures, thermal gradients, and variable mechanical loadings in a helium gas environment. Steady and transient heat flux tests are possible. Electrical heating by a two-sided, thin stainless steel (SS) plate electrical resistance heater and SS water-cooled cold panels placed symmetrically on both sides of the heater allow achievement of global one-dimensional heat transfer across blanket specimen layers sandwiched between the hot and cold plates. The heat transfer characteristics at interfaces, as well as macroscale and microscale thermomechanical interactions between layers, can be studied in support of the ITER engineering design effort. The engineering design of the test apparatus has shown that it is important to use multidimensional thermomechanical analysis of sandwich-type composites to adequately analyze heat transfer. This fact will also be true for the engineering design of ITER.

  18. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    CERN Document Server

    Hughes, D J; Heeley, E L

    2014-01-01

    Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  19. Ripple effect and impact of test blanket module by using RAFM steels on the plasma of ITER

    International Nuclear Information System (INIS)

    The losses of high-energy particles from the plasma depend on the toroidal field (TF) ripple in Tokomak machine. TBM (test blanket module), using RAFM (reduced activation ferritic/martensitic) steels as structure material, impacts on TF ripple in International Thermonuclear Experimental Reactor (ITER). The aim in this paper was to investigate the impact of TBM on TF ripple in ITER. It was analyzed based on ANSYS code and the Chinese DFLL (Dual Function Lithium Lead)-TBM as instances of analysis. The results indicated the TF ripple was still beyond the acceptable level of ITER (δTF < 0.3%) while considering several kinds of configurations (different masses, different dimensions, and different distances to plasma) of the DFLL-TBM. The correction coil might be one way to further reduce the effect on ripple of TF, and the ferromagnetic inserts under TF coil need to continue optimized.

  20. Use of MCNP in fusion blanket design ITER magnet system shielding analysis benchmark of the EFF (European Fusion File) neutron data with the FNG (Frascati Neutron Generator) 14 MeV neutron facility

    International Nuclear Information System (INIS)

    Since eight years at our laboratory, MCNP code has been used as a fundamental tool in many fusion directed activities in which we have been or we still are involved. Mainly they are: neutronics analysis of the performances of blanket components, supporting and optimizing their design; the estimation of the nuclear heat and radiation loads on the toroidal superconducting coils to assess the system shielding performances; then, a 14 MeV neutron generator is recently operating in Frascati and an experimental programme started with a benchmark neutron transport in a stainless steel block, MCNP is used to perform calculations. Present status of these experiments are reviewed. (K.A.)

  1. Development and analysis of fusion breeder blanket neutronics. Progress report, November 1, 1983-October 31, 1984

    International Nuclear Information System (INIS)

    The following activities are briefly described: (a) the IBM versions of the computer codes FORSS, PUFF-II, ONETRAN, TWOTRAN-II, and DOT4.3 were obtained from the Radiation Shielding Information Center (RSIC) and have been implemented on the UCLA local computer, the IBM 3033; (b) mathematical and computational models to describe the time-dependent transport and inventory of tritium in individual components of a fusion reactor system have been developed; (c) extensive cross-section sensitivity and uncertainty analysis was carried out to evaluate an estimate for the uncertainty associated with the TBR (both from 6Li and 7Li, individually) in four of the leading blanket concepts (the Li2O/HT-9 helium-cooled blanket, the 17Li-83Pb/PCA self-cooled blanket, the LiAlO2/He/FS/Be blanket, and the flibe/He/FS/Be blanket); (d) as far as the TBR obtain able in various blanket concepts is concerned, a comparative analysis was carried out to estimate the change in TBR in a particular blanket module when placed in a tokamak machine [R (first wall) approx. 2 m] as opposed to adopting the same blanket in a mirror machine [R (first wall) approx. 50 cm] with the same wall loading

  2. Simulation of localized fast-ion heat loads in test blanket module simulation experiments on DIII-D

    International Nuclear Information System (INIS)

    Infrared imaging of hot spots induced by localized magnetic perturbations using the test blanket module (TBM) mock-up on DIII-D is in good agreement with beam-ion loss simulations. The hot spots were seen on the carbon protective tiles surrounding the TBM as they reached temperatures over 1000 °C. The localization of the hot spots on the protective tiles is in fair agreement with fast-ion loss simulations using a range of codes: ASCOT, SPIRAL and OFMCs while the codes predicted peak heat loads that are within 30% of the measured ones. The orbit calculations take into account the birth profile of the beam ions as well as the scattering and slowing down of the ions as they interact with the localized TBM field. The close agreement between orbit calculations and measurements validate the analysis of beam-ion loss calculations for ITER where ferritic material inside the tritium breeding TBMs is expected to produce localized hot spots on the first wall. (paper)

  3. Semi-Technical Cryogenic Molecular Sieve Bed for the Tritium Extraction System of the Test Blanket Module for ITER

    International Nuclear Information System (INIS)

    The tritium extraction from the ITER Helium Cooled Pebble Bed (HCPB) Test Blanket Module purge gas is proposed to be performed in a two steps process: trapping water in a cryogenic Cold Trap, and adsorption of hydrogen isotopes (H2, HT, T2) as well as impurities (N2, O2) in a Cryogenic Molecular Sieve Bed (CMSB) at 77K. A CMSB in a semi-technical scale (one-sixth of the flow rate of the ITER-HCPB) was design and constructed at the Forschungszentrum Karlsruhe. The full capacity of CMSB filled with 20 kg of MS-5A was calculated based on adsorption isotherm data to be 9.4 mol of H2 at partial pressure 120 Pa. The breakthrough tests at flow rates up to 2 Nm3h-1 of He with 110 Pa of H2 conformed with good agreement the adsorption capacity of the CMSB. The mass-transfer zone was found to be relatively narrow (12.5 % of the MS Bed height) allowing to scale up the CMSB to ITER flow rates

  4. Effects of local toroidal field ripples due to test blanket modules for ITER on radial transport of thermal ions

    International Nuclear Information System (INIS)

    The effects of local toroidal field (TF) ripples due to ferromagnetic steels used in test blanket modules (TBMs) in ITER on the radial transport of thermal ions located near the top of the pedestal are investigated using a fully three-dimensional magnetic field orbit following Monte Carlo (F3D-OFMC) code. In the simulation, the three-dimensional motion of 20 000 test particles, distributed near the top of the pedestal (ΨN = 0.91) with the same Maxwellian velocity distribution as the thermal ions at this location, is traced for 1.9 s. In comparison with the number of lost particles in the case without a TBM, the additional loss with three TBM ports expected in ITER is evaluated to be less than 1% of the test particles. The additional losses increase linearly with the number of TBM ports and with the square of the amplitude of the local TF ripple. The poloidal structure of the TF ripple without ferritic inserts and a case with 18 TBM ports are also compared. It is found that cases having the same ripple amplitude at a certain point can have substantially different additional loss rates if the poloidal ripple structure is not the same. The ripple amplitude near the banana tip seems to be the most important factor in determining the radial diffusion of thermal ions. (paper)

  5. Breeding zone models of DEMO ceramic helium cooled blanket test module for testing in IVV-2M reactor

    International Nuclear Information System (INIS)

    The goal of DEMO ceramic helium cooled blanket test module (CHC BTM) is to demonstrate a breeding capability that would lead to tritium self-sufficiency in ITER reactor and to extract a high-grade heat suitable for electricity generation. Experimental validation of all the adopted design solutions is main important problem at design and calculation works carrying out in order to develop the CHC BTM. One important task for breeding zones feasibility validation is in-pile tests. Two models were developed and fabricated for testing in the fission IVV-2M reactor. Breeding zone is based on poloidal BIT-conception. The models structural material is ferrito-martensitic steel. Breeder material is lithium orthosilicate in pebble beds and pellet forms. Multiplier material is beryllium in pebble beds and porosity forms. The cooling is provided by helium at 10 MPa. The tritium produced in the breeder material is purged by the helium flow at 0.1-0.2 MPa. Designs of model description and experimental channel, results of neutronic and thermo-hydraulic calculations are presented in the paper. (orig.)

  6. Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER

    Science.gov (United States)

    Liu, Yueqiang; Äkäslompolo, Simppa; Cavinato, Mario; Koechl, Florian; Kurki-Suonio, Taina; Li, Li; Parail, Vassili; Saibene, Gabriella; Särkimäki, Konsta; Sipilä, Seppo; Varje, Jari

    2016-06-01

    Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n  =  1–6 field components are computed and compared. The plasma response is found to be weak for the high-n (n  >  4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n  =  1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n  =  1 field errors will not cause substantial flow damping for the 15 MA baseline scenario.

  7. Lithium-cooled blankets for advanced tokamaks

    International Nuclear Information System (INIS)

    The main objective of the Tokamak Power System Studies (TPSS) at Argonne National Lab. during fiscal year 1985 was to explore innovative design concepts that have the potential for significant enhancement of the attractiveness of a tokamak-based power plant. Activities in the area of plasma engineering resulted in a reference reactor concept, which served as a model for the impurity control and first-wall/blanket/shield studies. The liquid-metal-cooled first-wall/blanket/shield design activity was centered around the vanadium alloy structure and liquid-lithium coolant leading blanket concept as identified by the Blanket Comparison and Selection Study (BCSS). A ferritic steel structure and a LiPb breeder were considered as backup options. The magnetohydrodynamics (MHD) effects associated with self-cooled liquid-metal blanket/first-wall systems are substantially reduced by the lower magnetic fields required for higher plasmas, the lower neutron wall loading resulting from reduced power output, and the smaller reactor size of the TPSS model reactor. Therefore, improved performance characteristics of self-cooled liquid-metal blanket concepts are achievable mainly because the design constraints are more relaxed compared to the BCSS guidelines. Key aspects of the designs evaluated in the current study include the following: (1) design simplicity; (2) use of the first wall as an impurity control device; (3) modular first-wall/blanket/reflector/shield construction; and (4) integrated first-wall/blanket/reflector/shield

  8. G-dose and range: user friendly modules for dosimetry, shielding and range calculations

    International Nuclear Information System (INIS)

    An interactive multimedia tool, Nuclides.net, has been developed at the Institute for Transuranium Elements. The product is aimed at both students and professionals for reference data on radionuclides and computations based on internationally evaluated data. Based on the latest Internet technology Nuclides.net is ideally suited for education and training purposes in the nuclear related fields, such as radiation protection. Professionals can do calculations quickly and reliably using qualified radionuclide data. The Nuclides.net 'integrated environment' is a suite of computer programs ranging from a powerful user-friendly interface, which allows the user to navigate the nuclides chart and explore the properties of nuclides, to various computational modules. Among them, the G- D.O.S.E. dosimetry and shielding module allows the user to calculate gamma dose rates from point sources of single nuclide and mixtures. The user can alternatively obtain a dose rate through a given shield material and thickness, or a shield thickness of material required to obtain a given dose. More than 3000 nuclides are available in the Nuclides.net database for dosimetry calculation. In addition, the user has a choice of 10 shield materials. A results details window shows the contribution of each gamma-line or x-ray to the total dose rate, detailing the calculation of the mass absorption of the absorption coefficient, the interpolation of the build-up factors from the tabulated N.I.S.T. values and the calculation mass absorption coefficients. In its future new edition, to be released by mid-2006, a R.A.N.G.E. module, based on the S.R.I.M. engine (see. www.SRIM.org), has been added. Through an intuitive interface, the user can perform range and stopping powers of charge particles - electrons, protons, or any ions - in matter. The user can used predefined target or create his owns to fit best his needs. This module complements perfectly the R.A.N.G.E. module for radioprotection calculations

  9. Investigation of neutronics for CH DEMO blanket with helium-cooled ceramics breeding concepts

    International Nuclear Information System (INIS)

    as a candidate of CH HCSB DEMO blanket. (3) By means of two assumed types of calculation models (Case A and Case B), neutronics features for ITER TBM and DEMO blanket are compared. It is seen that peak power density, power deposit and tritium production of DEMO-like blanket are the larger than that of ITER-like TBM by 73.20%, 23.11% and 57.38%, respectively. This is because TBM module in Case A is surrounded by the same breeding blanket in which amounts of the second neutrons from Be (n,2n) reaction are produced, but TBM module in Case B is surrounded by shielding blanket in which neutrons are hardly multiplied. So, the effect of different boundary between HCSB TBM and HCSB DEMO blanket is so large that it need be further treated, carefully. (authors)

  10. Detailed mechanical design and manufacturing study for the ITER reference breeding blanket

    International Nuclear Information System (INIS)

    This papers relates on the detailed mechanical design, manufacturing feasibility and assembly analysis of a water-cooled solid breeding blanket concept, selected as the ITER reference design. This breeding blanket design is characterised by: i) pressurised water flowing inside flat steel panels for cooling of the internals; each panel is welded along its contour onto the first wall structure and to the rear shield plate after closure of the module (last assembly step). ii) Beryllium (neutronic multiplier) in the form of micro-spheres filling the volume between parallel flat coolant panels. iii) Breeder pebbles enclosed in rods, which form bundles and are themselves embedded inside the Beryllium micro-spheres. (authors)

  11. On the numerical assessment of the thermo-mechanical performances of the DEMO Helium-Cooled Pebble Bed breeding blanket module

    International Nuclear Information System (INIS)

    Highlights: • HCPB blanket module thermo-mechanical behavior has been investigated under normal operation and over-pressurization steady state scenarios. • A theoretical–computational approach based on the finite element method (FEM) has been followed, adopting a qualified commercial FEM code. • Under normal operation scenario, SDC-IC safety rule relevant to the loss of ductility is not fulfilled in the FW and in the hot spots of SPv. • Under over-pressurization scenario, SDC-IC safety rule relevant to the loss of ductility is not met in the hot spots of lower and upper SPv. - Abstract: Within the framework of the European DEMO Breeder Blanket Programme, a research campaign has been launched by University of Palermo, ENEA-Brasimone and Karlsruhe Institute of Technology to theoretically investigate the thermo-mechanical behavior of the Helium-Cooled Pebble Bed (HCPB) breeding blanket module of the DEMO1 blanket vertical segment, under normal operation and over-pressurization loading scenarios. The research campaign has been carried out following a theoretical–computational approach based on the finite element method (FEM) and adopting a qualified commercial FEM code. A realistic 3D FEM model of the HCPB blanket module central poloidal–radial region has been developed, including one breeder cell in the toroidal direction and all the five cells in the poloidal one. No Breeder Units have been modeled, their presence being simulated by effective thermo-mechanical loads. Two sets of uncoupled steady state thermo-mechanical analyses have been carried out with reference to the investigated loading scenarios. In particular, under normal operation scenario (level A) the module has been supposed to undergo both 8 MPa coolant pressure on its cooling channel walls and thermal deformations due to the flat-top plasma operational state thermal field, while under over-pressurization scenario (level D) it has been assumed to experience 8 MPa coolant pressure on its

  12. Development of a control system for a heavy object handling manipulator. Application to a remote maintenance system for ITER blanket module

    International Nuclear Information System (INIS)

    This paper describes a control system for the heavy object handling manipulator. It has been developed for the blanket module remote maintenance system of ITER (International Thermonuclear Fusion Experimental Reactor). A rail-mounted vehicle-type manipulator is proposed for the precise handling of a blanket module which is about 4 tons in weight. Basically, this manipulator is controlled by teaching-playback technique. When grasping or releasing the module, the manipulator sags and the position of the end-effector changes about 50 [mm]. Applying only the usual teaching-playback control makes the smooth operation of setting/removing modules to/from the vacuum vessel wall difficult due to this position change. To solve this proper problem of heavy object handling manipulator, we have developed a system which uses motion patterns generated from two kinds of teaching points. These motion patterns for setting/removing heavy objects are generated by combining teaching points for positioning the manipulator with and without grasping the object. When these motion patterns are applied, the manipulator can transfer the object's weight smoothly at the setting/removing point. This developed system has been applied to the real-scale mock-up of the vehicle manipulator and through the actual module setting/removing experiments, we have verified its effectiveness and realized smooth maintenance operation. (author)

  13. Disruption problematics in segmented-blanket concepts

    International Nuclear Information System (INIS)

    In tokamaks, the hostile operating environment originated by plasma disruption events requires that the first-wall/blanket/shield components sustain the large induced electromagnetic (EM) forces without significant structural deformation and within allowable material stresses. As a consequence, there is a need to improve the safety features of the segmented-blanket design concepts in order to satisfy the disruption problematics.The present paper describes recent investigations on internal blanket reinforcement systems needed in order to improve the first-wall/blanket/shield structural design for next-step and commercial fusion reactors. Particularly in the context of SEAFP and ITER activities, representative 3-D CAD models of the inboard and outboard blanket regions and the related magnetomechanical simulations are illustrated. (orig.)

  14. Adaptation of the HCPB DEMO TBM as breeding blanket for ITER : Neutronic and thermal analyses

    International Nuclear Information System (INIS)

    Two breeding blanket are presently developed in Europe for the DEMO reactor: the first one, the Helium Cooled Lithium Lead (HCLL) uses a liquid breeder while the other , the Helium Cooled Pebble Bed (HCPB), uses a solid breeder in form of pebble bed. The modules of these blankets, called Test Blanket Modules (TBM) will be located in correspondence of the equatorial ports of ITER in order to be tested. ITER FEAT was designed with shielding blankets, therefore in the final stage of the experiment, in the foreseen tritium -deuterium operation phase, the tritium will be supplied to the reactor and not produced inside it. Since the production of tritium is of main importance for the feasibility of a nuclear fusion reactor, perhaps in the ITER final stage, the shielding blanket could be substituted by means of a breeding blanket. The geometry and composition of this breeding blanket would be, of course, similar to that of TBM which demonstrated to have the best performances. This paper illustrates a neutronic and thermal analysis of an hypothetical triziogen blanket for ITER FEAT made similar to a HCPB test module. The main aims of the performed analyses are to determine the Tritium Breeding Ratio (TBR) considering different solid breeders (Li4SiO4 and Li2TiO3) with different enrichment in 6Li and different structural materials (a 9%CRWVTa reduced activation ferritic martensitic steel (EUROFER) or ceramic matrix composites like SiCf/SiC). The breeding blanket design is compared considering the highest value of TBR and the verification of the temperature constraints ( 550 oC for the steel, 950 o C for the breeder and 650 oC for the Beryllium). The neutronic analyses have been performed by means of MCNP-4C code and the thermal analyses using the MSC-MARC code. A TBR about equal 1 was obtained with a SiCf/SiC structural material and a Li4SiO4 breeder. The performed analyses have to be considered preliminary and an academic exercise, nevertheless they could give useful

  15. Design and analysis of breeding blanket with helium cooled solid breeder for ITER-TBM

    International Nuclear Information System (INIS)

    Test blanket module (TBM) is one of important components in ITER. Some of related blanket technologies of future fusion, such as tritium self-sufficiency, the exaction of high-grade heat, design criteria and safety requirements and environmental impacts, will be demonstrated in ITER-TBM. In ITER device, the three equatorial ports have allocated for TBM testing. China had proposed to develop independently the ITER-TBM with helium cooled solid breeder in 12th meeting of test blanket workgroup (TBWG-12). In this work, the preliminary design and analysis for Chinese HCSB TBM will be carried out. The TBM must be contains the function of the first wall, breeding blanket, shield and structure. Finally, in the period of preliminary investigation, HCSB TBM design adopt modularization concept which is helium as coolant and tritium purge gas, ferritic/martensitic steel as structural material, Lithium orthosilicate (Li4SiO4) as tritium breeder, beryllium pebble as neutron multiplier. TBM is allocated in standard vertical frame port. HCSB TBM consist of first wall, backplate, breeding sub-modules, caps, grid and support plate, and breeding sub-modules is arranged by layout of 2 x 6 in blanket box. In this paper, main components of HCSB TBM will be described in detail, also performance analysis of main components have been completed. (authors)

  16. Rotation Braking and Error Field Correction of the Test Blanket Module Induced Magnetic Field Error in ITER

    International Nuclear Information System (INIS)

    Full text: Experiments on DIII-D confirm that the tritium breeding test blanket modules (TBMs) in ITER will lead to a decrease of the plasma rotation in H-modes. Moreover, they suggest that long-wavelength correction fields applied with non-axisymmetric saddle coils will only be able to ameliorate a fraction of such a rotation reduction. The new finding obtained in rotating H-modes contrasts previous experiments, which showed that saddle coils are very effective in restoring resilience to locked modes in L-mode plasmas. The experiments use a TBM mock-up coil that has been especially designed to simulate the error field induced by the ferromagnetic steel of a pair of TBMs in one of ITER port. The TBM field is applied in rotating H-mode plasmas with shape, β and safety factor similar to the ITER baseline scenario. The n = 1 error field correction (EFC) is applied with a set of non-axisymmetric saddle coils (I-coil), whose currents are optimized in the presence of the TBM mock-up field using a newly developed non- disruptive technique that maximizes the plasma rotation. However, a test of the effectiveness of the TBM EFC yields that the optimized EFC can only recover approximately a quarter of the 30% rotation decrease attributed to the TBM error field. An alternative criterion to evaluate the 'goodness' of an EFC has been its effectiveness in canceling the n = 1 plasma response to the error field. Plasma response measurements in the TBM experiment show that the I-coil can indeed cancel the magnetic measurements of the n = 1 plasma response to the TBM mock-up field. The required currents are consistent with ideal MHD predictions using the IPEC code, but differ significantly from the currents that maximize the plasma rotation. The contrast between the limited effectiveness of n = 1 EFC in rotating H-modes and their ability to recover a low locking density in L-mode plasmas shows that the components of the non-axisymmetric field that braking the plasma at high rotation

  17. Shielding experiments

    International Nuclear Information System (INIS)

    Shielding mock-up experiments for Prototype Fast Breeder Reactor (PFBR) and Advanced Heavy Water Reactor (AHWR) are carried out in shielding corner facility of APSARA reactor, to assess the overall accuracy of the codes and nuclear data used in reactor shield design. As APSARA is a swimming pool-type thermal reactor, for fast reactor experiments, typical fast reactor shielding facility was created by using uranium assemblies as spectrum converter. The flux was also enhanced by replacing water by air. Experiments have been carried out to study neutron attenuation through typical fast reactor radial and axial bulk shielding materials such as steel, sodium, graphite, borated graphite and boron carbide. A large number of reaction rates, sensitive to different regions of the neutron energy spectrum, were measured using foil activation and Solid State Nuclear Track Detector (SSNTD) techniques. These experimental results were analysed using computational tools normally used in design calculations, viz., discrete ordinate transport codes with multigroup cross section sets. Comparison of measured reaction rates with calculations provided suitable bias factors for parameters relevant to shield design, such as sodium activation, fast neutron fluence, fission equivalent fluxes etc. The measured neutron spectrum on the incident face of shield model compares well with the calculated fast reactor blanket leakage neutron spectrum. The comparison of calculated reaction rates within shield model indicate that the calculations suffer from considerable uncertainties, in shield models with boron carbide/borated graphite. For AHWR shielding experiments, no spectrum converter was used as it is also a thermal reactor. Radiation streaming studies through penetrations/ducts of various shapes and sizes relevant to AHWR shielding were carried out. (author)

  18. Blanket and vacuum vessel design of the next tokamak. (Swimming pool type)

    International Nuclear Information System (INIS)

    The structural design study of a reactor module for a swimming pool type reactor (SPTR) was conducted. Since pool water plays the role of radiation shielding in the SPTR, the module does not have a solid shield. It consists of tritium breeding blankets, divertor collector plates and a vacuum vessel. The object of this study is to show the reactor module design which has a simple structure and a sufficient tritium breeding ratio. A large coverage of the plasma chamber surface with tritium breeding blanket is essential in order to obtain a high tritium breeding ratio. A breeding blanket is also placed behind the divertor collector plate, i.e. in the upper and lower region, as well as in the outboard and inboard regions of the module. A concept in which the first wall is an integral part of the blanket is employed to minimize the thickness of structural and cooling material brazed in front of the breeding material (Li2O) and to enhance the tritium breeding capability. In order to simplify the module structure the vacuum vessel and breeding blanket is also integrated in the inboard region. One of the features inherent in the swimming pool type reactor is an additional external force on the vacuum vessel, namely hydraulic pressure. A detailed structural analysis of the vacuum vessel is performed. Divertor collector plates are assemblies of co-axial tubes. They minimize the electromagnetic force on the plate induced by the plasma disruption. A thermal and structural analysis and life time estimation of the first wall and divertor collector plates are performed. (author)

  19. Neutronics Assessment of Molten Salt Breeding Blanket Design Options

    International Nuclear Information System (INIS)

    Neutronics assessment has been performed for molten salt breeding blanket design options that can be utilized in fusion power plants. The concepts evaluated are a self-cooled Flinabe blanket with Be multiplier and dual-coolant blankets with He-cooled FW and structure. Three different molten salts were considered including the high melting point Flibe, a low melting point Flibe, and Flinabe. The same TBR can be achieved with a thinner self-cooled blanket compared to the dual-coolant blanket. A thicker Be zone is required in designs with Flinabe. The overall TBR will be ∼1.07 based on 3-D calculations without breeding in the divertor region. Using Be yields higher blanket energy multiplication than obtainable with Pb. A modest amount of tritium is produced in the Be (∼3 kg) over the blanket lifetime of ∼3 FPY. Using He gas in the dual-coolant blanket results in about a factor of 2 lower blanket shielding effectiveness. We show that it is possible to ensure that the shield is a lifetime component, the vacuum vessel is reweldable, and the magnets are adequately shielded. We conclude that molten salt blankets can be designed for fusion power plants with neutronics requirements such as adequate tritium breeding and shielding being satisfied

  20. Further neutronic analyses of the European ceramic B.I.T. blanket for Demo

    International Nuclear Information System (INIS)

    The present study concerns the most recent neutronic analyses of two design versions of the european ceramic B.I.T. blanket, jointly developed by ENEA and CEA since few years. The last year developments required a new 3-D geometry evaluations of the global TBR (Tritium Breeding Ratio). The results indicated that the ENEA version reaches a global TBR value of 1.13. The CEA version, in a 3-D model using a simplified description of the breeder module layout, reaches a TBR value of 1.12. Nuclear heat deposition density has been determined for all blanket components as a function of the poloidal co-ordinate. Shielding properties of this type of blanket have been analyzed

  1. Low technology high tritium breeding blanket concept

    International Nuclear Information System (INIS)

    The main function of this low technology blanket is to produce the necessary tritium for INTOR operation with minimum first wall coverage. The INTOR first wall, blanket, and shield are constrained by the dimensions of the reference design and the protection criteria required for different reactor components and dose equivalent after shutdown in the reactor hall. It is assumed that the blanket operation at commercial power reactor conditions and the proper temperature for power generation can be sacrificed to achieve the highest possible tritium breeding ratio with minimum additional research and developments and minimal impact on reactor design and operation. A set of blanket evaluation criteria has been used to compare possible blanket concepts. Six areas: performance, operating requirements, impact on reactor design and operation, safety and environmental impact, technology assessment, and cost have been defined for the evaluation process. A water-cooled blanket was developed to operate with a low temperature and pressure. The developed blanket contains a 24 cm of beryllium and 6 cm of solid breeder both with a 0.8 density factor. This blanket provides a local tritium breeding ratio of ∼2.0. The water coolant is isolated from the breeder material by several zones which eliminates the tritium buildup in the water by permeation and reduces the changes for water-breeder interaction. This improves the safety and environmental aspects of the blanket and eliminates the costly process of the tritium recovery from the water. 12 refs., 13 tabs

  2. Evaluation of tritium breeding and irradiation damage for the EU water-cooled lithium-lead test blanket module in ITER-FEAT

    International Nuclear Information System (INIS)

    Comprehensive neutronic analyses have been carried out for the EU water-cooled lithium-lead test blanket module (TBM) integrated into ITER-FEAT to assess tritium generation and parameters relevant to the lifetime performance of the TBM, such as helium and atomic displacement production. The analyses have been performed utilizing models representing the complex ITER and TBM structure close to reality. The Monte Carlo transport code MCNP-4C and cross-sections from the FENDL-2.0 data library have been used in the analyses. Theoretical estimates of the radial distribution of tritium production density, total tritium production rate, radial distribution of helium and displacement formation along the TBM, and poloidal distribution of helium and displacement generation in demountable hydraulic connections of the TBM have been obtained. (author)

  3. Study on QADS module application to radiation shielding assessment for a MARS arrangement of high level waste

    International Nuclear Information System (INIS)

    The high level waste, especially spent fuel from nuclear power plants, contain both short and long lived radionuclides, which represent important radiation sources (having the activity of 104 - 106 TBq/m3) and more than that, they release a significant quantity of heat by radioactive decay. The final repository concepts for the irradiated nuclear fuel must meet the safety requirements to ensure the radiological protection of personnel, population and environment, during normal or abnormal operation of the facility. The main characteristics taken into account consist in: sub-criticality maintaining, radiation shielding, radioactive material containment and removing of residual heating. The study has the objective to use the QADS module from SCALE Integrated Codes System, to evaluate the gamma radiation shielding for some spent fuel configurations. QADS module performs a multi-dimensional gamma radiation transport calculation by Point-Kernel method and, is applied for some complex arrangements of the system source - shield - detector. The very complicated description of the complex geometrical models is given by combinatorial geometry package of MARS module. The study does the gamma ray shielding analysis for a transport container with spent fuel bundles specific to light water reactors. The problem geometry was coded using two MARS models: homogenized cylinder source into a single region and multiple sources in two homogenized regions, one core cylinder and another external ring. As the Romanian Program of Final Repository for spent fuel and long lived waste goes on, the QADS module will allow to size and check the radiological shielding of the facility, and also the container for transport of the spent fuel from Intermediate Storage Facility to Final Repository. (authors)

  4. SWAT-CS(enm): Enhancing SWAT nitrate module for a Canadian Shield catchment.

    Science.gov (United States)

    Zhang, Dejian; Chen, Xingwei; Yao, Huaxia

    2016-04-15

    Nonpoint source modeling using hydrological models has been extensively studied at agriculture and urban watersheds; however, this has not been well addressed in forested ones where agricultural sources are comparatively minimal and nitrogen deposition exerts remarkable impacts on the nutrient cycles of a catchment. Thus it is critically important for hydrological models to incorporate the dynamics of nitrogen deposition and its transport processes, for reasonable nitrogen modeling. This is especially so for the Canadian Shield, which is characterized by a cold climate and special physiographic features. A revision of Soil and Water Assessment Tool for Canadian Shield (SWAT-CS) was proposed by Fu et al. (2014) to better characterize the hydrological features. In this study, more revisions were added to better simulate processes of nitrate by: 1) incorporating the dynamics of nitrogen deposition; and 2) allowing the deposition to distribute along with rapid-moving macropore flows. The newly revised model, SWAT-CS(enm) (SWAT-CS with an Enhanced Nitrate Module), and SWAT-CS were calibrated and tested with data of a subbasin of Harp Lake in south-central Ontario for 1990 to 2007. Modeling performance of nitrate flux rate in the stream for SWAT-CS(enm) was nearly acceptable with maximum daily Nash-Sutcliffe efficiencies (ENSs) for calibration and validation periods of 0.66 and 0.43, respectively; whereas the result of SWAT-CS was generally unsatisfied with maximum daily ENSs of 0.16 and 0.07, respectively. An uncertainty analysis using GLUE (generalized likelihood uncertainty estimation) showed a modest performance as about 50% of observations can be incorporated by the 95% prediction range deriving from the behavioral solutions (ENS≥0.5) for both daily and monthly simulations. It is concluded that the enhanced nitrate module improved the model performance of SWAT-CS on nitrate modeling, since the previous SWAT-CS failed to consider the effect of dynamics of nitrogen

  5. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    Science.gov (United States)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  6. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab.

  7. Progress in design and study of ITER test blanket modules%ITER氚增殖实验包层设计研究进展

    Institute of Scientific and Technical Information of China (English)

    刘松林; 柏云清; 陈红丽; 李春京; 黄群英; 吴宜灿; FDS团队

    2009-01-01

    The International Thermonuclear Experimental Reactor (ITER) will be the first experimental D-T fusion reactor to provide an exclusive test platform of physics and engineering technology for research and development of fusion, where the technology of Test Blanket Module (TBM) in ITER is one of the most critical kernels to achieve fusion power in the future. According to defined concepts of DEMO blanket, the parties had proposed DEMOrelevant TBM, respectively, which would be to be tested during ITER operation. Design of proposed TBM concepts, R&D status, and recommended port allocation in ITER are introduced in this contribution.%国际热核实验反应堆(ITER)为人类开发聚变能提供重要的物理和工程技术实验平台,ITER氚增殖实验包层模块(TBM)技术是必须掌握的关键技术.参与ITER计划的成员国根据本国商用演示堆包层发展策略,分别提出了各自的实验包层概念,以便在ITER运行期间进行实验.本文对ITER-TBM目前已经开展和正在进行的主要设计研究工作进展进行总结,介绍了各方提出的设计方案、支撑设计的相关技术研究进展,以及合作实验窗口的分配现状.

  8. Nuclear modules of ITER tokamak systems code

    International Nuclear Information System (INIS)

    Nuclear modules were developed to model various reactor components in the ITER systems code. These modules include first wall, tritium breeding blanket (or shield), bulk shield, reactor vault, impurity control, and tritium system. The function of these modules is to define the performance parameters for each component as a function of the reactor operating conditions. Several design options and cost algorithms are included for each component. The first wall, blanket and shield modules calculate the beryllium zone thickness, the disruptions results, the nuclear responses in different components including the toroidal field coils. Tungsten shield/water coolant/steel structure and steel shield/water coolant are the shield options for the inboard and outboard sections of the reactor. Lithium nitrate dissolved in the water coolant with a variable beryllium zone thickness in the outboard section of the reactor provides the tritium breeding capability. The reactor vault module defines the thickness of the reactor wall and the roof based on the dose equivalent during operation including skyshine contribution. The impurity control module provides the design parameters for the divertor including plate design, heat load, erosion rate, tritium permeation through the plate material to the coolant, plasma contamination by sputtered impurities, and plate lifetime. Several materials: Be, C, V, Mo, and W can be used for the divertor plate to cover a range of plasma edge temperatures. The tritium module calculates tritium and deuterium flow rates for the reactor plant. The tritium inventory in the fuelers, neutral beams, vacuum pumps, impurity control, first wall, and blanket is calculated. Tritium requirements are provided for different operating conditions. The nuclear models are summarized in this paper including the different design options and key analyses of each module

  9. Dry storage technologies: keys to choosing among metal casks, concrete shielded steel canister modules and vaults

    International Nuclear Information System (INIS)

    time. Then the key criterion is maximum modularity. Furthermore, the up front capital costs requirement for this type of solution is minimal, so depending on the chosen discount rate of the investor, they have an additional attraction. Those smaller modules allow to change course in back end policy more easily. Priority of modularity yields two other solutions, dual-purpose metal casks of the TN24TM family or dual purpose or single purpose concrete shielded welded canisters such as NUHOMS. These solutions, implemented by COGEMA LOGISTICS, TRANSNUCLEAR Inc. and FRAMATOME-ANP, are very flexible and have been adapted also to quite different fuels. Among what influences the choice, we can consider: in favor of metal casks (minimal ancillary equipment, ready to move to final or centralized repository or reprocessing or other ISFSI, compact systems, easy rearrangement, easy handling), in favor of concrete shielded canisters based systems (economics when initial quantity is sufficient to spread out up front equipment, significant cost-shielding advantage, easy local production of the relatively light canisters). Both approaches, when transportable, are also a factor for public acceptance because of the non-permanent characteristics and because transport licensing refers to internationally recognized rules, standards and methods. (authors)

  10. Simbol-X Mirror Module Thermal Shields: I - Design and X-Ray Transmission

    International Nuclear Information System (INIS)

    The Simbol-X mission is designed to fly in formation flight configuration. As a consequence, the telescope has both ends open to space, and thermal shielding at telescope entrance and exit is required to maintain temperature uniformity throughout the mirrors. Both mesh and meshless solutions are presently under study for the shields. We discuss the design and the X-ray transmission.

  11. On blanket concepts of the Helias reactor

    International Nuclear Information System (INIS)

    The paper discusses various options for a blanket of the Helias reactor HSR22. The Helias reactor is an upgrade version of the Wendelstein 7-X device. The dimensions of the Helias reactor are: major radius 22 m, average plasma radius 1.8 m, magnetic field on axis 4.75 T, maximum field 10 T, number of field periods 5, fusion power 3000 MW. The minimum distance between plasma and coils is 1.5 m, leaving sufficient space for a blanket and shield. Three options of a breeding blanket are discussed taking into account the specific properties of the Helias configuration. Due to the large area of the first wall (2600 m2) the average neutron power load on the first wall is below 1 MWm.2, which has a strong impact on the blanket performance with respect to lifetime and cooling requirements. A comparison with a tokamak reactor shows that the lifetime of first wall components and blanket components in the Helias reactor is expected to be at least two times longer. The blanket concepts being discussed in the following are: the solid breeder concept (HCPB), the dual-coolant Pb-17Li blanket concept and the water-cooled Pb-17Li concept (WCLL). (orig.)

  12. Neutronics R and D efforts in support of the European breeder blanket development programme

    International Nuclear Information System (INIS)

    The EU fusion technology programme considers two blanket development lines, the Helium-Cooled Pebble Bed (HCPB) blanket with Lithium ceramics pebbles as breeder material and beryllium pebbles as neutron multiplier, and the Helium-Cooled Lithium-Lead (HCLL) blanket with the Pb-Li eutectic alloy acting both as breeder and neutron multiplier. The long-term strategy aims at providing validated engineering designs of breeder blankets for a fusion power demonstration reactor (DEMO). As an important intermediate step, the breeder blankets need to be tested in a real fusion environment as provided by ITER. HCPB and HCLL Test Blanket Modules (TBM) have been accordingly designed for tests in dedicated ITER blanket ports. The nuclear design and performance of the breeder blanket modules rely on the results provided by neutronics design calculations. Validated computational tools and qualified nuclear data are required for high prediction accuracies including reliable uncertainty assessments. Complementary to the application of established standard tools and data for design analysis, a dedicated neutronics R and D effort is therefore conducted in the EU. This includes the development of dedicated computational tools, the generation of high quality nuclear data and their validation through integral experiments. The recent neutronic design efforts have been devoted to the European DEMO reactor study comprising (i) Monte Carlo based pre-analysis for the dimensioning of the shielding system, (ii) the generation of a generic CAD based Monte Carlo geometry model, and (iii) performance analysis for HCLL and HCPB based DEMO variants. The recent focus of the validation effort is on neutronics TBM mock-up experiments. The first experiment of this kind was performed on a TBM mock-up of the HCPB breeder blanket. The follow-up experiment on a neutronics HCLL TBM mock-up is currently under preparation. Computational pre-analysis were performed to optimise the design of the mock

  13. Japanese contributions to the Japan-US workshop on blanket design/technology

    International Nuclear Information System (INIS)

    This report describes Japanese papers presented at the Japan-US Workshop on Blanket Design/Technology which was held at Argonne National Laboratory, November 10 - 11, 1982. Overview of Fusion Experimental Reactor (FER), JAERI's activities related to first wall/blanket/shield, summary of FER blanket and its technology development issues and summary of activities at universities on fusion reactor blanket engineering are covered. (author)

  14. Development of Solid Breeder Blanket at JAERI

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI) has been performing blanket development based on the long-term research program of fusion blankets in Japan, which was approved by the Fusion Council of Japan in 1999. The blanket development consists of out-pile R and D, In-pile R and D, TBM Neutronics and TPR Tests and Tritium Recovery System R and D. Based on the achievements of element technology development, the R and D program is now stepping to the engineering testing phase, in which scalable mockup tests will be performed for obtaining engineering data unique to the specific structure of the components, with the objective to define the fabrication specification of test blanket modules for ITER. This paper presents the major achievements of the element technology development of solid breeder blanket in JAERI

  15. Nuclear, thermo-mechanical and tritium release analysis of ITER breeding blanket

    International Nuclear Information System (INIS)

    The design of the breeding blanket in ITER applies pebble bed breeder in tube (BIT) surrounded by multiplier pebble bed. It is assumed to use the same module support mechanism and coolant manifolds and coolant system as the shielding blankets. This work focuses on the verification of the design of the breeding blanket, from the viewpoints which is especially unique to the pebble bed type breeding blanket, such as, tritium breeding performance, tritium inventory and release behavior and thermo-mechanical performance of the ITER breeding blanket. With respect to the neutronics analysis, the detailed analyses of the distribution of the nuclear heating rate and TBR have been performed in 2D model using MCNP to clarify the input data for the tritium inventory and release rate analyses and thermo-mechanical analyses. With respect to the tritium inventory and release behavior analysis, the parametric analyses for selection of purge gas flow rate were carried out from the view point of pressure drop and the tritium inventory/release performance for Li2TiO3 breeder. The analysis result concluded that purge gas flow rate can be set to conventional flow rate setting (88 l/min per module) to 1/10 of that to save the purge gas flow and minimize the size of purge gas pipe. However, it is necessary to note that more tritium is transformed to HTO (chemical form of water) in case of Li2TiO3 compared to other breeder materials. With respect to the thermo-mechanical analyses of the pebble bed blanket structure, the analyses have been performed by ABAQUS with 2D model derived from one of eight facets of a blanket module, based on the reference design. Analyses were performed to identify the temperature distribution incorporating the pebble bed mechanical simulation and influence of mechanical behavior to the thermal behavior. The result showed that the maximum temperature in the breeding material was 617degC in the first row of breeding rods and the minimum temperature was 328degC in

  16. Shielding member for thermonuclear device

    International Nuclear Information System (INIS)

    In a thermonuclear device for shielding fast neutrons by shielding members disposed in a shielding vessel (vacuum vessel and structures such as a blanket disposed in the vacuum vessel), the shielding member comprises a large number of shielding wires formed fine and short so as to have elasticity. The shielding wires are sealed in a shielding vessel together with water, and when the width of the shielding vessel is changed, the shielding wires follow after the change of the width while elastically deforming in the shielding vessel, so that great stress and deformation are not formed thereby enabling to improve reliability. In addition, the length, the diameter and the shape of each of the shielding wires can be selected in accordance with the shielding space of the shielding vessel. Even if the shape of the shielding vessel is complicated, the shielding wires can be inserted easily. Accordingly, the filling rate of the shielding members can be changed easily. It can be produced more easily compared with a conventional spherical pebbles. It can be produced more easily than existent spherical shielding pebbles thereby enabling to reduce the production cost. (N.H.)

  17. Breeding blanket for DEMO

    International Nuclear Information System (INIS)

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently being investigated within the framework of the European Test-Blanket Development Programme. (orig.)

  18. ITER convertible blanket evaluation

    International Nuclear Information System (INIS)

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate

  19. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    International Nuclear Information System (INIS)

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding. (author)

  20. Dosimetric analysis of isocentrically shielded volumetric modulated arc therapy for locally recurrent nasopharyngeal cancer

    OpenAIRE

    Lu, Jia-Yang; Huang, Bao-Tian; Xing, Lei; Chang, Daniel T.; Peng, Xun; Xie, Liang-Xi; Lin, Zhi-Xiong; Li, Mei

    2016-01-01

    This study aimed to investigate the dosimetric characteristics of an isocentrically shielded RapidArc (IS-RA) technique for treatment of locally recurrent nasopharyngeal cancer (lrNPC). In IS-RA, the isocenter was placed at the center of the pre-irradiated brainstem (BS)/spinal cord (SC) and the jaws were set to shield the BS/SC while ensuring the target coverage during the whole gantry rotation. For fifteen patients, the IS-RA plans were compared with the conventional RapidArc (C-RA) regardi...

  1. Materials for breeding blankets

    International Nuclear Information System (INIS)

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified

  2. Development of the Helium Cooled Lithium Lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, G., E-mail: giacomo.aiello@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aubert, J.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The HCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • The new design has been developed with the aim to capitalize on TBM experience in ITER. • A new attachment system for the modules has been proposed. - Abstract: The Helium Cooled Lithium Lead (HCLL) blanket is one of the candidate European blanket concepts selected for the DEMOnstration fusion power plant that should follow ITER. In a fusion power plant, the blanket is one of the key components because of its impact on the plant performance, availability, safety and economics. In 2012, the European Fusion Development Agreement (EFDA) agency issued new specifications for DEMO: this paper describes the work performed to adapt the previous 2007 HCLL-DEMO blanket design to those specifications. A new segmentation has been defined assuming straight surfaces for all blanket modules. Following the Multi Module Segment (MMS) option, all modules are attached to a common back supporting structure which also serves as manifold for Helium and PbLi distribution. A detailed CAD design of the central outboard module has been defined. Thermo-hydraulic and thermo-mechanical analyses on of the First Wall and Breeder Zone have been carried out. For the attachment of the modules to the common backplate, a new solution based on the use of Tie Rods, derived from the design of the corresponding HCLL Test Blanket Module for ITER, has been proposed. This paper also identifies the priorities for further development of the HCLL blanket design.

  3. ARIES-IV Nested Shell Blanket Design

    International Nuclear Information System (INIS)

    The ARIES-IV Nested Shell Blanket (NSB) Design is an alternate blanket concept of the ARIES-IV low activation helium-cooled reactor design. The reference design has the coolant routed in the poloidal direction and the inlet and outlet plena are located at the top and bottom of the torus. The NSB design has the high velocity coolant routed in the toroidal direction and the plena are located behind the blanket. This is of significance since the selected structural material is SiC-composite. The NSB is designed to have key high performance components with characteristic dimensions of no larger than 2 m. These components can be brazed to form the blanket module. For the diverter design, we eliminated the use of W as the divertor coating material by relying on the successful development of the gaseous divertor concept. The neutronics and thermal-hydraulic performance of both blanket concepts are similar. The selected blanket and divertor configurations can also meet all the projected structural, neutronics and thermal-hydraulics design limits and requirements. With the selected blanket and divertor materials, the design has a level of safety assurance rate of I (LSA-1), which indicates an inherently safe design

  4. APT Blanket Safety Analysis: Counter Current Flow Limitation for Cavity Spaces

    International Nuclear Information System (INIS)

    The thermal-hydraulic modeling aspects for the APT blanket system have been broken up into two basic modeling components: (1) the blanket system and (2) the cavity flood system. In most cases these systems are modeled separately. This separate study for the coolability of the blanket modules can also be used to establish/evaluate a functional design requirement on gap size between the blanket modules

  5. LMFBR Blanket Physics Project progress report No. 2

    International Nuclear Information System (INIS)

    This is the second annual report of an experimental program for the investigation of the neutronics of benchmark mock-ups of LMFBR blankets. Work was devoted primarily to measurements on Blanket Mock-Up No. 2, a simulation of a typical large LMFBR radial blanket and its steel reflector. Activation traverses and neutron spectra were measured in the blanket; calculations of activities and spectra were made for comparison with the measured data. The heterogeneous self-shielding effect for 238U capture was found to be the most important factor affecting the comparison. Optimization and economic studies were made which indicate that the use of a high-albedo reflector material such as BeO or graphite may improve blanket neutronics and economics

  6. Pulsed activation analyses of the ITER blanket design options considered in the blanket trade-off study

    International Nuclear Information System (INIS)

    The International Thermonuclear Experimental Reactor (ITER) project began a new design phase called the Engineering Design Activity (EDA) which started in July 1992. A variety of blanket designs options were analyzed as a part of the U.S. ITER home team blanket option trade-off study (BOTS) which began in May 1993. The options considered were a self-cooled Li/V blanket, a helium cooled Li/V blanket and a water cooled 316 SS nonbreeding shield option. Detailed activation, dose rate and waste disposal rating calculations have been performed for these different ITER blanket design options based on a fluence of 3.0 MWa/m2 and an average neutron wall loading of 2.0 MW/m2. A continuous operation assumption was utilized in the analysis. The results of this work are presented in this conference

  7. Critical and shielding parametric studies with the Monte Carlo code TRIPOLI to identify the key points to take into account during the transportation of blanket assemblies with high ratio of americium

    International Nuclear Information System (INIS)

    In the framework of French research program on Generation IV sodium cooled fast reactor, one possible option consists in burning minor actinides in this kind of Advanced Sodium Technological Reactor. Two types of transmutation mode are studied in the world : the homogeneous mode of transmutation where actinides are scattered with very low enrichment ratio in fissile assemblies and the heterogeneous mode where fissile core is surrounded by blanket assemblies filled with minor actinides with ratio of incorporated actinides up to 20%. Depending on which element is considered to be burnt and on its content, these minor actinides contents imply constraints on assemblies' transportation between Nuclear Power Plants and fuel cycle facilities. In this study, we present some academic studies in order to identify some key constraints linked to the residual power and neutron/gamma load of such kind of blanket assemblies. To simplify the approach, we considered a modeling of a 'model cask' dedicated to the transportation of a unique irradiated blanket assembly loaded with 20% of Americium and basically inspired from an existent cask designed initially for the damaged fissile Superphenix assembly transport. Thermal calculations performed with EDF-SYRTHES code have shown that due to thermal limitations on cladding temperature, the decay time to be considered before transportation is 20 years. This study is based on explicit 3D representations of the cask and the contained blanket assembly with the Monte Carlo code TRIPOLI/JEFF3.1.1 library and concludes that after such a decay time, the transportation of a unique Americium radial blanket is feasible only if the design of our model cask is modified in order to comply with the dose limitation criterion. (author)

  8. Impact of blanket tritium against the tritium plant of fusion reactor

    International Nuclear Information System (INIS)

    The breeder blanket and the blanket tritium recovery system are tested using test blanket modules during ITER campaign. And then, these are integrated with the tritium plant for the first time at a prototype reactor after ITER. In this work, impact to the tritium plant by integration of the solid breeder blanket was discussed. The method of tritium extraction from the blanket and the choice of the process for breeder blanket interface should be discussed not only from the viewpoint of tritium release but also from the viewpoint of the load of processing. (author)

  9. MIT LMFBR blanket research project. Quarterly progress report, January 1, 1976--March 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, M.J.

    1976-01-01

    Progress in the experimental and theoretical investigation of LMFBR breeding blanket design parameters is reported. State-of-the-art approaches for the calculation of gamma heating in the core, blanket, and reflector regions of LMFBR's have been evaluated, with particular emphasis on coupled neutron-gamma methods cross section sets. The effects of heterogeneity on resonance self-shielding were examined for the blanket region and the capture reaction in /sup 238/U. (DG)

  10. MFTF-α + T shield design

    International Nuclear Information System (INIS)

    MFTF-α+T is a DT upgrade option of the Tandem Mirror Fusion Test Facility (MFTF-B) to study better plasma performance, and test tritium breeding blankets in an actual fusion reactor environment. The central cell insert, designated DT axicell, has a 2-MW/m2 neutron wall loading at the first wall for blanket testing. This upgrade is completely shielded to protect the reactor components, the workers, and the general public from the radiation environment during operation and after shutdown. The shield design for this upgrade is the subject of this paper including the design criteria and the tradeoff studies to reduce the shield cost

  11. ITER-FEAT vacuum vessel and blanket design features and implications for the R and D programme

    International Nuclear Information System (INIS)

    A tight fitting configuration of the VV to the plasma aids the passive plasma vertical stability, and ferromagnetic material in the VV reduces the TF ripple. The blanket modules are supported directly by the VV. A full-scale VV sector model has provided critical information related to fabrication technology, and the magnitude of welding distortions and achievable tolerances. This R and D validated the fundamental feasibility of the double-wall VV design. The blanket module configuration consists of a shield body to which a separate first wall is mounted. The separate first wall has a facet geometry consisting of multiple flat panels, where 3-D machining will not be required. A configuration with deep slits minimizes the induced eddy currents and loads. The feasibility and the robustness of solid HIP joining was demonstrated in R and D, by manufacturing and testing several small and medium scale mock-ups and finally two prototypes. Remote handling tests and assembly tests of a blanket module have demonstrated the basic feasibility of its installation and removal. (author)

  12. Resonance self-shielding near zone interfaces

    International Nuclear Information System (INIS)

    A practical methodology is developed to treat the resonance self-shielding transition near zone interfaces. Based on the narrow resonance approximation, a space- and energy-dependent self-shielding factor for a single interface system is derived from the integral transport theory. Using the Wigner rational approximation, the self-shielding factor for a fine region near a zone interface is factorized into a linear combination of individual homogeneous and heterogeneous self-shielding factors. The method has been implemented in a widely used cross-section processing code that is based on the Bondarenko f-factor method. The result of the analysis was applied to a fast reactor blanket mock-up to improve the calculations near a converter-blanket interface. Comparisons of the calculation with /sup 238/U capture experimental data measured in the Purdue Fast Breeder Blanket Facility are also discussed

  13. Limitations on blanket performance

    International Nuclear Information System (INIS)

    The limitations on the performance of breeding blankets in a fusion power plant are evaluated. The breeding blankets will be key components of a plant and their limitations with regard to power density, thermal efficiency and lifetime could determine to a large degree the attractiveness of a power plant. The performance of two rather well known blanket concepts under development in the frame of the European Blanket Programme is assessed and their limitations are compared with more advanced (and more speculative) concepts. An important issue is the question of which material (structure, breeder, multiplier, coatings) will limit the performance and what improvement would be possible with a 'better' structural material. This evaluation is based on the premise that the performance of the power plant will be limited by the blankets (including first wall) and not by other components, e.g. divertors, or the plasma itself. However, the justness of this premise remains to be seen. It is shown that the different blanket concepts cover a large range of allowable power densities and achievable thermal efficiencies, and it is concluded that there is a high incentive to go for better performance in spite of possibly higher blanket cost. However, such high performance blankets are usually based on materials and technologies not yet developed and there is a rather high risk that the development could fail. Therefore, it is explained that a part of the development effort should be devoted to concepts where the materials and technologies are more or less in hand in order to ensure that blankets for a DEMO reactor can be developed and tested in a given time frame. (orig.)

  14. Preliminary Shielding Analysis for HCCB TBM Transport

    Science.gov (United States)

    Miao, Peng; Zhao, Fengchao; Cao, Qixiang; Zhang, Guoshu; Feng, Kaiming

    2015-09-01

    A preliminary shielding analysis on the transport of the Chinese helium cooled ceramic breeder test blanket module (HCCB TBM) from France back to China after being irradiated in ITER is presented in this contribution. Emphasis was placed on irradiation safety during transport. The dose rate calculated by MCNP/4C for the conceptual package design satisfies the relevant dose limits from IAEA that the dose rate 3 m away from the surface of the package containing low specific activity III materials should be less than 10 mSv/h. The change with location and the time evolution of dose rates after shutdown have also been studied. This will be helpful for devising the detailed transport plan of HCCB TBM back to China in the near future. supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013GB108000)

  15. Lightweight Shield Against Space Debris

    Science.gov (United States)

    Redmon, John W., Jr.; Lawson, Bobby E.; Miller, Andre E.; Cobb, W. E.

    1992-01-01

    Report presents concept for lightweight, deployable shield protecting orbiting spacecraft against meteoroids and debris, and functions as barrier to conductive and radiative losses of heat. Shield made in four segments providing 360 degree coverage of cylindrical space-station module.

  16. Metamorphosis of human lumbar vertebrae induced by VEPTR growth modulation and stress shielding

    OpenAIRE

    Hasler, Carol C.; Studer, Daniel; Büchler, Philippe

    2015-01-01

    Introduction Distraction-based spinal growth modulation by growing rods or vertical expandable prosthetic titanium ribs (VEPTRs) is the mainstay of instrumented operative strategies to correct early onset spinal deformities. In order to objectify the benefits, it has become common sense to measure the gain in spine height by assessing T1-S1 distance on anteroposterior (AP) radiographs. However, by ignoring growth changes on vertebral levels and by limiting measurement to one plane, valuable d...

  17. Metamorphosis of human lumbar vertebrae induced by VEPTR growth modulation and stress shielding

    OpenAIRE

    Hasler, Carol C.; Studer, Daniel; Büchler, Philippe

    2015-01-01

    INTRODUCTION Distraction-based spinal growth modulation by growing rods or vertical expandable prosthetic titanium ribs (VEPTRs) is the mainstay of instrumented operative strategies to correct early onset spinal deformities. In order to objectify the benefits, it has become common sense to measure the gain in spine height by assessing T1-S1 distance on anteroposterior (AP) radiographs. However, by ignoring growth changes on vertebral levels and by limiting measurement to one plane, valuab...

  18. Solid breeder blanket concepts

    International Nuclear Information System (INIS)

    An investigation is made of a mechanical concept for the blanket with solid breeders in view of the possible adaptation to power reactor. A special arrangement of the multiplier and breeder materials is developed to permit a further neutronic optimisation

  19. Preliminary study on lithium-salt aqueous solution blanket

    International Nuclear Information System (INIS)

    Aqueous solution blanket using lithium salts such as LiNO3 and LiOH have been studied in the US-TIBER program and ITER conceptual design activity. In the JAERI/LANL collaboration program for the joint operation of TSTA (Tritium Systems Test Assembly), preliminary design work of blanket tritium system for lithium ceramic blanket, aqueous solution blanket and liquid metal blanket, have been performed to investigate technical feasibility of tritium demonstration tests using the TSTA. Detail study of the aqueous solution blanket concept have not been performed in the Japanese fusion program, so that this study was carried out to investigate features of its concept and to evaluated its technical problems. The following are the major items studied in the present work: (i) Neutronics of tritium breeding ratio and shielding performance Lithium concentration, Li-60 enrichment, beryllium or lead, composition of structural material/beryllium/solution, heavy water, different lithium-salts (ii) Physicochemical properties of salts Solubility, corrosion characteristics and compatibility with structural materials, radiolysis (iii) Estimation of radiolysis in ITER aqueous solution blanket. (author)

  20. Design analyses of self-cooled liquid metal blankets

    International Nuclear Information System (INIS)

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations

  1. Activation analyses for the different options considered in the US ITER blanket trade-off study

    International Nuclear Information System (INIS)

    Detailed activation analyses were performed for the different blanket design options considered in the ITER blanket option trade-off study. The options considered included a self-cooled Li/V option, a helium-cooled Li/V option and a water-cooled 316 SS non-breeding shield option. A vacuum vessel made of double-wall Inconel 625 and water-cooled 316 SS balls was used with all options. The He-cooled blanket activity is higher than that of the self-cooled blanket due to the larger structure content. Meanwhile, the vacuum vessel activity is lower for the He-cooled blanket option due to the larger neutron attenuation in the blanket. The shield activity and decay heat of the 316 SS/H2O option are higher than those of the Li/V blankets due to the large amount (80%) of 316 SS used. In both Li/V options the blanket qualifies as class C low-level waste. On the other hand, the 316 SS/H2O shield does not qualify for disposal as low- level waste. The 316 SS/H2O option produces the highest off-site doses in the case of accidental release of 100% of its radioactive inventory. Only remote maintenance would be allowed for all options. (orig.)

  2. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Loesser, G. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Smith, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Udintsev, V. [ITER Org, F-13115 St Paul Les Durance, France.; Giacomin, T., T. [ITER Org, F-13115 St Paul Les Durance, France.; Khodak, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Johnson, D, [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Feder, R, [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-07-01

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses were performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.

  3. Target/Blanket Design for the Accelerator Production of Tritium Plant

    International Nuclear Information System (INIS)

    The Accelerator Production of Tritium Target/Blanket (T/B) system is comprised of an assembly of tritium-producing modules supported by safety, heat removal, shielding, and retargeting systems. The T/B assembly produces tritium using a high-energy proton beam, a tungsten/lead spallation neutron source and 3He gas as the tritium-producing feedstock. The supporting heat removal systems remove the heat deposited by the proton beam during both normal and off-normal conditions. The shielding protects workers from ionizing radiation, and the retargeting systems remove and replace components that have reached their end of life. All systems reside within the T/B building, which is located at the end of a linear accelerator. For the nominal production mode, protons are accelerated to an energy of 1030 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons are expanded to a 0.19- x 1.9-m beam spot before striking a centrally located tungsten neutron source. A surrounding lead blanket produces additional neutrons from scattered high-energy particles. A total of 27 neutrons are produced per incident proton. Tritium is produced by neutron capture in 3He gas that is contained in aluminum tubes throughout the blanket. The 3He/tritium mixture is removed on a semi-continuous basis for purification in an adjacent Tritium Separation Facility. Systems and components are designed with safety as a primary consideration to minimize risk to the workers and the public. Materials and component designs were chosen based on the experiences of operating spallation neutron sources that have been designed and built for the neutron science community. An extensive engineering development and demonstration program provides detailed information for the completion of the design

  4. Analysis of ER string test thermally instrumented interconnect 80-K MLI blanket

    International Nuclear Information System (INIS)

    An 80-K Multi Layer Insulation (MLI) blanket in the interconnect region between magnets DD0019 and DD0027 in the Fermi National Accelerator Laboratory (FNAL) ER string was instrumented with temperature sensors to obtain the steady-state temperature gradient through the blanket after string cooldown. A thermal model of the 80-K blanket assembly was constructed to analyze the steady-state temperature gradient data. Estimates of the heat flux through the 80-K MLI blanket assembly and predicted temperature gradients were calculated. The thermal behavior of the heavy polyethylene terapthalate (PET) cover layers separating the shield and inner blanket and inner and outer blankets was derived empirically from the data. The results of the analysis predict a heat flux of 0.363--0.453 W/m2 based on the 11 sets of data. These flux values are 33--46% below the 80-K MLI blanket heat leak budget of 0.676 W/m2. The effective thermal resistance of the two heavy PET cover layers between the shield and inner blanket was found to be 2.1 times that of a single PET spacer layer, and the effective resistance of the two heavy PET cover layers between the inner blanket and outer blanket was found to be 7 times that of a single PET spacer layer. Based on these results, the 80-K MLI blanket assembly appears to be performing more than adequately to meet the 80-K static IR heat leak budget. However, these results should not be construed as a verification of the 80-K static IR heat leak, since no actual heat leak was measured. The results have been used to improve the empirically based model data in the 80-K MLI blanket thermal model, which has previously not included the effects of heavy PET cover layers on 80-K MLI blanket thermal performance

  5. Aerodynamic Analysis of Simulated Heat Shield Recession for the Orion Command Module

    Science.gov (United States)

    Bibb, Karen L.; Alter, Stephen J.; Mcdaniel, Ryan D.

    2008-01-01

    The aerodynamic effects of the recession of the ablative thermal protection system for the Orion Command Module of the Crew Exploration Vehicle are important for the vehicle guidance. At the present time, the aerodynamic effects of recession being handled within the Orion aerodynamic database indirectly with an additional safety factor placed on the uncertainty bounds. This study is an initial attempt to quantify the effects for a particular set of recessed geometry shapes, in order to provide more rigorous analysis for managing recession effects within the aerodynamic database. The aerodynamic forces and moments for the baseline and recessed geometries were computed at several trajectory points using multiple CFD codes, both viscous and inviscid. The resulting aerodynamics for the baseline and recessed geometries were compared. The forces (lift, drag) show negligible differences between baseline and recessed geometries. Generally, the moments show a difference between baseline and recessed geometries that correlates with the maximum amount of recession of the geometry. The difference between the pitching moments for the baseline and recessed geometries increases as Mach number decreases (and the recession is greater), and reach a value of -0.0026 for the lowest Mach number. The change in trim angle of attack increases from approx. 0.5deg at M = 28.7 to approx. 1.3deg at M = 6, and is consistent with a previous analysis with a lower fidelity engineering tool. This correlation of the present results with the engineering tool results supports the continued use of the engineering tool for future work. The present analysis suggests there does not need to be an uncertainty due to recession in the Orion aerodynamic database for the force quantities. The magnitude of the change in pitching moment due to recession is large enough to warrant inclusion in the aerodynamic database. An increment in the uncertainty for pitching moment could be calculated from these results and

  6. Tokamak blanket design study, final report

    International Nuclear Information System (INIS)

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m2 and a particle heat flux of 1 MW/m2. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma

  7. Validity assessment of shielding design tools for ITER through analysis of benchmark experiment on SS316/water shield conducted at FNS/JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio; Ikeda, Yujiro; Verzilov, Y.M.; Konno, Chikara; Wada, Masayuki; Maekawa, Hiroshi; Oyama, Yukio; Uno, Yoshitomo [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1996-12-31

    To assess validity of the shielding design tools for ITER, the benchmark experiment on SS316/water shield conducted at FNS/JAERI is analyzed. As far as a simple bulk shield of SS316/water is concerned, the followings are found assuming that no uncertainty is involved in the response functions of the design parameters. Nuclear data bases of JENDL Fusion File and FENDL/E-1.0 are valid to predict all the design parameters with uncertainties less than a factor of 1.25. At the connection legs between shield blanket modules and back plates, both MCNP and DOT calculations can predict helium production rate with uncertainties less than 10%. For the toroidal field coils on the midplane, all the nuclear parameters can be predicted with uncertainties less than a factor of 1.25 by MCNP and DOT with consideration of self-shielding correction of cross sections and energy group structure of 125-n and 40-{gamma}. The uncertainties for toroidal field coils are considerably smaller than the design margins secured to the shielding designs under ITER/EDA. 22 refs., 8 figs.

  8. Achievements of element technology development for breeding blanket

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI) has been performing the development of breeding blanket for fusion power plant, as a leading institute of the development of solid breeder blankets, according to the long-term R and D program of the blanket development established by the Fusion Council of Japan in 1999. This report is an overview of development plan, achievements of element technology development and future prospect and plan of the development of the solid breeding blanket in JAERI. In this report, the mission of the blanket development activity in JAERI, key issues and roadmap of the blanket development have been clarified. Then, achievements of the element technology development were summarized and showed that the development has progressed to enter the engineering testing phase. The specific development target and plan were clarified with bright prospect. Realization of the engineering test phase R and D and completion of ITER test blanket module testing program, with universities/NIFS cooperation, are most important steps in the development of breeding blanket of fusion power demonstration plant. (author)

  9. Conceptual design of solid breeder blanket system cooled by supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Ohara, Yoshihiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2001-12-01

    the energy conversion, on the other hand, it is the demerit to the structural limitation of the structural material of the FW which must remove the high surface heat flux from the plasma. To resolve this issue, the coolant path was selected to cool FWs of 4 modules first, and later the coolant was planned to cool the breeder region with higher temperature. From this flow path, the estimated highest temperature of the FW cooling is 360degC. By using this value, the thermo-mechanical performance was estimated to show the feasibility to the thermal stress and the internal coolant pressure. Also, TBR and thermal analysis was performed to search the acceptable dimensioning of the breeder layer and multiplier layer. As the result of the conceptual design, the basic feasibility was shown for such aspects as, heat removal, power generation, fuel production, neutron shielding and so on to the proposed DEMO blanket concept. Also, the other important issues such as, electro-magnetic performance and loads, corrosion of the supercritical water, tritium recovery system, power generation system, fabrication feasibility of the proposed blanket structure, remote handling system and so on, were preliminarily researched and identified as the issues to be clarified by R and D. (author)

  10. Conceptual design of solid breeder blanket system cooled by supercritical water

    International Nuclear Information System (INIS)

    conversion, on the other hand, it is the demerit to the structural limitation of the structural material of the FW which must remove the high surface heat flux from the plasma. To resolve this issue, the coolant path was selected to cool FWs of 4 modules first, and later the coolant was planned to cool the breeder region with higher temperature. From this flow path, the estimated highest temperature of the FW cooling is 360degC. By using this value, the thermo-mechanical performance was estimated to show the feasibility to the thermal stress and the internal coolant pressure. Also, TBR and thermal analysis was performed to search the acceptable dimensioning of the breeder layer and multiplier layer. As the result of the conceptual design, the basic feasibility was shown for such aspects as, heat removal, power generation, fuel production, neutron shielding and so on to the proposed DEMO blanket concept. Also, the other important issues such as, electro-magnetic performance and loads, corrosion of the supercritical water, tritium recovery system, power generation system, fabrication feasibility of the proposed blanket structure, remote handling system and so on, were preliminarily researched and identified as the issues to be clarified by R and D. (author)

  11. Development of fusion blanket technology for the DEMO reactor.

    Science.gov (United States)

    Colling, B R; Monk, S D

    2012-07-01

    The viability of various materials and blanket designs for use in nuclear fusion reactors can be tested using computer simulations and as parts of the test blanket modules within the International Thermonuclear Experimental Reactor (ITER) facility. The work presented here focuses on blanket model simulations using the Monte Carlo simulation package MCNPX (Computational Physics Division Los Alamos National Laboratory, 2010) and FISPACT (Forrest, 2007) to evaluate the tritium breeding capability of a number of solid and liquid breeding materials. The liquid/molten salt breeders are found to have the higher tritium breeding ratio (TBR) and are to be considered for further analysis of the self sufficiency timing. PMID:22112596

  12. Shielding integral benchmark archive and database

    International Nuclear Information System (INIS)

    SINBAD (Shielding integral benchmark archive and database) is a new electronic database developed to store a variety of radiation shielding benchmark data so that users can easily and incorporate the data into their calculations. SINBAD is an excellent data source for users who require the quality assurance necessary in developing cross-section libraries or radiation transport codes. The future needs of the scientific community are best served by the electronic database format of SINBAD and its user-friendly interface, combined with its data accuracy and integrity. It has been designed to be able to include data from nuclear reactor shielding, fusion blankets and accelerator shielding experiments. (authors)

  13. Basic concepts of DEMO and a design of a helium-cooled molten lithium blanket for a testing in ITER

    International Nuclear Information System (INIS)

    Basic concepts and the performance of DEMO for an early realization have been investigated with a limited extension of its plasma physics and technology from the second phase of the International Thermonuclear Experimental Reactor (ITER) operation (EPP phase). With the same plasma size as that of ITER, net electric power up to 600 MW is possible with βN > 4.0, H > 1.0 and a divertor heat load of Hdiv 2. Through a consideration of the requirements for a DEMO-relevant blanket concept, Korea has proposed a He cooled molten lithium (HCML) blanket as an ITER TBM. It uses He as a coolant and Li is used as a tritium breeder by considering its potential advantages. Low activation Ferritic Steel (FS) is used as a structural material and two layers of graphite are inserted as a reflector in the breeder zone to increase the tritium breeding ratio (TBR) and the shielding performances. The design and the performance of the KO HCML test blanket module (TBM) are being modified in terms of its He coolant efficiency and its optimized path with a performance analysis; with a 3D Monte Carlo analysis (MCCARD code) for the neutronics; with the CFD code (CFX-10) for the thermal-hydraulics; with ANSYS-10 for the thermo-mechanical analysis

  14. A Feasible DEMO Blanket Concept Based on Water Cooled Solid Breeder

    International Nuclear Information System (INIS)

    Full text: JAEA has conducted the conceptual design study of blanket for a fusion DEMO reactor SlimCS. Considering DEMO specific requirements, we place emphasis on a blanket concept with durability to severe irradiation, ease of fabrication for mass production, operation temperature of blanket materials, and maintainability using remote handling equipment. This paper present a promising concept satisfying these requirements, which is characterized by minimized welding lines near the front, a simplified blanket interior consisting of cooling tubes and a mixed pebble bed of breeder and neutron multiplier, and approximately the same outlet temperature for all blanket modules. Neutronics calculation indicated that the blanket satisfies a self-sufficient production of tritium. An important finding is that little decrease is seen in tritium breeding ratio even when the gap between neighboring blanket modules is as wide as 0.03 m. This means that blanket modules can be arranged with such a significant clearance gap without sacrifice of tritium production, which will facilitate the access of remote handling equipment for replacement of the blanket modules and improve the access of diagnostics. (author)

  15. Fast Breeder Blanket Facility FBBF. Annual report, January 1, 1981-December 31, 1981

    International Nuclear Information System (INIS)

    This annual report contains a summmary of fission rate, spectra, and gamma-ray heating rate measurements made in the first blanket of the Purdue Fast Breeder Blanket Facility. The first blanket consisted of aluminum clad, natural UO2 fuel rods with a secondary cladding of stainless steel or aluminum. The blanket was arranged in two concentric regions around the neutron source and converter regions. A neutron diffusion code, 2DB, and a Monte Carlo code, VIM, both using homogeneous cross section groups have been used to calculate the reaction rates. Calculated to experimental values for a number of important reactions are presented. A modified method of applying Bondarenko self-shielding factors to correct for the self shielding of resonance energy neutrons in aluminum, stainless steel and UO2 has improved the agreement between the calculations and experiment, but does not account for all of the differences

  16. Development of the water cooled lithium lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aiello, G.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The WCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • Preliminary CAD design of the equatorial outboard module of the WCLL blanket has been developed for DEMO. • Finite elements analyses have been carried out in order to assess the module thermal behavior in the straight part of the module. - Abstract: The water cooled lithium lead (WCLL) blanket, based on near-future technology requiring small extrapolation from present-day knowledge both on physical and technological aspect, is one of the breeding blanket concepts considered as possible candidates for the EU DEMOnstration power plant. In 2012, the EFDA agency issued new specifications for DEMO: this paper describes the work performed to adapt the WCLL blanket design to those specifications. Relatively small modules with straight surfaces are attached to a common Back Supporting Structure housing feeding pipes. Each module features reduced activation ferritic-martensitic steel as structural material, liquid Lithium-Lead as breeder, neutron multiplier and carrier. Water at typical Pressurized Water Reactors (PWR) conditions is chosen as coolant. A preliminary design of the equatorial outboard module has been achieved. Finite elements analyses have been carried out in order to assess the module thermal behavior. Two First Wall (FW) concepts have been proposed, one favoring the thermal efficiency, the other favoring the manufacturability. The Breeding Zone has been designed with C-shaped Double-Walled Tubes in order to minimize the Water/Pb-15.7Li interaction likelihood. The priorities for further development of the WCLL blanket concept are identified in the paper.

  17. Basic Concepts of DEMO and a Design of a Helium Cooled Molten Lithium Blanket

    International Nuclear Information System (INIS)

    Demonstration fusion power plant, DEMO is regarded as the last step before the development of a commercial fusion reactor in Korea National Basic Plan for the Development of Fusion Energy. The DEMO should demonstrate a net electric power generation, a tritium self sufficiency, and the safety aspect of a power plant. With a limited extension of the improved plasma physics and technology from the 2nd phase of the ITER operation (EPP phase), we developed the basic concepts of DEMO and identified the design parameters by considering the dependence of DEMO on performance objectives, design features and physical and technical constraints. Extensive system analyses have been performed to find device variables which optimize figures of merit such as major radius, ignition margin, neutron wall load, etc. The He Cooled Molten Lithium/FS (HCML) blanket is one of options for DEMO blanket and its tritium breeding capability and heat removal capability will be tested in ITER as a test blanket module (TBM). HCML blanket uses He as a coolant and Li as a tritium breeder. From a sensitivity study, 6Li enrichment was optimized in terms of tritium breeding ratio (TBR). An optimum was found for a natural enrichment in DEMO blanket but it was 12 wt% in TBM since the amount of Li is limited in ITER. Two layers of a graphite reflector were inserted as a reflector in the breeder zone to increase the TBR and the shielding performances. The graphite reflector thickness was optimized to maximize TBR without any special neutron multiplier and to minimize the neutron leakage. For TBM, a 3-D Monte Carlo neutronic analysis was performed with the MCCARD code and the total power was founded to be a 0.739 MW at normal heat flux 0.3 MW/m2 from plasma side. From the thermal-hydraulic analysis using CFX-10, the He cooling path was optimized and it was found that the maximum temperature of FW is below 550 oC at structural materials and the coolant velocities are 45 m/sec and 8.2 m/sec at FW and breeding

  18. APT Blanket Thermal Analysis of Cavity Flood Cooling with a Beam Window Break; FINAL

    International Nuclear Information System (INIS)

    The cavity flood system is designed to be the primary safeguard for the integrity of the blanket modules and target assemblies during loss of coolant accidents, LOCA''s. In the unlikely event that the internal flow passages in a blanket module or a target assembly dryout, decay heat in the metal structures will be dissipated to the cavity flood system through the module or assembly walls. This study supplements the two previous studies by demonstrating that the cavity flood system can adequately cool the blanket modules when the cavity vessel beam window breaks

  19. Shielding practice

    International Nuclear Information System (INIS)

    The basis of shielding practice against external irradiation is shown in a simple way. For most sources of radiation (point sources) occurring in shielding practice, the basic data are given, mainly in the form of tables, which are required to solve the shielding problems. The application of these data is explained and discussed using practical examples. Thickness of shielding panes of glove boxes for α and β radiation; shielding of sealed γ-radiography sources; shielding of a Co-60 radiation source, and of the manipulator panels for hot cells; damping factors for γ radiation and neutrons; shielding of fast and thermal neutrons, and of bremsstrahlung (X-ray tubes, Kr-85 pressure gas cylinders, 42 MeV betatrons, 20 MeV linacs); two-fold shielding (lead glass windows for hot cells, 14 MeV neutron generators); shielding against scattered radiation. (orig./HP)

  20. Further adaptation of the European ceramic-B.I.T. blanket conceptual design to updated Demo specifications

    International Nuclear Information System (INIS)

    This paper presents the recent development studies on the adaptation of the European Ceramic Solid Breeder Inside Tube (BIT) Blanket to updated DEMO specifications. The adaptation work is in progress, since 1990, when a detailed comparison between two existing designs lead to the selection of an unique concept. The main new developments concern the separation in two parts of the inboard blanket segments at the level of the lower divertor, the consequent improvement of the blanket coverage, the simplification of maintenance operations, and finally the increased compactness of the blanket because of the inclusion of the shielding into the breeder assembly

  1. A passively-safe fusion reactor blanket with helium coolant and steel structure

    International Nuclear Information System (INIS)

    Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel as a structural material and is designed for neutron wall loads exceeding 4 MW/m2. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ''beryllium-joint'' concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket

  2. The ITER Blanket System Design Challenge

    International Nuclear Information System (INIS)

    Full text: The blanket system is one of the most technically challenging components of the ITER machine, having to accommodate high heat fluxes from the plasma, large electromagnetic loads during off-normal events and demanding interfaces with many key components (in particular the vacuum vessel and in-vessel coils) and the plasma. Plasma scenarios impose demanding requirements on the blanket in terms of heat fluxes on various areas of the first wall during different phases of operation (inboard and outboard midplane for start-up/shut-down scenarios and the top region close to the secondary X-point during flat top) as well as large electro-magnetic (EM) loads and transient energy deposition during off-normal plasma events (such as disruptions and vertical displacement events (VDE)). The high heat fluxes resulting in some areas have necessitated the use of “enhanced heat flux” panels capable of accommodating an incident heat flux of up to 5 MW/m2 in steady state. The other regions utilize “normal heat flux” panels, which have been developed and tested for a heat flux of the order of 1 — 2 MW/m2. The FW shaping design requires a compromise between the conflicting requirements for accommodation of steady state and transient loads (energy deposition during off-normal events). A shaped surface increases the heat loads which are due to plasma particles following the field lines compared to a perfectly toroidal surface. The blanket provides a major contribution to the shielding of the vacuum vessel and coils. A challenging criterion is the need to limit the integrated heating in the toroidal field coil (TFC) to ∼ 14 kW. This is particularly severe on the inboard leg where approximately 80% of the total nuclear heat on the TFC is deposited. Several design modifications were considered and analyzed to help achieve this, including increasing the inboard blanket radial thickness and reducing the assembly gaps. This paper summarizes the latest progress in the

  3. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  4. Development of a virtual reality simulator for the ITER blanket remote handling system

    International Nuclear Information System (INIS)

    The authors developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robotic simulation software, ENVISION. The simulator is connected to the control system of the manipulator, which was developed as part of the blanket maintenance system during the Engineering Design Activity (EDA), and can reconstruct the positions of the manipulator and blanket module using position data transmitted from motors through a LAN. In addition, it can provide virtual visual information (e.g., about the interface structures behind the blanket module) by making the module transparent on the screen. It can also be used for confirming a maintenance sequence before the actual operation. The simulator will be modified further, with addition of other necessary functions, and will finally serve as a prototype of the actual simulator for the blanket remote handling system, which will be procured as part of an in-kind contribution

  5. Radiation shield for nuclear reactors

    International Nuclear Information System (INIS)

    A reusable radiation shield for use in a reactor installation comprises a thin-walled, flexible and resilient container, made of plastic or elastomeric material, containing a hydrogenous fluid with boron compounds in solution. The container can be filled and drained in position and the fluid can be recirculated if required. When not in use the container can be folded and stored in a small space. The invention relates to a shield to span the top of the annular space between a reactor vessel and the primary shield. For this purpose a continuous toroidal container or a series of discrete segments is used. Other forms can be employed for different purposes, e.g. mattress- or blanket-like forms can be draped over potential sources of radiation or suspended from a mobile carrier and placed between a worker and a radiation source. (author)

  6. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H.; Enoeda, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  7. Shielding Effectiveness of Laminated Shields

    OpenAIRE

    P. V. Y. Jayasree, V. S. S. N. S. Baba, B. P. Rao

    2008-01-01

    Shielding prevents coupling of undesired radiated electromagnetic energy into equipment otherwise susceptible to it. In view of this, some studies on shielding effectiveness of laminated shields with conductors and conductive polymers using plane-wave theory are carried out in this paper. The plane wave shielding effectiveness of new combination of these materials is evaluated as a function of frequency and thickness of material. Conductivity of the polymers, measured in previous investigatio...

  8. Tailorable Advanced Blanket Insulation (TABI)

    Science.gov (United States)

    Sawko, Paul M.; Goldstein, Howard E.

    1987-01-01

    Single layer and multilayer insulating blankets for high-temperature service fabricated without sewing. TABI woven fabric made of aluminoborosilicate. Triangular-cross-section flutes of core filled with silica batting. Flexible blanket formed into curved shapes, providing high-temperature and high-heat-flux insulation.

  9. Blanket for thermonuclear device

    International Nuclear Information System (INIS)

    The blanket of the present invention can keep the temperature of breeding materials within a predetermined range even if the breeding materials are consumed and the amount of heat generated from the breeding materials is reduced, thereby enabling to release tritium stably. That is, a neutron incident amount control means is disposed to the blanket for controlling the amount of neutrons incident to the breeding materials. Alternatively, a material to form hollow layers are disposed to the periphery of the breeding materials. With such constitution, the neutron incident amount control means enables to control the incident amount of neutrons from plasmas to the breeding materials, thereby enabling to suppress the change of the amount of heat generated in the breeding materials. In addition, the hollow layers formed at the periphery of the breeding materials enables selective filling of fluids having different heat transfer characteristics thereby enabling to control heat resistance between the breeding materials and cooling tubes. Accordingly, temperature of the breeding materials can be kept constant even in any of the cases. (I.S.)

  10. Blanket comparison and selection study. Volume II

    International Nuclear Information System (INIS)

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies

  11. Blanket comparison and selection study. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies. (MOW)

  12. Preliminary neutronics design and analysis of helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Zhongliang; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn; Chen, Chong; Li, Min; Zhou, Guangming

    2015-06-15

    Highlights: • Neutronics design of a helium cooled solid breeder blanket for CFETR was presented. • The breeding zones parallel to FW and perpendicular to FW were optimized. • A series of neutronics analyses for the proposed blanket were shown. - Abstract: Chinese Fusion Engineering Test Reactor (CFETR) is a test tokamak reactor being designed in China to bridge the gap between ITER and future fusion power plant. Tritium self-sufficiency is one of the most important issues for CFETR and the tritium breeding ratio (TBR) is recommended not less than 1.2. As one of the candidates, a helium cooled solid breeder blanket for CFETR superconducting tokamak option was proposed. In the concept, radial arranged U-shaped breeding zones are adopted for higher TBR and simpler structure. In this work, three-dimensional neutronics design and analysis of the blanket were performed using the Monte Carlo N-Particle transport code MCNP with IAEA data library FENDL-2.1. Tritium breeding capability of the proposed blanket was assessed and the breeding zones parallel to first wall (FW) and perpendicular to FW were optimized. Meanwhile, the nuclear heating analysis and shielding performance were also presented for later thermal and structural analysis. The results showed that the blanket could well meet the tritium self-sufficiency target and the neutron shield could satisfy the design requirements.

  13. Preliminary neutronics design and analysis of helium cooled solid breeder blanket for CFETR

    International Nuclear Information System (INIS)

    Highlights: • Neutronics design of a helium cooled solid breeder blanket for CFETR was presented. • The breeding zones parallel to FW and perpendicular to FW were optimized. • A series of neutronics analyses for the proposed blanket were shown. - Abstract: Chinese Fusion Engineering Test Reactor (CFETR) is a test tokamak reactor being designed in China to bridge the gap between ITER and future fusion power plant. Tritium self-sufficiency is one of the most important issues for CFETR and the tritium breeding ratio (TBR) is recommended not less than 1.2. As one of the candidates, a helium cooled solid breeder blanket for CFETR superconducting tokamak option was proposed. In the concept, radial arranged U-shaped breeding zones are adopted for higher TBR and simpler structure. In this work, three-dimensional neutronics design and analysis of the blanket were performed using the Monte Carlo N-Particle transport code MCNP with IAEA data library FENDL-2.1. Tritium breeding capability of the proposed blanket was assessed and the breeding zones parallel to first wall (FW) and perpendicular to FW were optimized. Meanwhile, the nuclear heating analysis and shielding performance were also presented for later thermal and structural analysis. The results showed that the blanket could well meet the tritium self-sufficiency target and the neutron shield could satisfy the design requirements

  14. SHIELD verification and validation report

    Energy Technology Data Exchange (ETDEWEB)

    Boman, C.

    1992-02-01

    This document outlines the verification and validation effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system code. Along with its predecessors, SHIELD has been in use at the Savannah River Site (SRS) for more than ten years. During this time the code has been extensively tested and a variety of validation documents have been issued. The primary function of this report is to specify the features and capabilities for which SHIELD is to be considered validated, and to reference the documents that establish the validation.

  15. Preliminary Analysis for K-DEMO Water Cooled Breeding Blanket Using MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Hun; Kim, Geon-Woo; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National Univ., Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In the present study, thermal-hydraulic analyses for the blanket concept are being conducted using the Multidimensional Analysis of Reactor Safety (MARSKS) code, which has been used for the safety analysis of a pressurized water reactor. The purposes of the analyses are to verify the applicability of the code for the proposed blanket system, to investigate the departure of nucleate boiling (DNB) occurrence during the normal and transient conditions, and to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. In this paper, the thermal analysis results of the proposed blanket design using the MARS-KS code are presented for the normal operation and an accident condition of a reduced coolant flow rate. Afterwards, the plan for the whole blanket system analysis using MARSKS is introduced and the result of the first trial for the multiple blanket module analysis is summarized. In the present study, thermal-hydraulic analyses for the blanket concept were conducted using the MARS-KS code for a single blanket module. By comparing the MARS calculation results with the CFD analysis results, it was found that MARS-KS can be applied for the blanket thermal analysis with less number of computational meshes. Moreover, due to its capability on the two-phase flow analysis, it can be used for the transient or accident simulation where a phase change may be resulted in. In the future, the MARS-KS code will be applied for the anticipated transient and design based accident analyses. The investigation of the DNB occurrence during the normal and transient conditions will be of special interest of the analysis using it. After that, a methodology to simulate the entire blanket system was proposed by using the DLL version of MARS-KS. A supervisor program, which controls the multiple DLL files, was developed for the common header modelling. The program explicitly determines the flow rates of each module which can equalize

  16. Shielding material

    International Nuclear Information System (INIS)

    The present invention effectively utilizes iron reinforced concrete wastes generated upon dismantling of concretes of nuclear facilities, to provide shielding material. That is, at least one of members selected from the group consisting of iron rods in iron-reinforced concretes and, regenerated aggregates regenerated from concrete wastes upon dismantling is charged in a predetermined mold. Cement pastes or cement mortars are charged therein, and solidified, cured and released from the mold. With such procedures, a block-formed shielding materials made of precast concretes can be obtained. In this case, the cements including much water of crystallization are used. Since iron reinforcing dusts and iron reinforcing dust chips are contained in the shielding materials, a great γ-ray shielding effect can be obtained. Further, since cements containing a great amount of water of crystallization are used, a great neutron shielding effect can be obtained. (I.S.)

  17. Safety Analysis on Dual-functional Lithium Lead Test Blanket Module With RELAP5%基于 RELAP5的双功能液态锂铅实验包层模块安全分析

    Institute of Scientific and Technical Information of China (English)

    李伟; 田文喜; 秋穗正; 苏光辉

    2013-01-01

    利用嵌入了液态锂铅(LiPb)的热工水力子模块的系统程序RELAP5/MOD3,对双功能液态锂铅(DFLL)实验包层模块(TBM)的安全特性进行评价。对DFLL-TBM 及其辅助冷却系统的稳态运行工况、预期运行事件和相关事故工况进行了建模、计算和分析。计算结果表明,稳态运行时第一壁(FW )结构材料表面最高温度低于允许值550℃。事故工况下氦气泄漏引起的ITER真空室(VV)、窗口设备室(port cell)以及托卡马克冷却水系统大厅拱顶(TCWS vault)的增压均低于ITER要求的限值0.2 MPa。实验包层钢结构不会熔化且可通过辐射换热有效地导出衰变余热。DFLL-TBM 的设计可满足ITER对其热工水力安全方面的要求。%Safety assessment on the dual-functional lithium lead test blanket module (DFLL-TBM) was performed with a modified version of RELAP5/MOD3 code in which the LiPb eutectic thermal-hydraulic sub-module was inserted .The DFLL-TBM and its ancillary cooling systems were modeled to conduct the computation and analysis for steady-state operation ,anticipated operational incidents and relevant accidents .Compu-tational results indicate that the maximum surface temperature of the first wall (FW) structural material is lower than the allowable value of 550 ℃ .For the accident analy-ses ,none of the pressure increases in ITER vacuum vessel (VV) ,port cell and TCWS vault induced by helium leaking is beyond the ITER safety limit of 0.2 MPa .No melting of the TBM box is found and the decay heat can be removed efficiently by the radiation heat transfer .With the current design ,DFLL-TBM can meet the thermal-hydraulic safety requirements from IT ER .

  18. Trade-off study of liquid-metal self-cooled blankets

    International Nuclear Information System (INIS)

    A trade-off study of liquid-metal self-cooled blankets was carried out to define the performance of these blankets with respect to the main functions in a fusion reactor, and to determine the potential to operate at the maximum possible values of the performance parameters. The main purpose is to improve the reactor economics by maximizing the blanket energy multiplication factor, reduce the capital cost of the reactor, and satisfy the design requirements. The main parameters during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the 6Li enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, the impact of different reactor design choices on the performance parameters was analyzed. The effect of the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, the coolant choice for the nonbreeding inboard blanket, and the neutron source distribution were part of the trade-off study. In addition, tritium breeding benchmark calculations were performed to study the impact of the use of different transport codes and nuclear data libraries. The importance and the negative effect of high TBR on the energy multiplication motivated the benchmark calculations

  19. Thermomechanics analysis and optimization for high power density blanket

    International Nuclear Information System (INIS)

    Thermomechanics analysis, i.e. steady thermal analysis and steady thermal stress analysis have been carried out for a high power density blanket. The Fusion Experimental Breeder (FEB) is adopted as the reference reactor. The parts for the blanket module in Pro/ENGINEER were created, then turn to Pro/MECHANICA functionality for thermomechanics analysis. During analysis, the distribution of the power density in the blanket was optimized to be more flat, the arched curvature and rounds of the cooling tube panels were optimized to less stiffness, and the boundary condition at the interface of helium cooling tube panel and manifold chamber was optimized, which is reasonable by using advanced welding processes with electron beam or laser beam in a single pass. To the end, a maximum temperature Tm 350 degree C and a maximum shear stress τm 80 MPa for the helium cooling panels have been shown in the calculations. (authors)

  20. Shielding Effectiveness of Laminated Shields

    Directory of Open Access Journals (Sweden)

    B. P. Rao

    2008-12-01

    Full Text Available Shielding prevents coupling of undesired radiated electromagnetic energy into equipment otherwise susceptible to it. In view of this, some studies on shielding effectiveness of laminated shields with conductors and conductive polymers using plane-wave theory are carried out in this paper. The plane wave shielding effectiveness of new combination of these materials is evaluated as a function of frequency and thickness of material. Conductivity of the polymers, measured in previous investigations by the cavity perturbation technique, is used to compute the overall reflection and transmission coefficients of single and multiple layers of the polymers. With recent advances in synthesizing stable highly conductive polymers these lightweight mechanically strong materials appear to be viable alternatives to metals for EM1 shielding.

  1. Shielded syringe

    International Nuclear Information System (INIS)

    This patent specification relates to a partially disposable shielded syringe for injecting radioactive material into a patient. It is claimed that the technique overcomes the problems of non-standardisation of syringe size. (U.K.)

  2. Status of fusion reactor blanket design

    International Nuclear Information System (INIS)

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  3. Experimental and numerical investigations of heat transfer in the first wall of Helium-Cooled-Pebble-Bed Test Blanket Module – Part 1: Presentation of test section and 3D CFD model

    International Nuclear Information System (INIS)

    Highlights: • Design of the test section for investigation of heat transfer in the first wall is presented. • Manufacturing details and providing of operational ready mock-up are given. • Corresponding 3D CFD model of the test section is described. - Abstract: This paper deals with cooling of the first wall of Helium-Cooled-Pebble-Bed Test Blanket Module (HCPB TBM) for ITER. The first wall cooling is an important investigation issue due to an extreme asymmetry of heat loads: heat flux on the plasma facing side is several times stronger than the one on the side which faces breeding units. Our preliminary 3D CFD analysis revealed that under such conditions the heat transfer coefficient is significantly lower than predicted by common heat transfer correlations (see Ilić et al., 2006). For an experimental validation of these results HETRA (HEat TRAnsfer) test section has been designed and built at the Institute for Neutron Physics and Reactor Technology in Karlsruhe Institute of Technology. The HETRA test section involves in full scale one U-pass of the cooling channel in the first wall of HCPB TBM Version 1.1 (see Meyder et al., 2005). The HCPB TBM relevant experimental conditions have been provided: test channel made of Eurofer steel, helium coolant at pressure of 8 MPa and inlet temperature of 300 °C and heat flux of 270 kW/m2 at the channel surface representing plasma facing side of the first wall. Test channels with hydraulically smooth and with hydraulically rough walls have been built. At each test channel the temperature of Eurofer walls has been measured at ∼60 positions. For numerical investigations the 3D CFD modelling with the code STAR CD has been applied. This paper is the first report on this study and presents the development of the test section and of the 3D CFD model. The analyses of the obtained experimental and computational results are presented in the second report (see Ilić et al., 2014)

  4. Development of simulator for remote handling system of ITER blanket

    International Nuclear Information System (INIS)

    The maintenance activity in the ITER has to be performed remotely because 14 MeV neutron caused by fusion reaction induces activation of structural material and emission of gamma ray. In general, it is one of the most critical issues to avoid collision between the remote maintenance system and in-vessel components. Therefore, the visual information in the vacuum vessel is required strongly to understand arrangement of these devices and components. However, there is a limitation of arrangement of viewing cameras in the vessel because of high intensity of gamma ray. It is expected that enough numbers of cameras and lights are not available because of arrangement restriction. Furthermore, visibility of the interested area such as the contacting part is frequently disturbed by the devices and components, thus it is difficult to recognize relative position between the devices and components only by visual information even if enough cameras and lights are equipped. From these reasons, the simulator to recognize the positions of each devices and components is indispensable for remote handling systems in fusion reactors. The authors have been developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robot simulation software ''ENVISION''. The simulator is connected to the control system of the manipulator which was developed as a part of the blanket maintenance system in the EDA and can reconstruct the positions of the manipulator and the blanket module using the position data of the motors through the LAN. In addition, it can provide virtual visual information, such as the connecting operation behind the blanket module with making the module transparent on the screen. It can be used also for checking the maintenance sequence before the actual operation. The developed simulator will be modified further adding other necessary functions and finally completed as a prototype of the actual simulator for the blanket remote handling system

  5. Improved structure and long-life blanket concepts for heliotron reactors

    International Nuclear Information System (INIS)

    New design approaches are proposed for the LHD-type heliotron D-T demo-reactor FFHR2 to solve the key engineering issues of blanket space limitation and replacement difficulty. A major radius over 14 m is selected to permit a blanket-shield thickness of about 1 m and to reduce the neutron wall loading and toroidal field, while achieving an acceptable cost of electricity COE. Two sets of optimization are successfully carried out. One is to reduce the magnetic hoop force on the helical coil support structures by adjustment of the helical winding coil pitch parameter and the poloidal coils design, which facilitates expansion of the maintenance ports. The other is a long-life blanket concept using carbon armor tiles that soften the neutron energy spectrum incident on the self-cooled Flibe-RAF blanket. In this adaptation of the Spectral-shifter and Tritium breeder Blanket (STB) concept a local tritium breeding ratio TBR over 1.2 is feasible by optimized arrangement of the neutron multiplier Be in the carbon tiles, and the radiation shielding of the super-conducting magnet coils is also significantly improved. Using the constant cross sections of helically winding shape, the 'screw coaster' concept is proposed to replace in-vessel components such as the STB armor tiles. The key R and D issues to develop the STB concept, such as radiation effects on carbon and enhanced heat transfer of Flibe, are elucidated. (author)

  6. A Cylindrical Shielding Design Concept for the Prototype Gen-IV Sodium-cooled Fast Reactor

    International Nuclear Information System (INIS)

    In the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR), a metal fueled, blanket-free, pool type SFR concept is adopted to acquire the inherent safety characteristics and high proliferation-resistance. In the pool type fast reactor, the intermediate heat exchangers (IHXs), which transfer heat from the primary sodium pool to a secondary sodium loop, are placed inside of the reactor vessel. Hence, secondary sodium passing the IHXs can be radioactivated by a 23Na(n,g)24Na reaction, and radioactivated secondary sodium causes a significant dose in the Steam Generator Building (SGB). Therefore, a typical core of a pool type fast reactor is usually surrounded by a massive quantity of shields. In addition, the blanket composed of depleted uranium plays a role as superior shielding material; a significant increase in shields is required in the blanket-free pool type SFR. In this paper, a new cylindrical shielding design concept is proposed for a blanket-free pool type SFR. In a conventional shielding design, massive axial shields are required to prevent irradiation of secondary sodium passing IHXs and they should be replaced according to the subassembly replacement in spite of negligible depletion of the shielding material. The proposed shielding design concept minimizes the quantity of shields without their replacement. In this paper, a new cylindrical shielding design concept is proposed for a blanket-free pool type SFR such as a PGSFR. The proposed design concept satisfied the dose limit in the steam generator building successfully without introducing a large quantity of B4C shielding inside the subassembly

  7. Shielding door

    International Nuclear Information System (INIS)

    An exhaust processing device disposed at the outside of a radioactive nuclide handling chamber is connected to a shielding door as an exit/inlet for the radioactive nuclide handling chamber. An exhaust chamber is disposed in the inside of the thick shielding door having a thickness. The exhaust chamber is always evacuated by an exhaustion blower and maintained at a negative pressure. The radioactive nuclides in the radiation nuclide handling facility are shielded by an inner seal of the double seals which seal the gap between the wall body and the shielding door. Even if a trace amount of radioactive nuclides leaks from the seal at the inner side, it is shielded by an outer seal, and sucked into the exhaust chamber which is maintained at the negative pressure. Then, it is passed from a ventilation channel through a flexible tube then caught and removed by the filter of the exhaust processing device. This can reduce the capacity of the exhaustion blower to reduce the scale of the exhaust processing device. (I.N.)

  8. Concepts for fusion fuel production blankets

    International Nuclear Information System (INIS)

    The fusion blanket surrounds the burning hydrogen core of the fusion reactor. It is in this blanket that most of the energy released by the DT fusion reaction is converted into useable product, and where tritium fuel is produced to enable further operation of the reactor. Blankets will involve new materials, conditions and processes. Several recent fusion blanket concepts are presented to illustrate the range of ideas

  9. Concepts for fusion fuel production blankets

    International Nuclear Information System (INIS)

    The fusion blanket surrounds the burning hydrogen core of the fusion reactor. It is in this blanket that most of the energy released by the DT fusion reaction is converted into usable product, and where tritium fuel is produced to enable further operation of the reactor. Blankets will involve new materials, conditions and processes. Several recent fusion blanket concepts are presented to illustrate the range of ideas

  10. Numerical benchmarks TRIPOLI - MCNP with use of MCAM on FNG ITER bulk shield and FNG HCLL TBM mock-up experiments

    International Nuclear Information System (INIS)

    3D Monte Carlo (MC) transport codes are of first importance for the assessment of breeding blankets neutronic performances. This article supported by the EFDA Goal Oriented Training Program Eurobreed presents the difference in results between the CEA MC code TRIPOLI-4 and MCNP on two fusion neutronics benchmarks, assessing therefore TRIPOLI-4 calculation capabilities on shielding and tritium production rate (TPR). The first selected benchmark, assessing the shielding capability, is the Frascati neutron generator (FNG) ITER bulk shield experiment whereas the second benchmark, assessing the TPR calculation, is the preliminary design of the FNG helium cooled lithium-lead (HCLL) test blanket module (TBM) mock-up. To ensure the consistency of the geometry description, MCAM tool is used for automatic TRIPOLI - MCNP geometry conversions and check. A good coherence between TRIPOLI-4 and MCNP for neutron flux, reaction rates and TPR calculations is obtained. Moreover, it appears that MCAM performs fast, automatic and appropriate TRIPOLI - MCNP geometry conversions and finally that the tabulated FNG neutron source model from KIT is appropriate for TRIPOLI-4 calculations.

  11. Numerical benchmarks TRIPOLI - MCNP with use of MCAM on FNG ITER bulk shield and FNG HCLL TBM mock-up experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fausser, Clement, E-mail: clement.fausser@cea.fr [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France); Lee, Yi-Kang [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France); Villari, Rosaria [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Zeng Qin; Zhang Junjun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Serikov, Arkady [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology (Germany); Trama, Jean-Christophe; Gabriel, Franck [CEA, DEN, Saclay, DANS/DM2S/SERMA, F-91191 Gif-sur-Yvette (France)

    2011-10-15

    3D Monte Carlo (MC) transport codes are of first importance for the assessment of breeding blankets neutronic performances. This article supported by the EFDA Goal Oriented Training Program Eurobreed presents the difference in results between the CEA MC code TRIPOLI-4 and MCNP on two fusion neutronics benchmarks, assessing therefore TRIPOLI-4 calculation capabilities on shielding and tritium production rate (TPR). The first selected benchmark, assessing the shielding capability, is the Frascati neutron generator (FNG) ITER bulk shield experiment whereas the second benchmark, assessing the TPR calculation, is the preliminary design of the FNG helium cooled lithium-lead (HCLL) test blanket module (TBM) mock-up. To ensure the consistency of the geometry description, MCAM tool is used for automatic TRIPOLI - MCNP geometry conversions and check. A good coherence between TRIPOLI-4 and MCNP for neutron flux, reaction rates and TPR calculations is obtained. Moreover, it appears that MCAM performs fast, automatic and appropriate TRIPOLI - MCNP geometry conversions and finally that the tabulated FNG neutron source model from KIT is appropriate for TRIPOLI-4 calculations.

  12. Japanese contributions to ITER shielding neutronics design

    International Nuclear Information System (INIS)

    Shielding design for superconducting magnets and personal exposure were performed in ITER nuclear design on the basis of reports presented to the 1990 winter and summer ITER specialist meetings. Inboard shield benchmark calculation, bulk inboard shielding analysis, inboard heterogeneity effect on shielding property analysis, gap streaming analysis were discussed on shielding properties for superconducting magnets. In addition to these, transport and Monte Carlo analyses in neutral beam injector duct for biological shielding were investigated with relation to the concept of cryostat. Further biological shielding were investigated in reactor room and site boundary during the maintenance when one activated module was extracted and hanged from the ceiling. As the results of these studies, ITER shielding characteristics were evaluated and problem areas and directions for future works were shown. (author)

  13. Breeding blankets for thermonuclear reactors

    International Nuclear Information System (INIS)

    Materials with structures suitable for this purpose are studied. A bibliographic review of the main solid and liquid lithiated compounds is then presented. Erosion, dimensioning and maintenance problems associated with the limiter and the first wall of the reactor are studied from the point of view of the constraints they impose on the design of the blankets. Detailed studies of the main solid and liquid blanket concepts enable the best technological compromises to be determined for the indispensable functions of the blanket to be assured under acceptable conditions. Our analysis leads to four classes of solution, which cannot at this stage be considered as final recommendations, but which indicate what sort of solutions it is worthwhile exploring and comparing in order to be in a position to suggest a realistic blanket at the time when plasma control is sufficiently good for power reactors to be envisaged. Some considerations on the general architecture of the reactor are indicated. Energy storage with pulsed reactors is discussed in the appendix, and a first approach made to minimizing the total tritium recovery

  14. Investigation of aqueous slurries as fusion reactor blankets

    International Nuclear Information System (INIS)

    Numerical and experimental studies were carried out to assess the feasibility of using an aqueous slurry, with lithium in its solid component, to meet the tritium breeding, cooling, and shielding requirements of a controlled thermonuclear reactor (CTR). The numerical studies were designed to demonstrate the theoretical ability of a conceptual slurry blanket to breed adequate tritium to sustain the CTR. The experimental studies were designed to show that the tritium retention characteristics of likely solid components for the slurry were conducive to adequate tritium recovery without the need for isotopic separation. The numerical portion of this work consisted in part of using ANISN, a one-dimensional finite difference neutron transport code, to model the neutronic performance of the slurry blanket concept. The parameters governing tritium production and retention in a slurry were computed and used to modify the results of the ANISN computer runs. The numerical work demonstrated that the slurry blanket was only marginally capable of breeding sufficient tritium without the aid of a neutron multiplying region. The experimental portion of this work consisted of several neutron irradiation experiments, which were designed to determine the retention abilities of LiF particles

  15. APT 3He target/blanket. Topical report

    International Nuclear Information System (INIS)

    The 3He target/blanket (T/B) preconceptual design for the 3/8-Goal facility is based on a 1000-MeV, 200-mA accelerator to produce a high-intensity proton beam that is expanded and then strikes one of two T/B modules. Each module consists of a centralized neutron source made of tungsten and lead, a proton beam backstop region made of zirconium and lead, and a moderator made of D2O. Helium-3 gas is circulated through the neutron source region and the blanket to create tritium through neutron capture. The gas is continually processed to extract the tritium with an online separation process

  16. Comparison analysis of fusion breeder blanket concepts

    International Nuclear Information System (INIS)

    Based on the wide survey, the development status and key issues of fusion breeder blanket concepts are summarized. Two types of blanket concepts, i.e. solid and liquid breeder blanket, were compared and assessed in terms of engineering feasibility, tritium recovery and control, economic and safety aspects, etc. The advantages and disadvantages of the two types of blanket concepts were clarified from the viewpoint of technology realization and development potential. This study may act as a valuable reference for fusion blanket concept selection and design. (authors)

  17. Activation analysis of coolant water in ITER blanket and divertor

    International Nuclear Information System (INIS)

    Coolant water in blankets and divertor cassettes will be activated by neutrons during ITER operation. 16N and 17N are determined to be the most important activation products in the coolant water in terms of their impact on ITER design and performance. In this study, the geometry of cooling channels in blanket module 4 was described precisely in the ITER neutronics model ‘Alite-4’ based on the latest CAD model converted using MCAM developed by FDS Team. The 16N and 17N concentration distribution in the blanket, divertor cassette and their primary heat transport systems were calculated by MCNP with data library FENDL2.1. The activation of cooling pipes induced 17N decay neutrons was analyzed and compared with that induced by fusion neutrons, using FISPACT-2007 with data library EAF-2007. The outlet concentration of blanket and divertor cooling systems was 1.37 × 1010 nuclide/cm3 and 1.05 × 1010 nuclide/cm3 of 16N, 8.93 × 106 nuclide/cm3 and 0.33 × 105 nuclide/cm3 of 17N. The decay gamma-rays from 16N in activated water could be a problem for cryogenic equipments inside the cryostat. Near the cryostat, the activation of pipes from 17N decay neutrons was much lower than that from fusion neutrons.

  18. Thermal-hydraulic design and analysis of helium cooled solid breeder blanket for Chinese Fusion Engineering Test Reactor

    International Nuclear Information System (INIS)

    To bridge the gap between ITER and DEMO and to realize the fusion energy in China, a fusion device Chinese Fusion Engineering Test Reactor (CFETR) was proposed and being designed aiming at 50-200 MW fusion power, 30-50% duty time factor, and tritium self-sustained. Three kinds of tritium breeding blanket concepts, including helium-cooled solid blanket, water-cooled solid blanket and liquid metal-cooled liquid blanket, have been considered for CFETR. Compared to ITER test blanket module, the blanket design for CFETR is facing much more challenges due to the compulsive requirements of tritium self-sufficiency, nuclear heat removal and the space limitation for blanket installation. In this paper, a kind of helium cooled solid tritium breeder blanket was designed for CFETR full superconducting tokamak. The thermal-hydraulic designs were carried out based on the blanket structure design and neutronics calculation. The performance evaluation was conducted using ANSYS, and three-dimensional fluid-solid coupled models were modeled for the accuracy results. The results showed that the FW and BU can satisfy the design requirements. (author)

  19. Neutronics Analysis of Water-Cooled Ceramic Breeder Blanket for CFETR

    Science.gov (United States)

    Zhu, Qingjun; Li, Jia; Liu, Songlin

    2016-07-01

    In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the water-cooled ceramic breeder blanket for CFETR. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  20. RF-transparent solar shield

    International Nuclear Information System (INIS)

    By combining durable Kapton films with quartz fibers, an effective solar shield or blanket is produced which also serves as an efficient RF-transparent window. The window consists of a series of Kapton film envelopes sandwiching thin quartz paper. Not only must the window prevent the sun from overheating the electronics and distorting mechanically aligned antennas, it must also prevent radiant heat loss from inside the satellite when it is in shadow and radiating to space at approx. 40K. The guidelines for achieving an effective high-frequency RF window are a low dielectric constant to keep reflections down, a low loss tangent so RF absorption and molecular movement will be minimal, and low mass with tin and lightweight materials. Because these guidelines were followed, the RF insertion loss of the multiple envelope shield is less than 1/4 dB at high frequency. This paper concentrates on the material and processing aspects of an RF-transparent solar shield

  1. Study on shielding design method of radiation streaming in a tokamak-type DT fusion reactor based on Monte Carlo calculation

    International Nuclear Information System (INIS)

    three dimensional Monte Carlo calculation is required for the shielding calculation in the tokamak-type DT nuclear fusion reactor with many penetrations. 2) In Chapter 3, radiation streaming through the slit between the blanket modules is described, in Chapter 4, that through the small circular duct in the blanket modules is described, in Chapter 5, and that through the large opening duct in the vacuum vessel is described. The nuclear properties of the blanket, the vacuum vessel and the TF coil are systematically calculated for the various configurations. Based on the obtained results, the analytical formulas of these nuclear properties are deduced, and the guideline is proposed for the shielding design. 3) In Chapter 6, in order to evaluate the decay gamma ray dose rate around the duct due to radiation streaming through the large opening duct in the vacuum vessel, the evaluation method is proposed using the decay gamma ray Monte Carlo calculation. By replacing the prompt gamma-ray spectrum to the decay one in the Monte Carlo code, the decay gamma ray Monte Carlo transport calculation is conducted. The effective variance reduction method is developed for the decay gamma ray Monte Carlo calculation in the over-all tokamak region with drastically reducing the calculation time. Using this method, the shielding calculation is conducted for the ITER duct penetration, and the effectiveness of this method is demonstrated. (author)

  2. RF DEMO ceramic helium cooled blanket, coolant and energy transformation systems

    International Nuclear Information System (INIS)

    RF DEMO-S reactor is a prototype of commercial fusion reactors for further generation. A blanket is the main element unit of the reactor design. The segment structure is the basis of the ceramic blanket. The segments mounting/dismounting operations are carried out through the vacuum vessel vertical port. The inboard/outboard blanket segment is the modules welded design, which are welded by back plate. The module contains the back plate, the first wall, lateral walls and breeding zone. The 9CrMoVNb steel is used as structural material. The module internal space formed by the first wall, lateral walls and back plate is used for breeding zone arrangement. The breeding zone design based upon the poloidal BIT (Breeder Inside Tube) concept. The beryllium is used as multiplier material and the lithium orthosilicate is used as breeder material. The helium at 0.1 MPa is used as purge gas. The cooling is provided by helium at 10 MPa. The coolant supply/return to the blanket modules are carrying out on the two independent circuits. The performed investigations of possible transformation schemes of DEMO-S blanket heat power into the electricity allowed to make a conclusion about the preferable using of traditional steam-turbine facility in the secondary circuit. (author)

  3. Main maintenance operations for Test Blanket Systems in ITER TBM port cells

    International Nuclear Information System (INIS)

    Highlights: • The Test Blanket System components layout in Port Cell room is described. • The maintenance of the two Test Blanket Systems in ITER port cell is addressed. • The overall replacement/maintenance strategy is defined. • The main maintenance tasks of the systems are discussed. • The maintenance strategy and required tools are presented. -- Abstract: Each Test Blanket System in ITER is formed by an in-vessel component, the Test Blanket Module, and several associated ancillary systems (coolant and Tritium systems, instrumentation and control systems). The paper describes the overall replacement/maintenance strategy and the main maintenance tasks that have to be considered in the design of the systems. It shows that there are no critical issues

  4. Blanket comparison and selection study. Volume I

    International Nuclear Information System (INIS)

    The objectives of the Blanket Comparison and Selection Study (BCSS) can be stated as follows: (1) Define a small number (approx. 3) of blanket design concepts that should be the focus of the blanket R and D program. A design concept is defined by the selection of all materials (e.g., breeder, coolant, structure and multiplier) and other major characteristics that significantly influence the R and D requirements. (2) Identify and prioritize the critical issues for the leading blanket concepts. (3) Provide the technical input necessary to develop a blanket R and D program plan. Guidelines for prioritizing the R and D requirements include: (a) critical feasibility issues for the leading blanket concepts will receive the highest priority, and (b) for equally important feasibility issues, higher R and D priority will be given to those that require minimum cost and short time

  5. Solar energy apparatus with apertured shield

    Science.gov (United States)

    Collings, Roger J. (Inventor); Bannon, David G. (Inventor)

    1989-01-01

    A protective apertured shield for use about an inlet to a solar apparatus which includesd a cavity receiver for absorbing concentrated solar energy. A rigid support truss assembly is fixed to the periphery of the inlet and projects radially inwardly therefrom to define a generally central aperture area through which solar radiation can pass into the cavity receiver. A non-structural, laminated blanket is spread over the rigid support truss in such a manner as to define an outer surface area and an inner surface area diverging radially outwardly from the central aperture area toward the periphery of the inlet. The outer surface area faces away from the inlet and the inner surface area faces toward the cavity receiver. The laminated blanket includes at least one layer of material, such as ceramic fiber fabric, having high infra-red emittance and low solar absorption properties, and another layer, such as metallic foil, of low infra-red emittance properties.

  6. Compatibility problems in tritium breeding blankets

    International Nuclear Information System (INIS)

    Compatibility between tritium breeding materials (liquid or solid), neutron multiplier and structural steels is a concern for the choice of a tritium breeding blanket for NET. For solid tritium breeding blanket, it seems that the more severe compatibility problem is due to the interaction of beryllium with steel. As for the water-cooled Pb17Li blanket, the first results obtained in experimental conditions closed to the concept have evidenced lower corrosion rates than those measured in thermal convection loops

  7. Fusion blankets for high efficiency power cycles

    International Nuclear Information System (INIS)

    Definitions are given of 10 generic blanket types and the specific blanket chosen to be analyzed in detail from each of the 10 types. Dimensions, compositions, energy depositions and breeding ratios (where applicable) are presented for each of the 10 designs. Ultimately, based largely on neutronics and thermal hyraulics results, breeding an nonbreeding blanket options are selected for further design analysis and integration with a suitable power conversion subsystem

  8. Impact of image noise levels, scout scan dose and lens shield on image quality and radiation exposure in z-axis dose-modulated neck MSCT on 16- and 64-slice Toshiba Aquilion scanners

    International Nuclear Information System (INIS)

    Objective: Assessing the impact of image noise (IN) levels, scout scan dose and lens shield use on image quality and radiation exposure in neck multislice CT (MSCT) when using z-axis dose modulation (DM). Methods: Neck MSCT phantom studies with/without z-axis DM were performed by using different IN levels (S.D. 7.5-30 HU) and scout scan tube currents (7.5-50 mA) on Toshiba Aquilion scanners (16-/64-slice). Image quality indices were evaluated by two radiologists and radiation exposure parameters calculated. Cadaveric phantom measurements elucidated lens shield interactions with DM efficacy. The lowest dose scan protocol with diagnostic image quality was introduced into the clinical imaging routine and retrospectively evaluated in 20 age-matched patients undergoing neck MSCT with/without DM. Results: The highest image noise level in DM neck studies with comparable image quality to standard neck CT amounted to 20 HU, resulting in a mean tube current of 50 mAs (CTDIw 6.3 mGy). DM reduced effective dose by 35% and organ dose figures (lens, thyroid) by 33%. Scout scan dose lowering to 20 mA resulted in an effective dose (ED) decrease of 0.06 mSv (5%). Avoiding lens shield placement during scout scan effected an organ dose decrease of 20%. Overall contour sharpness and image contrast did not differ significantly (DM/without DM) whereas image noise was rated higher in DM neck CT studies (p < 0.05). Conclusions: z-Axis dose modulation, as assessed on 16- and 64-slice Toshiba Aquilion scanners, is effective and mandatory in neck MSCT. DM efficacy can be enhanced by optimising scout scan doses and lens shield use.

  9. Nuclear performance optimization of the Be/Li/Th blanket for the fusion breeder

    International Nuclear Information System (INIS)

    More rigorous nuclear analysis, including treatment of resonance self-shielding effects coupled with an optimization procedure, has resulted in improved performance of the Be/Li/Th blanket. Net U-233 breeding ratio has increased 36% (to 0.84) while at an average U-233/Th ratio of 0.5 a/o average energy multiplication has increased only 12% (to 2.1) compared with earlier results

  10. Design of ITER vacuum vessel in-wall shielding

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X., E-mail: xiaoyu.wang@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ioki, K. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Morimoto, M. [Mitsubishi Heavy Industries, 1-1, Wadasaki-cho 1-chome, Hyogo-ku, Kobe (Japan); Choi, C.H.; Utin, Y.; Sborchia, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); TaiLhardat, O. [Assystem EOS, ZAC SAINT MARTIN, 23 rue Benjamin Franklin, 84120 Pertuis (France); Mille, B.; Terasawa, A.; Gribov, Y.; Barabash, V.; Polunovskiy, E.; Dani, S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pathak, H.; Raval, J. [ITER-India, Institute for Plasma Research, Gandhinagar 382025 (India); Liu, S.; Lu, M.; Du, S. [Institute of Plasma Physics, China Academy of Sciences, Shushanhu Road 350, Hefei (China)

    2014-10-15

    The ITER vacuum vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with in-wall shielding (IWS) and cooling water. The main purpose of the in-wall shielding is to provide neutron shielding together with the blanket and VV shells and water during ITER plasma operation and to reduce the ripple of the Toroidal magnetic field. Based on ITER vacuum vessel structure and related requirements, in-wall shielding are designed as about 8900 individual blocks with different sizes and several different materials distributed over nine vessel sectors and nine field joints of vessel sectors. This paper presents the design of the IWS, considering loads, structural stresses and assembly method, and also shows neutron shielding effect and TF ripple reduced by the IWS.

  11. Design of ITER vacuum vessel in-wall shielding

    International Nuclear Information System (INIS)

    The ITER vacuum vessel is a torus-shaped, double wall structure. The space between the double walls of the VV is filled with in-wall shielding (IWS) and cooling water. The main purpose of the in-wall shielding is to provide neutron shielding together with the blanket and VV shells and water during ITER plasma operation and to reduce the ripple of the Toroidal magnetic field. Based on ITER vacuum vessel structure and related requirements, in-wall shielding are designed as about 8900 individual blocks with different sizes and several different materials distributed over nine vessel sectors and nine field joints of vessel sectors. This paper presents the design of the IWS, considering loads, structural stresses and assembly method, and also shows neutron shielding effect and TF ripple reduced by the IWS

  12. ARIES-ST nuclear analysis and shield design

    International Nuclear Information System (INIS)

    A power plant design based on the spherical torus (ST) concept has been developed by the ARIES team. This paper documents the results of the nuclear and radiation protection analyses carried out for the ARIES-ST design. The nuclear analysis addresses the key neutronics issues, such as the neutron wall loading profile, radiation damage to structural components and their lifetimes, tritium breeding ratio (TBR), and nuclear heat loads to in-vessel components. The main theme of the shielding analysis is to develop guidance and recommendations on radiation protection for the TF magnet, in particular, the center-post. The need for an inboard shield, the selection of an optimal shield, the rationale for the shielding material choices, and the consequences of the shielding material choices on the overall design are reported herein. During the course of the ARIES-ST study, the design has been analyzed rigorously with a set of 3-D nuclear analyses to guide the developing design. The results of the assessment had a major impact on the design choices. For instance, the insufficient breeding along with other design constraints have ruled out the use of several attractive solid breeder blankets, the excessive neutron damage to the center-post provided strong incentives to shield the center-post, and the high radiation damage to the plasma facing components has limited the service lifetime of the ferritic steel (FS) structure to a few full power years. Furthermore, the high heat load to the inboard shield (400 MW, 10% of thermal power) forced the design to recover the inboard heating as high-grade heat to enhance the power balance. Also, the sensitivity of the outboard-only LiPb breeding blanket to the inboard shielding materials has limited the shielding options and excluded several high performance inboard-shielding materials. The performed analyses and results are reported and discussed in relation to the integrated design and the established top-level requirements for the

  13. Shielding requirements in helical tomotherapy

    International Nuclear Information System (INIS)

    Helical tomotherapy is a relatively new intensity-modulated radiation therapy (IMRT) treatment for which room shielding has to be reassessed for the following reasons. The beam-on-time needed to deliver a given target dose is increased and leads to a weekly workload of typically one order of magnitude higher than that for conventional radiation therapy. The special configuration of tomotherapy units does not allow the use of standard shielding calculation methods. A conventional linear accelerator must be shielded for primary, leakage and scatter photon radiations. For tomotherapy, primary radiation is no longer the main shielding issue since a beam stop is mounted on the gantry directly opposite the source. On the other hand, due to the longer irradiation time, the accelerator head leakage becomes a major concern. An analytical model based on geometric considerations has been developed to determine leakage radiation levels throughout the room for continuous gantry rotation. Compared to leakage radiation, scatter radiation is a minor contribution. Since tomotherapy units operate at a nominal energy of 6 MV, neutron production is negligible. This work proposes a synthetic and conservative model for calculating shielding requirements for the Hi-Art II TomoTherapy unit. Finally, the required concrete shielding thickness is given for different positions of interest

  14. Shield verification and validation action matrix summary

    Energy Technology Data Exchange (ETDEWEB)

    Boman, C.

    1992-02-01

    WSRC-RP-90-26, Certification Plan for Reactor Analysis Computer Codes, describes a series of action items to be completed for certification of reactor analysis computer codes used in Technical Specifications development and for other safety and production support calculations. Validation and verification are integral part of the certification process. This document identifies the work performed and documentation generated to satisfy these action items for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system, it is not certification of the complete SHIELD system. Complete certification will follow at a later date. Each action item is discussed with the justification for its completion. Specific details of the work performed are not included in this document but can be found in the references. The validation and verification effort for the SHIELD, SHLDED, GEDIT, GENPRT, FIPROD, FPCALC, and PROCES modules of the SHIELD system computer code is completed.

  15. The impact of blanket design on activation and thermal safety

    International Nuclear Information System (INIS)

    Activation and thermal safety analyses for experimental and power reactors are presented. The effects of a strong neutron absorber, B4C, on activation and temperature response of experimental reactors to Loss-of-Cooling Accidents are investigated. Operational neutron fluxes, radioactivities of elements and thermal transients are calculated using the codes ONEDANT, REAC and THIOD, respectively. The inclusion of a small amount of B4C in the steel blanket of an experimental reactor reduces its activation and the post LOCA temperature escalation significantly. Neither the inclusion of excessive amounts of B4C nor enriched 10B in the first walls of an experimental reactor bring much advantage. The employment of a 2 cm graphite tile liner before the first wall helps to limit the post LOCA escalation of first wall temperature. The effect of replacing a 20 cm thick section of a steel shield of a fusion power reactor with B4C is also analyzed. The first wall temperature peak is reduced by 100 degree C in the modified blanket. The natural convection effect on thermal safety of a liquid lithium cooled blanket are investigated. Natural convection has no impact at all, unless the magnetic field can be reduced. If magnets can be shut off rapidly after the accident, then the temperature escalation of the first wall will be limited. Upflow of the coolant is better than the initial downflow design from a thermal safety point of view. Activities of three structural materials, OTR stainless steel, SS-316 and VCrTi are compared. Although VCrTi has higher activity for a period of two hours after the accident, it has one to two orders of magnitude less activity than those of the steels in the mid- and long-terms. 29 refs., 42 figs., 9 tabs

  16. Classification Using Markov Blanket for Feature Selection

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Luo, Jian

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov...... blanket induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....

  17. Optimized mass flow rate distribution analysis for cooling the ITER Blanket System

    International Nuclear Information System (INIS)

    Highlights: • Optimized water distribution in ITER blanket modules is presented. • All key challenging constraints are included. • The methodology and the successful result are presented. - Abstract: This paper presents the rationale to the optimization of water distribution in ITER blanket modules, meeting both Blanket System requirements and interface compliance requirements. The key challenging constraints include to: be compatible with the overall water allocation (3140 kg/s for 440 wall mounted BMs); meet the critical heat flux margin of 1.4 in the plasma facing units; meet a maximum temperature increase of 70 °C at the outlet of each single BM; and ensure that water velocity is less than 7 m/s in all manifolds, and that the pressure drops of all BMs can be equilibrated. The methodology and the successful result are presented

  18. Enhanced plasma current collection from weakly conducting solar array blankets

    Science.gov (United States)

    Hillard, G. Barry

    1993-05-01

    Among the solar cell technologies to be tested in space as part of the Solar Array Module Plasma Interactions Experiment (SAMPIE) will be the Advanced Photovoltaic Solar Array (APSA). Several prototype twelve cell coupons were built for NASA using different blanket materials and mounting techniques. The first conforms to the baseline design for APSA which calls for the cells to be mounted on a carbon loaded Kapton blanket to control charging in GEO. When deployed, this design has a flexible blanket supported around the edges. A second coupon was built with the cells mounted on Kapton-H, which was in turn cemented to a solid aluminum substrate. A final coupon was identical to the latter but used germanium coated Kapton to control atomic oxygen attack in LEO. Ground testing of these coupons in a plasma chamber showed considerable differences in plasma current collection. The Kapton-H coupon demonstrated current collection consistent with exposed interconnects and some degree of cell snapover. The other two coupons experienced anomalously large collection currents. This behavior is believed to be a consequence of enhanced plasma sheaths supported by the weakly conducting carbon and germanium used in these coupons. The results reported here are the first experimental evidence that the use of such materials can result in power losses to high voltage space power systems.

  19. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    International Nuclear Information System (INIS)

    This paper presents results of conceptual design activities and associated R and D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R and D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  20. Fast breeder reactor blanket management: comparison of LMFBR and GCFR blankets

    International Nuclear Information System (INIS)

    The economic performance of the fast breeder reactor blanket, considering different fuel management schemes was studied. To perform this, the investigation started with a standard reactor physics calculation. Then, two economic models for evaluation of the economic performance of the radial blanket were developed. These models formed the basis of a computer code, ECOBLAN, which computes the net economic gain and the levelized fuel cost due to the radial blanket. The net gain in terms of dollars and $/kgHM-y and the levelized fuel cost in mills/kWhe were obtained as a function of blanket thickness and a residence time of the fuel in the blanket. A LMFBR and a GCFR were the reactor models considered in this study. The optimum radial blanket of a GCFR consists of two rows, that of a LMFBR consists of three rows. Regarding the different fuel management schemes, the fixed blanket was found to be more favorable than reshuffled blanket. Out-in and in-out reshuffled blanket offer almost the same net gain. In all the cases, the burnup calculated for the fuel was found to be less than the acceptable limit. There is an optimum residence time for the fuel in the blanket which depends on the position of the fuel in the blanket and the fuel management scheme studied. As expected, except for very short residence times (less than 2.5 years), the radial blanket is a net income producer. There is no significant difference between the economic performance of the blanket of a LMFBR and a GCFR

  1. R and D status on Water Cooled Ceramic Breeder Blanket Technology

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp; Tanigawa, Hisashi; Hirose, Takanori; Nakajima, Motoki; Sato, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Hayashi, Takumi; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji; Yokoyama, Kenji

    2014-10-15

    Japan Atomic Energy Agency (JAEA) is performing the development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) as one of the most important steps toward DEMO blanket. Regarding the blanket module fabrication technology development using F82H, the fabrication of a real scale mockup of the back wall of TBM was completed. In the design activity of the TBM, electromagnetic analysis under plasma disruption events and thermo-mechanical analysis under steady state and transient state of tokamak operation have been performed and showed bright prospect toward design justification. Regarding the development of advanced breeder and multiplier pebbles for DEMO blanket, fabrication technology development of Li rich Li{sub 2}TiO{sub 3} pebble and BeTi pebble was performed. Regarding the research activity on the evaluation of tritium generation performance, the evaluation of tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been performed. This paper overviews the recent achievements of the development of the WCCB Blanket in JAEA.

  2. R and D status on Water Cooled Ceramic Breeder Blanket Technology

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) is performing the development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) as one of the most important steps toward DEMO blanket. Regarding the blanket module fabrication technology development using F82H, the fabrication of a real scale mockup of the back wall of TBM was completed. In the design activity of the TBM, electromagnetic analysis under plasma disruption events and thermo-mechanical analysis under steady state and transient state of tokamak operation have been performed and showed bright prospect toward design justification. Regarding the development of advanced breeder and multiplier pebbles for DEMO blanket, fabrication technology development of Li rich Li2TiO3 pebble and BeTi pebble was performed. Regarding the research activity on the evaluation of tritium generation performance, the evaluation of tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been performed. This paper overviews the recent achievements of the development of the WCCB Blanket in JAEA

  3. ITER reference breeding blanket design

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, M. [ENEA, Frascati (Italy); Bianchi, A. [EFET, Ansaldo Ricerche, Genova (Italy); Celentano, G. [ENEA, ERG-FUS, Centro di Frascati, Via Enrico Fermi, 27, P.O. Box 65, I-00044, Frascati (IT)] [and others

    1999-11-01

    The ITER reference breeding blanket design is water-cooled and is characterised by the use of the neutronic multiplier and breeder materials in the form of pebbles. Besides the achievement, with margin, of the tritium breeding ratio (TBR) minimum requirement, it exhibits an internal layout allowing it to withstand properly electromagnetic loads during plasma disruption and vertical displacement events, and pressure loads in case of rupture of an internal cooling channel (i.e. in-box LOCA). During the first part of 1998, the design has been optimised improving the performance in terms of TBR, enlarging the design margins with respect to the dimensioning loads and investigating in detail the global behaviour of the system during normal and off-normal conditions. (orig.)

  4. ITER reference breeding blanket design

    International Nuclear Information System (INIS)

    The ITER reference breeding blanket design is water-cooled and is characterised by the use of the neutronic multiplier and breeder materials in the form of pebbles. Besides the achievement, with margin, of the tritium breeding ratio (TBR) minimum requirement, it exhibits an internal layout allowing it to withstand properly electromagnetic loads during plasma disruption and vertical displacement events, and pressure loads in case of rupture of an internal cooling channel (i.e. in-box LOCA). During the first part of 1998, the design has been optimised improving the performance in terms of TBR, enlarging the design margins with respect to the dimensioning loads and investigating in detail the global behaviour of the system during normal and off-normal conditions. (orig.)

  5. Multivariable optimization of fusion reactor blankets

    International Nuclear Information System (INIS)

    The optimization problem consists of four key elements: a figure of merit for the reactor, a technique for estimating the neutronic performance of the blanket as a function of the design variables, constraints on the design variables and neutronic performance, and a method for optimizing the figure of merit subject to the constraints. The first reactor concept investigated uses a liquid lithium blanket for breeding tritium and a steel blanket to increase the fusion energy multiplication factor. The capital cost per unit of net electric power produced is minimized subject to constraints on the tritium breeding ratio and radiation damage rate. The optimal design has a 91-cm-thick lithium blanket denatured to 0.1% 6Li. The second reactor concept investigated uses a BeO neutron multiplier and a LiAlO2 breeding blanket. The total blanket thickness is minimized subject to constraints on the tritium breeding ratio, the total neutron leakage, and the heat generation rate in aluminum support tendons. The optimal design consists of a 4.2-cm-thick BeO multiplier and 42-cm-thick LiAlO2 breeding blanket enriched to 34% 6Li

  6. Swiss fusion blanket experiments: Final report, November 1, 1985-October 31, 1987

    International Nuclear Information System (INIS)

    The major thrust of this project related to the effort to transfer the Lithium Blanket Module (LBM) to the Nuclear Engineering Laboratory of the Swiss Institute of Technology at Lausanne, and to the subsequent support with analytical calculations of a variety of experiments performed with the LBM. 12 refs

  7. Mechanical and thermal design of hybrid blankets

    International Nuclear Information System (INIS)

    The thermal and mechanical aspects of hybrid reactor blanket design considerations are discussed. This paper is intended as a companion to that of J. D. Lee of Lawrence Livermore Laboratory on the nuclear aspects of hybrid reactor blanket design. The major design characteristics of hybrid reactor blankets are discussed with emphasis on the areas of difference between hybrid reactors and standard fusion or fission reactors. Specific examples are used to illustrate the design tradeoffs and choices that must be made in hybrid reactor design. These examples are drawn from the work on the Mirror Hybrid Reactor

  8. Benchmark calculations for fusion blanket development

    International Nuclear Information System (INIS)

    Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li17Pb83 and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the tritium breeding ratio to group structure and weighting spectrum increases as the thickness and Li enrichment decrease with up to 20% discrepancies for thin natural Li17Pb83 blankets. (author)

  9. Environmental considerations for alternative fusion reactor blankets

    International Nuclear Information System (INIS)

    Comparisons of alternative fusion reactor blanket/coolant systems suggest that environmental considerations will enter strongly into selection of design and materials. Liquid blankets and coolants tend to maximize transport of radioactive corrosion products. Liquid lithium interacts strongly with tritium, minimizing permeation and escape of gaseous tritium in accidents. However, liquid lithium coolants tend to create large tritium inventories and have a large fire potential compared to flibe and solid blankets. Helium coolants minimize radiation transport, but do not have ability to bind the tritium in case of accidental releases. (auth)

  10. Strategy for solving a coupled problem of the electromagnetic load analysis and design optimization for local conducting structures to support the ITER blanket development

    International Nuclear Information System (INIS)

    Highlights: • We present the way of modeling transient electro-magnetic loads on local conductive domains in the large magnetic system. • Simplification is achieved by decomposing of the problem, multi-scale integral-differential modeling and use of integral parameters. • The intrinsic scale of loads on a localized conductor with eddy is quantified through the load susceptibility tensor. • Solution is searched as response of a simple equivalent dynamic simulator, using control theory methods. • The concept is exemplified with multi-scenario assessment of EM eddy loads on ITER blanket modules. - Abstract: The complexity of the electromagnetic (EM) response of the tokamak structures is one of the key and design-driving issues for the ITER. We consider the specifics of the assessment of ponderomotive forces, acting on local components of a large electro-physical device during electromagnetic transients. A strategy and approach is proposed for the operative EM loads modeling and analysis that enables design optimization at early phases of development. The paper describes a method of principal simplification of the mathematical model, based on the analysis and exploiting specific features and peculiarities of the relevant technical problem, determined by the design and operation of the device and system under consideration. The application of the method for predictive EM loads analysis and corresponding numerical calculations are exemplified for the localized ITER blanket components — shield modules. The example demonstrates the efficiency of EM load analysis in complex electromagnetic systems via a set of simplified models with different scope, contents and level of detail

  11. Design of the shield door and transporter for the Culham Conceptual Tokamak Reactor Mark II

    International Nuclear Information System (INIS)

    In the Culham Conceptual Tokamak Reactor MK II access to the interior for blanket maintenance is through large openings in the fixed shield structure closed by removable shield doors when the reactor is operational. This report describes the design of the 200 tonne doors and the associated special-purpose remote operating transporter manipulator. The design, which has not been optimised, generally uses available commercial equipment and state-of-the-art techniques. (U.K.)

  12. A 39 neutron group self-shielded cross section library for the Lotus fusion-fission test facility

    International Nuclear Information System (INIS)

    A 39 neutron group cross section library for fusion fission blanket calculations and especially for the analysis of the LOTUS experiment has been processed using the NJOY system. The library has been generated mostly using the ENDF/B-IV basic files at 296 K. All cross sections were self-shielded using the Bondarenko method. 5 background cross sections, namely 1010, 104, 102, 10 and 1 barns respectively were considered. The tabulated dilution dependent cross sections have been interpolated with the code TRANSX-CTR which is adequate for fusion applications. The fission spectrum of the fissionable material thorium has been collapsed from the fission matrices using the Bondarenko weighting scheme. The correct geometry of the LOTUS blanket and the cell specifications were correctly considered in the interpolation scheme. Some reaction cross sections for dosimetry applications have been included into the library. These base on the more recent ENDF/B-V evaluation. Transport and response edit cross sections have been coupled in the usual way to form P0 - P3 card image tables. Furthermore they have been converted into a binary file suitable to our RSYST computational system. Moreover the cross section card image tables have been reformatted and fitted into a BXSLIB binary library for the LANL-ONEDANT transport module. (Auth.)

  13. Divertor and gas blanket impurity control study

    International Nuclear Information System (INIS)

    A simple calculational model for the transport of particles across the scrap off region between the plasma and the wall in the presence of a divertor or a gas blanket has been developed. The model departs from previous work in including: (a) the entire impurity transport as well as its effect on the energy balance equations; (b) the recycling neutrals from the divertor, and (c) the reflected neutrals from the wall. Results obtained with this model show how the steady state impurity level in the plasma depends on the divertor parameters such as the neutral backflow from the divertor, the particle residence time and the scrape off thickness; and on the gas blanket parameters such as the neutral source strength and the gas blanket thickness. The variation of the divertor or gas blanket performance as a function of the heat and particle fluxes escaping from the plasma, the wall material and the cross field diffusion is examined and numerical examples are given

  14. Concept for testing fusion first wall/blanket systems in existing nuclear facilities

    International Nuclear Information System (INIS)

    A novel concept to produce a reasonable simulation of a fusion first wall/blanket test environment (except the 14 MeV neutron component) employing an existing nuclear facility is presented. Preliminary results show that an asymmetric, nuclear test environment with surface and volumetric heating rates similar to those expected in a fusion first wall/blanket or divertor chamber surface appears feasible. The proposed concept takes advantage of nuclear reactions within the annulus of a test space (15 cm in diameter and approximately 100 cm high) to provide an energy flux to the surface of a test module

  15. Two-dimensional heating analysis of fusion blankets for synfuel production

    International Nuclear Information System (INIS)

    Fusion reactors could be used to generate electric power and produce synthetic fuels with relatively high efficiencies (about 60%). A two temperature zone blanket coupled to a high temperature electrolysis system would be used. An important parameter in this system is the ratio of the fusion neutron kerma energy absorbed by the hot interior (the higher temperature zone) to the total energy/fusion. This parameter is calculated as approximately .5 for both a one and two-dimensional model of the blanket module, and is a reasonable value for efficient energy production

  16. Exploratory Study of Blanket Liquid Curtain

    Institute of Scientific and Technical Information of China (English)

    HUGang; HUANGJinhua; FENGKaiming

    2003-01-01

    Blankets and other in-vessel components are easily damaged owing to their circumstance of high radiation and high heat. To protect them, first wall design should be considered. Owing to its high heat removal nd self-refreshing capability, liquid metal first wall has been seen as a potential first wall for a fusion reactor in the future. Blanketliquid curtain is actually a special liquid metal wall to protect blanket.

  17. Advanced high performance solid wall blanket concepts

    International Nuclear Information System (INIS)

    First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  18. Requirements for helium cooled pebble bed blanket and R and D activities

    Energy Technology Data Exchange (ETDEWEB)

    Carloni, D., E-mail: dario.carloni@kit.edu; Boccaccini, L.V.; Franza, F.; Kecskes, S.

    2014-10-15

    This work aims to give an outline of the design requirements of the helium cooled pebble bed (HCPB) blanket and its associated R and D activities. In DEMO fusion reactor the plasma facing components have to fulfill several requirements dictated by safety and process sustainability criteria. In particular the blanket of a fusion reactor shall transfer the heat load coming from the plasma to the cooling system and also provide tritium breeding for the fuel cycle of the machine. KIT has been investigating and developed a helium-cooled blanket for more than three decades: the concept is based on the adoption of separated small lithium orthosilicate (tritium breeder) and beryllium (neutron multiplier) pebble beds, i.e. the HCPB blanket. One of the test blanket modules of ITER will be a HCPB type, aiming to demonstrate the soundness of the concept for the exploitation in future fusion power plants. A discussion is reported also on the development of the design criteria for the blanket to meet the requirements, such as tritium environmental release, also with reference to the TBM. The selection of materials and components to be used in a unique environment as the Tokamak of a fusion reactor requires dedicated several R and D activities. For instance, the performance of the coolant and the tritium self-sufficiency are key elements for the realization of the HCPB concept. Experimental campaigns have been conducted to select the materials to be used inside the solid breeder blanket and R and D activities have been carried out to support the design. The paper discusses also the program of future developments for the realization of the HCPB concept, also focusing to the specific campaigns necessary to qualify the TBM for its implementation in the ITER machine.

  19. Requirements for helium cooled pebble bed blanket and R and D activities

    International Nuclear Information System (INIS)

    This work aims to give an outline of the design requirements of the helium cooled pebble bed (HCPB) blanket and its associated R and D activities. In DEMO fusion reactor the plasma facing components have to fulfill several requirements dictated by safety and process sustainability criteria. In particular the blanket of a fusion reactor shall transfer the heat load coming from the plasma to the cooling system and also provide tritium breeding for the fuel cycle of the machine. KIT has been investigating and developed a helium-cooled blanket for more than three decades: the concept is based on the adoption of separated small lithium orthosilicate (tritium breeder) and beryllium (neutron multiplier) pebble beds, i.e. the HCPB blanket. One of the test blanket modules of ITER will be a HCPB type, aiming to demonstrate the soundness of the concept for the exploitation in future fusion power plants. A discussion is reported also on the development of the design criteria for the blanket to meet the requirements, such as tritium environmental release, also with reference to the TBM. The selection of materials and components to be used in a unique environment as the Tokamak of a fusion reactor requires dedicated several R and D activities. For instance, the performance of the coolant and the tritium self-sufficiency are key elements for the realization of the HCPB concept. Experimental campaigns have been conducted to select the materials to be used inside the solid breeder blanket and R and D activities have been carried out to support the design. The paper discusses also the program of future developments for the realization of the HCPB concept, also focusing to the specific campaigns necessary to qualify the TBM for its implementation in the ITER machine

  20. Tritium breeding ratio and neutron-gamma shielding leakages in a modified net fusion device

    International Nuclear Information System (INIS)

    The aim of the present work was to examine the tritium breeding ratio and neutron-gamma shielding leakages of a blanket recently proposed for the next generation of fusion reactors, the 'acqueous self-cooled blanket' concept (ASCB), in the special case of its application to the Next European Torus (NET). The primary functions of this blanket are radiation shielding, energy removal and tritium production, and it is based on an interesting and very simple design, which uses stainless steel as structural material and an acqueous solution with lithium compounds for cooling and tritium breeding. A modification to the original design is proposed, which includes heavy water as coolant of the first wall; in this way, the tritium production can be increased approximately 3%, without losses in the thermalhydraulic properties and only negligible changes (less than 0.4%) in neutron-gamma leakages, compared with the ones with light water only. (Author)

  1. Tritium processing for the European test blanket systems: current status of the design and development strategy

    International Nuclear Information System (INIS)

    Tritium processing technologies of the two European Test Blanket Systems (TBS), HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed), play an essential role in meeting the main objectives of the TBS experimental campaign in ITER. The compliancy with the ITER interface requirements, in terms of space availability, service fluids, limits on tritium release, constraints on maintenance, is driving the design of the TBS tritium processing systems. Other requirements come from the characteristics of the relevant test blanket module and the scientific programme that has to be developed and implemented. This paper identifies the main requirements for the design of the TBS tritium systems and equipment and, at the same time, provides an updated overview on the current design status, mainly focusing onto the tritium extractor from Pb-16Li and TBS tritium accountancy. Considerations are also given on the possible extrapolation to DEMO breeding blanket. (authors)

  2. Shielding analysis methods available in the scale computational system

    International Nuclear Information System (INIS)

    Computational tools have been included in the SCALE system to allow shielding analysis to be performed using both discrete-ordinates and Monte Carlo techniques. One-dimensional discrete ordinates analyses are performed with the XSDRNPM-S module, and point dose rates outside the shield are calculated with the XSDOSE module. Multidimensional analyses are performed with the MORSE-SGC/S Monte Carlo module. This paper will review the above modules and the four Shielding Analysis Sequences (SAS) developed for the SCALE system. 7 refs., 8 figs

  3. Two-dimensional TBR calculations for conceptual compact reversed-field pinch reactor blanket

    International Nuclear Information System (INIS)

    A detailed two-dimensional nucleonic analysis was performed for a conceptual first wall, blanket, and shield design for the Compact Reversed-Field Pinch Reactor. The design includes significant two-dimensional aspects presented by the limiter, vacuum ducts, and coolant manifolds; these aspects seriously degrade the tritium-breeding reaction (TBR) predicted by one-dimensional calculations. A range of design change to increase the TBR were investigated within the two-dimensional analysis. The results of this investigation indicated that an adequate TBR could be achieved with a thinner copper first wall, a 6Li enrichment near 90%, the proper selection of reflector, and a small addition to the blanket thickness, determined by the one-dimensional analysis

  4. Fast Breeder Blanket Facility (FBBF). Annual report, January 31, 1976--December 31, 1977

    International Nuclear Information System (INIS)

    The work performed in the reporting period was primarily concerned with the construction of the Fast Breeder Blanket Facility (FBBF), acquisition of experimental equipment, outlining the experimental program, preanalysis of the initial loading configuration and investigation of the safety of the initial loading and advanced loadings. The detailed physical description of the FBBF, operational procedures and controls, radiation shielding and experimental equipment are presented. The ability of the FBBF to simulate the blanket spectrum of a large fast breeder reactor is illustrated by comparison of spectra. The source axial distribution, reaction rate comparisons, breeding of plutonium and gamma-ray energy deposition rates are also discussed. Some of the safety aspects of the initial loading and advanced loadings are described. Experimental capabilities of the facility are outlined

  5. Development of high temperature fusion blanket with LiPb-SiC and its socio-economic aspects

    International Nuclear Information System (INIS)

    , blanket module and plant system design are also investigated with socio-economic consideration. (author)

  6. Progress on design and R and D of ITER FW/blanket

    International Nuclear Information System (INIS)

    The electromagnetic (EM) load on the first wall (FW) panel during disruptions is reduced by slots penetrating the copper layer and the SS backing plate. The maximum stress in the central beam is within the allowables under the most significant load induced by halo currents. In the recent ITER R and D, full-scale FW panels have been manufactured successfully by hot isostatic pressing (HIP) as the reference method. The shield block cooling scheme consists of front water headers that distribute the coolant in radial channels. The shield block is composed of four flat forged blocks electron-beam (EB) welded together at the rear side. Recently, full-scale shield blocks were fabricated by drilling/machining and plugging/welding of flat forged blocks, and assembled with a FW panel with a central beam. Detailed design has progressed on the blanket attachments. Buckling tests, fatigue tests and dynamic load tests have been performed on the T-alloy flexible support (550 kN). Mechanical and thermal fatigue tests, and electrical tests in a solenoid coil, have been carried out on the electrical connection (280 kA). Feasibility of the blanket sub-components has been demonstrated through the R and D

  7. Activation of the concrete in the bio shield of ITER

    International Nuclear Information System (INIS)

    Calculations of neutron spectra in different parts of the tokamak building of ITER are performed. A computational geometry model of the tokamak building is prepared using MCNP-4C. The model includes adequate material composition and geometry description of the main parts of the tokamak for PPCS plant model A: toroidal field coils, vacuum vessel, shield, blanket structure, first wall, divertor, 14.1 MeV neutron source. The design and the dimensions of the bio shield are taken from the current ITER design. MCNP calculations of the neutron spectra in the bio shield (concrete) of ITER are performed, using the neutron spectra in TF coils calculated at UKAEA as external neutron source. The neutron spectra in the concrete calculated by MCNP are used as input data in the code EASY99 for estimations of the activation of the concrete in the bio shield around the tokamak. The time evolutions of the maximum (in the bio shield floor) and minimum (in the bio shield side walls) specific activity (Bq/kg) and dose rate (Sv/h.) of the main dominant nuclides in the concrete are evaluated and compared for 3 different concrete types, used as biological shield in the PWR and BR3 reactors. (author)

  8. Handout on shielding calculation

    International Nuclear Information System (INIS)

    In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)

  9. Blanket management method for liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    A method for reducing thermal striping in liquid metal fast breeder reactors by reducing temperature gradients between adjacent fuel and blanket assemblies by shuffling blanket assemblies at each refueling outage so as to progressively shuffle the blanket assemblies to the core periphery through multiple moves and to generally locate fresh blanket assemblies adjacent to exposed fuel assemblies and exposed blanket assemblies adjacent to fresh fuel. Additionally, assembly orificing is altered to provide less flow to blanket assemblies needing less flow due to an otherwise decreased temperature gradient and providing additional flow to fuel assemblies which need more flow to sufficiently reduce temperature gradients to prevent thermal striping. (author)

  10. Magnetic shielding design analysis

    International Nuclear Information System (INIS)

    Two passive magnetic-shielding-design approaches for static external fields are reviewed. The first approach uses the shielding solutions for spheres and cylinders while the second approach requires solving Maxwell's equations. Experimental data taken at LLNL are compared with the results from these shieldings-design methods, and improvements are recommended for the second method. Design considerations are discussed here along with the importance of material gaps in the shield

  11. Solid breeder blanket design and tritium breeding

    International Nuclear Information System (INIS)

    Thermonuclear D-T power plants will have to be tritium self-sufficient. In addition to recovering the energy carried by the fusion neutrons (about 80% of the fusion energy), the blanket of the reactor will thus have to breed tritium to replace that burnt in the fusion process. This paper is an attempt to cover in a concise way the questions of tritium breeding, and the influence of this issue on the design of, and the material selection for, power reactor blanket relying on the use of solid breeder materials. Tritium breeding requirements - to breed one tritium per fusion neutron - are shown to be quite demanding. To meet them, the blanket must incorporate, in addition to a tritium breeding lithium compound, a neutron multiplier so as to compensate for neutron losses. Presently prefered lithium compounds are Li2O, LiAlO2, Li2ZrO3, Li4SiO4. The neutron multiplier considered in most design concepts is beryllium. Furthermore, the blanket must be designed with a view to minimizing these neutron losses (search for compactness and high coverage ratio of the plasma while minimizing the amount of structures and coolant). The design guidelines are justified and the technological problems which limit their implementation are discussed and illustrated with typical designs of solid breeder blanket. (orig.)

  12. Enhanced Whipple Shield

    Science.gov (United States)

    Crews, Jeanne L. (Inventor); Christiansen, Eric L. (Inventor); Williamsen, Joel E. (Inventor); Robinson, Jennifer R. (Inventor); Nolen, Angela M. (Inventor)

    1997-01-01

    A hypervelocity impact (HVI) Whipple Shield and a method for shielding a wall from penetration by high velocity particle impacts where the Whipple Shield is comprised of spaced apart inner and outer metal sheets or walls with an intermediate cloth barrier arrangement comprised of ceramic cloth and high strength cloth which are interrelated by ballistic formulae.

  13. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  14. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  15. European DEMO BOT solid breeder blanket

    International Nuclear Information System (INIS)

    The BOT (Breeder Outside Tube) Solid Breeder Blanket for a fusion DEMO reactor is presented. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. In the paper the reference blanket design and external loops are described as well as the results of the theoretical and experimental work in the fields of neutronics, thermohydraulics, mechanical stresses, tritium control and extraction, development and irradiation of the ceramic breeder material, beryllium development, ferromagnetic forces caused by disruptions, safety and reliability. An outlook is given on the remaining open questions and on the required R and D program. (orig.)

  16. Fusion breeder sphere - PAC blanket design

    International Nuclear Information System (INIS)

    There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm

  17. Neutronic implications of lead-lithium blankets

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W.R.

    1982-08-01

    Lead-lithium alloys have been proposed for use in several conceptual blanket designs for both inertial and magnetic confinement fusion reactors. In most cases, Pb/sub 83/Li/sub 17/, a eutectic with a melting point of 235/sup 0/C, is the chosen composition. The primary reasons for using Pb/sub 83/Li/sub 17/ instead of Li as the tritium breeding material are the perceived safety advantages, low tritium solubility, and favorable neutronic characteristics. This paper describes the neutronic characteristics of Pb/sub 83/Li/sub 17/ blankets with emphasis on the enhanced neutron leakage through chamber ports and the degradation in blanket performance parameters that occurs as a result of the enhanced leakage.

  18. Electromagnetic shielding formulae

    International Nuclear Information System (INIS)

    This addendum to an earlier collection of electromagnetic shielding formulae (TRITA-EPP-75-27) contains simple transfer matrices suitable for calculating the quasistatic shielding efficiency for multiple transverse-field and axial-field cylindrical and spherical shields, as well as for estimating leakage fields from long coaxial cables and the normal-incidence transmission of a plane wave through a multiple plane shield. The differences and similarities between these cases are illustrated by means of equivalent circuits and transmission line analogies. The addendum also includes a discussion of a possible heuristic improvement of some shielding formulae. (author)

  19. Shielding benchmark problems, (2)

    International Nuclear Information System (INIS)

    Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)

  20. Rotating shielded crane system

    Science.gov (United States)

    Commander, John C.

    1988-01-01

    A rotating, radiation shielded crane system for use in a high radiation test cell, comprises a radiation shielding wall, a cylindrical ceiling made of radiation shielding material and a rotatable crane disposed above the ceiling. The ceiling rests on an annular ledge intergrally attached to the inner surface of the shielding wall. Removable plugs in the ceiling provide access for the crane from the top of the ceiling into the test cell. A seal is provided at the interface between the inner surface of the shielding wall and the ceiling.

  1. Space reactor shield technology

    International Nuclear Information System (INIS)

    The reactor shield mass contributes a large portion (10% to 25%) to the total mass of an unmanned reactor system. Different shield materials are required to attenuate neutrons and gamma rays and still obtain a minimum mass. The shield material selection should also consider structural characteristics, physical and chemical properties, fabricability and availability. Minimum mass is achieved by using a shadow shield. Neutron capture gamma ray and heat generation are extremely important considerations. Lithium hydride was selected for the neutron shield material due to its excellent properties. It has to be canned and may be compartmentalized to reduce the probability of complete shielding effectiveness loss due to meteoroid puncture of the can. The initial shield design was based on previous SNAP shield design experience. The Monte Carlo Neutron Photon code, which includes the radiation scattering with the radiator and power conversion system, was then used to ensure that the design requirements were met. Fabrication of the shield by casting techniques is recommended to maintain shield integrity during vibration and to accommodate complex penetrations. A method for casting full-scale shields is described

  2. Fusion blanket materials development and recent R and D activities

    International Nuclear Information System (INIS)

    Development of structural materials plays an important role in the feasibility of fusion power plant. The candidate structural materials for future fusion reactors are Reduced Activation Ferritic Martensitic (RAFM) steel, nano structured ODS Steel, vanadium alloys and SiC/SiCf composite etc. RAFM steel is presently considered as the structural material for Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) because of its high void swelling resistance and improved thermal properties compared to austenitic steel. Development of RAFM steel in India is being carried out in full swing in collaboration with various research laboratories and steel industries. This paper presents an overview of the Indian activities on fusion blanket materials and describes in brief the efforts made to develop IN-RAFM steel as structural material for the LLCB TBM. In future, due to enhanced properties of vanadium base alloy and nano structured materials like ODS RAFMS, RAFM steel may be replaced by these materials for its application in DEMO relevant fusion reactor. Future R and D activities will be specifically towards the development of these structural materials for fusion reactor

  3. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Electronics Compartment (IEC) Conformal Shields Composite Bond Structure Qualification Test Method

    Science.gov (United States)

    Yew, Calinda; Stephens, Matt

    2015-01-01

    The JWST IEC conformal shields are mounted onto a composite frame structure that must undergo qualification testing to satisfy mission assurance requirements. The composite frame segments are bonded together at the joints using epoxy, EA 9394. The development of a test method to verify the integrity of the bonded structure at its operating environment introduces challenges in terms of requirements definition and the attainment of success criteria. Even though protoflight thermal requirements were not achieved, the first attempt in exposing the structure to cryogenic operating conditions in a thermal vacuum environment resulted in approximately 1 bonded joints failure during mechanical pull tests performed at 1.25 times the flight loads. Failure analysis concluded that the failure mode was due to adhesive cracks that formed and propagated along stress concentrated fillets as a result of poor bond squeeze-out control during fabrication. Bond repairs were made and the structures successfully re-tested with an improved LN2 immersion test method to achieve protoflight thermal requirements.

  4. Some new ideas for Tandem Mirror blankets

    International Nuclear Information System (INIS)

    The Tandem Mirror Reactor, with its cylindrical central cell, has led to numerous blanket designs taking advantage of the simple geometry. Also many new applications for fusion neutrons are now being considered. To the pure fusion electricity producers and hybrids producing fissile fuel, we are adding studies of synthetic fuel producers and fission-suppressed hybrids. The three blanket concepts presented are new ideas and should be considered illustrative of the breadth of Livermore's application studies. They are not meant to imply fully analyzed designs

  5. Lightweight IMM PV Flexible Blanket Assembly

    Science.gov (United States)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  6. Reducing radiation dose to the female breast during CT coronary angiography: A simulation study comparing breast shielding, angular tube current modulation, reduced kV, and partial angle protocols using an unknown-location signal-detectability metric

    International Nuclear Information System (INIS)

    Purpose: The authors compared the performance of five protocols intended to reduce dose to the breast during computed tomography (CT) coronary angiography scans using a model observer unknown-location signal-detectability metric.Methods: The authors simulated CT images of an anthropomorphic female thorax phantom for a 120 kV reference protocol and five “dose reduction” protocols intended to reduce dose to the breast: 120 kV partial angle (posteriorly centered), 120 kV tube-current modulated (TCM), 120 kV with shielded breasts, 80 kV, and 80 kV partial angle (posteriorly centered). Two image quality tasks were investigated: the detection and localization of 4-mm, 3.25 mg/ml and 1-mm, 6.0 mg/ml iodine contrast signals randomly located in the heart region. For each protocol, the authors plotted the signal detectability, as quantified by the area under the exponentially transformed free response characteristic curve estimator (A-caretFE), as well as noise and contrast-to-noise ratio (CNR) versus breast and lung dose. In addition, the authors quantified each protocol's dose performance as the percent difference in dose relative to the reference protocol achieved while maintaining equivalent A-caretFE.Results: For the 4-mm signal-size task, the 80 kV full scan and 80 kV partial angle protocols decreased dose to the breast (80.5% and 85.3%, respectively) and lung (80.5% and 76.7%, respectively) with A-caretFE = 0.96, but also resulted in an approximate three-fold increase in image noise. The 120 kV partial protocol reduced dose to the breast (17.6%) at the expense of increased lung dose (25.3%). The TCM algorithm decreased dose to the breast (6.0%) and lung (10.4%). Breast shielding increased breast dose (67.8%) and lung dose (103.4%). The 80 kV and 80 kV partial protocols demonstrated greater dose reductions for the 4-mm task than for the 1-mm task, and the shielded protocol showed a larger increase in dose for the 4-mm task than for the 1-mm task. In general, the

  7. Robot vision system R and D for ITER blanket remote-handling system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Takahito, E-mail: maruyama.takahito@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system.

  8. Robot vision system R and D for ITER blanket remote-handling system

    International Nuclear Information System (INIS)

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system

  9. Ferritic steels for the first generation of breeder blankets

    International Nuclear Information System (INIS)

    Materials development in nuclear fusion for in-vessel components, i.e. for breeder blankets and divertors, has a history of more than two decades. It is the specific in-service and loading conditions and the consequentially required properties in combination with safety standards and social-economic demands that create a unique set of specifications. Objectives of Fusion for Energy (F4E) include: 1) To provide Europe's contribution to the ITER international fusion energy project; 2) To implement the Broader Approach agreement between Euratom and Japan; 3) To prepare for the construction and demonstration of fusion reactors (DEMO). Consequently, activities in F4E focus on structural materials for the first generations of breeder blankets, i.e. ITER Test Blanket Modules (TBM) and DEMO, whereas a Fusion Materials Topical Group implemented under EFDA coordinates R and D on physically based modelling of irradiation effects and R and D in the longer term (new and /or higher risk materials). The paper focuses on martensitic-ferritic steels and (i) reviews briefly the challenges and the rationales for the decisions taken in the past, (ii) analyses the status of the main activities of development and qualification, (iii) indicates unresolved issues, and (iv) outlines future strategies and needs and their implications. Due to the exposure to intense high energy neutron flux, the main issue for breeder materials is high radiation resistance. The First Wall of a breeder blanket should survive 3-5 full power years or, respectively in terms of irradiation damage, typically 50-70 dpa for DEMO and double figures for a power plant. Even though the objective is to have the materials and key fabrication technologies needed for DEMO fully developed and qualified within the next two decades, a major part of the task has to be completed much earlier. Tritium breeding test blanket modules will be installed in ITER with the objective to test DEMO relevant technologies in fusion

  10. Tritium recovery from ceramic breeder blanket

    International Nuclear Information System (INIS)

    It is known that chemical forms of tritium released from ceramic breeders are T2O and T2. Among issues relevant to the tritium chemical form, tritium inventory is one of the major criteria in the selection of breeder material. The primary purpose of this report is to study the dependence of tritium inventory in a blanket with ceramic solid breeder on the tritium chemical form. In this light, tritium inventory in a Li2O blanket has been evaluated as a function of tritium chemical form under the conditions of the Japanese Fusion Experimental Reactor (FER). It was shown that in a blanket with Li2O as a breeder, which has a strong affinity to water vapor, the inventory due to T2O adsorption becomes quite large. In order to reduce the T2O adsorption inventory, conversion of the tritium chemical form through an isotope exchange reaction with hydrogen added to the sweep gas (T2O + 2 H2 → H2O + 2 HT) has been proposed, and its advantages and problems have been examined. Lithium hydroxide formation and mass transfer, which are considered to be inherent in the Li2O-T2O system and to be critical issues for the feasibility of a Li2O blanket, have been also discussed. (author)

  11. Review: BNL graphite blanket design concepts

    International Nuclear Information System (INIS)

    A review of the Brookhaven National Laboratory (BNL) minimum activity graphite blanket designs is made. Three designs are identified and discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a thick graphite screen (typically 30 cm or greater, depending on type as well as application-experimental power reactor or commercial reactor). Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy. This energy is then either radiated to a secondary blanket with coolant tubes, as in types A and B, or is removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the structural material of the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude by the graphite screen, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma, whatever the degree of radiation damage

  12. Advanced Polymer For Multilayer Insulating Blankets

    Science.gov (United States)

    Haghighat, R. Ross; Shepp, Allan

    1996-01-01

    Polymer resisting degradation by monatomic oxygen undergoing commercial development under trade name "Aorimide" ("atomic-oxygen-resistant imidazole"). Intended for use in thermal blankets for spacecraft in low orbit, useful on Earth in outdoor applications in which sunlight and ozone degrades other plastics. Also used, for example, to make threads and to make films coated with metals for reflectivity.

  13. ITER driver blanket, European Community design

    International Nuclear Information System (INIS)

    Depending on the final decision on the operation time of ITER (International Thermonuclear Experimental Reactor), the Driver Blanket might become a basic component of the machine with the main function of producing a significant fraction (close to 0.8) of the tritium required for the ITER operation, the remaining fraction being available from external supplies. The Driver Blanket is not required to provide reactor relevant performance in terms of tritium self-sufficiency. However, reactor relevant reliability and safety are mandatory requirements for this component in order not to significantly afftect the overall plant availability and to allow the ITER experimental program to be safely and successfully carried out. With the framework of the ITER Conceptual Design Activities (CDA, 1988-1990), a conceptual design of the ITER Driver Blanket has been carried out by ENEA Fusion Dept., in collaboration with ANSALDO S.p.A. and SRS S.r.l., and in close consultation with the NET Team and CFFTP (Canadian Fusion Fuels Technology Project). Such a design has been selected as EC (European Community) reference design for the ITER Driver Blanket. The status of the design at the end of CDA is reported in the present paper. (orig.)

  14. Aerogel Blanket Insulation Materials for Cryogenic Applications

    Science.gov (United States)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  15. Under the Rape Shield

    OpenAIRE

    Roman, Denise

    2011-01-01

    This article focuses on the Rape Shield Laws and their evolution in the United States, one of the pioneers in this field. The article also discusses constitutional and feminist critiques of present Rape Shield Laws, and ends with a comparative perspective throughout the Anglo-American legal space today. Finally, although the Rape Shield Laws can be approached from a variety of discourses, this article engages specifically with a discourse that intersects legal and feminist analyses.

  16. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  17. Accelerator shielding benchmark problems

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, H.; Ban, S.; Nakamura, T. [and others

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author).

  18. Lightweight solar array blanket tooling, laser welding and cover process technology

    Science.gov (United States)

    Dillard, P. A.

    1983-01-01

    A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.

  19. Establishment of design and fabrication technology and domestic qualification for ITER blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; In, S. R.; Bae, Y. D. (and others)

    2006-02-15

    To obtain and analyze the detailed design and manufacturing technology of the blanket system for each components, the related data are collected through the various sources. And also, design processes and results of the FWs, shield blocks, and TBMs are investigated. From these analysis of the blanket R and D status of each party, we develop the KO R and D plan and it is used in the selection of manufacturing method and the materials. For the ITA16-10 subtask1, we had the official agreement with ITER IT in December 2004 for the qualification of the FW panel fabrication methods and to establish the NDT methods for the FW panel. From the technical reports we published, we compare the manufacturing methods and the proposed material for each component according to the parties. Be is proposed as a plasma facing material and most parties have interest in S-65C. Cu alloy is proposed as a heat sink material and DSCu or CuCrZr are investigated now. For the structural material, stainless steel such as SS316L(N) is investigated internationally. HIP and brazing are proposed as the manufacturing methods. In order to establish the blanket system technology, design contents of shield block by ITER IT and other parties were investigated through participating the international workshop and meeting, dispatching the researcher to the ITER IT or other parties to collect the drafting and 3D modeling files. The modification items of blanket design were investigated and a researcher was dispatched in the ITER IT and participated in the analysis on cooling problem in shield block such as front header and drilled manifold. To investigate the development status of TBM, we participated the 14th TBWG meeting and proposed the KO HCSB and HCML as candidates. And also, we obtain the R and D results of other parties and make document about the R and D status of other parties for the TBM. Finally, we establish the KO TBM R and D plan and proposed it to ITER IT and other parties. In which, the

  20. Establishment of design and fabrication technology and domestic qualification for ITER blanket system

    International Nuclear Information System (INIS)

    To obtain and analyze the detailed design and manufacturing technology of the blanket system for each components, the related data are collected through the various sources. And also, design processes and results of the FWs, shield blocks, and TBMs are investigated. From these analysis of the blanket R and D status of each party, we develop the KO R and D plan and it is used in the selection of manufacturing method and the materials. For the ITA16-10 subtask1, we had the official agreement with ITER IT in December 2004 for the qualification of the FW panel fabrication methods and to establish the NDT methods for the FW panel. From the technical reports we published, we compare the manufacturing methods and the proposed material for each component according to the parties. Be is proposed as a plasma facing material and most parties have interest in S-65C. Cu alloy is proposed as a heat sink material and DSCu or CuCrZr are investigated now. For the structural material, stainless steel such as SS316L(N) is investigated internationally. HIP and brazing are proposed as the manufacturing methods. In order to establish the blanket system technology, design contents of shield block by ITER IT and other parties were investigated through participating the international workshop and meeting, dispatching the researcher to the ITER IT or other parties to collect the drafting and 3D modeling files. The modification items of blanket design were investigated and a researcher was dispatched in the ITER IT and participated in the analysis on cooling problem in shield block such as front header and drilled manifold. To investigate the development status of TBM, we participated the 14th TBWG meeting and proposed the KO HCSB and HCML as candidates. And also, we obtain the R and D results of other parties and make document about the R and D status of other parties for the TBM. Finally, we establish the KO TBM R and D plan and proposed it to ITER IT and other parties. In which, the

  1. Application of Advanced Radiation Shielding Materials to Inflatable Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is a weight-optimized, inflatable structure that incorporates radiation shielding materials into its construction, for use as a habitation module or...

  2. TO THE SUBSTANTIATION OF CALCULATION PRINCIPLES OF ROAD CONSTRUCTION STRENGTH HAVING BLANKET REGULATING WATER-THERMIC REGIME

    OpenAIRE

    Savenko, V.; Petrovich, V.; Chechuga, O.

    2005-01-01

    Principles of road construction strength with the blanket regulating water-thermal conditions are surveyed. The affect of dampness on a general module of elasticity as well as the basic activities which promote necessary frost resistance of the construction are considered. Synthetic fibre application is surveyed.

  3. Blanket design study for a Commercial Tokamak Hybrid Reactor (CTHR)

    International Nuclear Information System (INIS)

    The results are presented of a study on two blanket design concepts for application in a Commercial Tokamak Hybrid Reactor (CTHR). Both blankets operate on the U-Pu cycle and are designed to achieve tritium self-sufficiency while maximizing the fissile fuel production within thermal and mechanical design constraints. The two blanket concepts that were evaluated were: (1) a UC fueled, stainless steel clad and structure, helium cooled blanket; and (2) a UO2 fueled, zircaloy clad, stainless steel structure, boiling water cooled blanket. Two different tritium breeding media, Li2O and LiH, were evaluated for use in both blanket concepts. The use of lead as a neutron multiplier or reflector and graphite as a reflector was also considered for both blankets

  4. Options and methods for instrumentation of Test Blanket Systems for experiment control and scientific mission

    International Nuclear Information System (INIS)

    Highlights: • This work defined options and methods to instrument ITER TBSs based on functional categories: safety, interlock and control and scientific exploitation based on the ITER research program. • Presented the general architecture of the HCLL and HCPB Test Blanket System Instrumentation and Control. • Defined safety and interlock sensors count and technology selection based on preliminary safety analysis. • Discussed the development status of scientific instrumentation, with focus on integration with design and fulfillment of TBM research program. - Abstract: Europe is currently developing two reference breeder blankets concepts for DEMO reactor specifications that will be tested in ITER under the form of Test Blanket Modules (TBMs): the Helium-Cooled Lithium-Lead (HCLL) concept which uses the eutectic Pb-16Li as both breeder and neutron multiplier; the Helium-Cooled Pebble-Bed (HCPB) concept which features lithiated ceramic pebbles as breeder and beryllium pebbles as neutron multiplier. Each TBM is associated with several sub-systems required for their operation; together they form the Test Blanket System (TBS). This paper presents the state of HCLL and HCPB TBS instrumentation design. The discussion is based on the systems functional analysis, from which three main categories of instrumentation are defined: those relevant to safety functions; those relevant to interlock functions; those designed for the control and scientific exploitation of the devices based on the TBM program objectives

  5. Overview of requirements and design integration for the ITER EU Test Blanket Systems instrumentation

    International Nuclear Information System (INIS)

    The ITER project aims at building a fusion device with the general goal of demonstrating the scientific and technical feasibility of fusion power. The testing of Tritium Breeder Blanket concepts is one of the ITER missions and has been recognized as an essential milestone in the development of a future fusion reactor ensuring tritium self-sufficiency, extraction of high grade heat and electricity production. Europe is currently developing two reference breeder blankets concepts for DEMO reactor specifications that will be tested in ITER under the form of Test Blanket Modules (TBMs): the Helium-Cooled Lithium-Lead (HCLL) concept and the Helium-Cooled Pebble-Bed (HCPB) concept. The strategy for the development of the instrumentation of the HCLL and HCPB Test Blanket Systems, which include the TBMs and their Ancillary Systems, is briefly recalled in this paper, along with the overview of the requirements coming from the harsh operational environment and the main challenges related to the integration with the complex design of the TBS components. (authors)

  6. Neutronics analysis of inboard shielding capability for a DEMO fusion reactor CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Songlin; Li, Jiangang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zheng, Shanliang, E-mail: shanliang.zheng@ccfe.ac.uk [Culham Centre for Fusion Energy, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Mitchell, Neil [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    The inboard shielding of a fusion reactor can be a crucial issue due to the limited space available in a tokamak configuration. It is necessary to assess the inboard shielding capability of DEMO for its initial design. In this paper, 1D and 3D neutronics models were developed based on a reference design of the Chinese Fusion Engineering Testing Reactor (CFETR). The neutron wall load (NWL) is in the range of 1.5–3 MW/m{sup 2} and the inboard shielding thickness is constrained within 40–70 cm in order to achieve the tritium self-sufficiency of the reactor. Referring to the detailed design of the ITER Toroidal Field Coils (TFCs) and using radiation hardening technology developed for ITER, the inboard blanket shielding capability and nuclear responses of the TFC are investigated for both FLiBe and Li{sub 4}SiO{sub 4} breeding blanket concepts. The impact of the gaps on shielding performance is discussed. Some suggestions on improving the inboard shielding performance for DEMO are also proposed.

  7. Water-cooled blanket concepts for the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    The primary goal of the Blanket Comparison and Selection Study (BCSS) was to select a limited number of blanket concepts for fusion power reactors, to serve as the focus for the U.S. Department of Energy blanket research and development program. The concepts considered most seriously by the BCSS can be grouped for discussion purposes by coolant: liquid metals and alloys, pressurized water, helium, and nitrate salts. Concepts using pressurized water as the coolant are discussed. Water-cooled concepts using liquid breeders-lithium and 17Li-83Pb (LiPb)-have severe fundamental safety problems. The use of lithium and water in the blanket was considered unacceptable. Initial results of tests at Hanford Engineering Development Laboratory using steam injected into molten LiPb indicate that use of LiPb and water together in a blanket is a very serious concern from the safety standpoint. Key issues for water-cooled blankets with solid tritium breeders (Li2O, or a ternary oxide such as LiAlO2) were identified and examined: reliability against leaks, control of tritium permeation into the coolant, retention of breeder physical integrity, breeder temperature predictability, determination of allowable temperature limits for breeders, and 6Li burnup effects (for LiAlO2). The BCSS's final rankings and associated rationale for all water-cooled concepts are examined. Key issues and factors for tokamak and tandem mirror reactor versions of water-cooled solid breeder concepts are discussed. The reference design for the top-ranked concept-LiAlO2 breeder, ferritic steel structure, and beryllium neutron multiplier-is presented. Finally, some general conclusions for water-cooled blanket concepts are drawn based on the study's results

  8. A study on radiation shielding analysis for toroidal field coils of a tokamak-type fusion reactor

    International Nuclear Information System (INIS)

    A study on the radiation shield for toroidal field (TF) coils of a tokamak type fusion device is reported. The study was performed to provide the design data base for the radiation shielding analysis for TF coils which can be commonly used for other systems, and to produce some universal recommendation about the neutron flux attenuation in the shield of a fusion reactor. Some simple estimation procedure instead of difficult and expensive neutron calculation can be carried out in this case on the basis of the fundamental knowledge on neutron behavior. The present studies are composed of the fundamentals required for shield estimation, the analysis of shield effectiveness, the analysis of the shielding performance of blankets, the analysis of radiation permeating through the inhomogeneous blanket and shield of a fusion reactor, and the analysis of the TF coil shield of the International Thermonuclear Experimental Reactor (ITER) on the basis of the results of the ITER conceptual design activities for three years. The methodological recommendation was developed for the ANISN and the DOT3 codes. (K.I.)

  9. Rotating shielded crane system

    International Nuclear Information System (INIS)

    A rotating, radiation-shielded crane system is described comprising: a generally cylindrical, radiation-shielding wall, the top of the wall forming a first annular ledge; a second annular ledge integrally attached to the inner surface of the shielding wall; a generally cylindrical ceiling made of radiation shielding material, the ceiling including a flange portion on the top thereof and a body portion, the flange portion associated with the second annular ledge such that the ceiling is supported thereby, the volume inside the wall and the ceiling forming a test cell; a rotatable crane disposed above the ceiling such that the crane is outside of the test cell; removable access means in the ceiling for allowing the crane to access the inside of the test cell from the top of the ceiling; means for sealing the interface between the inner surface of the shielding wall and the ceiling

  10. Water-cooled lithium-lead blanket

    International Nuclear Information System (INIS)

    The paper is an appendix to a study of the reactor relevance of the NET design concept. The present study examines whether the water-cooled lithium-lead blanket designed for NET can be directly extrapolated to a demonstration (DEMO) reactor. A fundamental requirement of the exercise is that the DEMO design should have a tritium breeding ratio which is higher than that in NET. The water-cooled lithium-lead blanket is discussed with respect to: neutronics design, design parameter survey and thermohydraulics, and engineering design. Results are reported of three-dimensional calculations using the Monte Carlo code MORSE-H to investigate possible neutron leakage between the poloidally disposed breeder tubes, and to determine the global tritium breeding ratio for the final double null machine design. (U.K.)

  11. Diffusive heat blanketing envelopes of neutron stars

    CERN Document Server

    Beznogov, M V; Yakovlev, D G

    2016-01-01

    We construct new models of outer heat blanketing envelopes of neutron stars composed of binary ion mixtures (H - He, He - C, C - Fe) in and out of diffusive equilibrium. To this aim, we generalize our previous work on diffusion of ions in isothermal gaseous or Coulomb liquid plasmas to handle non-isothermal systems. We calculate the relations between the effective surface temperature Ts and the temperature Tb at the bottom of heat blanketing envelopes (at a density rhob= 1e8 -- 1e10 g/cc) for diffusively equilibrated and non-equilibrated distributions of ion species at different masses DeltaM of lighter ions in the envelope. Our principal result is that the Ts - Tb relations are fairly insensitive to detailed distribution of ion fractions over the envelope (diffusively equilibrated or not) and depend almost solely on DeltaM. The obtained relations are approximated by analytic expressions which are convenient for modeling the evolution of neutron stars.

  12. Novel method for sludge blanket measurements.

    Science.gov (United States)

    Schewerda, J; Förster, G; Heinrichmeier, J

    2014-01-01

    The most widely used methods for sludge blanket measurements are based on acoustic or optic principles. In operation, both methods are expensive and often maintenance-intensive. Therefore a novel, reliable and simple method for sludge blanket measurement is proposed. It is based on the differential pressure measurement in the sludge zone compared with the differential pressure in the clear water zone, so that it is possible to measure the upper and the lower sludge level in a tank. Full-scale tests of this method were done in the secondary clarifier at the waste water treatment plant in Hecklingen, Germany. The result shows a good approximation of the manually measured sludge level. PMID:24569276

  13. HIP technologies for fusion reactor blankets fabrication

    International Nuclear Information System (INIS)

    The benefit of HIP techniques applied to the fabrication of fusion internal components for higher performances, reliability and cost savings are emphasized. To demonstrate the potential of the techniques, design of new blankets concepts and mock-ups fabrication are currently performed by CEA. A coiled tube concept that allows cooling arrangement flexibility, strong reduction of the machining and number of welds is proposed for ITER IAM. Medium size mock-ups according to the WCLL breeding blanket concept have been manufactured. The fabrication of a large size mock-up is under progress. These activities are supported by numerical calculations to predict the deformations of the parts during HIP'ing. Finally, several HIP techniques issues have been identified and are discussed

  14. Stellar model atmospheres with magnetic line blanketing

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2004-01-01

    Model atmospheres of A and B stars are computed taking into account magnetic line blanketing. These calculations are based on the new stellar model atmosphere code LLModels which implements direct treatment of the opacities due to the bound-bound transitions and ensures an accurate and detailed description of the line absorption. The anomalous Zeeman effect was calculated for the field strengths between 1 and 40 kG and a field vector perpendicular to the line of sight. The model structure, high-resolution energy distribution, photometric colors, metallic line spectra and the hydrogen Balmer line profiles are computed for magnetic stars with different metallicities and are discussed with respect to those of non-magnetic reference models. The magnetically enhanced line blanketing changes the atmospheric structure and leads to a redistribution of energy in the stellar spectrum. The most noticeable feature in the optical region is the appearance of the 5200 A depression. However, this effect is prominent only in ...

  15. Blankets for fusion reactors : materials and neutronics

    International Nuclear Information System (INIS)

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author)

  16. Economic evaluation of the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    The economic impact of employing the highly ranked blankets in the Blanket Comparison and Selection Study (BCSS) was evaluated in the context of both a tokamak and a tandem mirror power reactor (TMR). The economic evaluation criterion was determined to be the cost of electricity. The influencing factors that were considered are the direct cost of the blankets and related systems; the annual cost of blanket replacement; and the performance of the blanket, heat transfer, and energy conversion systems. The technical and cost bases for comparison were those of the STARFIRE and Mirror Advanced Reactor Study conceptual design power plants. The economic evaluation results indicated that the nitrate-salt-cooled blanket concept is an economically attractive concept for either reactor type. The water-cooled, solid breeder blanket is attractive for the tokamak and somewhat less attractive for the TMR. The helium-cooled, liquidlithium breeder blanket is the least economically desirable of higher ranked concepts. The remaining self-cooled liquid-metal and the helium-cooled blanket concepts represent moderately attractive concepts from an economic standpoint. These results are not in concert with those found in the other BCSS evaluation areas (engineering feasibility, safety, and research and development (R and D) requirements). The blankets faring well economically had generally lower cost components, lower pumping power requirements, and good power production capability. On the other hand, helium- and lithium-cooled systems were preferred from the standpoints of safety, engineering feasibility, and R and D requirements

  17. Analysis of Consistency of Printing Blankets using Correlation Technique

    Directory of Open Access Journals (Sweden)

    Balaraman Kumar

    2010-06-01

    Full Text Available This paper presents the application of an analytical tool to quantify material consistency of offset printing blankets. Printing blankets are essentially viscoelastic rubber composites of several laminas. High levels of material consistency are expected from rubber blankets for quality print and for quick recovery from smash encountered during the printing process. The present study aims at determining objectively the consistency of printing blankets at three specific torque levels of tension under two distinct stages; 1. under normal printing conditions and 2. on recovery after smash. The experiment devised exhibits a variation in tone reproduction properties of each blanket signifying the levels of inconsistency also in thickness direction. Correlation technique was employed on ink density variations obtained from the blanket on paper. Both blankets exhibited good consistency over three torque levels under normal printing conditions. However on smash the recovery of blanket and its consistency was a function of manufacturing and torque levels. This study attempts to provide a new metrics for failure analysis of offset printing blankets. It also underscores the need for optimising the torque for blankets from different manufacturers.

  18. Analysis of Consistency of Printing Blankets using Correlation Technique

    Directory of Open Access Journals (Sweden)

    Lalitha Jayaraman

    2010-01-01

    Full Text Available This paper presents the application of an analytical tool to quantify material consistency of offset printing blankets. Printing blankets are essentially viscoelastic rubber composites of several laminas. High levels of material consistency are expected from rubber blankets for quality print and for quick recovery from smash encountered during the printing process. The present study aims at determining objectively the consistency of printing blankets at three specific torque levels of tension under two distinct stages; 1. under normal printing conditions and 2. on recovery after smash. The experiment devised exhibits a variation in tone reproduction properties of each blanket signifying the levels of inconsistency also in thicknessdirection. Correlation technique was employed on ink density variations obtained from the blanket on paper. Both blankets exhibited good consistency over three torque levels under normal printing conditions. However on smash the recovery of blanket and its consistency was a function of manufacturing and torque levels. This study attempts to provide a new metrics for failure analysis of offset printing blankets. It also underscores the need for optimizing the torque for blankets from different manufacturers.

  19. Fissile fuel breeding in DT fusion reactor blankets

    International Nuclear Information System (INIS)

    Results of neutronic evaluations of fissile fuel breeding in a variety of DT fusion hybrid-reactor blankets are presented. The blankets are of the fast-fission or fission-suppressed rather than fission-enhanced designs, i.e. in the blankets considered emphasis is on fissile fuel rather than power production. For 233U breeding, when Li metal is the coolant for the first wall and the graphite moderator and the tritium breeding constituent of the blanket, the number of atoms of 233U produced per fusion in blankets that could be of practical interest is in the range 0.5 - 0.68, with the lower value applying to water-cooled ThO2 fertile fuel, the upper to gas-cooled Th-metal fuel located next to the reactor first wall. Neutron multipliers like Pb or Be can increase the production to about 0.74. For 239Pu breeding, the production ratio in practical blankets is 0.6 - 1.64, with the best results being for gas, Na- or Li-metal-cooled U-metal fuels located adjacent to the first wall (the U is depleted uranium). Gas-cooled U-Th-metal blankets, optimized for 233U breeding, yield 0.76 atoms of 233U and 0.38 atoms of 239Pu. The blanket energy multiplication factors are in the range 1.6 - 2.5 for Th blankets, 2.5 - 9.0 for U blankets and approximately 5.5 for the U-Th-metal blanket. The tritium breeding ratio in all blankets is 1.075. Blankets with other first wall, coolant and tritium breeding constituents are also considered. The fusion power requirements of hybrids that could supply the fuel needs of thorium-burning CANDU power reactors, and the allowed costs for building the hybrids are indicated

  20. Scale-PC shielding analysis sequences

    International Nuclear Information System (INIS)

    The SCALE computational system is a modular code system for analyses of nuclear fuel facility and package designs. With the release of SCALE-PC Version 4.3, the radiation shielding analysis community now has the capability to execute the SCALE shielding analysis sequences contained in the control modules SAS1, SAS2, SAS3, and SAS4 on a MS- DOS personal computer (PC). In addition, SCALE-PC includes two new sequences, QADS and ORIGEN-ARP. The capabilities of each sequence are presented, along with example applications

  1. Detection of Breeding Blankets Using Antineutrinos

    Science.gov (United States)

    Cogswell, Bernadette; Huber, Patrick

    2016-03-01

    The Plutonium Management and Disposition Agreement between the United States and Russia makes arrangements for the disposal of 34 metric tons of excess weapon-grade plutonium. Under this agreement Russia plans to dispose of its excess stocks by processing the plutonium into fuel for fast breeder reactors. To meet the disposition requirements this fuel would be burned while the fast reactors are run as burners, i.e., without a natural uranium blanket that can be used to breed plutonium surrounding the core. This talk discusses the potential application of antineutrino monitoring to the verification of the presence or absence of a breeding blanket. It is found that a 36 kg antineutrino detector, exploiting coherent elastic neutrino-nucleus scattering and made of silicon, could determine the presence of a breeding blanket at a liquid sodium cooled fast reactor at the 95% confidence level within 90 days. Such a detector would be a novel non-intrusive verification tool and could present a first application of coherent elastic neutrino-nucleus scattering to a real-world challenge.

  2. Preliminary thermo-mechanical analysis of ITER breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Shigeto; Kuroda, Toshimasa; Enoeda, Mikio [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1999-01-01

    Thermo-mechanical analysis has been conducted on ITER breeding blanket taking into account thermo-mechanical characteristics peculiar to pebble beds. The features of the analysis are to adopt an elasto-plastic constitutive model for pebble beds and to take into account spatially varying thermal conductivity and heat transfer coefficient, especially in the Be pebble bed, depending on the stress. ABAQUS code and COUPLED TEMPERATURE-DISPLACEMENT procedure of the code are selected so that thermal conductivity is automatically calculated in each calculation point depending on the stress. The modified DRUCKER-PRAGER/Cap plasticity model for granular materials of the code is selected so as to deal with such mechanical features of pebble bed as shear failure flow and hydrostatic plastic compression, and capability of the model is studied. The thermal property-stress correlation used in the analysis is obtained based on the experimental results at FZK and the results of additional thermo-mechanical analysis performed here. The thermo-mechanical analysis of an ITER breeding blanket module has been performed for four conditions: case A; nominal case with spatial distribution of thermal conductivity and heat transfer coefficient in Be pebble bed depending on the stress, case B; constant thermal conductivity, case C; thermal conductivity = -20% of nominal case, and case D; thermal conductivity = +20% of nominal case. In the nominal case the temperature of breeding material (Li{sub 2}ZrO{sub 3}) ranges from 317degC to 554degC and the maximum temperature of Be pebble bed is 446degC. It is concluded that the temperature distribution is within the current design limits. Though the analyses performed here are preliminary, the results exhibit well the qualitative features of the pebble bed mechanical behaviors observed in experiments. For more detail quantitative estimates of the blanket performance, further investigation on mechanical properties of pebble beds by experiment

  3. Initial meetings of the re-established Test Blanket Working Group

    International Nuclear Information System (INIS)

    The ITER Test Blanket Working Group (TBWG) was first established in 1995. Its activities covered successively the final part of the ITER EDA and the extension period, the main results being a preliminary assessment of the breeding blanket testing capabilities of ITER and a proposal of a coherent test blanket programme, reported in 2001, that optimized the sharing of the three available testing ports between the three Parties present in 2001 (EU, JA and RF) taking into account the different coolant characteristics. The TBWG was re-established by the ITER Interim Project Leader in September 2003, with the support of the Participant Team Leaders. It is now comprised of four members from the ITER International Team and up to three members from each of the six ITER Participant Teams. The International Team delegation is led by Dr. V. Chuyanov, who has also been appointed as TBWG Co-Chair, while the six Participant Team delegations are led by Prof. M. Abdou (US), Dr. M. Akiba (JA), Dr. A. Cardella (EU), Dr. B.G. Hong (KO), Dr. C. Pan (CN) and Dr.Y. Strebkov (RF). The revised TBWG charter defines the four missions of the activities: i) provide the Design Description Document (DDD) of the Test Blanket Module (TBM) systems proposed by the participants, including the description of the interfaces with the main ITER machine, ii) promote cooperation among participants on the associated R and D programmes, iii) verify the integration of TBM testing in ITER site safety and environmental evaluations, and finally, iv) develop and propose coordinated TBM test programmes taking into account ITER operation planning. TBMs have to be representative of the breeding blanket for DEMO (the next reactor after ITER), capable of ensuring tritium-breeding self-sufficiency and of accommodating high-grade coolants for electricity production

  4. Radiation shielding device

    International Nuclear Information System (INIS)

    Purpose: To lower the shielding cost by providing a shielding wall having cavities and charging spherical shiedling materials in the cavities only when the shielding is required. Constitution: The structure comprises two parallel steel side plates aparting from each other to form a space therebetween and reinforcements such as H-type steels vertically provided between the side plates. The upper and the lower ends of the reinforcements are aparted from the upper and the lower edges of the side plates by a predetermined distance to form lateral passage between the top plate and the bottom plate. A guide plate having a plurality of openings is mounted on the upper ends of the reinforcements. If it is required for the structure to serve as the shield, spherical radioactive shielding materials are supplied through an injection port onto the guide plate while opening the injection port is opened and closing discharge port. The spherical radioactive shielding materials are fallen through the openings and filled in the space to thereby providing the structure with shielding performance. (Yoshino, Y.)

  5. Preliminary three-dimensional neutronics design and analysis of helium-cooled blanket for a multi-functional experimental fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    A multi-functional experimental fusion-fission hybrid reactor concept named FDS-MFX, which is based on viable fusion and fission technologies, has been proposed. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this paper, the design optimization for the layout and the size of high enriched uranium modules in later stage of uranium-fueled blanket has been performed. Finally, proposing a preliminary three-dimension neutronics design with maximum average Power Density (PDmax) 100 MW/ m3, loaded mass of the 235U 1000 kg and TBR (Tritium Breeding Ratio) 1.05. (authors)

  6. Progress in the integration of Test Blanket Systems in ITER equatorial port cells and in the interfaces definition

    International Nuclear Information System (INIS)

    Highlights: ► The design integration of two test blanket systems in ITER port cell is addressed. ► Definition of interfaces of TBSs with building and other ITER systems is done. ► Designs of pipe forest, bioshield plug and ancillary equipment unit are described. ► The maintenance of the two test blanket systems in ITER port cell is considered. ► The management of the heat and tritium releases in the TBM port cell is described. - Abstract: In the framework of the TBM Program, three ITER vacuum vessel equatorial ports (no. 16, no. 18 and no. 02) have been allocated for the testing of up to six mock-ups of six different DEMO tritium breeding blankets. Each one is called a Test Blanket System (TBS). A TBS consists mainly of the Test Blanket Module (TBM), the in-vessel component facing the plasma, and several ancillary systems, in particular the cooling system and the tritium extraction system. Each port accommodates two TBMs and therefore the two TBSs have to share the corresponding port cell. This paper deals with the design integration aspects of the two TBSs in each port cell performed at ITER Organization (IO) with the corresponding definition of interfaces with other ITER systems. The performed activities have raised several issues that are discussed in the paper and for which design solutions are proposed.

  7. Neutronic optimization of solid breeder blankets for STARFIRE design

    International Nuclear Information System (INIS)

    Extensive neutronic tradeoff studies were carried out to define and optimize the neutronic performance of the different solid breeder options for the STARFIRE blanket design. A set of criteria were employed to select the potential blanket materials. The basic criteria include the neutronic performance, tritium-release characteristics, material compatibility, and chemical stability. Three blanket options were analyzed. The first option is based on separate zones for each basic blanket function where the neutron multiplier is kept in a separate zone. The second option is a heterogeneous blanket type with two tritium breeder zones. In the first zone the tritium breeder is assembled in a neutron multiplier matrix behind the first wall while the second zone has a neutron moderator matrix instead of the neutron multiplier. The third blanket option is similar to the second concept except the tritium breeder and the neutron multiplier form a homogeneous mixture

  8. Fast-Breeder-Blanket Project: FBBF. Final report

    International Nuclear Information System (INIS)

    This report is the final report for DOE contract DE-AC02-76ET37237 with the Purdue Fast Breeder Blanket Project. The Project was initiated to investigate the uncertainties in Fast Breeder Reactor blanket calculations. Absolute measurements of key neutron reaction rates, neutron spectra, and gamma-ray energy depositions were made in simulated FBF blankets in the Fast Breeder Blanket Facility (FBBF), a Cf-252 driven subcritical facility. Calculation of the spectra and integral reaction rates were made using methods, computer codes, and cross section data typical of those currently used in the design of FBR's. Comparisons of calculated to experimental integral neutron reaction rates give good agreement at the inner portions of the blanket by diverge to C/E ratios of about 0.65 at the outer edge of the blanket for reactions sensitive to the neutron density

  9. The frontiers of research on fusion blanket technology

    International Nuclear Information System (INIS)

    Current topics concerning blanket technology are reviewed. In the chemical engineering/chemistry area, the qualitative and quantitative effects of mass transfer steps of tritium is important in the understanding of the behavior of bred tritium in the solid breeder blanket system. Such phenomena as adsorption, isotope exchange reactions, and water formation reaction at the grain surface produce profound effects on the behavior of the bred tritium in the blanket. Regarding the liquid system, the physical or chemical properties of Li, Li17Pb83 and Flibe as liquid blanket materials were compared. Some recent studies were introduced regarding tritium recovery from the liquid blanket materials, impurity removal from salts, ceramic coating of structural materials, and the vapor pressure of mixtures of metals or salts. Thermal hydraulic topics in relation to several candidate power reactor concepts are summarized. Emphasis is laid on the simultaneous removal of heat and tritium from the blanket and some aspects of forming effective power cycles are developed. (author)

  10. A review of fusion breeder blanket technology, part 1

    International Nuclear Information System (INIS)

    This report presents the results of a study of fusion breeder blanket technology. It reviews the role of the breeder blanket, the current understanding of the scientific and engineering bases of liquid metal and solid breeder blankets and the programs now underway internationally to resolve the uncertainities in current knowledge. In view of existing national expertise and experience, a solid breeder R and D program for Canada is recommended

  11. Analysis of deficiencies in fast reactor blanket physics predictions

    International Nuclear Information System (INIS)

    This analysis addresses a deviation between experimental measurements and fast reactor blanket physics predictions. A review of worldwide results reveals that reaction rates in the blanket are underpredicted with the discrepancy increasing with penetration into the blanket. The analysis of this discrepancy involves two parts: quantifying possible error reductions using the most advanced methods and investigating deficiencies in current methodology. The source of these discrepancies was investigated by application of ''state-of-the-art'' group constant generation and flux prediction methodology to flux calculations for the Purdue University Fast Breeder Blanket Facility (FBBF). Refined group constant generation methods yielded a significant reduction in the blanket deviations; however, only about half of the discrepancy can be accounted for in this manner. Transport theory calculations were used to predict the blanket neutron transmission problem. The surprising result is that transport theory predictions utilizing diffusion theory group constants did not improve the blanket results. Transport theory predictions exhibited blanket underpredictions similar to the diffusion theory results. The residual blanket discrepancies not explained using advanced methods require a refinement of the theory. For this purpose an analysis of deficiencies in current methodology was performed

  12. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project advanced acoustic blankets for improved low frequency interior noise control in aircraft will be developed and demonstrated. The improved...

  13. Alternate shield material feasibility

    International Nuclear Information System (INIS)

    The feasibility and cost/benefit of using materials other than stainless steel for in-vessel neutron shielding in large LMFBRs were investigated. Canned vibratorally compacted B4C powder shields were found to be much more economical than stainless steel (a savings of $1.1M in loop plant designs and $9.4M in pool plant designs). The helium gas pressure buildup in B4C shields placed around LMFBR in-vessel components (direct reactor heat exchangers in a loop reactor and intermediate heat exchangers in a pool reactor) would only be 0.04 atm after 40 y of reactor operation (with 80% dense powder). The irradiation-induced swelling of the B4C would only be 0.002%. No adverse reactor impact would occur if the B4C escaped from the B4C shields

  14. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  15. Alternate shield material feasibility

    Energy Technology Data Exchange (ETDEWEB)

    Specht, E.R.; Levitt, L.B.

    1984-04-01

    The feasibility and cost/benefit of using materials other than stainless steel for in-vessel neutron shielding in large LMFBRs were investigated. Canned vibratorally compacted B/sub 4/C powder shields were found to be much more economical than stainless steel (a savings of $1.1M in loop plant designs and $9.4M in pool plant designs). The helium gas pressure buildup in B/sub 4/C shields placed around LMFBR in-vessel components (direct reactor heat exchangers in a loop reactor and intermediate heat exchangers in a pool reactor) would only be 0.04 atm after 40 y of reactor operation (with 80% dense powder). The irradiation-induced swelling of the B/sub 4/C would only be 0.002%. No adverse reactor impact would occur if the B/sub 4/C escaped from the B/sub 4/C shields.

  16. Consolidated fuel shielding calculations

    International Nuclear Information System (INIS)

    Irradiated fuel radiation dose rate and radiation shielding requirements are calculated using a validated ISOSHLD-II model. Comparisons are made to experimental measurements. ISOSHLD-11 calculations are documented

  17. Recent accelerator experiments updates in Shielding INtegral Benchmark Archive Database (SINBAD)

    Science.gov (United States)

    Kodeli, I.; Sartori, E.; Kirk, B.

    2006-06-01

    SINBAD is an internationally established set of radiation shielding and dosimetry data relative to experiments relevant in reactor shielding, fusion blanket neutronics and accelerator shielding. In addition to the characterization of the radiation source, it describes shielding materials and instrumentation and the relevant detectors. The experimental results, be it dose, reaction rates or unfolded spectra are presented in tabular ASCII form that can easily be exported to different computer environments for further use. Most sets in SINBAD also contain the computer model used for the interpretation of the experiment and, where available, results from uncertainty analysis. The set of primary documents used for the benchmark compilation and evaluation are provided in computer readable form. SINBAD is available free of charge from RSICC and from the NEA Data Bank.

  18. Recent accelerator experiments updates in Shielding INtegral Benchmark Archive Database (SINBAD)

    Energy Technology Data Exchange (ETDEWEB)

    Kodeli, I. [IAEA Representative at OECD/NEA Data Bank, 12 bd. des Iles, 92130 Issy-les-Moulinaux (France)]. E-mail: ivo.kodeli@oecd.org; Sartori, E. [OECD Nuclear Energy Agency, 12 bd des Iles, 92130 Issy les Moulineaux (France); Kirk, B. [RSICC, Oak Ridge National Laboratory, POB 2008, Oak Ridge, TN 37831-6362 (United States)

    2006-06-23

    SINBAD is an internationally established set of radiation shielding and dosimetry data relative to experiments relevant in reactor shielding, fusion blanket neutronics and accelerator shielding. In addition to the characterization of the radiation source, it describes shielding materials and instrumentation and the relevant detectors. The experimental results, be it dose, reaction rates or unfolded spectra are presented in tabular ASCII form that can easily be exported to different computer environments for further use. Most sets in SINBAD also contain the computer model used for the interpretation of the experiment and, where available, results from uncertainty analysis. The set of primary documents used for the benchmark compilation and evaluation are provided in computer readable form. SINBAD is available free of charge from RSICC and from the NEA Data Bank.

  19. Recent accelerator experiments updates in Shielding INtegral Benchmark Archive Database (SINBAD)

    International Nuclear Information System (INIS)

    SINBAD is an internationally established set of radiation shielding and dosimetry data relative to experiments relevant in reactor shielding, fusion blanket neutronics and accelerator shielding. In addition to the characterization of the radiation source, it describes shielding materials and instrumentation and the relevant detectors. The experimental results, be it dose, reaction rates or unfolded spectra are presented in tabular ASCII form that can easily be exported to different computer environments for further use. Most sets in SINBAD also contain the computer model used for the interpretation of the experiment and, where available, results from uncertainty analysis. The set of primary documents used for the benchmark compilation and evaluation are provided in computer readable form. SINBAD is available free of charge from RSICC and from the NEA Data Bank

  20. Radiation shielding curtain

    International Nuclear Information System (INIS)

    A radiation shield is described in the form of a stranded curtain made up of bead-chains whose material and geometry are selected to produce a cross-sectional density that is the equivalent of 0.25 mm or more of lead and which curtain may be mounted on various radiological devices to shield against scattered radiation while offering a minimum of obstruction to the radiologist

  1. Shield for a medical actinometer

    International Nuclear Information System (INIS)

    The shield is designed for an actinometer enabling a kidney clearance determination. It shields the radioactive radiation coming from the kidney-bladder region opposite the measuring head. The shield consists of two plates which can be pushed together so that the dimensions of the shield are variable. (DG)

  2. Preliminary Thermal Design of Cryogenic Radiation Shielding

    Science.gov (United States)

    Li, Xiaoyi; Mustafi, Shuvo; Boutte, Alvin

    2015-01-01

    Cryogenic Hydrogen Radiation Shielding (CHRS) is the most mass efficient material radiation shielding strategy for human spaceflight beyond low Earth orbit (LEO). Future human space flight, mission beyond LEO could exceed one year in duration. Previous radiation studies showed that in order to protect the astronauts from space radiation with an annual allowable radiation dose less than 500 mSv, 140 kgm2 of polyethylene is necessary. For a typical crew module that is 4 meter in diameter and 8 meter in length. The mass of polyethylene radiation shielding required would be more than 17,500 kg. The same radiation study found that the required hydrogen shielding for the same allowable radiation dose is 40 kgm2, and the mass of hydrogen required would be 5, 000 kg. Cryogenic hydrogen has higher densities and can be stored in relatively small containment vessels. However, the CHRS system needs a sophisticated thermal system which prevents the cryogenic hydrogen from evaporating during the mission. This study designed a cryogenic thermal system that protects the CHRS from hydrogen evaporation for one to up to three year mission. The design also includes a ground based cooling system that can subcool and freeze liquid hydrogen. The final results show that the CHRS with its required thermal protection system is nearly half of the mass of polyethylene radiation shielding.

  3. Thermal, Radiation and Impact Protective Shields (TRIPS) for Robotic and Human Space Exploration Missions

    Science.gov (United States)

    Loomis, M. P.; Arnold, J. L.

    2005-01-01

    New concepts for protective shields for NASA s Crew Exploration Vehicles (CEVs) and planetary probes offer improved mission safety and affordability. Hazards include radiation from cosmic rays and solar particle events, hypervelocity impacts from orbital debris/ micrometeorites, and the extreme heating environment experienced during entry into planetary atmospheres. The traditional approach for the design of protection systems for these hazards has been to create single-function shields, i.e. ablative and blanket-based heat shields for thermal protection systems (TPS), polymer or other low-molecular-weight materials for radiation shields, and multilayer, Whipple-type shields for protection from hypervelocity impacts. This paper introduces an approach for the development of a single, multifunctional protective shield, employing nanotechnology- based materials, to serve simultaneously as a TPS, an impact shield and as the first line of defense against radiation. The approach is first to choose low molecular weight ablative TPS materials, (existing and planned for development) and add functionalized carbon nanotubes. Together they provide both thermal and radiation (TR) shielding. Next, impact protection (IP) is furnished through a tough skin, consisting of hard, ceramic outer layers (to fracture the impactor) and sublayers of tough, nanostructured fabrics to contain the debris cloud from the impactor before it can penetrate the spacecraft s interior.

  4. Development of advanced blanket materials for solid breeder blanket of fusion reactor

    International Nuclear Information System (INIS)

    The design of advanced solid breeding blanket in the DEMO reactor requires the tritium breeder and neutron multiplier that can withstand the high temperature and high fluence, and the development of such as advanced blanket materials has been carried out by the cooperation activities among JAERI, universities and industries in Japan. The Li2TiO3 pebble fabricated by wet process is a reference material as a tritium breeder, but the stability on high temperature has to be improved for application to DEMO blanket. As one of such the improved materials, TiO2-doped Li2TiO3 pebbles were successfully fabricated and TiO2-doped Li2TiO3 has been studied. For the advanced neutron multiplier, the beryllides that have high melting point and good chemical stability have been studied. Some characterization of Be12Ti was conducted, and it became clear that Be12Ti had lower swelling and tritium inventory than that of beryllium metal. The pebble fabrication study for Be12Ti was also performed and Be12Ti pebbles were successfully fabricated. From these activities, the bright prospect was obtained to realize the DEMO blanket by the application of TiO2-doped Li2TiO3 and beryllides. (author)

  5. Systematic methodology for estimating direct capital costs for blanket tritium processing systems

    International Nuclear Information System (INIS)

    This paper describes the methodology developed for estimating the relative capital costs of blanket processing systems. The capital costs of the nine blanket concepts selected in the Blanket Comparison and Selection Study are presented and compared

  6. A low-risk aqueous lithium salt blanket for engineering test reactors

    International Nuclear Information System (INIS)

    A simple blanket concept is proposed based on 1-3 wt.% lithium dissolved as a salt in low temperature (80 degrees C) and low pressure (0.1 MPa) water. This concept can provide, for example, a 0.5 tritium breeding ratio with 60% steel structure and 70% coverage. The use of neutron multipliers, other structural materials (especially zirconium alloys), higher coverage and higher lithium salt concentrations allows tritium breeding ratios over unity if necessary. Other advantages of this concept include the simple shield-like geometry, substantial structural volume for mechanical strength, excellent heat transfer ability of water coolant, efficient neutron and gamma shielding through the combination of high-Z structure and low-Z water, and conventional tritium recovery and control technology. This concept could initially provide the shielding needs for an engineering test reactor and later, by the addition of lithium salt and tritium recovery systems, also provide tritium breeding. This staged operation and liquid breeder/coolant allows control over the tritium inventory in the device without machine disassembly. 14 refs

  7. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matricies. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data

  8. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matrices. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data

  9. Fusion reactor blanket: neutronic studies in France

    International Nuclear Information System (INIS)

    The problem of effective tritium regeneration is a crucial issue for the fusion reactor, especially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty analysis. The results of these studies permit us to conclude that it is possible to expect an adequate tritium breeding ratio

  10. ITER solid breeder blanket materials database

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States); Dienst, W. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Material- und Festkoerperforschung; Flament, T. [CEA Centre d`Etudes de Fontenay-aux-Roses (France). Commissariat A L`Energie Atomique; Lorenzetto, P. [NET Team, Garching (Germany); Noda, K. [Japan Atomic Energy Research Inst., Takai, Ibaraki, (Japan); Roux, N. [CEA Centre d`Etudes et de Recherches Les Materiaux (France). Commissariat a L`Energie Atomique

    1993-11-01

    The databases for solid breeder ceramics (Li{sub 2},O, Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3} and LiAlO{sub 2}) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized.

  11. Preliminary structural design and thermo-mechanical analysis of helium cooled solid breeder blanket for Chinese Fusion Engineering Test Reactor

    International Nuclear Information System (INIS)

    Highlights: • A helium cooled solid breeder blanket module was designed for CFETR. • Multilayer U-shaped pebble beds were adopted in the blanket module. • Thermal and thermo-mechanical analyses were carried out under normal operating conditions. • The analysis results were found to be acceptable. - Abstract: With the aim to bridge the R&D gap between ITER and fusion power plant, the Chinese Fusion Engineering Test Reactor (CFETR) was proposed to be built in China. The mission of CFETR is to address the essential R&D issues for achieving practical fusion energy. Its blanket is required to be tritium self-sufficient. In this paper, a helium cooled solid breeder blanket adopting multilayer U-shaped pebble beds was designed and analyzed. Thermo-mechanical analysis of the first wall and side wall combined with breeder unit was carried out for normal operating steady state conditions. The results showed that the maximum temperatures of the structural material, neutron multiplier and tritium breeder pebble beds are 523 °C, 558 °C and 787 °C, respectively, which are below the corresponding limits of 550 °C, 650 °C and 920 °C. The maximum equivalent stress of the structure is under the allowable value with a margin about 14.5%

  12. Status of the extended performance tests for blanket remote maintenance in ITER L6 project

    International Nuclear Information System (INIS)

    Mechanically attached blanket module insertion tests were carried out considering the misalignment between module and back plate. Through the insertion tests, the module was successfully inserted up to the misalignment of ±10 mm under the clearance of ± 0.16 ∼ ±0.18 mm between key and groove. This was achieved by the passive compliance due to the flexibility of the manipulator through the assistance of the chamfer configuration of the key for smooth insertion. In addition, the 'correlation coefficient' based on the results obtained by the strain gages located at the end-effector was found to be useful in order to estimate the forces of the complicated end-effector during module insertion for the development of the sensor based control. (author)

  13. Status of extended performance tests for blanket remote maintenance in the ITER L6 project

    International Nuclear Information System (INIS)

    Mechanically attached blanket module insertion tests were carried out for various misalignments between the module and the back plate. In the insertion tests, the module was successfully inserted up to a misalignment of ±10 mm with a clearance of ±(0.16-0.18) mm between key and groove. This was achieved owing to the passive compliance due to the flexibility of the manipulator with the assistance of the chamfer configuration of the key for smooth insertion. In addition, the 'correlation coefficient' based on the results obtained by the strain gauges located at the end effector was found to be useful for estimating the forces of the complex end effector during module insertion for the development of sensor based control. (author)

  14. Heterogeneous structure effect on molten salt blanket neutronics

    Energy Technology Data Exchange (ETDEWEB)

    Grebyonkin, K.F.; Kandiev, Ya.Z.; Malyshkin, G.N.; Orlov, A.I. [Inst. of Technical Pysics, Chelyabinsk (Russian Federation). Dept. of Physics

    1997-09-01

    The report presents the results of the molten salt blanket neutronics calculations performed for researchers of a facility for accelerator-driven transmutation of long-lived radioactive wastes and plutonium conversion. Heterogeneous structure effect on molten salt blanket neutronics was studied through computation. 4 refs., 1 fig., 1 tab.

  15. Breeding blanket concepts for fusion and materials requirements

    International Nuclear Information System (INIS)

    This paper summarizes the design and performances of recent breeding blanket concepts and identifies the key material issues associated with them. An assessment of different classes of concepts is carried out by balancing out the potential performance of the concepts with the risk associated with the required material development. Finally, an example strategy for blanket development is discussed

  16. Neutron shielding material

    International Nuclear Information System (INIS)

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  17. Mechanical shielded hot cell

    International Nuclear Information System (INIS)

    A plan to erect a mechanical shielded hot cell in the process hall of the Radiochemical Laboratory at Inchas is described. The hot cell is designed for safe handling of spent fuel bundles, from the Inchas reactor, and for dismantling and cutting the fuel rods in preparation for subsequent treatment. The biological shielding allows for the safe handling of a total radioactivity level up to 10,000 MeV-Ci. The hot cell consists of an α-tight stainless-steel box, connected to a γ-shielded SAS, through an air-lock containing a movable carriage. The α-box is tightly connected with six dry-storage cavities for adequate storage of the spent fuel bundles. Both the α-box, with the dry-storage cavities, and the SAS are surrounded by 200-mm thick biological lead shielding. The α-box is equipped with two master-slave manipulators, a lead-glass window, a monorail crane and Padirac and Minirag systems. The SAS is equipped with a lead-glass window, tong manipulator, a shielded pit and a mechanism for the entry of the spent fuel bundle. The hot cell is served by adequate ventilation and monitoring systems. (author)

  18. Technologies and modelling issues for tritium processing in the European Test Blanket Systems and perspectives for DEMO

    International Nuclear Information System (INIS)

    Highlights: • Provided DEMO relevancy considerations on tritium processing technologies. • Provided updates on the main technologies present in the Test blanket System ancillary circuits. • Provided the main achievements for tritium transport modelling tools development. - Abstract: One of the main objectives of the experimental campaign on the Test Blanket Systems (TBS) in ITER is the demonstration of the efficient processing of the tritium generated in the Test Blanket Module (TBM). On the other side, efficient tritium processing in a TBS has deep implications on: (i) safe operation of TBS itself and whole ITER system; (ii) successful development and validation of tritium transport modelling codes; (iii) demonstration of DEMO relevancy of tritium processing technologies. This work describes various aspects of HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed)-TBS activities related to TBS tritium management. After a short description of HCLL and HCPB blanket concepts and related TBS, the paper contains: 1.a presentation of the key tritium processing technologies in the current design baseline of the European TBS; 2.a discussion on the DEMO relevancy of some specific TBS tritium processing technologies; 3.an overview on the activities related to the tritium transport modelling tools that will be validated along the development of the TBM project, including experimental campaign in ITER, and used for supporting the DEMO Breeding Blanket design. These three items are connected each other since tritium-related data, generated through the experimental campaign in ITER and interpreted through suitable modelling tools, will be one of the most significant outcomes in support of the breeding blanket design for DEMO and beyond

  19. MIT LMFBR blanket research project. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record.

  20. LMFBR Blanket Physics Project progress report No. 6

    International Nuclear Information System (INIS)

    Progress is summarized in experimental and analytical investigations of the neutronics and photonics of benchmark mockups of LMFBR blankets. During the reporting period work was devoted primarily to a wide range of analytical/numerical investigations, including blanket fuel management/economics studies, evaluation of improved blanket designs, and assessment of state-of-the-art methods for gamma heating calculations. Experimental work included preparations for resumption of MIT Reactor operations, primarily fabrication of improved steel reflector assemblies for blanket mockups, and development of an improved radiophotoluminescent readout device for LiF thermoluminescent detectors. The most significant finding was that the neutronic and economic performance of radial blanket assemblies are essentially independent of core size (rating) for radially-power-flattened cores. Hence the methodology and results of current experiments and calculations should be valid for the large commercial LMFBR's of the future

  1. LMFBR Blanket Physics Project progress report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, M.J. (ed.)

    1975-06-30

    Progress is summarized in experimental and analytical investigations of the neutronics and photonics of benchmark mockups of LMFBR blankets. During the reporting period work was devoted primarily to a wide range of analytical/numerical investigations, including blanket fuel management/economics studies, evaluation of improved blanket designs, and assessment of state-of-the-art methods for gamma heating calculations. Experimental work included preparations for resumption of MIT Reactor operations, primarily fabrication of improved steel reflector assemblies for blanket mockups, and development of an improved radiophotoluminescent readout device for LiF thermoluminescent detectors. The most significant finding was that the neutronic and economic performance of radial blanket assemblies are essentially independent of core size (rating) for radially-power-flattened cores. Hence the methodology and results of current experiments and calculations should be valid for the large commercial LMFBR's of the future.

  2. MIT LMFBR blanket research project. Final summary report

    International Nuclear Information System (INIS)

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record

  3. Fast-core thermal-blanket breeder reactor

    International Nuclear Information System (INIS)

    A preliminary assessment of the performance expected from a specific type of FCTB reactor, consisting of a gas-cooled fast system for the core and natural-uranium light-water thermal system for the blanket is reported. Both the core and the blanket use the 238U-Pu fuel cycle. When all the neutrons leaking out of the core reach the blanket, the blanket-to-core power ratio is estimated to be about 1.3. By reducing its water-to-fuel volume ratio below 1.5, the light water blanket can be designed to have a higher ksub(eff), while maintaining an equilibrium fissile fuel content. Compared with conventional FBRs, having the same power output, the FCTB reactor considered offers the following advantages: a lower fissile fuel content, easier and safer control, no need for Pu separation. (B.G.)

  4. Shielding Structures for Interplanetary Human Mission

    Science.gov (United States)

    Tracino, Emanuele; Lobascio, Cesare

    2012-07-01

    radiation shielding power of the interplanetary habitat structures, like the spacecraft shell, minimizing the amount of mass used. From the radiation protection point of view the spacecraft shell is an interesting spacecraft system because it surrounds almost homogeneously all the habitat and it is typically composed by the Micrometeorites and Debris Protection Systems (MDPS), the Multilayer Insulation (MLI) for thermal control purposes, and the primary structure that offers the pressure containment functionality. Nevertheless, the spacecraft internal outfitting is important to evaluate the different shielded areas in the habitat. Using Geant4 Monte Carlo simulations toolkit through GRAS (Geant4 Radiation Analysis for Space) tool, different spacecraft structures will be analyzed for their shielding behavior in terms of fluxes, dose reduction and radiation quality, and for their implementation in a real pressurized module. Effects on astronauts and electronic equipments will be also assessed with respect to the standard aluminum structures.

  5. Designer's guidebook for first wall/blanket/shield assembly, maintenance, and repair

    International Nuclear Information System (INIS)

    This is the initial issue of the guidebook. Since a guidebook of this type must incorporate information concerning a wide range of subjects, much additional data will eventually be included. The guidebook will document, in summary and easily referenceable form, data, designs, design concepts, design guidelines and background information useful to the FWBS and to the Maintenance System designer. In providing guidelines for the AMR of the FWBS, the guidebook must, of necessity, include guidelines for all aspects of maintenance associated with the FWBS. These include most maintenance operations within the reactor room necessary to gain access, identify faults, and handle equipment related to FWBS maintenance. In addition, the guidelines include those required to define facility requirements for handling and repair of FWBS and related reactor components external to the reactor room. Particular emphasis is given to remote maintenance design and operations

  6. Designer's guidebook for first wall/blanket/shield assembly, maintenance, and repair

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-30

    This is the initial issue of the guidebook. Since a guidebook of this type must incorporate information concerning a wide range of subjects, much additional data will eventually be included. The guidebook will document, in summary and easily referenceable form, data, designs, design concepts, design guidelines and background information useful to the FWBS and to the Maintenance System designer. In providing guidelines for the AMR of the FWBS, the guidebook must, of necessity, include guidelines for all aspects of maintenance associated with the FWBS. These include most maintenance operations within the reactor room necessary to gain access, identify faults, and handle equipment related to FWBS maintenance. In addition, the guidelines include those required to define facility requirements for handling and repair of FWBS and related reactor components external to the reactor room. Particular emphasis is given to remote maintenance design and operations.

  7. Advanced Multifunctional MMOD Shielding Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MMOD toughened, smart thermal blankets. The project was successful over the past two years in developing and demonstrating by test (hypervelocity impact and thermal...

  8. Conceptual design of the blanket and power conversion system for a mirror hybrid fusion-fission reactor. 12-month progress report, July 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    This report presents the conceptual design and preliminary feasibility assessment for the hybrid blanket and power conversion system of the Mirror Hybrid Fusion-Fission Reactor. Existing gas-cooled fission reactor technology is directly applicable to the Mirror Hybrid Reactor. There are a number of aspects of the present conceptual design that require further design and analysis effort. The blanket and power conversion system operating parameters have not been optimized. The method of supporting the blanket modules and the interface between these modules and the primary loop helium ducting will require further design work. The means of support and containment of the primary loop components must be studied. Nevertheless, in general, the conceptual design appears quite feasible

  9. Shields-1, A SmallSat Radiation Shielding Technology Demonstration

    Science.gov (United States)

    Thomsen, D. Laurence, III; Kim, Wousik; Cutler, James W.

    2015-01-01

    The NASA Langley Research Center Shields CubeSat initiative is to develop a configurable platform that would allow lower cost access to Space for materials durability experiments, and to foster a pathway for both emerging and commercial-off-the-shelf (COTS) radiation shielding technologies to gain spaceflight heritage in a relevant environment. The Shields-1 will be Langleys' first CubeSat platform to carry out this mission. Radiation shielding tests on Shields-1 are planned for the expected severe radiation environment in a geotransfer orbit (GTO), where advertised commercial rideshare opportunities and CubeSat missions exist, such as Exploration Mission 1 (EM-1). To meet this objective, atomic number (Z) graded radiation shields (Zshields) have been developed. The Z-shield properties have been estimated, using the Space Environment Information System (SPENVIS) radiation shielding computational modeling, to have 30% increased shielding effectiveness of electrons, at half the thickness of a corresponding single layer of aluminum. The Shields-1 research payload will be made with the Z-graded radiation shields of varying thicknesses to create dose-depth curves to be compared with baseline materials. Additionally, Shields-1 demonstrates an engineered Z-grade radiation shielding vault protecting the systems' electronic boards. The radiation shielding materials' performances will be characterized using total ionizing dose sensors. Completion of these experiments is expected to raise the technology readiness levels (TRLs) of the tested atomic number (Z) graded materials. The most significant contribution of the Z-shields for the SmallSat community will be that it enables cost effective shielding for small satellite systems, with significant volume constraints, while increasing the operational lifetime of ionizing radiation sensitive components. These results are anticipated to increase the development of CubeSat hardware design for increased mission lifetimes, and enable

  10. Neutronics Comparison Analysis of the Water Cooled Ceramics Breeding Blanket for CFETR

    Science.gov (United States)

    Li, Jia; Zhang, Xiaokang; Gao, Fangfang; Pu, Yong

    2016-02-01

    China Fusion Engineering Test Reactor (CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO. One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2 to ensure tritium self-sufficiency. A concept design for a water cooled ceramics breeding blanket (WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR. Based on this concept, a one-dimensional (1D) radial built breeding blanket was first designed, and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build. A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models, addressing neutron wall loading (NWL), tritium breeding ratio (TBR), fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components. The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy (Nos. 2013GB108004, 2014GB122000, and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  11. System engineering approach in the EU Test Blanket Systems Design Integration

    International Nuclear Information System (INIS)

    The complexity of the Test Blanket Systems demands diverse and comprehensive integration activities. Test Blanket Modules - Consortia of Associates (TBM-CA) applies the system engineering methods in all stages of the Test Blanket System (TBS) design integration. Completed so far integration engineering tasks cover among others status and initial set of TBS operating parameters; list of codes, standards and regulations related to TBS; planning of the TBS interfaces and baseline documentation. Most of the attention is devoted to the establishment the Helium-Cooled Lithium Lead (HCLL) and Helium-Cooled Pebble Bed Lead (HCPB) TBS configuration baseline, TBS break down into sub-systems, identification, definition and management of the internal and external interfaces, development of the TBS plant break down structure (PBS), establishment and management of the required TBS baseline documentation infrastructure. Break down of the TBS into sub-systems that is crucial for the further design and interfaces' management has been selected considering several options and using specific evaluation criteria. Process of the TBS interfaces management covers the planning, definition and description, verification and review, non-conformances and deviations, and modification and improvement processes. Process of interfaces review is developed, identifying the actors, input, activities and output of the review. Finally the relations and interactions of system engineering processes with TBM configuration management and TBM-CA Quality Management System are discussed.

  12. Radiolysis Experiments for the Aqueous Self-Cooled Blanket. Final report

    International Nuclear Information System (INIS)

    The results of Fusion Technology Task NAB 1.1 (Radiolytic Experiments for the ASCB), are reported . In the Aqueous Self-Cooled Blanket (ASCB) concept, an aqueous 6Li solution in a metallic structure is used as a shielding-breeding blanket for fusion reactors. Radiolysis could be very important with respect to the design and the use of an ASCB. The objectives of this project were to quantify the radiolytic decomposition of neutron irradiated aqueous lithium solutions and to demonstrate, if possible, the suppression of this decomposition by the initial addition of a small amount of hydrogen. Closed capsules, with the solutions and an inert gas or hydrogen as cover gas, were irradiated with thermal neutrons in a fission reactor. Radiolysis products hydrogen and oxygen (from hydrogen peroxide) as well as tritium were measured after irradiation. Tritium served as an internal dosimeter. The experimental results with LiNO3 , Li2SO4 and LiOH solutions indicate that the radiolytic gas production in an ASCB is proportional to the absorbed radiation energy. The observed radiation chemical yields allow the preliminary estimation of the radiolysis effects for a specific ASCB design. Contrary to the theoretical predictions, the use of hydrogen as a cover gas at up to 1 MPa had no measurable effect on the radiolytic gas production. Probably it will thus not be possible to suppress the radiolytic decomposition of a low-pressure ASCB by the addition of H2. Catalytic recombination will be required

  13. Analysis of the thorium axial blanket experiments in the proteus reactor

    Energy Technology Data Exchange (ETDEWEB)

    White, J.R.; Ingersoll, D.T.

    1980-12-01

    Detailed analysis has been completed for the ThO/sub 2/ and Th-metal axial blanket experiments performed at the Swiss PROTEUS critical facility in order to compare reaction rates and neutron spectra measured in prototypic GCFR configurations with calculated results. The PROTEUS configurations allowed the analysis of infinitely dilute thorium data in a PuO/sub 2//UO/sub 2/ fast lattice spectrum at core center as well as the analysis of resonance self-shielding effects in the thorium-bearing axial blankets. These comparisons indicate that significant deficiencies still exist in the latest evaluated infinitely dilute thorium data file. Specifically, the analysis showed that the /sup 232/Th capture is underpredicted by ENDF/B-IV data, and the discrepancies are further exaggerated by ENDF/B-V data. On the other hand, ENDF/B-V /sup 232/Th fission data appear to be significantly improved relative to ENDF/B-IV data, while discrepancies are extremely large for the (n,2n) process in both data files. Finally, the (n,n') cross sections for thorium also appear improved in ENDF/B-V, except for a small energy range just above the 50 keV threshold. Therefore, these combined data deficiencies suggest that relatively large uncertainties should be associated with many of the results obtained from recent fast reactor alternate fuel cycle analyses. 38 figures, 12 tables.

  14. Radiation shielding bricks

    International Nuclear Information System (INIS)

    A radiation shielding brick for use in building dry walls to form radiation proof enclosures and other structures is described. It is square in shape and comprises a sandwich of an inner layer of lead or similar shielding material between outer layers of plastics material, for structural stability. The ability to mechanically interlock adjacent bricks is provided by shaping the edges as cooperating external and internal V-sections. Relatively leak-free joints are ensured by enlarging the width of the inner layer in the edge region. (author)

  15. Structural design of shield-integrated thin-wall vacuum vessel and manufacturing qualification tests for International Thermonuclear Experimental Reactor (ITER)

    International Nuclear Information System (INIS)

    Conceptual design of shield-integrated thin-wall vacuum vessel has been done for ITER (International Thermonuclear Experimental Reactor). The vacuum vessel concept is based on a thin-double-wall structure, which consists of inner and outer plates and rib stiffeners. Internal shielding structures, which provide neutron irradiation shielding to protect TF coils, are set up between the inner plate and the outer plate of the vessel to avoid complexity of machine systems such as supporting systems of blanket modules. The vacuum vessel is assembled/disassembled by remote handling, so that welding joints are chosen as on-site joint method from reliability of mechanical strength. From a view point of assembling TF coils, the vacuum vessel is separated at the side of port, and is divided into 32 segments similar to the ITER-CDA reference design. Separatrix sweeping coils are located in the vacuum vessel to reduce heat fluxes onto divertor plates. Here, the coil structure and attachment to the vacuum vessel have been investigated. A sectorized saddle-loop coil is available for assembling and disassembling the coil. To support electromagnetic loads on the coils, they are attached to the groove in the vacuum vessel by welding. Flexible multi-plate supporting structure (compression-type gravity support), which was designed during CDA, is optimized by investigating buckling and frequency response properties, and concept on manufacturing and fabrication of the gravity support are proposed. Partial model of the vacuum vessel is manufactured for trial, so that fundamental data on welding and fabrication are obtained. From mechanical property tests of weldment and partial models, mechanical intensity and behaviors of the weldment are obtained. Informations on FEM-modeling are obtained by comparing analysis results with experimental results. (author)

  16. Radiation shielding materials

    International Nuclear Information System (INIS)

    Purpose: To obtain putty-like shielding materials excellent in the radiation shielding and packing workability for use in penetrations of electrical wires or pipeways in a nuclear installation. Constitution: A putty-like material is prepared from 100 parts by weight of a binder comprising a grease or the like having viscosity of greater than 5000 cst or an immiscible consistency of greater than 100 (JIS K 2220 (1980) para. 5.3.4) at 25 0C and from 1200 to 4000 parts by weight of high density inorganic powder such as lead powder or lead oxide powder having a density of greater than 5 g/cm3 and such a particle size that more than 95 % thereof passes through a 145 mesh sieve. The putty-like material is adjusted such that it has 1 - 35 mm of softness (JIS A 5752) at normal temperature, more than 1 g/5 sec of injection amount and a density of greater than 4 g/cm3. In this way, non-curable radiation shielding agent with excellent X-ray or γ-ray shielding property and being capable of packed densely to void portions can be obtained. (Ikeda, J.)

  17. Shield For Flexible Pipe

    Science.gov (United States)

    Ponton, Michael K.; Williford, Clifford B.; Lagen, Nicholas T.

    1995-01-01

    Cylindrical shield designed to fit around flexible pipe to protect nearby workers from injury and equipment from damage if pipe ruptures. Designed as pressure-relief device. Absorbs impact of debris ejected radially from broken flexible pipe. Also redirects flow of pressurized fluid escaping from broken pipe onto flow path allowing for relief of pressure while minimizing potential for harm.

  18. INDRA: a program system for calculating the neutronics and photonics characteristics of a fusion reactor blanket

    International Nuclear Information System (INIS)

    INDRA is a program system for calculating the neutronics and photonics characteristics of fusion reactor blankets. It incorporates a total of 19 different codes and 5 large data libraries. 10 of the codes are available from the code distribution organizations. Some of them, however, have been slightly modified in order to permit a convenient transfer of information from one program module to the next. The remaining 9 programs have been prepared by the authors to complete the system with respect to flexibility and to facilitate the handling of the results. (orig./WBU)

  19. Neutronics Experiment on A HCPB Breeder Blanket Mock-Up

    International Nuclear Information System (INIS)

    A neutronics experiment has been performed in the frame of European Fusion Technology Program on a mock-up of the EU Test Blanket Module (TBM), Helium Cooled Pebble Bed (HCPB) concept, with the objective to validate the capability of nuclear data to predict nuclear responses, such as the tritium production rate (TPR), with qualified uncertainties. The experiment has been carried out at the FNG 14-MeV neutron source in collaboration between ENEA, Technische Universitaet Dresden, Forschungszentrum Karlsruhe, J. Stefan Institute Ljubljana and with the participation of JAEA. The mock-up, designed in such a way to replicate all relevant nuclear features of the TBM-HCPB, consisted of a steel box containing beryllium block and two intermediate steel cassettes, filled with of Li2CO3 powder, replicating the breeder insert main characteristics: radial thickness, distance between ceramic layers, thickness of ceramic layers and of steel walls. In the experiment, the TPR has been measured using Li2CO3 pellets at various depths at two symmetrical positions at each depth, one in the upper and one in the lower cassette. Twelve pellets were used at each position to determine the TPR profile through the cassette. Three independent measurements were performed by ENEA, TUD/VKTA and JAEA. The neutron flux in the beryllium layer was measured as well using activation foils. The measured tritium production in the TBM (E) was compared with the same quantity (C) calculated by the MCNP.4c using a very detailed model of the experimental set up, and using neutron cross sections from the European Fusion File (EFF ver.3.1) and from the Fusion Evaluated Nuclear Data Library (FENDL ver. 2.1, ITER reference neutron library). C/E ratios were obtained with a total uncertainty on the C/E comparison less than 9% (2 s). A sensitivity and uncertainty analysis has also been performed to evaluate the calculation uncertainty due to the uncertainty on neutron cross sections. The results of such analysis

  20. Analysis of the ORNL/TSF GCFR Grid-Plate Shield Design Confirmation Experiment

    International Nuclear Information System (INIS)

    The results of the analysis of the GCFR Grid-Plate Shield Design Confirmation Experiment are presented. The experiment, performed at the ORNL Tower Shielding Facility, was designed to test the adequacy of methods and data used in the analysis of the GCFR design. In particular, the experiment tested the adequacy of methods to calculate: (1) axial neutron streaming in the GCFR core and axial blanket, (2) the amount and location of the maximum fast-neutron exposure to the grid plate, and (3) the neutron source leaving the top of the grid plate and entering the upper plenum. Other objectives of the experiment were to verify the grid-plate shielding effectiveness and to assess the effects of fuel-pin and subassembly spacing on radiation levels in the GCFR. The experimental mockups contained regions representing the GCFR core/blanket region, the grid-plate shield section, and the grid plate. Most core design options were covered by allowing: (1) three different spacings between fuel subassemblies, (2) two different void fractions within a subassembly by variation of the number of fuel pins, and (3) a mockup of a control-rod channel

  1. Efficacy of Cosmic Ray Shields

    Science.gov (United States)

    Rhodes, Nicholas

    2015-10-01

    This research involved testing various types of shielding with a self-constructed Berkeley style cosmic ray detector, in order to evaluate the materials of each type of shielding's effectiveness at blocking cosmic rays and the cost- and size-efficiency of the shields as well. The detector was constructed, then tested for functionality and reliability. Following confirmation, the detector was then used at three different locations to observe it altitude or atmospheric conditions had any effect on the effectiveness of certain shields. Multiple types of shielding were tested with the detector, including combinations of several shields, primarily aluminum, high-iron steel, polyethylene plastic, water, lead, and a lead-alternative radiation shield utilized in radiology. These tests regarding both the base effectiveness and the overall efficiency of shields is designed to support future space exploratory missions where the risk of exposure to possibly lethal amounts of cosmic rays for crew and the damage caused to unshielded electronics are of serious concern.

  2. Hinged Shields for Machine Tools

    Science.gov (United States)

    Lallande, J. B.; Poland, W. W.; Tull, S.

    1985-01-01

    Flaps guard against flying chips, but fold away for tool setup. Clear plastic shield in position to intercept flying chips from machine tool and retracted to give operator access to workpiece. Machine shops readily make such shields for own use.

  3. Spacecraft thermal blanket cleaning: Vacuum bake of gaseous flow purging

    Science.gov (United States)

    Scialdone, John J.

    1990-01-01

    The mass losses and the outgassing rates per unit area of three thermal blankets consisting of various combinations of Mylar and Kapton, with interposed Dacron nets, were measured with a microbalance using two methods. The blankets at 25 deg C were either outgassed in vacuum for 20 hours, or were purged with a dry nitrogen flow of 3 cu. ft. per hour at 25 deg C for 20 hours. The two methods were compared for their effectiveness in cleaning the blankets for their use in space applications. The measurements were carried out using blanket strips and rolled-up blanket samples fitting the microbalance cylindrical plenum. Also, temperature scanning tests were carried out to indicate the optimum temperature for purging and vacuum cleaning. The data indicate that the purging for 20 hours with the above N2 flow can accomplish the same level of cleaning provided by the vacuum with the blankets at 25 deg C for 20 hours, In both cases, the rate of outgassing after 20 hours is reduced by 3 orders of magnitude, and the weight losses are in the range of 10E-4 gr/sq cm. Equivalent mass loss time constants, regained mass in air as a function of time, and other parameters were obtained for those blankets.

  4. Spacecraft Electrostatic Radiation Shielding

    Science.gov (United States)

    2008-01-01

    This project analyzed the feasibility of placing an electrostatic field around a spacecraft to provide a shield against radiation. The concept was originally proposed in the 1960s and tested on a spacecraft by the Soviet Union in the 1970s. Such tests and analyses showed that this concept is not only feasible but operational. The problem though is that most of this work was aimed at protection from 10- to 100-MeV radiation. We now appreciate that the real problem is 1- to 2-GeV radiation. So, the question is one of scaling, in both energy and size. Can electrostatic shielding be made to work at these high energy levels and can it protect an entire vehicle? After significant analysis and consideration, an electrostatic shield configuration was proposed. The selected architecture was a torus, charged to a high negative voltage, surrounding the vehicle, and a set of positively charged spheres. Van de Graaff generators were proposed as the mechanism to move charge from the vehicle to the torus to generate the fields necessary to protect the spacecraft. This design minimized complexity, residual charge, and structural forces and resolved several concerns raised during the internal critical review. But, it still is not clear if such a system is costeffective or feasible, even though several studies have indicated usefulness for radiation protection at energies lower than that of the galactic cosmic rays. Constructing such a system will require power supplies that can generate voltages 10 times that of the state of the art. Of more concern is the difficulty of maintaining the proper net charge on the entire structure and ensuring that its interaction with solar wind will not cause rapid discharge. Yet, if these concerns can be resolved, such a scheme may provide significant radiation shielding to future vehicles, without the excessive weight or complexity of other active shielding techniques.

  5. Molten salt cooling/17Li-83Pb breeding blanket concept

    International Nuclear Information System (INIS)

    A description of a fusion breeding blanket concept using draw salt coolant and static 17Li-83Pb is presented. 17Li-83Pb has high breeding capability and low tritium solubility. Draw salt operates at low pressure and is inert to water. Corrosion, MHD, and tritium containment problems associated with the MARS design are alleviated because of the use of a static LiPb blanket. Blanket tritium recovery is by permeation toward the plasma. A direct contact steam generator is proposed to eliminate some generic problems associated with a tube shell steam generator

  6. Demonstration Tokamak Hybrid Reactor (DTHR) blanket design study, December 1978

    International Nuclear Information System (INIS)

    This work represents only the second iteration of the conceptual design of a DTHR blanket; consequently, a number of issues important to a detailed blanket design have not yet been evaluated. The most critical issues identified are those of two-phase flow maldistribution, flow instabilities, flow stratification for horizontal radial inflow of boiling water, fuel rod vibrations, corrosion of clad and structural materials by high quality steam, fretting and cyclic loads. Approaches to minimizing these problems are discussed and experimental testing with flow mock-ups is recommended. These implications on a commercial blanket design are discussed and critical data needs are identified

  7. Hybrid reactor blankets for constant energy multiplication and flat power distribution

    International Nuclear Information System (INIS)

    Two blanket design difficulties are usually attributed to the blanket neutronic properties: high peak-to-average power density ratio distribution and the variation of the energy multiplication with burnup. This work shows that blankets can be designed to have a constant energy multiplication and a flat power distribution. These features are illustrated for light water hydrid reactor blankets

  8. The bulk shielding benchmark experiment at the Frascati Neutron Generator (FNG)

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, P. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Angelone, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Martone, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Pillon, M. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Rado, V. [Associazione EURATOM-ENEA sulla Fusione, Frascati (Italy); Santamarina, A. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Abidi, I. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Gastaldi, B. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Martini, M. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France); Marquette, J.P. [Commissariat al`Energie Atomique, Centre d`Etudes de Cadarache, F-13108 St. Paul-lez-Durance Cedex (France)

    1995-03-01

    In the design of next-step fusion devices such as NET/ITER the nuclear performance of shielding blankets is of key importance in terms of nuclear heating of superconducting magnets and radiation damage. In the framework of the European Fusion Technology Program, ENEA Frascati and CEA Cadarache in collaboration performed a bulk shielding benchmark experiment using the 14MeV Frascati Neutron Generator (FNG), aimed at obtaining accurate experimental data for improving the nuclear database and methods used in shielding designs. The experiment consisted of the irradiation of a stainless steel block by 14MeV neutrons. The neutron reaction rates at various depths inside the block have been measured using fission chambers and activation foils characterized by different energy response ranges. The experimental results have been compared with numerical results calculated using both S{sub n} and Monte Carlo transport codes and the cross-section library EFF.1 (European Fusion File). (orig.).

  9. Capacitive Proximity Sensors With Additional Driven Shields

    Science.gov (United States)

    Mcconnell, Robert L.

    1993-01-01

    Improved capacitive proximity sensors constructed by incorporating one or more additional driven shield(s). Sensitivity and range of sensor altered by adjusting driving signal(s) applied to shield(s). Includes sensing electrode and driven isolating shield that correspond to sensing electrode and driven shield.

  10. Multilayer radiation shield

    Science.gov (United States)

    Urbahn, John Arthur; Laskaris, Evangelos Trifon

    2009-06-16

    A power generation system including: a generator including a rotor including a superconductive rotor coil coupled to a rotatable shaft; a first prime mover drivingly coupled to the rotatable shaft; and a thermal radiation shield, partially surrounding the rotor coil, including at least a first sheet and a second sheet spaced apart from the first sheet by centripetal force produced by the rotatable shaft. A thermal radiation shield for a generator including a rotor including a super-conductive rotor coil including: a first sheet having at least one surface formed from a low emissivity material; and at least one additional sheet having at least one surface formed from a low emissivity material spaced apart from the first sheet by centripetal force produced by the rotatable shaft, wherein each successive sheet is an incrementally greater circumferential arc length and wherein the centripetal force shapes the sheets into a substantially catenary shape.

  11. Shielding benchmark test

    International Nuclear Information System (INIS)

    Iron data in JENDL-2 have been tested by analyzing shielding benchmark experiments for neutron transmission through iron block performed at KFK using CF-252 neutron source and at ORNL using collimated neutron beam from reactor. The analyses are made by a shielding analysis code system RADHEAT-V4 developed at JAERI. The calculated results are compared with the measured data. As for the KFK experiments, the C/E values are about 1.1. For the ORNL experiments, the calculated values agree with the measured data within an accuracy of 33% for the off-center geometry. The d-t neutron transmission measurements through carbon sphere made at LLNL are also analyzed preliminarily by using the revised JENDL data for fusion neutronics calculation. (author)

  12. 18 CFR 284.402 - Blanket marketing certificates.

    Science.gov (United States)

    2010-04-01

    ... effective for an affiliated marketer with respect to transactions involving affiliated pipelines when an affiliated pipeline receives its blanket certificate pursuant to § 284.284. (2) Should a marketer...

  13. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed Phase II research effort is to develop heterogeneous (HG) blankets for improved sound reduction in aircraft structures. Phase I...

  14. Safety and personnel access aspects of low activation fusion blankets

    International Nuclear Information System (INIS)

    The use of silicon carbide and carbon materials for structural applications in fusion reactor first wall and blanket regions has been proposed and a continuing effort spent on the development of the ceramics technology. The advantages identified are an extremely low induced radioactivity inventory, a high temperature operating capability, abundant raw material resource availability, and minimized plasma impurity effects. One of the unique features of the applications of these materials to fusion reactor blanket designs is that no alloying element is needed in order to assure the specified mechanical properties such as occurs in metal alloys. The major source of long term radioactivity in these materials is impurities. The impurity elements and their concentrations carried over to the blanket structure during fabrication can be minimized by proper fabrication procedures and techniques. The safety and personnel access aspects of such fusion blankets in conjunction with the impurity element concentration are the main subjects of this paper

  15. Lightweight IMM Multi-Junction Photovoltaic Flexible Blanket Assembly Project

    Data.gov (United States)

    National Aeronautics and Space Administration — DSS's recently completed successful NASA SBIR Phase 1 program has established a TRL 3/4 classification for an innovative IMM PV Integrated Modular Blanket Assembly...

  16. Combustor bulkhead heat shield assembly

    Energy Technology Data Exchange (ETDEWEB)

    Zeisser, M.H.

    1990-06-19

    This paper describes a gas turbine engine having an annular combustion chamber defined by an annular, inner liner, a concentric outer liner, and an upstream annular combustor head, wherein the head includes a radially extending bulkhead having circumferentially distributed openings for each receiving an individual fuel nozzle therethrough. It comprises: a segmented heat shield assembly, disposed between the combustion chamber interior and the bulkhead, including generally planar, sector shaped heat shields, each shield abutting circumferentially with two next adjacent shields and extending radially from proximate the inner liner to proximate the outer liner, the plurality of shields collectively defining an annular protective barrier, and wherein each sector shaped shield further includes an opening, corresponding to one of the bulkhead nozzle openings for likewise receiving the corresponding nozzle therethrough, the shield opening further including an annular lip extending toward the bulkhead and being received within the bulkhead opening, raised ridges on the shield backside, the ridges contacting the facing bulkhead surface and defining a flow path for a flow of cooling air issuing from a sized supply opening disposed in the bulkhead, the flow path running ultimately from adjacent the annular lip to the edges of each shield segment, wherein the raised edges extend fully along the lateral, circumferentially spaced edges of each shield segment and about the adjacent shield segments wherein the raised ridges further extend circumferentially between the annular lip and the abutting edge ridges.

  17. Shielding calculations for SSC

    International Nuclear Information System (INIS)

    Monte Carlo calculations of hadron and muon shielding for SSC are reviewed with emphasis on their application to radiation safety and environmental protection. Models and algorithms for simulation of hadronic and electromagnetic showers, and for production and transport of muons in the TeV regime are briefly discussed. Capabilities and limitations of these calculations are described and illustrated with a few examples. 12 refs., 3 figs

  18. Shielded cells transfer automation

    International Nuclear Information System (INIS)

    Nuclear waste from shielded cells is removed, packaged, and transferred manually in many nuclear facilities. To reduce radiation exposure to operators, technological advances in remote handling and automation were employed. An industrial robot and a specially designed end effector, access port, and sealing machine were used to remotely bag waste containers out of a glove box. The system is operated from a control panel outside the work area via television cameras

  19. Radioisotope Power System Facility shielding analysis

    International Nuclear Information System (INIS)

    A series of calculations for the Radioisotope Power System Facility have been performed. These analyses have determined the shielding required for storage, testing, and transport of 238Pu heat source modules using the Monte Carlo code MCNP3B. The source terms and the assumptions used have been verified by comparison of calculated dose rates with measured ones. This paper describes the methodology used for shielding designs and the utilization of available variance reduction techniques to improve the computational efficiency. The new version of MCNP (MCNP3B) with a repeated structure capability was used. It decreased the chance for computer model errors and greatly decreased the model setup time. 2 refs., 3 figs., 2 tabs

  20. Shielding analyses of the IFMIF test cell

    International Nuclear Information System (INIS)

    Full 3-D shielding calculations of the IFMIF test cell were performed using a computational scheme for coupled Monte Carlo/deterministic transport calculations that enables the use of a detailed geometry model of the test cell in the Monte Carlo calculation and is suitable, at the same time, to handle the deep penetration transport through the thick surrounding concrete walls. Calculations for the test cell cover, which includes numerous penetrations through which neutrons stream, were performed by the Monte Carlo method. The results demonstrate that the dose rate limit for work personnel access to the access/maintenance room can be safely met during IFMIF operation assuming the test modules are surrounded by a horseshoe shield and the back heavy concrete wall is no less than 250 cm thick. No work personnel access to the room above the cover will be permitted during IFMIF operation due to the strong neutron streaming through the cover penetrations

  1. Shielding Benchmark Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Slater, C.O.; Holland, L.B.; Tracz, G.; Marshall, W.J.; Parsons, J.L.

    2000-09-17

    Over the past several decades, nuclear science has relied on experimental research to verify and validate information about shielding nuclear radiation for a variety of applications. These benchmarks are compared with results from computer code models and are useful for the development of more accurate cross-section libraries, computer code development of radiation transport modeling, and building accurate tests for miniature shielding mockups of new nuclear facilities. When documenting measurements, one must describe many parts of the experimental results to allow a complete computational analysis. Both old and new benchmark experiments, by any definition, must provide a sound basis for modeling more complex geometries required for quality assurance and cost savings in nuclear project development. Benchmarks may involve one or many materials and thicknesses, types of sources, and measurement techniques. In this paper the benchmark experiments of varying complexity are chosen to study the transport properties of some popular materials and thicknesses. These were analyzed using three-dimensional (3-D) models and continuous energy libraries of MCNP4B2, a Monte Carlo code developed at Los Alamos National Laboratory, New Mexico. A shielding benchmark library provided the experimental data and allowed a wide range of choices for source, geometry, and measurement data. The experimental data had often been used in previous analyses by reputable groups such as the Cross Section Evaluation Working Group (CSEWG) and the Organization for Economic Cooperation and Development/Nuclear Energy Agency Nuclear Science Committee (OECD/NEANSC).

  2. A Pressurized Water Reactor Plutonium Incinerator Based on Thorium Fuel and Seed-Blanket Assembly Geometry

    International Nuclear Information System (INIS)

    A pressurized water reactor (PWR) fuel cycle is proposed, whose purpose is the elimination and degradation of weapons-grade plutonium. This Radkowsky thorium-fuel Pu incinerator (RTPI) cycle is based on a core and assemblies retrofittable to a Westinghouse-type PWR. The RTPI assembly, however, is a seed-blanket unit. The seed is supercritical, loaded with Pu-Zr alloy as fuel in a high moderator-to-fuel ratio configuration. The blanket is subcritical, loaded mainly with ThO2, generating and burning 233U in situ. Blankets are loaded once every 6 yr. The seed fuel management scheme is based on three batches, with one-third of the seed modules replaced every year. The core generates 1100 MW(electric). Equilibrium conditions are achieved with the second seed loading. For equilibrium conditions, the annual average of disposed (loaded) Pu is 1210 kg, of which 702 kg are completely eliminated, and 508 kg are discharged, but with significantly degraded isotopics (i.e., with a high percentage of even mass isotopes). Spontaneous fissions per second in a gram of this degraded Pu are ∼500, resulting in significantly increased proliferation resistance.Every 6 yr the blanket discharge contains 780 kg of 233U (including 233Pa) and 36 kg of 235U. However, the blankets are initially loaded with an amount of natural uranium selected such that these U fissile isotopes constitute only 12% of the total U discharge, a percentage equivalent to 20% 235U enrichment; hence, both the discharged uranium isotopics satisfy proliferation-resistant criteria.The RTPI control variables, namely, the moderator temperature coefficient, the reactivity per ppm boron, and the control rods worth, are about equal to those of a PWR. The RTPI spent-fuel stockpile ingestion toxicity over a period of ten million years is about the same as the counterpart toxicities of a regular, or a mixed-oxide (MOX), PWR. Compared with known PWR MOX variants, the RTPI is, per 1000 MW(electric) and per annum, a significantly

  3. A Ballistic Limit Analysis Program for Shielding Against Micrometeoroids and Orbital Debris

    Science.gov (United States)

    Ryan, Shannon; Christiansen, Erie

    2010-01-01

    A software program has been developed that enables the user to quickly and simply perform ballistic limit calculations for common spacecraft structures that are subject to hypervelocity impact of micrometeoroid and orbital debris (MMOD) projectiles. This analysis program consists of two core modules: design, and; performance. The design module enables a user to calculate preliminary dimensions of a shield configuration (e.g., thicknesses/areal densities, spacing, etc.) for a ?design? particle (diameter, density, impact velocity, incidence). The performance module enables a more detailed shielding analysis, providing the performance of a user-defined shielding configuration over the range of relevant in-orbit impact conditions.

  4. Impact of prescribed burning on blanket peat hydrology

    OpenAIRE

    Holden, J; Palmer, SM; Johnston, K; Wearing, C.; Irvine, B; Brown, LE

    2015-01-01

    Fire is known to impact soil properties and hydrological flowpaths. However, the impact of prescribed vegetation burning on blanket peatland hydrology is poorly understood. We studied ten blanket peat headwater catchments. Five were subject to prescribed burning, while five were unburnt controls. Within the burnt catchments we studied plots where the last burn occurred ∼2 (B2), 4 (B4), 7 (B7) or greater than 10 years (B10+) prior to the start of measurements. These were compared with plots at...

  5. Main features and potentialities of gas-blanket systems

    International Nuclear Information System (INIS)

    A review is given of the features and potentialities of cold-blanket systems, with respect to plasma equilibrium, stability, and reactor technology. The treatment is concentrated on quasi-steady magnetized plasmas confined at moderately high beta values. The cold-blanket concept has specific potentialities as a fusion reactor, e.g. in connection with the desired densities and dimensions of full-scale systems, refuelling, as well as ash and impurity removal, and stability. (author)

  6. Blankets for tritium catalyzed deuterium (TCD) fusion reactors

    International Nuclear Information System (INIS)

    The TCD fusion fuel cycle - where the 3He from the D(D,n)3He reaction is transmuted, by neutron capture in the blanket, into tritium which is fed back to the plasma - was recently recognized as being potentially more promising than the Catalyzed Deuterium (Cat-D) fuel cycle for tokamak power reactors. It is the purpose of the present work to assess the feasibility of, and to identify promising directions for designing blankets for TCD fusion reactors

  7. FIRST STEP blanket structure and fuel assembly design

    International Nuclear Information System (INIS)

    FIRST STEP (Fusion, Inertial, Reduced Requirement Systems Test for Special Nuclear Material, Tritium, and Energy Production) is an Inertial Confinement Fusion (ICF) plant designed to produce tritium, SNM, and energy using near-term technology. It is an integrated facility that will serve as a test bed for fusion power plant technology. The design of the blanket structure and blanket fuel assembly for wetted-wall FIRST STEP reactors is presented here

  8. Studies on steps affecting tritium residence time in solid blanket

    International Nuclear Information System (INIS)

    For the self sustaining of CTR fuel cycle, the effective tritium recovery from blankets is essential. This means that not only tritium breeding ratio must be larger than 1.0, but also high recovering speed is required for the short residence time of tritium in blankets. Short residence time means that the tritium inventory in blankets is small. In this paper, the tritium residence time and tritium inventory in a solid blanket are modeled by considering the steps constituting tritium release. Some of these tritium migration processes were experimentally evaluated. The tritium migration steps in a solid blanket using sintered breeding materials consist of diffusion in grains, desorption at grain edges, diffusion and permeation through grain boundaries, desorption at particle edges, diffusion and percolation through interconnected pores to purging stream, and convective mass transfer to stream. Corresponding to these steps, diffusive, soluble, adsorbed and trapped tritium inventories and the tritium in gas phase are conceivable. The code named TTT was made for calculating these tritium inventories and the residence time of tritium. An example of the results of calculation is shown. The blanket is REPUTER-1, which is the conceptual design of a commercial reversed field pinch fusion reactor studied at the University of Tokyo. The experimental studies on the migration steps of tritium are reported. (Kako, I.)

  9. The integrated-blanket-coil concept applied to the poloidal field and blanket systems of a tokamak reactor

    International Nuclear Information System (INIS)

    A novel concept is proposed for combining the blanket and coil functions of a fusion reactor into a single component. This concept, designated the ''integrated-blanket-coil'' (IBC) concept, is applied to the poloidal field and blanket systems of a tokamak reactor. An examination of resistive power losses in the IBC suggests that these losses can be limited to 10% of the fusion thermal power. By assuming a sandwich construction for the IBC walls, magnetohydrodynamic (MHD)-induced pressure drops and associated pressure stresses are shown to be modest and well below design limits. For the stainless steel reference case examined, the MHD-induced pressure drop was estimated to be about 1/3 MPa and the associated primary membrane stress was estimated to be about 47 MPa. The preliminary analyses indicate that the IBC concept offers promise as a means for making fusion reactors more compact by combining blanket and coil functions in a single component

  10. Reduction of the background in the new passive shield

    International Nuclear Information System (INIS)

    A shield was designed and tested for low level gamma spectroscopy. It consists of 10 mm of iron, 100 mm of lead, 10 mm of copper, 80 mm of NEUTROSTOP bricks (polyethylene with boric acid) and of 10 mm of plexiglas. The inner dimensions of the shield are 380x380x600 mm. The characteristics of the low-background shielding were determined by measuring the background at the inside and outside. For measurements, a coaxial large-volume Ge(Li) detector, Canberra NIM modules and multichannel analyzer ICA-70 were used. The background spectra were measured in an energy range of 200 to 3050 keV for 250,000 s. The shield was found to reduce the background values in the energy range E <= 2,600 keV by a factor of 10 to 50. (E.S.)

  11. Degrading the Plutonium Produced in Fast Breeder Reactor Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jor-Shan; Kuno, Yusuke [Tokyo University, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2009-06-15

    Plutonium quality, defined as the plutonium isotopic composition, is an important measure for proliferation-resistance (PR) of a nuclear energy system. The quality of the plutonium produced in the blanket assemblies of a fast breeder reactor could be as good as or better than the weapons-grade (WG). The presence of such good quality plutonium is a proliferation concern. There are various options to degrade the plutonium produced in the breeder blanket. The obvious one is to blend the blanket plutonium with those produced from the reactor core during reprocessing. Other options try to prevent the generation of good quality plutonium (Pu). The Protected Plutonium Production (P{sup 3}) Project proposed by Tokyo Institute of Technology (TIT)1,2,3 advocates the doping of certain amount of neptunium (Np), or americium (Am) in fresh blanket fuel for irradiation. The increased production of {sup 238}Pu, {sup 240}Pu and {sup 242}Pu by neutron capture in {sup 237}Np and Am would degrade the blanket plutonium. However, as {sup 237}Np is a controlled material according to IAEA, its use as doping material in fresh blanket fuel presents a concern for nuclear proliferation. In addition, the fabrication of fresh blanket fuel with inclusion of americium would be complicated due to the emission of intense low-energy gamma radiation from {sup 241}Am. Am is normally accompanied by Cm since the separation of those 2 elements is very difficult. Fuel containing both Am and Cm may make Safeguards measurement difficult. A variation would be doping the fresh blanket fuel with minor actinide (e.g., a group of neptunium, americium, and curium), or with separated reactor-grade (RG) plutonium. The drawback of such schemes would be the need for glove boxes in fresh blanket fuel fabrication. It is possible to fuel the breeder blankets with recycled (reprocessed) uranium oxide. The recycled uranium, recovered from reprocessing, contains {sup 236}U, which when irradiated in the blanket would

  12. Safety Evaluation of the EVOLVE Blanket Concept

    International Nuclear Information System (INIS)

    This article summarizes the results of the safety evaluation of the Evaporation of Lithium and Vapor Extraction (EVOLVE) W-alloy first wall (FW) and blanket concept. We have analyzed the EVOLVE design response during a confinement bypass accident. A confinement bypass accident was chosen because, based on previous safety studies, this accident can produce environmental releases by breaching the primary radioactive confinement boundary of EVOLVE, which is the EVOLVE vacuum vessel (VV). As a consequence of a bypass accident, air from a room adjoining the reactor enters the plasma chamber by way of a failed VV port. This air reacts with the high temperature metals inside of the VV to release energy in the case of a lithium spill, or to mobilize radioactive material by oxidation, and then transport this material to the environment by natural convection airflow through the failed VV port. We use the MELCOR code to analyze the response of EVOLVE during this accident. Based on these results, the EVOLVE concept can meet the no-evacuation dose goal set by the DOE Fusion Safety Standard if the EVOLVE confinement building ventilation system is closed within two hours of the onset of this accident

  13. Current status of fusion reactor blanket thermodynamics

    International Nuclear Information System (INIS)

    Recent studies of liquid lithium have concentrated on its sorption characteristics for hydrogen isotopes and its interaction with common impurity elements. Hydrogen isotope sorption data (P-C-T relations, activity coefficients, Sieverts' constants, plateau pressures, isotope effects, free energies of formation, phase boundaries etc.) are presented in a tabular form that can be conveniently used to extract thermodynamic information for the α-phase of the Li-LiH, Li-LiD, and Li-LiT systems and to construct complete phase diagrams. Recent solubility data for Li3N, Li2O, and Li2C2 in liquid lithium are discussed with emphasis on the prospects for removing these species by cold-trapping methods. Current studies on the sorption of hydrogen in solid lithium alloys (e.g., Li--Al and Li--Pb), made using a new technique (the hydrogen titration method), have shown that these alloys should lead to smaller blanket-tritium inventories than are attainable with liquid lithium and that the P-C-T relationships for hydrogen in Li--M alloys can be estimated from lithium activity data for these alloys

  14. Flow characteristics of the Cascade granular blanket

    International Nuclear Information System (INIS)

    Analysis of a single granule on a rotating cone shows that for the 350 half-angle, double-cone-shaped Cascade chamber, blanket granules will stay against the chamber wall if the rotational speed is 50 rpm or greater. The granules move axially down the wall with a slight (5-mm or less) sinusoidal oscillation in the circumferential direction. Granule chute-flow experiments confirm that two-layered flow can be obtained when the chute is inclined slightly above the granular material angle of repose. The top surface layer is thin and fast moving (supercritical flow). A thick bottom layer moves more slowly (subcritical flow controlled at the exit) with a velocity that increases with distance from the bottom of the chute. This is a desirable velocity profile because in the Cascade chamber about one-third of the fusion energy is deposited in the form of x rays and fusion-fuel-pellet debris in the top surface (inner-radius) layer

  15. SHIELD 1.0: development of a shielding calculator program in diagnostic radiology; SHIELD 1.0: desenvolvimento de um programa de calculo de blindagem em radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Romulo R.; Real, Jessica V.; Luz, Renata M. da [Hospital Sao Lucas (PUCRS), Porto Alegre, RS (Brazil); Friedrich, Barbara Q.; Silva, Ana Maria Marques da, E-mail: ana.marques@pucrs.br [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil)

    2013-08-15

    In shielding calculation of radiological facilities, several parameters are required, such as occupancy, use factor, number of patients, source-barrier distance, area type (controlled and uncontrolled), radiation (primary or secondary) and material used in the barrier. The shielding design optimization requires a review of several options about the physical facility design and, mainly, the achievement of the best cost-benefit relationship for the shielding material. To facilitate the development of this kind of design, a program to calculate the shielding in diagnostic radiology was implemented, based on data and limits established by National Council on Radiation Protection and Measurements (NCRP) 147 and SVS-MS 453/98. The program was developed in C⌗ language, and presents a graphical interface for user data input and reporting capabilities. The module initially implemented, called SHIELD 1.0, refers to calculating barriers for conventional X-ray rooms. The program validation was performed by the comparison with the results of examples of shielding calculations presented in NCRP 147.

  16. Justification for Shielded Receiver Tube Additional Lead Shielding

    International Nuclear Information System (INIS)

    In order to reduce high radiation dose rates encountered when core sampling some radioactive waste tanks the addition of 240 lbs. of lead shielding is being considered to the shielded receiver tube on core sample trucks No.1, No.3 and No.4. The lead shielding is 4 inch diameter x 1/2 inch thick half rounds that have been installed around the SR tube over its' full length. Using three unreleased but independently reviewed structural analyses HNF-6018 justifies the addition of the lead shielding

  17. Measurement of the transient shielding effectiveness of shielding cabinets

    Directory of Open Access Journals (Sweden)

    H. Herlemann

    2008-05-01

    Full Text Available Recently, new definitions of shielding effectiveness (SE for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005. Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.

  18. Mechanical characteristics and position control of vehicle/manipulator for ITER blanket remote maintenance

    International Nuclear Information System (INIS)

    In International Thermonuclear Experimental Reactor (ITER), blanket maintenance requires the 4-tonne module handling with high positioning accuracy of ±2 mm. In order to meet this requirement, it is essential to suppress the dynamic deflection and vibration of the remote handling equipment due to sudden transfer of the module weight from/to the back-plate supports to/from the equipment itself during installation and removal. A new control scheme was proposed and tested so as to suppress the dynamic behaviors. As a result, the dynamic deflection of the rail and the acceleration of the manipulator were successfully decreased to nearly zero. Based on the test results, the proposed control scheme was concluded to be effective so as to suppress this kind of dynamic effect during heavy component handling

  19. Passive Shielding in CUORE

    International Nuclear Information System (INIS)

    The nature of neutrino mass is one of the friontier problems of fundamental physics. Neutrinoless Double Beta Decay (0νDBD) is a powerful tool to investigate the mass hierarchy and possible extensions of the Standard Model. CUORE is a 1-Ton next generation experiment, made of 1000 Te bolometers, aiming at reaching a background of 0.01 (possibly 0.001) counts keV-1kg-1y-1 and therefore a mass sensitivity of few tens of meV The background contribution due to environmental neutrons, muon-induced neutrons in the shieldings and external gamma is discussed

  20. Planar Shielded-Loop Resonators

    OpenAIRE

    Tierney, Brian B.; Grbic, Anthony

    2014-01-01

    The design and analysis of planar shielded-loop resonators for use in wireless non-radiative power transfer systems is presented. The difficulties associated with coaxial shielded-loop resonators for wireless power transfer are discussed and planar alternatives are proposed. The currents along these planar structures are analyzed and first-order design equations are presented in the form of a circuit model. In addition, the planar structures are simulated and fabricated. Planar shielded-loop ...

  1. Walls shielding against ionizing radiation

    International Nuclear Information System (INIS)

    These specifications are to help the users of lead bricks as under DIN 25407, leaf 1, with the construction of walls shielding against ionizing radiation by examples for the uses of the different types of lead bricks and by recommendations for the construction of shielding walls and for the determination of the wall thickness necessary for shielding against γ-radiation as a function of energy. (orig./AK)

  2. On an optimized neutron shielding for an advanced molten salt fast reactor design

    International Nuclear Information System (INIS)

    The molten salt reactor technology has gained renewed interest. In contrast to the historic molten salt reactors, the current projects are based on designing a molten salt fast reactor. Thus the shielding becomes significantly more challenging than in historic concepts. One very interesting and innovative result of the most recent EURATOM project on molten salt reactors – EVOL – is the fluid flow optimized design of the inner core vessel using curved blanket walls. The developed structure leads to a very uniform flow distribution. The design avoids all core internal structures. On the basis of this new geometry a model for neutron physics calculation is presented and applied for a shielding optimization. Based on these results an optimized shielding strategy is developed for the molten salt fast reactor to keep the fluence in the safety related outer vessel below expected limit values. A lifetime of 80 years can be assured, but the size of the core/blanket system has to be significantly increased and will finally be comparable to a sodium cooled fast reactor. The HELIOS results are verified against Monte-Carlo calculations with very satisfactory agreement for a deep penetration problem. (author)

  3. Shielding walls against ionizing radiation

    International Nuclear Information System (INIS)

    This standard shall be applied to closed shielding facilities which, together with the lead bricks according to DIN 25 407 part 1 and the functional elements according to this standard, are designed to make possible the setting-up of complete shieldings for hot cells in beta-gamma-technique (see DIN 25 407 part 3) according to modular principles. This standard is intended to facilitate the design and construction of hot cells with shielding walls made of lead as well as the interchangeability of individual constructional elements in existing shielding walls. (orig./HP)

  4. Gas-cooled fast breeder reactor shielding benchmark calculation

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, C.A.; Mathews, D.R.; Koch, P.K.

    1977-01-01

    This report summarizes the results of a shielding benchmark calculation performed by General Atomic (GA) and Oak Ridge National Laboratory (ORNL). The problem analyzed was a neutron-coupled gamma ray transport calculation of the core blanket shield of the 300-MW(e) gas-cooled fast breeder reactor (GCFR). Comparison of the initial GA and ORNL results indicated good agreement for fast fluxes (E greater than 0.9 MeV and E greater than 0.086 MeV) but poor agreement for epithermal and thermal neutron fluxes. Examination of the results revealed that a deficiency in the GA fine-group cross section preparation code was responsible for the differences in the GA and ORNL iron cross sections. Modification of the GA cross sections to include self-shielding was accomplished, and the updated GA benchmark calculation performed with the self-shielded iron cross sections was in excellent agreement with the ORNL results for fast neutron fluxes with E greater than 0.9 MeV and E greater than 0.086 MeV and in good agreement for epithermal and thermal fluxes. The agreement of the gamma heating rates also improved significantly. Thus, it was concluded that the good agreement of the GA and ORNL neutron-coupled gamma ray transport calculation indicates that (1) the methods and cross sections used by both laboratories were compatible and consistent and (2) the use of 24 neutron energy groups and 15 gamma energy groups by GA was adequate compared with the use of 51 neutron energy groups and 25 gamma energy groups by ORNL.

  5. New Toroid shielding design

    CERN Multimedia

    Hedberg V

    On the 15th of June 2001 the EB approved a new conceptual design for the toroid shield. In the old design, shown in the left part of the figure above, the moderator part of the shielding (JTV) was situated both in the warm and cold areas of the forward toroid. It consisted both of rings of polyethylene and hundreds of blocks of polyethylene (or an epoxy resin) inside the toroid vacuum vessel. In the new design, shown to the right in the figure above, only the rings remain inside the toroid. To compensate for the loss of moderator in the toroid, the copper plug (JTT) has been reduced in radius so that a layer of borated polyethylene can be placed around it (see figure below). The new design gives significant cost-savings and is easier to produce in the tight time schedule of the forward toroid. Since the amount of copper is reduced the weight that has to be carried by the toroid is also reduced. Outgassing into the toroid vacuum was a potential problem in the old design and this is now avoided. The main ...

  6. Iron shielded MRI optimization

    Science.gov (United States)

    Borghi, C. A.; Fabbri, M.

    1998-09-01

    The design of the main current systems of an actively shielded and of an iron shielded MRI device for nuclear resonance imaging, is considered. The model for the analysis of the magnetic induction produced by the current system, is based on the combination of a Boundary Element technique and of the integration of two Fredholm integral equations of the first and the second kind. The equivalent current magnetization model is used for the calculation of the magnetization produced by the iron shield. High field uniformity in a spherical region inside the device, and a low stray field in the neighborhood of the device are required. In order to meet the design requirements a multi-objective global minimization problem is solved. The minimization method is based on the combination of the filled function technique and the (1+1) evolution strategy algorithm. The multi-objective problem is treated by means of a penalty method. The actively shielded MRI system results to utilize larger amount of conductor and produce higher magnetic energy than the iron shield device. On veut étudier le projet du système des courants principaux d'un MRI à écran en fer et d'un MRI à écran actif. Le modèle d'analyse du champ magnétique produit par le système de courants est basé sur la combinaison d'une technique Boundary Element et de l'intégration de deux équations intégrales de Fredholm de première et de seconde sorte. On utilise pour calculer la magnétisation produite par l'écran en fer le modèle à cou rants de magné ti sa tion équivalents. On exige une élévation uniforme du champ dans une région sphérique au cœur de l'appareil et un bas champ magnétique dispersé à proximité de l'appareil. Dans le but de répondre aux impératifs du projet, on va résoudre un problème multiobjectif de minimisation globale. On utilise une technique de minimisation obtenue par la combinaison des méthodes “Filled Function” et “(1+1) Evolution Strategy”. Le probl

  7. Recent MHD activities for blanket analysis at UPC

    International Nuclear Information System (INIS)

    In the frame of fusion reactor design definition, the detailed analysis of main flow parameters in liquid metal blankets is of utmost interest. Critical aspects are (1) tritium inventories and permeation rates, (2) heat extraction and maximum temperatures for material specifications and (3) MHD pressure drops. The aim of GREENER research group at UPC is to develop a CFD code, based on the OpenFOAM toolbox, able to deal with the main phenomena occurring at blanket channels (MHD coupling, heat transfer and tritium transport) and capable to quantify the above mentioned critical aspects. In parallel, CIMNE research group is developing its own MHD code, mainly focused on algorithm optimisation. The paper summarises the developing tools at each research group and compares their behaviour in a validation step using analytical solutions. In order to expose the applicability of the codes, some simulation results related with the HCLL-ITER/TBM blanket are exposed. Special focus is made on buoyancy flows in U-shaped channels and multi channel effect. Moreover, a preliminary flow analysis related with vertical banana-shape liquid metal channels is discussed, related with a new blanket design that is being considered as a progress of conceptual design refinement of dual-coolant liquid metal blankets (DEMO specifications).

  8. Neutronics experiments for DEMO blanket at JAERI/FNS

    International Nuclear Information System (INIS)

    In nuclear fusion DEMO reactor, the blanket is required to provide the tritium breeding ratio (TBR) of more than unity by the neutron induced reaction in lithium in the blanket. To provide the TBR of more than unity is critical issue in the development of the blanket. Also in order to develop the blanket with low activation level, the evaluation of the induced activity with high precision is required by taking into account the sequential reactions induced by secondary charged particles. In order to evaluate these issues experimentally, neutronics experiments have been performed by using DT neutrons at JAERI/FNS. From the results of TBR experiment by using the mockup relevant to the DEMO blanket with multilayered structure composed of Be, Li2TiO3 and F82H, it was clarified that the TPR can be evaluated within 10 % uncertainty by using the Monte Carlo calculation. From the results of sequential reactions experiment for the test specimens simulating the cooling water pipe, it was found that the effective cross-sections due to the sequential reactions were increased in a form close to an exponential curve in the cooling water pipe with reducing the distance to the water. (author)

  9. Drip Shield Emplacement Gantry Concept

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.A.; Cron, J.

    2000-03-29

    This design analysis has shown that, on a conceptual level, the emplacement of drip shields is feasible with current technology and equipment. A plan for drip shield emplacement was presented using a Drip Shield Transporter, a Drip Shield Emplacement Gantry, a locomotive, and a Drip Shield Gantry Carrier. The use of a Drip Shield Emplacement Gantry as an emplacement concept results in a system that is simple, reliable, and interfaces with the numerous other exising repository systems. Using the Waste Emplacement/Retrieval System design as a basis for the drip shield emplacement concept proved to simplify the system by using existing equipment, such as the gantry carrier, locomotive, Electrical and Control systems, and many other systems, structures, and components. Restricted working envelopes for the Drip Shield Emplacement System require further consideration and must be addressed to show that the emplacement operations can be performed as the repository design evolves. Section 6.1 describes how the Drip Shield Emplacement System may use existing equipment. Depending on the length of time between the conclusion of waste emplacement and the commencement of drip shield emplacement, this equipment could include the locomotives, the gantry carrier, and the electrical, control, and rail systems. If the exisiting equipment is selected for use in the Drip Shield Emplacement System, then the length of time after the final stages of waste emplacement and start of drip shield emplacement may pose a concern for the life cycle of the system (e.g., reliability, maintainability, availability, etc.). Further investigation should be performed to consider the use of existing equipment for drip shield emplacement operations. Further investigation will also be needed regarding the interfaces and heat transfer and thermal effects aspects. The conceptual design also requires further design development. Although the findings of this analysis are accurate for the assumptions made

  10. A Markov blanket-based method for detecting causal SNPs in GWAS

    Directory of Open Access Journals (Sweden)

    Han Bing

    2010-04-01

    Full Text Available Abstract Background Detecting epistatic interactions associated with complex and common diseases can help to improve prevention, diagnosis and treatment of these diseases. With the development of genome-wide association studies (GWAS, designing powerful and robust computational method for identifying epistatic interactions associated with common diseases becomes a great challenge to bioinformatics society, because the study of epistatic interactions often deals with the large size of the genotyped data and the huge amount of combinations of all the possible genetic factors. Most existing computational detection methods are based on the classification capacity of SNP sets, which may fail to identify SNP sets that are strongly associated with the diseases and introduce a lot of false positives. In addition, most methods are not suitable for genome-wide scale studies due to their computational complexity. Results We propose a new Markov Blanket-based method, DASSO-MB (Detection of ASSOciations using Markov Blanket to detect epistatic interactions in case-control GWAS. Markov blanket of a target variable T can completely shield T from all other variables. Thus, we can guarantee that the SNP set detected by DASSO-MB has a strong association with diseases and contains fewest false positives. Furthermore, DASSO-MB uses a heuristic search strategy by calculating the association between variables to avoid the time-consuming training process as in other machine-learning methods. We apply our algorithm to simulated datasets and a real case-control dataset. We compare DASSO-MB to other commonly-used methods and show that our method significantly outperforms other methods and is capable of finding SNPs strongly associated with diseases. Conclusions Our study shows that DASSO-MB can identify a minimal set of causal SNPs associated with diseases, which contains less false positives compared to other existing methods. Given the huge size of genomic dataset

  11. EU DEMO blanket concepts safety assessment. Final report of Working Group 6a of the Blanket Concept Selection Exercise

    International Nuclear Information System (INIS)

    The European Union has been engaged since 1989 in a programme to develop tritium breeding blankets for application in a fusion power reactor. There are four blanket concepts under development. Two of them use lithium ceramics, the other two concepts employ an eutectic lead-lithium alloy (Pb-17Li) as breeder material. The two most promising concepts were to select in 1995 for further development. In order to prepare the selection, a Blanket Concept Selection Exercise (BCSE) has been inititated by the participating associations under the auspices of the European Commission. This BCSE has been performed in 14 working groups which, in a comparative evaluation of the four blanket concepts, addressed specific fields. The working group safety addressed the safety implications. This report describes the methodology adopted, the safety issues identified, their comparative evaluation for the four concepts, and the results and conclusions of the working group to be entered into the overall evaluation. There, the results from all 14 working groups have been combined to yield a final ranking as a basis for the selection. In summary, the safety assessment showed that the four European blanket concepts can be considered as equivalent in terms of the safety rating adopted, each concept, however, rendering safety concerns of different quality in different areas which are substantiated in this report. (orig.)

  12. Direct Lit Electrolysis In A Metallic Lithium Fusion Blanket

    Energy Technology Data Exchange (ETDEWEB)

    Colon-Mercado, H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Babineau, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elvington, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Vaquer, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-13

    A process that simplifies the extraction of tritium from molten lithium based breeding blankets was developed.  The process is based on the direct electrolysis of lithium tritide using a ceramic Li ion conductor that replaces the molten salt extraction step. Extraction of tritium in the form of lithium tritide in the blankets/targets of fission/fusion reactors is critical in order to maintained low concentrations.  This is needed to decrease the potential tritium permeation to the surroundings and large releases from unforeseen accident scenarios. Because of the high affinity of tritium for the blanket, extraction is complicated at the required low levels. This work identified, developed and tested the use of ceramic lithium ion conductors capable of recovering the hydrogen and deuterium thru an electrolysis step at high temperatures. 

  13. The shield effect

    DEFF Research Database (Denmark)

    Toft, Søren; Albo, Maria J

    2016-01-01

    Several not mutually exclusive functions have been ascribed to nuptial gifts across different taxa. Although the idea that a nuptial prey gift may protect the male from pre-copulatory sexual cannibalism is attractive, it has previously been considered of no importance based on indirect evidence and...... rejected by experimental tests. We reinvestigated whether nuptial gifts may function as a shield against female attacks during mating encounters in the spider Pisaura mirabilis and whether female hunger influences the likelihood of cannibalistic attacks. The results showed that pre-copulatory sexual...... cannibalism was enhanced when males courted without a gift and this was independent of female hunger. We propose that the nuptial gift trait has evolved partly as a counteradaptation to female aggression in this spider species....

  14. Sulphate resistant shielding material

    International Nuclear Information System (INIS)

    The shielding material of the present invention is provided with sulfuric acid resistance and contains bentonite put to ion exchange treatment with barium ions as an effective ingredient. When mortars and concretes are exposed to the circumstance of sulfate, the effective ingredient functions to take place reaction between intruding sulfate and the barium ions to form insoluble barium sulfate thereby reducing chemical corrosion of mortars and concretes caused by sulfate. Cement materials, water and aggregates can optionally be contained in addition to bentonite and bentonite put to ion exchange treatment. Chemical corrosion of concretes and mortars due to intrusion of the sulfate can be prevented, and it is useful as an artificial barrier, for example, in radioactive active waste processing facilities. (T.M.)

  15. Aladdin upgrade design study: shielding

    International Nuclear Information System (INIS)

    The object of this shielding is to examine all aspects of Aladdin operation to ensure that adequate shielding is provided to meet the design objectives. To do this, we will look at shielding necessary for radiation produced during the injection process, during normal loss of the stored beam and during accidental loss of the stored beam. It will therefore be necessary to specify shielding not only at the ring, but also along the injection line and the optical beam lines. We will also give special attention to the occupation of the accelerator Vault during injection as this may be a desirable design option. In effect, two shielding plans will be presented, permitting estimates of cost and space requirements for both

  16. Shield calculations, optimization vs. paradigm

    International Nuclear Information System (INIS)

    Many shieldings have been designed under the criteria of 'Maximum dose rates of project'. It has created the paradigm of those 'low dose rates', for the one which not few specialists would consider unacceptable levels of dose rate superior to the units of μSv.h-1, independently of the exposure times. At the present time numerous shieldings are being designed considering dose restrictions in real times of exposure. After these new shieldings, the dose rates could be notably superior to those after traditional shieldings, without it implies inadequate designs or constructive errors. In the work significant differences in levels of dose rates and thickness of shieldings estimated by both methods for some typical facilities. It was concluded that the use of real times of exposure is more adequate for the optimization of the Radiological Protection, although this method demands bigger care in its application. (Author)

  17. Welding shield for coupling heaters

    Science.gov (United States)

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  18. Parameters calculation of shielding experiment

    International Nuclear Information System (INIS)

    The radiation transport methodology comparing the calculated reactions and dose rates for neutrons and gama-rays, with experimental measurements obtained on iron shield, irradiated in the YAYOI reactor is evaluated. The ENDF/B-IV and VITAMIN-C libraries and the AMPX-II modular system, for cross sections generation collapsed by the ANISN code were used. The transport calculations were made using the DOT 3.5 code, adjusting the boundary iron shield source spectrum to the reactions and dose rates, measured at the beginning of shield. The neutron and gamma ray distributions calculated on the iron shield presented reasonable agreement with experimental measurements. An experimental arrangement using the IEA-R1 reactor to determine a shielding benchmark is proposed. (Author)

  19. Mechanical analysis of a model of the breeding blanket of NET in faulted conditions

    International Nuclear Information System (INIS)

    This paper has been prepared in the framework of the safety analysis of a breeding blanket proposed for NET (Next European Torus). The basic features of the system are the following: - Li17Pb83 as breeder; - pressurized (5 MPa) water as coolant; - AISI 316 SS as structural material. The breeding blanket consists of 24 segments with an angular opening of 150 placed side by side in the toroidal direction and arranged in the inboard and outboard part of the plasma chamber. The outboard part of the segment is presently under development, and two different design options are proposed: - a modular concept in which the breeding units (arranged in five rows and four columns), named modulus, look like boxes; - a tubular concept in which the breeding units are tubes bent in the poloidal direction. In both concepts the vessel of the breeding unit must operate as the first barrier against the accident propagation in case of a pipe break in the unit's cooling system. The mechanical behaviour of the modular concept, loaded by the pressure transient due to such a pipe break, has been investigated and is presented in detail. The analysis of the result, taking into account material non-linearities, fluid-structure interactions and dynamic effects, shows that the structural reliability of the module vessel cannot be guaranteed, and suggests to continue the development of the tubular concept for which a much better mechanical behaviour is expected. (orig.)

  20. Tritium and heat management in ITER Test Blanket Systems port cell for maintenance operations

    International Nuclear Information System (INIS)

    Highlights: •The ITER TBM Program is one of the ITER missions. •We model a TBM port cell with CFD to optimize the design choices. •The heat and tritium releases management in TBM port cells has been optimized. •It is possible to reduce the T-concentration below one DAC in TBM port cells. •The TBM port cells can have human access within 12 h after shutdown. -- Abstract: Three ITER equatorial port cells are dedicated to the assessment of six different designs of breeding blankets, known as Test Blanket Modules (TBMs). Several high temperature components and pipework will be present in each TBM port cell and will release a significant quantity of heat that has to be extracted in order to avoid the ambient air and concrete wall temperatures to exceed allowable limits. Moreover, from these components and pipes, a fraction of the contained tritium permeates and/or leaks into the port cell. This paper describes the optimization of the heat extraction management during operation, and the tritium concentration control required for entry into the port cell to proceed with the required maintenance operations after the plasma shutdown

  1. Design experience: CRBRP radiation shielding

    International Nuclear Information System (INIS)

    The Clinch River Breeder Reactor Plant (CRBRP) is being designed as a fast breeder demonstration project in the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program. Radiation shielding design of the facility consists of a comprehensive design approach to assure compliance with design and government regulatory requirements. Studies conducted during the CRBRP design process involved the aspects of radiation shielding dealing with protection of components, systems, and personnel from radiation exposure. Achievement of feasible designs, while considering the mechanical, structural, nuclear, and thermal performance of the component or system, has required judicious trade-offs in radiation shielding performance. Specific design problems which have been addressed are in-vessel radial shielding to protect permanent core support structures, flux monitor system shielding to isolate flux monitoring systems for extraneous background sources, reactor vessel support shielding to allow personnel access to the closure head during full power operation, and primary heat transport system pipe chaseway shielding to limit intermediate heat transport system sodium system coolant activation. The shielding design solutions to these problems defined a need for prototypic or benchmark experiments to provide assurance of the predicted shielding performance of selected design solutions and the verification of design methodology. Design activities of CRBRP plant components an systems, which have the potential for radiation exposure of plant personnel during operation or maintenance, are controlled by a design review process related to radiation shielding. The program implements design objectives, design requirements, and cost/benefit guidelines to assure that radiation exposures will be ''as low as reasonably achievable''

  2. Maximizing fluence rate and field uniformity of light blanket for intraoperative PDT

    OpenAIRE

    LIANG, XING; Kundu, Palak; Finlay, Jarod; Goodwin, Michael; Zhu, Timothy C.

    2012-01-01

    A light blanket is designed with a system of cylindrically diffusing optical fibers, which are spirally oriented. This 25×30 cm rectangular light blanket is capable of providing uniform illumination during intraoperative photodynamic therapy. The flexibility of the blanket proves to be extremely beneficial when conforming to the anatomical structures of the patient being treated. Previous tests of light distribution from the blanket have shown significant loss of intensity with the length of ...

  3. Neutronic analysis of a dual He/LiPb coolant breeding blanket for DEMO

    OpenAIRE

    Catalán, J.P.; Ogando Serrano, Francisco; Sanz Gonzalo, Javier; Palermo, I.; Veredas, G.; Gómez Ros, J. M.; Sedano, L

    2010-01-01

    A conceptual design of a DEMO fusion reactor is being developed under the Spanish Breeding Blanket Technology Programme: TECNO_FUS based on a He/LiPb dual coolant blanket as reference design option. The following issues have been analyzed to address the demonstration of the neutronic reliability of this conceptual blanket design: power amplification capacity of the blanket, tritium breeding capability for fuel self-sufficiency, power deposition due to nuclear heating in superconducting coils ...

  4. Current status of safety design and safety analysis for China ITER helium coolant ceramic breeder test blanket system long

    International Nuclear Information System (INIS)

    Helium Coolant Ceramic Breeder (HCCB) Test Blanket System (TBS) designed by China are planned to be tested in ITER to validate key technologies, including demonstration of nuclear safety, for future fusion reactor breeding blankets. Furthermore, in order to be operated in ITER, a nuclear facility (INB) recognized by French nuclear safety authority, safety design and safety analysis of the TBS are mandatory for the licensing procedures. This paper summarizes the status at current design phase with following main elements: The main radiological source terms in the system are tritium and activation products. Nuclear and tritium analysis are performed to identify their inventories and distributions in system. Multiple confinement barriers are considered to be the most essential safety feature. French regulation for pressure equipment and nuclear equipment (ESP/ESPN regulations) will be followed to ensure the system integrities. ALARA principle is kept in mind during the whole safety design phases. Protective actions including choice of advanced materials, improvement of shielding, optimization of operation and maintenance activities, usage of remote handling operations, zoning and access control have been considered. Passive safety is emphasized in the system design, only minimal active safety functions including call for fusion plasma shutdown and isolation of TBM from ex-vessel ancillary systems. High reliability and redundancies are required for components related to these functions. Several accidents have been identified and analyzed. Consider the limited inventories in the system and the intrinsic safety of fusion device, positive conclusions have been obtained. (author)

  5. Radiation protection/shield design

    International Nuclear Information System (INIS)

    Radiation protection/shielding design of a nuclear facility requires a coordinated effort of many engineering disciplines to meet the requirements imposed by regulations. In the following discussion, the system approach to Clinch River Breeder Reactor Plant (CRBRP) radiation protection will be described, and the program developed to implement this approach will be defined. In addition, the principal shielding design problems of LMFBR nuclear reactor systems will be discussed in realtion to LWR nuclear reactor system shielding designs. The methodology used to analyze these problems in the U.S. LMFBR program, the resultant design solutions, and the experimental verification of these designs and/or methods will be discussed. (orig.)

  6. Radiation shields for a shelter

    International Nuclear Information System (INIS)

    A simple and cheap closure and radiation shield arrangement is described for the entrance of an underground shelter. The shelter can serve as a blast-proof, biological or nuclear shelter. The radiation shield is positioned above the habitable space of the shelter and below a blast-proof, dust-proof outer cover. The shield consists of a box containing a filling, e.g. coke with a concrete screed, is closed by bolted panels and is horizontally moveable by sliding on castors. (author)

  7. New Materials for EMI Shielding

    Science.gov (United States)

    Gaier, James R.

    1999-01-01

    Graphite fibers intercalated with bromine or similar mixed halogen compounds have substantially lower resistivity than their pristine counterparts, and thus should exhibit higher shielding effectiveness against electromagnetic interference. The mechanical and thermal properties are nearly unaffected, and the shielding of high energy x-rays and gamma rays is substantially increased. Characterization of the resistivity of the composite materials is subtle, but it is clear that the composite resistivity is substantially lowered. Shielding effectiveness calculations utilizing a simple rule of mixtures model yields results that are consistent with available data on these materials.

  8. Noise Shielding Using Acoustic Metamaterials

    International Nuclear Information System (INIS)

    We exploit theoretically a class of rectangular cylindrical devices for noise shielding by using acoustic metamaterials. The function of noise shielding is justified by both the far-field and near-field full-wave simulations based on the finite element method. The enlargement of equivalent acoustic scattering cross sections is revealed to be the physical mechanism for this function. This work makes it possible to design a window with both noise shielding and air flow. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Shielding synchrotron light sources: Advantages of circular shield walls tunnels

    Science.gov (United States)

    Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.

    2016-08-01

    Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produce significantly higher neutron component dose to the experimental floor than lower energy injection and ramped operations. High energy neutrons produced in the forward direction from thin target beam losses are a major component of the dose rate outside the shield walls of the tunnel. The convention has been to provide thicker 90° ratchet walls to reduce this dose to the beam line users. We present an alternate circular shield wall design, which naturally and cost effectively increases the path length for this forward radiation in the shield wall and thereby substantially decreasing the dose rate for these beam losses. This shield wall design will greatly reduce the dose rate to the users working near the front end optical components but will challenge the beam line designers to effectively utilize the longer length of beam line penetration in the shield wall. Additional advantages of the circular shield wall tunnel are that it's simpler to construct, allows greater access to the insertion devices and the upstream in tunnel beam line components, as well as reducing the volume of concrete and therefore the cost of the shield wall.

  10. On the conditions of existence of cold-blanket systems

    International Nuclear Information System (INIS)

    An extende analysis of the partially ionized boundary layer of a magnetized plasma has been performed, leading to the following results: (i) In a first approximation the ion density at the inner ''edge'' of the layer becomes related to the wall-near neutral gas density, in a way being independent of the spatial distribution of the ionization rate. (ii) The particle and momentum balance equations, and the associated impermeability condition of the plasma with respect to neutral gas penetration, are not sufficient to specify a cold-blanket state, but have to be combined with considerations of the heat blance. This leads to lower and upper power input limits, thus defining conditions for the existence of a cold-blanket state. At decreasing beta values , or increasing radiation losses, there are situations where such a state cannot exist at all. (iii) It should become possible to fulfill the cold-blanket conditions in full-scale reactors as well as in certain model experiments. Probably these conditions can also be satisfied in large tokamaks like JET, and by fast gas injection in devices such as Alcator, but not in medium-size tokamaks being operated at moderately high ion densities. (iv) A strong ''boundary layer stabilization'' mechanism due to the joint viscosity-resistivity-pressure effects is available under cold-blanket conditions. (author)

  11. First-wall/blanket materials selection for STARFIRE tokamak reactor

    International Nuclear Information System (INIS)

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed

  12. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  13. Fusion blanket testing in MFTF-α + T

    International Nuclear Information System (INIS)

    The Mirror Fusion Test Facility-α + T (MFTF-α + T) is an upgraded version of the current MFTF-B test facility at Lawrence Livermore National Laboratory, and is designed for near-term fusion-technology-integrated tests at a neutron flux of 2 MW/m2. Currently, the fusion community is screening blanket and related issues to determine which ones can be addressed using MFTF-α + T. In this work, the minimum testing needs to address these issues are identified for the liquid-metal-cooled blanket and the solid-breeder blanket. Based on the testing needs and on the MFTF-α + T capability, a test plan is proposed for three options; each option covers a six to seven year testing phase. The options reflect the unresolved question of whether to place the research and development (R and D) emphasis on liquid-metal or solid-breeder blankets. In each case, most of the issues discussed can be addressed to a reasonable extent in MFTF-α+T

  14. Burnable Poison optimization for Seed-Blanket Cores

    International Nuclear Information System (INIS)

    The main objective of the Seed and Blanket Units (SBU) core designs is to reduce production of Pu and long-term toxicity of the spent PWR fuel. The SBU concept assumes a heterogeneous seed-blanket fuel assembly, with spatial separation of the U and Th parts of the fuel. In the SBU assembly the Seed fuel is an alloy of 20% enriched metallic Uranium and zircaloy, the Blanket fuel is ThO2 mixed with about 13% of 12.2% enriched UO2. The Uranium is included in the mix in order to increase the BOL power in the Th pins and dilute the bred U233 isotope to avoid proliferation concerns. The 108 Seed fuel rods are located in the central region of the assembly and surrounded by 156 blanket rods. The use of metallic fuel in the Seed enables high density of fissile material. The U-Zr alloy also has a higher thermal conductivity than UO2, although this advantage is partially offset by the low melting temperature of metallic fuels. More importantly, compared with oxide fuel, the radiation induced creep and swelling phenomena are more pronounced in metallic fuel at elevated temperatures due to the loss of its crystallographic state. This loss occurs at a rather low temperature of 6600 C, and in U-Zr alloys at 6160 C. For this reason, reduction of the local pin power peaking in the assembly is particularly important

  15. 18 CFR 33.1 - Applicability, definitions, and blanket authorizations.

    Science.gov (United States)

    2010-04-01

    ... the outstanding voting securities; or (iii) Any security of a subsidiary company within the holding... company subsidiary in connection with such acquisition. (4) A holding company granted blanket... subsidiaries, or associate companies within the holding company system has captive customers in the...

  16. LMFBR blanket assembly heat transfer and hydraulic test data evaluation

    International Nuclear Information System (INIS)

    The USA Test Program for characterization of breeder reactor blanket T and H performance is providing a data base for improved confidence in the design tools employed. Pressure drop tests with wire wrapped rod bundles having a 1.08 triangular pitch to diameter ratio and 4 inch (10 cm) wire wrap lead using water, sodium and air have defined a smooth, continuous, single-valued friction factor versus Reynolds number correlation. This eliminates a possible source of flow instability. The rod bundle temperature rise profiles measured in the heat transfer tests using a prototypic blanket rod bundle agrees in magnitude and shape with the predictions of the marching type sub-channel codes currently employed in blanket subchannel analysis. The low flow test data demonstrates increasing buoyancy induced flows in the lower Reynolds number flow regime. This and the remaining test data will supply a base for calibration of the mixing momentum exchange and conduction factors employed in the subchannel analysis codes; which will contribute to the confidence of the blanket design predictions and reduce the uncertainties which are commonly expressed as hot channel/spot factors

  17. Tritium module for ITER/Tiber system code

    International Nuclear Information System (INIS)

    A tritium module was developed for the ITER/Tiber system code to provide information on capital costs, tritium inventory, power requirements and building volumes for these systems. In the tritium module, the main tritium subsystems/emdash/plasma processing, atmospheric cleanup, water cleanup, blanket processing/emdash/are each represented by simple scaleable algorithms. 6 refs., 2 tabs

  18. AP600 Shield building

    International Nuclear Information System (INIS)

    In order to minimize capital costs and save time in the global construction time schedule for the AP600 Nuclear Power Plant, planned in 36 months from excavation up to the fuel charging, ANSALDO has developed an innovative Shield Building Conical Roof design having the following basic characteristics: i) can be erected approximately in less than two months; ii) allows the functionality of the Passive Containment Cooling System (PCSS) located in the PCCS tank and in the Valve Room anchored directly to the conical roof itself; iii) satisfies the structural loads design as Safe Shutdown Earthquake, or the Aircraft Crash and both integrated with the sloshing analysis for the tank located at the top of the conical roof. The most important aspects of this new roof are: a) use of prefabricated precast panels; b) address the erection of the formworks using temporary structures having the capability of becoming final elements; c) develop a modular rebars sizing and design in order to perform the most important portion of the job in the workshop; d) second pouring construction sequence assuring full integration with the formwork function; e) modular construction of the PCSS tank at the top of the conical roof. An interesting evaluation has been also performed in calculating sloshing phenomenon in the PCSS tank by comparing detailed 3D Finite Element Model approach and simplified qualified formulas dedicated to this phenomenon. (author). 2 figs

  19. A fail-safe and cost effective fabrication route for blanket First Walls

    Science.gov (United States)

    Commin, L.; Rieth, M.; Dafferner, B.; Zimmermann, H.; Bolich, D.; Baumgärtner, S.; Ziegler, R.; Dichiser, S.; Fabry, T.; Fischer, S.; Hildebrand, W.; Palussek, O.; Ritz, H.; Sponda, A.

    2013-11-01

    Helium Cooled Lithium Lead and Helium Cooled Pebble Bed concepts have been selected as European Test Blanket Modules (TBM) for ITER. The TBM fabrication will need the assembly of six Reduced Activation Ferritic Martensitic steel sub-components, namely First Wall, Caps, Stiffening Grid, Breeding Units, Back Plates/Manifolds, and Attachment system. The fabrication of the First Wall requires the production of cooling channels inside 30 mm thick bended plates. For this specific component, the main issues consist of the lack of accessibility of some areas to join, the process tolerances, the dimensional stability and the resulting assembly mechanical properties. Several fabrication routes have been already investigated, which involve diffusion welding and fusion welding (electron beam, laser beam, hybrid MIG/laser).

  20. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    International Nuclear Information System (INIS)

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m2 and a surface heat flux of 1 MW/m2. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO2 rods. The helium coolant pressure is 5 MPa, entering the module at 2970C and exiting at 5500C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter