WorldWideScience

Sample records for blanket module iter

  1. ITER breeding blanket module design and analysis

    International Nuclear Information System (INIS)

    Kuroda, Toshimasa; Enoeda, Mikio; Kikuchi, Shigeto

    1998-11-01

    The ITER breeding blanket employs a ceramic breeder and Be neutron multiplier both in small spherical pebble form. Radial-poloidal cooling panels are arranged in the blanket box to remove the nuclear heating in these materials and to reinforce the blanket structure. At the first wall, Be armor is bonded onto the stainless steel (SS) structure to provide a low Z plasma-compatible surface and to protect the first wall/blanket structure from the direct contact with the plasma during off-normal events. Thermo-mechanical analyses and investigation of fabrication procedure have been performed for this breeding blanket. To evaluate thermo-mechanical behavior of the pebble beds including the dependency of the effective thermal conductivity on stress, analysis methods have been preliminary established by the use of special calculation option of ABAQUS code, which are briefly summarized in this report. The structural response of the breeding blanket module under internal pressure of 4 MPa (in case of in-blanket LOCA) resulted in rather high stress in the blanket side (toroidal end) wall, thus addition of a stiffening rib or increase of the wall thickness will be needed. Two-dimensional elasto-plastic analyses have been performed for the Be/SS bonded interface at the first wall taking a fabrication process based on HIP bonding and thermal cycle due to pulsed plasma operation into account. The stress-strain hysteresis during these process and operation was clarified, and a procedure to assess and/or confirm the bonding integrity was also proposed. Fabrication sequence of the breeding blanket module was preliminarily developed based on the procedure to fabricate part by part and to assemble them one by one. (author)

  2. Nuclear Analysis of an ITER Blanket Module

    Science.gov (United States)

    Chiovaro, P.; Di Maio, P. A.; Parrinello, V.

    2013-08-01

    ITER blanket system is the reactor's plasma-facing component, it is mainly devoted to provide the thermal and nuclear shielding of the Vacuum Vessel and external ITER components, being intended also to act as plasma limiter. It consists of 440 individual modules which are located in the inboard, upper and outboard regions of the reactor. In this paper attention has been focused on to a single outboard blanket module located in the equatorial zone, whose nuclear response under irradiation has been investigated following a numerical approach based on the Monte Carlo method and adopting the MCNP5 code. The main features of this blanket module nuclear behaviour have been determined, paying particular attention to energy and spatial distribution of the neutron flux and deposited nuclear power together with the spatial distribution of its volumetric density. Moreover, the neutronic damage of the structural material has also been investigated through the evaluation of displacement per atom and helium and hydrogen production rates. Finally, an activation analysis has been performed with FISPACT inventory code using, as input, the evaluated neutron spectrum to assess the module specific activity and contact dose rate after irradiation under a specific operating scenario.

  3. Electrical connectors for blanket modules in ITER

    International Nuclear Information System (INIS)

    Poddubnyi, I.; Khomiakov, S.; Kolganov, V.; Sadakov, S.; Calcagno, B.; Chappuis, Ph.; Roccella, R.; Raffray, R.; Danilov, I.; Leshukov, A.; Strebkov, Y.; Ulrickson, M.

    2014-01-01

    Highlights: • Analysis of static and cyclic strength for L-shaped and Z-shaped ES has been performed. • Analysis results do show that for L-shaped ES static and cyclic strength criteria are not satisfied. • Static and cyclic strength criteria are met well by ES with Z-shaped elastic elements. • ES with Z-shaped elastic elements has been adopted as a new baseline design for ITER. - Abstract: Blanket electrical connectors (E-straps, ES) are low-impedance electrical bridges crossing gaps between blanket modules (BMs) and vacuum vessel (VV). Similar ES are used between two parts on each BM: the first wall panel (FW) and shield block (SB). The main functions of E-straps are to: (a) conduct halo currents intercepting some rows of BM, (b) provide grounding paths for all BMs, and (c) operate as electrical shunts which protect water cooling pipes (branch pipes) from excessive halo and eddy currents. E-straps should be elastic enough to absorb 3-D imposed displacements of BM relative VV in a scale of ±2 mm and at the same time strong enough to not be damaged by EM loads. Each electrical strap is a package of flexible conductive sheets made of CuCrZr bronze. Halo current up to 137 kA and some components of eddy currents do pass through one E-strap for a few tens or hundreds milliseconds during the plasma vertical displacement events (VDE) and disruptions. These currents deposit Joule heat and cause rather high electromagnetic loads in a strong external magnetic field, reaching 9 T. A gradual failure of ES to conduct Halo and Eddy currents with low enough impedance gradually redistributes these currents into branch pipes and cause excessive EM loads. When branch pipes will be bent so much that will touch surrounding structures, the Joule heating in accidental electrical contact spots will cause local melting and may lead to a water leak. The paper presents and compares two design options of E-straps: with L-shaped and Z-shaped elastic elements. The latter option was

  4. Thermomechanical analysis of the DFLL test blanket module for ITER

    International Nuclear Information System (INIS)

    Chen Hongli; Wu Yican; Bai Yunqing

    2006-01-01

    The finite element code is used to simulate two kinds of blanket design structure, which are SLL (Quasi-Static Lithium Lead) and DLL (Dual-cooled Lithium Lead) blanket concepts for the Dual Functional Lithium Lead-Test Blanket Module (DFLL-TBM) submitted to the ITER test blanket working group. The temperature and stress distributions have been presented for the two kinds of blanket structure on the basis of the structural design, thermal-hydraulic design and neutronics analysis. Also the mechanical performance is presented for the high temperature component of blanket structure according to the ITER Structural Design Criteria (ISDC). The rationality and feasibility of the two kinds of blanket structure design of DFLL-TBM have been analyzed based on the above results which also acted as the theoretical base for further optimized analysis. (authors)

  5. ITER blanket module shield block design and analysis

    International Nuclear Information System (INIS)

    Mitin, D.; Khomyakov, S.; Razmerov, A.; Strebkov, Yu.

    2008-01-01

    This paper presents the alternative design of the shield block cooling path for a typical ITER blanket module with a predominantly sequential flow circuit. A number of serious disadvantages have been observed for the reference design, where the parallel flow circuit is used, which is inherent in the majority of blanket modules. The paper discusses these disadvantages and demonstrates the benefit of the alternative design based on the detailed design and the technological, hydraulic, thermal, structural and strength analyses, conducted for module no. 17

  6. DEMO relevance of the test blanket modules in ITER-Application to the European test blanket modules

    International Nuclear Information System (INIS)

    Magnani, E.; Gabriel, F.; Boccaccini, L.V.; Li-Puma, A.

    2010-01-01

    Test blanket module (TBM) testing programme in ITER as a support to DEMO design is a very important step on the road map to commercial fusion reactors although it is an ambitious task. Finding as much as possible DEMO relevant tests in view of the future DEMO blanket design is therefore a major goal since ITER and DEMO environment and loading conditions are different. To clarify and quantify the meaning of the DEMO relevance, criteria using a structural, functional and behavioural representation of the breeding blanket acting as a system are investigated. Then, a three-step strategy is proposed to carry out TBM DEMO relevant tests associated with a TBM design modification strategy. Key parameters should intensively be used as target for TBM characterization and numerical code validation. When assessing the relevance, on the other hand, not only the actual difference between DEMO and ITER values should be considered, but also whether the analyzed phenomena have a threshold and a range of applicability, as numerical simulations are usually permitted within these limits. The proposed methodology is at the end applied to the design of the HCLL TBM breeding unit configuration.

  7. Liquid metal blanket module testing and design for ITER/TIBER II

    International Nuclear Information System (INIS)

    Mattas, R.F.; Cha, Y.; Finn, P.A.; Majumdar, S.; Picologlou, B.; Stevens, H.; Turner, L.

    1988-05-01

    A major goal for ITER is the testing of nuclear components to demonstrate the integrated performance of the most attractive concepts that can lead to a commercial fusion reactor. As part of the ITER/TIBER II study, the test program and design of test models were examined for a number of blanket concepts. The work at Argonne National Laboratory focused on self-cooled liquid metal blankets. A test program for liquid metal blankets was developed based upon the ITER/TIBER II operating schedule and the specific data needs to resolve the key issues for liquid metals. Testing can begin early in reactor operation with liquid metal MHD tests to confirm predictive capability. Combined heat transfer/MHD tests can be performed during initial plasma operation. After acceptable heat transfer performance is verified, tests to determine the integrated high temperature performance in a neutron environment can begin. During the high availability phase operation, long term performance and reliability tests will be performed. It is envisioned that a companion test program will be conducted outside ITER to determine behavior under severe accident conditions and upper performance limits. A detailed design of a liquid metal test module and auxiliary equipment was also developed. The module followed the design of the TPSS blanket. Detailed analysis of the heat transfer and tritium systems were performed, and the overall layout of the systems was determined. In general, the blanket module appears to be capable of addressing most of the testing needs. 8 refs., 27 figs., 11 tabs

  8. Status of the EU domestic agency electromagnetic analyses of ITER vacuum vessel and blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, P., E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy, Josep Plá n. 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Albanese, R. [Association Euratom/ENEA/CREATE, DIEL, Università Federico II di Napoli, Napoli 80125 (Italy); Lucca, F.; Roccella, M. [L.T. Calcoli S.a.S. Piazza Prinetti, 26/B, Merate, Lecco (Italy); Portone, A. [Fusion for Energy, Josep Plá n. 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain); Rubinacci, G. [Association Euratom/ENEA/CREATE, DIEL, Università Federico II di Napoli, Napoli 80125 (Italy); Ventre, S.; Villone, F. [Association Euratom/ENEA/CREATE, DAEIMI, Università di Cassino, Cassino 03043 (Italy)

    2013-10-15

    Highlights: Eddy and halo currents and corresponding Lorentz forces on the ITER vacuum vessel and blanket modules have been computed. VDEs and MDs belonging to cat III, II and I, and a magnet fast discharge have been simulated. The maximum vertical force in the VV (about 120 MN downwards) is experienced in VDE-DW-SLOW cat III. For the FW panel of blanket 18 the most demanding load case is the VDE downward cat III producing a radial torque of about 110 kNm. For the FW of blanket module 10 the most demanding load case is the VDE upward exp cat III producing a poloidal torque of about 130 kNm. -- Abstract: This paper presents the results of the electromagnetic analyses of the ITER vacuum vessel and blanket modules. A wide collection of electromagnetic transients has been simulated: VDEs and MDs belonging to cat III, II and I, and a magnet fast discharge. Eddy and halo currents and corresponding Lorentz forces have been computed using 3D solid FE models implemented in ANSYS and CARIDDI. The plasma equilibrium configurations (displacement and quench of the plasma current, toroidal flux variation due to the β drop and halo currents wetting the first wall) used as an input for the EM analyses have been supplied by the 2D axisymmetric code DINA. The paper describes in detail the methodology used for the analyses and the main results obtained.

  9. Preliminary investigation on welding and cutting methods for first wall support leg in ITER blanket module

    International Nuclear Information System (INIS)

    Mohri, Kensuke; Suzuki, Satoshi; Enoeda, Mikio; Kakudate, Satoshi; Shibanuma, Kiyoshi; Akiba, Masato

    2006-08-01

    Concept of a module type of blanket has been applied to ITER shield blanket, of which size is typically 1mW x 1mH x 0.4mB with the weight of 4 ton, in order to enhance its maintainability and fabricability. Each shield blanket module consists of a shield block and four first walls which are separable from the shield block for the purpose of reduction of an electro-magnetic force in disruption events, radio-active waste reduction in the maintenance work and cost reduction in fabrication process. A first wall support leg, a part of the first wall component located between the first wall and the shield block, is required not only to be connected metallurgically to the shield block in order to withstand the electro-magnetic force and coolant pressure, but also to be able to replace the first wall more than 2 times in the hot cell during the life time of the reactor. Therefore, the consistent structure where remote handling equipment can be access to the joint and carry out the welding/cutting works perfectly to replace the first wall in the hot cell is required in the shield blanket design. This study shows an investigation of the blanket module no.10 design with a new type of the first wall support leg structure based on Disc-Cutter technology, which had been developed for the main pipe cutting in the maintenance phase and was selected out of a number of candidate methods, taking its large advantages into account, such as 1) a post-treatment can be eliminated in the hot cell because of no making material chips and of no need of lubricant, 2) the cut surface can be rewelded without any machining. And also, a design for the small type of Disc-Cutter applied to the new blanket module no.10 has been investigated. In conclusion, not only the good performance of Disc-Cutter technology applied to the updated blanket module, but also consistent structure of the simplified shield blanket module including the first wall support leg in order to satisfy the requirements in the

  10. Conceptual design and testing strategy of a dual functional lithium-lead test blanket module in ITER and EAST

    International Nuclear Information System (INIS)

    Wu, Y.

    2007-01-01

    A dual functional lithium-lead (DFLL) test blanket module (TBM) concept has been proposed for testing in the International Thermonuclear Experimental Reactor (ITER) and the Experimental Advanced Superconducting Tokamak (EAST) in China to demonstrate the technologies of the liquid lithium-lead breeder blankets with emphasis on the balance between the risks and the potential attractiveness of blanket technology development. The design of DFLL-TBM concept has the flexibility of testing both the helium-cooled quasi-static lithium-lead (SLL) blanket concept and the He/PbLi dual-cooled lithium-lead (DLL) blanket concept. This paper presents an effective testing strategy proposed to achieve the testing target of SLL and DLL DEMO blankets relevant conditions, which includes three parts: materials R and D and small-scale out-of-pile mockups testing in loops, middle-scale TBMs pre-testing in EAST and full-scale consecutive TBMs testing corresponding to different operation phases of ITER during the first 10 years. The design of the DFLL-TBM concept and the testing strategy ability to test TBMs for both blanket concepts in sequence and or in parallel for both ITER and EAST are discussed

  11. Japanese contribution to the design of primary module of shielding blanket in ITER-FEAT

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Toshimasa; Hatano, Toshihisa; Miki, Nobuharu; Hiroki, Seiji; Enoeda, Mikio; Ohmori, Junji; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Shinichi [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    2003-02-01

    Japanese contributions to the design activity on the shielding blanket module consisting of the separable first wall and the shield block for ITER-FEAT are compiled. Temperature and stress distributions in the first wall and the shield block are analyzed and evaluated with 2-D and 3-D models for steady state and also for transient condition according to plasma ramp-up and ramp-down. While temperatures and stresses in the first wall satisfy their allowable values, those in a front part of the shield block exceed the allowable guideline. Based on this result, design improvements are suggested. Coolant flow and pressure distributions along the complicated coolant channel in the shield block are preliminary analyzed. Though heat removal is satisfactory in all coolant channels, back flows due to choking in coolant collectors are found. Design improvements to avoid the choking are suggested. Electromagnetic forces acting on blanket modules are analyzed with detailed 3-D models of solid elements for different disruption scenarios. The maximum moment around radial axis is 1.36 MNm on module no.5 under fast upward VDE, and the maximum moment around vertical axis is 1.47 MNm on module no.1 under fast downward VDE. The supporting beam of the first wall with welded attachment to the shield block is designed. Required welding thickness and support conditions to withstand electromagnetic forces are estimated. Strength of the shield block at the region mating the flexible cartridge is also estimated. Though the shield block surface attached by the flexible cartridge shows sufficient strength, the internal thread mating the Inconel bolt would need more length. In addition, water-to-water leak detection system in case main supply/return manifolds are located within the vacuum vessel is designed. By using Kr as the tracer material, the possibility of water-to-water leak detection and the concept of the detection system are shown. The design of the shielding blanket of ITER-FEAT has

  12. Shutdown dose rate analysis of European test blanket modules shields in ITER Equatorial Port #16

    Energy Technology Data Exchange (ETDEWEB)

    Juárez, Rafael, E-mail: rjuarez@ind.uned.es [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Sauvan, Patrick; Perez, Lucia [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain); Panayotov, Dobromir; Vallory, Joelle; Zmitko, Milan; Poitevin, Yves [Fusion for Energy (F4E), Torres Diagonal Litoral B3, Josep Pla 2, Barcelona 08019 (Spain); Sanz, Javier [Departamento de Ingeniería Energética, ETSII-UNED, Calle Juan del Rosal 12, Madrid 28040 (Spain)

    2016-11-01

    Highlights: • Nuclear analysis for European TBMs and shields, in ITER Equatorial Port #16, has been conducted in support of the ‘Concept Design Review’ from ITER. • The objective of the work is the characterization of the Shutdown Dose Rates at Equatorial Port #16 interspace. • The role played by the TBM and TBM shields, the equatorial port gaps and the vacuum vessel permeation, in terms of neutron flux transmission is assessed. • The role played by the TBM, TBM shields, Port Plug Frame, Pipe Forest and the machine in terms of activation is also investigated. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). An essential element of the Conceptual Design Review (CDR) of these TBSs is the demonstration of capability of Test Blanket Modules (TBM) and their shields to fulfil their function and comply with the design requirements. One of the TBM shields highly relevant design aspects is the project target for shutdown dose rates (SDDR) in the interspace. We investigated two functions of the TBMs and TBM shields—the neutron flux attenuation along the shields, and the reduction of the activation of the components contributing to SDDR. It is shown that TBMs and TBM shields reduce significantly the neutron flux in the port plug (PP). In terms of neutron flux attenuation, the TBM shield provides sufficient neutron flux reduction, being responsible for 5 × 10{sup 6} n/cm{sup 2} s at port interspace, while the EPP gaps and BSM gaps are responsible for 5 × 10{sup 7} n/cm{sup 2} s each. When considering closed upper, lower and lateral neighbour equatorial ports (thus, excluding the cross-talk between ports), a SDDR of 121 μSv/h averaged near the port closure flange was obtained, out of which, only 4 μSv/h are due to the activation of TBMs and TBM shields. Maximum SDDR in the range

  13. Key achievements in elementary R and Ds on water-cooled solid breeder blanket for ITER Test Blanket Module in JAERI

    International Nuclear Information System (INIS)

    Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Tanigawa, H.; Tobita, K.; Akiba, M.; Hayashi, K.; Ochiai, K.; Nishitani, T.

    2005-01-01

    This paper presents significant progress in research and development (R and D) of key elementary technologies on the water-cooled solid breeder blanket for the ITER test blanket modules (TBMs) in JAERI. Development of module fabrication technology, bonding technology of armors, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup, and tritium release behavior from Li 2 TiO 3 pebble bed under neutron pulsed operation condition are summarized. By the improvement of heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H, can be obtained by homogenizing it at 1150 deg C followed by normalizing at 930 deg C after the Hot Isostatic Pressing (HIP) process. Moreover, a promising bonding process for a tungsten armor and an F82H structural material was developed by using a solid state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it was found that the thermal fatigue lifetime of F82H can be predicted by using Manson-Coffin's law. As for R and Ds on a breeder material, Li 2 TiO 3 , effective thermal conductivity of Li 2 TiO 3 pebble was measured under compressive force simulating the ITER TBM environment. The increase in the effective thermal conductivity of the pebble bed was about 2.5 % at the compressive strain of 0.9 % at 400 deg C. Neutronic performance of the blanket module mockup has been carried out by the 14 MeV neutron irradiation. It was confirmed that the measured tritium production rate agreed with the calculated values within about 10% difference. Also, tritium release from a Li 2 TiO 3 pebble bed was measured under pulsed neutron irradiation conditions simulating the ITER operation. (author)

  14. Key achievements in elementary R and D on water-cooled solid breeder blanket for ITER test blanket module in JAERI

    International Nuclear Information System (INIS)

    Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Hayashi, K.; Tanigawa, H.; Ochiai, K.; Nishitani, T.; Tobita, K.; Akiba, M.

    2006-01-01

    This paper presents the significant progress made in the research and development (R and D) of key technologies on the water-cooled solid breeder blanket for the ITER test blanket modules in JAERI. Development of module fabrication technology, bonding technology of armours, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup and tritium release behaviour from a Li 2 TiO 3 pebble bed under neutron-pulsed operation conditions are summarized. With the improvement of the heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H can be obtained by homogenizing it at 1150 0 C followed by normalizing it at 930 0 C after the hot isostatic pressing process. Moreover, a promising bonding process for a tungsten armour and an F82H structural material was developed using a solid-state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it has been confirmed that a fatigue lifetime correlation, which was developed for the ITER divertor, can be made applicable for the F82H first wall mockup. As for R and D on the breeder material, Li 2 TiO 3 , the effect of compression loads on effective thermal conductivity of pebble beds has been clarified for the Li 2 TiO 3 pebble bed. The tritium breeding ratio of a simulated multi-layer blanket structure has successfully been measured using 14 MeV neutrons with an accuracy of 10%. The tritium release rate from the Li 2 TiO 3 pebble has also been successfully measured with pulsed neutron irradiation, which simulates ITER operation

  15. Prototyping studies for the Blanket Shield Module of the ITER ECH Upper Port Plug

    Energy Technology Data Exchange (ETDEWEB)

    Spaeh, P. [Forschungszentrum Karlsruhe, Association FZK-Euratom, Institute for Materials Research I, P.O. Box 3640, D-76021 Karlsruhe (Germany)], E-mail: peter.spaeh@imf.fzk.de; Heidinger, R.; Kleefeldt, K.; Meier, A.; Scherer, T.; Strauss, D. [Forschungszentrum Karlsruhe, Association FZK-Euratom, Institute for Materials Research I, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2009-06-15

    A team of European associations is planning to procure ECH launcher turnkey systems for MHD control in the ITER plasma. ECH launchers will be installed to four ports on the upper level of the ITER vacuum vessel (VV). The structural system of the launchers accommodates the mm-wave components, cooling devices and elements for nuclear shielding. Its main components are the Blanket Shield Module (BSM), including the plasma facing First Wall Panel (FWP) and the port plug mainframe. A removable flange connection between the BSM and the main frame provides access to the internals. Appropriate remote handling capability is also taken as a design requirement. The BSM with the flange connection will be exposed to substantial nuclear heat loads. The manufacturing of machined components requires complex shaping with small tolerances and good quality of the surfaces due to operation under vacuum conditions. For the BSM and the front segment of the main frame a rigid double wall structure with meandering rectangular cooling channels was designed and analysed to meet these requirements. To investigate industrial manufacturing routes, a typical single-piece sample was machined and the manufacturing process was evaluated. Further two prototypes of a characteristic section of the BSM were manufactured, using two different fabrication techniques. These are (a) Hot Isostatic Pressing (HIP), which combines the sintering of metal powder inside of welded capsules and diffusion welding of solid parts and (b) brazing of bent and machined individual parts. The prototypes are under study at the Launcher Handling Test facility (LHT) at FZK, which offers a water circuit to provide coolant with adjustable parameters, simulating different ITER operating conditions. Extensive test series were performed to validate underlying analysis related to homogenous temperature distribution, tolerable pressure drop within the cooling paths and removal of applied heat loads.

  16. Technical issues of RAFMs for the fabrication of ITER Test Blanket Module

    International Nuclear Information System (INIS)

    Tanigawa, Hiroyasu; Hirose, Takanori; Shiba, Kiyoyuki

    2007-01-01

    Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as it has they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H and JLF-1 are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldability, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The JAEA/US collaboration program also has been conducted with the emphasis on irradiation effects of F82H. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the R and D status of F82H and to identify the key technical issues for the fabrication of ITER Test Blanket Module (TBM) suggested from the recent achievements in Japan. It is desirable to make the status of RAFMs equivalent to commercial steels to use RAFMs as the ITER-TBM structural material. This would require demonstrating the reproducibility and weldability as well as providing the database. The excellent reproducibility of F82H has been demonstrated with four 5-ton-heats, and two of them were provided as F82H-IEA heats. It has been also proved that F82H could be provided as plates (thickness of 1.5 to 55 mm), pipes and rectangular tubes. It is also important to have the excellent weldability as the TBM has about 300m length of weld line, and it was proved through TIG, EB and YAG weld test performed in air atmosphere. Various mechanical and microstructural data have been accumulated including long-term tests such as creep rupture tests and aging tests. Although F82H is a well-perceived RAFM as the ITER-TBM structural material, some issues are

  17. Integrated thermo-fluid analysis towards helium flow path design for an ITER solid breeder blanket module

    International Nuclear Information System (INIS)

    Ying, A.; Narula, M.; Hunt, R.; Abdou, M.; Ando, Y.; Komada, I.

    2007-01-01

    The successful design and development of a complex system, like the ITER test blanket module (TBM) warrants the need of extensive computer aided engineering (CAE) activities. In this light, a sophisticated numerical flow solver ('SC/Tetra' by CRADLE), with a robust CAD interface, has been used to develop and evaluate helium coolant flow schemes for a solid breeder test blanket module design currently proposed by the US for testing in ITER. The traits of a particular cooling strategy for the TBM, namely the exit temperature of coolant, overall pressure drop, uniformity of temperature in the structure, robustness against transients, etc. can only be predicted by carrying out a complete three dimensional thermal-fluid analysis of the system in its entirety including all the structural and fluid components. The primary objective of this paper is to introduce the procedure for carrying out complex thermo-fluid analysis using the complete three dimensional CAD models of the TBM to evaluate the performance of TBM cooling schemes and to illustrate the way in which the results from these analyses can be useful towards a systematic design of an effective cooling solution for the test blanket module

  18. Prototyping of the Blanket Shield Module for the ITER EC H and CD Upper launcher

    Energy Technology Data Exchange (ETDEWEB)

    Spaeh, Peter, E-mail: peter.spaeh@kit.edu [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, G. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Binni, A. [MAN Diesel and Turbo SE, Deggendorf (Germany); Gessner, R. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Goldmann, A. [MAN Diesel and Turbo SE, Deggendorf (Germany); Grossetti, G. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Kroiss, A. [MAN Diesel and Turbo SE, Deggendorf (Germany); Meier, A. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Obermeier, C. [MAN Diesel and Turbo SE, Deggendorf (Germany); Scherer, T.; Schreck, S.; Strauss, D.; Vaccaro, A. [KIT – Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2014-10-15

    Highlights: • ITER EC H and CD prototype of structural In-vessel components manufactured and analyzed. • Preliminary design was adapted according to manufacturing requirements. • Analysis of flow characteristics for cooling system has been performed. Design was optimized according to this analysis. - Abstract: The design of the ITER Electron Cyclotron Heating and Current Drive (ECH and CD) Upper launcher is recently in the first of two final design phases. The first phase deals with the finalization of all FCS (First Confinement System) components as well as with specific design progress for the remaining In-vessel components. The most outstanding structural In-vessel component of an ECH and CD Upper launcher is the Blanket Shield Module (BSM) with the First Wall Panel (FWP). Both of them form the plasma facing part of the launcher, which has to meet strong demands on dissipation of nuclear heat loads and mechanical rigidity. Nuclear heat loads from 3 MW/m{sup 3} at the First Wall Panel’ surface, decaying down to a tenth in a distance of 0.5 m behind of it will affect the BSM and the FWP. Additional heating of maximum 0.5 MW/m{sup 2} due to plasma radiation must be dissipated from the FWP. To guarantee save and homogenous removal of such extensive heat loads, the BSM is designed as a welded steel-case with specific cooling channels inside its wall structure. Attached to its face side is the FWP with a high-power cooling structure. Based on computational analysis the optimum cooling channel geometry has been investigated. Specific pre-prototype tests have been made and associated assembly parameters have been determined in order to identify optimum manufacturing processes and joining techniques, which guarantee a robust design with maximum geometrical accuracy. This paper describes the design, manufacturing and testing of a full-size mock-up of the BSM. The study was carried out in an industrial cooperation with MAN Diesel and Turbo SE.

  19. Studies on Flat Sandwich-type Self-Powered Detectors for Flux Measurements in ITER Test Blanket Modules

    Science.gov (United States)

    Raj, Prasoon; Angelone, Maurizio; Döring, Toralf; Eberhardt, Klaus; Fischer, Ulrich; Klix, Axel; Schwengner, Ronald

    2018-01-01

    Neutron and gamma flux measurements in designated positions in the test blanket modules (TBM) of ITER will be important tasks during ITER's campaigns. As part of the ongoing task on development of nuclear instrumentation for application in European ITER TBMs, experimental investigations on self-powered detectors (SPD) are undertaken. This paper reports the findings of neutron and photon irradiation tests performed with a test SPD in flat sandwich-like geometry. Whereas both neutrons and gammas can be detected with appropriate optimization of geometries, materials and sizes of the components, the present sandwich-like design is more sensitive to gammas than 14 MeV neutrons. Range of SPD current signals achievable under TBM conditions are predicted based on the SPD sensitivities measured in this work.

  20. Studies on Flat Sandwich-type Self-Powered Detectors for Flux Measurements in ITER Test Blanket Modules

    Directory of Open Access Journals (Sweden)

    Raj Prasoon

    2018-01-01

    Full Text Available Neutron and gamma flux measurements in designated positions in the test blanket modules (TBM of ITER will be important tasks during ITER’s campaigns. As part of the ongoing task on development of nuclear instrumentation for application in European ITER TBMs, experimental investigations on self-powered detectors (SPD are undertaken. This paper reports the findings of neutron and photon irradiation tests performed with a test SPD in flat sandwich-like geometry. Whereas both neutrons and gammas can be detected with appropriate optimization of geometries, materials and sizes of the components, the present sandwich-like design is more sensitive to gammas than 14 MeV neutrons. Range of SPD current signals achievable under TBM conditions are predicted based on the SPD sensitivities measured in this work.

  1. FMECA about pre-treatment system for purge gas of test blanket module in ITER

    International Nuclear Information System (INIS)

    Fu Wanfa; Luo Deli; Tang Tao

    2012-01-01

    The pre-treatment system for purge gas of TBM will be installed in Port Cell for installing TBM in ITER, the function of which includes filtering purge gas, removing HTO, cooling, and adjusting flow rate, etc. The purge gas treated will be conveyed into TES (Tritium Extraction System). The technological process and system components in pre-treatment system were introduced. Tritium releasing risk was regarded as failure criterion; failure mode, effects and criticality analysis (FMECA) were carried out and several weaknesses or failure mode in the system were found. Besides, risk priority number (RPN) and failure mode criticality were calculated. Finally, some design improvement measures and usage compensation measures were given. At last, four important potential failure modes were found out. The analysis will provide the design basis for reducing risk of excessive tritium releasing, which is also a useful assist for safety analysis about other tritium system. (authors)

  2. Design, Manufacture, and Experimental Serviceability Validation of ITER Blanket Components

    Science.gov (United States)

    Leshukov, A. Yu.; Strebkov, Yu. S.; Sviridenko, M. N.; Safronov, V. M.; Putrik, A. B.

    2017-12-01

    In 2014, the Russian Federation and the ITER International Organization signed two Procurement Arrangements (PAs) for ITER blanket components: 1.6.P1ARF.01 "Blanket First Wall" of February 14, 2014, and 1.6.P3.RF.01 "Blanket Module Connections" of December 19, 2014. The first PA stipulates development, manufacture, testing, and delivery to the ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels intended for withstanding the heat flux from the plasma up to 4.7MW/m2. Two Russian institutions, NIIEFA (Efremov Institute) and NIKIET, are responsible for the implementation of this PA. NIIEFA manufactures plasma-facing components (PFCs) of the EHF FW panels and performs the final assembly and testing of the panels, and NIKIET manufactures FW beam structures, load-bearing structures of PFCs, and all elements of the panel attachment system. As for the second PA, NIKIET is the sole official supplier of flexible blanket supports, electrical insulation key pads (EIKPs), and blanket module/vacuum vessel electrical connectors. Joint activities of NIKIET and NIIEFA for implementing PA 1.6.P1ARF.01 are briefly described, and information on implementation of PA 1.6.P3.RF.01 is given. Results of the engineering design and research efforts in the scope of the above PAs in 2015-2016 are reported, and results of developing the technology for manufacturing ITER blanket components are presented.

  3. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  4. ITER driver blanket, European Community design

    International Nuclear Information System (INIS)

    Simbolotti, G.; Zampaglione, V.; Ferrari, M.; Gallina, M.; Mazzone, G.; Nardi, C.; Petrizzi, L.; Rado, V.; Violante, V.; Daenner, W.; Lorenzetto, P.; Gierszewski, P.; Grattarola, M.; Rosatelli, F.; Secolo, F.; Zacchia, F.; Caira, M.; Sorabella, L.

    1993-01-01

    Depending on the final decision on the operation time of ITER (International Thermonuclear Experimental Reactor), the Driver Blanket might become a basic component of the machine with the main function of producing a significant fraction (close to 0.8) of the tritium required for the ITER operation, the remaining fraction being available from external supplies. The Driver Blanket is not required to provide reactor relevant performance in terms of tritium self-sufficiency. However, reactor relevant reliability and safety are mandatory requirements for this component in order not to significantly afftect the overall plant availability and to allow the ITER experimental program to be safely and successfully carried out. With the framework of the ITER Conceptual Design Activities (CDA, 1988-1990), a conceptual design of the ITER Driver Blanket has been carried out by ENEA Fusion Dept., in collaboration with ANSALDO S.p.A. and SRS S.r.l., and in close consultation with the NET Team and CFFTP (Canadian Fusion Fuels Technology Project). Such a design has been selected as EC (European Community) reference design for the ITER Driver Blanket. The status of the design at the end of CDA is reported in the present paper. (orig.)

  5. Achievements in the development of the Water Cooled Solid Breeder Test Blanket Module of Japan to the milestones for installation in ITER

    Science.gov (United States)

    Tsuru, Daigo; Tanigawa, Hisashi; Hirose, Takanori; Mohri, Kensuke; Seki, Yohji; Enoeda, Mikio; Ezato, Koichiro; Suzuki, Satoshi; Nishi, Hiroshi; Akiba, Masato

    2009-06-01

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, a water cooled solid breeder (WCSB) TBM is being developed. This paper shows the recent achievements towards the milestones of ITER TBMs prior to the installation, which consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, targeting the detailed design final report in 2012, structure designs of the WCSB TBM and the interfacing components (common frame and backside shielding) that are placed in a test port of ITER and the layout of the cooling system are presented. As for the module qualification, a real-scale first wall mock-up fabricated by using the hot isostatic pressing method by structural material of reduced activation martensitic ferritic steel, F82H, and flow and irradiation test of the mock-up are presented. As for safety milestones, the contents of the preliminary safety report in 2008 consisting of source term identification, failure mode and effect analysis (FMEA) and identification of postulated initiating events (PIEs) and safety analyses are presented.

  6. Achievements in the development of the Water Cooled Solid Breeder Test Blanket Module of Japan to the milestones for installation in ITER

    International Nuclear Information System (INIS)

    Tsuru, Daigo; Tanigawa, Hisashi; Hirose, Takanori; Mohri, Kensuke; Seki, Yohji; Enoeda, Mikio; Ezato, Koichiro; Suzuki, Satoshi; Nishi, Hiroshi; Akiba, Masato

    2009-01-01

    As the primary candidate of ITER Test Blanket Module (TBM) to be tested under the leadership of Japan, a water cooled solid breeder (WCSB) TBM is being developed. This paper shows the recent achievements towards the milestones of ITER TBMs prior to the installation, which consist of design integration in ITER, module qualification and safety assessment. With respect to the design integration, targeting the detailed design final report in 2012, structure designs of the WCSB TBM and the interfacing components (common frame and backside shielding) that are placed in a test port of ITER and the layout of the cooling system are presented. As for the module qualification, a real-scale first wall mock-up fabricated by using the hot isostatic pressing method by structural material of reduced activation martensitic ferritic steel, F82H, and flow and irradiation test of the mock-up are presented. As for safety milestones, the contents of the preliminary safety report in 2008 consisting of source term identification, failure mode and effect analysis (FMEA) and identification of postulated initiating events (PIEs) and safety analyses are presented.

  7. Development of a control system for a heavy object handling manipulator. Application to a remote maintenance system for ITER blanket module

    International Nuclear Information System (INIS)

    Yoshimi, Takashi; Tsuji, Kouichi; Miyagawa, Shinichi; Kubo, Tomomi; Kakudate, Satoshi; Tada, Eisuke

    2001-01-01

    This paper describes a control system for the heavy object handling manipulator. It has been developed for the blanket module remote maintenance system of ITER (International Thermonuclear Fusion Experimental Reactor). A rail-mounted vehicle-type manipulator is proposed for the precise handling of a blanket module which is about 4 tons in weight. Basically, this manipulator is controlled by teaching-playback technique. When grasping or releasing the module, the manipulator sags and the position of the end-effector changes about 50 [mm]. Applying only the usual teaching-playback control makes the smooth operation of setting/removing modules to/from the vacuum vessel wall difficult due to this position change. To solve this proper problem of heavy object handling manipulator, we have developed a system which uses motion patterns generated from two kinds of teaching points. These motion patterns for setting/removing heavy objects are generated by combining teaching points for positioning the manipulator with and without grasping the object. When these motion patterns are applied, the manipulator can transfer the object's weight smoothly at the setting/removing point. This developed system has been applied to the real-scale mock-up of the vehicle manipulator and through the actual module setting/removing experiments, we have verified its effectiveness and realized smooth maintenance operation. (author)

  8. An overview of the US work to complete the design of Blanket Shield Modules 7,12 and 13 for the ITER project

    International Nuclear Information System (INIS)

    Ulrickson, M.; Coats, R.; Garde, J.

    2007-01-01

    Part of the US contribution to the ITER project is Blanket Shield Modules (BSM) number 7, 12 and 13 comprising about 20% of the ITER First Wall. These modules are all in the upper half of the vacuum vessel. Starting from outlines of each style of module, general design rules contained in the ITER Design Description Document (DDD), design memos, and CATIA interface drawings, the US Team has worked to fill in the details of the internal water cooling passages, slits to control eddy currents, and methods for efficient and reliable manufacturing of the BSM. Our analysis begins with nuclear heating assessment of complex 3D structures containing water, copper, and steel carried out by the University of Wisconsin using a version of Monte Carlo N-Particle Transport Code (MCNP) that connects directly to CATIA to get the geometry. Computational Fluid Dynamics (CFD) analysis of the coolant flow distribution and pressure drop in a shield module provides the basis for thermal transfer from the BSM to the coolant. The size and position of coolant passages are adjusted to optimize the heat transfer and eliminate hot spots. ITER specified major disruption (MD) and downward vertical disruption (VDE) events are used to calculate the currents induced in the BSM. In this modeling it is necessary to include the vacuum vessel and other BSM near the modules of interest. In order to benchmark the OPERA Electromagnetic Code against the one used for the DDD analysis, we calculated eddy currents and forces on all 18 BSM in a simplified model that matched analysis by Japan. The eddy current forces are used to determine the torque and net force on the BSM. These forces are compared to the load capacity of the mounts and adjustments made to eddy current control slits as needed. Dynamic analysis of the eddy current induced stresses on the BSM and mounts are performed using the ABAQUS code. Static thermal and pressure stresses are calculated using the temperature distributions from CFD analysis

  9. RELAP/SCDAPSIM/MOD4.0 modification for transient accident scenario of Test Blanket Modules in ITER involving helium flows into heavy liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J.; Pérez, M.; Mas de les Valls, E.; Batet, L.; Sandeep, T.; Chaudhari, V.; Reventós, F.

    2015-07-01

    The Institute for Plasma Research (IPR), India, is currently involved in the design and development of its Test Blanket Module (TBM) for testing in ITER (International Thermo nuclear Experimental Reactor). The Indian TBM concept is a Lead-Lithium cooled Ceramic Breeder (LLCB), which utilizes lead-lithium eutectic alloy (LLE) as tritium breeder, neutron multiplier and coolant. The first wall facing the plasma is cooled by helium gas. In preparation of the regulatory safety files of ITER-TBM, a number of off-normal event sequences have been postulated. Thermal hydraulic safety analyses of the TBM system will be carried out with the system code RELAP/SCDAPSIM/MOD4.0 which was initially designed to predict the behavior of light water reactor systems during normal and accidental conditions. In order to analyze some of the postulated off-normal events, there is the need to simulate the mixing of Helium and Lead-Lithium fluids. The Technical University of Catalonia is cooperating with IPR to implement the necessary changes in the code to allow for the mixing of helium and liquid metal. In the present study, the RELAP/SCDAPSIM/MOD4 two-phase flow 6-equations structure has been modified to allow for the mixture of LLE in the liquid phase with dry Helium in the gas phase. Practically obtaining a two-fluid 6-equation model where each fluid is simulated with a set of energy, mass and momentum balance equations. A preliminary flow regime map for LLE and helium flow has been developed on the basis of numerical simulations with the OpenFOAM CFD toolkit. The new code modifications have been verified for vertical and horizontal configurations. (Author)

  10. Construction of a test platform for Test Blanket Module (TBM) systems integration and maintenance in ITER Port Cell #16

    Energy Technology Data Exchange (ETDEWEB)

    Vála, Ladislav, E-mail: ladislav.vala@cvrez.cz [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Reungoat, Mathieu, E-mail: mathieu.reungoat@cvrez.cz [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Vician, Martin [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Poitevin, Yves; Ricapito, Italo; Zmitko, Milan; Panayotov, Dobromir [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • A non-nuclear, full size facility – TBM platform – is under construction in CVR. • It is designed for tests, optimization and validation of TBS maintenance operations. • It will allow testing and validation of specific maintenance tools and RH equipment. • It reproduces ITER Port Cell #16, as well as the TBS interfaces and main equipment. • The TBM platform will be available for full operation in the first half of 2016. - Abstract: This paper describes a project of a non-nuclear, 1:1 scale testing platform dedicated to tests, optimization and validation of integration and maintenance operations for the European TBM systems in the ITER Port Cell #16. This TBM platform is currently under construction in Centrum výzkumu Řež, Czech Republic. The facility is realized within the scope of the SUSEN project and its full operation is foreseen in the first half of 2016.

  11. Breeding blanket design for ITER and prototype (DEMO) fusion reactors and breeding materials issues

    Energy Technology Data Exchange (ETDEWEB)

    Takatsu, H.; Enoeda, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-03-01

    Current status of the designs of the ITER breeding blanket and DEMO blankets is introduced placing emphasis on the breeding materials selection and related issues. The former design is based on the up-to-date design activities, as of October 1997, being performed jointly by Joint Central Team (JCT) and Home Teams (HT`s), while the latter is based on the DEMO blanket test module designs being proposed by each Party at the TBWG (Test Blanket Working Group) meetings. (J.P.N.)

  12. Development of a virtual reality simulator for the ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi; Tesini, Alessandro

    2008-01-01

    The authors developed a simulator for the remote maintenance system of the ITER blanket using a general 3D robotic simulation software, ENVISION. The simulator is connected to the control system of the manipulator, which was developed as part of the blanket maintenance system during the Engineering Design Activity (EDA), and can reconstruct the positions of the manipulator and blanket module using position data transmitted from motors through a LAN. In addition, it can provide virtual visual information (e.g., about the interface structures behind the blanket module) by making the module transparent on the screen. It can also be used for confirming a maintenance sequence before the actual operation. The simulator will be modified further, with addition of other necessary functions, and will finally serve as a prototype of the actual simulator for the blanket remote handling system, which will be procured as part of an in-kind contribution

  13. Availability analysis of the ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Noguchi, Yuto; Takeda, Nobukazu; Kakudate, Satoshi

    2015-01-01

    The ITER blanket remote handling system (BRHS) is required to replace 440 blanket first wall panels in a two-year maintenance period. To investigate this capability, an availability analysis of the system was carried out. Following the analysis procedure defined by the ITER organization, the availability analysis consists of a functional analysis and a reliability block diagram analysis. In addition, three measures to improve availability were implemented: procurement of spare parts, in-vessel replacement of cameras, and simultaneous replacement of umbilical cables. The availability analysis confirmed those measures improve the availability and capability of the BRHS to replace 440 blanket first wall panels in two years. (author)

  14. The ITER EC H and CD upper launcher: Design, analysis and testing of a bolted joint for the Blanket Shield Module

    Energy Technology Data Exchange (ETDEWEB)

    Gessner, Robby, E-mail: robby.gessner@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, Gaetano; Grossetti, Giovanni; Meier, Andreas [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany); Ronden, Dennis [DIFFER – Dutch Institute for Fundamental Energy Physics, P.O. Box 1207, NL-3430 BE Nieuwegein (Netherlands); Spaeh, Peter; Scherer, Theo; Schreck, Sabine; Strauss, Dirk; Vaccaro, Alessandro [Karlsruhe Institute of Technology, Institute for Applied Materials, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2013-10-15

    Highlights: ► The BSM of the ECH Launcher is attached to the Launcher Main Frame by a bolted joint. ► The bolts were designed as “captive” in order to avoid their accidental removal from the joint. ► The bolted flange connection using two sets of 15 captive bolts (M22 × 2) placed along the sides. ► The captive bolt design is based on a concept that uses a dedicated spring ring, a standard spiral spring and a tensioning screw with two threads to secure the bolts in a form-locking stop. -- Abstract: The final design of the structural system for the ITER EC H and CD upper launcher is in progress. Many design features of the preliminary design are under revision with the aim to achieve the built-to-print-status. This paper deals with design and analysis of a bolted joint for the Blanket Shield Module with special perspective on Remote Handling capability. The BSM of the ECH Launcher is attached to the Launcher Main Frame by a bolted joint conceived so that in the Hot Cell Facility, RH maintenance can be performed on internal components. The joint must be capable to resist very high Electro-Magnetic loads from disruptions, while it has to sustain substantial thermal cycling during operation. Thus the need for a rigid and reliable design is essential. Beside the set of pre-stressed bolts the flanges were therefore equipped with additional shear keys to divert radial moments away from the bolts. Main focus of the work performed was the mechanical design of the joint and the assessment of the structural integrity with respect to the loads applied and its capability for maintenance by RH procedures. To fulfill a major aspect of the RH requirements, the bolts were designed as “captive” in order to avoid their accidental removal from the joint. The captive bolt design is based on a concept that uses a dedicated spring ring, a standard spiral spring and a tensioning screw with two threads to secure the bolts in a form-locking stop. The final approval phase of

  15. An assessment of the base blanket for ITER

    International Nuclear Information System (INIS)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored

  16. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-01-01

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  17. An assessment of the base blanket for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R.; Abdou, M.A.; Ying, A.

    1991-12-31

    Ideally, the ITER base blanket would provide the necessary tritium for the reactor to be self-sufficient during operation, while having minimal impact on the overall reactor cost, reliability and safety. A solid breeder blanket has been developed in CDA phase in an attempt to achieve such objectives. The reference solid breeder base blanket configurations at the end of the CDA phase has many attractive features such as a tritium breeding ratio (TBR) of 0.8--0.9 and a reasonably low tritium inventory. However, some concerns regarding the risk, cost and benefit of the base blanket have been raised. These include uncertainties associated with the solid breeder thermal control and the potentially high cost of the amount of Be used to achieve high TBR and to provide the necessary thermal barrier between the high temperature solid breeder and low temperature coolant. This work addresses these concerns. The basis for the selection of a breeding blanket is first discussed in light of the incremental risk, cost and benefits relative to a non-breeding blanket. Key issues associated with the CDA breeding blanket configurations are then analyzed. Finally, alternative schemes that could enhance the attractiveness and flexibility of a breeding blanket are explored.

  18. ITER solid breeder blanket materials database

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States); Dienst, W. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Material- und Festkoerperforschung; Flament, T. [CEA Centre d`Etudes de Fontenay-aux-Roses (France). Commissariat A L`Energie Atomique; Lorenzetto, P. [NET Team, Garching (Germany); Noda, K. [Japan Atomic Energy Research Inst., Takai, Ibaraki, (Japan); Roux, N. [CEA Centre d`Etudes et de Recherches Les Materiaux (France). Commissariat a L`Energie Atomique

    1993-11-01

    The databases for solid breeder ceramics (Li{sub 2},O, Li{sub 4}SiO{sub 4}, Li{sub 2}ZrO{sub 3} and LiAlO{sub 2}) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized.

  19. ITER solid breeder blanket materials database

    International Nuclear Information System (INIS)

    Billone, M.C.; Dienst, W.; Noda, K.; Roux, N.

    1993-11-01

    The databases for solid breeder ceramics (Li 2 ,O, Li 4 SiO 4 , Li 2 ZrO 3 and LiAlO 2 ) and beryllium multiplier material are critically reviewed and evaluated. Emphasis is placed on physical, thermal, mechanical, chemical stability/compatibility, tritium, and radiation stability properties which are needed to assess the performance of these materials in a fusion reactor environment. Correlations are selected for design analysis and compared to the database. Areas for future research and development in blanket materials technology are highlighted and prioritized

  20. Progress and achievements of the ITER L-4 blanket project

    International Nuclear Information System (INIS)

    Daenner, W.; Toschi, R.; Cardella, A.

    1999-01-01

    The L-4 Blanket Project embraces the R and D of the ITER Shielding Blanket, and its main objective is the fabrication of prototype components. This paper summarises the main conclusions from the materials R and D and the development of technologies which were required for the prototype specifications and manufacturing. The main results of the ongoing testing activities, and of the component manufacture are outlined.The main objectives of the project have been achieved including improvements of the material properties and of joining technologies, which resulted in good component quality and high performance in qualification tests. (author)

  1. Progress and achievements of the ITER L-4 blanket project

    International Nuclear Information System (INIS)

    Daenner, W.; Toschi, R.; Cardella, A.

    2001-01-01

    The L-4 Blanket Project embraces the R and D of the ITER Shielding Blanket, and its main objective is the fabrication of prototype components. This paper summarises the main conclusions from the materials R and D and the development of technologies which were required for the prototype specifications and manufacturing. The main results of the ongoing testing activities, and of the component manufacture are outlined. The main objectives of the project have been achieved including improvements of the material properties and of joining technologies, which resulted in good component quality and high performance in qualification tests. (author)

  2. Radwaste management aspects of the test blanket systems in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der, E-mail: JaapG.vanderLaan@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Canas, D. [CEA, DEN/DADN, centre de Saclay, F-91191 Gif-sur-Yvette cedex (France); Chaudhari, V. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Iseli, M. [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Kawamura, Y. [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Lee, D.W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Petit, P. [European Commission, DG ENER, Brussels (Belgium); Pitcher, C.S.; Torcy, D. [ITER Organization, Route de Vinon sur Verdon, F-13067 Saint Paul Lez Durance (France); Ugolini, D. [Fusion for Energy, Barcelona (Spain); Zhang, H. [China Nuclear Energy Industry Corporation, Beijing 100032 (China)

    2016-11-01

    Highlights: • Test Blanket Systems are operated in ITER to test tritium breeding technologies. • The in-vessel parts of TBS become radio-active during the ITER nuclear phase. • For each TBM campaign the TBM, its shield and the Pipe Forests are removed. • High tritium contents and novel materials are specific TBS radwaste features. • A preliminary assessment confirmed RW routing, provided its proper conditioning. - Abstract: Test Blanket Systems (TBS) will be operated in ITER in order to prepare the next steps towards fusion power generation. After the initial operation in H/He plasmas, the introduction of D and T in ITER will mark the transition to nuclear operation. The significant fusion neutron production will give rise to nuclear heating and tritium breeding in the in-vessel part of the TBS. The management of the activated and tritiated structures of the TBS from operation in ITER is described. The TBS specific features like tritium breeding and power conversion at elevated temperatures, and the use of novel materials require a dedicated approach, which could be different to that needed for the other ITER equipment.

  3. Assessment of alkali metal coolants for the ITER blanket

    International Nuclear Information System (INIS)

    Natesan, K.; Reed, C.B.; Mattas, R.F.

    1994-01-01

    The blanket system is one of the most important components of a fusion reactor because it has a major impact on both the economics and safety of fusion energy. The primary functions of the blanket in a deuterium/tritium-fueled fusion reactor are to convert the fusion energy into sensible heat and to breed tritium for the fuel cycle. The Blanket Comparison and Selection Study, conducted earlier, described the overall comparative performance of different blanket concepts, including liquid metal, molten salt, water, and helium. This paper will discuss the ITER requirements for a self-cooled blanket concept with liquid lithium and for indirectly cooled concepts that use other alkali metals such as NaK. The paper will address the thermodynamics of interactions between the liquid metals (i.e., lithium and NaK) and structural materials (e.g., V-base alloys), together with associated corrosion/compatibility issues. Available experimental data will be used to assess the long-term performance of the first wall in a liquid metal environment

  4. Fabrication of prototype mockups of ITER shielding blanket with separable first wall

    International Nuclear Information System (INIS)

    Kosaku, Yasuo; Kuroda, Toshimasa; Enoeda, Mikio; Hatano, Toshihisa; Sato, Satoshi; Akiba, Masato

    2002-07-01

    Design of shielding blanket for ITER-FEAT applies the first wall which has the separable structure from the shield block for the purpose of radio-active waste reduction in the maintenance work and cost reduction in fabrication process. Also, it is required to have various types of slots in both of the first wall and the shield block, to reduce the eddy current for reduction of electro-magnetic force in disruption events. This report summarizes the demonstrative fabrication of the ITER shielding blanket with separable first wall performed for the shielding blanket fabrication technology development, under the task agreement of G 16 TT 108 FJ (T420-2) in ITER Engineering Design Activity Extension Period. The objectives of the demonstrative fabrication are: to demonstrate the comprehensive fabrication technique in a large scale component (e.g the joining techniques for the beryllium armor/copper alloy and copper alloy/SS, and the slotting method of the FW and shield block); to develop an improved fabrication method for the shielding blanket based on the ITER-FEAT updated design. In this work, the fabrication technique of full scale separable first wall shield blanket was confirmed by fabricating full width Be armored first wall panel, full scale of 1/2 shield block with poloidal cooling channels. As the R and D for updated cooling channel configuration, the fabrication technique of the radial channel shield block was also demonstrated. Concluding to the all R and D results, it was demonstrated successfully that the fabrication technique and optimized conditions in the results obtained under the task agreement of G 16 TT 95 FJ (T420-1) was applicable to the prototype of the separable first wall blanket module. Additionally, basic echo data of ultra-sonic test method (UT) was obtained to show the applicability of UT method for in tube access detection of defect on the Cu alloy/SS tube interface. (author)

  5. Robot vision system R and D for ITER blanket remote-handling system

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Takahito, E-mail: maruyama.takahito@jaea.go.jp [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka [Japan Atomic Energy Agency, Fusion Research and Development Directorate, Naka, Ibaraki-ken 311-0193 (Japan); Tesini, Alessandro [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul Lez Durance (France)

    2014-10-15

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system.

  6. Robot vision system R and D for ITER blanket remote-handling system

    International Nuclear Information System (INIS)

    Maruyama, Takahito; Aburadani, Atsushi; Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Tesini, Alessandro

    2014-01-01

    For regular maintenance of the International Thermonuclear Experimental Reactor (ITER), a system called the ITER blanket remote-handling system is necessary to remotely handle the blanket modules because of the high levels of gamma radiation. Modules will be handled by robotic power manipulators and they must have a non-contact-sensing system for installing and grasping to avoid contact with other modules. A robot vision system that uses cameras was adopted for this non-contact-sensing system. Experiments for grasping modules were carried out in a dark room to simulate the environment inside the vacuum vessel and the robot vision system's measurement errors were studied. As a result, the accuracy of the manipulator's movements was within 2.01 mm and 0.31°, which satisfies the system requirements. Therefore, it was concluded that this robot vision system is suitable for the non-contact-sensing system of the ITER blanket remote-handling system

  7. Tritium inventory and permeation in the ITER breeding blanket

    International Nuclear Information System (INIS)

    Violante, V.; Tosti, S.; Sibilia, C.; Felli, F.; Casadio, S.; Alvani, C.

    2000-01-01

    A model has allowed us to perform the analysis of the tritium inventory and permeation in the international thermonuclear experimental reactor (ITER) breeding blanket under the hypothesis of steady state conditions. Li 2 ZrO 3 (reference) and Li 2 TiO 3 (alternative) have been studied as breeding materials. The total breeder inventory assessed is 7.64 g for the Li 2 ZrO 3 at reference temperature. The model has also been used for a parametric analysis of the tritium permeation. At reference temperature and purge helium velocity of 0.01 m/s, the HT partial pressure is ranging from 10 to 30 Pa in the breeder and 1.5x10 -3 Pa in the beryllium. At 0.1 m/s of purge helium velocity, the HT partial pressure is reduced of one order by magnitude in the breeder and becomes 5x10 -5 Pa in the beryllium. The tritium permeation into the coolant for the whole blanket is ranging from 100 to 250 mCi per day for purge helium velocity of 0.01 m/s. The analysis of the tritium inventory and permeation for the alternative Li 2 TiO 3 breeding material has been carried out too. The tritium inventory in the breeder is in the range from 6 to 375 g larger than in Li 2 ZrO 3 by about a factor 5; the tritium permeation into coolant is comparable to the Li 2 ZrO 3 one. This analysis provides indications on the influence of the operating parameters on the tritium control in the ITER breeding blanket; particularly the control of the tritium inventory by the temperature and the tritium permeation by the purge gas velocity

  8. The State of the Art Report on the Development and Manufacturing Technology of Test Blanket Module

    International Nuclear Information System (INIS)

    Lee, J. S.; Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Kim, K. H.

    2006-07-01

    The main objective of the present R and D on breeder blanket is the development of test blanket modules (TBMs) to be installed and tested in International Thermonuclear Experimental Reactor (ITER). In the program of the blanket development, a blanket module test in the ITER is scheduled from the beginning of the ITER operation, and the performance test of TBM in ITER is the most important milestone for the development of the DEMO blanket. The fabrication of TBMs has been required to test the basic performance of the DEMO blanket, i.e., tritium production/recovery, high-grade heat generation and radiation shielding. Therefore, the integration of the TBM systems into ITER has been investigated with the aim to check the safety, reliability and compatibility under nuclear fusion state. For this reason, in the Test Blanket Working Group (TBWG) as an activity of the International Energy Association (IEA), a variety of ITER TBMs have been proposed and investigated by each party: helium-cooled ceramic (WSG-1), helium-cooled LiPb (WSG-2), water-cooled ceramic (WSG-3), self-cooled lithium (WSG-4) and self-cooled molten salt (WSG-5) blanket systems. Because we are still deficient in investigation of TBM development, the need of development became pressing. In this report, for the development of TBM sub-module and mock-up, it is necessary to analyze and examine the state of the art on the development of manufacturing technology of TBM in other countries. And we will be applied as basic data to establish a manufacturing technology

  9. Tritium module for ITER/Tiber system code

    International Nuclear Information System (INIS)

    Finn, P.A.; Willms, S.; Busigin, A.; Kalyanam, K.M.

    1988-01-01

    A tritium module was developed for the ITER/Tiber system code to provide information on capital costs, tritium inventory, power requirements and building volumes for these systems. In the tritium module, the main tritium subsystems/emdash/plasma processing, atmospheric cleanup, water cleanup, blanket processing/emdash/are each represented by simple scaleable algorithms. 6 refs., 2 tabs

  10. Fabrication of the full scale separable first wall of ITER shielding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Kosaku, Yasuo; Kuroda, Toshimasa; Hatano, Toshihisa; Enoeda, Mikio; Miki, Nobuharu; Akiba, Masato [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-10-01

    Shielding blanket for ITER-FEAT applies the unique first wall structure which is separable from the shield block for the purpose of radio-active waste reduction in the maintenance work and cost reduction in fabrication process. Also, it is required to have various types of slots in both of the first wall and the shield block, to reduce the eddy current for reduction of electro-magnetic force in disruption events. Such unique features of blanket structure required technological clarification from the technical base of the previous achievement of the blanket module fabrication development. Previously, within the EDA Task T216+, a prototype for the no.4 Primary Wall Module of the ITER Shield Blanket with integrated first wall has been manufactured by forging and drilling and the first wall has been manufactured and joined to the shield block by Hot Isostatic Pressing (HIP) in one step process. This work has been performed to clarify the remaining R and D issues which have not been covered in the previous R and D. This report summarizes the demonstrative fabrication of the real scale separable first wall for ITER shielding blanket designed for ITER-FEAT, together with the essential technology developments such as, the slit grooving of the first wall with beryllium armor and SS shield block and fabrication of a partial mockup of beryllium armored first wall panel with built-in cooling channels. This work has been performed under the task agreement of G 16 TT 95 FJ (T420-1) in ITER Engineering Design Activity Extension Period. By the demonstration of the Be armor joining to the first wall panel, the joining technique of Be and DSCu developed previously, was shown to be applicable to the realistic structure of first wall panel. Also, the slit grooving by an end-mill method and an electron discharge machining method have been applied to the first wall mockup with Be armor tiles and demonstrated the applicability within the design tolerance. As the slit grooving technique

  11. U.S. technical report for the ITER blanket/shield: A. blanket: Topical report, July 1990--November 1990

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequently the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.

  12. Helium Loop for the HCPB Test Blanket Module

    International Nuclear Information System (INIS)

    Neuberger, H.; Boccaccini, L.V.; Ghidersa, B. E.; Jin, X.; Meyder, R.

    2006-01-01

    In the frame of the activities of the EU Breeder Blanket Programme and of the Test Blanket Working Group, the Helium loop for the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) in ITER has been investigated with regard to the layout definition, selection of components, control, dimensioning and integration. This paper presents the status of development. The loop design for the HCPB-TBM in ITER will mainly base on the experience gained from Helium Loop Karlsruhe (HELOKA) which is currently developed at the FZK for experiments under ITER relevant conditions. The ITER loop will be equipped with similar components like HELOKA and will mainly consist of a circulator with variable speed drive, a recuperator, an electric heater, a cooler, a dust filter and auxilary components e.g. pipework and valves. A Coolant Purification System (CPS) and a Pressure Control System (PCS) are foreseen to meet the requirements on coolant conditioning. To prepare a TBM for a new experimental campaign, a succession of operational states like '' cold maintenance '', '' baking '' and '' cold standby '' is required. Before a pulse operation, a '' hot stand-by '' state should be achieved providing the TBM with inlet coolant at nominal conditions. This operation modus is continued in the dwell time waiting for the successive pulse. A '' tritium out-gassing '' will be also required after several TBM-campaigns to remove the inventory rest of T in the beds for measurement purpose. The dynamic circuit behaviour during pulses, transition between different operational states as well as the behaviour in accident situations are investigated with RELAP. The main components of the loop will be accommodated inside the Tokamak Cooling Water System(TCWS)- vault from where the pipes require connection to the TBM which is attached to port 16 of the vacuum vessel. Therefore pipes across the ITER- building of about 110 m in length (each) are required. Additional equipment is also located in the port cell

  13. Impact hammer test of ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Yuto, E-mail: noguchi.yuto@jaea.go.jp; Maruyama, Takahito; Ueno, Kenichi; Komai, Masafumi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    An impact hammer test of the full-scale mock-up of the ITER blanket remote handling system (BRHS) was carried out to validate the results of the seismic analysis of the BRHS which were performed using a finite element (FE) model. As the FE analysis of the BRHS predicted a vertical mode ∼8 Hz, which coincides with a major natural frequency of the vacuum vessel of ITER, evaluating the dynamic response of the BRHS experimentally and measuring the system's damping is indispensable in verifying the structural design of the system. Recent preliminary impact testing on the full-scale mock-up of the BRHS showed that the mock-up has a vertical major natural mode having a natural frequency of ∼7.5 Hz and a damping ratio of 0.5%. Several other major natural modes having frequencies less than 10 Hz were found to have damping ratios ranging from 0.2% to 2%. It was confirmed that the natural major frequencies obtained in the experiments are in agreement with the major frequencies obtained via analysis.

  14. Nuclear modules of ITER tokamak systems code

    International Nuclear Information System (INIS)

    Gohar, Y.; Baker, C.; Brooks, J.

    1987-10-01

    Nuclear modules were developed to model various reactor components in the ITER systems code. Several design options and cost algorithms are included for each component. The first wall, blanket and shield modules calculate the beryllium zone thickness, the disruptions results, the nuclear responses in different components including the toroidal field coils. Tungsten shield/water coolant/steel structure and steel shield/water coolant are the shield options for the inboard and outboard sections of the reactor. Lithium nitrate dissolved in the water coolant with a variable beryllium zone thickness in the outboard section of the reactor provides the tritium breeding capability. The reactor vault module defines the thickness of the reactor wall and the roof based on the dose equivalent during operation including skyshine contribution. The impurity control module provides the design parameters for the divertor including plate design, heat load, erosion rate, tritium permeation through the plate material to the coolant, plasma contamination by sputtered impurities, and plate lifetime. Several materials: Be, C, V, Mo, and W can be used for the divertor plate to cover a range of plasma edge temperatures. The tritium module calculates tritium and deuterium flow rates for the reactor plant. The tritium inventory in the fuelers, neutral beams, vacuum pumps, impurity control, first wall, and blanket is calculated. Tritium requirements are provided for different operating conditions. The nuclear models are summarized in this paper including the different design options and key analyses of each module. 39 refs., 3 tabs

  15. Tritium and heat management in ITER Test Blanket Systems port cell for maintenance operations

    Energy Technology Data Exchange (ETDEWEB)

    Giancarli, L.M., E-mail: luciano.giancarli@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Cortes, P.; Iseli, M.; Lepetit, L.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Livingston, D. [Frazer-Nash Consultancy Ltd., Stonebridge House, Dorking Business Park, Dorking, Surrey RH4 1HJ (United Kingdom); Nevière, J.C. [Comex-Nucleaire, 13115 Saint Paul Lez Durance (France); Pascal, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Ricapito, I. [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Shu, W. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Wyse, S. [Frazer-Nash Consultancy Ltd., Stonebridge House, Dorking Business Park, Dorking, Surrey RH4 1HJ (United Kingdom)

    2014-10-15

    Highlights: •The ITER TBM Program is one of the ITER missions. •We model a TBM port cell with CFD to optimize the design choices. •The heat and tritium releases management in TBM port cells has been optimized. •It is possible to reduce the T-concentration below one DAC in TBM port cells. •The TBM port cells can have human access within 12 h after shutdown. -- Abstract: Three ITER equatorial port cells are dedicated to the assessment of six different designs of breeding blankets, known as Test Blanket Modules (TBMs). Several high temperature components and pipework will be present in each TBM port cell and will release a significant quantity of heat that has to be extracted in order to avoid the ambient air and concrete wall temperatures to exceed allowable limits. Moreover, from these components and pipes, a fraction of the contained tritium permeates and/or leaks into the port cell. This paper describes the optimization of the heat extraction management during operation, and the tritium concentration control required for entry into the port cell to proceed with the required maintenance operations after the plasma shutdown.

  16. Development of Joining Technologies for the ITER Blanket First Wall

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoung Kwon; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Sang Yoon; Park, Jeong Yong; Jeong, Yong Hwan; Lee, Dong Won; Kim, Suk Kwon [KAERI, Daejeon (Korea, Republic of)

    2011-01-15

    The design of the ITER blanket first wall includes the Beryllium amour tiles joined to CuCrZr heat sink with stainless steel cooling tubes. For the ITER application, the Be/CuCrZr/SS joint was proposed as a first wall material. The joining of Be/CuCrZr as well as CuCrZr/SS was generally carried out by using a hot isostatic pressing (CuC) in many countries. The joining strength for Be/CuCrZr is relatively lower than that for CuCrZr/SS, since we usually forms surface oxides (BeO) and brittle a metallics with Cu. Therefore, the joining technology for the Be/CuCrZr joint has been investigated. Be is apt to adsorb oxygen in an air atmosphere, so we should be etched to eliminate the surface pre-oxide using a chemical solution and Ar ions in a vacuum chamber. Then we is coated with a first was to prevent further oxidation. The kinds of a first we are chosen to be able to enhance the joining strength as inhibiting excessive be diffusion. The performance of the Be/CuCrZr/SS joint used for the ITER first wall is primarily dependent on the joining strength of the Be/CuCrZr interface. The Cr/Cu and Ti/Cr/Cu interlayers enabled the successful joining of be tile to CuCrZr plate. Moreover, ion-beam assisted deposition (IBAD) increased joining strength of the Be/CuCrZr joint mock-ups. IBAD induced the increased packing of depositing atoms, which resulted in denser and more adhesive interlayers. The interlayers formed by IBAD process revealed about 40% improved resistance to the scratch test. It is suggested that the improved adhesion of coating interlayers enabled tight joining of Be and CuCrZr blocks. As compared to without IBAD coating, the shear strength as well as the 4-point bend strength were increased more than 20% depending on interlayer types and coating conditions

  17. Development of Joining Technologies for the ITER Blanket First Wall

    International Nuclear Information System (INIS)

    Choi, Byoung Kwon; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Sang Yoon; Park, Jeong Yong; Jeong, Yong Hwan; Lee, Dong Won; Kim, Suk Kwon

    2011-01-01

    The design of the ITER blanket first wall includes the Beryllium amour tiles joined to CuCrZr heat sink with stainless steel cooling tubes. For the ITER application, the Be/CuCrZr/SS joint was proposed as a first wall material. The joining of Be/CuCrZr as well as CuCrZr/SS was generally carried out by using a hot isostatic pressing (CuC) in many countries. The joining strength for Be/CuCrZr is relatively lower than that for CuCrZr/SS, since we usually forms surface oxides (BeO) and brittle a metallics with Cu. Therefore, the joining technology for the Be/CuCrZr joint has been investigated. Be is apt to adsorb oxygen in an air atmosphere, so we should be etched to eliminate the surface pre-oxide using a chemical solution and Ar ions in a vacuum chamber. Then we is coated with a first was to prevent further oxidation. The kinds of a first we are chosen to be able to enhance the joining strength as inhibiting excessive be diffusion. The performance of the Be/CuCrZr/SS joint used for the ITER first wall is primarily dependent on the joining strength of the Be/CuCrZr interface. The Cr/Cu and Ti/Cr/Cu interlayers enabled the successful joining of be tile to CuCrZr plate. Moreover, ion-beam assisted deposition (IBAD) increased joining strength of the Be/CuCrZr joint mock-ups. IBAD induced the increased packing of depositing atoms, which resulted in denser and more adhesive interlayers. The interlayers formed by IBAD process revealed about 40% improved resistance to the scratch test. It is suggested that the improved adhesion of coating interlayers enabled tight joining of Be and CuCrZr blocks. As compared to without IBAD coating, the shear strength as well as the 4-point bend strength were increased more than 20% depending on interlayer types and coating conditions

  18. ITER Central Solenoid Module Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Smith, John [General Atomics, San Diego, CA (United States)

    2016-09-23

    The fabrication of the modules for the ITER Central Solenoid (CS) has started in a dedicated production facility located in Poway, California, USA. The necessary tools have been designed, built, installed, and tested in the facility to enable the start of production. The current schedule has first module fabrication completed in 2017, followed by testing and subsequent shipment to ITER. The Central Solenoid is a key component of the ITER tokamak providing the inductive voltage to initiate and sustain the plasma current and to position and shape the plasma. The design of the CS has been a collaborative effort between the US ITER Project Office (US ITER), the international ITER Organization (IO) and General Atomics (GA). GA’s responsibility includes: completing the fabrication design, developing and qualifying the fabrication processes and tools, and then completing the fabrication of the seven 110 tonne CS modules. The modules will be shipped separately to the ITER site, and then stacked and aligned in the Assembly Hall prior to insertion in the core of the ITER tokamak. A dedicated facility in Poway, California, USA has been established by GA to complete the fabrication of the seven modules. Infrastructure improvements included thick reinforced concrete floors, a diesel generator for backup power, along with, cranes for moving the tooling within the facility. The fabrication process for a single module requires approximately 22 months followed by five months of testing, which includes preliminary electrical testing followed by high current (48.5 kA) tests at 4.7K. The production of the seven modules is completed in a parallel fashion through ten process stations. The process stations have been designed and built with most stations having completed testing and qualification for carrying out the required fabrication processes. The final qualification step for each process station is achieved by the successful production of a prototype coil. Fabrication of the first

  19. Dynamic test of the ITER blanket key and ceramic insulated pad

    International Nuclear Information System (INIS)

    Khomyakov, S.; Sysoev, G.; Strebkov, Yu.; Kucherov, A.; Ioki, K.

    2010-01-01

    The dynamic testing of the blanket module's key integrated into ITER vacuum vessel portion has been performed in 2008 to investigate its capability to react the electro-magnetic (EM) loads. The preliminary analysis showed the large dynamic amplification factor (DAF) of the reactions because of technological gaps between the blanket module and key. Shock load may yield the bronze pads, which protect the blanket electrical insulation from damage. However the dynamic analysis of such particularly non-linear system needs an experimental ground and confirmation. Toward this end, as well as demonstration of the key reliability, the special test facility has been made, and the full-scale mock-up of the inboard intermodular key was tested. So as not to scale non-linear dynamic parameters, 1-ton mass was built on the single flexible support. The key was welded in a 60-mm thick steel plate modeled with a fragment of the VV. The different gaps were set in between the bronze pad of the key and the mass shock worker. This system (supplemented with some additional constraints) has natural oscillations like as the 4-ton module built on four flexible supports. Thus the most critical radial torque might be modeled with a straight force. The objectives of the test were as follows: dynamic response, DAF and damping factor determination; measurement of the strain oscillations in the key's base and in the weld seam; comparison of the measured data with computation results. The paper will present the analytical grounds of the testing conditions, test facility description, analytical adaptation of the facility, experimental results, its comparison with analysis and discussion, and guidelines for the next experimental phase.

  20. Physical Investigation for Neutron Consumption and Multiplication in Blanket Module of Fusion-Fission Hybrid Reactor

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Kim, Myung Hyun

    2014-01-01

    Fusion-fission hybrid reactor can be the first milestone of fusion technology and achievable in near future. It can provide operational experience for tritium recycling for pure fusion reactor and be used for incineration of high-level long-lived waste isotopes from existing fission power reactors. Hybrid reactor for waste transmutation (Hyb-WT) was designed and optimized to assess its otential for waste transmutation. ITER will be the first large scaled experimental tokamak facility for the testing of test blanket modules (TBM) which will layout the foundation for DEMO fusion power plants. Similarly hybrid test blanket module (HTBM) will be the foundation for rationality of fusion fission hybrid reactors. Designing and testing of hybrid blankets will lead to another prospect of nuclear technology. This study is initiated with a preliminary design concept of a hybrid test blanket module (HTBM) which would be tested in ITER. The neutrons generated in D-T fusion plasma are of high energy, 14.1 MeV which could be multiplied significantly through inelastic scattering along with fission in HTBM. In current study the detailed neutronic analysis is performed for the blanket module which involves the neutron growth and loss distribution within blanket module with the choice of different fuel and coolant materials. TRU transmutation and tritium breeding performance of HTBM is analyzed under ITER irradiation environment for five different fuel types and with Li and LiPb coolants. Simple box geometry with plate type TRU fuel is adopted so that it can be modelled with heterogeneous material geometry in MCNPX. Waste transmutation ratio (WTR) of TRUs and tritium breeding ration (TBR) is computed to quantify the HTBM performance. Neutron balance is computed in detail to analyze the performance parameters of HTBM. Neutron spectrum and fission to capture ratio in TRU fuel types is also calculated for detailed analysis of HTBM

  1. Pulsed activation analyses of the ITER blanket design options considered in the blanket trade-off study

    International Nuclear Information System (INIS)

    Wang, Q.; Henderson, D.L.

    1995-01-01

    Pulsed activation calculations have been performed on two blanket options considered as part of the ITER home team blanket trade-off study. The objective was to compare the activity, afterheat and waste disposal rating (WDR) results of a composite blanket-shield design for the continuous operation approximation to a pulsed operation case to determine whether the differences are at most the duty factor as predicted by the two nuclide chain model. Up to a cooling period of 100 years, the pulsed activity and afterheat values were below the continuous oepration results and well within (except for one afterheat value) the maximum deviation predicted by the two nuclide chain model. No differences in the WDR values were noted as they are, to a large extent, based on long-lived nuclides which are insensitive to short-term changes in the operation history. (orig.)

  2. ITER Blanket First Wall (WBS 1.6{sub 1}A)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; Kim, H. G.; Kim, J. H. (and others)

    2008-03-15

    -up fabrication was started; Cu/SS joints were fabricated and purchase of Be tiles was prepared. Fabrication manual and test manual such as mechanical tests and NDE were documented in the form of the TSD. Based on the design by the ITER-O, 3D modeling of the module no. 4 for ITER blanket FW was produced, thermal-hydraulic and thermo-mechanical analysis were performed. The developed NDE methods were applied to all fabricated mock-ups before HHF test and the UT results were compared with the IR images, which were generated when screening test during HHF test. ECT probes were prepared according to the previous simulation results and they were evaluated experimentally with the NDT mock-up, which has artificial defects. The developed NDE methods and their application were documented as an inspection manual and a QC document, and they were included in the TS000.

  3. Design description and performance analyses of the European HCPB test blanket system in ITER feat

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, L.V. E-mail: lorenzo.boccaccini@irs.fzk.de; Bekris, N.; Chen, Y.; Fischer, U.; Gordeev, S.; Hermsmeyer, S.; Hutter, E.; Kleefeldt, K.; Malang, S.; Schleisiek, K.; Schmuck, I.; Schnauder, H.; Tsige-Tamirat, H

    2002-11-01

    The helium cooled pebble bed (HCPB) blanket is one of the two European DEMO blanket concepts proposed for testing in international thermonuclear experimental reactor (ITER). The purpose of the tests is to validate the design principles and the operational feasibility for the demonstration blanket system. This includes the basic support functions like tritium extraction, helium cooling and heat transport, and helium purification. In addition, the basic properties and operating characteristics of the system's materials will be validated. Safety, reliability, maintenance and dismantling will be equally addressed. To assess these qualities, the ITER horizontal ports will be used to provide a relevant fusion plasma and the appropriate nuclear environment. At conclusion of the ITER feat EDA phase (July 2001), a revised design of the HCPB test blanket system have been completed to adapt the previous design (for ITER FDR) to the new operational conditions of ITER and to a new strategy for the blanket testing in this reactor. Design description, performance and safety analyses are presented in this paper.

  4. Development of radiation hard components for ITER blanket remote handling system

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Makiko, E-mail: saito.makiko@jaea.go.jp; Anzai, Katsunori; Maruyama, Takahito; Noguchi, Yuto; Ueno, Kenichi; Takeda, Nobukazu; Kakudate, Satoshi

    2016-11-01

    Highlights: • Clarify the components that will degrade by gamma ray irradiation. • Perform the irradiation tests to BRHS components. • Optimize the materials to increase the radiation hardness. - Abstract: The ITER blanket remote handling system (BRHS) will be operated in a high radiation environment (250 Gy/h max.) and must stably handle the blanket modules, which weigh 4.5 t and are more than 1.5 m in length, with a high degree of position and posture accuracy. The reliability of the system can be improved by reviewing the failure events of the system caused by high radiation. A failure mode and effects analysis (FMEA) identified failure modes and determined that lubricants, O-rings, and electric insulation cables were the dominant components affecting radiation hardness. Accordingly, we tried to optimize the lubricants and cables of the AC servo motors by using polyphenyl ether (PPE)-based grease and polyether ether ketone (PEEK), respectively. Materials containing radiation protective agents were also selected for the cable sheaths and O-rings to improve radiation hardness. Gamma ray irradiation tests were performed on these components and as a result, a radiation hardness of 8 MGy was achieved for the AC servo motors. On the other hand, to develop the radiation hardness and BRHS compatibility furthermore, the improvement of materials of cable and O ring were performed.

  5. US ITER limiter module design

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.; Hassanein, A.

    1996-08-01

    The recent U.S. effort on the ITER (International Thermonuclear Experimental Reactor) shield has been focused on the limiter module design. This is a multi-disciplinary effort that covers design layout, fabrication, thermal hydraulics, materials evaluation, thermo- mechanical response, and predicted response during off-normal events. The results of design analyses are presented. Conclusions and recommendations are also presented concerning, the capability of the limiter modules to meet performance goals and to be fabricated within design specifications using existing technology

  6. Qualification Test for Korean Mockups of ITER Blanket First Wall

    International Nuclear Information System (INIS)

    Kim, S. K.; Lee, D. W.; Bae, Y. D.; Hong, B. G.; Jung, H. K.; Jung, Y. I.; Park, J. Y.; Jeong, Y. H.; Choi, B. K.; Kim, B. Y.

    2009-01-01

    ITER First Wall (FW) includes the beryllium armor tiles joined to CuCrZr heat sink with stainless steel cooling tubes. This first wall panels are one of the critical components in the ITER machine with the surface heat flux of 0.5 MW/m 2 or above. So qualification program needs to be performed with the goal to qualify the joining technologies required for the ITER First Wall. Based on the results of tests, the acceptance of the developed joining technologies will be established. The results of this qualification test will affect the final selection of the manufacturers for the ITER First Wall

  7. Development of the Water Cooled Ceramic Breeder Test Blanket Module in Japan

    International Nuclear Information System (INIS)

    Enoeda, Mikio; Tanigawa, Hisashi; Hirose, Takanori; Suzuki, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Ezato, Koichiro; Seki, Yohji; Yoshikawa, Akira; Tsuru, Daigo; Akiba, Masato

    2012-01-01

    The development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and evaluation toward DEMO blanket, the module fabrication technology development by a candidate structural material, reduced activation martensitic/ferritic steel, F82H, is one of the most critical items from the viewpoint of realization of TBM testing in ITER. In Japan, fabrication of a real scale first wall, side walls, a breeder pebble bed box and assembling of the first wall and side walls have succeeded. Recently, the real scale partial mockup of the back wall was fabricated. The fabrication procedure of the back wall, whose thickness is up to 90 mm, was confirmed toward the fabrication of the real scale back wall by F82H. Important key technologies are almost clarified for the fabrication of the real scale TBM module mockup. From the view point of testing and evaluation, development of the technology of the blanket tritium recovery, development of advanced breeder and multiplier pebbles and the development of the blanket neutronics measurement technology are also performed. Also, tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been started as the verification test of tritium production performance. This paper overviews the recent achievements of the development of the WCCB TBM in Japan.

  8. Preparation of acceptance tests and criteria for the Test Blanket Systems to be operated in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Laan, J.G. van der, E-mail: JaapG.vanderLaan@iter.org [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Cuquel, B. [AIRBUS Defence and Space S.A.S., 13115 Saint Paul Lez Durance (France); Demange, D.; Ghidersa, B.-E. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Giancarli, L.M.; Iseli, M.; Jourdan, T. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Nevière, J.-C. [Comex-Nucleaire, 13115 Saint Paul Lez Durance (France); Pascal, R.; Ring, W. [ITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • Initial guideline for acceptance testing and acceptance criteria for Test Blanket Systems in ITER. • These tests complement those required by the applicable codes and standards, and regulations. • Completion of TBS manufacture will be followed by Factory Acceptance Testing, prior to shipment. • Next steps are “Reception Inspection Tests”, and on-site pre-installation and components tests. • This guideline allows the detailing of the TBS specific test plans and their scheduling. - Abstract: This paper describes the main acceptance criteria and required acceptance tests for the components of the six Test Blanket Systems to be installed and operated in ITER. It summarizes the guide-line toward the establishment of detailed test plans for the TBS, starting from the end-product at the ITER Members factories, and to generally define the type of tests that have to be performed on the ITER site after shipment, and/or prior to the systems final commissioning phase.

  9. ITER [International Thermonuclear Experimental Reactor] shield and blanket work package report

    International Nuclear Information System (INIS)

    1988-06-01

    This report summarizes nuclear-related work in support of the US effort for the International Thermonuclear Experimental Reactor (ITER) Study. The purpose of this work was to prepare for the first international ITER workshop devoted to defining a basic ITER concept that will serve as a basis for an indepth conceptual design activity over the next 2-1/2 years. Primary tasks carried out during the past year included: design improvements of the inboard shield developed for the TIBER concept, scoping studies of a variety of tritium breeding blanket options, development of necessary design guidelines and evaluation criteria for the blanket options, further safety considerations related to nuclear components and issues regarding structural materials for an ITER device. 44 refs., 31 figs., 29 tabs

  10. Overview of the Last Progresses for the European Test Blanket Modules Projects

    International Nuclear Information System (INIS)

    Salavy, J.-F.; Rampal, G.; Boccaccini, L.V.; Meyder, R.; Neuberger, H.; Laesser, R.; Poitevin, Y.; Zmitko, M.; Rigal, E.

    2006-01-01

    The long-term objective of the EU Breeding Blankets programme is the development of DEMO breeding blankets, which shall assure tritium self-sufficiency, an economically attractive use of the heat produced inside the blankets for electricity generation and a sufficiently high shielding of the superconducting magnets for long time operation. In the short-term so-called DEMO relevant Test Blanket Modules (TBMs) of these breeder blanket concepts shall be designed, manufactured, tested, installed, commissioned and operated in ITER for first tests in a fusion environment. The Helium Cooled Lithium-Lead (HCLL) breeder blanket and the Helium Cooled Pebble Bed (HCPB) concepts are the two breeder blanket lines presently developed by the EU. The main objective of the EU test strategy related to TBMs in ITER is to provide the necessary information for the design and fabrication of breeding blankets for a future DEMO reactor. EU TBMs shall therefore use the same structural and functional materials, apply similar fabrication technologies, and test adequate processes and components. This paper gives an overview of the last progresses in terms of system design, calculations, test program, safety and R-and-D done these last two years in order to cope with the ambitious objective to introduce two EU TBM systems for day-1 of ITER operation. The engineering design of the two systems is mostly concluded and the priority is now on the development and qualification of the fabrication technologies. From calculations point of view, the last modelling efforts related to the thermal-hydraulic of the first wall, the tritium behaviour, and the box thermal and mechanical resistance in accidental conditions are presented. Last features of the TBM and cooling system designs and integration in ITER reactor are highlighted. In particular, this paper also describes the safety and licensing analyses performed for each concept to be able to include the TBM systems in the ITER preliminary safety report

  11. EU contribution to the procurement of the ITER blanket first wall

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzetto, Patrick, E-mail: Patrick.Lorenzetto@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Banetta, Stefano; Bellin, Boris [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Boireau, Bruno [AREVA NP, Centre Technique, 71200 Le Creusot (France); Bucci, Philippe [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Cicero, Tindaro [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Conchon, Denis [Atmostat, rue René Hamon 31, 94815 Villejuif Cedex (France); Dellopoulos, Georges [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Hardaker, Stephen [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Marshall, Paul [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain); Nogué, Patrice [AREVA NP, Centre Technique, 71200 Le Creusot (France); Pérez, Marcos [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Gutierrez, Leticia Ruiz [Iberdrola Ingeniería y Construcción S.A.U., Avenida Manoteras 20, 28050 Madrid (Spain); Samaniego, Fernando [Leading Enterprises SL, Pasaje de La Agüera, 39409 San Felices de Buelna (Spain); Sherlock, Paul [Amec Foster Wheeler plc, Booths Park, Chelford Road, Knutsford WA16 8QZ (United Kingdom); Zacchia, Francesco [Fusion for Energy, Torres Diagonal Litoral B3, Carrer Josep Plà 2, B-08019 Barcelona (Spain)

    2016-11-01

    Highlights: • Presentation of the blanket first wall design concept to be procured by Europe. • Presentation of the main outcome of the R&D programme with the resulting FW fabrication route. • Presentation of the ITER first wall pre-qualification programme with the results achieved so far. • Presentation of the on-going irradiation experiments. • Presentation of the EU procurement strategy. - Abstract: Fusion for Energy (F4E), the European Union’s Domestic Agency for ITER, is responsible for the procurement of about 50% of the ITER blanket first wall (FW), called normal heat flux FW. A procurement strategy has been implemented by the In-Vessel Project Team at F4E aimed at mitigating technical and commercial risks for the procurement of ITER blanket FW panels, promoting as far as possible competition among industrial partners. This procurement strategy has been supported by an extensive Research and Development (R&D) programme, implemented over more than 15 years in Europe, to develop various fabrication technologies. It includes in particular the manufacture and testing of small-scale, medium-scale mock-ups and full-scale prototypes of blanket FW panels. In this R&D programme, significant efforts have been devoted to the development of a reliable materials joining technique. Hot Isostatic Pressing was selected for the manufacture of the FW panels made from beryllium, copper–chromium–zirconium alloy and 316L(N)-IG austenitic stainless steel. This paper presents the main outcome of the on-going R&D programme, the latest results of the FW qualification programme together with the procurement strategy implemented by F4E for the supply of the European contribution to the procurement of the ITER blanket FW.

  12. EU contribution to the procurement of the ITER blanket first wall

    International Nuclear Information System (INIS)

    Lorenzetto, Patrick; Banetta, Stefano; Bellin, Boris; Boireau, Bruno; Bucci, Philippe; Cicero, Tindaro; Conchon, Denis; Dellopoulos, Georges; Hardaker, Stephen; Marshall, Paul; Nogué, Patrice; Pérez, Marcos; Gutierrez, Leticia Ruiz; Samaniego, Fernando; Sherlock, Paul; Zacchia, Francesco

    2016-01-01

    Highlights: • Presentation of the blanket first wall design concept to be procured by Europe. • Presentation of the main outcome of the R&D programme with the resulting FW fabrication route. • Presentation of the ITER first wall pre-qualification programme with the results achieved so far. • Presentation of the on-going irradiation experiments. • Presentation of the EU procurement strategy. - Abstract: Fusion for Energy (F4E), the European Union’s Domestic Agency for ITER, is responsible for the procurement of about 50% of the ITER blanket first wall (FW), called normal heat flux FW. A procurement strategy has been implemented by the In-Vessel Project Team at F4E aimed at mitigating technical and commercial risks for the procurement of ITER blanket FW panels, promoting as far as possible competition among industrial partners. This procurement strategy has been supported by an extensive Research and Development (R&D) programme, implemented over more than 15 years in Europe, to develop various fabrication technologies. It includes in particular the manufacture and testing of small-scale, medium-scale mock-ups and full-scale prototypes of blanket FW panels. In this R&D programme, significant efforts have been devoted to the development of a reliable materials joining technique. Hot Isostatic Pressing was selected for the manufacture of the FW panels made from beryllium, copper–chromium–zirconium alloy and 316L(N)-IG austenitic stainless steel. This paper presents the main outcome of the on-going R&D programme, the latest results of the FW qualification programme together with the procurement strategy implemented by F4E for the supply of the European contribution to the procurement of the ITER blanket FW.

  13. Corrosion studies of a stainless steel structure for the ITER aqueous lithium salt blanket concept

    International Nuclear Information System (INIS)

    Wrisley, K.L.; Duquette, D.J.; Steiner, D.; Motyka, E.F.; Coomer, E.D.

    1990-01-01

    The aqueous lithium salt blanket (ALSB) employs water, with a dissolved lithium compound, as both the coolant and tritium breeding medium. The ALSB concept is one of three blanket options currently being examined for breeding tritium in the International Thermonuclear Experimental Reactor (ITER). To provide data and recommendations for materials and chemistry selection relevant to application of the ALSB in ITER, corrosion studies have been initiated, focusing on type 316 stainless steel in lithium hydroxide and lithium nitrate solutions. This paper presents the preliminary results of these corrosion studies. The results to date, while preliminary, suggest that even at 90degC, a blanket utilizing 10% LiOH (the current lithium salt of choice for ITER ALSB applications) will not cause catastrophic failure of 316 stainless steel by either stress corrosion cracking or localized corrosion; that the general corrosion rate will not exceed about 40 μm/y and transport of material will certainly be much less than this value since most of the corrosion product will be included in the strong adherent surface film; and that, although hydrogen may be evolved due to electrolysis, the maximum amount of hydrogen is small compared to that expected to be produced by radiolysis. These observations are predicated on the assumption that the blanket will be completely deaerated, and that the corrosion potential of the alloy will be similar to that observed in the laboratory. (orig.)

  14. Singular point analysis during rail deployment into vacuum vessel for ITER blanket maintenance

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Shibanuma, Kiyoshi

    2007-05-01

    Remote maintenance of the ITER blanket composed of about 400 modules in the vessel is required by a maintenance robot due to high gamma radiation of ∼500Gy/h in the vessel. A concept of rail-mounted vehicle manipulator system has been developed to apply to the maintenance of the ITER blanket. The most critical issue of the vehicle manipulator system is the feasibility of the deployment of the articulated rail composed of eight rail links into the donut-shaped vessel without any driving mechanism in the rail. To solve this issue, a new driving mechanism and procedure for the rail deployment has been proposed, taking account of a repeated operation of the multi-rail links deployed in the same kinematical manner. The new driving mechanism, which is deferent from those of a usual 'articulated arm' equipped with actuator in the every joint for movement, is composed of three mechanisms. To assess the feasibility of the kinematics of the articulated rail for rail deployment, a kinematical model composed of three rail links related to a cycle of the repeated operation for rail deployment was considered. The determinant det J' of the Jacobian matrix J' was solved so as to estimate the existence of a singular point of the transformation during rail deployment. As a result, it is found that there is a singular point due to det J'=0. To avoid the singular point of the rail links, a new location of the second driving mechanism and the related rail deployment procedure are proposed. As a result of the rail deployment test based on the new proposal using a full-scale vehicle manipulator system, the respective rail links have been successfully deployed within 6 h less than the target of 8 h in the same manner of the repeated operation under a synchronized cooperation among the three driving mechanisms. It is therefore concluded that the feasibility of the rail deployment of the articulated rail composed of simple structures without any driving mechanism has been demonstrated

  15. Engineering test station for TFTR blanket module experiments

    International Nuclear Information System (INIS)

    Jassby, D.L.; Leinoff, S.

    1979-12-01

    A conceptual design has been carried out for an Engineering Test Station (ETS) which will provide structural support and utilities/instrumentation services for blanket modules positioned adjacent to the vacuum vessel of the TFTR (Tokamak Fusion Test Reactor). The ETS is supported independently from the Test Cell floor. The ETS module support platform is constructed of fiberglass to eliminate electromagnetic interaction with the pulsed tokamak fields. The ETS can hold blanket modules with dimensions up to 78 cm in width, 85 cm in height, and 105 cm in depth, and with a weight up to 4000 kg. Interfaces for all utility and instrumentation requirements are made via a shield plug in the TFTR igloo shielding. The modules are readily installed or removed by means of TFTR remote handling equipment

  16. Engineering challenges and development of the ITER Blanket System and Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Mario, E-mail: mario.merola@iter.org; Escourbiac, Frederic; Raffray, Alphonse Rene; Chappuis, Philippe; Hirai, Takeshi; Gicquel, Stefan

    2015-10-15

    The ITER Blanket System and the Divertor are the main components which directly face the plasma. Being the first physical barrier to the plasma, they have very demanding design requirements, which include accommodating: (1) surface heat flux and neutronic volumetric heating, (2) electromagnetic loads, (3) nuclear shielding function, (4) capability of being assembled and remote-handled, (5) interfaces with other in-vessel components, and (6) high heat flux technologies and complex welded structures in the design. The main functions of the Blanket System have been substantially expanded and it has now also to provide limiting surfaces that define the plasma boundary during startup and shutdown. As regards the Divertor, the ITER Council decided in November 2013 to start the ITER operation with a full-tungsten armour in order to minimize costs and already gain operational experience with tungsten during the non-active phase of the machine. This paper gives an overview of the design and technology qualification of the Blanket System and the Divertor.

  17. Study on compact design of remote handling equipment for ITER blanket maintenance

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi

    2006-03-01

    In the ITER, the neutrons created by D-T reactions activate structural materials, and thereby, the circumstance in the vacuum vessel is under intense gamma radiation field. Thus, the in-vessel components such as blanket are handled and replaced by remote handling equipment. The objective of this report is to study the compactness of the remote handling equipment (a vehicle/manipulator) for the ITER blanket maintenance. In order to avoid the interferences between the blanket and the equipment during blanket replacement in the restricted vacuum vessel, a compact design of the equipment is required. Therefore, the compact design is performed, including kinematic analyses aiming at the reduction of the sizes of the vehicle equipped with a manipulator handling the blanket and the rail for the vehicle traveling in the vacuum vessel. Major results are as follows: 1. The compact vehicle/manipulator is designed concentration on the reduction of the rail size and simplification of the guide roller mechanism as well as the reduction of the gear diameter for vehicle rotation around the rail. Height of the rail is reduced from 500 mm to 400 mm by a parameter survey for weight, stiffness and stress of the rail. The roller mechanism is divided into two simple functional mechanisms composed of rollers and a pad, that is, the rollers support relatively light loads during rail deployment and vehicle traveling while a pad supports heavy loads during blanket replacement. Regarding the rotation mechanism, the double helical gear is adopted, because it has higher contact ratio than the normal spur gear and consequently can transfer higher force. The smaller double helical gear, 996 mm in diameter, can achieve 26% higher output torque, 123.5 kN·m, than that of the original spur gear of 1,460 mm in diameter, 98 kN·m. As a result, the manipulator becomes about 30% lighter, 8 tons, than the original weight, 11.2 tons. 2. Based on the compact design of the vehicle/manipulator, the

  18. Establishment of design and fabrication technology and domestic qualification for ITER blanket system

    International Nuclear Information System (INIS)

    Hong, Bong Guen; In, S. R.; Bae, Y. D.

    2006-02-01

    To obtain and analyze the detailed design and manufacturing technology of the blanket system for each components, the related data are collected through the various sources. And also, design processes and results of the FWs, shield blocks, and TBMs are investigated. From these analysis of the blanket R and D status of each party, we develop the KO R and D plan and it is used in the selection of manufacturing method and the materials. For the ITA16-10 subtask1, we had the official agreement with ITER IT in December 2004 for the qualification of the FW panel fabrication methods and to establish the NDT methods for the FW panel. From the technical reports we published, we compare the manufacturing methods and the proposed material for each component according to the parties. Be is proposed as a plasma facing material and most parties have interest in S-65C. Cu alloy is proposed as a heat sink material and DSCu or CuCrZr are investigated now. For the structural material, stainless steel such as SS316L(N) is investigated internationally. HIP and brazing are proposed as the manufacturing methods. In order to establish the blanket system technology, design contents of shield block by ITER IT and other parties were investigated through participating the international workshop and meeting, dispatching the researcher to the ITER IT or other parties to collect the drafting and 3D modeling files. The modification items of blanket design were investigated and a researcher was dispatched in the ITER IT and participated in the analysis on cooling problem in shield block such as front header and drilled manifold. To investigate the development status of TBM, we participated the 14th TBWG meeting and proposed the KO HCSB and HCML as candidates. And also, we obtain the R and D results of other parties and make document about the R and D status of other parties for the TBM. Finally, we establish the KO TBM R and D plan and proposed it to ITER IT and other parties. In which, the

  19. Establishment of design and fabrication technology and domestic qualification for ITER blanket system

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; In, S. R.; Bae, Y. D. (and others)

    2006-02-15

    To obtain and analyze the detailed design and manufacturing technology of the blanket system for each components, the related data are collected through the various sources. And also, design processes and results of the FWs, shield blocks, and TBMs are investigated. From these analysis of the blanket R and D status of each party, we develop the KO R and D plan and it is used in the selection of manufacturing method and the materials. For the ITA16-10 subtask1, we had the official agreement with ITER IT in December 2004 for the qualification of the FW panel fabrication methods and to establish the NDT methods for the FW panel. From the technical reports we published, we compare the manufacturing methods and the proposed material for each component according to the parties. Be is proposed as a plasma facing material and most parties have interest in S-65C. Cu alloy is proposed as a heat sink material and DSCu or CuCrZr are investigated now. For the structural material, stainless steel such as SS316L(N) is investigated internationally. HIP and brazing are proposed as the manufacturing methods. In order to establish the blanket system technology, design contents of shield block by ITER IT and other parties were investigated through participating the international workshop and meeting, dispatching the researcher to the ITER IT or other parties to collect the drafting and 3D modeling files. The modification items of blanket design were investigated and a researcher was dispatched in the ITER IT and participated in the analysis on cooling problem in shield block such as front header and drilled manifold. To investigate the development status of TBM, we participated the 14th TBWG meeting and proposed the KO HCSB and HCML as candidates. And also, we obtain the R and D results of other parties and make document about the R and D status of other parties for the TBM. Finally, we establish the KO TBM R and D plan and proposed it to ITER IT and other parties. In which, the

  20. Rail deployment and storage procedure and test for ITER blanket remote maintenance

    International Nuclear Information System (INIS)

    Kakudate, S.; Shibanuma, K.

    2003-01-01

    A concept of rail-mounted vehicle manipulator system has been developed to apply to the maintenance of the ITER blanket composed of ∼400 modules in the vacuum vessel. The most critical issue of the vehicle manipulator system is the feasibility of the deployment and storage of the articulated rail, composed of eight rail links without any driving mechanism in the joints. To solve this issue, a new driving mechanism and procedure for the rail deployment and storage has been proposed, taking account of the repeated operation of the multi-rail links deployed and stored in the same kinematical manner. The new driving mechanism, which is different from those of a usual articulated manipulator or 'articulated boom' equipped with actuators in every joint for movement, is composed of three external mechanisms installed outside the articulated rail, i.e. a vehicle traveling mechanism as main driver and two auxiliary driving mechanisms. A simplified synchronized control of three driving mechanisms has also been proposed, including 'torque-limit control' for suppression of the overload of the mechanisms. These proposals have been tested using a full-scale vehicle manipulator system, in order to demonstrate the proof of principle for rail deployment and storage. As a result, the articulated rail has been successfully deployed and stored within 6 h each, less than the target of 8 h, by means of the three external driving mechanisms and the proposed synchronized control. In addition, the overload caused by an unexpected mismatch of the synchronized control of three driving mechanisms has also been successfully suppressed less than the rated torque by the proposed 'torque-limit control'. It is therefore concluded that the feasibility of the rail deployment and storage of the vehicle manipulator system has been demonstrated

  1. Mock-up test on key components of ITER blanket remote handling system

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Matsumoto, Yasuhiro; Taguchi, Koh; Kozaka, Hiroshi; Shibanuma, Kiyoshi; Tesini, Alessandro

    2009-01-01

    The maintenance operation of the ITER in-vessel component, such as a blanket and divertor, must be executed by the remote equipment because of the high gamma-ray environment. During the Engineering Design Activity (EDA), the Japan Atomic Energy Agency (then called as Japan Atomic Energy Research Institute) had been fabricated the prototype of the vehicle manipulator system for the blanket remote handling and confirmed feasibility of this system including automatic positioning of the blanket and rail deployment procedure of the articulated rail. The ITER agreement, which entered into force in the last year, formally decided that Japan will procure the blanket remote handling system and the JAEA, as the Japanese Domestic Agency, is continuing several R and Ds so that the system can be procured smoothly. The residual key issues after the EDA are rail connection and cable handling. The mock-ups of the rail connection mechanism and the cable handling system were fabricated from the last year and installed at the JAEA Naka Site in this March. The former was composed of the rail connecting mechanism, two rail segments and their handling systems. The latter one utilized a slip ring, which implemented 80 lines for power and 208 lines for signal, because there is an electrical contact between the rotating spool and the fixed base. The basic function of these systems was confirmed through the mock-up test. The rail connection mechanism, for example, could accept misalignment of 1.5-2 mm at least. The future test plan is also mentioned in the paper.

  2. APT target blanket module fabrication and characterization of prototypical assemblies

    International Nuclear Information System (INIS)

    Fisher, D.L.

    1999-01-01

    Practical aspects of producing tritium with a linear accelerator were studied recently as part of the US Department of Energy's Accelerator production of Tritium program. The concept uses the neutrons produced by an energetic accelerator beam striking target material, to convert He 3 gas to tritium. Design requirements for the modular assemblies that surround the target posed some challenges in fabrication. Small-scale modules fabricated for accelerator tests were followed by production-scale modules, built to identify preferred fabrication and assembly processes. Casting, used successfully in the small modules, displayed distinct disadvantages with production-scale parts, and was replaced by extrusion. Machining and welding were minimized, extrusion was incorporated for lead cores and aluminum housings, and the modules were assembled manually. Two prototypical production-scale blanket modules and one tritium production module were fabricated to demonstrate the recommended techniques

  3. Preliminary design of lithium lead test blanket module for the Chinese Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Liu Songlin; Bai Yunqing; Zheng Shanliang; Chen Hongli; Wang Weihua; Long Pengcheng; Wu Yican

    2007-01-01

    The Chinese Experimental Advanced Superconducting Tokamak (EAST) has been successfully constructed and has produced a discharge of plasma in x2006. It aims to achieve static-state operation of high performance D-D plasma with a long pulse of up to 1000 s and may be severed as a valuable pre-testing platform for Test Blanket Module (TBM) prior to International Thermonuclear Experimental Reactor (ITER). Based on the Chinese Dual Function Lithium Lead TBM (DFLL-TBM) design and its testing plan for ITER and EAST, a lithium lead test blanket module concept for the EAST (EAST-TBM) has been proposed as an important R and D activity and is expected to be tested in EAST focusing on electro-magnetics and thermo-mechanics performances of the TBM, including the influence of TBM made of ferromagnetic steel on tokamak plasma. This paper presents the status of EAST-TBM design, including design guideline, main features, instrumentation configuration, and installation in EAST port. The feasibility of the EAST-TBM has been validated with the preliminary performance analyses

  4. Corrosion studies of a stainless steel structure for the ITER [International Thermonuclear Experimental Reactor] aqueous lithium salt blanket concept

    International Nuclear Information System (INIS)

    Duquette, D.J.; Wrisley, K.L.; Motyka, E.; Steiner, D.; Embrechts, M.J.

    1990-03-01

    The aqueous lithium salt blanket (ALSB) employs water, with a dissolved lithium compound, as both the coolant and tritium breeding medium. The ALSB concept is one of three blanket options currently being examined for breeding tritium in the International Thermonuclear Experimental Reactor (ITER). To provide data and recommendations for materials and chemistry selection relevant to application of the ALSB in ITER, corrosion studies have been initiated, focusing on Type 316 stainless steel in lithium hydroxide and lithium nitrate solutions. This report presents the preliminary results of these corrosion studies. 4 refs., 9 figs., 1 tab

  5. The RF concept of experimental breeding module for testing in ITER

    International Nuclear Information System (INIS)

    Leshukov, A.Yu.; Kovalenko, V.G.; Poliksha, V.V.; Sviridenko, M.N.; Strizhov, A.V.; Strebkov, Yu.S.

    2006-01-01

    The development of experimental breeding modules (EBM) for testing in ITER is performed within the framework of the RF Federal government fusion program, in accordance with the decisions of the international Test Blanket Working Group (TBWG). The development and creation of EBM is a part of the RF DEMO project. The design decisions of EBM should be comprehensively tested under ITER operating conditions as the prototypes for the creation of DEMO blanket structural elements. In order to provide flexibility, the RF team has adopted the decision to develop the sub-modules concept. The detailed design description of the experimental breeding sub-modules (EBSM), including the attachment system, is presented in this paper. There are three cooling system options considered in the framework of thermal hydraulic validation of EBSM, and their comparative analysis is performed. The thermal analysis results for EBSM first wall are also presented

  6. Development of blanket remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Kakudate, Satoshi; Nakahira, Masataka; Oka, Kiyoshi; Taguchi, Kou [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets are scheduled maintenance components, including complete shield blanket replacement for breeding blankets. In-vessel components are activated by 14 MeV neutrons, so blanket maintenance requires remote handling equipment and tools able to handle heavy payloads of about 4 tons within a positioning accuracy of 2 mm under intense gamma radiation. To facilitate remote maintenance, blankets are segmented into 730 modules and rail-mounted vehicle remote maintenance was developed. According to the ITER R and D program, critical technology related to blanket maintenance was developed extensively through joint efforts of the Japan, EU, and U.S. home teams. This paper summarizes current blanket maintenance technology conducted by the Japan Home Team, including development of full-scale remote handling equipment and tools for blanket maintenance. (author)

  7. Development of pipe welding, cutting and inspection tools for the ITER blanket

    International Nuclear Information System (INIS)

    Oka, Kiyoshi; Ito, Akira; Taguchi, Kou; Takiguchi, Yuji; Takahashi, Hiroyuki; Tada, Eisuke

    1999-07-01

    In D-T burning reactors such as International Thermonuclear Experimental Reactor (ITER), an internal access welding/cutting of blanket cooling pipe with bend sections is inevitably required because of spatial constraint due to nuclear shield and available port opening space. For this purpose, internal access pipe welding/cutting/inspection tools for manifolds and branch pipes are being developed according to the agreement of the ITER R and D task (T329). A design concept of welding/cutting processing head with a flexible optical fiber has been developed and the basic feasibility studies on welding, cutting and rewelding are performed using stainless steel plate (SS316L). In the same way, a design concept of inspection head with a non-destructive inspection probe (including a leak-testing probe) has been developed and the basic characteristic tests are performed using welded stainless steel pipes. In this report, the details of welding/cutting/inspection heads for manifolds and branch pipes are described, together with the basic experiment results relating to the welding/cutting and inspection. In addition, details of a composite type optical fiber, which can transmit both the high-power YAG laser and visible rays, is described. (author)

  8. Corrosion studies of a stainless steel structure for the ITER [International Thermonuclear Experimental Reactor] aqueous lithium salt blanket concept

    International Nuclear Information System (INIS)

    Duquette, D.J.; Wrisley, K.L.; Motyka, E.; Steiner, D.; Embrechts, M.J.

    1990-10-01

    The aqueous lithium slat blanket (ALSB) employs water, with a dissolved lithium compound, as both the coolant and tritium breeding medium. The ALSB concept is one of three blanket options currently being examined for breeding tritium in the International Thermonuclear Experimental Reactor (ITER). To provide data and recommendations for materials and chemistry selection relevant to application of the ALSB in ITER, corrosion studies have been initiated, focusing on Type 316 stainless steel in lithium hydroxide and lithium nitrate solutions. This report presents the preliminary results of these corrosion studies. The results to date, while preliminary, suggest that even at 90 C, a blanket utilizing 10% LiOH (the current lithium salt of choice for ITER ALSB applications) will not cause catastrophic failure of 316 stainless steel by either stress corrosion cracking or localized corrosion; that the general corrosion rate will not exceed about 40 μm/yr and transport of material will certainly be much less than this value since most of the corrosion product will be included in the strong adherent surface film; and that, although hydrogen may be evolved due to electrolysis, the maximum amount of hydrogen is small compared to that expected to be produced by radiolysis. These observations are predicated on the assumption that the blanket will be completely deaerated, and that the corrosion potential of the alloy will be similar to that observed in the laboratory

  9. A robust helium-cooled shield/blanket design for ITER

    Science.gov (United States)

    Wong, C. P. C.; Bourque, R. F.; Baxi, C. B.; Colleraine, A. P.; Grunloh, H. J.; Letchenberg, T.; Leuer, J. A.; Reis, E. E.; Redler, K.; Will, R.

    1993-11-01

    General Atomics Fusion and Reactor Groups have completed a helium-cooled, conceptual shield/blanket design for ITER. The configuration selected is a pressurized tubes design embedded in radially oriented plates. This plate can be made from ferritic steel or from V-alloy. Helium leakage to the plasma chamber is eliminated by conservative, redundant design and proper quality control and inspection programs. High helium pressure at 18 MPa is used to reduce pressure drop and enhance heat transfer. This high gas pressure is believed practical when confined in small diameter tubes. Ample industrial experience exists for safe high gas pressure operations. Inboard shield design is highlighted in this study since the allowable void fraction is more limited. Lithium is used as the thermal contacting medium and for tritium breeding; its safety concerns are minimized by a modular, low inventory design that requires no circulation of the liquid metal for the purpose of heat removal. This design is robust, conservative, reliable, and meets all design goals and requirements. It can also be built with present-day technology.

  10. A robust helium-cooled shield/blanket design for ITER

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Bourque, R.F.; Baxi, C.B.

    1993-11-01

    General Atomics Fusion and Reactor Groups have completed a helium-cooled, conceptual shield/blanket design for ITER. The configuration selected is a pressurized tubes design embedded in radially oriented plates. This plate can be made from ferritic steel or from V-alloy. Helium leakage to the plasma chamber is eliminated by conservative, redundant design and proper quality control and inspection programs. High helium pressure at 18 MPa is used to reduce pressure drop and enhance heat transfer. This high gas pressure is believed practical when confined in small diameter tubes. Ample industrial experience exists for safe high gas pressure operations. Inboard shield design is highlighted in this study since the allowable void fraction is more limited. Lithium is used as the thermal contacting medium and for tritium breeding, its safety concerns are minimized by a modular, low inventory design that requires no circulation of the liquid metal for the purpose of heat removal. This design is robust, conservative, reliable, and meets all design goals and requirements. It can also be built with present-day technology

  11. First wall and blanket module safety enhancement by material selection and design decision

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, B.J.

    1980-01-01

    A thermal/mechanical study has been performed which illustrates the behavior of a fusion reactor first wall and blanket module during a loss of coolant flow event. The relative safety advantages of various material and design options were determined. A generalized first wall-blanket concept was developed to provide the flexibility to vary the structural material (stainless steel vs titanium), coolant (helium vs water), and breeder material (liquid lithium vs solid lithium aluminate). In addition, independent vs common first wall-blanket cooling and coupled adjacent module cooling design options were included in the study. The comparative analyses were performed using a modified thermal analysis code to handle phase change problems.

  12. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  13. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  14. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 1: Self-cooled liquid metal breeder blanket. Vol. 1

    International Nuclear Information System (INIS)

    Malang, S.; Reimann, J.; Sebening, H.; Barleon, L.; Bogusch, E.; Bojarsky, E.; Borgstedt, H.U.; Buehler, L.; Casal, V.; Deckers, H.; Feuerstein, H.; Fischer, U.; Frees, G.; Graebner, H.; John, H.; Jordan, T.; Kramer, W.; Krieg, R.; Lenhart, L.; Malang, S.; Meyder, R.; Norajitra, P.; Reimann, J.; Schwenk-Ferrero, A.; Schnauder, H.; Stieglitz, R.; Oschinski, J.; Wiegner, E.

    1991-12-01

    A self-cooled liquid metal breeder blanket for a fusion DEMO-reactor and the status of the development programme is described as a part of the European development programme of DEMO relevant test blankets for NET/ITER. Volume 1 (KfK 4907) contains a summary, Volume 2 (KfK 4908) a more detailed version of the report. Both volumes contain sections on previous studies on self-cooled liquid metal breeder blankets, the reference blanket design for a DEMO-reactor, a typical test blanket design including the ancillary loop system and the building requirements for NET/ITER together with the present status of the associated R and D-programme in the fields of neutronics, magnetohydrodynamics, tritium removal and recovery, liquid metal compatibility and purification, ancillary loop system, safety and reliability. An outlook is given regarding the required R and D-programme for the self-cooled liquid metal breeder blanket prior to tests in NET/ITER and the relevant test programme to be performed in NET/ITER. (orig.) [de

  15. Verification of dimensional stability on ITER blanket shield block after stress relieving

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sa-Woong, E-mail: swkim12@nfri.re.kr; Jung, Hun-Chea; Ha, Min-Su; Shim, Hee-Jin

    2016-11-01

    Highlights: • The SB#08 FSP were manufactured by using conventional manufacturing processes such as cutting, milling, drilling and welding. • Especially, a strong back system was adopted in order to prevent welding deformation during cover plate welding process. • Post-Welding Heat Treatment (PWHT) for stress relieving and Hot He Leak Test (HHLT) were waived from the lake of huge test facility in the pre-qualification program. • The PWHT combined with the HHLT, however, were implemented to remove the residual stress and to confirm the soundness of welded parts as an internal R&D activities after the pre-qualification program. • Three dimensional inspection also carried out after the PWHT to check the dimensional stabilization. - Abstract: The tight tolerance requirement is one of key issue to manufacture the ITER blanket shield blocks (SBs) which have many interfaces with the First Wall (FW) and Vacuum Vessel (VV). Manufactured SB shall be satisfied with general tolerances (Class “C” of ISO 2768-1 and “L” of ISO 2768-2) and specific tolerance in 2D general assembly drawings. In order to fulfill the tight tolerance requirements in the final stage of SB, stress relieving after welding operations in the manufacturing process shall be performed. Hot helium leak test, Post Welding Heat Treatment (PWHT) and three-dimensional inspection before and after heat treatment were implemented by using the Full Scale Prototype (FSP) of SB in the framework of domestic R&D activities. The hot He leak test was performed at 250 °C for 30 min, and the result was satisfied the requirements. PWHT was carried out at 400 °C for 24 h by brazing furnace with test chamber. The deformation value before and after was measured by contact type coordinate measuring machine. The objective of this study is to verify dimensional stability of SB after stress relieving. The results will support to determine the machining allowance prior to welding process.

  16. Comparison of the Tritium permeated from ITER Blanket in normal operation and its short range impact of HT over France, Swiss or Spain

    Energy Technology Data Exchange (ETDEWEB)

    Castro, P.; Velarde, M.; Ardao, J.; Perlado, J.; Sedano, L.; Xiberta, J.

    2015-07-01

    In this paper we assumes the hydrogen isotopes permeation from a liquid metal ITER breeder blanket (assuming normal operation and a LM as DCLL or HCLL blanket) as one of the possible sources of a leak and tritium release,mainly but not only. The paper presents a short range low impact of HT gas activity over France, Swiss or Spain from same cases in 2014 and 2015 releases from ITER. The permeation of hydrogen isotopes is an important experimental issue to take into account into the development of a Tritium Breeder Module for ITER [1]. Tritium cannot be confined -without an uncertainty of 5% in the flux permeation- and therefore HT can be detected (e.g. by ionization chamber) as permeates though the structure of RAFM steel towards the coolant [1]. HT from Pb15.7Li and permeated in Eurofer97 can contaminate the other parts of the system and may be delivered though the normal-vent detritiation system (NVDS). Real time forecast of transport of tritium in air from the fusion reactor towards off-site far downwind though extended tritium clouds into the low levels of the atmosphere is calculated for the short range (up to 24 hours) by the coupling of 2 models the European Centre for Medium Range Weather Forecast (ECMWF) [2] model and the FLEXPART lagrangian dispersion model [3] verified with NORMTRI simulation [4] and implemented in many different cases and scenarios [5, 6, 7]. As a function of daily weather conditions the release will affect just France or already can be delivered towards Swiss when cyclonic circulation, or towards the Iberian Peninsula or Balearic Islands (Spain) when high produce anticyclonic circulation of the air over the Mediterranean Sea. (Author)

  17. Assessment on F/W electrical cutting for reduction of electromagnetic force on the blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Kazunori; Nishio, Satoshi; Koizumi, Kouichi; Takatsu, Hideyuki [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Komatsuzaki, Manabu

    1996-07-01

    For mitigating the electromagnetic (EM) force acting on the first wall (F/W) during plasma disruption, effects of toroidally electrical cutting slits on copper heat sink of F/W have been investigated by EM analysis of the blanket module designed for the International Thermonuclear Experimental Reactor (ITER). The analytical studies include (1) effects of F/W material and its thickness on eddy current reduction, and (2) effects of number of toroidal cutting slits on copper heat sink and of gap length of the slit on the eddy current reduction in the copper heat sink. The following conclusions were obtained and the effectiveness of toroidal cutting of copper heat sink was clarified by a series of analyses; (a)A change of F/W material from copper alloy (DSCu) to SS316 decreases the eddy current and electromagnetic force on the F/W at plasma disruption. In the case of SS316, reduction effect is remarkable in the range of the thickness less than 50mm. (b)Toroidal cutting on F/W DSCu region can reduce total eddy current acting on the F/W. By increasing number of toroidal slits with 1mm gap length up to 17 (corresponding to maximum limit), about 60% of the eddy current in the F/W runs away through the SS316 support plate located at the behind of copper alloy heat sink. (author)

  18. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    International Nuclear Information System (INIS)

    Smith, D.L.; Mattas, R.F.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report

  19. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F. [comps.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  20. ITER-FEAT vacuum vessel and blanket design features and implications for the R and D programme

    International Nuclear Information System (INIS)

    Ioki, K.; Cardella, A.; Elio, F.; Onozuka, M.; Daenner, W.; Koizumi, K.; Krylov, V.

    2001-01-01

    A tight fitting configuration of the VV to the plasma aids the passive plasma vertical stability, and ferromagnetic material in the VV reduces the TF ripple. The blanket modules are supported directly by the VV. A full-scale VV sector model has provided critical information related to fabrication technology, and the magnitude of welding distortions and achievable tolerances. This R and D validated the fundamental feasibility of the double-wall VV design. The blanket module configuration consists of a shield body to which a separate first wall is mounted. The separate first wall has a facet geometry consisting of multiple flat panels, where 3-D machining will not be required. A configuration with deep slits minimizes the induced eddy currents and loads. The feasibility and the robustness of solid HIP joining was demonstrated in R and D, by manufacturing and testing several small and medium scale mock-ups and finally two prototypes. Remote handling tests and assembly tests of a blanket module have demonstrated the basic feasibility of its installation and removal. (author)

  1. Status report. KfK contribution to the development of DEMO-relevant test blankets for NET/ITER. Pt. 2: BOT helium cooled solid breeder blanket. Vol. 2

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Boccaccini, L.V.; Bojarsky, E.; Deckers, H.; Dienst, W.; Doerr, L.; Fischer, U.; Giese, H.; Guenther, E.; Haefner, H.E.; Hofmann, P.; Kappler, F.; Knitter, R.; Kuechle, M.; Moellendorf, U. von; Norajitra, P.; Penzhorn, R.D.; Reimann, G.; Reiser, H.; Schulz, B.; Schumacher, G.; Schwenk-Ferrero, A.; Sordon, G.; Tsukiyama, T.; Wedemeyer, H.; Weimar, P.; Werle, H.; Wiegner, E.; Zimmermann, H.

    1991-10-01

    The BOT (Breeder Outside Tube) Helium Cooled Solid Breeder Blanket for a fusion Demo reactor and the status of the R and D program is presented. This is the KfK contribution to the European Program for the Demo relevant test blankets to be irradiated in NET/ITER. Volume 1 (KfK 4928) contains the summary, volume 2 (KfK 4929) a more detailed version of the report. In both volumes are described the reasons for the selected design, the reference blanket design for the Demo reactor, the design of the test blanket including the ancillary systems together with the present status of the relative R and D program in the fields of neutronic and thermohydraulic calculations, of the electromagnetic forces caused by disruptions, of the development and irradiation of the ceramic breeder material, of the tritium release and recovery, and of the technological investigations. An outlook is given on the required R and D program for the BOT Helium Cooled Solid Breeder Blanket prior to tests in NET/ITER and the proposed test program in NET/ITER. (orig.) [de

  2. Development of the Helium Cooled Lithium Lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, G., E-mail: giacomo.aiello@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aubert, J.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The HCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • The new design has been developed with the aim to capitalize on TBM experience in ITER. • A new attachment system for the modules has been proposed. - Abstract: The Helium Cooled Lithium Lead (HCLL) blanket is one of the candidate European blanket concepts selected for the DEMOnstration fusion power plant that should follow ITER. In a fusion power plant, the blanket is one of the key components because of its impact on the plant performance, availability, safety and economics. In 2012, the European Fusion Development Agreement (EFDA) agency issued new specifications for DEMO: this paper describes the work performed to adapt the previous 2007 HCLL-DEMO blanket design to those specifications. A new segmentation has been defined assuming straight surfaces for all blanket modules. Following the Multi Module Segment (MMS) option, all modules are attached to a common back supporting structure which also serves as manifold for Helium and PbLi distribution. A detailed CAD design of the central outboard module has been defined. Thermo-hydraulic and thermo-mechanical analyses on of the First Wall and Breeder Zone have been carried out. For the attachment of the modules to the common backplate, a new solution based on the use of Tie Rods, derived from the design of the corresponding HCLL Test Blanket Module for ITER, has been proposed. This paper also identifies the priorities for further development of the HCLL blanket design.

  3. Concept for a vertical maintenance remote handling system for multi module blanket segments in DEMO

    International Nuclear Information System (INIS)

    Coleman, M.; Sykes, N.; Cooper, D.; Iglesias, D.; Bastow, R.; Loving, A.; Harman, J.

    2014-01-01

    Highlights: •A conceptual architectural model for a vertical maintenance DEMO is presented. •Novel concepts for a set of DEMO remote handling equipment are put forward. •Remote maintenance of a multi module segment blanket is found to be feasible. •The criticality of space in the vertical port is highlighted. -- Abstract: The anticipated high neutron flux, and the consequent damage to plasma-facing components in DEMO, results in the need to regularly replace the tritium breeding and radiation shielding blanket. The current European multi module segment (MMS) blanket concept favours a less invasive small port entry maintenance system over large sector transport concepts, because of the reduced impact on other tokamak systems – particularly the magnetic coils. This paper presents a novel conceptual remote maintenance strategy for a Vertical Maintenance Scheme DEMO, incorporating substantiated designs for an in-vessel mover, to detach and attach the blanket segments, and cask-housed vertical maintenance devices to open and close access ports, cut and join service connections, and extract blanket segments from the vessel. In addition, a conceptual architectural model for DEMO was generated to capture functional and spatial interfaces between the remote maintenance equipment and other systems. Areas of further study are identified in order to comprehensively establish the feasibility of the proposed maintenance system

  4. Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method

    Science.gov (United States)

    Hubeny, I.; Lanz, T.

    1995-01-01

    A new munerical method for computing non-Local Thermodynamic Equilibrium (non-LTE) model stellar atmospheres is presented. The method, called the hybird complete linearization/accelerated lambda iretation (CL/ALI) method, combines advantages of both its constituents. Its rate of convergence is virtually as high as for the standard CL method, while the computer time per iteration is almost as low as for the standard ALI method. The method is formulated as the standard complete lineariation, the only difference being that the radiation intensity at selected frequency points is not explicity linearized; instead, it is treated by means of the ALI approach. The scheme offers a wide spectrum of options, ranging from the full CL to the full ALI method. We deonstrate that the method works optimally if the majority of frequency points are treated in the ALI mode, while the radiation intensity at a few (typically two to 30) frequency points is explicity linearized. We show how this method can be applied to calculate metal line-blanketed non-LTE model atmospheres, by using the idea of 'superlevels' and 'superlines' introduced originally by Anderson (1989). We calculate several illustrative models taking into accont several tens of thosands of lines of Fe III to Fe IV and show that the hybrid CL/ALI method provides a robust method for calculating non-LTE line-blanketed model atmospheres for a wide range of stellar parameters. The results for individual stellar types will be presented in subsequent papers in this series.

  5. Application of beryllium as first wall armour for ITER primary, baffle and limiter modules

    International Nuclear Information System (INIS)

    Cardella, A.; Barabash, V.; Ioki, K.; Yamada, M.; Mazul, I.; Merola, M.; Strebkov, Y.

    2000-01-01

    During the engineering design activities of the ITER project, beryllium has been selected as the armour material for the first wall of the primary, baffle and limiter blanket modules. These components have different requirements according to their function, so the armour design and its joining technology has been developed in order to withstand different operating and loading conditions. Extensive R and D has been performed to develop, select and characterise the beryllium material and the joining techniques. In parallel, beryllium plasma spray coating has been developed, mainly as a possible in situ repair method for locally damaged areas. For the reduced technical objectives / reduced cost (RTO/RC) ITER project, it is proposed to maintain Be as the reference armour material and to optimise the manufacturing technologies in order to minimise costs. The paper presents the rationale of the design choices for the application of beryllium to the blanket first wall and gives an overview of the R and D performed and the results achieved. (orig.)

  6. Kinematic analysis on rail development into vacuum vessel for ITER blanket maintenance

    International Nuclear Information System (INIS)

    Kakudate, Satoshi; Shibanuma, Kiyoshi

    2006-01-01

    The vehicle manipulator system for blanket maintenance is used as a main driving mechanism for rail development, and three driving mechanisms d1, d2 (or d2') and d3 are used as cycle sequence of the repeated operations for rail development. This repeated operation can develop the articulated rail into the vacuum vessel. The rail development scenario, kinematic analysis model for rail development without any driving mechanisms in the rail joints, equations defined the angular between two rail links, identification of rail link at repeated operation, numerical analysis results on rail deployment under the forced position control of l i+1 , new rail development scenario using two driving mechanisms d1 and d2''under one cycle sequence of the repeated operations, and rail development test are reported. (S.Y.)

  7. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    Energy Technology Data Exchange (ETDEWEB)

    Igitkhanov, Yu., E-mail: juri.igitkhanov@lhm.fzk.de [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Bazylev, B.; Landman, I. [Karlsruhe Institute of Technology, IHM, Karlsruhe (Germany); Boccaccini, L. [Karlsruhe Institute of Technology, INR, Karlsruhe (Germany)

    2013-07-15

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ∼14 MW/m{sup 2}. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  8. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    Science.gov (United States)

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.

    2013-07-01

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ˜14 MW/m2. It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface.

  9. Applicability of tungsten/EUROFER blanket module for the DEMO first wall

    International Nuclear Information System (INIS)

    Igitkhanov, Yu.; Bazylev, B.; Landman, I.; Boccaccini, L.

    2013-01-01

    In this paper we analyse a sandwich-type blanket configuration of W/EUROFER for DEMO first wall under steady-state normal operation and off-normal conditions, such as vertical displacements and runaway electrons. The heat deposition and consequent erosion of the tungsten armour is modelled under condition of helium cooling of the first wall blanket module and by taking into account the conversion of the magnetic energy stored in the runaway electron current into heat through the ohmic dissipation of the return current induced in the metallic armour structure. It is shown that under steady-state DEMO operation the first wall sandwich type module will tolerate heat loads up to ∼14 MW/m 2 . It will also sustain the off-normal events, apart from the hot vertical displacement events, which will melt the tungsten armour surface

  10. HCLL TBM for ITER-design studies

    Energy Technology Data Exchange (ETDEWEB)

    Rampal, G. [CEA Saclay, DEN/DM2S, F-91191 Gif-sur-Yvette (France)]. E-mail: gilles.rampal@cea.fr; Li Puma, A. [CEA Saclay, DEN/DM2S, F-91191 Gif-sur-Yvette (France); Poitevin, Y. [CEA Saclay, DEN/DM2S, F-91191 Gif-sur-Yvette (France); Rigal, E. [CEA Grenoble, DTEN/S3ME, F-38054 Grenoble (France); Szczepanski, J. [CONCEPT-21, F-91420 Morangis (France); Boudot, C. [FRAMATOME/ANP, Centre Technique, F-71205 Le Creusot (France)

    2005-11-15

    Within the scope of the design and qualification of a helium-cooled lithium-lead (HCLL) blanket module for DEMO, test blanket modules (TBM), have to be designed and inserted in ITER for testing. Several different TBMs will be tested in order to achieve the different testing objectives, according to the ITER operating scenario. This paper aims at presenting the design status of the so-called 'integral-TBM (IN-TBM)', which will include all main features of the corresponding DEMO blanket module, such as design architectures, Eurofer structural material, functional parameters, and all relevant manufacturing processes.

  11. Comparative evaluation of structural integrity for ITER blanket shield block based on SDC-IC and ASME code

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Jin [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Ha, Min-Su, E-mail: msha12@nfri.re.kr [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Sa-Woong; Jung, Hun-Chea [ITER Korea, National Fusion Research Institute, 169-148 Gwahak-Ro, Yuseong-Gu, Daejeon (Korea, Republic of); Kim, Duck-Hoi [ITER Organization, Route de Vinon sur Verdon - CS 90046, 13067 Sant Paul Lez Durance (France)

    2016-11-01

    Highlights: • The procedure of structural integrity and fatigue assessment was described. • Case studies were performed according to both SDC-IC and ASME Sec. • III codes The conservatism of the ASME code was demonstrated. • The study only covers the specifically comparable case about fatigue usage factor. - Abstract: The ITER blanket Shield Block is a bulk structure to absorb radiation and to provide thermal shielding to vacuum vessel and external vessel components, therefore the most significant load for Shield Block is the thermal load. In the previous study, the thermo-mechanical analysis has been performed under the inductive operation as representative loading condition. And the fatigue evaluations were conducted to assure structural integrity for Shield Block according to Structural Design Criteria for In-vessel Components (SDC-IC) which provided by ITER Organization (IO) based on the code of RCC-MR. Generally, ASME code (especially, B&PV Sec. III) is widely applied for design of nuclear components, and is usually well known as more conservative than other specific codes. For the view point of the fatigue assessment, ASME code is very conservative compared with SDC-IC in terms of the reflected K{sub e} factor, design fatigue curve and other factors. Therefore, an accurate fatigue assessment comparison is needed to measure of conservatism. The purpose of this study is to provide the fatigue usage comparison resulting from the specified operating conditions shall be evaluated for Shield Block based on both SDC-IC and ASME code, and to discuss the conservatism of the results.

  12. Revisiting the analysis of passive plasma shutdown during an ex-vessel loss of coolant accident in ITER blanket

    International Nuclear Information System (INIS)

    Rivas, J.C.; Dies, J.; Fajarnés, X.

    2015-01-01

    Highlights: • We have repeated the safety analysis for the hypothesis of passive plasma shutdown for beryllium evaporation during an ex-vessel LOCA of ITER first wall, with AINA code. • We have performed a sensitivity analysis over some key parameters that represents uncertainties in physics and engineering, to identify cliff edge effects. • The obtained results for the 500 MW inductive scenario, with an ex-vessel LOCA affecting a third of first wall surface are similar to those of previous studies and point to the possibility of a passive plasma shutdown during this safety case, before a serious damage is inflicted to the ITER wall. • The sensitivity analysis revealed a new scenario potentially damaging for the first wall if we increase fusion power and time delay for impurity transport, and decrease fraction of affected first wall area and initial beryllium fraction in plasma. • After studying the 700 MW inductive scenario, with an ex-vessel LOCA affecting 10% of first wall surface, with 0.5% of Be in plasma and a time delay twice the energy confinement time, it was found that affected area of first wall would melt before a passive plasma shutdown occurs. - Abstract: In this contribution, the analysis of passive safety during an ex-vessel loss of coolant accident (LOCA) in the first wall/shield blanket of ITER has been studied with AINA safety code. In the past, this case has been studied using robust safety arguments, based on simple 0D models for plasma balance equations and 1D models for wall heat transfer. The conclusion was that, after first wall heating up due to the loss of all coolant, the beryllium evaporation in the wall surface would induce a growing impurity flux into core plasma that finally would end in a passive shut down of the discharge. The analysis of plasma-wall transients in this work is based in results from AINA code simulations. AINA (Analyses of IN vessel Accidents) code is a safety code developed at Fusion Energy Engineering

  13. Thermal analysis of a helium-cooled, tube-bank blanket module for a tandem mirror fusion reactor

    International Nuclear Information System (INIS)

    Werner, R.W.

    1983-01-01

    A blanket module concept for the central cell of a tandem mirror reactor is described which takes advantage of the excellent heat transfer and low pressure drop characteristics of tube banks in cross-flow. The blanket employs solid Li 2 O as the tritium breeding material and helium as the coolant. The lithium oxide is contained in tubes arranged within the submodules as a two-pass, cross-flow heat exchanger. Primarily, the heat transfer and thermal-hydraulic aspects of the blanket design study are described in this paper. In particular, the analytical model used for selection of the best tube-bank design parameters is discussed in some detail

  14. Handling and maintenance procedure for replaceable parts, (blanket modules and divertors) of DEMO-DN

    International Nuclear Information System (INIS)

    Gaffka, R.C.; Hopkins, M.; Lavender, K.E.; McCarthy, C.E.A.

    1987-01-01

    The task of examining the reactor relevance of the NET-DN design must include a handling and maintenance procedure for parts which require replacement since high machine availability is an important requirement for a commercial reactor. This paper considers one certain requirement for the handling and maintenance of a DEMO-DN reactor and lists the constraints imposed by following the NET-DN design. A support and handling system for the replaceable parts (blanket modules and divertors) is described and an estimate is given for the maintenance down-time. (author)

  15. Performance test of diamond-like carbon films for lubricating ITER blanket maintenance equipment under GPa-level high contact stress

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Nakahira, Masataka; Shibanuma, Kiyoshi

    2007-01-01

    Diamond-like carbon (DLC) coating was tested as a candidate solid lubricant for transmission gears of the maintenance equipment of the blanket of the ITER instead of an oil lubricant. The wear tests using the pin-on-disk method were performed on disks with SCM440 and SNCM420 as the base materials and coated with soft, layered, and hard DLCs. All cases satisfied the required allowable contact stress (2 GPa) and lifetime (10 4 cycles), and therefore the feasibility of the DLC coating was validated. Among the three types of DLCs, the soft DLC showed the best performance. (author)

  16. Melting and evaporation analysis of the first wall in a water-cooled breeding blanket module under vertical displacement event by using the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133 (Korea, Republic of)

    2017-05-15

    Highlights: • Material phase change of first wall was simulated for vertical displacement event. • An in-house first wall module was developed to simulate melting and evaporation. • Effective heat capacity method and evaporation model were proposed. • MARS code was proposed to predict two-phase phenomena in coolant channel. • Phase change simulation was performed by coupling MARS and in-house module. - Abstract: Plasma facing components of tokamak reactors such as ITER or the Korean fusion demonstration reactor (K-DEMO) can be subjected to damage by plasma instabilities. Plasma disruptions like vertical displacement event (VDE) with high heat flux, can cause melting and vaporization of plasma facing materials and burnout of coolant channels. In this study, to simulate melting and vaporization of the first wall in a water-cooled breeding blanket under VDE, one-dimensional heat equations were solved numerically by using an in-house first wall module, including phase change models, effective heat capacity method, and evaporation model. For thermal-hydraulics, the in-house first wall analysis module was coupled with the nuclear reactor safety analysis code, MARS, to take advantage of its prediction capability for two-phase flow and critical heat flux (CHF) occurrence. The first wall was proposed for simulation according to the conceptual design of the K-DEMO, and the heat flux of plasma disruption with a value of 600 MW/m{sup 2} for 0.1 s was applied. The phase change simulation results were analyzed in terms of the melting and evaporation thicknesses and the occurrence of CHF. The thermal integrity of the blanket first wall is discussed to confirm whether the structural material melts for the given conditions.

  17. Multiple Module Simulation of Water Cooled Breeding Blankets in K-DEMO Using Thermal-Hydraulic Analysis Code MARS-KS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun; Park, Goon-Cherl; Cho, Hyoung-Kyu [Seoul National University, Seoul (Korea, Republic of); Im, Kihak [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    A preliminary concept for the Korean fusion demonstration reactor (K-DEMO) has been studied by the National Fusion Research Institute (NFRI) based on the National Fusion Roadmap of Korea. The feasibility studies have been performed in order to establish the conceptual design guidelines of the breeding blanket. As a part of the NFRI research, Seoul National University (SNU) is conducting thermal design, evaluation and validation of the water-cooled breeding blanket for the K-DEMO reactor. The purpose of this study is to extend the capability of MARS-KS to the overall blanket system analysis which includes 736 blanket modules in total. The strategy for the multi-module blanket system analysis using MARS-KS is introduced and the analysis result of the 46 blanket modules of single sector was summarized. A thermal-hydraulic analysis code for a nuclear reactor safety, MARS-KS, was applied for thermal analysis of the conceptual design of the K-DEMO breeding blanket. Then, a methodology to simulate multiple blanket modules was proposed, which uses a supervisor program to handle each blanket module individually at first and then distribute the flow rate considering the pressure drop that occurs in each module. For a feasibility test of the proposed methodology, 46 blankets in a sector, which are connected with each other through the common headers for the sector inlet and outlet, were simulated. The calculation results of flow rates, pressure drops, and temperatures showed the validity of the calculation. Because of parallelization using the MPI system, the computational time could be reduced significantly. In future, this methodology will be extended to an efficient simulation of multiple sectors, and further validation for transient simulation will be carried out for more practical applications.

  18. Engineering structure design and fabrication process of small sized China helium-cooled solid breeder test blanket module

    International Nuclear Information System (INIS)

    Wang Zeming; Chen Lu; Hu Gang

    2014-01-01

    Preliminary design and analysis for china helium-cooled solid breeder (CHHC-SB) test blanket module (TBM) have been carried out recently. As partial verification that the original size module was reasonable and the development process was feasible, fabrication work of a small sized module was to be carried out targetedly. In this paper, detailed design and structure analysis of small sized TBM was carried out based on preliminary design work, fabrication process and integrated assembly process was proposed, so a fabrication for the trial engineering of TBM was layed successfully. (authors)

  19. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  20. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    International Nuclear Information System (INIS)

    Ulrickson, M.A.; Manly, W.D.; Dombrowski, D.E.

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers

  1. Activity inventories and decay heat calculations for a DEMO with HCPB and HCLL blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Stankunas, Gediminas, E-mail: gediminas.stankunas@lei.lt [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos Str. 3, LT-44403 Kaunas (Lithuania); Tidikas, Andrius [Lithuanian Energy Institute, Laboratory of Nuclear Installation Safety, Breslaujos Str. 3, LT-44403 Kaunas (Lithuania); Pereslavstev, Pavel [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Catalán, Juan; García, Raquel; Ogando, Francisco [Departamento de Ingeniería Energética, UNED, 28040 Madrid (Spain); Fischer, Ulrich [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • The afterheat and activity inventories were calculated for Eurofer steel which is the reference structural material for DEMO. • The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short and longer cooling times. • The comparison calculations were performed for a single outboard blanket module of the HCLL DEMO assuming High-Temperature Ferritic–Martensitic (HT-FM) steel and SS-316 (LN) as structural material. - Abstract: Activation inventories, decay heat and radiation doses are important nuclear quantities which need to be assessed on a reliable basis for the safe operation of a fusion nuclear power reactor. The afterheat and activity inventories were shown to be dominated by the Eurofer steel which is the reference structural material for DEMO. The decay heat for the HCPB DEMO was found to be larger than for the HCLL both for short (a few days) and longer (more than a year) cooling times. As for the alternative steels, the induced radioactivity was turned out to be lowest for the SS-316 until about 200 years after shut-down. Afterwards, the activity level of SS-316 steel was found to be the highest. For these times, the activity of both Eurofer and the HT-FM steel is about one order of magnitude lower.

  2. Numerical Analysis for Heat transfer characteristic of Helium cooling system in Helium cooled ceramic reflector Test Module Blanket (HCCR-TBM)

    International Nuclear Information System (INIS)

    Park, Seong Dae; Lee, Dong Won; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Kim, Suk Kwon; Cho, Seungyon

    2015-01-01

    The main objectives of ITER project can be summarized into three types as follows - Plasma operation for a long time - Large tokamak device technology - Test blanket module (TBM) installation and verification The thermal-hydraulic analysis was performed in the He cooling channel in the BZ region of the HCCR TBM. The maximum temperature in the breeder material is equal to the limit temperature in the present design cooling channel. Nuclear fusion energy has advantage in terms of safety, resource availability, cost and waste management. There is not enough experimental results about the fusion reactor due to the severe experiments restrictions like vacuum environment, plasma production and significant nuclear heating at the same time. Much research and time is required for the commercial fusion reactor. For technical verification against the commercialization of fusion reactor, 7 countries which are EU, USA, Japan, Russia, China, India, and South Korea are building an ITER in the south of France. New designed cooling channels were proposed to improve the cooling performance. The swirl flow accelerates the mixture flow in the channels

  3. Overview of design and R and D of test blankets in Japan

    International Nuclear Information System (INIS)

    Enoeda, Mikio; Akiba, Masato; Tanaka, Satoru; Shimizu, Akihiko; Hasegawa, Akira; Konishi, Satoshi; Kimura, Akihiko; Kohyama, Akira; Sagara, Akio; Muroga, Takeo

    2006-01-01

    Japan is performing design and technology developments for the purpose of module testing and contribution to the module development and testing under the framework of Test Blanket Working Group (TBWG) with involvements of all of Japan Atomic Energy Research Institute (JAERI) and universities and National Institute for Fusion Science (NIFS). As the primary blanket option, solid breeder test blanket modules (TBMs) with reduced activation ferritic steel structure is being developed and proposed to be delivered on the first day of ITER operation, mainly by JAERI. As for the advanced blanket options, mainly universities and NIFS have been performing R and D of key technologies and design concept development of solid breeder blanket test article made of SiC composite contained inside the ferritic steel box, liquid LiPb breeder blanket TBM cooled by helium and its dual-coolant option, liquid Li self-cooled blanket TBM and molten salt self-cooled TBM. In all necessary fields of the development of the primary blanket option, the element technology development phase has been almost completed and is now stepping further to the engineering test phase. The development of advanced test blankets is also showing steady progress to overcome key issues toward module testing

  4. A 2D Finite Element Modelling of Tritium Permeation Through Cooling Plates for The HCLL DEMO Blanket Module

    International Nuclear Information System (INIS)

    Gabriel, F.; Escuriol, Y.; Dabbene, F.; Salavy, J.F.; Giancarli, L.; Gastaldi, O.

    2006-01-01

    As the Tritium self sufficiency is one of the major challenges for fusion reactor, breeding blankets represent one of the major technological breakthroughs required from passing from ITER to the next step reactor, usually called DEMO. One of the two blanket concepts developed in the EU is the Helium Cooled Lithium Lead (HCLL) blanket which uses the eutectic Pb-15.7Li metal liquid as both breeder and neutron multiplier. The structures, made of EUROFER, a low activation ferritic martensitic steel, are cooled by pressurized helium at 8 MPa and inlet/outlet temperature 300/500 o C. In this concept, the LiPb is fed from the top of the blanket and distributed in parallel vertical channels among pairs of cells (one cell for the radial movement towards the plasma, the other for the return). The liquid metal fills the in-box volume and is slowly re-circulated (few mm per seconds) to remove the produced tritium. In this paper, a local finite element modelling of the tritium permeation rate through the HCLL breeder unit cooling plates is presented. The tritium concentration in the helium circuit and remaining in the lithium lead circuit are evaluated by solving partial differential equations governing the tritium concentration balance, the thermal field and the lithium lead velocity field for a simplified 2D geometrical representation of the breeder unit. This allows estimating the sensitivity effect of coupling these different equations in order to deduce a relevant but simplified modelling for tritium permeation. This is to compare with tritium inventories studies, were the tritium permeation rate is estimated using simplified analytical modelling which generally leads to over estimate the tritium permeation rate to the coolant and so has strong influence on the coolant purification plant design. The finite element modelling performed shows that the Tritium permeation is considerable lower than the one obtained in previous estimations where nominal values of the governing

  5. Low activation steels welding with PWHT and coating for ITER test blanket modules and DEMO

    International Nuclear Information System (INIS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2011-01-01

    EUROFER weldability is investigated in support of the European material properties database and TBM manufacturing. Electron Beam, Hybrid, laser and narrow gap TIG processes have been carried out on the EUROFER-97 steel (thickness up to 40 mm), a reduced activation ferritic-martensitic steel developed in Europe. These welding processes produce similar welding results with high joint coefficients and are well adapted for minimizing residual distortions. The fusion zones are typically composed of martensite laths, with small grain sizes. In the heat-affected zones, martensite grains contain carbide precipitates. High hardness values are measured in all these zones that if not tempered would degrade toughness and creep resistance. PWHT developments have driven to a one-step PWHT (750 o C/3 h), successfully applied to joints restoring good material performances. It will produce less distortion levels than a full austenitization PWHT process, not really applicable to a complex welded structure such as the TBM. Different tungsten coatings have been successfully processed on EUROFER material. It has shown no really effect on the EUROFER base material microstructure.

  6. Low activation steels welding with PWHT and coating for ITER Test Blanket Modules and DEMO

    International Nuclear Information System (INIS)

    Aubert, P.; Tavassoli, F.; Rieth, M.; Diegele, E.; Poitevin, Y.

    2009-01-01

    Eurofer weldability is established for data base assessment and TBM manufacturing support. Electron Beam, Hybrid (Laser combined with MIG/MAG), Laser and Narrow Gap TIG processes have been carried out on Eurofer Low activation steel. Electron Beam produces very narrow fusion zone width, in the range of 3 to 4 mm, and too strong enhanced weld shape with brittle joints with δ-ferrite and pores. This process is considered only for low penetration depth (cooling plates). The other processes produce 2 families of similar results: one for Hybrid (MIG + Laser) and Laser processes, and a second one for TIG and Narrow Gap TIG processes. The first one procures less distortion and coarsened fusion zone, due to higher cooling rate. For all the welding processes, high hardness values, increasing brittleness and softening effects in the Heat Affected Zone are observed for each welding configuration that could signal creep problems. The Fusion Zones are typically composed of martensite laths, with small grain sizes. In the Heat Affected Zones, martensite grains are observed with carbide precipitation. Eurofer filler wire with optimized chemical composition is developed for producing welds with good properties and high joint coefficient value. To restore mechanical properties after welding, PWHT have been developed: single step for the first family and 2 steps for the second one. Distortions of different mock-ups with and without PWHT have been managed to assess manufacturing rules and clamping devices. Welding data base has thus been established. W coating on the TBM structure has shown no strong effect on the TBM structure. (author)

  7. Test module in NET for a self-cooled liquid metal blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Arheidt, K.; Fischer, U.

    1989-01-01

    The application of a self-cooled liquid metal blanket concept to the condition of a DEMO-reactor and its testing in NET is described. The neutronics analysis shows that tritium self-sufficiency can be achieved without beryllium multiplier if breeding blankets are arranged at both outboard and inboard side of the torus or, using beryllium as multiplier, with outboard breeding only. First estimates indicate that it should be possible to test all relevant features of the concept in one of the horizontal plug positions of NET. (author). 6 refs.; 7 figs.; 1 tab

  8. HHF test with 80x80x1 Be/Cu/SS Mock-ups for verifying the joining technology of the ITER blanket First Wall

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Bae, Young Dug; Kim, Suk Kwon; Hong, Bong Guen; Jeong, Yong Hwan; Park, Jeong Yong; Choi, Byung Kwon; Jung, Hyun Kyu

    2008-11-15

    Through the fabrication of the Cu/SS and Be/Cu joint specimens, fabrication procedure such as material preparation, canning, degassing, HIP (Hot Isostatic Pressing), PHHT (Post HIP heat treatment) was established. The HIP conditions (1050 .deg. C, 100 MPa 2 hr for Cu/SS, 580 .deg. C 100 MPa 2 hr for Be/Cu) were developed through the investigation on joint specimen fabricated with the various HIP conditions; the destructive tests of joint include the microstructure observation of the interface with the examination of the elemental distribution, tension test, bend test, Charpy impact test and fracture toughness test. However, since the joint should be tested under the High Heat Flux (HHF) conditions like the ITER operation for verifying its joint integrity, several HHF tests were performed like the previous HHF test with the Cu/SS, Be/Cu, Be/Cu/SS Mock-ups. In the present study, the HHF test with Be/Cu/SS Mock-ups, which have 80 mm x 80 mm single Be tile and each material depths were kept to be the same as the ITER blanket FW. The Mock-ups fabricated with three kinds of interlayers such as Cr/Ti/Cu, Ti/Cr/Cu, Ti/Cu, which were different from the developed interlayer (Cr/Cu), total 6 Mock-ups were fabricated. Preliminary analysis were performed to decide the test conditions; they were tested with up to 2.5 MW/m2 of heat fluxes and 20 cycles for each Mock-up in a given heat flux. They were tested with JUDITH-1 at FZJ in Germany. During tests, all Mock-ups showed delamination or full detachment of Be tile and it can be concluded that the joints with these interlayers have a bad joining but it can be used as a good data for developing the Be/Cu joint with HIP.

  9. Iter

    Science.gov (United States)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  10. Use of Nuclear Data Sensitivity and Uncertainty Analysis for the Design Preparation of the HCLL Breeder Blanket Mockup Experiment for ITER

    Directory of Open Access Journals (Sweden)

    I. Kodeli

    2008-01-01

    Full Text Available An experiment on a mockup of the test blanket module based on helium-cooled lithium lead (HCLL concept will be performed in 2008 in the Frascati Neutron Generator (FNG in order to study neutronics characteristics of the module and the accuracy of the computational tools. With the objective to prepare and optimise the design of the mockup in the sense to provide maximum information on the state-of-the-art of the cross-section data the mockup was pre-analysed using the deterministic codes for the sensitivity/uncertainty analysis. The neutron fluxes and tritium production rate (TPR, their sensitivity to the underlying basic cross-sections, as well as the corresponding uncertainties were calculated using the deterministic transport codes (DOORS package, the sensitivity/uncertainty code package SUSD3D, and the VITAMINJ/ COVA covariance matrix libraries. The cross-section reactions with largest contribution to the uncertainty of the calculated TPR were identified to be (n,2n and (n,3n reactions on lead. The conclusions of this work support the main benchmark design and suggest some modifications and improvements. In particular this study recommends the use, as far as possible, of both natural and enriched lithium pellets for the TRP measurements. The combined use is expected to provide additional and complementary information on the sensitive cross-sections.

  11. Thermal-hydraulic design and analysis of helium cooled solid breeder blanket for Chinese Fusion Engineering Test Reactor

    International Nuclear Information System (INIS)

    Chen Hongli; Ye Miuyou; Li Min; Lv Zkongliang; Zhou Guangming; Liu Qiaiiwen; Wang Shuai

    2014-01-01

    To bridge the gap between ITER and DEMO and to realize the fusion energy in China, a fusion device Chinese Fusion Engineering Test Reactor (CFETR) was proposed and being designed aiming at 50-200 MW fusion power, 30-50% duty time factor, and tritium self-sustained. Three kinds of tritium breeding blanket concepts, including helium-cooled solid blanket, water-cooled solid blanket and liquid metal-cooled liquid blanket, have been considered for CFETR. Compared to ITER test blanket module, the blanket design for CFETR is facing much more challenges due to the compulsive requirements of tritium self-sufficiency, nuclear heat removal and the space limitation for blanket installation. In this paper, a kind of helium cooled solid tritium breeder blanket was designed for CFETR full superconducting tokamak. The thermal-hydraulic designs were carried out based on the blanket structure design and neutronics calculation. The performance evaluation was conducted using ANSYS, and three-dimensional fluid-solid coupled models were modeled for the accuracy results. The results showed that the FW and BU can satisfy the design requirements. (author)

  12. Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Aubert, J. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, R. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy); Li Puma, A. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Tincani, A. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy)

    2015-10-15

    Highlights: • A DEMO WCLL blanket module thermo-mechanical behaviour has been investigated. • Two models of the WCLL blanket module have been set-up adopting a code based on FEM. • The water flow domain in the module has been considered. • A set of uncoupled steady state thermo-mechanical analyses has been carried out. • Critical temperature is not overcome. Safety verifications are generally satisfied. - Abstract: Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical–computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal–radial slices of the WCLL blanket module, have been set up. A particular attention has been paid to the modelling of water flow domain, within both the segment box channels and the breeder zone tubes, to simulate realistically the coolant-box thermal coupling. Results obtained are herewith reported and critically discussed.

  13. Initial meetings of the re-established Test Blanket Working Group

    International Nuclear Information System (INIS)

    Giancarli, L.

    2004-01-01

    The ITER Test Blanket Working Group (TBWG) was first established in 1995. Its activities covered successively the final part of the ITER EDA and the extension period, the main results being a preliminary assessment of the breeding blanket testing capabilities of ITER and a proposal of a coherent test blanket programme, reported in 2001, that optimized the sharing of the three available testing ports between the three Parties present in 2001 (EU, JA and RF) taking into account the different coolant characteristics. The TBWG was re-established by the ITER Interim Project Leader in September 2003, with the support of the Participant Team Leaders. It is now comprised of four members from the ITER International Team and up to three members from each of the six ITER Participant Teams. The International Team delegation is led by Dr. V. Chuyanov, who has also been appointed as TBWG Co-Chair, while the six Participant Team delegations are led by Prof. M. Abdou (US), Dr. M. Akiba (JA), Dr. A. Cardella (EU), Dr. B.G. Hong (KO), Dr. C. Pan (CN) and Dr.Y. Strebkov (RF). The revised TBWG charter defines the four missions of the activities: i) provide the Design Description Document (DDD) of the Test Blanket Module (TBM) systems proposed by the participants, including the description of the interfaces with the main ITER machine, ii) promote cooperation among participants on the associated R and D programmes, iii) verify the integration of TBM testing in ITER site safety and environmental evaluations, and finally, iv) develop and propose coordinated TBM test programmes taking into account ITER operation planning. TBMs have to be representative of the breeding blanket for DEMO (the next reactor after ITER), capable of ensuring tritium-breeding self-sufficiency and of accommodating high-grade coolants for electricity production

  14. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    International Nuclear Information System (INIS)

    Hughes, D.J.; Koukovini-Platia, E.; Heeley, E.L.

    2014-01-01

    Highlights: • Residual stresses were determined in a welded EUROFER blanket assembly with integrated cooling channels. • Good agreement was seen between experimentally determined and predicted stresses. • We show that microstructure changes that occur in EUROFER steels during welding must be considered for residual stress determination. • An experimental route is proposed for validation of predicted stresses in reactor components using non-destructive diffraction techniques. - Abstract: Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications

  15. Residual stress in a laser welded EUROFER blanket module assembly using non-destructive neutron diffraction techniques

    CERN Document Server

    Hughes, D J; Heeley, E L

    2014-01-01

    Whilst the structural integrity and lifetime considerations in welded joints for blanket modules can be predicted using finite element software, it is essential to prove the validity of these simulations. This paper provides detailed analysis for the first time, of the residual stress state in a laser-welded sample with integral cooling channels. State-of-the-art non-destructive neutron diffraction was employed to determine the triaxial stress state and to understand microstructural changes around the heat affected zone. Synchrotron X-ray diffraction was used to probe the variation of strain-free lattice reference parameter around the weld zone allowing correction of the neutron measurements. This paper details an important experimental route to validation of predicted stresses in complex safety-critical reactor components for future applications.

  16. Fusion blanket design and optimization techniques

    International Nuclear Information System (INIS)

    Gohar, Y.

    2005-01-01

    In fusion reactors, the blanket design and its characteristics have a major impact on the reactor performance, size, and economics. The selection and arrangement of the blanket materials, dimensions of the different blanket zones, and different requirements of the selected materials for a satisfactory performance are the main parameters, which define the blanket performance. These parameters translate to a large number of variables and design constraints, which need to be simultaneously considered in the blanket design process. This represents a major design challenge because of the lack of a comprehensive design tool capable of considering all these variables to define the optimum blanket design and satisfying all the design constraints for the adopted figure of merit and the blanket design criteria. The blanket design techniques of the First Wall/Blanket/Shield Design and Optimization System (BSDOS) have been developed to overcome this difficulty and to provide the state-of-the-art techniques and tools for performing blanket design and analysis. This report describes some of the BSDOS techniques and demonstrates its use. In addition, the use of the optimization technique of the BSDOS can result in a significant blanket performance enhancement and cost saving for the reactor design under consideration. In this report, examples are presented, which utilize an earlier version of the ITER solid breeder blanket design and a high power density self-cooled lithium blanket design for demonstrating some of the BSDOS blanket design techniques

  17. Design status and development strategy of China liquid lithium-lead blankets and related material technology

    Science.gov (United States)

    Wu, Y.; FDS Team

    2007-08-01

    A series of fusion reactors (named FDS series) have been designed and assessed in China, with four types of liquid lithium lead blankets including the RAFM steel-structured He-cooled quasi-static LiPb tritium breeder (SLL) blanket, the RAFM steel-structured He-LiPb dual-cooled (DLL) blanket, the RAFM steel-structured refractory material thermally-insulated high temperature LiPb (HTL) hydrogen production blanket and the RAFM steel or optionally the austenitic stainless steel-structured He-LiPb dual-cooled high level waste transmutation (DWT) blanket. To demonstrate and validate the feasibility of the candidate blankets for fusion energy application, the three-phases-strategy of TBM (test blanket module) development, i.e. material R&D and out-of-pile experimental mockup, EAST-TBM and ITER-TBM have been proposed. A brief overview of the four types of LiPb blanket designs and their goals are given. Material technology requirement and development strategy are also presented in this paper.

  18. Iterated Mellin-Barnes integrals as period on the Calabi-Yau manifolds with several modules

    International Nuclear Information System (INIS)

    Passare, M.; Tsikh, A.K.; Cheshel', A.A.

    1996-01-01

    In superstring compactification theory the representation of periods on the Calabi-Yau manifolds with several modules is given by iterated Mellin-Barnes integrals. By using this representation and multidimensional residues a method of analytic continuation for fundamental period in terms of Gorn series is developed

  19. Updated conceptual design of helium cooling ceramic blanket for HCCB-DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Suhao [University of Science and Technology of China, Hefei, Anhui (China); Southwestern Institute of Physics, Chengdu, Sichuan (China); Cao, Qixiang; Wu, Xinghua; Wang, Xiaoyu; Zhang, Guoshu [Southwestern Institute of Physics, Chengdu, Sichuan (China); Feng, Kaiming, E-mail: fengkm@swip.ac.cn [Southwestern Institute of Physics, Chengdu, Sichuan (China)

    2016-11-15

    Highlights: • An updated design of Helium Cooled Ceramic breeder Blanket (HCCB) for HCCB-DEMO is proposed in this paper. • The Breeder Unit is transformed to TBM-like sub-modules, with double “banana” shape tritium breeder. Each sub-module is inserted in space formed by Stiffen Grids (SGs). • The performance analysis is performed based on the R&D development of material, fabrication technology and safety assessment in CN ITER TBM program. • Hot spots will be located at the FW bend side. - Abstract: The basic definition of the HCCB-DEMO plant and preliminary blanket designed by Southwestern Institution of Physics was proposed in 2009. The DEMO fusion power is 2550 MW and electric power is 800 MW. Based on development of R&D in breeding blanket, a conceptual design of helium cooled blanket with ceramic breeder in HCCB-DEMO was presented. The main design features of the HCCB-DEMO blanket were: (1) CLF-1 structure materials, Be multiplier and Li{sub 4}SiO{sub 4} breeder; (2) neutronic wall load is 2.3 MW/m{sup 2} and surface heat flux is 0.43 MW/m{sup 2} (2) TBR ≈ 1.15; (3) geometry of breeding units is ITER TBM-like segmentation; (4)Pressure of helium is 8 MPa and inlet/outlet temperature is 300/500 °C. On the basis of these design, some important analytical results are presented in aspects of (i) neutronic behavior of the blanket; (ii) design of 3D structure and thermal-hydraulic lay-out for breeding blanket module; (iii) structural-mechanical behavior of the blanket under pressurization. All of these assessments proved current stucture fulfill the design requirements.

  20. Contact dose rates and relevant radioactive inventory in ITER TBM systems

    International Nuclear Information System (INIS)

    Zucchetti, M.; Guerrini, L.; Poitevin, Y.; Ricapito, I.; Zmitko, M.

    2011-01-01

    The determination of the radioactive inventory and of the contact dose rates in the different ITER Test Blanket Modules systems is carried out, both for Helium-Cooled Lithium-Lead (HCLL) concept and the Helium-Cooled Pebble-Bed (HCPB) concept. The evaluations have been carried out by means of the MICROSHIELD code, starting from the data on the neutron-induced radioactivity in the blanket materials, already available for both the blanket modules. The possible sources of radioactive material in all the systems have been individuated and their contributes estimated.

  1. Contact dose rates and relevant radioactive inventory in ITER TBM systems

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetti, M., E-mail: massimo.zucchetti@polito.it [EURATOM/ENEA Fusion Association Politecnico di Torino, Torino (Italy); Guerrini, L., E-mail: Laurent.Guerrini@f4e.europa.eu [Fusion for Energy, ITER Department, Test Blanket Modules Group, Barcelona (Spain); Poitevin, Y.; Ricapito, I.; Zmitko, M. [Fusion for Energy, ITER Department, Test Blanket Modules Group, Barcelona (Spain)

    2011-10-15

    The determination of the radioactive inventory and of the contact dose rates in the different ITER Test Blanket Modules systems is carried out, both for Helium-Cooled Lithium-Lead (HCLL) concept and the Helium-Cooled Pebble-Bed (HCPB) concept. The evaluations have been carried out by means of the MICROSHIELD code, starting from the data on the neutron-induced radioactivity in the blanket materials, already available for both the blanket modules. The possible sources of radioactive material in all the systems have been individuated and their contributes estimated.

  2. An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR

    Science.gov (United States)

    Yu, Guanying; Liu, Xufeng; Liu, Songlin

    2016-10-01

    The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)

  3. On the optimization of the first wall of the DEMO water-cooled lithium lead outboard breeding blanket equatorial module

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A., E-mail: pietroalessandro.dimaio@unipa.it; Arena, P.; Bongiovì, G.; Chiovaro, P.; Forte, R.; Garitta, S.

    2016-11-01

    Highlights: • The geometric optimization of the DEMO WCLL blanket module first wall has been performed, maximizing the heat flux it may safely undergo. • Attention has been focused on the FW flat concept endowed with square cooling channels. • A theoretical-computational approach based on the finite element method (FEM) has been followed, adopting a qualified commercial FEM code. • Four optimized FW configurations have been found to safely withstand a heat flux up to 2 MW/m{sup 2} fulfilling all the rules prescribed by safety codes. - Abstract: Within the framework of EUROfusion R&D activities a research campaign has been carried out at the University of Palermo in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead (WCLL) breeding blanket first wall (FW). The research campaign has been mainly focused on the optimization of the FW geometric configuration in order to maximize the heat flux it may safely withstand fulfilling all the thermal, hydraulic and mechanical requirements foreseen by safety codes. Attention has been focused on the FW flat concept endowed with square cooling channels and the potential influence of its four main geometrical parameters on its thermo-mechanical performances has been assessed performing a parametric analysis by means of a qualified commercial finite element method code. A set of 5929 different FW geometric configurations has been considered and the thermal performances of each one of them have been numerically assessed in case it undergoes 26 different values of heat flux on its plasma-facing surface. The resulting 154154 thermal analyses have allowed to select those cases fulfilling the adopted thermal-hydraulic requirements, whose thermo-mechanical performances have been numerically assessed under both normal operation and over-pressurization steady state loading scenarios to check whether they met the mechanical requirements prescribed by the pertaining SDC-IC safety rules. Four

  4. On the optimization of the first wall of the DEMO water-cooled lithium lead outboard breeding blanket equatorial module

    International Nuclear Information System (INIS)

    Di Maio, P.A.; Arena, P.; Bongiovì, G.; Chiovaro, P.; Forte, R.; Garitta, S.

    2016-01-01

    Highlights: • The geometric optimization of the DEMO WCLL blanket module first wall has been performed, maximizing the heat flux it may safely undergo. • Attention has been focused on the FW flat concept endowed with square cooling channels. • A theoretical-computational approach based on the finite element method (FEM) has been followed, adopting a qualified commercial FEM code. • Four optimized FW configurations have been found to safely withstand a heat flux up to 2 MW/m 2 fulfilling all the rules prescribed by safety codes. - Abstract: Within the framework of EUROfusion R&D activities a research campaign has been carried out at the University of Palermo in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead (WCLL) breeding blanket first wall (FW). The research campaign has been mainly focused on the optimization of the FW geometric configuration in order to maximize the heat flux it may safely withstand fulfilling all the thermal, hydraulic and mechanical requirements foreseen by safety codes. Attention has been focused on the FW flat concept endowed with square cooling channels and the potential influence of its four main geometrical parameters on its thermo-mechanical performances has been assessed performing a parametric analysis by means of a qualified commercial finite element method code. A set of 5929 different FW geometric configurations has been considered and the thermal performances of each one of them have been numerically assessed in case it undergoes 26 different values of heat flux on its plasma-facing surface. The resulting 154154 thermal analyses have allowed to select those cases fulfilling the adopted thermal-hydraulic requirements, whose thermo-mechanical performances have been numerically assessed under both normal operation and over-pressurization steady state loading scenarios to check whether they met the mechanical requirements prescribed by the pertaining SDC-IC safety rules. Four

  5. Performance Tests of a Permeation Sensor for Test Blanket Modules Using Liquid Metal

    International Nuclear Information System (INIS)

    Choi, B. G.; Lee, D. W.; Lee, E. H.; Yoon, J. S.; Kim, S. K.; Shin, K. I.; Jin, H. G.

    2013-01-01

    The tritium extraction from a breeder is one of the key technologies and its methods have been investigated. For developing the tritium extraction methods and evaluating the amount of tritium in the system, a reliable and correct sensor is required to measure the hydrogen concentration in liquid metal breeder. There are several researches for developing the sensors in the ITER participants and especially, EU has developed the permeation sensors trying to selecting materials with low Serviette's constant (solubility) and high hydrogen diffusivity coefficient. However, EU's response time is still too long time about tens of minutes to measure the tritium concentration in the online system. We have been performing the preliminary tests with designed and fabricated sensors to solve the late response of sensor. However, we could not continue the tests because of the membrane's oxidation (pure Fe) and the difficulty of welding nonferrous metals. In present study, a permeation sensor made of vacuum flanges with a porous plate inside is proposed not only to eliminate the difficulty of the fabrication but to optimize the performance of sensor. The permeation sensor to measure the hydrogen isotopes in liquid metal breeder has been proposed and evaluated to overcome the limitation of a long response time for various shapes and materials. We found that the previous sensors have limitation; the oxidation problems (pure Fe) and the difficulty in welding (nonferrous metals). Therefore we proposed a permeation sensor with the vacuum flanges filled with porous disks to eliminate the problems. By using the CF flanges, the problem caused by welding is removed. But the permeable response time of sensors took a long time to reach the pressure equivalent

  6. Draining and drying process development of the Tokamak Cooling Water System of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seokho, E-mail: kims@ornl.gov [US ITER, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Van Hove, Walter; Ferrada, Juan [US ITER, Oak Ridge National Laboratory, Oak Ridge, TN (United States); Di Maio, Pietro Alessandro [University of Palermo, Viale delle Scienze, Palermo 90128 (Italy); Felde, David [Reactor and Nuclear Systems Division, ORNL, Oak Ridge, TN (United States); Raphael, Mitteau; Dell’Orco, Giovanni [ITER Organization, 13067 St Paul Lez Durance (France); Berry, Jan [US ITER, Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2016-11-01

    Highlights: • A thermal-hydraulic model using RELAP was developed for the ITER FW/BLK modules to determine design parameters for the nitrogen blowout flow rate and pressure. • The analysis indicates that as low as 2 MPa of pressure difference over the blanket modules will sufficiently evacuate the water in blankets. • A limited validation study indicates that the analysis yields less conservative results to compare against data collected from experiments. Therefore, the designed blow out flow of the drying system was selected with a large margin above the measured values to ensure the blow out operation. - Abstract: The ITER Organization (IO) developed a thermal-hydraulic (TH) model of the complex first wall and blanket (FW/BLK) cooling channels to determine gas flow rate and pressure required to effectively blow out the water in the FW/BLK. In addition, US ITER conducted experiments for selected geometries of FW/BLK flow channels to predict the blowout parameters. The analysis indicates that as low as 2 MPa of pressure difference over the blanket modules will ensure substantial evacuation of the water in blankets with just a few percent remaining in the blanket flow channels. A limited validation study indicates that the analysis yields less conservative results to compare against data collected from experiments. Therefore, the designed blow out flow of the drying system was selected with a large margin above the measured values to ensure the blow out operation.

  7. Cross-talk compensation of a spatial light modulator for iterative phase retrieval applications.

    Science.gov (United States)

    Gemayel, Pierre; Colicchio, Bruno; Dieterlen, Alain; Ambs, Pierre

    2016-02-01

    Beam-propagation-based phase recovery approaches, also known as phase retrieval methods, retrieve the amplitude and the phase of arbitrary complex-valued fields. We present and experimentally demonstrate a simple and robust iterative method using a liquid crystal spatial light modulator located at an object diffraction plane. M random phase masks are applied between the object and the image sensor using the modulator, and then M diffraction patterns are collected in the Fourier plane. An iterative algorithm using these patterns and simulating the propagation of the light between the two planes allow us to recover the object wavefront. The use of this type of dynamic modulator makes the experimental setup simpler and more flexible. We need no a priori knowledge about the object field, and the convergence rate is high. Simulation results show that the method exhibits high immunity to noise and does not suffer any stagnation problem. However, experimental results have shown that the technique is sensitive to the cross talk of the modulator. We propose a method for compensating these modulator defects that are validated by experimental results.

  8. The supply of small scale mock-ups of the primary wall module concepts for ITER

    International Nuclear Information System (INIS)

    Walsh, G.; Cheyne, K.; Lorenzetto, P.

    1998-01-01

    The present design of Blanket Shield and Primary Wall for ITER envisages construction of the wall with a water cooled, stainless steel outer layer and a water cooled, copper liner on the inside plasma facing surface. Protection of the inner copper surface with an armour layer is necessary to cope with plasma to wall interaction. There are a number of armour materials under consideration, for this project beryllium was used. The scope of work was to produce a series of mock-ups, each consisting of a different combination of materials, which included Dispersion Strengthened Copper, Copper-Chrome-Zirconium alloy, Beryllium and Stainless Steel. Hot Isostatic Pressing (HIP) was the method used to ensure that a fully diffused bonded joint was achieved giving the necessary strength and thermal conductivity. The first five of the mock ups have been successfully completed and are being tested at the various laboratories in Europe. The remaining mock ups are awaiting the results of this test work prior to being completed. (authors)

  9. EPICS device support module as ATCA system manager for the ITER fast plant system controller

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Paulo F., E-mail: pricardofc@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal); Santos, Bruno; Gonçalves, Bruno; Carvalho, Bernardo B.; Sousa, Jorge; Rodrigues, A.P.; Batista, António J.N.; Correia, Miguel; Combo, Álvaro [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal); Correia, Carlos M.B.A. [Centro de Instrumentação, Departamento de Física, Universidade de Coimbra, Coimbra (Portugal); Varandas, Carlos A.F. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico – Universidade Técnica de Lisboa, Lisboa (Portugal)

    2013-10-15

    Highlights: ► In Nuclear Fusion, demanding security and high-availability requirements call for redundancy to be available. ► ATCA based Nuclear Fusion Systems are composed by several electronic and mechanical component. ► Control and monitoring of ATCA electronic systems are recommended. ► ITER Fast Plant System Controller Project CODAC system prototype. ► EPICS device support module as External ATCA system manager solution. -- Abstract: This paper presents an Enhanced Physics and Industrial Control System (EPICS) device support module for the International Thermonuclear Experimental Reactor (ITER) Fast Plant System Controller (FPSC) project based in Advanced Telecommunications Computing Architecture (ATCA) specification. The developed EPICS device support module provides an External System Manager (ESM) solution for monitoring and control the ITER FPSC ATCA shelf system and data acquisition boards in order to take proper action and report problems to a control room operator or high level management unit in case of any system failure occurrence. EPICS device support module acts as a Channel Access (CA) server to report problems and publish ATCA system data information to the control room operator, high level management unit or other CA network clients such as Control System Studio Operator Interfaces (CSS OPIs), Best Ever Alarm System Toolkit (BEAST), Best Ever Archive Utility (BEAUTY) or other CA client applications. EPICS device support module communicates with the ATCA Shelf manager (ShM) using HTTP protocol to send and receive commands through POST method in order to get and set system and shelf components properties such as fan speeds measurements, temperatures readings, module status and ATCA boards acquisition and configuration parameters. All system properties, states, commands and parameters are available through the EPICS device support module CA server in EPICS Process Variables (PV) and signals format. ATCA ShM receives the HTTP protocol

  10. ITER EDA newsletter. V. 9, no. 9

    International Nuclear Information System (INIS)

    2000-09-01

    This ITER EDA Newsletter contains the following 5 contributions: CSMC and CSIC charging tests successfully completed; The ITER divertor cassette project meeting; Blanket R and D and design task meeting; IAEA technical committee meeting on fusion safety; ITER L-6 large project ''blanket remote handling and maintenance''

  11. Neutronic design and performance analysis of Korean ITER TBM by Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Han, Beom Seok; Park, Ho Jin [Seoul Nat. Univ., Seoul (Korea, Republic of)

    2006-01-15

    The objective of this project is to develop a neutronic design of the Korean TBM(Test Blanket Module) which will be installed in ITER(International Thermonuclear Experimental Reactor). This project is intended to analyze a neutronic design and nuclear performances of the Korean ITER TBM through the transport calculation of MCCARD. In detail, we will conduct numerical experiments for developing the neutronic design of the Korean ITER TBM and improving the nuclear performances. The results of the numerical experiments produced in this project will be utilized for a design optimization of the Korean ITER TBM. In this project, we proposed the neutronic methodologies for analyzing the nuclear characteristics of the fusion blanket. In order to investigate the behavior of neutrons and photons in the fusion blanket, Monte Carlo transport calculation was conducted with MCCARD. In addition, to optimize the neutronic performances of the fusion blanket, we introduced the design concept using a graphite reflector and a Pb multiplier. Through various numerical experiments, it was verified that these design concepts can be utilized efficiently to improve neutronic performances and resolve many drawbacks. The graphite-reflected HCML blanket can provide the neutronic performances far better than the non-reflected blanket, and a slightly-enriched Li breeder can satisfy the tritium self-sufficiency. The HCSB blanket design concept with a graphite reflector and a Pb multiplier was proposed. According to results of the neutronic analyses, the graphite-reflected HCSB blanket with a Pb multiplier can provide the neutronic performances comparable with those of the conventional HCSB blanket.

  12. Design of the helium cooled lithium lead breeding blanket in CEA: from TBM to DEMO

    Science.gov (United States)

    Aiello, G.; Aubert, J.; Forest, L.; Jaboulay, J.-C.; Li Puma, A.; Boccaccini, L. V.

    2017-04-01

    The helium cooled lithium lead (HCLL) blanket concept was originally developed in CEA at the beginning of 2000: it is one of the two European blanket concepts to be tested in ITER in the form of a test blanket module (TBM) and one of the four blanket concepts currently being considered for the DEMOnstration reactor that will follow ITER. The TBM is a highly optimized component for the ITER environment that will provide crucial information for the development of the DEMO blanket, but its design needs to be adapted to the DEMO reactor. With respect to the TBM design, reduction of the steel content in the breeding zone (BZ) is sought in order to maximize tritium breeding reactions. Different options are being studied, with the potential of reaching tritium breeding ratio (TBR) values up to 1.21. At the same time, the design of the back supporting structure (BSS), which is a DEMO specific component that has to support the blanket modules inside the vacuum vessel (VV), is ongoing with the aim of maximizing the shielding power and minimizing pumping power. This implies a re-engineering of the modules’ attachment system. Design changes however, will have an impact on the manufacturing and assembly sequences that are being developed for the HCLL-TBM. Due to the differences in joint configurations, thicknesses to be welded, heat dissipation and the various technical constraints related to the accessibility of the welding tools and implementation of non-destructive examination (NDE), the manufacturing procedure should be adapted and optimized for DEMO design. Laser welding instead of TIG could be an option to reduce distortions. The time-of-flight diffraction (TOFD) technique is being investigated for NDE. Finally, essential information expected from the HCLL-TBM program that will be needed to finalize the DEMO design is discussed.

  13. Design, fabrication, and testing of a helium-cooled module for the ITER divertor

    International Nuclear Information System (INIS)

    Baxi, C.B.; Smith, J.P.; Youchison, D.

    1994-08-01

    The International Thermonuclear Reactor (ITER) will have a single-null divertor with total power flow of 200 MW and a peak heat flux of about 5 MW/m 2 . The reference coolant for the divertor is water. However, helium is a viable alternative and offers advantages from safety considerations, such as excellent radiation stability and chemical inertness. In order to prove the feasibility of helium cooling at ITER relevant heat flux conditions, General Atomics designed, fabricated, and tested a helium-cooled divertor module. The module was made from dispersion strengthened copper, with a heat flux surface 25 mm wide and 80 mm long, designed for twice the ITER divertor heat flux. Different techniques were examined to enhance the heat transfer, which in turn reduced the flow and pumping power required to cool the module. It was concluded that an extended surface was the most practical solution. An optimization study was performed to find the best extended surface parameters. The optimum extended surface geometry consisted of fins: 10 mm high, 0.4 mm thick with a 1 mm pitch. It was estimated to require a pumping power of 150 W to remove 20 kW of power. This is more than an order of magnitude reduction in pumping power requirement, compared to smooth surface. The module was fabricated by electric discharge machining (EDM) process. The testing was carried out at SNLA during August 1993. The testing confirmed the design calculations. The peak heat flux during the test was 10 MW/m 2 applied over a surface area of 20 cm 2 . The pumping power calculated from flow rate and pressure drop measurement was about 160 W, which was less than 1% of the power removed. It is planned to test the module to higher temperature limits and higher heat fluxes during coming months. As a result of this effort we conclude that helium cooling of the ITER divertor is feasible without requiring a very large helium pressure or a large pumping power

  14. Blanket Module Boil-Off Times during a Loss-of-Coolant Accident - Case 0: with Beam Shutdown only

    International Nuclear Information System (INIS)

    Hamm, L.L.

    1998-01-01

    This report is one of a series of reports that document LBLOCA analyses for the Accelerator Production of Tritium primary blanket Heat Removal system. This report documents the analysis results of a LBLOCA where the accelerator beam is shut off without primary pump trips and neither the RHR nor the cavity flood systems operation

  15. ITER technology R and D during the EDA

    International Nuclear Information System (INIS)

    Mizoguchi, T.

    2001-01-01

    A short overview of the ITER technology R and D achievements is presented. It includes R and D programme in the area of superconducting magnets, L-1 central solenoid model coil, L-2 toroidal field model coil, L-3 vacuum vessel sector, L-4 blanket module, L-5 divertor cassette, L-6 blanket and L-7 divertor remote handling systems. In addition to the seven large R and D projects, development of components for fuelling, pumping, tritium processing, heating/current drive, power supplies and plasma diagnostics, as well as safety-related R and D have significantly progressed

  16. Evidence for an iterative module in chain elongation on the azalomycin polyketide synthase

    Directory of Open Access Journals (Sweden)

    Hui Hong

    2016-10-01

    Full Text Available The assembly-line synthases that produce bacterial polyketide natural products follow a modular paradigm in which each round of chain extension is catalysed by a different set or module of enzymes. Examples of deviation from this paradigm, in which a module catalyses either multiple extensions or none are of interest from both a mechanistic and an evolutionary viewpoint. We present evidence that in the biosynthesis of the 36-membered macrocyclic aminopolyol lactones (marginolactones azalomycin and kanchanamycin, isolated respectively from Streptomyces malaysiensis DSM4137 and Streptomyces olivaceus Tü4018, the first extension module catalyses both the first and second cycles of polyketide chain extension. To confirm the integrity of the azl gene cluster, it was cloned intact on a bacterial artificial chromosome and transplanted into the heterologous host strain Streptomyces lividans, which does not possess the genes for marginolactone production. When furnished with 4-guanidinobutyramide, a specific precursor of the azalomycin starter unit, the recombinant S. lividans produced azalomycin, showing that the polyketide synthase genes in the sequenced cluster are sufficient to accomplish formation of the full-length polyketide chain. This provides strong support for module iteration in the azalomycin and kanchanamycin biosynthetic pathways. In contrast, re-sequencing of the gene cluster for biosynthesis of the polyketide β-lactone ebelactone in Streptomyces aburaviensis has shown that, contrary to a recently-published proposal, the ebelactone polyketide synthase faithfully follows the colinear modular paradigm.

  17. U.S. Contributions to ITER

    International Nuclear Information System (INIS)

    Sauthoff, Ned R.

    2005-01-01

    The United States participates in the ITER project and program to enable the study of the science and technology of burning plasmas, a key programmatic element missing from the world fusion program. The 2003 U.S. decision to enter the ITER negotiations followed an extensive series of community and governmental reviews of the benefits, readiness, and approaches to the study of burning plasmas. This paper describes both the technical and the organizational preparations and plans for U.S. participation in the ITER construction activity: in-kind contributions, staff contributions, and cash contributions as well as supporting physics and technology research. Near-term technical activities focus on the completion of R and D and design and mitigation of risks in the areas of the central solenoid magnet, shield/blanket, diagnostics, ion cyclotron system, electron cyclotron system, pellet fueling system, vacuum system, tritium processing system, and conventional systems. Outside the project, the U .S. is engaged in preparations for the test blanket module program. Organizational activities focus on preparations of the project management arrangements to maximize the overall success of the ITER Project; elements include refinement of U.S. directions on the international arrangements, the establishment of the U.S. Domestic Agency, progress along the path of the U.S. Department of Energy's Project Management Order, and overall preparations for commencement of the fabrication of major items of equipment and for provision of staff and cash as specified in the upcoming ITER agreement

  18. Nuclear systems and testing programs for ITER. Progress report for FY 1998

    International Nuclear Information System (INIS)

    1998-01-01

    The effort during this performance period focused on a number of TBWG activities (including test module design and analysis) that were identified and agreed upon (in the presence of the ITER Director and Deputy Director) at TBWG-4. These include: (a) DEMO test module design and performance analysis under pulsed operation; (b) Test program operation plan; (c) Test port design and analysis; (d) Decay heat calculations and safety analysis; (e) Further discussion among the parties to define collaboratory on R and D for the test program as well as possible collaboration on the construction and operation of test articles; (f) Remote handling and ancillary equipment; (g) Criteria for qualifying a blanket module or submodule for actual insertion and testing in ITER; (h) Definition of test module instrumentation and verification of capability to perform in the ITER fusion environment (magnetic field, radiation, heating, etc.); and (i) Analysis to show that the results to be obtained from the test modules as designed can be extrapolated to DEMO and reactor conditions (e.g., higher wall loads and the need to demonstrate tritium self-sufficiency). The main achievements during this performance period include: (1) updating and finalizing the US DDDs for the ITER Blanket Program to form part of the ITER Final Design Report (FDR). Specific revisions were in response to the minimal lithium volume test blanket design requirements and safety impact and (2) evaluating the feasibility of the US test program, including instrumentation and the benefits of the ITER test program. Details of this assessment, including solid breeder and liquid breeder blanket test plans, are documented in UCLA-IFNT-13 (attached). In addition, dose mapping calculations were performed for the ITER Building, including equipment and layout of coolant pipes/heat exchangers. A report on ITER Building dose calculations was sent to UD ITER management and to the Garching Task Coordinator in April, 1998. The report

  19. GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules.

    Directory of Open Access Journals (Sweden)

    Alejandro Sarrion-Perdigones

    Full Text Available Synthetic Biology requires efficient and versatile DNA assembly systems to facilitate the building of new genetic modules/pathways from basic DNA parts in a standardized way. Here we present GoldenBraid (GB, a standardized assembly system based on type IIS restriction enzymes that allows the indefinite growth of reusable gene modules made of standardized DNA pieces. The GB system consists of a set of four destination plasmids (pDGBs designed to incorporate multipartite assemblies made of standard DNA parts and to combine them binarily to build increasingly complex multigene constructs. The relative position of type IIS restriction sites inside pDGB vectors introduces a double loop ("braid" topology in the cloning strategy that allows the indefinite growth of composite parts through the succession of iterative assembling steps, while the overall simplicity of the system is maintained. We propose the use of GoldenBraid as an assembly standard for Plant Synthetic Biology. For this purpose we have GB-adapted a set of binary plasmids for A. tumefaciens-mediated plant transformation. Fast GB-engineering of several multigene T-DNAs, including two alternative modules made of five reusable devices each, and comprising a total of 19 basic parts are also described.

  20. The ITER EC H&CD Upper Launcher: Analysis of vertical Remote Handling applied to the BSM maintenance

    NARCIS (Netherlands)

    Grossetti, G.; Aiello, G.; Heemskerk, C.; Elzendoorn, B.; Geßner, R.; Koning, J.; Meier, A.; Ronden, D.; Späh, P.; Scherer, T.; Schreck, S.; Strauß, D.; Vaccaro, A.

    2013-01-01

    This paper deals with Remote Handling activities foreseen on the Blanket Shield Module, the plasma facing component of the ITER Electron Cyclotron Heating and Current Drive Upper Launcher. The maintenance configuration considered here is the Vertical Remote Handling, meaning gravity acting along the

  1. O některých problémech výroby tritia pro tokamak ITER

    Czech Academy of Sciences Publication Activity Database

    Řípa, Milan

    2010-01-01

    Roč. 58, č. 13 (2010), s. 20-20 ISSN 0040-1064 Institutional research plan: CEZ:AV0Z20430508 Keywords : fusion * ITER * Test Blanket Module * ripple * ATEKO * Nuclear Research Institute Řež plc * tritium * lithium ceramic Subject RIV: BL - Plasma and Gas Discharge Physics

  2. NET test blanket design and remote maintenance

    International Nuclear Information System (INIS)

    Holloway, C.; Hubert, P.

    1991-01-01

    The NET machine has three horizontal ports reserved for testing tritium breeding blanket designs during the physics phase and possibly five during the technology phase. The design of the ports and test blankets are modular to accept a range of blanket options, provide radiation shielding and allow routine replacement. Radiation levels during replacement or maintenance require that all operations must be carried out remotely. The paper describes the problems overcome in providing a port design which includes attachment to the vacuum vessel with double vacuum seals, an integrated cooled first wall and support guides for the test blanket module. The method selected to remotely replace the test module whilst controlling the spread of contamination is also adressed. The paper concludes that the provisions of a test blanket facility based on the NET machine design is feasible. (orig.)

  3. Blanket maintenance by remote means using the cassette blanket approach

    International Nuclear Information System (INIS)

    Werner, R.W.

    1978-01-01

    Induced radioactivity in the blanket and other parts of a fusion reactor close to the plasma zone will dictate remote assembly, disassembly, and maintenance procedures. Time will be of the essence in these procedures. They must be practicable and certain. This paper discusses the reduction of a complicated Tokamak reactor to a simpler assembly via the use of a vacuum building in which to house the reactor and the introduction in this new model of cassette blanket modules. The cassettes significantly simplify remote handling

  4. Progress of and future plans for the L-4 Blanket Project

    International Nuclear Information System (INIS)

    Daenner, W.; Ioki, K.; Cardella, A.

    2001-01-01

    The ITER L-4 Blanket Project has achieved substantial progress over the last two years. The qualification of materials so far considered as reference for the shield module fabrication has been completed, as well as the developments for joining the triplex First Wall structure. Several Primary Wall, baffle, and limiter mock-ups have been manufactured and tested showing comfortable margins against the loads expected in ITER. Shield prototypes have been manufactured by conventional and advanced technology, which have finally demonstrated the manufacturing feasibility. More recently, activities for the qualification of the module attachment system have been started, and first results from materials and mock-up tests have become available. Several test campaigns are still to be finished to complete the data base for the design. In the meantime, further activities have been initiated to adapt the R and D programme to the ITER-FEAT design features, with the aim to further reduce the cost. (author)

  5. ITER EDA newsletter. V. 4, no. 9

    International Nuclear Information System (INIS)

    1995-09-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the first meeting of the ITER Test Blanket Working Group held 19-21 July 1995 at the ITER Garching Joint Work Site, and on the second workshop of the ITER Expert Group on Confinement and Transport

  6. RAMI analysis for DEMO HCPB blanket concept cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Dongiovanni, Danilo N., E-mail: danilo.dongiovanni@enea.it [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Pinna, Tonio [ENEA, Unità Tecnica Fusione, ENEA C. R. Frascati (Italy); Carloni, Dario [KIT, Institute of Neutron Physics and Reactor Technology (INR) – KIT (Germany)

    2015-10-15

    Highlights: • RAMI (reliability, availability, maintainability and inspectability) preliminary assessment for HCPB blanket concept cooling system. • Reliability block diagram (RBD) modeling and analysis for HCPB primary heat transfer system (PHTS), coolant purification system (CPS), pressure control system (PCS), and secondary cooling system. • Sensitivity analysis on system availability performance. • Failure models and repair models estimated on the base of data from the ENEA fusion component failure rate database (FCFRDB). - Abstract: A preliminary RAMI (reliability, availability, maintainability and inspectability) assessment for the HCPB (helium cooled pebble bed) blanket cooling system based on currently available design for DEMO fusion power plant is presented. The following sub-systems were considered in the analysis: blanket modules, primary cooling loop including pipework and steam generators lines, pressure control system (PCS), coolant purification system (CPS) and secondary cooling system. For PCS and CPS systems an extrapolation from ITER Test Blanket Module corresponding systems was used as reference design in the analysis. Helium cooled pebble bed (HCPB) system reliability block diagrams (RBD) models were implemented taking into account: system reliability-wise configuration, operating schedule currently foreseen for DEMO, maintenance schedule and plant evolution schedule as well as failure and corrective maintenance models. A simulation of plant activity was then performed on implemented RBDs to estimate plant availability performance on a mission time of 30 calendar years. The resulting availability performance was finally compared to availability goals previously proposed for DEMO plant by a panel of experts. The study suggests that inherent availability goals proposed for DEMO PHTS system and Tokamak auxiliaries are potentially achievable for the primary loop of the HCPB concept cooling system, but not for the secondary loop. A

  7. Overview of JSC “NIKIET” activity on ITER Procurement Arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Leshukov, A.Yu., E-mail: leshu@nikiet.ru [Joint-Stock Company “N.A. Dollezhall Research and Development Institute of Power Engineering”, (JSC “NIKIET”), 107140, Malaya Krasnoselskaya 2/8, Moscow (Russian Federation); Dragunov, Yu. G.; Strebkov, Yu. S.; Kirillov, S.Yu.; Makarov, S.V.; Trofimovich, P.D.; Dubinin, G.V.; Maksimov, V.A.; Sviridenko, M.N.; Razmerov, A.V.; Parshutin, E.V.; Khomyakov, S.E.; Kolganov, V.Yu.; Zhmakin, A.V. [Joint-Stock Company “N.A. Dollezhall Research and Development Institute of Power Engineering”, (JSC “NIKIET”), 107140, Malaya Krasnoselskaya 2/8, Moscow (Russian Federation); Belyakov, V.A.; Mazul, I.V.; Gervash, A.A. [JSC “NIIEFA” (D.V. Efremov Institute), 189631, Doroga na Metallostroy, 3, S. Peterburg (Russian Federation); Safronov, V.M.; Romannikov, A.N. [Institution “Project Center ITER”,123182, Square of Academic Kurchatov 1, Moscow (Russian Federation); Eaton, R. [ITER Organization, Route de Vinon sur Verdon CS 90 046 − 13067 Saint Paul lez Durance (France); and others

    2016-11-01

    The two following ITER blanket-relevant Procurement Arrangements (PA) were signed by Russian Federation and ITER Organization in 2014: 1)1.6.P1ARF.01 “Blanket First Wall” (signed on 14-th of February, 2014); 2)1.6.P3.RF.01 “Blanket Module Connections” (signed on 19-th of December, 2014). The first PA is devoted to the development, manufacturing, testing and procuring to ITER site of 179 Enhanced Heat Flux (EHF) First Wall (FW) Panels. These FW panels are intended to withstand the heat flux from plasma up to 4.7 MW/m{sup 2}, and there are two institutions in Russian Federation responsible for the manufacturing, testing and delivering of these panels on the ITER site: JSC “NIIEFA” (Efremov Institute) and JSC “NIKIET”. JSC “NIIEFA” (Efremov Institute) will manufacture the plasma-facing components (PFC) of EHF FW Panels and perform the final assembling of the panels while JSC “NIKIET” will manufacture the FW beam structures, load-bearing structures of PFC and the all the elements of panel attachment system. As for the second PA (“Blanket Module Connectors”) the JSC “NIKIET” is the alone official Supplier and will manufacture and procure blanket flexible supports, electrical insulating key pads and shield block/vacuum vessel electrical connectors. This article briefly describes the joint activity of JSC “NIKIET” and Efremov Institute in the framework of 1.6.P1ARF.01 “Blanket First Wall” Procurement Arrangement and the material on the activity on the second PA. The main achievements on both PAs (during the period of 2014–2015) are presented and also critical issues and plans are underlined.

  8. Comparative studies for two different orientations of pebble bed in an HCCB blanket

    Science.gov (United States)

    Paritosh, CHAUDHURI; Chandan, DANANI; E, RAJENDRAKUMAR

    2017-12-01

    The Indian Test Blanket Module (TBM) program in ITER is one of the major steps in its fusion reactor program towards DEMO and the future fusion power reactor vision. Research and development (R&D) is focused on two types of breeding blanket concepts: lead–lithium ceramic breeder (LLCB) and helium-cooled ceramic breeder (HCCB) blanket systems for the DEMO reactor. As part of the ITER-TBM program, the LLCB concept will be tested in one-half of ITER port no. 2, whose materials and technologies will be tested during ITER operation. The HCCB concept is a variant of the solid breeder blanket, which is presently part of our domestic R&D program for DEMO relevant technology development. In the HCCB concept Li2TiO3 and beryllium are used as the tritium breeder and neutron multiplier, respectively, in the form of a packed bed having edge-on configuration with reduced activation ferritic martensitic steel as the structural material. In this paper two design schemes, mainly two different orientations of pebble beds, are discussed. In the current concept (case-1), the ceramic breeder beds are kept horizontal in the toroidal–radial direction. Due to gravity, the pebbles may settle down at the bottom and create a finite gap between the pebbles and the top cooling plate, which will affect the heat transfer between them. In the alternate design concept (case-2), the pebble bed is vertically (poloidal–radial) orientated where the side plates act as cooling plates instead of top and bottom plates. These two design variants are analyzed analytically and 2D thermal-hydraulic simulation studies are carried out with ANSYS, using the heat loads obtained from neutronic calculations. Based on the analysis the performance is compared and details of the thermal and radiative heat transfer studies are also discussed in this paper.

  9. Cassette blanket and vacuum building: key elements in fusion reactor maintenance

    International Nuclear Information System (INIS)

    Werner, R.W.

    1977-01-01

    The integration of two concepts important to fusion power reactors is discussed. The first concept is the vacuum building which improves upon the current fusion reactor designs. The second concept, the use of the cassette blanket within the vacuum building environment, introduces four major improvements in blanket design: cassette blanket module, zoning concept, rectangular blanket concept, and internal tritium recovery

  10. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Aiello, G.; Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France); Kiss, B. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Morin, A. [CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette (France)

    2016-11-01

    Highlights: • CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. The DEMO HCLL breeding blanket design capitalizes on the experience acquired on the HCLL Test Blanket Module designed for ITER. Design improvements are being implemented to adapt the design to DEMO specifications and performance objectives. • Thermal and mechanical analyses have been carried out in order to justify the design of the HCLL breeding blanket showing promising results for tie rods modules’ attachments system and relatively good behavior of the box in case of LOCA when comparing to RCC-MRx criteria. • CFD thermal analyses on generic breeding unit have enabled the consolidation of the results obtained with previous FEM design analyses. - Abstract: The EUROfusion Consortium develops a design of a fusion power demonstrator (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the breeding blanket surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. The Helium Cooled Lithium Lead (HCLL) blanket is one of the concepts which is investigated for DEMO. It is made of a Eurofer structure and uses the eutectic liquid lithium–lead as tritium breeder and neutron multiplier, and helium gas as coolant. Within the EUROfusion organization, CEA with the support of Wigner-RCP and IPP-CR, is in charge of the design of the HCLL blanket for DEMO. This paper presents the status of the thermal and mechanical analyses carried out on the HCLL breeding blanket in order to justify the design. CFD thermal analyses on generic breeding unit including stiffening plates and cooling plates have been performed with ANSYS in order to consolidate results obtained with previous FEM design analyses. Moreover in order to expand the justification of the HCLL Breeding blanket design, the most loaded area of

  11. Breeding blanket for Demo

    International Nuclear Information System (INIS)

    Proust, E.; Giancarli, L.

    1992-01-01

    This paper presents the main design features, their rationale, and the main critical issues for the development, of the four DEMO-relevant blanket concepts presently investigated within the framework of the European Test-Blanket Development Programme

  12. Blanket Manufacturing Technologies : Thermomechanical Tests on HCLL Blanket Mocks Up

    International Nuclear Information System (INIS)

    Laffont, G.; Cachon, L.; Taraud, P.; Challet, F.; Rampal, G.; Salavy, J.F.

    2006-01-01

    In the Helium Cooled Lithium Lead (HCLL) Blanket concept, the lithium lead plays the double role of breeder and multiplier material, and the helium is used as coolant. The HCCL Blanket Module are made of steel boxes reinforced by stiffening plates. These stiffening plates form cells in which the breeder is slowly flowing. The power deposited in the breeder material is recovered by the breeder cooling units constituted by 5 parallel cooling plates. All the structures such as first wall, stiffening and cooling plates are cooled by helium. Due to the complex geometry of these parts and the high level of pressure and temperature loading, thermo-mechanical phenomena expected in the '' HCLL blanket concept '' have motivated the present study. The aim of this study, carried out in the frame of EFDA Work program, is to validate the manufacturing technologies of HCLL blanket module by testing small scale mock-up under breeder blanket representative operating conditions.The first step of this experimental program is the design and manufacturing of a relevant test section in the DIADEMO facility, which was recently upgraded with an He cooling loop (pressure of 80 bar, maximum temperature of 500 o C,flow rate of 30 g/s) taking the opportunity of synergies with the gas-cooled fission reactor R-and-D program. The second step will deal with the thermo-mechanical tests. This paper focuses on the program made to support the cooling plate mock up tests which will be carried out on the DIADEMO facility (CEA) by thermo-mechanical calculations in order to define the relevant test conditions and the experimental parameters to be monitored. (author)

  13. Measurement and Analysis of the Neutron and Gamma-Ray Flux Spectra in a Neutronics Mock-Up of the HCPB Test Blanket Module

    International Nuclear Information System (INIS)

    Seidel, K.; Freiesleben, H.; Poenitz, E.; Klix, A.; Unholzer, S.; Batistoni, P.; Fischer, U.; Leichtle, D.

    2006-01-01

    The nuclear parameters of a breeding blanket, such as tritium production rate, nuclear heating, activation and dose rate, are calculated by integral folding of an energy dependent cross section (or coefficient) with the neutron (or gamma-ray) flux energy spectra. The uncertainties of the designed parameters are determined by the uncertainties of both the cross section data and the flux spectra obtained by transport calculations. Also the analysis of possible discrepancies between measured and calculated integral nuclear parameter represents a two-step procedure. First, the energy region and the amount of flux discrepancies has to be found out and second, the cross section data have to be checked. To this end, neutron and gamma-ray flux spectra in a mock-up of the EU Helium-Cooled Pebble Bed (HCPB) breeder Test Blanket Module (TBM), irradiated with 14 MeV neutrons, were measured and analysed by means of Monte Carlo transport calculations. The flux spectra were determined for the energy ranges that are relevant for the most important nuclear parameters of the TBM, which are the tritium production rate and the shielding capability. The fast neutron flux which determines the tritium production on 7 Li and dominates the shield design was measured by the pulse-height distribution obtained from an organic liquid scintillation detector. Simultaneously, the gamma-ray flux spectra were measured. The neutron flux at lower energies, down to thermal, which determines the tritium production on 6 Li, was measured with time-of-arrival spectroscopy. For this purpose, the TUD neutron generator was operated in pulsed mode (pulse width 10 μs, frequency 1 kHz) and the neutrons arriving at a 3 He proportional counter in the mock-up were recorded as a function of time after the source neutron pulse. The spectral distributions for the two positions in the mock-up, where measurements were carried out, were calculated with the Monte Carlo code MCNP, version 5, and nuclear data from the

  14. Materials for breeding blankets

    International Nuclear Information System (INIS)

    Mattas, R.F.; Billone, M.C.

    1995-09-01

    There are several candidate concepts for tritium breeding blankets that make use of a number of special materials. These materials can be classified as Primary Blanket Materials, which have the greatest influence in determining the overall design and performance, and Secondary Blanket Materials, which have key functions in the operation of the blanket but are less important in establishing the overall design and performance. The issues associated with the blanket materials are specified and several examples of materials performance are given. Critical data needs are identified

  15. Progress on the ITER TBM port plug design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung-Yoon, E-mail: byoungyoon.kim@iter.org [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Marconi, Matteo [LTCalcoli, Piazza Prinetti 26/B, 23807 Merate (Italy); Neviere, Jean-Christophe [Comex Nucléaire, 13115 Saint Paul Lez Durance (France); Merola, Mario; Giancarli, Luciano M. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Lucca, Flavio [LTCalcoli, Piazza Prinetti 26/B, 23807 Merate (Italy); Gicquel, Stefan [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2015-10-15

    Highlights: • ITER TBM PP design progress with two Dummy TBMs was outlined. • Attachment of Dummy TBMs in TBM Frame was assessed to investigate mechanical and sealing performance. • Implementation of cover plates was described and the preliminary maintenance sequence was developed. • Clearance between TBM Frame and Dummy TBMs were reduced to have better shielding performance. • Cooling layout and castellation design were updated to minimize thermal induced stress. - Abstract: In three of the ITER equatorial ports, tritium breeding blanket concepts will be validated and tested using mock-up breeding blankets called test blanket modules (TBM). In these ports, two TBM-Sets are mechanically attached in a TBM Frame to form a TBM port plug (TBM PP). The ITER Organization is responsible for the design and manufacture of both this TBM Frame and the Dummy TBMs which will fill them. As a part of this development, in 2013, a conceptual design review (CDR) of TBM PP with two dummy TBMs revealed the need for improvement of design performance, interfaces and maintainability. This paper presents the main design improvements after the CDR as well as associated feasibility analysis of the improved design focusing on the attachment. Finally the work plan for the Preliminary Design phase is summarized.

  16. Using one hybrid 3D-1D-3D approach for the conceptual design of WCCB blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Li, Jia [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Ma, Xuebin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China)

    2017-01-15

    Highlights: • The Hybrid 3D-1D-3D approach is used for radial building design of WCCB. • Nuclear heat obtained by this method agrees well with 3D neutronics results. • The final results of temperature and TBR satisfy with the requirements. • All the results show that this approach is high efficiency and high reliability. - Abstract: A hybrid 3D-1D-3D approach is proposed for the conceptual design of a blanket. Firstly, the neutron wall loading (NWL) of each blanket module is obtained through a neutronics calculation employing a 3D model, which contains the geometry outline of in-vacuum vessel components and the exact neutron source distribution. Secondly, a 1D cylindrical model with the blanket module containing a detailed radial building is adopted for the neutronics analysis, with the aim of calculating the tritium breeding ratio (TBR) and nuclear heating. Being normalized to the NWL, the nuclear heating is transferred to a 2D model for thermal-hydraulics analysis using the FLUENT code. Through a series analysis of nuclear-thermal iterations that considers the tritium breeding ratio (TBR) and thermal performance as optimization objectives, the optimized radial building of each module surrounding plasma can be obtained. Thirdly, the 3D structural design of each module is established by adding side walls, cover plates, stiffening plates, and other components based on the radial building. The 3D neutronics and thermal-hydraulics using the detailed blanket modules are re-analyzed. This approach has been successfully applied to the design of a water-cooled ceramic breeder blanket for the Chinese Fusion Engineering Test Reactor (CFETR). The radial building of each blanket module surrounding plasma is optimized. The global tritium breeding ratio (TBR) calculated by the 3D neutronics analysis is 1.21, and the temperature of all materials in the 3D blanket structure is below the upper limits. As indicated by the comparison of the 1D and 3D neutronics and thermal

  17. ARIES-IV Nested Shell Blanket Design

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Redler, K.; Reis, E.E.; Will, R.; Cheng, E.; Hasan, C.M.; Sharafat, S.

    1993-11-01

    The ARIES-IV Nested Shell Blanket (NSB) Design is an alternate blanket concept of the ARIES-IV low activation helium-cooled reactor design. The reference design has the coolant routed in the poloidal direction and the inlet and outlet plena are located at the top and bottom of the torus. The NSB design has the high velocity coolant routed in the toroidal direction and the plena are located behind the blanket. This is of significance since the selected structural material is SiC-composite. The NSB is designed to have key high performance components with characteristic dimensions of no larger than 2 m. These components can be brazed to form the blanket module. For the diverter design, we eliminated the use of W as the divertor coating material by relying on the successful development of the gaseous divertor concept. The neutronics and thermal-hydraulic performance of both blanket concepts are similar. The selected blanket and divertor configurations can also meet all the projected structural, neutronics and thermal-hydraulics design limits and requirements. With the selected blanket and divertor materials, the design has a level of safety assurance rate of I (LSA-1), which indicates an inherently safe design

  18. Methodology for accident analyses of fusion breeder blankets and its application to helium-cooled pebble bed blanket

    Energy Technology Data Exchange (ETDEWEB)

    Panayotov, Dobromir, E-mail: dobromir.panayotov@f4e.europa.eu [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Grief, Andrew [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Merrill, Brad J.; Humrickhouse, Paul [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID (United States); Trow, Martin; Dillistone, Michael; Murgatroyd, Julian T.; Owen, Simon [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom); Poitevin, Yves [Fusion for Energy (F4E), Josep Pla, 2, Torres Diagonal Litoral B3, Barcelona E-08019 (Spain); Peers, Karen; Lyons, Alex; Heaton, Adam; Scott, Richard [Amec Foster Wheeler, Booths Park, Chelford Road, Knutsford WA16 8QZ, Cheshire (United Kingdom)

    2016-11-01

    Graphical abstract: - Highlights: • Test Blanket Systems (TBS) DEMO breeding blankets (BB) safety demonstration. • Comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena. • Development of accident analysis specifications (AAS) via the use of phenomena identification and ranking tables (PIRT). • PIRT application to identify required physical models for BB accidents analysis, code assessment and selection. • Development of MELCOR and RELAP5 codes TBS models. • Qualification of the models via comparison with finite element calculations, code-tocode comparisons, and sensitivity studies. - Abstract: ‘Fusion for Energy’ (F4E) is designing, developing, and implementing the European Helium-Cooled Lead-Lithium (HCLL) and Helium-Cooled Pebble-Bed (HCPB) Test Blanket Systems (TBSs) for ITER (Nuclear Facility INB-174). Safety demonstration is an essential element for the integration of these TBSs into ITER and accident analysis is one of its critical components. A systematic approach to accident analysis has been developed under the F4E contract on TBS safety analyses. F4E technical requirements, together with Amec Foster Wheeler and INL efforts, have resulted in a comprehensive methodology for fusion breeding blanket accident analysis that addresses the specificity of the breeding blanket designs, materials, and phenomena while remaining consistent with the approach already applied to ITER accident analyses. The methodology phases are illustrated in the paper by its application to the EU HCPB TBS using both MELCOR and RELAP5 codes.

  19. Design of test JIG for centralized interlock and protection module of ITER-India Gyrotron Test Facility

    International Nuclear Information System (INIS)

    Rathod, Vipal; Rao, S.L.; Edappala, Praveenlal; Rajpal, Rachana

    2017-01-01

    Fast Interlock and protection system plays very crucial role in ensuring the safe and reliable operation of high power RF sources such as a Gyrotron system. Critical Protection Interlocks are generally implemented using hardwired components and are required to have a response time as fast as < 10 μs. In this context, an Industrial grade prototype Centralized Interlock and Protection Module (CIM) based on ITER-India design has been developed successfully with the help of local industry. This paper presents the complete requirements, approach, detailed design concept and current status of Test JIG in detail

  20. Conceptual design of Blanket Remote Handling System for CFETR

    International Nuclear Information System (INIS)

    Wei, Jianghua; Song, Yuntao; Pei, Kun; Zhao, Wenlong; Zhang, Yu; Cheng, Yong

    2015-01-01

    Highlights: • The concept for the blanket maintenance is carried out, including three sub-systems. • The basic maintenance procedure for blanket between VV and hot cell is carried out. • The primary kinematics study is used to verify the feasibility of BRHS. • Virtual reality is adopted as another approach to verify the concept design. - Abstract: The China Fusion Engineering Testing Reactor (CFETR), which is a new superconducting tokamak device being designed by China, has a mission to achieve a high duty time (0.3–0.5). To accomplish this great mission, the big modular blanket option has been adopted to achieve the high efficiency of the blanket maintenance. Considering this mission and the large and heavy blanket module, a novel conceptual blanket maintenance system for CFETR has been carried out by us over the past year. This paper presents the conceptual design of the Blanket Remote Handling System (BRHS), which mainly comprises the In-Vessel-Maintenance-System (IVMS), Lifting System and Blanket-Tool-Manipulator System (BTMS). The BRHS implements the extraction and replacement between in-vessel (the blanket module operation configuration location) and ex-vessel (inside of the vertical maintenance cask) by the collaboration of these three sub systems. What is more, this paper represents the blanket maintenance procedure between the docking station (between hot cell building and tokamak building) and inside the vacuum vessel, in tokamak building. Virtual reality technology is also used to verify and optimize our concept design.

  1. Overview and status of ITER internal components

    International Nuclear Information System (INIS)

    Merola, Mario; Escourbiac, Frederic; Raffray, René; Chappuis, Philippe; Hirai, Takeshi; Martin, Alex

    2014-01-01

    Highlights: • Manufacturing technologies for the ITER internal components have been developed. • The Blanket System successfully went through its Final Design Review in April 2013. • The decision to start operation with a Divertor with a full-W armour has been taken. - Abstract: The internal components of ITER are one of the most design and technically challenging components of the ITER machine, and include the Blanket System and the Divertor. The Blanket System successfully went through its Final Design Review in April 2013 and now it is entering into the procurement phase. The design and qualification of the Divertor with a full-tungsten armour was successfully completed and this enabled the decision in November 2013 to start operation with this material option. This paper summarizes the engineering design, the R and D, the technology qualification and procurement status of the Blanket System and of the Divertor of the ITER machine

  2. Overview and status of ITER internal components

    Energy Technology Data Exchange (ETDEWEB)

    Merola, Mario, E-mail: mario.merola@iter.org; Escourbiac, Frederic; Raffray, René; Chappuis, Philippe; Hirai, Takeshi; Martin, Alex

    2014-10-15

    Highlights: • Manufacturing technologies for the ITER internal components have been developed. • The Blanket System successfully went through its Final Design Review in April 2013. • The decision to start operation with a Divertor with a full-W armour has been taken. - Abstract: The internal components of ITER are one of the most design and technically challenging components of the ITER machine, and include the Blanket System and the Divertor. The Blanket System successfully went through its Final Design Review in April 2013 and now it is entering into the procurement phase. The design and qualification of the Divertor with a full-tungsten armour was successfully completed and this enabled the decision in November 2013 to start operation with this material option. This paper summarizes the engineering design, the R and D, the technology qualification and procurement status of the Blanket System and of the Divertor of the ITER machine.

  3. Integration of remote refurbishment performed on ITER components

    Energy Technology Data Exchange (ETDEWEB)

    Dammann, A., E-mail: alexis.dammann@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Antola, L. [AMEC, 31 Parc du Golf, CS 90519, 13596 Aix en Provence (France); Beaudoin, V. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Dremel, C. [Westinghouse, Electrique France/Astare, 122 Avenue de Hambourg, 13008 Marseille (France); Evrard, D. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Friconneau, J.P. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Lemée, A. [SOGETI High Tech, 180 Rue René Descartes, 13851 Aix en Provence (France); Levesy, B.; Pitcher, C.S. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • System engineering approach to consolidate requirements to modify the layout of the Hot Cell. • Illustration of the loop between requirement and design. • Verification process. - Abstract: Internal components of the ITER Tokamak are replaced and transferred to the Hot Cell by remote handling equipment. These components include port plugs, cryopumps, divertor cassettes, blanket modules, etc. They are brought to the refurbishment area of the ITER Hot Cell Building for cleaning and maintenance, using remote handling techniques. The ITER refurbishment area will be unique in the world, when considering combination of size, quantity of complex component to refurbish in presence of radiation, activated dust and tritium. The refurbishment process to integrate covers a number of workstations to perform specific remote operations fully covered by a mast on crane system. This paper describes the integration of the Refurbishment Area, explaining the functions, the methodology followed, some illustrations of trade-off and safety improvements.

  4. Flow balancing in liquid metal blankets

    International Nuclear Information System (INIS)

    Tillack, M.S.; Morley, N.B.

    1995-01-01

    Non-uniform flow distribution between parallel channels is one of the most serious concerns for self-cooled liquid metal blankets with electrically insulated walls. We show that uncertainties in flow distribution can be dramatically reduced by relatively simple design modifications. Several design features which impose flow uniformity by electrically coupling parallel channels are surveyed. Basic mechanisms for ''flow balancing'' are described, and a particular self-regulating concept using discrete passive electrodes is proposed for the US ITER advanced blanket concept. Scoping calculations suggest that this simple technique can be very powerful in equalizing the flow, even with massive insulator failures in individual channels. More detailed analyses and experimental verification will be required to demonstrate this concept for ITER. (orig.)

  5. Ferritic steels for the first generation of breeder blankets

    International Nuclear Information System (INIS)

    Diegele, E.

    2009-01-01

    Materials development in nuclear fusion for in-vessel components, i.e. for breeder blankets and divertors, has a history of more than two decades. It is the specific in-service and loading conditions and the consequentially required properties in combination with safety standards and social-economic demands that create a unique set of specifications. Objectives of Fusion for Energy (F4E) include: 1) To provide Europe's contribution to the ITER international fusion energy project; 2) To implement the Broader Approach agreement between Euratom and Japan; 3) To prepare for the construction and demonstration of fusion reactors (DEMO). Consequently, activities in F4E focus on structural materials for the first generations of breeder blankets, i.e. ITER Test Blanket Modules (TBM) and DEMO, whereas a Fusion Materials Topical Group implemented under EFDA coordinates R and D on physically based modelling of irradiation effects and R and D in the longer term (new and /or higher risk materials). The paper focuses on martensitic-ferritic steels and (i) reviews briefly the challenges and the rationales for the decisions taken in the past, (ii) analyses the status of the main activities of development and qualification, (iii) indicates unresolved issues, and (iv) outlines future strategies and needs and their implications. Due to the exposure to intense high energy neutron flux, the main issue for breeder materials is high radiation resistance. The First Wall of a breeder blanket should survive 3-5 full power years or, respectively in terms of irradiation damage, typically 50-70 dpa for DEMO and double figures for a power plant. Even though the objective is to have the materials and key fabrication technologies needed for DEMO fully developed and qualified within the next two decades, a major part of the task has to be completed much earlier. Tritium breeding test blanket modules will be installed in ITER with the objective to test DEMO relevant technologies in fusion

  6. US blanket technology programs

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1985-01-01

    Experimental research in US programs related to blanket technology is described through brief summaries of the objectives, facilities, recent experimental results and principal investigators for the Blanket Technology Program, TRIO-1 Experiment, TSTA, Fusion Hybrid Program and selected activities in the Fusion Materials and Fusion Safety Programs in neutronics research

  7. Mirror reactor blankets

    International Nuclear Information System (INIS)

    Lee, J.D.; Barmore, W.L.; Bender, D.J.; Doggett, J.N.; Galloway, T.R.

    1976-01-01

    The general requirements of a breeding blanket for a mirror reactor are described. The following areas are discussed: (1) facility layout and blanket maintenance, (2) heat transfer and thermal conversion system, (3) materials, (4) tritium containment and removal, and (5) nuclear performance

  8. Blanket testing in NET

    International Nuclear Information System (INIS)

    Chazalon, M.; Daenner, W.; Libin, B.

    1989-01-01

    The testing stages in NET for the performance assessment of the various breeding blanket concepts developed at the present time in Europe for DEMO (LiPb and ceramic blankets) and the requirements upon NET to perform these tests are reviewed. Typical locations available in NET for blanket testing are the central outboard segments and the horizontal ports of in-vessel sectors. These test positions will be connectable with external test loops. The number of test loops (helium, water, liquid metal) will be such that each major class of blankets can be tested in NET. The test positions, the boundary conditions and the external test loops are identified and the requirements for test blankets are summarized (author). 6

  9. Fusion fuel blanket technology

    International Nuclear Information System (INIS)

    Hastings, I.J.; Gierszewski, P.

    1987-05-01

    The fusion blanket surrounds the burning hydrogen core of a fusion reactor. It is in this blanket that most of the energy released by the nuclear fusion of deuterium-tritium is converted into useful product, and where tritium fuel is produced to enable further operation of the reactor. As fusion research turns from present short-pulse physics experiments to long-burn engineering tests in the 1990's, energy removal and tritium production capabilities become important. This technology will involve new materials, conditions and processes with applications both to fusion and beyond. In this paper, we introduce features of proposed blanket designs and update and status of international research. In focusing on the Canadian blanket technology program, we discuss the aqueous lithium salt blanket concept, and the in-reactor tritium recovery test program

  10. F4E studies for the electromagnetic analysis of ITER components

    Energy Technology Data Exchange (ETDEWEB)

    Testoni, P., E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Cau, F.; Portone, A. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Albanese, R. [Associazione EURATOM/ENEA/CREATE, DIETI, Università Federico II di Napoli, Napoli (Italy); Juirao, J. [Numerical Analysis TEChnologies S.L. (NATEC), c/ Marqués de San Esteban, 52 Entlo D Gijón (Spain)

    2014-10-15

    Highlights: • Several ITER components have been analyzed from the electromagnetic point of view. • Categorization of DINA load cases is described. • VDEs, MDs and MFD have been studied. • Integral values of forces and moments components versus time have been computed for all the ITER components under study. - Abstract: Fusion for Energy (F4E) is involved in a relevant number of activities in the area of electromagnetic analysis in support of ITER general design and EU in-kind procurement. In particular several ITER components (vacuum vessel, blanket shield modules and first wall panels, test blanket modules, ICRH antenna) are being analyzed from the electromagnetic point of view. In this paper we give an updated description of our main activities, highlighting the main assumptions, objectives, results and conclusions. The plasma instabilities we consider, typically disruptions and VDEs, can be both toroidally symmetric and asymmetric. This implies that, depending on the specific component and loading conditions, FE models we use span from a sector of 10 up to 360° of the ITER machine. The techniques for simulating the electromagnetic phenomena involved in a disruption and the postprocessing of the results to obtain the loads acting on the structures are described. Finally we summarize the typical loads applied to different components and give a critical view of the results.

  11. ITER baffle module small-scale mock-ups: first wall thermo-mechanical testing results

    International Nuclear Information System (INIS)

    Severi, Y.; Giancarli, L.; Poitevin, Y.; Salavy, J.F.; Le Marois, G.; Roedig, M.; Vieider, G.

    1998-01-01

    The EU-home team is in charge of the R and D related to the ITER baffle first wall. Five small-scale mock-ups, using Be, CFC and W tiles and different armour/heat-sink material joints under development, have been fabricated and thermomechanically tested in FE200 (Le Creusot) and JUDITH (Juelich) electron beam facilities. The small-scale mock-ups have been submitted to thermo-mechanical fatigue tests (up to failure using accelerating techniques). The objective was to determine the performances of the armour material joints under high heat flux cycles. (orig.)

  12. Neutronic analysis for bolometers in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, A., E-mail: alejandro.suarez@iter.org [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Reichle, R.; Loughlin, M.; Polunovskiy, E.; Walsh, M. [ITER Organization, Route de Vinon sur Verdon, 13115, St. Paul lez Durance (France)

    2013-10-15

    Highlights: ► Radiation damage calculations for the bolometers in ITER. ► Redesign of the bolometric diagnostic in EPP01. ► New bolometer radiation damage values in EPP01 in the safe zone. -- Abstract: Neutronic considerations in ITER have such importance that they drive the design of many diagnostics and components of the machine, and bolometers are not an exception. Bolometer cameras will be installed on the vacuum vessel, viewing the plasma through the gaps between blanket modules, divertor, equatorial and upper port plugs. The ITER reference bolometer sensors are of a resistive type. For this study it is assumed that they are composed of a thin silicon nitride carrier film and platinum resistors disposed in a Wheatstone bridge configuration. Their assumed radiation hardness is 0.1 dpa. Neutronic calculations were performed with the Monte Carlo program MCNP5, the FENDL 2.1 nuclear data library and the latest B-lite ITER neutronic model with the appropriate modifications using the CAD to MCNP converter MCAM. A complete characterization of the neutron fluxes in all the bolometer locations and the calculation of neutron damage were performed. Values above the failure threshold damage were obtained for some of the bolometers, leading to a complete redesign of some parts of the bolometric system in order to extend its lifetime.

  13. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.

    Science.gov (United States)

    Omisore, Olatunji Mumini; Han, Shipeng; Ren, Lingxue; Zhang, Nannan; Ivanov, Kamen; Elazab, Ahmed; Wang, Lei

    2017-08-01

    Snake-like robot is an emerging form of serial-link manipulator with the morphologic design of biological snakes. The redundant robot can be used to assist medical experts in accessing internal organs with minimal or no invasion. Several snake-like robotic designs have been proposed for minimal invasive surgery, however, the few that were developed are yet to be fully explored for clinical procedures. This is due to lack of capability for full-fledged spatial navigation. In rare cases where such snake-like designs are spatially flexible, there exists no inverse kinematics (IK) solution with both precise control and fast response. In this study, we proposed a non-iterative geometric method for solving IK of lead-module of a snake-like robot designed for therapy or ablation of abdominal tumors. The proposed method is aimed at providing accurate and fast IK solution for given target points in the robot's workspace. n-1 virtual points (VPs) were geometrically computed and set as coordinates of intermediary joints in an n-link module. Suitable joint angles that can place the end-effector at given target points were then computed by vectorizing coordinates of the VPs, in addition to coordinates of the base point, target point, and tip of the first link in its default pose. The proposed method is applied to solve IK of two-link and redundant four-link modules. Both two-link and four-link modules were simulated with Robotics Toolbox in Matlab 8.3 (R2014a). Implementation result shows that the proposed method can solve IK of the spatially flexible robot with minimal error values. Furthermore, analyses of results from both modules show that the geometric method can reach 99.21 and 88.61% of points in their workspaces, respectively, with an error threshold of 1 mm. The proposed method is non-iterative and has a maximum execution time of 0.009 s. This paper focuses on solving IK problem of a spatially flexible robot which is part of a developmental project for abdominal

  14. Blankets for thermonuclear device

    International Nuclear Information System (INIS)

    Maki, Koichi; Fukumoto, Hideshi.

    1986-01-01

    Purpose: To produce tritium more than consumed, through thermonuclear reaction. Constitution: The energy spectrum of neutron generated by neutron multiplying reaction in a neutron multiplying blanket and moderated neutrons has a large ratio in a low energy section. In the low-energy absorption region of stainless steel which is a material of cooling pipes constituting a neutron multiplying blanket cooling channel, the neutrons are absorbed, lessening the neutron multiplying effect. To prevent this, the neutron multiplying blanket cooling channel is covered with tritium breeding blankets, thereby enabling the production of a substantially great amount of tritium more than the amount of tritium to be consumed by the thermonuclear reaction by preventing neutron absorption by the component materials of the cooling channel, improving the tritium breeding ratio by 20 to 25 %, and increasing the efficiency of use of neutrons for tritium generation. (Horiuchi, T.)

  15. Dual coolant blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Schleisiek, K.

    1994-11-01

    A self-cooled liquid metal breeder blanket with helium-cooled first wall ('Dual Coolant Blanket Concept') for a fusion DEMO reactor is described. This is one of the four blanket concepts under development in the frame of the European fusion technology program with the aim to select in 1995 the two most promising ones for further development. Described are the design of the blankets including the ancillary loop system and the results of the theoretical and experimental work in the fields of neutronics, magnetohydrodynamics, thermohydraulics, mechanical stresses, compatibility and purification of lead-lithium, tritium control, safety, reliability, and electrically insulating coatings. The remaining open questions and the required R and D programme are identified. (orig.) [de

  16. Preliminary RAMI analysis of DFLL TBS for ITER

    International Nuclear Information System (INIS)

    Wang, Dagui; Yuan, Run; Wang, Jiaqun; Wang, Fang; Wang, Jin

    2016-01-01

    Highlights: • We performed the functional analysis of the DFLL TBS. • We performed a failure mode analysis of the DFLL TBS. • We estimated the reliability and availability of the DFLL TBS. • The ITER RAMI approach was applied to the DFLL TBS for technical risk control in the design phase. - Abstract: ITER is the first fusion machine fully designed to prove the physics and technological basis for next fusion power plants. Among the main technical objectives of ITER is to test and validate design concepts of tritium breeding blankets relevant to the fusion power plants. To achieve this goal, China has proposed the dual functional lithium-lead test blanket module (DFLL TBM) concept design. The DFLL TBM and its associated ancillary system were called DFLL TBS. The DFLL TBS play a key role in next fusion reactor. In order to ensure reliable and available of DFLL TBS, the risk control project of DFLL TBS has been put on the schedule. As the stage of the ITER technical risk control policy, the RAMI (Reliability, Availability, Maintainability, Inspectability) approach was used to control the technical risk of ITER. In this paper, the RAMI approach was performed on the conceptual design of DFLL TBS. A functional breakdown was prepared on DFLL TBS, and the system was divided into 3 main functions and 72 basic functions. Based on the result of functional breakdown of DFLL TBS, the reliability block diagrams were prepared to estimate the reliability and availability of each function under the stipulated operating conditions. The inherent availability of the DFLL TBS expected after implementation of mitigation actions was calculated to be 98.57% over 2 years based on the ITER reliability database. A Failure Modes Effects and Criticality Analysis (FMECA) was performed with criticality charts highlighting the risk level of the different failure modes with regard to their probability of occurrence and their effects on the availability.

  17. Preliminary RAMI analysis of DFLL TBS for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dagui [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230031 (China); Yuan, Run [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Wang, Jiaqun, E-mail: jiaqun.wang@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); Wang, Fang; Wang, Jin [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China)

    2016-11-15

    Highlights: • We performed the functional analysis of the DFLL TBS. • We performed a failure mode analysis of the DFLL TBS. • We estimated the reliability and availability of the DFLL TBS. • The ITER RAMI approach was applied to the DFLL TBS for technical risk control in the design phase. - Abstract: ITER is the first fusion machine fully designed to prove the physics and technological basis for next fusion power plants. Among the main technical objectives of ITER is to test and validate design concepts of tritium breeding blankets relevant to the fusion power plants. To achieve this goal, China has proposed the dual functional lithium-lead test blanket module (DFLL TBM) concept design. The DFLL TBM and its associated ancillary system were called DFLL TBS. The DFLL TBS play a key role in next fusion reactor. In order to ensure reliable and available of DFLL TBS, the risk control project of DFLL TBS has been put on the schedule. As the stage of the ITER technical risk control policy, the RAMI (Reliability, Availability, Maintainability, Inspectability) approach was used to control the technical risk of ITER. In this paper, the RAMI approach was performed on the conceptual design of DFLL TBS. A functional breakdown was prepared on DFLL TBS, and the system was divided into 3 main functions and 72 basic functions. Based on the result of functional breakdown of DFLL TBS, the reliability block diagrams were prepared to estimate the reliability and availability of each function under the stipulated operating conditions. The inherent availability of the DFLL TBS expected after implementation of mitigation actions was calculated to be 98.57% over 2 years based on the ITER reliability database. A Failure Modes Effects and Criticality Analysis (FMECA) was performed with criticality charts highlighting the risk level of the different failure modes with regard to their probability of occurrence and their effects on the availability.

  18. Critical Heat Flux Test with the Ferritic Martensitic Steel Mock-ups for the DEMO Blanket First Wall

    International Nuclear Information System (INIS)

    Lee, Dong Won; Kim, Suk Kwon; Bae, Young Dug; Chang, Doo Hee; Song, Woo Sob; Hong, Bong Geun

    2009-01-01

    Korea has proposed and designed a DEMO concept considering a Helium Cooled Molten Lithium (HCML) Test Blanket Module (TBM) to be tested in the International Thermonuclear Experimental Reactor (ITER). In these concepts, Ferritic Martensite Steel (FMS) is used as the structural material. The blanket FW of these concepts is an important component which faces the plasma directly and therefore, it is subjected to high heat and neutron loads. The FW is composed of the FMS as a structural material and an armor material such as tungsten and beryllium. Fabrication technology have been being developed especially for the joining between an armor material and FMS and more the Critical Heat Flux (CHF) should be investigated for design and safety aspect. In the present study, three FMS mock-ups without armor material were fabricated with a HIP (Hot Isostatic Pressing), which was developed similarly to the development of the ITER blanket FW in Korea. And they were tested in the high heat flux (HHF) test facility

  19. Development of liquid metal type TBM technology for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Bong Guen; Kwak, J. G.; Kim, Y. (and others)

    2008-03-15

    The objectives of the ITER project for the construction and operation are to perform the test related to the neutronics, blanket module, tritium treatment technology, advanced plasma technology, and to test the heat extraction and tritium breeding in the test blanket for the fusion reactor. Other parties have been developing the Test Blanket Module (TBM) for testing in the ITER for these purposes. Through this project, we can secure the TBM design and related technology, which will be used as the core technology for the DEMO construction, our own fusion reactor development. In 1st year, the optimized design procedure was established with the existing tools, which have been used in nuclear reactor design, and the optimized HCML TBM design was obtained through iteration method according to the developed design procedure. He cooling system as a TBM auxiliary system was designed considering the final design of the KO HCML TBM such as coolant capacity and operation pressure. Layout for this system was prepared to be installed in the ITER TCWS vault. MHD effect of liquid Li breeder by magnetic flux in ITER such as much higher pressure drop was evaluated with CFD-ACE and it was concluded that the Li breeder should have a slow velocity to reduce this effect. Most results were arranged in the form of DDD including preliminary safety analysis report. In 2nd year, the optimized design procedure was complemented and updated. In performance analysis on thermal-hydraulic and thermo-mechanical one, full 3D meshes were generated and used in this analysis in order to obtain the more exact temperature, deformation, and stress solution. For liquid Li breeder system, design parameters were induced before the detailed design of the system and were used in the design of the liquid Li test loop. LOCA analysis, activation analysis in LOCA, EM analysis were performed as a preliminary safety analysis. In order to develop the manufacturing technology, Be+FMS and FMS to FMS joining conditions

  20. Automatic Frequency Identification under Sample Loss in Sinusoidal Pulse Width Modulation Signals Using an Iterative Autocorrelation Algorithm

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2016-08-01

    Full Text Available In this work, we present a simple algorithm to calculate automatically the Fourier spectrum of a Sinusoidal Pulse Width Modulation Signal (SPWM. Modulated voltage signals of this kind are used in industry by speed drives to vary the speed of alternating current motors while maintaining a smooth torque. Nevertheless, the SPWM technique produces undesired harmonics, which yield stator heating and power losses. By monitoring these signals without human interaction, it is possible to identify the harmonic content of SPWM signals in a fast and continuous manner. The algorithm is based in the autocorrelation function, commonly used in radar and voice signal processing. Taking advantage of the symmetry properties of the autocorrelation, the algorithm is capable of estimating half of the period of the fundamental frequency; thus, allowing one to estimate the necessary number of samples to produce an accurate Fourier spectrum. To deal with the loss of samples, i.e., the scan backlog, the algorithm iteratively acquires and trims the discrete sequence of samples until the required number of samples reaches a stable value. The simulation shows that the algorithm is not affected by either the magnitude of the switching pulses or the acquisition noise.

  1. ITER test programme

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Casini, G.

    1991-01-01

    ITER has been designed to operate in two phases. The first phase which lasts for 6 years, is devoted to machine checkout and physics testing. The second phase lasts for 8 years and is devoted primarily to technology testing. This report describes the technology test program development for ITER, the ancillary equipment outside the torus necessary to support the test modules, the international collaboration aspects of conducting the test program on ITER, the requirements on the machine major parameters and the R and D program required to develop the test modules for testing in ITER. 15 refs, figs and tabs

  2. Remote maintenance development for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Eisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shibanuma, Kiyoshi

    1998-04-01

    This paper describes the overall ITER remote maintenance design concept developed mainly for in-vessel components such as diverters and blankets, and outlines the ITER R and D program to develop remote handling equipment and radiation hard components. Reactor structures inside the ITER cryostat must be maintained remotely due to DT operation, making remote handling technology basic to reactor design. The overall maintenance scenario and design concepts have been developed, and maintenance design feasibility, including fabrication and testing of full-scale in-vessel remote maintenance handling equipment and tool, is being verified. (author)

  3. Tokamak blanket design study, final report

    International Nuclear Information System (INIS)

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m 2 and a particle heat flux of 1 MW/m 2 . Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma

  4. ITER...ation

    International Nuclear Information System (INIS)

    Troyon, F.

    1997-01-01

    Recurrent attacks against ITER, the new generation of tokamak are a mix of political and scientific arguments. This short article draws a historical review of the European fusion program. This program has allowed to build and manage several installations in the aim of getting experimental results necessary to lead the program forwards. ITER will bring together a fusion reactor core with technologies such as materials, superconductive coils, heating devices and instrumentation in order to validate and delimit the operating range. ITER will be a logical and decisive step towards the use of controlled fusion. (A.C.)

  5. Novel blanket design for ICTR's

    International Nuclear Information System (INIS)

    Abdel-Khalik, S.I.; Conn, R.W.; Wolfer, W.G.; Larsen, E.N.; Sviatoslavsky, I.N.

    1978-01-01

    A novel blanket design for ICTRs is described. This blanket is used in SOLASE, the conceptual laser fusion reactor of the University of Wisconsin. The blanket to be described offers numerous advantages, including low cost, low weight, low induced radioactivity levels, the potential for hands-on maintenance, modular construction, low pressure, ability to decouple first wall and blanket coolant temperatures, adequate breeding, low tritium inventory and leakage, and sufficiently long life

  6. ITER Vacuum Vessel design and construction

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: Kimihiro.Ioki@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Jones, L. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Jun, C. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC ' Sintez' , Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector -25, Gandhinagar 382025 (India); Preble, J.; Reich, J. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); and others

    2012-08-15

    After implementing a few design modifications (referred to as the 'Modified Reference Design') in 2009, the Vacuum Vessel (VV) design had been stabilized. The VV design is being finalized, including interface components such as support rails and feedthroughs for the in-vessel coils. It is necessary to make adjustments to the locations of the blanket supports and manifolds to accommodate design modifications to the in-vessel coils. The VV support design is also being finalized considering a structural simplification. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. The detailed layout of ferritic steel plates and borated steel plates was optimized based on the toroidal field ripple analysis. A dynamic test on the inter-modular key to support the blanket modules was performed to measure the dynamic amplification factor (DAF). An R and D program has started to select and qualify the welding and cutting processes for the port flange lip seal. The ITER VV material 316 L(N) IG was already qualified and the Modified Reference Design was approved by the Agreed Notified Body (ANB) in accordance with the Nuclear Pressure Equipment Order procedure.

  7. Thermal insulation blanket material

    Science.gov (United States)

    Pusch, R. H.

    1982-01-01

    A study was conducted to provide a tailorable advanced blanket insulation based on a woven design having an integrally woven core structure. A highly pure quartz yarn was selected for weaving and the cells formed were filled with a microquartz felt insulation.

  8. Conceptual design of blanket structures for fusion experimental reactor (FER)

    International Nuclear Information System (INIS)

    1984-03-01

    Conceptual design study for in-vessel components including tritium breeding blanket of FER has been carried out. The objective of this study is to obtain the engineering and technological data for selecting the reactor concept and for its construction by investigating fully and broadly. The design work covers in-vessel components (such as tritium breeding blanket, first wall, shield, divertor and blanket test module), remote handling system and tritium system. The designs of those components and systems are accomplished in consideration of their accomodation to whole reactor system and problems for furthur study are clarified. (author)

  9. Water detritiation and cryogenic distillation processes for CANDU reactors and ITER

    International Nuclear Information System (INIS)

    Cristescu, Ion; Cristescu, Ioana Ruxandra

    2006-01-01

    Full text: Water detritiation based on isotopic exchange between the tritiated water and hydrogen/deuterium gas followed by cryogenic distillation of hydrogen isotopes are the separation processes implemented on large scale facilities for tritium removal and high purity recovery. Consequently, for CANDU reactors and the International Thermonuclear Experimental Reactor (ITER) the two processes have been developed specifically for the operation requirements and to minimize the impact on the environment. An overview of the tritiated water production during ITER operation and maintenance activities will be introduced and the impact of safety regulation requirements for processing and discharge limits into the environment will be highlighted. Similarities and differences in the configuration of detritiation processes, based on water-gas isotopic exchange and cryogenic distillation, for CANDU and ITER facilities will be introduced. Additionally, development of complementary techniques, i.e. Solid Polymer Electrolyte for tritiated water electrolysis as envisaged to be used in Water Detritiation System of ITER will be presented.The amount of tritium bred in ITER blanket modules is not enough to assure the self sustain of deuterium-tritium operation phase. Therefore an external tritium source is needed to provide the amount of tritium during the envisaged 20 years of operation of ITER machine with deuterium and tritium fuelling gas. The actually non military sources of tritium in the world are the CANDU reactors where tritium is a byproduct. A road map of ITER project will be presented and the time schedule of tritium shipment at Cadarache site will be introduced. (authors)

  10. ITER tokamak device

    International Nuclear Information System (INIS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-01-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER; and a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fuelling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (i) magnet systems (toroidal and poloidal field coils and cryogenic systems), (ii) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (iii) first wall, (iv) divertor plate (design and materials, performance and lifetime, a.o.), (v) blanket/shield system, (vi) maintenance equipment, (vii) current drive and heating, (viii) fuel cycle system, and (ix) diagnostics. 11 refs, figs and tabs

  11. ITER in-vessel system design and performance

    International Nuclear Information System (INIS)

    Parker, R.R.

    2001-01-01

    This paper reviews the design and performance of the in-vessel components of ITER as developed for the EDA Final Design Report (FDR). The double-wall vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g., the most intense VDE's and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature differences. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m 2 are expected and these are accommodated by HHF technology developed during the EDA. Disruptions and VDE's can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowables for all postulated disruption and seismic events. (author)

  12. ITER in-vessel system design and performance

    Science.gov (United States)

    Parker, R. R.

    2000-03-01

    The article reviews the design and performance of the in-vessel components of ITER as developed for the Engineering Design Activities (EDA) Final Design Report. The double walled vacuum vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g. the most intense vertical displacement events (VDEs) and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature non-uniformities. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor concept is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m2 are expected on the target. These are accommodated by HHF technology developed during the EDA. Disruptions and VDEs can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowable ranges for all postulated disruption and seismic events.

  13. ITER in-vessel system design and performance

    International Nuclear Information System (INIS)

    Parker, R.R.

    2000-01-01

    The article reviews the design and performance of the in-vessel components of ITER as developed for the Engineering Design Activities (EDA) Final Design Report. The double walled vacuum vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g. the most intense vertical displacement events (VDEs) and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature non-uniformities. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor concept is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m 2 are expected on the target. These are accommodated by HHF technology developed during the EDA. Disruptions and VDEs can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowable ranges for all postulated disruption and seismic events. (author)

  14. ITER in-vessel system design and performance

    International Nuclear Information System (INIS)

    Parker, R.R.

    1999-01-01

    This paper reviews the design and performance of the in-vessel components of ITER as developed for the EDA Final Design Report (FDR). The double-wall vessel is the first confinement boundary and is designed to maintain its integrity under all normal and off-normal conditions, e.g., the most intense VDE's and seismic events. The shielding blanket consists of modules connected to a toroidal backplate by flexible connectors which allow differential displacements due to temperature differences. Breeding blanket modules replace the shield modules for the Enhanced Performance Phase. The divertor is based on a cassette structure which is convenient for remote installation and removal. High heat flux (HHF) components are mechanically attached and can be removed and replaced in the hot cell. Operation of the divertor is based on achieving partially detached plasma conditions along and near the separatrix. Nominal heat loads of 5-10 MW/m 2 are expected and these are accommodated by HHF technology developed during the EDA. Disruptions and VDE's can lead to melting of the first wall armour but no damage to the underlying structure. Stresses in the main structural components remain within allowables for all postulated disruption and seismic events. (author)

  15. Application of remote handling compatibility on ITER plant

    International Nuclear Information System (INIS)

    Sanders, S.; Rolfe, A.; Mills, S.F.; Tesini, A.

    2011-01-01

    The ITER plant will require fully remote maintenance during its operational life. For this to be effective, safe and efficient the plant will have to be developed in accordance with remote handling (RH) compatibility requirements. A system for ensuring RH compatibility on plant designed for Tokamaks was successfully developed and applied, inter alia, by the authors when working at the JET project. The experience gained in assuring RH compatibility of plant at JET is now being applied to RH relevant ITER plant. The methodologies required to ensure RH compatibility of plant include the standardization of common plant items, standardization of RH features, availability of common guidance on RH best practice and a protocol for design and interface review and approval. The protocol in use at ITER is covered by the ITER Remote Maintenance Management System (IRMMS) defines the processes and utilization of management controls including Plant Definition Forms (PDF), Task Definition Forms (TDFs) and RH Compatibility Assessment Forms (RHCA) and the ITER RH Code of Practice. This paper will describe specific examples where the authors have applied the methodology proven at JET to ensure remote handling compatibility on ITER plant. Examples studied are: ·ELM coils (to be installed in-vessel behind the Blanket Modules) - handling both in-vessel, in Casks and at the Hot Cell as well as fully remote installation and connection (mechanical and electrical) in-vessel. ·Neutral beam systems (in-vessel and in the NB Cell) - beam sources, cesium oven, beam line components (accessed in the NB Cell) and Duct Liner (remotely replaced from in-vessel). ·Divertor (in-vessel) - cooling pipe work and remotely operated electrical connector. The RH compatibility process can significantly affect plant design. This paper should therefore be of interest to all parties who develop ITER plant designs.

  16. Rotation and neoclassical ripple transport in ITER

    Science.gov (United States)

    Paul, E. J.; Landreman, M.; Poli, F. M.; Spong, D. A.; Smith, H. M.; Dorland, W.

    2017-11-01

    Neoclassical transport in the presence of non-axisymmetric magnetic fields causes a toroidal torque known as neoclassical toroidal viscosity (NTV). The toroidal symmetry of ITER will be broken by the finite number of toroidal field coils and by test blanket modules (TBMs). The addition of ferritic inserts (FIs) will decrease the magnitude of the toroidal field ripple. 3D magnetic equilibria in the presence of toroidal field ripple and ferromagnetic structures are calculated for an ITER steady-state scenario using the variational moments equilibrium code (VMEC). Neoclassical transport quantities in the presence of these error fields are calculated using the stellarator Fokker-Planck iterative neoclassical conservative solver (SFINCS). These calculations fully account for E r , flux surface shaping, multiple species, magnitude of ripple, and collisionality rather than applying approximate analytic NTV formulae. As NTV is a complicated nonlinear function of E r , we study its behavior over a plausible range of E r . We estimate the toroidal flow, and hence E r , using a semi-analytic turbulent intrinsic rotation model and NUBEAM calculations of neutral beam torque. The NTV from the \\vert{n}\\vert = 18 ripple dominates that from lower n perturbations of the TBMs. With the inclusion of FIs, the magnitude of NTV torque is reduced by about 75% near the edge. We present comparisons of several models of tangential magnetic drifts, finding appreciable differences only for superbanana-plateau transport at small E r . We find the scaling of calculated NTV torque with ripple magnitude to indicate that ripple-trapping may be a significant mechanism for NTV in ITER. The computed NTV torque without ferritic components is comparable in magnitude to the NBI and intrinsic turbulent torques and will likely damp rotation, but the NTV torque is significantly reduced by the planned ferritic inserts.

  17. A PRELIMINARY ASSESSMENT OF THE OCCUPATIONAL RADIATION EXPOSURE FROM MAINTAINING THE US ITER DCLL TBM

    Energy Technology Data Exchange (ETDEWEB)

    B. J. Merrill; L. C. Cadwallader; M. Dagher

    2008-09-01

    This paper details an Occupational Radiation Exposure (ORE) analysis performed for the US International Thermonuclear Experimental Reactor (ITER) Dual Coolant Lead Lithium (DCLL) Test Blanket Module (TBM). This ORE analysis was performed with the QADMOD dose code for maintenance activities anticipated for the US DCLL TBM concept and its ancillary systems. Identification of the maintenance tasks that will have to be performed and estimates of the time required to perform these tasks were developed based on either expert opinion or on industrial maintenance experience for similar technologies. This paper details the modeling activity and the calculated doses for the maintenance activities envisioned for the US DCLL TBM.

  18. Development of the breeding blanket and shield model for the fusion power reactors system SYCOMORE

    Energy Technology Data Exchange (ETDEWEB)

    Li-Puma, Antonella, E-mail: antonella.lipuma@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Jaboulay, Jean-Charles, E-mail: Jean-Charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Martin, Brunella, E-mail: brunella.martin@gmail.com [Incka, 19-21 Rue du 8 mai 1945, F-94110 Arcueil (France)

    2014-10-15

    SYCOMORE, a fusion reactor system code based on a modular approach is under development at CEA. Within this framework, this paper describes the relevant sub-modules which have been implemented to model the main outputs of the breeding blanket and shield block of the system code: tritium breeding ratio, peak energy deposition in toroidal field coils, reactor layout and power deposition, blanket pressure drops and materials inventory. Blanket and shield requirements are calculated by several sub-modules: the blanket assembly and layout sub-module, the neutronic sub-module, the blanket design sub-module (thermal hydraulic and thermo-mechanic pre-design tool). A power flow module has also been developed which is directly linked to the blanket thermo-dynamic performances, which is not described in this paper. For the blanket assembly and layout and the blanket module design sub-modules, explicit analytic models have been developed and implemented; for the neutronic sub-module neural networks that replicate the results of appropriate simplified 1D and 2D neutronic simulations have been built. Presently, relevant model for the Helium Cooled Lithium Lead is available. Sub-modules have been built in a way that they can run separately or coupled into the breeding blanket and shield module in order to be integrated in SYCOMORE. In the paper, the objective and main input/output parameters of each sub-module are reported and relevant models discussed. The application to previous studied reactor models (PPCS model AB, DEMO-HCLL 2006–2007 studies) is also presented.

  19. Development of the water cooled lithium lead blanket for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, J., E-mail: julien.aubert@cea.fr [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Aiello, G.; Jonquères, N. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France); Li Puma, A. [CEA-Saclay, DEN/DANS/DM2S/SERMA/LPEC, 91191 Gif Sur Yvette Cedex (France); Morin, A.; Rampal, G. [CEA-Saclay, DEN/DANS/DM2S/SEMT/BCCR, 91191 Gif Sur Yvette Cedex (France)

    2014-10-15

    Highlights: • The WCLL blanket design has been modified to adapt it to the 2012 EFDA DEMO specifications. • Preliminary CAD design of the equatorial outboard module of the WCLL blanket has been developed for DEMO. • Finite elements analyses have been carried out in order to assess the module thermal behavior in the straight part of the module. - Abstract: The water cooled lithium lead (WCLL) blanket, based on near-future technology requiring small extrapolation from present-day knowledge both on physical and technological aspect, is one of the breeding blanket concepts considered as possible candidates for the EU DEMOnstration power plant. In 2012, the EFDA agency issued new specifications for DEMO: this paper describes the work performed to adapt the WCLL blanket design to those specifications. Relatively small modules with straight surfaces are attached to a common Back Supporting Structure housing feeding pipes. Each module features reduced activation ferritic-martensitic steel as structural material, liquid Lithium-Lead as breeder, neutron multiplier and carrier. Water at typical Pressurized Water Reactors (PWR) conditions is chosen as coolant. A preliminary design of the equatorial outboard module has been achieved. Finite elements analyses have been carried out in order to assess the module thermal behavior. Two First Wall (FW) concepts have been proposed, one favoring the thermal efficiency, the other favoring the manufacturability. The Breeding Zone has been designed with C-shaped Double-Walled Tubes in order to minimize the Water/Pb-15.7Li interaction likelihood. The priorities for further development of the WCLL blanket concept are identified in the paper.

  20. Preliminary safety studies for the DEMO HCPB blanket concept

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xue Zhou, E-mail: jin@kit.edu [Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe (Germany); Carloni, Dario; Boccaccini, Lorenzo Virgilio; Stieglitz, Robert [Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe (Germany); Pinna, Tonio; Dongiovanni, Danilo [ENEA, Via Enrico Fermi, 45, 00044 Frascati, Roma (Italy)

    2015-10-15

    Highlights: • From FFMEA (Functional Failure Mode and Effect Analysis), PIEs (Postulated Initiating Events) have been identified and listed for the DEMO HCPB blanket concept. • Based on ITER, confinement strategy and safety systems have been proposed for the DEMO HCPB concept. • Safety relevant sources for the DEMO HCPB concept have been identified. • A priority list for the event sequences has been generated for deterministic analyses in the next step. - Abstract: Helium Cooled Pebble Bed (HCPB) blanket concept is one of the DEMO (Demonstration Power Plant) blanket concepts running for the final design selection. Concept relevant safety needs to be addressed at the early stage of the design. In this paper the preliminary safety studies for the current concept have been performed with respect to the FFMEA (Functional Failure Mode and Effect Analysis), the confinement strategy, identification of source terms, and selection of critical event sequences.

  1. TH-C-18A-01: Is Automatic Tube Current Modulation Still Necessary with Statistical Iterative Reconstruction?

    Energy Technology Data Exchange (ETDEWEB)

    Li, K; Zhao, W; Gomez-Cardona, D; Chen, G [University of Wisconsin, Madison, WI (United States)

    2014-06-15

    Purpose: Automatic tube current modulation (TCM) has been widely used in modern multi-detector CT to reduce noise spatial nonuniformity and streaks to improve dose efficiency. With the advent of statistical iterative reconstruction (SIR), it is expected that the importance of TCM may diminish, since SIR incorporates statistical weighting factors to reduce the negative influence of photon-starved rays. The purpose of this work is to address the following questions: Does SIR offer the same benefits as TCM? If yes, are there still any clinical benefits to using TCM? Methods: An anthropomorphic CIRS chest phantom was scanned using a state-of-the-art clinical CT system equipped with an SIR engine (Veo™, GE Healthcare). The phantom was first scanned with TCM using a routine protocol and a low-dose (LD) protocol. It was then scanned without TCM using the same protocols. For each acquisition, both FBP and Veo reconstructions were performed. All scans were repeated 50 times to generate an image ensemble from which noise spatial nonuniformity (NSN) and streak artifact levels were quantified. Monte-Carlo experiments were performed to estimate skin dose. Results: For FBP, noise streaks were reduced by 4% using TCM for both routine and LD scans. NSN values were actually slightly higher with TCM (0.25) than without TCM (0.24) for both routine and LD scans. In contrast, for Veo, noise streaks became negligible (<1%) with or without TCM for both routine and LD scans, and the NSN was reduced to 0.10 (low dose) or 0.08 (routine). The overall skin dose was 2% lower at the shoulders and more uniformly distributed across the skin without TCM. Conclusion: SIR without TCM offers superior reduction in noise nonuniformity and streaks relative to FBP with TCM. For some clinical applications in which skin dose may be a concern, SIR without TCM may be a better option. K. Li, W. Zhao, D. Gomez-Cardona: Nothing to disclose; G.-H. Chen: Research funded, General Electric Company Research funded

  2. ITER EDA status

    International Nuclear Information System (INIS)

    Aymar, R.

    2001-01-01

    '', each representing a potential real procurement contract for an ITER component. The results, after analysis and evaluation by the JCT, have provided the basis for a JCT ''evaluated cost estimates'' report for all packages (Business Confidential) which was presented during a one week meeting at Garching (29 Jan - 2 Feb 2001) to an Ad Hoc Group of Parties' costing experts. The summary was included in the synoptic paper of the PDD for the Council's information. A meeting of the ITER Test Blanket Working Group (TBWG) was held in October 2000. The group has continued its activities during the period of extension of the EDA with a revised charter on the co-ordination of the development work performed by the Parties and by the JCT leading to a co-ordinated test programme on ITER for a DEMO-relevant tritium breeding blanket. This follows earlier work carried out during the EDA, which formed part of the 1998 Final Design Report. For a concise summary of the meeting see the separate article on the Test Blanket Working Group's Recent Activities in the ITER EDA Newsletter, Vol. 10, No. 2, Feb. 2001

  3. ITER EDA Newsletter. V. 6, no. 5

    International Nuclear Information System (INIS)

    1997-05-01

    This issue of the newsletter on Engineering Design Activities (EDA) for the ITER Tokamak project contains a report on Second International Industries' Liaison meeting which was held in Tokyo on 2-4 April 1997 (by Y. Kaneki, JAIF, Japan); an overview report on the Blanket project (by A. Cardella, I.Ioki (ITER Central Team), W. Daenner (EU Home Team)); and a progress report on microwave reflectometry (by J. Sanchez, Madrid, Spain)

  4. Self-shielding characteristics of aqueous self-cooled blankets for next generation fusion devices

    International Nuclear Information System (INIS)

    Pelloni, S.; Cheng, E.T.; Embrechts, M.J.

    1987-11-01

    The present study examines self-shielding characteristics for two aqueous self-cooled tritium producing driver blankets for next generation fusion devices. The aqueous Self-Cooled Blanket concept (ASCB) is a very simple blanket concept that relies on just structural material and coolant. Lithium compounds are dissolved in water to provide for tritium production. An ASCB driver blanket would provide a low technology and low temperature environment for blanket test modules in a next generation fusion reactor. The primary functions of such a blanket would be shielding, energy removal and tritium production. One driver blanket considered in this study concept relates to the one proposed for the Next European Torus (NET), while the second concept is indicative for the inboard shield design for the Engineering Test Reactor proposed by the USA (TIBER II/ETR). The driver blanket for NET is based on stainless steel for the structural material and aqueous solution, while the inboard shielding blanket for TIBER II/ETR is based on a tungsten/aqueous solution combination. The purpose of this study is to investigate self-shielding and heterogeneity effects in aqueous self-cooled blankets. It is found that no significant gains in tritium breeding can be achieved in the stainless steel blanket if spatial and energy self-shielding effects are considered, and the heterogeneity effects are also insignificant. The tungsten blanket shows a 5 percent increase in tritium production in the shielding blanket when energy and spatial self-shielding effects are accounted for. However, the tungsten blanket shows a drastic increase in the tritium breeding ratio due to heterogeneity effects. (author) 17 refs., 9 figs., 9 tabs

  5. Design studies on three-dimensional issues for liquid blanket systems in helical reactor FFHR

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T., E-mail: teru@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu (Japan); Sagara, A.; Goto, T.; Yanagi, N.; Tamura, H.; Hirooka, Y.; Miyazawa, J.; Muroga, T. [National Institute for Fusion Science, Toki, Gifu (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Three-dimensional blanket design issues have been studied for helical DEMO FFHR-d1. Black-Right-Pointing-Pointer (1) A minimum blanket space required for decision of the reactor parameter. Black-Right-Pointing-Pointer (2) A supporting method for a helical blanket system. Black-Right-Pointing-Pointer (3) Size of blanket module and effect of magnetic field on liquid coolants. - Abstract: A new design activity is under way for a helical type DEMO reactor FFHR-d1. The first stage of the activity involves the fundamental issues related to three-dimensional blanket design: (1) the minimum blanket space required for reactor parameter decisions, (2) the support method for the helical blanket system, and (3) the blanket module design. Investigations have been performed with neutronics and mechanical finite-element method calculations. Neutronics investigations indicate that a tungsten carbide radiation shield could reduce the minimum blanket space requirement by {approx}30 cm at the inboard region of FFHR-d1 compared with the blanket space of {approx}100 cm in the previous FFHR2 design. The investigations also showed that main shielding materials, ferritic steel and B{sub 4}C, could be used separately in a two-layered shielding configuration. The ferritic steel layer of the radiation shield is considered suitable to support the helical blanket system instead of relying on a thin vacuum vessel of the helical reactor. A size of a blanket module for a replacement process and the preferable cooling channel direction under a magnetic field are also discussed.

  6. Blanket for thermonuclear device

    International Nuclear Information System (INIS)

    Ozawa, Yoshihiro; Uda, Tatsuhiko; Maki, Koichi.

    1993-01-01

    The present invention provides a blanket of a thermonuclear device which produces tritium fuels consumed in plasmas while converting neutrons generated in the plasmas into heat energy. That is, zirconium is coated to at least one of neutron breeder pebbles and breeder pebbles, to suppress reaction between them by being in direct contact with each other at a high temperature. Further, fins are attached to a cooling pipe at a pitch smaller than the diameter of both of the pebbles, to prevent direct contact at whole surface of the pebbles and the cooling pipe, which would lower a temperature excessively. The length of the fin is controlled to control the thickness of a helium gas gap. With such constitution, direct contact of neutron breeder pebbles and the breeder pebble which are to be filled and mixed, and tend to react at a high temperature, can be prevented. The temperature of the breeding blanket is reliably prevented from lowering below a tritium emitting temperature. The structure is simplified and the production is facilitated. (I.S.)

  7. Preliminary failure modes and effects analysis on Korean HCCR TBS to be tested in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Mu-Young, E-mail: myahn74@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of); Jin, Hyung Gon; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • Postulated initiating events are identified through failure modes and effects analysis on the current HCCR TBS design. • A set of postulated initiating events are selected for consideration of deterministic analysis. • Accident evolutions on the selected postualted initiating events are qualitatively described for deterministic analysis. - Abstract: Korean Helium cooled ceramic reflector (HCCR) Test blanket system (TBS), which comprises Test blanket module (TBM) and ancillary systems in various locations of ITER building, is operated at high temperature and pressure with decay heat. Therefore, safety is utmost concern in design process and it is required to demonstrate that the HCCR TBS is designed to comply with the safety requirements and guidelines of ITER. Due to complexity of the system with many interfaces with ITER, a systematic approach is necessary for safety analysis. This paper presents preliminary failure modes and effects analysis (FMEA) study performed for the HCCR TBS. FMEA is a systematic methodology in which failure modes for components in the system and their consequences are studied from the bottom-up. Over eighty failure modes have been investigated on the HCCR TBS. The failure modes that have similar consequences are grouped as postulated initiating events (PIEs) and total seven reference accident scenarios are derived from FMEA study for deterministic accident analysis. Failure modes not covered here due to evolving design of the HCCR TBS and uncertainty in maintenance procedures will be studied further in near future.

  8. HIP joining of Be/FMS for the Development of the ITER TBM First Wall

    International Nuclear Information System (INIS)

    Lee, Jung-Suk; Park, Jeong-Yong; Choi, Byung-Kwon; Jeong, Yong-Hwan; Lee, Dong-Won; Hong, Bong-Guen

    2008-01-01

    The test blanket module (TBM) systems for the international thermonuclear experimental reactor (ITER) have been investigated with the aim to check on their safety, reliability and compatibility under a nuclear fusion state, i.e., tritium production and recovery, high-grade heat generation and radiation shielding. ITER participant teams are developing their own TBMs to be tested from a Day-1 operation of the ITER. Korea has also proposed a helium cooled molten lithium (HCML) and helium cooled solid breeder (HCSB) blanket. One of the main issues about the R and D on the TBM is to develop the fabrication technologies for the TBM first wall. The TBM first wall is multilayer components consisting of plasma facing armor materials and structural materials. Beryllium (Be) and ferritic/ martensitic steel (FMS) are the primary candidate alloys for the armor and structural materials of the TBM, respectively. For a successful fabrication of such complex components, the hot isostatic pressing (HIP) method has been considered as the most feasible method. In this study, Be and FMS were joined by HIP techniques, and several interlayer materials had been applied in order to manufacture high strength joints

  9. Challenges of ITER diagnostic electrical services

    Energy Technology Data Exchange (ETDEWEB)

    Encheva, A., E-mail: anna.encheva@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Omran, H. [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); Pérez-Lasala, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain); Alekseev, A. [Efremov Institute, Metallostroy, Doroga na Metallostroy, 3 bld., Saint-Petersburg 196641 (Russian Federation); Arshad, S. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, n° 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain); Bede, O. [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); Bender, S. [Efremov Institute, Metallostroy, Doroga na Metallostroy, 3 bld., Saint-Petersburg 196641 (Russian Federation); Bertalot, L.; Direz, M.-F.; Drevon, J.-M.; Jakhar, S.; Kaschuk, Y.; Komarov, V.; Lebarbier, R. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Lucca, F. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Macklin, B.; Maquet, P. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Marin, A. [L.T. Calcoli SaS, Piazza Prinetti 26/B, 23807 Merate (Italy); Martin, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Mills, S. [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon OX14 1RL (United Kingdom); and others

    2013-10-15

    Highlights: • A brief description of all major components part of diagnostic electrical services has been given. • The integration challenges have been presented. • Design assumptions and requirements for the components have been described. • The design of the conduit/loom and the relevant analysis has been highlighted. -- Abstract: Diagnostic electrical services provide the electrical infrastructure to serve diagnostic components installed on the ITER tokamak. This infrastructure is composed of cables, connectors, cable tails, looms, conduits and feedthroughs. The diagnostic services offer as well a shelter for various instrumentations – vacuum vessel (VV), blanket and divertor. The diagnostic sensors are located on the inner and outer VV wall, on blanket shield modules, divertor cassettes and in port plugs. They require electrical cabling to extract the measurement and, in some cases, to supply electrical power to the sensors. These cables run from the sensors to feedthroughs on the VV and the port interspace or cryostat. The design and integration of all components that are part of diagnostic electrical services is an important engineering activity that is being challenged by the multiple requirements and constraints which have to be satisfied while at the same time delivering the required diagnostic performance. The positioning of the components must correlate not only with their functional specifications but also with the design of the major ITER components. This is a particular challenge because not all systems have reached the same level of design maturity. This paper outlines the engineering challenges of ITER diagnostics electrical services. The environmental conditions inside the VV will have an important impact. Leading risks to these components include poor electrical contact at connectors, the effects of exposure to nuclear irradiation, such as material transmutation, heating, and generation of spurious electrical signals etc., failure due to

  10. Applications of the aqueous self-cooled blanket (ASCB) concept to the Next European Torus (NET)

    International Nuclear Information System (INIS)

    Embrechts, M.J.; Bogaerts, W.; Cardella, A.; Chazalon, M.; Danner, W.; Dinner, P.; Libin, B.

    1987-01-01

    The Aqueous Self-Cooled Blanket Concept (ASCB) leads to a low-technology blanket design that relies on just structural material and coolant with small amounts of lithium compound dissolved in the coolant to provide for tritium production. The application of the ASCB concept in NET is being considered as a driver blanket that would operate at low temperature and low pressure and provide a reliable environment for machine operation during the technology phase. Shielding and tritium production are the primary objectives for such a low-technology blanket. Net tritium breeding is not a design requirement per se for a driver blanket for NET. A DEMO relevant ASCB based blanket test module with (local) tritium self-sufficiency and energy recovery as primary objectives might also be tested in NET if future developments confirm their viability

  11. Progress on DEMO blanket attachment concept with keys and pins

    International Nuclear Information System (INIS)

    Vizvary, Zsolt; Iglesias, Daniel; Cooper, David; Crowe, Robert; Riccardo, Valeria

    2015-01-01

    Highlights: • DEMO blanket attachment system with keys and pins (without using bolts). • Blanket segments are preloaded by progressively designed springs. • Blanket back plate flexibility has a major impact on spring design. • Mechanical analysis of other components indicates no unresolvable issues. • Thermal analysis indicates acceptable temperatures for the support system. - Abstract: The blanket attachment has to cope with gravity, thermal and electromagnetic loads, also it has to be installed and serviced by remote handling. Pre-stressed components suffer from stress relaxation in irradiated environments such as DEMO. To circumvent this problem pre-stressed component should be either avoided or shielded, and where possible keys and pins should be used. This strategy has been proposed for the DEMO multi-module segments (MMS). The blanket segments are held by two tapered keys each, designed to allow thermal expansions while providing contact with the vacuum vessel and to resist the poloidal and radial moments the latter being dominant at 9.1 MNm inboard and 15 MNm outboard. On the top of the blanket segment there is a pin which provides vertical support. At the bottom another vertical support has to lock them in position after installation and manage the pre-load on the segments. The pre-load is required to deal with the electromagnetic loads during disruption. This is provided by a set of springs, which require shielding as they are preloaded. These are sized to cope with the force (3 MN inboard, 1.4 MN outboard) due to halo currents and the toroidal moment which can reverse. Calculations show that the flexibility of the blanket segment itself plays a significant role in defining the required support system. The blanket segment acts as a preloaded spring and it has to be part of the attachment design as well.

  12. Occupational Radiation Exposure Analysis of US ITER DCLL TBM

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad J; Cadwallader, Lee C; Dagher, Mohamad

    2007-08-01

    This report documents an Occupational Radiation Exposure (ORE) analysis that was performed for the US International Thermonuclear Experimental Reactor (ITER) Dual Coolant Lead Lithium (DCLL) Test Blanket Module (TBM). This analysis was performed with the QADMOD dose code for anticipated maintenance activities for this TBM concept and its ancillary systems. The QADMOD code was used to model the PbLi cooling loop of this TBM concept by specifying gamma ray source terms that simulated radioactive material within the piping, valves, heat exchanger, permeator, pump, drain tank, and cold trap of this cooling system. Estimates of the maintenance tasks that will have to be performed and the time required to perform these tasks where developed based on either expert opinion or on industrial maintenance experience for similar technologies. This report details the modeling activity and the calculated doses for the maintenance activities envisioned for the US DCLL TBM.

  13. Updated neutronics analyses of a water cooled ceramic breeder blanket for the CFETR

    Science.gov (United States)

    Xiaokang, ZHANG; Songlin, LIU; Xia, LI; Qingjun, ZHU; Jia, LI

    2017-11-01

    The water cooled ceramic breeder (WCCB) blanket employing pressurized water as a coolant is one of the breeding blanket candidates for the China Fusion Engineering Test Reactor (CFETR). Some updating of neutronics analyses was needed, because there were changes in the neutronics performance of the blanket as several significant modifications and improvements have been adopted for the WCCB blanket, including the optimization of radial build-up and customized structure for each blanket module. A 22.5 degree toroidal symmetrical torus sector 3D neutronics model containing the updated design of the WCCB blanket modules was developed for the neutronics analyses. The tritium breeding capability, nuclear heating power, radiation damage, and decay heat were calculated by the MCNP and FISPACT code. The results show that the packing factor and 6Li enrichment of the breeder should both be no less than 0.8 to ensure tritium self-sufficiency. The nuclear heating power of the blanket under 200 MW fusion power reaches 201.23 MW. The displacement per atom per full power year (FPY) of the plasma-facing component and first wall reach 0.90 and 2.60, respectively. The peak H production rate reaches 150.79 appm/FPY and the peak He production reaches 29.09 appm/FPY in blanket module #3. The total decay heat of the blanket modules is 2.64 MW at 1 s after shutdown and the average decay heat density can reach 11.09 kW m-3 at that time. The decay heat density of the blanket modules slowly decreases to lower than 10 W m-3 in more than ten years.

  14. Development of blanket box structure fabrication technology

    International Nuclear Information System (INIS)

    Mohri, K.; Sato, S.; Kawaguchi, I.; Sato, K.; Kuroda, T.; Hashimoto, T.; Sato, S.; Takatsu, H.

    1995-01-01

    Fabrication studies have been performed for the first wall and blanket box structure in the fusion experimental reactor designed in Japan. The hot isostatic pressing technique has been proposed as one of the most promising candidate methods for fabricating the first wall. This paper describes the trial fabrication of a half-scale mock-up for part of an outboard module near the midplane, without the internal structure of a breeding region, to investigate its feasibility and to clarify technological issues associated with the proposed fabrication technologies. (orig.)

  15. Neutron cameras for ITER

    International Nuclear Information System (INIS)

    Johnson, L.C.; Barnes, C.W.; Batistoni, P.

    1998-01-01

    Neutron cameras with horizontal and vertical views have been designed for ITER, based on systems used on JET and TFTR. The cameras consist of fan-shaped arrays of collimated flight tubes, with suitably chosen detectors situated outside the biological shield. The sight lines view the ITER plasma through slots in the shield blanket and penetrate the vacuum vessel, cryostat, and biological shield through stainless steel windows. This paper analyzes the expected performance of several neutron camera arrangements for ITER. In addition to the reference designs, the authors examine proposed compact cameras, in which neutron fluxes are inferred from 16 N decay gammas in dedicated flowing water loops, and conventional cameras with fewer sight lines and more limited fields of view than in the reference designs. It is shown that the spatial sampling provided by the reference designs is sufficient to satisfy target measurement requirements and that some reduction in field of view may be permissible. The accuracy of measurements with 16 N-based compact cameras is not yet established, and they fail to satisfy requirements for parameter range and time resolution by large margins

  16. In-Vessel Coil Material Failure Rate Estimates for ITER Design Use

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2013-01-01

    The ITER international project design teams are working to produce an engineering design for construction of this large tokamak fusion experiment. One of the design issues is ensuring proper control of the fusion plasma. In-vessel magnet coils may be needed for plasma control, especially the control of edge localized modes (ELMs) and plasma vertical stabilization (VS). These coils will be lifetime components that reside inside the ITER vacuum vessel behind the blanket modules. As such, their reliability is an important design issue since access will be time consuming if any type of repair were necessary. The following chapters give the research results and estimates of failure rates for the coil conductor and jacket materials to be used for the in-vessel coils. Copper and CuCrZr conductors, and stainless steel and Inconel jackets are examined.

  17. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    International Nuclear Information System (INIS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-01-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  18. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Science.gov (United States)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-04-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  19. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    International Nuclear Information System (INIS)

    Bazylev, B.; Igitkhanov, Yu.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2011-01-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  20. Remote maintenance development for ITER

    International Nuclear Information System (INIS)

    Tada, Eisuke; Shibanuma, Kiyoshi

    1997-01-01

    This paper both describes the overall design concept of the ITER remote maintenance system, which has been developed mainly for use with in-vessel components such as divertor and blanket, and outlines of the ITER R and D program, which has been established to develop remote handling equipment/tools and radiation hard components. In ITER, the reactor structures inside cryostat have to be maintained remotely because of activation due to DT operation. Therefore, remote-handling technology is fundamental, and the reactor-structure design must be made consistent with remote maintainability. The overall maintenance scenario and design concepts of the required remote handling equipment/tools have been developed according to their maintenance classification. Technologies are also being developed to verify the feasibility of the maintenance design and include fabrication and testing of a fullscale remote-handling equipment/tools for in-vessel maintenance. (author)

  1. Blanket comparison and selection study. Volume II

    International Nuclear Information System (INIS)

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies

  2. Blanket comparison and selection study. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This volume contains extensive data for the following chapters: (1) solid breeder tritium recovery, (2) solid breeder blanket designs, (3) alternate blanket concept screening, and (4) safety analysis. The following appendices are also included: (1) blanket design guidelines, (2) power conversion systems, (3) helium-cooled, vanadium alloy structure blanket design, (4) high wall loading study, and (5) molten salt safety studies. (MOW)

  3. Progress of ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: Kimihiro.Ioki@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Bayon, A. [F4E, c/ Josep Pla, No. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC “Sintez”, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector 25, Gandhinagar 382025 (India); Preble, J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2013-10-15

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure.

  4. Progress of ITER vacuum vessel

    International Nuclear Information System (INIS)

    Ioki, K.; Bayon, A.; Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B.; Kim, B.C.; Kuzmin, E.; Le Barbier, R.; Martinez, J.-M.; Pathak, H.; Preble, J.; Sa, J.W.; Terasawa, A.; Utin, Yu.

    2013-01-01

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure

  5. A scoping nucleonics study for fusion high-temperature blanket designs

    International Nuclear Information System (INIS)

    Cheng, E.T.; Wong, C.P.C.

    1983-01-01

    A scoping study was performed to explore tritium breeding and energy-temperature splits in various blanket concepts for high-temperature process heat. Temperature limits for the lithium materials necessitate two blanket zones. One delivers heat at moderate temperatures ( 0 C) and breeds tritium. The other is a nonbreeding zone that produces heat at high temperatures. It is found that a system where all blanket modules breed tritium delivers more high-temperature heat than one where only some of the blanket modules produce tritium. Of those considered, a design where the high-temperature zone is placed between two breeding zones produces the highest fraction of high-temperature heat. When liquid lithium, Li 7 Pb 2 and Li 2 O tritium breeding materials are employed with two breeding zones, a tritium breeding ratio of 1.1 can be achieved while delivering 30 to 40% of the blanket heat at high temperature

  6. Analysis of ITER upper port plug remote handling maintenance scenarios

    International Nuclear Information System (INIS)

    Koning, J.F.; Baar, M.R. de; Elzendoorn, B.S.Q.; Heemskerk, C.J.M.; Ronden, D.M.S.; Schuth, W.J.

    2012-01-01

    Highlights: ► Remote Handling Study Centre: providing RH compatibility analysis. ► Simulation: virtual reality including kinematics and realtime physics simulator. ► Applied on analysis of RH compatibility of Upper Launcher component replacement. ► Resulting in lowered maintenance procedure time and lessons learned. - Abstract: The ITER tokamak has a modular design, with port plugs, blanket modules and divertor cassettes. This set-up allows for maintenance of diagnostics, heating systems and first wall elements. The maintenance can be done in situ, or in the Hot Cell. Safe and effective remote handling (RH) will be ensured by the RH requirements and standards. Compliance is verified through remote handling compatibility assessments at the ITER Design Review milestones. The Remote Handling Study Centre at FOM Institute DIFFER is created to study ITER RH maintenance processes at different levels of complexity, from relatively simple situational awareness checks using snap-shots in the CAD system, time studies using virtual reality (VR) animations, to extensive operational sequence validation with multiple operators in real-time. The multi-operator facility mimics an RH work-cell as presently foreseen in the ITER RH control room. Novel VR technology is used to create a realistic setting in which a team of RH operators can interact with virtual ITER environments. A physics engine is used to emulate real-time contact interaction as to provide realistic haptic feed-back. Complex interactions between the RH operators and the control room system software are tested. RH task performance is quantified and operational resource usage estimated. The article provides a description and lessons learned from a recent study on replacement of the Steering Mirror Assembly on the ECRH (Electron Cyclotron Resonance Heating) Upper Launcher port plug.

  7. ITER Licensing Process Follow-up: A Part of K-DEMO Safety Study

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myoungsuk; Oh, Kyemin; Heo, Gyunyoung [Kyung Hee Univ., Yongin (Korea, Republic of); Lee, Hyoen Gon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The fusion DEMO program of Korea (referred as K-DEMO) has been progressed since 2009 to take advantages of an early mover, while carrying out scientific researches on KSTAR and International Thermonuclear Experimental Reactor (ITER). The K-DEMO program is a huge program and is in second phase planed for R and D from 2012 to 2021. One of the big part of this program, the fusion regulation and licensing in South Korea, can be classified into following three stages: the licensing of the KSTAR classified to a radiation generating device on the basis of the existing nuclear regulations, the verification of the design of the Test Blanket Module (TBM) and minimization of occupational irradiation damages due to tritium behaviors for ITER, and fundamental safety analysis, as a part of K-DEMO program with domestic universities funded by National Fusion Research Institute of Korea (NFRI). Kyung Hee University has studied safety analysis of K-DEMO since 2010, and surveyed ITER safety regulation and licensing process since 2012. In 2013, NFRI has carried out 'Development, Operation, and Management of core technologies for ITER' to secure the core original technologies and expend the base of domestic specialist at a fusion area by pursuing and developing non-supply technologies for ITER.

  8. Iterating skeletons

    DEFF Research Database (Denmark)

    Dieterle, Mischa; Horstmeyer, Thomas; Berthold, Jost

    2012-01-01

    a particular skeleton ad-hoc for repeated execution turns out to be considerably complicated, and raises general questions about introducing state into a stateless parallel computation. In addition, one would strongly prefer an approach which leaves the original skeleton intact, and only uses it as a building...... block inside a bigger structure. In this work, we present a general framework for skeleton iteration and discuss requirements and variations of iteration control and iteration body. Skeleton iteration is expressed by synchronising a parallel iteration body skeleton with a (likewise parallel) state......Skeleton-based programming is an area of increasing relevance with upcoming highly parallel hardware, since it substantially facilitates parallel programming and separates concerns. When parallel algorithms expressed by skeletons involve iterations – applying the same algorithm repeatedly...

  9. Preliminary Analysis for K-DEMO Water Cooled Breeding Blanket Using MARS-KS

    International Nuclear Information System (INIS)

    Lee, Jeong-Hun; Kim, Geon-Woo; Park, Goon-Cherl; Cho, Hyoung-Kyu; Im, Kihak

    2014-01-01

    In the present study, thermal-hydraulic analyses for the blanket concept are being conducted using the Multidimensional Analysis of Reactor Safety (MARSKS) code, which has been used for the safety analysis of a pressurized water reactor. The purposes of the analyses are to verify the applicability of the code for the proposed blanket system, to investigate the departure of nucleate boiling (DNB) occurrence during the normal and transient conditions, and to extend the capability of MARS-KS to the entire blanket system which includes a few hundreds of single blanket modules. In this paper, the thermal analysis results of the proposed blanket design using the MARS-KS code are presented for the normal operation and an accident condition of a reduced coolant flow rate. Afterwards, the plan for the whole blanket system analysis using MARSKS is introduced and the result of the first trial for the multiple blanket module analysis is summarized. In the present study, thermal-hydraulic analyses for the blanket concept were conducted using the MARS-KS code for a single blanket module. By comparing the MARS calculation results with the CFD analysis results, it was found that MARS-KS can be applied for the blanket thermal analysis with less number of computational meshes. Moreover, due to its capability on the two-phase flow analysis, it can be used for the transient or accident simulation where a phase change may be resulted in. In the future, the MARS-KS code will be applied for the anticipated transient and design based accident analyses. The investigation of the DNB occurrence during the normal and transient conditions will be of special interest of the analysis using it. After that, a methodology to simulate the entire blanket system was proposed by using the DLL version of MARS-KS. A supervisor program, which controls the multiple DLL files, was developed for the common header modelling. The program explicitly determines the flow rates of each module which can equalize

  10. Dose and image quality in low-dose CT for urinary stone disease: added value of automatic tube current modulation and iterative reconstruction techniques

    International Nuclear Information System (INIS)

    Soenen, Olivier; Balliauw, Christophe; Oyen, Raymond; Zanca, Federica

    2017-01-01

    The aim of this study was to compare dose and image quality (IQ) of a baseline low-dose computed tomography (CT) (fix mAs) vs. an ultra-low-dose CT (automatic tube current modulation, ATCM) in patients with suspected urinary stone disease and to assess the added value of iterative reconstruction. CT examination was performed on 193 patients (103 baseline low-dose, 90 ultra-low-dose). Filtered back projection (FBP) was used for both protocols, and Sinogram Affirmed Iterative Reconstruction (SAFIRE) was used for the ultra-low-dose protocol only. Dose and ureter stones information were collected for both protocols. Subjective IQ was assessed by two radiologists scoring noise, visibility of the ureter and overall IQ. Objective IQ (contrast-to-noise ratio, CNR) was assessed for the ultra-low-dose protocol only (FBP and SAFIRE). The ultra-low-dose protocol (ATCM) showed a 22% decrease in mean effective dose ( p < 0.001) and improved visibility of the pelvic ureter (p = 0.02). CNR was higher for SAFIRE (p < 0.0001). SAFIRE improves the objective IQ, but not the subjective IQ for the chosen clinical task. (authors)

  11. Predictive capabilities, analysis and experiments for Fusion Nuclear Technology, and ITER R D

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This report discusses the following topics on ITER research and development: trituim modeling; liquid metal blanket modeling; free surface liquid metal studies; and thermal conductance and thermal control experiments and modeling. (LIP)

  12. The evolution of US helium-cooled blankets

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Schultz, K.R.; Cheng, E.T.

    1991-01-01

    This paper reviews and compares four helium-cooled fusion reactor blanket designs. These designs represent generic configurations of using helium to cool fusion reactor blankets that were studied over the past 20 years in the United States of America (US). These configurations are the pressurized module design, the pressurized tube design, the solid particulate and gas mixture design, and the nested shell design. Among these four designs, the nested shell design, which was invented for the ARIES study, is the simplest in configuration and has the least number of critical issues. Both metallic and ceramic-composite structural materials can be used for this design. It is believed that the nested shell design can be the most suitable blanket configuration for helium-cooled fusion power and experimental reactors. (orig.)

  13. High temperature blankets for the production of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Steinberg, M.; Fillo, J.; Makowitz, H.

    1977-01-01

    The application of very high temperature blankets to improved efficiency of electric power generation and production of H 2 and H 2 based synthetic fuels is described. The blanket modules have a low temperature (300 to 400 0 C) structure (SS, V, Al, etc.) which serves as the vacuum/coolant pressure boundary, and a hot (>1000 0 C) thermally insulated interior. Approximately 50 to 70% of the fusion energy is deposited in the hot interior because of deep penetration by high energy neutrons. Separate coolant circuits are used for the two temperature zones: water for the low temperature structure, and steam or He for the hot interior. Electric generation efficiencies of approximately 60% and H 2 production efficiencies of approximately 50 to 70%, depending on design, are projected for fusion reactors using these high temperature blankets

  14. The design of the ITER first wall panels

    Energy Technology Data Exchange (ETDEWEB)

    Mitteau, R., E-mail: raphael.mitteau@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Calcagno, B.; Chappuis, P.; Eaton, R.; Gicquel, S. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Chen, J. [Southwestern Institute of Physics, Huangjing Road, Chengdu 610225 (China); Labusov, A. [Efremov Research Institute, 189631 St. Petersburg (Russian Federation); Martin, A.; Merola, M.; Raffray, R. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul lez Durance (France); Ulrickson, M. [Sandia National Laboratory, Albuquerque, NM (United States); Zacchia, F. [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2013-10-15

    Highlights: • The ITER blanket is in the final stage of design completion. • Issues raised about the blanket heat loads and remote handling strategy are addressed, while integrating the in-vessel coils. • Key design justifications are presented, followed by a summary of the current status of the manufacturing plan and R and D activities. -- Abstract: The ITER blanket is in the final stage of design completion. The issues raised during the 2007 ITER design review about the first wall (FW) heat loads and remote handling strategy have been addressed, while integrating the recently confirmed in-vessel coils. This paper focuses on the FW design, which is nearing completion. Key design justifications are presented, followed by a summary of the current status of the manufacturing plan and R and D activities.

  15. ITER safety

    International Nuclear Information System (INIS)

    Raeder, J.; Piet, S.; Buende, R.

    1991-01-01

    As part of the series of publications by the IAEA that summarize the results of the Conceptual Design Activities for the ITER project, this document describes the ITER safety analyses. It contains an assessment of normal operation effluents, accident scenarios, plasma chamber safety, tritium system safety, magnet system safety, external loss of coolant and coolant flow problems, and a waste management assessment, while it describes the implementation of the safety approach for ITER. The document ends with a list of major conclusions, a set of topical remarks on technical safety issues, and recommendations for the Engineering Design Activities, safety considerations for siting ITER, and recommendations with regard to the safety issues for the R and D for ITER. Refs, figs and tabs

  16. Status of fusion reactor blanket design

    International Nuclear Information System (INIS)

    Smith, D.L.; Sze, D.K.

    1986-02-01

    The recent Blanket Comparison and Selection Study (BCSS), which was a comprehensive evaluation of fusion reactor blanket design and the status of blanket technology, serves as an excellent basis for further development of blanket technology. This study provided an evaluation of over 130 blanket concepts for the reference case of electric power producing, DT fueled reactors in both Tokamak and Tandem Mirror (TMR) configurations. Based on a specific set of reactor operating parameters, the current understanding of materials and blanket technology, and a uniform evaluation methodology developed as part of the study, a limited number of concepts were identified that offer the greatest potential for making fusion an attractive energy source

  17. The blanket interface to TSTA

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Grimm, T.L.; Sze, D.K.; Anderson, J.L.; Bartlit, J.R.; Naruse, Y.; Yoshida, H.

    1988-01-01

    The requirements of tritium technology are centered in three main areas, (1) fuel processing, (2) breeder tritium extraction, and (3) tritium containment. The Tritium Systems Test Assembly (TSTA) now in operation at Los Alamos National Laboratory (LANL) is dedicated to developing and demonstrating the tritium technology for fuel processing and containment. TSTA is the only fusion fuel processing facility that can operate in a continuous closed-loop mode. The tritium throughput of TSTA is 1000 g/d. However, TSTA does not have a blanket interface system. The authors have initiated a study to define a Breeder Blanket Interface (BBIO) for TSTA. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. Various methods of tritium recovery from liquid lithium were assessed: yttrium gettering, permeation windows, and molten salt extraction. The authors' evaluation concluded that the best method was molten salt extraction

  18. Fusion blanket inherent safety assessment

    International Nuclear Information System (INIS)

    Sze, D.K.; Jung, J.; Cheng, E.T.

    1986-01-01

    Fusion has significant potential safety advantages. There is a strong incentive for designing fusion plants to ensure that inherent safety will be achieved. Accordingly, both the Tokamak Power Systems Studies and MINIMARS have identified inherent safety as a design goal. A necessary condition is for the blanket to maintain its configuration and integrity under all credible accident conditions. A main problem is caused by afterheat removal in an accident condition. In this regard, it is highly desirable to achieve the required level of protection of the plant capital investment and limitation of radioactivity release by systems that rely only on inherent properties of matter (e.g., thermal conductivity, specific heat, etc.) and without the use of active safety equipment. This paper assesses the conditions under which inherent safety is feasible. Three types of accident conditions are evaluated for two blankets. The blankets evaluated are a self cooled vanadium/lithium blanket and a self-cooled vanadium/Flibe blanket. The accident conditions evaluated are: (1) loss-of-flow accident; (2) loss-of-coolant accident (LOCA); and (3) partial loss-of-coolant accident

  19. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Pereslavtsev, Pavel, E-mail: pavel.pereslavtsev@kit.edu [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, Christian [EUROfusion – Programme Management Unit, Boltzmannstrasse 2, 85748 Garching (Germany); Fischer, Ulrich [Karlsruhe Institute for Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, {sup 6}Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  20. Neutronic analyses of design issues affecting the tritium breeding performance in different DEMO blanket concepts

    International Nuclear Information System (INIS)

    Pereslavtsev, Pavel; Bachmann, Christian; Fischer, Ulrich

    2016-01-01

    Highlights: • Realistic 3D MCNP model based on the CAD engineering model of DEMO. • Automated procedure for the generation and arrangement of the blanket modules for different DEMO concepts: HCPB, HCLL, WCLL, DCLL. • Several parameters affecting tritium breeding ratio (TBR) were investigated. • A set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts. - Abstract: Neutronic analyses were performed to assess systematically the tritium breeding ratio (TBR) variations in the DEMO for the different blanket concepts HCPB, HCLL, WCLL and DCLL DEMOs due to modifications of the blanket configurations. A dedicated automated procedure was developed to fill the breeding modules in the common generic model in correspondence to the different concepts. The TBR calculations were carried out using the MCNP5 Monte Carlo code. The following parameters affecting the global TBR were investigated: TBR poloidal distribution, radial breeder zone depth, 6 Li enrichment, steel content in the breeder modules, poloidal segmentation of the breeder blanket volume, size of gaps between blankets, thickness of the first wall and of the tungsten armour. Based on the results a set of practical guidelines was prepared for the designers developing the individual breeding blanket concepts with the goal to achieve the required tritium breeding performance in DEMO.

  1. ITER isotope separation system conceptual design description

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Dinner, P.J.; Murdoch, D.K.; Leger, D.

    1989-05-01

    This paper presents integrated Isotope Separation System (ISS) designs for ITER based on requirements for plasma exhaust processing, neutral beam injection deuterium cleanup, pellet injector propellant detritiation, waste water detritiation, and breeding blanket detritiation. Specific ISS designs are developed for a machine with an aqueous lithium salt blanket (ALSB) and a machine with a solid ceramic breeding blanket (SBB). The differences in the ISS designs arising from the different blanket concepts are highlighted. It is found that the ISS designs for the two blanket concepts considered are very similar, with the only major difference being the requirements for an additional large water distillation column for ALSB water detritiation. The fact that the cryogenic distillation portions of the two ISS designs are almost identical, indicates that the cryogenic distillation cascade design is very flexible and can readily accommodate significant changes in processing requirements without requiring significant redesign. The front-end process for extraction of tritium from the ALSB is based on flash evaporation to separate the blanket water from the dissolved Li salt, with the tritiated water then being fed to the ISS for detritiation. This technology is considered to be relatively well understood in comparison to front-end processes for SBB detritiation. In the design of the cryogenic distillation portion of the ISS, it was found that the tritium inventory could be very large (> 600g) unless specific design measures were taken to reduce it. In the designs which are presented, the tritium inventory has been reduced to about 180g, which is less than the ITER single-failure release limit of 200g. Further design optimization and isolation of components is expected to reduce the inventory further

  2. Performance test of micro-fission chambers for in-vessel neutron monitoring of ITER

    International Nuclear Information System (INIS)

    Yamauchi, Michinori; Nishitani, Takeo; Ochiai, Kentaro; Morimoto, Yuichi; Hori, Jun-ichi; Ebisawa, Katsuyuki; Kasai, Satoshi

    2002-03-01

    A micro-fission chamber with 12 mg UO 2 and a dummy chamber without uranium were fabricated and the performance was tested. They are designed to be installed inside the vacuum vessel of the compact ITER (ITER-FEAT) for neutron monitoring. The vacuum leak rate of the dummy chamber with MI cable, resistances of chambers between central conductor and outer sheath, and mechanical strength up to 50G acceleration were confirmed to meet the design criteria. The gamma-ray sensitivity was measured for the dummy chamber with the 60 Co gamma-ray irradiation facility at JAERI Takasaki. The output signals for gamma-rays in Campbelling mode were estimated to be less than 0.1% of those by neutrons at the location behind the blanket module in ITER-FEAT. The detector response for 14 MeV neutrons was investigated with the FNS facility. Excellent linearity between count rates, square of Campbelling voltage and neutron fluxes was confirmed in the temperature range from 20degC (room) to 250degC. However, a positive dependence of 14 MeV neutron count rates on temperature was observed, which might be caused by the increase in the pulse height with temperature rise. Effects of a change of surrounding materials were evaluated by the sensitivity measurements of the micro-fission chamber inserted into the shielding blanket mock-up. The sensitivity was enhanced by slow-downed neutrons, which agreed with the calculation result by MCNP-4C code. As a result, it was concluded that the developed micro-fission chamber is applicable for ITER-FEAT. (author)

  3. Development and trial manufacturing of 1/2-scale partial mock-up of blanket box structure for fusion experimental reactor

    International Nuclear Information System (INIS)

    Hashimoto, Toshiyuki; Takatsu, Hideyuki; Sato, Satoshi

    1994-07-01

    Conceptual design of breeding blanket has been discussed during the CDA (Conceptual Design Activities) of ITER (International Thermonuclear Experimental Reactor). Structural concept of breeding blanket is based on box structure integrated with first wall and shield, which consists of three coolant manifolds for first wall, breeding and shield regions. The first wall must have cooling channels to remove surface heat flux and nuclear heating. The box structure includes plates to form the manifolds and stiffening ribs to withstand enormous electromagnetic load, coolant pressure and blanket internal (purge gas) pressure. A 1/2-scale partial model of the blanket box structure for the outboard side module near midplane is manufactured to estimate the fabrication technology, i.e. diffusion bonding by HIP (Hot Isostatic Pressing) and EBW (Electron Beam Welding) procedure. Fabrication accuracy is a key issue to manufacture first wall panel because bending deformation during HIP may not be small for a large size structure. Data on bending deformation during HIP was obtained by preliminary manufacturing of HIP elements. For the shield structure, it is necessary to reduce the welding strain and residual stress of the weldment to establish the fabrication procedure. Optimal shape of the parts forming the manifolds, welding locations and welding sequence have been investigated. In addition, preliminary EBW tests have been performed in order to select the EBW conditions, and fundamental data on built-up shield have been obtained. Especially, welding deformation by joining the first wall panel to the shield has been measured, and total deformation to build-up shield by EBW has been found to be smaller than 2 mm. Consequently, the feasibility of fabrication technologies has been successfully demonstrated for a 1m-scaled box structure including the first wall with cooling channels by means of HIP, EBW and TIG (Tungsten Inert Gas arc)-welding. (author)

  4. Thermo-mechanical study of high heat flux component mock-ups for ITER TBM

    Energy Technology Data Exchange (ETDEWEB)

    Bonelli, Flavia [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (Germany); Dipartimento Energia, Politecnico di Torino (Italy); Boccaccini, Lorenzo Virgilio, E-mail: lorenzo.boccaccini@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (Germany); Kunze, André; Maione, Ivan Alessio [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology (Germany); Savoldi, Laura; Zanino, Roberto [Dipartimento Energia, Politecnico di Torino (Italy)

    2015-10-15

    Highlights: • Infrared radiation heaters for test of plasma facing component available at KIT. • Numerical model developed and validated to check uniformity of heat flux. • Thermo-mechanical calculations performed on a mock-up of the HCPB TBM FW. • Assessment done of representativity of stress conditions for the ITER TBMs. - Abstract: Commercial infrared heaters have been proposed to be used in the HELOKA facility under construction at Karlsruhe Institute of Technology (KIT) to test a mock-up of the first wall (FW), called thermo-cycle mock-up (TCM) plate, under stress loading comparable to those experienced by the test blanket modules (TBMs) in ITER. Two related issues are analyzed in this paper, in relation to the ongoing European project aimed at the design of the two EU TBMs: (1) the possibility to reproduce, by means of those heaters, high heat flux loading conditions on the TCM plate similar to those expected on the ITER TBMs, and (2) the thermo-mechanical analysis of the TCM itself, in order to define a suitable choice of experimental parameters and mechanical constraints leading to a relevant stress condition. A suitable heater model is developed and validated against experimental data from an ad-hoc test campaign. A thermo-mechanical study of the TCM plate is presented, showing that the structure is able to withstand high thermal loads, even in the most constrained case, reaching stress levels comparable to the ITER TBM.

  5. NOEL: a no-leak fusion blanket concept

    International Nuclear Information System (INIS)

    Powell, J.R.; Yu, W.S.; Fillo, J.A.; Horn, F.L.; Makowitz, H.

    1980-01-01

    Analysis and tests of a no-leak fusion blanket concept (NOEL-NO External Leak) are described. Coolant cannot leak into the plasma chamber even if large through-cracks develop in the first wall. Blanket modules contain a two-phase material, A, that is solid (several cm thick) on the inside of the module shell, and liquid in the interior. The solid layer is maintained by imbedded tubes carrying a coolant, B, below the freezing point of A. Most of the 14-MeV neutron energy is deposited as heat in the module interior. The thermal energy flow from the module interior to the shell keeps the interior liquid. Pressure on the liquid A interior is greater than the pressure on B, so that B cannot leak out if failures occur in coolant tubes. Liquid A cannot leak into the plasma chamber through first wall cracks because of the intervening frozen layer. The thermal hydraulics and neutronics of NOEL blankets have been investigated for various metallic (e.g., Li, Pb 2 , LiPb, Pb) and fused salt choices for material A

  6. Breeding blankets for thermonuclear reactors

    International Nuclear Information System (INIS)

    Rocaboy, Alain.

    1982-06-01

    Materials with structures suitable for this purpose are studied. A bibliographic review of the main solid and liquid lithiated compounds is then presented. Erosion, dimensioning and maintenance problems associated with the limiter and the first wall of the reactor are studied from the point of view of the constraints they impose on the design of the blankets. Detailed studies of the main solid and liquid blanket concepts enable the best technological compromises to be determined for the indispensable functions of the blanket to be assured under acceptable conditions. Our analysis leads to four classes of solution, which cannot at this stage be considered as final recommendations, but which indicate what sort of solutions it is worthwhile exploring and comparing in order to be in a position to suggest a realistic blanket at the time when plasma control is sufficiently good for power reactors to be envisaged. Some considerations on the general architecture of the reactor are indicated. Energy storage with pulsed reactors is discussed in the appendix, and a first approach made to minimizing the total tritium recovery [fr

  7. Geometric feasibility of flexible cask transportation system for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Lima, P.; Ribeiro, M.I.; Aparicio, P. [Instituto Superior Tecnico-Instituto de Sistemas e Robotica, Lisboa (Portugal)

    1998-07-01

    One of the remote operations that has to be carried out in the International Thermonuclear Experimental Reactor (ITER) is the transportation of sealed casks between the various ports of the Tokamak Building (TB) and the Hot Cell Building (HCB). The casks may contain different in-vessel components (e.g. blanket modules, divertors) and are designed for a maximum load of about 80 ton. To improve the safety and flexibility of ITER Remote Handling (RH) transport vehicles, the cask is not motorized by itself, but instead, a motorized platform carrying the cask was proposed. This paper addresses the geometric feasibility of the flexible cask transportation system, taking into account the vehicle kinematics. The feasibility issues studied include planning smooth paths to increase safety, the discussion of building constraints by the evaluation of the vehicle spanned areas when following a planned path, and the analysis of the clearance required to remove the platform from underneath the cask at different possible failure locations. Simulation results are presented for the recommended trajectory, the spanned area and the rescue manoeuvres at critical locations along the path. (authors)

  8. ITER hydrogen isotope separation system conceptual design description

    International Nuclear Information System (INIS)

    Busigin, A.; Sood, S.K.; Kveton, O.K.; Dinner, P.J.; Murdoch, D.K.; Leger, D.

    1990-01-01

    This paper presents integrated hydrogen Isotope Separation System (ISS) designs for ITER based on requirements for plasma exhaust processing, neutral beam injection deuterium cleanup, pellet injector propellant detritiation, waste water detritiation, and breeding blanket detritiation. Specific ISS designs are developed for a machine with an aqueous lithium salt blanket (ALSB) and a machine with a solid ceramic breeding blanket (SBB). The differences in the ISS designs arising from the different blanket concepts are highlighted. It is found that the ISS designs for the two blanket concepts considered are very similar with the only major difference being the requirement for an additional large water distillation column for ALSB water detritiation. The extraction of tritium from the ALSB is based on flash evaporation to separate the blanket water from the dissolved Li salt, with the tritiated water then being fed to the ISS for detritiation. This technology is considered to be relatively well understood in comparison to front-end processes for SBB detritiation. In the design of the cryogenic distillation portion of the ISS, it was found that the tritium inventory could be very large (> 600 g) unless specific design measures were taken to reduce it. In the designs which are presented, the tritium inventory has been reduced to about 180 g, which is less than the ITER single-failure release limit of 200 g. Further design optimization and isolation of components is expected to reduce the inventory further. (orig.)

  9. Measurement and control system for ITER remote maintenance equipment

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Kiyoshi; Kakudate, Satoshi; Takeda, Nobukazu; Takiguchi, Yuji; Akou, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    ITER in-vessel components such as blankets and divertors are categorized as scheduled maintenance components because they are subjected to severe plasma heat and particle loads. Blanket maintenance requires remote handling equipment and tools able to handle Heavy payloads of about 4 tons within a 2 mm precision tolerance. Divertor maintenance requires remote replacement of 60 cassettes with a dead weight of about 25 tons each. In the ITER R and D program, full-scale remote handling equipment for blanket and divertor maintenance has been designed and assembled for demonstration tests. This paper reviews the measurement and control system developed for full-scale remote handling equipment, the Japan Home Team contribution. (author)

  10. Mirror hybrid reactor blanket and power conversion system conceptual design

    International Nuclear Information System (INIS)

    Schultz, K.R.; Backus, G.A.; Baxi, C.B.; Dee, J.B.; Estrine, E.A.; Rao, R.; Veca, A.R.

    1976-01-01

    The conceptual design of the blanket and power conversion system for a gas-cooled mirror hybrid fusion-fission reactor is presented. The designs of the fuel, blanket module and power conversion system are based on existing gas-cooled fission reactor technology that has been developed at General Atomic Company. The uranium silicide fuel is contained in Inconel-clad rods and is cooled by helium gas. The fuel is contained in 16 spherical segment modules which surround the fusion plasma. The hot helium is used to raise steam for a conventional steam cycle turbine generator. The details of the method of support for the massive blanket modules and helium ducts remain to be determined. Nevertheless, the conceptual design appears to be technically feasible with existing gas-cooled technology. A preliminary safety analysis shows that with the development of a satisfactory method of primary coolant circuit containment and support, the hybrid reactor could be licensed under existing Nuclear Regulatory Commission regulations

  11. NOEL-A no-leak fusion blanket concept

    International Nuclear Information System (INIS)

    Yu, W.S.; Powell, J.R.; Fillo, J.; Horn, F.; Makowitz, H.

    1979-01-01

    Thermal analysis and tests of a non-leak fusion blanket concept (NOEL-No External Leak) are presented. The NOEL blanket module operates with a material A that is present in both its solid and liquid phases. The solid phase zone of material A is maintained as a thick lining on the inside of blanket module shells (which are made of stainless steel, aluminum or any other structural metal and serve as the first wall) by cooling tubes embedded in the solid zone. These metal tubes carry a liquid or gas coolant B at a temperature below the melting point of A. Most of the 14 MeV neutron energy is deposited as heat in the module interior, and the temperature increase from the shell to the interior due to heat flow is sufficient to keep the interior liquid. Pressure on the liquid A interior is maintained at a higher level than the pressure on B, so that B can not leak out if failures occur in the coolant tubes embedded in the frozen layer

  12. The ITER cryostat

    International Nuclear Information System (INIS)

    Bourque, R.F.; Wykes, M.E.P.

    1995-01-01

    The ITER cryostat is the vacuum chamber containing the tokamak reactor. Its functions are (1) to provide a high vacuum environment to limit thermal loads to the superconducting magnet system by gas conduction and convection; (2) to be part of the second radioactivity confinement boundary; and (3) provide passive removal of decay heat for beyond design basis accidents. A separate thermal shield along the inside wall limits thermal radiation to the coils. An external concrete shield provides radiological protection. The cryostat consists of a cylindrical section bolted to torispherical heads at top and bottom. The vessel is made up of two concentric walls connected by horizontal and vertical ribs. The space between the walls can be filled with helium gas at slightly above one atmosphere for thermal coupling of the two walls, to block inbound air microleaks, and for leak detection. The cryostat has many penetrations, some as large as four meters diameter, providing various types of access from the outside to the tokamak. These include heat transport system cooling pipes, cryogenic feeds, auxiliary heating, diagnostics, and blanket and divertor removal ports. Large bellows are used between the cryostat and the tokamak to accommodate differential thermal expansion

  13. ITER plasma facing components

    International Nuclear Information System (INIS)

    Kuroda, T.; Vieider, G.; Akiba, M.

    1991-01-01

    This document summarizes results of the Conceptual Design Activities (1988-1990) for the International Thermonuclear Experimental Reactor (ITER) project, namely those that pertain to the plasma facing components of the reactor vessel, of which the main components are the first wall and the divertor plates. After an introduction and an executive summary, the principal functions of the plasma-facing components are delineated, i.e., (i) define the low-impurity region within which the plasma is produced, (ii) absorb the electromagnetic radiation and charged-particle flux from the plasma, and (iii) protect the blanket/shield components from the plasma. A list of critical design issues for the divertor plates and the first wall is given, followed by discussions of the divertor plate design (including the issues of material selection, erosion lifetime, design concepts, thermal and mechanical analysis, operating limits and overall lifetime, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, and advanced divertor concepts) and the first wall design (armor material and design, erosion lifetime, overall design concepts, thermal and mechanical analysis, lifetime and operating limits, tritium inventory, baking and conditioning, safety analysis, manufacture and testing, an alternative first wall design, and the limiters used instead of the divertor plates during start-up). Refs, figs and tabs

  14. ITER cooling system

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-11-01

    The present specification of the ITER cooling system does not permit its operation with water above 150 C. However, the first wall needs to be heated to higher temperatures during conditioning at 250 C and bake-out at 350 C. In order to use the cooling water for these operations the cooling system would have to operate during conditioning at 37 Bar and during bake-out at 164 Bar. This is undesirable from the safety analysis point of view, and alternative heating methods are to be found. This review suggests that superheated steam or gas heating can be used for both baking and conditioning. The blanket design must consider the use of dual heat transfer media, allowing for change from one to another in both directions. Transfer from water to gas or steam is the most intricate and risky part of the entire heating process. Superheated steam conditioning appears unfavorable. The use of inert gas is recommended, although alternative heating fluids such as organic coolant should be investigated

  15. Conceptual design of the dual-coolant blanket in the frame of the EU power plant conceptual study

    Energy Technology Data Exchange (ETDEWEB)

    Norajitra, Prachai E-mail: prachai.norajitra@imf.fzk.dc; Buehler, Leo; Fischer, Ulrich; Gordeev, Serguei; Malang, Siegfried; Reimann, Gunter

    2003-09-01

    The dual-coolant (DC) blanket--characterised by its simple construction, simple function, and high thermal efficiency--is one of the EU advanced blanket concepts to be investigated in the frame of the long-term power plant conceptual study (PPCS). Its basic concept is based on the use of helium-cooled ferritic steel structure, the self-cooled Pb-17Li breeding zone, and SiC/SiC flow channel inserts, serving as electrical and thermal insulators. The present work on PPCS is drawn extensively on the preparatory study on plant availability carried out in 1999 with an objective to perform the conceptual design of the DC blanket concept where some details are to be selected in accordance with the overall strategy, which allows an extrapolation of the present knowledge between the near-term solutions (helium-cooled pebble bed (HCPB), water-cooled lead-lithium (WCLL) blanket concepts), and the very advanced self-cooled Pb-17Li SiC/SiC (SCLL) blanket concept. In the PPCS the reactor power is adapted to a typical size of commercial reactors of 1500 MWe which requires iterative calculations between the blanket layout and the system code analysis. The results of the first iteration are reported. This work is under the coordination of FZK in co-operation with CEA, EFET, IBERTEF, UKAEA, VTT Processes and VR.

  16. Conceptual design of the dual-coolant blanket in the frame of the EU power plant conceptual study

    International Nuclear Information System (INIS)

    Norajitra, Prachai; Buehler, Leo; Fischer, Ulrich; Gordeev, Serguei; Malang, Siegfried; Reimann, Gunter

    2003-01-01

    The dual-coolant (DC) blanket--characterised by its simple construction, simple function, and high thermal efficiency--is one of the EU advanced blanket concepts to be investigated in the frame of the long-term power plant conceptual study (PPCS). Its basic concept is based on the use of helium-cooled ferritic steel structure, the self-cooled Pb-17Li breeding zone, and SiC/SiC flow channel inserts, serving as electrical and thermal insulators. The present work on PPCS is drawn extensively on the preparatory study on plant availability carried out in 1999 with an objective to perform the conceptual design of the DC blanket concept where some details are to be selected in accordance with the overall strategy, which allows an extrapolation of the present knowledge between the near-term solutions (helium-cooled pebble bed (HCPB), water-cooled lead-lithium (WCLL) blanket concepts), and the very advanced self-cooled Pb-17Li SiC/SiC (SCLL) blanket concept. In the PPCS the reactor power is adapted to a typical size of commercial reactors of 1500 MWe which requires iterative calculations between the blanket layout and the system code analysis. The results of the first iteration are reported. This work is under the coordination of FZK in co-operation with CEA, EFET, IBERTEF, UKAEA, VTT Processes and VR

  17. R and D activities of the liquid breeder blanket in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won, E-mail: dwlee@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Eo Hwak; Kim, Suk Kwon; Yoon, Jae Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer MARS and GAMMA were developed for He coolant and liquid breeder analysis. Black-Right-Pointing-Pointer FMS/FMS and Be/FMS joining methods were developed and verified with high heat flux test. Black-Right-Pointing-Pointer High temperature and pressure nitrogen and He loops were constructed for heat transfer experiment for developed codes validation. Black-Right-Pointing-Pointer A PbLi breeder loop was constructed for components, MHD, and corrosion tests. Black-Right-Pointing-Pointer A chamber for tritium extraction with a gas-liquid contact method was constructed. - Abstract: A liquid breeder blanket has been developed in parallel with the International Thermonuclear Experimental Reactor (ITER) Test Blanket Module (TBM) program in Korea. The Korea Atomic Energy Research Institute (KAERI) has developed the common fields of a solid TBM such as design tools, structural material, fabrication methods, and He cooling technology to support this concept for the ITER. Also, other fields such as a liquid breeder technology and tritium extraction have been developed from the designed liquid TBM. For design tools, system codes for safety analysis such as Multi-dimensional Analysis of Reactor Safety (MARS) and GAs Multi-component Mixture Analysis (GAMMA) were developed for He coolant and liquid breeder. For the fabrication methods, Ferritic Martensitic Steel (FMS) to FMS and Be to FMS joinings with a Hot Isostatic Pressing (HIP) were developed and verified with a high heat flux test of up to 0.5-1.0 MW/m{sup 2}. Moreover, three mockups were successfully fabricated and a 10-channel prototype is being fabricated to make a rectangular channel FW. For the integrity of the joining, two high heat flux test facilities were constructed, and one using an electron beam has been constructed. With the 6 MPa nitrogen loop, a basic heat transfer experiment for code validation was performed. From the verification of the components such as preheater and

  18. Blanket comparison and selection study. Volume I

    International Nuclear Information System (INIS)

    1983-10-01

    The objectives of the Blanket Comparison and Selection Study (BCSS) can be stated as follows: (1) Define a small number (approx. 3) of blanket design concepts that should be the focus of the blanket R and D program. A design concept is defined by the selection of all materials (e.g., breeder, coolant, structure and multiplier) and other major characteristics that significantly influence the R and D requirements. (2) Identify and prioritize the critical issues for the leading blanket concepts. (3) Provide the technical input necessary to develop a blanket R and D program plan. Guidelines for prioritizing the R and D requirements include: (a) critical feasibility issues for the leading blanket concepts will receive the highest priority, and (b) for equally important feasibility issues, higher R and D priority will be given to those that require minimum cost and short time

  19. Design requirement on HYPER blanket fuel assembly

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B. O.; Nam, C.; Ryu, W. S.; Lee, B. S.; Park, W. S.

    2000-07-01

    This document describes design requirements which are needed for designing the blanket assembly of the HYPER as design guidance. The blanket assembly of the HYPER consists of blanket fuel rods, mounting rail, spacer, upper nozzle with handling socket, bottom nozzle with mounting rail and skeleton structure. The blanket fuel rod consists of top end plug, bottom end plug with key way, blanket fuel slug, and cladding. In the assembly, the rods are in a triangular pitch array. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements for the blanket fuel assembly of the HYPER

  20. Shutdown dose rate analysis for the European TBM system in ITER

    Czech Academy of Sciences Publication Activity Database

    Pereslavtsev, P.; Fischer, U.; Grosse, D.; Leichtle, D.; Majerle, Mitja

    2012-01-01

    Roč. 87, 5/6 (2012), s. 493-497 ISSN 0920-3796. [10th International Symposium on Fusion Nuclear Technology (ISFNT). Portland, Oregon, 11.09.2011-16.09.2011] Institutional research plan: CEZ:AV0Z10480505 Keywords : ITER * test blanket module * dose rate * neutron streaming Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.842, year: 2012 http://ac.els-cdn.com/S0920379612000087/1-s2.0-S0920379612000087-main.pdf?_tid=5dbc1c80-9d09-11e2-b0cd-00000aab0f02&acdnat=1365067612_87a914bcde868dedc633d192db7d6b7b

  1. ITER: a technology test bed for a fusion reactor

    International Nuclear Information System (INIS)

    Huguet, M.; Green, B.J.

    1996-01-01

    The ITER Project aims to establish nuclear fusion as an energy source that has potential safety and environmental advantages, and to develop the technologies required for a fusion reactor. ITER is a collaborative project between the European Union, Japan, the Russian Federation and the United States of America. During the current phase of the Project, an R and D programme of about 850 million dollars is underway to develop the technologies required for ITER. This technological effort should culminate in the construction of the components and systems of the ITER machine and its auxiliaries. The main areas of technological development include the first wall and divertor technology, the blanket technology and tritium breeding, superconducting magnet technology, pulsed power technology and remote handling. ITER is a test bed and an essential step to establish the technology of future fusion reactors. Many of the ITER technologies are of potential interest to other fields and their development is expected to benefit the industries involved. (author)

  2. Fusion blankets for high efficiency power cycles

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Usher, J.L.

    1980-04-01

    Definitions are given of 10 generic blanket types and the specific blanket chosen to be analyzed in detail from each of the 10 types. Dimensions, compositions, energy depositions and breeding ratios (where applicable) are presented for each of the 10 designs. Ultimately, based largely on neutronics and thermal hyraulics results, breeding an nonbreeding blanket options are selected for further design analysis and integration with a suitable power conversion subsystem

  3. RF DEMO ceramic helium cooled blanket, coolant and energy transformation systems

    International Nuclear Information System (INIS)

    Kovalenko, V.; Leshukov, A.; Poliksha, V.; Popov, A.; Strebkov, Yu.; Borisov, A.; Shatalov, G.; Demidov, V.; Kapyshev, V.

    2004-01-01

    RF DEMO-S reactor is a prototype of commercial fusion reactors for further generation. A blanket is the main element unit of the reactor design. The segment structure is the basis of the ceramic blanket. The segments mounting/dismounting operations are carried out through the vacuum vessel vertical port. The inboard/outboard blanket segment is the modules welded design, which are welded by back plate. The module contains the back plate, the first wall, lateral walls and breeding zone. The 9CrMoVNb steel is used as structural material. The module internal space formed by the first wall, lateral walls and back plate is used for breeding zone arrangement. The breeding zone design based upon the poloidal BIT (Breeder Inside Tube) concept. The beryllium is used as multiplier material and the lithium orthosilicate is used as breeder material. The helium at 0.1 MPa is used as purge gas. The cooling is provided by helium at 10 MPa. The coolant supply/return to the blanket modules are carrying out on the two independent circuits. The performed investigations of possible transformation schemes of DEMO-S blanket heat power into the electricity allowed to make a conclusion about the preferable using of traditional steam-turbine facility in the secondary circuit. (author)

  4. Fusion reactor blanket/shield design study

    International Nuclear Information System (INIS)

    Smith, D.L.; Clemmer, R.G.; Harkness, S.D.

    1979-07-01

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented

  5. Fusion reactor blanket/shield design study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Clemmer, R.G.; Harkness, S.D.

    1979-07-01

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  6. APT target/blanket design and thermal hydraulics

    International Nuclear Information System (INIS)

    Cappiello, M.; Pitcher, E.; Pasamehmetoglu, K.

    1999-01-01

    The Accelerator Production of Tritium (APT) Target/Blanket (T/B) system is comprised of an assembly of tritium producing modules supported by control, heat removal, shielding and retargeting systems. The T/B assembly produces tritium using a high-energy proton beam, a tungsten/lead spallation neutron source and 3 He gas as the tritium producing feedstock. For the nominal production mode, protons are accelerated to an energy of 1030 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons are expanded using a raster/expansion system to illuminate a 0.19m by 1.9m beam spot on the front face of a centrally located tungsten neutron source. A surrounding lead blanket produces additional neutrons from scattered high-energy particles. The tungsten neutron source consists of nested, Inconel-718 clad tungsten cylinders assembled in horizontal Inconel-718 tubes. Each tube contains up to 6 cylinders with annular flow channel gaps of 0.102 cm. These horizontal tubes are manifolded into larger diameter vertical inlet and outlet pipes, which provide coolant. The horizontal and vertical tubes make up a structure similar to that of rungs on a ladder. The entire tungsten neutron source consists of 11 such ladders separated into two modules, one containing five ladders and the other six. Ladders are separated by a 0.3 m void region to increase nucleon leakage. The peak thermal-hydraulic conditions in the tungsten neutron source occur in the second ladder from the front. Because tungsten neutron source design has a significant number of parallel flow channels, the limiting thermal-hydraulic parameter is the onset of significant void (OSV) rather than critical heat flux (CHF). A blanket region surrounds the tungsten neutron source. The lateral blanket region is approximately 120 cm thick and 400 cm high. Blanket material consists of lead, 3 He gas, aluminum, and light-water coolant. The blanket region is subdivided into rows based on the local power density in

  7. Blanket handling concepts for future fusion power plants

    International Nuclear Information System (INIS)

    Bogusch, E.; Gottfried, R.; Maisonnier, D.

    2003-01-01

    In the frame of the power plant conceptual studies (PPCS) launched by the European Commission, two main blanket handling concepts have been investigated with respect to engineering feasibility and the impact on the plant availability and on cost: the large module handling concept (LMHC) and the large sector handling concept (LSHC). The LMHC has been considered as the reference handling concept while the LSHC has been considered as an attractive alternative to the LMHC due to its potential of smaller replacement times and hence increasing the plant availability. Although no principle feasibility issue has been identified, a number of engineering issues have been highlighted for the LSHC that would require considerable efforts for their resolution. Since its availability of about 77% based on a replacement time for all the internals of about 4.2 months is slightly lower than for the LMHC, the LMHC remains the reference blanket replacement concept for a conceptual reactor

  8. Monte Carlo radiation shielding and activation analyses for the Diagnostic Equatorial Port Plug in ITER

    International Nuclear Information System (INIS)

    Serikov, A.; Fischer, U.; Leichtle, D.; Pitcher, C.S.

    2012-01-01

    Highlights: ► Systematic neutronics analyses were conducted to assess the ITER Equatorial Port Plug radiation shielding performance. ► Shielding optimization was achieved by parametric analyses of several design variants using the MCNP5, FISPACT-2007, and R2Smesh codes. ► Dominant effect of radiation streaming along the port plug gaps was recognized. ► Combination of the gap labyrinths and streaming stoppers or rails reduces shutdown doses by 2 orders of magnitude. ► Using the proposed shielding, the shutdown dose in the ITER port interspace is less than the personnel access limit of 100 μSv/h. - Abstract: This paper addresses neutronics aspects of the design development of the Diagnostic Generic Equatorial Port Plug (EPP) in ITER. To secure the personnel access at the EPP back-end interspace, parametric neutronics analyses of the EPP radiation environment have been performed and practical shielding solutions have been found. Radiation transport was performed with the Monte Carlo MCNP5 code. Activation calculations were conducted with the FISPACT-2007 inventory code. The R2Smesh approach was applied to couple transport and activation calculations. Newly created EPP local MCNP5 model was devised by extracting the EPP and adjacent blanket modules from the ITER Alite-4.1 model with proper modification of the EPP geometry in accordance with recent 3D CAD CATIA model. The EPP local model reproduces the EPP neutronically important features and allows investigation of the EPP neutronics effects in isolation from all other ITER components. Thorough EPP parametric analyses revealed dominant effect of gaps around EPP and several EPP design improvements were implemented as the outcomes of the analyses. Gap labyrinths and streaming stoppers inserted into the gaps were shown are capable to reduce the shutdown dose rate which is below the 100 μSv/h limit of personnel access and by 2 orders of magnitude less than the value in the model with straight gaps.

  9. ITER magnets

    International Nuclear Information System (INIS)

    Bottura, L.; Hasegawa, M.; Heim, J.

    1991-01-01

    As part of the summary of the Conceptual Design Activities (CDA) for the International Thermonuclear Experimental Reactor (ITER), this document describes the magnet systems for ITER, including the Toroidal Field (TF) and Poloidal Field (PF) Magnets, the Structural Support System and Cryostat, the Cryogenic System, the TF and PF Power and Protection Systems, and Coil Services and Diagnostics. After an Introduction and Summary, the document discusses the (i) Design Basis, including General Requirements, Design Criteria, Design Philosophy, and the Database (a.o., engineering data on key materials and components), and (ii) the Subsystem Design and Analysis, including Conductor Design, TF Coil and Structure Design, TF Structural Analysis, PF Coil and Structure Design, PF Structural Performance, Fatigue Assessment of Structures, AC Loss Performance, Thermohydraulic Performance, Stability, Cryogenic System, Power Supply Systems, and Coil Services. All magnets are superconducting, (based on Nb 3 Sn) except the Active Control Coils inside the Vacuum Vessel. The fault analysis has been taken to a level consistent with the design definition, showing that the present design meets the requirement for passive safety or can be made to meet it with only minor modifications. A more detailed assessment in this regard is needed but must await further development of the design. In conclusion, the magnet design concepts presently proposed can be developed into an engineering design. Refs, figs and tabs

  10. Blanket/first wall challenges and required R&D on the pathway to DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, Mohamed, E-mail: abdou@fusion.ucla.edu; Morley, Neil B.; Smolentsev, Sergey; Ying, Alice; Malang, Siegfried; Rowcliffe, Arthur; Ulrickson, Mike

    2015-11-15

    The breeding blanket with integrated first wall (FW) is the key nuclear component for power extraction, tritium fuel sustainability, and radiation shielding in fusion reactors. The ITER device will address plasma burn physics and plasma support technology, but it does not have a breeding blanket. Current activities to develop “roadmaps” for realizing fusion power recognize the blanket/FW as one of the principal remaining challenges. Therefore, a central element of the current planning activities is focused on the question: what are the research and major facilities required to develop the blanket/FW to a level which enables the design, construction and successful operation of a fusion DEMO? The principal challenges in the development of the blanket/FW are: (1) the Fusion Nuclear Environment – a multiple-field environment (neutrons, heat/particle fluxes, magnetic field, etc.) with high magnitudes and steep gradients and transients; (2) Nuclear Heating in a large volume with sharp gradients – the nuclear heating drives most blanket phenomena, but accurate simulation of this nuclear heating can be done only in a DT-plasma based facility; and (3) Complex Configuration with blanket/first wall/divertor inside the vacuum vessel – the consequence is low fault tolerance and long repair/replacement time. These blanket/FW development challenges result in critical consequences: (a) non-fusion facilities (laboratory experiments) need to be substantial to simulate multiple fields/multiple effects and must be accompanied by extensive modeling; (b) results from non-fusion facilities will be limited and will not fully resolve key technical issues. A DT-plasma based fusion nuclear science facility (FNSF) is required to perform “multiple effects” and “integrated” experiments in the fusion nuclear environment; and (c) the Reliability/Availability/Maintainability/Inspectability (RAMI) of fusion nuclear components is a major challenge and is one of the primary reasons

  11. Fabrication of three kinds of small mock-ups for an ITER TBM First Wall

    International Nuclear Information System (INIS)

    Yoon, Jae Sung; Kim, Suk Kwon; Lee, Dong Won

    2011-01-01

    The Korea (KO) has developed liquid a breeder blanket and participated in the Test Blanket Module (TBM) program within the International Thermonuclear Experimental Reactor (ITER) with a Helium Cooled Molten Lithium (HCML) concept. Ferritic Martensitic Steel material is used as structural material for the TBM first wall (FW). In order to develop the fabrication method for the TBM FW, the various manufacturing and joining methods have been developed. In this study, three mock-ups were fabricated to verify the manufacturing of a 1/6-scale mock-up of the TBM FW and preliminary analyses were performed to design a manifold of a 1/6-scale mock-up for uniform flow in the channels. Using Ferritic Martensite Steel material, three kinds of small mock-ups were fabricated such as a cooling channel shape of straight, two cooling channels shape of straight, and a cooling channel shape of U-type. The small mock-ups were manufactured by wire cutting and machining for components of the mock-ups and a welding and HIP, at 1050 .deg. C and 100 MPa for two hours, were performed for bonding. The fabricated small mock-ups were performed pressure tests between the joints to evaluate bonding of the mock-ups

  12. Fusion for Energy: The European joint undertaking for ITER and the development of fusion energy

    International Nuclear Information System (INIS)

    Diegele, E.

    2009-01-01

    Materials development in nuclear fusion for in-vessel components, i.e. for breeder blankets and divertors, has a history of more than two decades. It is the specific in-service and loading conditions and the consequentially required properties in combination with safety standards and social-economic demands that create a unique set of specifications. Objectives of Fusion for Energy (F4E) include: 1) To provide Europe's contribution to the ITER international fusion energy project; 2) To implement the Broader Approach agreement between Euratom and Japan; 3) To prepare for the construction and demonstration of fusion reactors (DEMO). Consequently, activities in F4E focus on structural materials for the first generations of breeder blankets, i.e. ITER Test Blanket Modules (TBM) and DEMO, whereas a Fusion Materials Topical Group implemented under EFDA coordinates R and D on physically based modelling of irradiation effects and R and D in the longer term (new and /or higher risk materials). The paper focuses on martensitic-ferritic steels and (i) reviews briefly the challenges and the rationales for the decisions taken in the past, (ii) analyses the status of the main activities of development and qualification, (iii) indicates unresolved issues, and (iv) outlines future strategies and needs and their implications. Due to the exposure to intense high energy neutron flux, the main issue for breeder materials is high radiation resistance. The First Wall of a breeder blanket should survive 3-5 full power years or, respectively in terms of irradiation damage, typically 50-70 dpa for DEMO and double figures for a power plant. Even though the objective is to have the materials and key fabrication technologies needed for DEMO fully developed and qualified within the next two decades, a major part of the task has to be completed much earlier. Tritium breeding test blanket modules will be installed in ITER with the objective to test DEMO relevant technologies in fusion

  13. Neutronics scoping studies for the NET blanket

    International Nuclear Information System (INIS)

    Daenner, W.

    1984-01-01

    The NET team presently pursues three types of blankets: a water cooled 17LiPb83 blanket and a helium cooled ceramic breeder blanket with either lead or beryllium as a neutron multiplier. For all three types the most important results from neutronics scoping studies are summarized which were directed towards exploiting the respective design concepts for maximum tritium breeding. The values reached are - in the above order - 1.16, 1.03 and 1.13, the latter two assuming LiAlO 2 as the breeding material. In all cases a high 6 Li enrichment and, in case of the Be multiplied blanket, a high proportion of multiplier material is necessary. The beryllium multiplied ceramic breeder blanket design offers the potential for improving the tritium breeding capability by choosing ceramics other than the LiAlO 2 . (author)

  14. Blanket materials for DT fusion reactors

    International Nuclear Information System (INIS)

    Smith, D.L.

    1981-01-01

    This paper presents an overview of the critical materials issues that must be considered in the development of a tritium breeding blanket for a tokamak fusion reactor that operates on the D-T-Li fuel cycle. The primary requirements of the blanket system are identified and the important criteria that must be considered in the development of blanket technology are summarized. The candidate materials are listed for the different blanket components, e.g., breeder, coolant, structure and neutron multiplier. Three blanket concepts that appear to offer the most potential are: (1) liquid-metal breeder/coolant, (2) liquid-metal breeder/separate coolant, and (3) solid breeder/separate coolant. The major uncertainties associated with each of the design concepts are discussed and the key materials R and D requirements for each concept are identified

  15. Classification Using Markov Blanket for Feature Selection

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Luo, Jian

    2009-01-01

    Selecting relevant features is in demand when a large data set is of interest in a classification task. It produces a tractable number of features that are sufficient and possibly improve the classification performance. This paper studies a statistical method of Markov blanket induction algorithm...... for filtering features and then applies a classifier using the Markov blanket predictors. The Markov blanket contains a minimal subset of relevant features that yields optimal classification performance. We experimentally demonstrate the improved performance of several classifiers using a Markov blanket...... induction as a feature selection method. In addition, we point out an important assumption behind the Markov blanket induction algorithm and show its effect on the classification performance....

  16. Detecting Intracranial Hemorrhage Using Automatic Tube Current Modulation With Advanced Modeled Iterative Reconstruction in Unenhanced Head Single- and Dual-Energy Dual-Source CT.

    Science.gov (United States)

    Scholtz, Jan-Erik; Wichmann, Julian L; Bennett, Dennis W; Leithner, Doris; Bauer, Ralf W; Vogl, Thomas J; Bodelle, Boris

    2017-05-01

    The purpose of our study was to determine diagnostic accuracy, image quality, and radiation dose of low-dose single- and dual-energy unenhanced third-generation dual-source head CT for detection of intracranial hemorrhage (ICH). A total of 123 patients with suspected ICH were examined using a dual-source 192-MDCT scanner. Standard-dose 120-kVp single-energy CT (SECT; n = 36) and 80-kVp and 150-kVp dual-energy CT (DECT; n = 30) images were compared with low-dose SECT (n = 32) and DECT (n = 25) images obtained using automated tube current modulation (ATCM). Advanced modeled iterative reconstruction (ADMIRE) was used for all protocols. Detection of ICH was performed by three readers who were blinded to the image acquisition parameters of each image series. Image quality was assessed both quantitatively and qualitatively. Interobserver agreement was calculated using the Fleiss kappa. Radiation dose was measured as dose-length product (DLP). Detection of ICH was excellent (sensitivity, 94.9-100%; specificity, 94.7-100%) in all protocols (p = 1.00) with perfect interobserver agreement (0.83-0.96). Qualitative ratings showed significantly better ratings for both standard-dose protocols regarding gray matter-to-white matter contrast (p ≤ 0.014), whereas highest gray matter-to-white matter contrast-to-noise ratio was observed with low-dose DECT images (p ≥ 0.057). The lowest posterior fossa artifact index was measured for standard-dose DECT, which showed significantly lower values compared with low-dose protocols (p ≤ 0.034). Delineation of ventricular margins and sharpness of subarachnoidal spaces were rated excellent in all protocols (p ≥ 0.096). Low-dose techniques lowered radiation dose by 26% for SECT images (DLP, 575.0 ± 72.3 mGy · cm vs 771.5 ± 146.8 mGy · cm; p dual-source CT while allowing significant radiation dose reduction.

  17. Status of the EU test blanket systems safety studies

    International Nuclear Information System (INIS)

    Panayotov, Dobromir; Poitevin, Yves; Ricapito, Italo; Zmitko, Milan

    2015-01-01

    Highlights: • TBS safety demonstration files. • Safety functions and related design features – detailed TBS components classifications. • Nuclear analyses, radiation shielding and protection. • TBS radiological waste management strategy and categorization. • Selection and definition of reference accidents scenarios and accidents analyses. - Abstract: The European joint undertaking for ITER and the development of fusion energy (‘Fusion for Energy’ – F4E) provides the European contributions to the ITER international fusion energy research project. Among others it includes also the development, design, technological demonstration and implementation of the European test blanket systems (TBS) in ITER. Currently two EU TBS designs are in the phase of conceptual design – helium-cooled lithium-lead (HCLL) and helium-cooled pebble-bed (HCPB). Safety demonstration is an important part of the work devoted to the achievement of the next key project milestone the conceptual design review. The paper reveals the details of the work on EU TBS safety performed in the last couple of years: update of the TBS safety demonstration files; safety functions and related design features; detailed TBS components classifications; nuclear analyses, radiation shielding and protection; TBS radiological waste management strategy and categorization; selection and definition of reference accidents scenarios, and accidents analyses. Finally the authors share the information on on-going and planned future EU TBS safety activities.

  18. A solid-breeder blanket and power conversion system for the Mirror Advanced Reactor Study (MARS)

    International Nuclear Information System (INIS)

    Bullis, R.; Clarkson, I.

    1983-01-01

    A solid-breeder blanket has been designed for a commercial fusion power reactor based on the tandem mirror concept (MARS). The design utilizes lithium oxide, cooled by helium which powers a conventional steam electric generating cycle. Maintenance and fabricability considerations led to a modular configuration 6 meters long which incorporates two magnets, shield, blanket and first wall. The modules are arranged to form the 150 meter long reactor central cell. Ferritic steel is used for the module primary structure. The lithium oxide is contained in thin-walled vanadium alloy tubes. A tritium breeding ratio of 1.25 and energy multiplication of 1.1 is predicted. The blanket design appears feasible with only a modest advance in current technology

  19. Conceptual design of the blanket mechanical attachment for the helium-cooled lithium-lead reactor

    International Nuclear Information System (INIS)

    Barrera, G.; Branas, B.; Lucas, J.; Doncel, J.; Medrano, M.; Garcia, A.; Giancarli, L.; Ibarra, A.; Li Puma, A.; Maisonnier, D.; Sardain, P.

    2008-01-01

    The conceptual design of a new type of fusion reactor based on the helium-cooled lithium-lead (HCLL) blanket has been performed within the European Power Plant Conceptual Studies. As part of this activity, a new attachment system suitable for the HCLL blanket modules had to be developed. This attachment is composed of two parts. The first one is the connection between module and the first part of a shield, called high temperature shield, which operates at a temperature around 500 deg. C, close to that of the blanket module. This connection must be made at the lateral walls, in order to avoid openings through the first wall and breeding zone thus avoiding complex design and fabrication issues of the module. The second connection is the one between the high temperature shield and a second shield called low temperature shield, which has a temperature during reactor operation around 150 deg. C. The design of this connection is complex because it must allow the large differential thermal expansion (up to 30 mm) between the two components. Design proposals for both connections are presented, together with the results of finite element mechanical analyses which demonstrate the feasibility to support the blanket and shield modules during normal and accidental operation conditions

  20. ITER containment structures

    International Nuclear Information System (INIS)

    Sadakov, S.; Fauser, F.; Nelson, B.

    1991-01-01

    This document describes the results and recommendations of the Containment Structures Design Unit (CSDU) on the containment structures for ITER, made in the context of the Conceptual Design Phase. The document describes the following subsystems: (1) the primary vacuum vessel (VV), (2) the attaching locks (AL) of the invessel components, (3) the plasma passive and active stabilizers, (4) the cryostat vessel, and (5) the machine gravity supports. Although for most components reference designs were selected, for some of these alternative design options were described, because unresolved problems necessitate further research and development. Conclusions and future needs are summarized for each of the above subsystems: (1) a reference VV design was selected, while most critical VV future needs are the feasibility studies of manufacturing, assembly, and the repair/disassembly/reassembly by remote handling. Alternative, thin-wall options appear attractive and should be studied further during the Engineering Design Activities; (2) no reference design solution was selected for the AL system, as AL design requirements are extremely difficult and internally contradictory, while there is no existing tokamak precedent, but instead, five different approaches will be further researched early in the Engineering Design Phase; (3) significant progress is reported on passive loops, for which the ''twin-loops'' concept is ready to be advanced into the Engineering Design Phase, and on active coils, where a new coil positioning prevents interference with the blanket removal paths, and the current joints are located in a secondary vacuum or in the atmosphere of the reactor hall, repairable by remote handling; (4) a full metallic welded cryostat design with increased toroidal resistance was chosen, but with a design based on concrete with a thin inner metallic liner as a back-up in case detailed nuclear shielding requirements would force the cryostat to act as biological shield; (5) out

  1. Design of the breeder units in the new HCPB modular blanket concept and material requirements

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Fischer, U.; Hermsmeyer, S.; Reimann, J.; Xu, Z.; Koehly, C.

    2004-01-01

    A major revision of the DEMO HCPB blanket concept took place in 2002-2003 as consequence of the results of the EU Power Plant Conceptual Study. In particular, it was decided to give up the previous maintenance schema based on segments in favour of a large module concept extrapolated from ITER. The adaptation of the HCPB concept to these modules (typical dimension at the FW of 2.0 x 2.0 m) required a complete revision of the box. The coolant flow scheme is based on a radial He flow (at 8 MPa) in order to have the entire manifold system in the rear part of the box. Furthermore, the requirement of a box capable of withstanding the coolant pressure of 8 MPa in case of an in-box LOCA led to a design of modules with an internal stiffening grid in toroidal and poloidal direction This grid results in cells open in the rear radial direction with toroidal-poloidal dimensions of about 20 cm x 20 cm that accommodate the breeder units. These units contain the ceramic breeder (CB) and the Beryllium in form of pebble beds and have to assure the main functions of the blanket, namely, a tritium breeding ratio significantly above one, heat removal with a temperature control in the beds and in the structure, mechanical stability of the beds and extraction of the produced tritium. Due to the relatively high quantity of steel necessary to assure the mechanical stability of the box, a strong requirement for the design of these units is to minimise the amount of steel to improve the neutronic performance. A satisfactory design has been achieved with a radial-toroidal bed configuration similar to the old DEMO design reaching the Tritium self-sufficiency with a radial depth of 47 cm, using monosized Beryllium and CB beds and, using Li 4 SiO 4 , a 6 Li enrichment of about 40%. This design allows a satisfactory control of the maximum acceptable temperatures in the CB and Be beds and the steel structure. The design of the breeder units has not been yet analysed thermo-mechanically in detail

  2. Design and technology development of solid breeder blanket cooled by supercritical water in Japan

    Science.gov (United States)

    Enoeda, M.; Kosaku, Y.; Hatano, T.; Kuroda, T.; Miki, N.; Honma, T.; Akiba, M.; Konishi, S.; Nakamura, H.; Kawamura, Y.; Sato, S.; Furuya, K.; Asaoka, Y.; Okano, K.

    2003-12-01

    This paper presents results of conceptual design activities and associated R&D of a solid breeder blanket system for demonstration of power generation fusion reactors (DEMO blanket) cooled by supercritical water. The Fusion Council of Japan developed the long-term research and development programme of the blanket in 1999. To make the fusion DEMO reactor more attractive, a higher thermal efficiency of more than 40% was strongly recommended. To meet this requirement, the design of the DEMO fusion reactor was carried out. In conjunction with the reactor design, a new concept of a solid breeder blanket cooled by supercritical water was proposed and design and technology development of a solid breeder blanket cooled by supercritical water was performed. By thermo-mechanical analyses of the first wall, the tresca stress was evaluated to be 428 MPa, which clears the 3Sm value of F82H. By thermal and nuclear analyses of the breeder layers, it was shown that a net TBR of more than 1.05 can be achieved. By thermal analysis of the supercritical water power plant, it was shown that a thermal efficiency of more than 41% is achievable. The design work included design of the coolant flow pattern for blanket modules, module structure design, thermo-mechanical analysis and neutronics analysis of the blanket module, and analyses of the tritium inventory and permeation. Preliminary integration of the design of a solid breeder blanket cooled by supercritical water was achieved in this study. In parallel with the design activities, engineering R&D was conducted covering all necessary issues, such as development of structural materials, tritium breeding materials, and neutron multiplier materials; neutronics experiments and analyses; and development of the blanket module fabrication technology. Upon developing the fabrication technology for the first wall and box structure, a hot isostatic pressing bonded F82H first wall mock-up with embedded rectangular cooling channels was

  3. ITER council proceedings: 2001

    International Nuclear Information System (INIS)

    2001-01-01

    Continuing the ITER EDA, two further ITER Council Meetings were held since the publication of ITER EDA documentation series no, 20, namely the ITER Council Meeting on 27-28 February 2001 in Toronto, and the ITER Council Meeting on 18-19 July in Vienna. That Meeting was the last one during the ITER EDA. This volume contains records of these Meetings, including: Records of decisions; List of attendees; ITER EDA status report; ITER EDA technical activities report; MAC report and advice; Final report of ITER EDA; and Press release

  4. ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS

    International Nuclear Information System (INIS)

    WONG, CPC; MALANG, S; NISHIO, S; RAFFRAY, R; SAGARA, S

    2002-01-01

    OAK A271 ADVANCED HIGH PERFORMANCE SOLID WALL BLANKET CONCEPTS. First wall and blanket (FW/blanket) design is a crucial element in the performance and acceptance of a fusion power plant. High temperature structural and breeding materials are needed for high thermal performance. A suitable combination of structural design with the selected materials is necessary for D-T fuel sufficiency. Whenever possible, low afterheat, low chemical reactivity and low activation materials are desired to achieve passive safety and minimize the amount of high-level waste. Of course the selected fusion FW/blanket design will have to match the operational scenarios of high performance plasma. The key characteristics of eight advanced high performance FW/blanket concepts are presented in this paper. Design configurations, performance characteristics, unique advantages and issues are summarized. All reviewed designs can satisfy most of the necessary design goals. For further development, in concert with the advancement in plasma control and scrape off layer physics, additional emphasis will be needed in the areas of first wall coating material selection, design of plasma stabilization coils, consideration of reactor startup and transient events. To validate the projected performance of the advanced FW/blanket concepts the critical element is the need for 14 MeV neutron irradiation facilities for the generation of necessary engineering design data and the prediction of FW/blanket components lifetime and availability

  5. Tritium transport analysis for CFETR WCSB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn; Yang, Wanli; Li, Yuanjie; Ge, Zhihao; Nie, Xingchen; Gao, Zhongping

    2017-01-15

    Highlights: • A simplified tritium transport model for CFETR WCSB blanket was developed. • Tritium transport process in CFETR WCSB blanket was analyzed. • Sensitivity analyses of tritium transport parameters were carried out. - Abstract: Water Cooled Solid Breeder (WCSB) blanket was put forward as one of the breeding blanket candidate schemes for Chinese Fusion Engineering Test Reactor (CFETR). In this study, a simplified tritium transport model was developed. Based on the conceptual engineering design, neutronics and thermal-hydraulic analyses of CFETR WCSB blanket, tritium transport process was analyzed. The results show that high tritium concentration and inventory exist in primary water loop and total tritium losses exceed CFETR limits under current conditions. Conducted were sensitivity analyses of influential parameters, including tritium source, temperature, flow-rate capacity and surface condition. Tritium performance of WCSB blanket can be significantly improved under a smaller tritium impinging rate, a larger flow-rate capacity or a better surface condition. This work provides valuable reference for the enhancement of tritium transport behavior in CFETR WCSB blanket.

  6. Neutronic analysis of the Diagnostic Equatorial Ports in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Alejandro [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Bertalot, Luciano, E-mail: luciano.bertalot@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Maquet, Philippe; Pitcher, Charles Spencer; Portales, Mickael [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Serikov, Arkady [Karlsruhe Institute of Technology KIT, 76344 Eggenstein-Leopoldshafen (Germany); Udintsev, Victor; Walsh, Michael [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2015-10-15

    Highlights: • Reduction of the streaming around Equatorial Ports. • Solutions for the mitigation of narrow gap streaming. • Importance of the environment and the radiation cross talk. - Abstract: The Diagnostic Port Plugs provide an infrastructure for integrating the diagnostics necessary to operate the machine, while withstanding the nuclear and mechanical loads. They have to provide neutron shielding in order to ensure accessibility to the Port Interspace (PI) region for maintenance operations. This report is about the study to mitigate the ITER Shutdown Dose Rate in Port Interspace. This is a strong design driver for the Equatorial Port Plugs (EPPs) requiring a neutron attenuation of 7 orders of magnitude while maintaining the weight limit. To achieve this challenging task, the design has evolved to an improved double labyrinth configuration with welded shims at the back of the EPP to reduce the gap with the Vacuum Vessel Port Extension. This proved to be very successful for this task. Neutron stoppers have been placed after the gaps necessary for the insertion of the Diagnostic Shielding Modules (DSMs) housed inside the EPP. Effort was also placed in the further development of the DSMs. The latest design relies on a stainless steel structure and lightweight efficient neutron absorbing materials inside. Studies of cross talk with lower ports and the influence of the streaming through the blanket area are presented to give the status of the radiation environment in the Port Interspace region and their contribution to the Shutdown Dose Rate (SDR).

  7. Mechanical and thermal design of hybrid blankets

    International Nuclear Information System (INIS)

    Schultz, K.R.

    1978-01-01

    The thermal and mechanical aspects of hybrid reactor blanket design considerations are discussed. This paper is intended as a companion to that of J. D. Lee of Lawrence Livermore Laboratory on the nuclear aspects of hybrid reactor blanket design. The major design characteristics of hybrid reactor blankets are discussed with emphasis on the areas of difference between hybrid reactors and standard fusion or fission reactors. Specific examples are used to illustrate the design tradeoffs and choices that must be made in hybrid reactor design. These examples are drawn from the work on the Mirror Hybrid Reactor

  8. Fertile blanket for an epithermal nuclear reactor

    International Nuclear Information System (INIS)

    Millot, J.P.; Alibran, P.

    1985-01-01

    The invention concerns a fertile blanket for the core of an epithermal nuclear reactor comprising fissile fuel assemblies emitting a neutron flux and fertile blankets absorbing the neutron flux to produce plutonium or reflecting it. The fertile blanket is made of a binary alloy of uranium with a weight ratio between 85 and 95 % and of one of the elements of the Vsub(a) and VIsub(a) column of the periodic classification of elements, in a weight proportion between 5 and 15 % [fr

  9. Environmental considerations for alternative fusion reactor blankets

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Young, J.R.

    1975-01-01

    Comparisons of alternative fusion reactor blanket/coolant systems suggest that environmental considerations will enter strongly into selection of design and materials. Liquid blankets and coolants tend to maximize transport of radioactive corrosion products. Liquid lithium interacts strongly with tritium, minimizing permeation and escape of gaseous tritium in accidents. However, liquid lithium coolants tend to create large tritium inventories and have a large fire potential compared to flibe and solid blankets. Helium coolants minimize radiation transport, but do not have ability to bind the tritium in case of accidental releases. (auth)

  10. Estimation of Graphite Dust Production in ITER TBM

    International Nuclear Information System (INIS)

    Kang, Ji Ho; Kim, Eung Seon

    2013-01-01

    This scheme uses simple equations and the calculation time is much less than others. However, the contact equation requires a specially tuned material properties and instability of system matrix were reported. Second, only a couple of pebbles were modeled using FEM(Finite Element Method) and appropriate boundary and loading conditions are imposed. This scheme gives a detailed information of stress distribution of the pebbles and the stability of calculation is well established. However, the calculation cost is fairly high and only a few pebble can be analyzed in detail at a time with specifically assigned contact conditions. In this study, a prediction model of graphite dust production in ITER(International Thermonuclear Experimental Reactor) TBM(Test Blanket Module) using FEM was introduced and the amount of dust production for an operation cycle was estimated. In this study, graphite dust generation in the reflector zone of ITER TBM was estimated using FE analysis. A unit-cell model was defined to simulate normal contact forces and slip distances on contact points between the center pebble and the surrounding pebbles. The dust production was calculated using Archard equation. The simulation was repeated with different friction coefficient of graphite material to investigate the effect of friction on the dust production. The calculation result showed that the amount of dust production was 2.22∼3.67e-4 g/m 3 which was almost linearly proportional to the friction coefficient of graphite material. The amount of graphite dust production was considered too much small for a dust explosion

  11. Swiss fusion blanket experiments: Final report, November 1, 1985-October 31, 1987

    International Nuclear Information System (INIS)

    Woodruff, G.L.

    1987-01-01

    The major thrust of this project related to the effort to transfer the Lithium Blanket Module (LBM) to the Nuclear Engineering Laboratory of the Swiss Institute of Technology at Lausanne, and to the subsequent support with analytical calculations of a variety of experiments performed with the LBM. 12 refs

  12. Numerical investigation of heat transfer enhancement in ribbed channel for the first wall of DFLL-TBM in ITER

    International Nuclear Information System (INIS)

    Jin Qiang; Liu Songlin; Li Min; Wang Weihua

    2012-01-01

    As an important component of Dual Functional Lithium Lead-Test Blanket Module (DFLL-TBM), the first wall (FW) must withstand and remove the heat flux from the plasma (q″ = 0.3 MW/m 2 ) and high nuclear power deposited in the structure at normal plasma operation scenario of ITER. In this paper the transverse ribs arranged along the plasma facing inner wall surface were used to enhance the heat transfer capability. After the validation compared with empirical correlations the Standard k–ω model was employed to do the numerical simulation using FLUENT code to investigate the heat transfer efficiency and flow performance of coolant in the ribbed channel preliminarily. The perforation on the bottom of rib was proposed near the lower heat transfer area (LHTA) to improve the heat transfer performance according to results of analyses.

  13. Conceptual design of a hybrid HCPB blanket

    Energy Technology Data Exchange (ETDEWEB)

    Boccaccini, L.V. E-mail: lorenzo.boccaccini@iket.fzk.de; Fischer, U.; Gordeev, S.; Malang, S

    2001-11-01

    Following previous studies on helium cooled pebble bed (HCPB) blanket concepts based on different structural materials, a hybrid HCPB blanket has been proposed to combine the high load capability of the steel concepts with the high thermal efficiency of the SiC{sub f}/SiC ones. A radial division of the blanket in two components allows us to design the first wall and the first breeder zone with steel as the structural material, while a second breeder zone uses SiC{sub f}/SiC with the possibility to increase the helium outlet temperature. At the same time an advantageous maintenance strategy based on the radial division of the blanket zone into components of different lifetimes can be adopted; this strategy promises a considerable waste reduction and lower fabrication cost. Neutronic and thermohydraulic calculations show that the proposed requirements can be met; on their basis a design of an outboard segment is presented.

  14. Conceptual design of a hybrid HCPB blanket

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Fischer, U.; Gordeev, S.; Malang, S.

    2001-01-01

    Following previous studies on helium cooled pebble bed (HCPB) blanket concepts based on different structural materials, a hybrid HCPB blanket has been proposed to combine the high load capability of the steel concepts with the high thermal efficiency of the SiC f /SiC ones. A radial division of the blanket in two components allows us to design the first wall and the first breeder zone with steel as the structural material, while a second breeder zone uses SiC f /SiC with the possibility to increase the helium outlet temperature. At the same time an advantageous maintenance strategy based on the radial division of the blanket zone into components of different lifetimes can be adopted; this strategy promises a considerable waste reduction and lower fabrication cost. Neutronic and thermohydraulic calculations show that the proposed requirements can be met; on their basis a design of an outboard segment is presented

  15. Blanket design for imploding liner systems

    International Nuclear Information System (INIS)

    Schaffer, M. J.

    1980-01-01

    The blanket design comprises hot, molten, rotating liquid vortex systems suitable for rapidly compressing confined plasmas, in which stratified immiscible liquid layers having successively greater mass densities outwardly of the axis of rotation are provided

  16. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  17. Nuclear reactor with self-orificing radial blanket

    International Nuclear Information System (INIS)

    Bishop, A.A.; Weiss, E.H.G.; Engel, F.C.

    1978-01-01

    The peripheral blanket of a breeder reactor requires a coolant flow rate which is a varying fraction of that of the central core region. A self-orificing blanket cooling structure which is characterized by a predominance of radial coolant flow, generated by the pressure difference across the blanket, is utilized to supply the necessary cooling. The blanket fuel assemblies are surrounded by perforated cans to allow for radial crossflow through the blanket region

  18. Status of the Design Tool Development for ITER TBM and Fusion Reactor System in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Jin, H. G.; Lee, D. W.; Shin, K. I.; Lee, E. H.; Yoon, J. S.; Kim, S. K. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, M. Y.; Cho, S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Korea has developed a Helium Cooled Molten Lithium (HCML) Test Blanket Module (TBM) and Helium Cooled Ceramic Reflector (HCCR) TBM to be tested in the ITER. The main purpose for developing the TBM is to develop the design technology for the DEMO and fusion reactor, and it should be proved experimentally in the ITER. Therefore, we have developed the design scheme and codes including the safety analysis capability for obtaining the license for testing in the ITER. In this study, the current status of the design tool development is summarized. For developing the design scheme and system codes of the ITER TBM program in Korea, the developed system codes such as MARS and GAMMA+ from Gen. IV projects were modified and verified considering the fusion application. For He coolant, 3D analysis and a McEligot correlation as the heat transfer model were proposed and validated considering the high heat from the plasma side and extreme temperature difference between the wall and fluid. For tritium behavior in the He coolant, the TBEC+GAMMA code was developed, and the oxidation layer growth and its permeation rate change were considered in this development. For a liquid metal breeder such as PbLi and Li, GAMMA-FR was developed including physical properties of the generation model and basic heat transfer model in them. For MHD simulation, the Miyazaki model was implemented in GAMMA, and it was validated successfully with the experimental data. Extending the capability of GAMMA-FR, a fusion system design code (SUPERCODE) is going to be coupled with a 3D neutronics code (MCNP)

  19. Development of thick wall welding and cutting tools for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Nakahira, Masataka; Takahashi, Hiroyuki; Akou, Kentaro; Koizumi, Koichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The Vacuum Vessel, which is a core component of International Thermonuclear Experimental Reactor (ITER), is required to be exchanged remotely in a case of accident such as superconducting coil failure. The in-vessel components such as blanket and divertor are planned to be exchanged or fixed. In these exchange or maintenance operations, the thick wall welding and cutting are inevitable and remote handling tools are necessary. The thick wall welding and cutting tools for blanket are under developing in the ITER R and D program. The design requirement is to weld or cut the stainless steel of 70 mm thickness in the narrow space. Tungsten inert gas (TIG) arc welding, plasma cutting and iodine laser welding/cutting are selected as primary option. Element welding and cutting tests, design of small tools to satisfy space requirement, test fabrication and performance tests were performed. This paper reports the tool design and overview of welding and cutting tests. (author)

  20. ITER waste management: The recycling and clearance option

    International Nuclear Information System (INIS)

    Rocco, P.; Zucchetti, M.

    1996-01-01

    To minimize the amount of radioactive waste requiring permanent disposal may strongly influence the environmental acceptability of fusion power. The waste management strategy applied here to the activated waste of ITER achieves this goal by maximizing recycling (reuse of the material) and clearance (declassification to non active waste). Limits of the surface dose rates of the waste after an interim storage of 50 years define various recycling procedures. The possibility of clearance is assessed from limits of the specific activity of the waste. These limits depend on the relative hazard of the radionuclides contained in the waste. It turns out that only a small part of ITER materials have such a radioactivity as to prevent its recycling or clearance (namely, first wall and front blanket). Most of the blanket and all the vessel may be recycled by remote handling. All the other components can be cleared or 'hands-on' recycled. 12 refs., 3 tabs

  1. The ITER EC H and CD Upper Launcher: Analysis of vertical Remote Handling applied to the BSM maintenance

    International Nuclear Information System (INIS)

    Grossetti, Giovanni; Aiello, Gaetano; Heemskerk, Cock; Elzendoorn, Ben; Geßner, Robby; Koning, Jarich; Meier, Andreas; Ronden, Dennis; Späh, Peter; Scherer, Theo; Schreck, Sabine; Strauß, Dirk; Vaccaro, Alessandro

    2013-01-01

    This paper deals with Remote Handling activities foreseen on the Blanket Shield Module, the plasma facing component of the ITER Electron Cyclotron Heating and Current Drive Upper Launcher. The maintenance configuration considered here is the Vertical Remote Handling, meaning gravity acting along the launcher radial axis. The plant, where the maintenance under consideration is occurring, is the Hot Cell Facility Work Cell. The study here reported has been carried out within the presently ongoing EFDA Goal Oriented Training program on Remote Handling (GOT-RH), which aims to support ITER activities. This document and its contents have to be considered as part of a more vast RAMI analysis to be developed within the GOT-RH, which aims to maximize the Electron Cyclotron Heating and Current Drive system availability. The Baseline CAD model of the Electron Cyclotron Heating and Current Drive Upper Launcher is currently in its preliminary design phase and does not provide enough details for developing a fully detailed maintenance strategy. Therefore, through a System Engineering approach, a set of assumptions was conceived on the launcher structure, as a basis for development of a Remote Handling strategy. Moreover, to compare different design solutions related to the possibility of integrating a quasi-optical component into the Blanket Shield Module, a Trade-Off was made, and its contents are shown here. The outcome of this System Engineering approach has been formalized into Task Definition Forms whose contents are reported here. The Remote Handling strategy presented in this work will be tested in the near future both through Virtual Reality simulations and through prototype experiments

  2. The ITER EC H and CD Upper Launcher: Analysis of vertical Remote Handling applied to the BSM maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Grossetti, Giovanni, E-mail: giovanni.grossetti@kit.edu [Karlsruhe Institute of Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Aiello, Gaetano [Karlsruhe Institute of Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Heemskerk, Cock [Heemskerk Innovative Technology, Merelhof 2, 2172 HZ Sassenheim (Netherlands); Elzendoorn, Ben [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Geßner, Robby [Karlsruhe Institute of Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Koning, Jarich [Heemskerk Innovative Technology, Merelhof 2, 2172 HZ Sassenheim (Netherlands); Meier, Andreas [Karlsruhe Institute of Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Ronden, Dennis [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Späh, Peter; Scherer, Theo; Schreck, Sabine; Strauß, Dirk; Vaccaro, Alessandro [Karlsruhe Institute of Technology, Association KIT-EURATOM, P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2013-10-15

    This paper deals with Remote Handling activities foreseen on the Blanket Shield Module, the plasma facing component of the ITER Electron Cyclotron Heating and Current Drive Upper Launcher. The maintenance configuration considered here is the Vertical Remote Handling, meaning gravity acting along the launcher radial axis. The plant, where the maintenance under consideration is occurring, is the Hot Cell Facility Work Cell. The study here reported has been carried out within the presently ongoing EFDA Goal Oriented Training program on Remote Handling (GOT-RH), which aims to support ITER activities. This document and its contents have to be considered as part of a more vast RAMI analysis to be developed within the GOT-RH, which aims to maximize the Electron Cyclotron Heating and Current Drive system availability. The Baseline CAD model of the Electron Cyclotron Heating and Current Drive Upper Launcher is currently in its preliminary design phase and does not provide enough details for developing a fully detailed maintenance strategy. Therefore, through a System Engineering approach, a set of assumptions was conceived on the launcher structure, as a basis for development of a Remote Handling strategy. Moreover, to compare different design solutions related to the possibility of integrating a quasi-optical component into the Blanket Shield Module, a Trade-Off was made, and its contents are shown here. The outcome of this System Engineering approach has been formalized into Task Definition Forms whose contents are reported here. The Remote Handling strategy presented in this work will be tested in the near future both through Virtual Reality simulations and through prototype experiments.

  3. Workshop on cold-blanket research

    International Nuclear Information System (INIS)

    1977-05-01

    The objective of the workshop was to identify and discuss cold-plasma blanket systems. In order to minimize the bombardment of the walls by hot neutrals the plasma should be impermeable. This requires a density edge-thickness product of nΔ > 10 15 cm -2 . An impermeable cold plasma-gas blanket surrounding a hot plasma core reduces the plasma wall/limiter interaction. Accumulation of impurities in this blanket can be expected. Fuelling from a blanket may be possible as shown by experimental results, though not fully explained by classical transport of neutrals. Refuelling of a reacting plasma had to be ensured by inward diffusion. Experimental studies of a cold impermeable plasma have been done on the tokamak-like Ringboog device. Simulation calculations for the next generation of large tokamaks using a particular transport model, indicate that the plasma edge profile can be controlled to reduce the production of sputtered impurities to an acceptable level. Impurity control requires a small fraction of the radial space to accomodate the cold-plasma layer. The problem of exhaust is, however, more complicated. If the cold-blanket scheme works as predicted in the model calculations, then α-particles generated by fusion will be transported to the cold outside layer. The Communities' experimental programme of research has been discussed in terms of the tokamaks which are available and planned. Two options present themselves for the continuation of cold-blanket research

  4. Tritium control in helium-cooled blankets

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Maya, I.; Kessel, C.; Roelant, D.; Schultz, K.R.

    1985-06-01

    As a part of the Blanket Comparison and Selection Study (BCSS), GA Technologies was responsible for the design of helium-cooled, solid- and liquid-metal breeder blankets. Conceptual blanket designs were developed, including the consideration of the generation, transport, and extraction of tritium. Evaluations were made of the inventory and leakage of tritium for helium-cooled Li 2 O and LiAlO 2 and liquid lithium breeder blankets for tokamak and tandem mirror reactors. To facilitate the evaluation, a solid breeder tritium code TRIT4 was developed. The results from this study indicate that tritium inventories and leakages are acceptable for the proposed helium-cooled blankets. An assumption made in the tritium leakage calculations was that tritium is released to the helium purge and coolant streams as T 2 and remains in that form. If oxidation to T 2 O is possible, significant reduction in the tritium leakage will be possible. We conclude that more experimental data on breeder material properties and tritium permeation behavior are needed. However, we are certain that an adequate number of different techniques are available to control the breeder tritium inventory and leakage to an acceptable level in helium-cooled solid- and lithium-breeder blankets

  5. Liquid lithium blanket processing studies

    International Nuclear Information System (INIS)

    Talbot, J.B.; Clinton, S.D.

    1979-01-01

    The sorption of tritium on yttrium from flowing molten lithium and the subsequent release of tritium from yttrium for regeneration of the metal sorbent were investigated to evaluate the feasibility of such a tritium-recovery process for a fusion reactor blanket of liquid lithium. In initial experiments with the forced convection loop, yttrium samples were contacted with lithium at 300 0 C. A mass transfer coefficient of 2.5 x 10 - cm/sec, which is more than an order of magnitude less than the value measured in earlier static experiments, was determined for the flowing lithium system. Rates of tritium release from yttrium samples were measured to evaluate possible thermal regeneration of the sorbent. Values for diffusion coefficients at 505, 800, and 900 0 C were estimated to be 1.1 x 10 -13 , 4.9 x 10 -12 , and 9.3 x 10 -10 cm 2 /sec, respectively. Tritium release from yttrium was investigated at higher temperatures and with hydrogen added to the argon sweep gas to provide a reducing atmosphere

  6. Blanket and vacuum vessel design of the next tokamak. (Swimming pool type)

    International Nuclear Information System (INIS)

    Iida, H.; Minato, A.; Kitamura, K.

    1983-01-01

    The structural design study of a reactor module for a swimming pool type reactor (SPTR) was conducted. Since pool water plays the role of radiation shielding in the SPTR, the module does not have a solid shield. It consists of tritium breeding blankets, divertor collector plates and a vacuum vessel. The object of this study is to show the reactor module design which has a simple structure and a sufficient tritium breeding ratio. A large coverage of the plasma chamber surface with tritium breeding blanket is essential in order to obtain a high tritium breeding ratio. A breeding blanket is also placed behind the divertor collector plate, i.e. in the upper and lower region, as well as in the outboard and inboard regions of the module. A concept in which the first wall is an integral part of the blanket is employed to minimize the thickness of structural and cooling material brazed in front of the breeding material (Li 2 O) and to enhance the tritium breeding capability. In order to simplify the module structure the vacuum vessel and breeding blanket is also integrated in the inboard region. One of the features inherent in the swimming pool type reactor is an additional external force on the vacuum vessel, namely hydraulic pressure. A detailed structural analysis of the vacuum vessel is performed. Divertor collector plates are assemblies of co-axial tubes. They minimize the electromagnetic force on the plate induced by the plasma disruption. A thermal and structural analysis and life time estimation of the first wall and divertor collector plates are performed. (author)

  7. Neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) MCNP ''Benchmark CAD Model'' with the ATTILA discrete ordinance code

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Feder, R.; Davis, I.

    2007-01-01

    The ITER IT has adopted the newly developed FEM, 3-D, and CAD-based Discrete Ordinates code, ATTILA for the neutronics studies contingent on its success in predicting key neutronics parameters and nuclear field according to the stringent QA requirements set forth by the Management and Quality Program (MQP). ATTILA has the advantage of providing a full flux and response functions mapping everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. The ITER neutronics community had agreed to use a standard CAD model of ITER (40 degree sector, denoted ''Benchmark CAD Model'') to compare results for several responses selected for calculation benchmarking purposes to test the efficiency and accuracy of the CAD-MCNP approach developed by each party. Since ATTILA seems to lend itself as a powerful design tool with minimal turnaround time, it was decided to benchmark this model with ATTILA as well and compare the results to those obtained with the CAD MCNP calculations. In this paper we report such comparison for five responses, namely: (1) Neutron wall load on the surface of the 18 shield blanket module (SBM), (2) Neutron flux and nuclear heating rate in the divertor cassette, (3) nuclear heating rate in the winding pack of the inner leg of the TF coil, (4) Radial flux profile across dummy port plug and shield plug placed in the equatorial port, and (5) Flux at seven point locations situated behind the equatorial port plug. (orig.)

  8. Modelling blanket peatland hydrology and Holocene peatland development in north-eastern Scotland.

    Science.gov (United States)

    Swinnen, Ward; Verstraeten, Gert; Broothaerts, Nils

    2017-04-01

    To study long-term peatland dynamics, several peatland models have been constructed in recent decades. Most modelling efforts have focussed on peat bogs, but for other peatland types, such as blanket peatlands, modelling studies are limited. Although blanket peatland is a rare ecosystem type on a global scale, 87 percent of the peat cover in the UK is of this type. Hillslope hydrology is fundamental to blanket peatland development and an improved representation and understanding of the relationships between climate, hydrology and peat growth is crucial to better understand the effects of environmental change on peatland evolution and the carbon balance. Here, a new spatially explicit process-based peat growth model is presented for blanket peatlands, which couples a detailed 2.5D-hillslope hydrology model with a peat accumulation and decomposition module. The resultant model allows to study the hillslope hydrology and blanket peatland development along topographically complex hillslopes over a Holocene timescale. Calibration and validation of the model parameters is based on a dataset of more than 250 peat thickness measurements along several hillslope transects and eight radiocarbon dated peat samples in the headwaters of the river Dee (Cairngorms National Park, north-eastern Scotland). The model results show that the topography-driven hillslope hydrology has a strong influence on the resultant peat development along the hillslope, stressing the need for spatial models in studying blanket peatlands. Model simulations for the studied area result in peat growth initiation dates situated mostly in the period 9000 - 7000 a BP, which corresponds largely to basal calibrated radiocarbon dates for peat deposits in central and north-eastern Scotland. The simulated blanket peat growth initiation occurs before the mid-Holocene forest cover decline. These results indicate that, for the studied area, the blanket peatland development is largely driven by the early

  9. Study on fission blanket fuel cycling of a fusion-fission hybrid energy generation system

    International Nuclear Information System (INIS)

    Zhou, Z.; Yang, Y.; Xu, H.

    2011-01-01

    This paper presents a preliminary study on neutron physics characteristics of a light water cooled fission blanket for a new type subcritical fusion-fission hybrid reactor aiming at electric power generation with low technical limits of fission fuel. The major objective is to study the fission fuel cycling performance in the blanket, which may possess significant impacts on the feasibility of the new concept of fusion-fission hybrid reactor with a high energy gain (M) and tritium breeding ratio (TBR). The COUPLE2 code developed by the Institute of Nuclear and New Energy Technology of Tsinghua University is employed to simulate the neutronic behaviour in the blanket. COUPLE2 combines the particle transport code MCNPX with the fuel depletion code ORIGEN2. The code calculation results show that soft neutron spectrum can yield M > 20 while maintaining TBR >1.15 and the conversion ratio of fissile materials CR > 1 in a reasonably long refuelling cycle (>five years). The preliminary results also indicate that it is rather promising to design a high-performance light water cooled fission blanket of fusion-fission hybrid reactor for electric power generation by directly loading natural or depleted uranium if an ITER-scale tokamak fusion neutron source is achievable.

  10. Dual-coolant lead–lithium (DCLL) blanket status and R&D needs

    Energy Technology Data Exchange (ETDEWEB)

    Smolentsev, Sergey, E-mail: sergey@fusion.ucla.edu [University of California, Los Angeles, CA (United States); Morley, Neil B.; Abdou, Mohamed A. [University of California, Los Angeles, CA (United States); Malang, Siegfried [Consultancy, Linkenheim (Germany)

    2015-11-15

    The DCLL is an attractive breeding blanket concept that leads to a high-temperature (T ∼ 700 °C), high thermal efficiency (η > 40%) blanket system. The key element of the concept is a flow channel insert (FCI) that serves as an electrical and thermal insulator to reduce the magnetohydrodynamic (MHD) pressure drop and to decouple the temperature-limited RAFM (reduced-activation ferritic/martensitic) steel wall from the flowing hot PbLi. The paper introduces the concept, reviews history of the development of the DCLL in the US and worldwide and then identifies critical R&D needs prior to fusion environment testing in four research areas important to the successful development of the DCLL concept: (1) PbLi MHD thermofluids, (2) fluid materials interaction, (3) tritium transport, and (4) FCI development and characterization. For these areas, the most important R&D results obtained in the US in the ITER DCLL TBM program (2005–2011) and more recently are reviewed, including experimental and computational studies of MHD PbLi flows, corrosion of RAFM, tritium permeation, and silicon carbide FCI fabrication and material qualification. We also discuss required features of non-fusion facilities for DCLL blanket testing, where current lab experiments and modeling could progress to multiple effects and partially-integrated studies that approach as nearly as possible prototypic, integrated blanket conditions prior to testing in a fusion environment.

  11. Towards the development of technical specifications for the production of lithium-lead alloys for the ITER HCLL TMB

    Energy Technology Data Exchange (ETDEWEB)

    Barrado, Ana Isabel, E-mail: anaisabel.barrado@ciemat.es [CIEMAT. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (Spain); Conde, Estefania; Fernandez, Marta [CIEMAT. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (Spain); Gomez-Salazar, Jose Maria [UCM. Dpto. De Ciencia de Materiales e Ingenieria Metalurgica (Spain); Quejido, Alberto; Quinones, Javier [CIEMAT. Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (Spain)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Pb-Li alloy plays a key role in the new commercial fusion reactors functionality. Black-Right-Pointing-Pointer It is important to have a complete characterization to define their physicochemical properties. Black-Right-Pointing-Pointer Methodology developed is a key tool that allows performing quality control procedures. Black-Right-Pointing-Pointer Determine concentrations of major and trace elements, which can be found in Pb-Li alloy. - Abstract: The ITER and DEMO projects are developing new Test Blanket Modules (TBM), where the Pb-Li alloy plays a key role in the new commercial fusion reactors functionality. The Breeding Blanket (BB) has to perform several functions which are essential for the reactor operation. The HCLL TBM is one of the Breeding Blanket concepts to be tested in ITER. It is cooled by He and uses the eutectic liquid metal LLE (Lithium-Lead Eutectic) as breeder material (enriched at 90% in {sup 6}Li). Pb-Li eutectic alloy has no known uses outside of fusion technology, so the available databases of this material are currently incomplete. It is very important, within the material specifications, to have a complete characterization in order to define their chemical and physical properties, because any variation in the alloy composition has significant consequences in their behaviour, and therefore in their regenerative function inside the blanket. The chemical characterization methodology developed and presented in this paper (useful for both Pb-Li alloys as any Pb alloy) is a key tool that allows performing standard quality control procedures for base material and/or monitoring the alloy during the reactor operation. This report provides a procedure to perform a wide material chemical characterization, assessing the concentrations of major elements, as well as a review of trace level elements that can be found both in the eutectic alloy and in starting materials. In this determination plays an important

  12. Fusion technology development: first wall/blanket system and component testing in existing nuclear facilities

    International Nuclear Information System (INIS)

    Hsu, P.Y.S.; Bohn, T.S.; Deis, G.A.; Judd, J.L.; Longhurst, G.R.; Miller, L.G.; Millsap, D.A.; Scott, A.J.; Wessol, D.E.

    1980-12-01

    A novel concept to produce a reasonable simulation of a fusion first wall/blanket test environment employing an existing nuclear facility, the Engineering Test Reactor at the Idaho National Engineering Laboratory, is presented. Preliminary results show that an asymmetric, nuclear test environment with surface and volumetric heating rates similar to those expected in a fusion first wall/blanket or divertor chamber surface appears feasible. The proposed concept takes advantage of nuclear reactions within the annulus of an existing test space (15 cm in diameter and approximately 100 cm high) to provide an energy flux to the surface of a test module. The principal reaction considered involves 3 He in the annulus as follows: n + 3 He → p + t + 0.75 MeV. Bulk heating in the test module is accomplished by neutron thermalization, gamma heating, and absorption reactions involving 6 Li in the blanket breeding region. The concept can be extended to modified core configurations that will accommodate test modules of different sizes and types. It makes possible development testing of first wall/blanket systems and other fusion components on a scale and in ways not otherwise available until actual high-power fusion reactors are built

  13. Mechanical design and thermal hydraulic considerations for a self-cooled lithium-lead blanket

    International Nuclear Information System (INIS)

    Misra, B.; Smith, D.L.

    1983-01-01

    Liquid lithium-lead eutectic alloy (17 at-% Li83 at-% Pb, referred to herein as Li-Pb) is currently being considered as a candidate breeding material for fusion reactors. Some important considerations in the design of a Li-Pb blanket are compatibility with the structure, tritium containment and recovery, and safety. Additional design complexities arise because of the high density of Li-Pb, the relatively high melting temperature (235 0 C), and the high tritium overpressure associated with this alloy. In this study, the Li-Pb eutectic was considered both as the breeder and as the coolant. Thermal hydraulic and stress analyses were conducted to assess the technical feasibility of using Li-Pb as the breeder and coolant based on DEMO reactor conditions. The results of the thermo-mechanical analyses showed that the elongated cylindrical blanket modules made from either HT-9 or vanadium alloy offer a viable first wall/blanket design concept

  14. Recent progress in DEMO fusion core engineering: Improved segmentation, maintenance and blanket concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ihli, T. [Association FZK-Euratom, Forschungszentrum Karlsruhe, Postfach 36 40, 76021 Karlsruhe (Germany)], E-mail: thomas.ihli@iket.fzk.de; Boccaccini, L.V.; Janeschitz, G.; Koehly, C. [Association FZK-Euratom, Forschungszentrum Karlsruhe, Postfach 36 40, 76021 Karlsruhe (Germany); Maisonnier, D. [EFDA Garching (Germany); Nagy, D. [Association EURATOM/HAS, KFKI-Research Institute, Budapest (Hungary); Polixa, C.; Rey, J. [Association FZK-Euratom, Forschungszentrum Karlsruhe, Postfach 36 40, 76021 Karlsruhe (Germany); Sardain, P. [EFDA Garching (Germany)

    2007-10-15

    After finalization of the European Power Plant Conceptual Study [D. Maisonnier, et al., A conceptual study of commercial fusion power plants, Final Report of the European Fusion Power Plant Conceptual Study (PPCS), EFDA-RP-RE-5.0, 2005 ] a new European effort was started to develop an optimized power core for a He-cooled DEMO device. The candidate breeder blanket concepts considered are the HCPB (helium cooled ceramic breeder) concept, the HCLL (helium cooled lithium lead) concept and the DCLL (dual coolant) concept. One basic segmentation and maintenance configuration involving so-called 'multi-module segments' (MMS) was identified to be particularly promising. In this paper, an overview on the concept is given and key design features are described. In addition, the design adjustment of the HCPB blanket and some new proposals in the DCLL blanket design are briefly discussed.

  15. Thermal-hydraulics design comparisons for the tandem mirror hybrid reactor blanket

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Yang, Y.S.; Schultz, K.R.

    1980-09-01

    The Tandem Mirror Hybrid Reactor (TMHR) is a cylindrical reactor, and the fertile materials and tritium breeding fuel elements can be arranged with radial or axial orientation in the blanket module. Thermal-hydraulics performance comparisons were made between plate, axial rod and radial rod fuel geometrices. The three configurations result in different coolant/void fractions and different clad/structure fractions. The higher void fraction in the two rod designs means that these blankets will have to be thicker than the plate design blanket in order to achieve the same level of nuclear interactions. Their higher structural fractions will degrade the uranium breeding ratio and energy multiplication factor of the design. One difficulty in the thermal-hydraulics analysis of the plate design was caused by the varying energy multiplication of the blanket during the lifetime of the plate which forced the use of designs that operated in the transition flow regime at some point during life. To account for this, an approach was adopted from Gas Cooled Fast Reactor (GCFR) experience for the pressure drop calculation and the corresponding heat transfer coefficient that was used for the film drop thermal calculation. Because of the superior nuclear performance, the acceptable thermal-hydraulic characteristics and the mechanical design feasibility, the plate geometry concept was chosen for the reference gas-cooled TMHR blanket design

  16. Low activity blanket designs and heat transfer for experimental power reactors

    International Nuclear Information System (INIS)

    Fillo, J.; Tichler, P.; Lazareth, O.; Powell, J.

    1976-01-01

    Two minimum activity blanket designs are described, based on the ANL TEPR circular design parameters. A first wall loading (plasma on) of 1.0 MW(th)/m 2 has been assumed. The first option is composed of SAP (sintered aluminum product) modules. The oval shaped SAP shell, in which approximately 45 percent of the fusion energy is removed, is maintained at a temperature of approximately 400 0 C by a He coolant stream. The remaining 55 percent of the fusion energy is deposited in a thermally insulated hot interior (SiC and B 4 C) and removed by a separate He coolant, with exit temperature of 800 0 C. In the second option, the blanket is a thick graphite block structure (approximately 50 cm thickness) with SAP coolant tubes carrying He (50 atm) embedded deep within the graphite to minimize radiation damage. The neutron and gamma energy deposited in the graphite is radiated along internal slots and conducted through the graphite to the coolant tubes. To reduce surface evaporation above 2000 0 C, the blanket surface is radiatively cooled to a low temperature radiation sink, a bank of He cooled SAP tubes. Approximately 20 percent of the fusion energy is removed in this region, the remaining 80 percent in the primary graphite-aluminum blanket. Both blanket options are mounted on heavy Al backing plates, cooled by He, which are in turn supported from the fixed shield

  17. ITER council proceedings: 1998

    International Nuclear Information System (INIS)

    1999-01-01

    This volume contains documents of the 13th and the 14th ITER council meeting as well as of the 1st extraordinary ITER council meeting. Documents of the ITER meetings held in Vienna and Yokohama during 1998 are also included. The contents include an outline of the ITER objectives, the ITER parameters and design overview as well as operating scenarios and plasma performance. Furthermore, design features, safety and environmental characteristics are given

  18. Progress in the design and R and D of the ITER In-Vessel Viewing and Metrology System (IVVS)

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, Gregory, E-mail: gregory.dubus@f4e.europa.eu [Fusion for Energy, c/ Josep Pla, n°2 – Torres Diagonal Litoral – Edificio B3, 08019 Barcelona (Spain); Puiu, Adrian; Bates, Philip; Damiani, Carlo [Fusion for Energy, c/ Josep Pla, n°2 – Torres Diagonal Litoral – Edificio B3, 08019 Barcelona (Spain); Reichle, Roger; Palmer, Jim [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2014-10-15

    The In-Vessel Viewing and Metrology System (IVVS) is a fundamental tool for the ITER machine operations, aiming at performing inspections as well as providing information related to the erosion of in-vessel components, which in turn is related to the amount of mobilised dust present in the Vacuum Vessel. Periodically or on request, the IVVS scanning probes will be deployed into the Vacuum Vessel in order to acquire both visual and metrological data on plasma facing components (blanket, divertor, heating/diagnostic plugs, and test blanket modules). Recent design changes made to the six IVVS port extensions implied the need for a substantial redesign of the IVVS integrated concept – including the scanning probe and its deployment system – in order to bring it to the level of maturity suitable for the Conceptual Design Review. This paper gives an overview of the concept design for IVVS as well as of the various engineering analyses and R and D activities carried out in support to this design: neutronic, seismic and electromagnetic analyses, probe actuation validation under environmental conditions.

  19. ITER Council proceedings: 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Records of the third ITER Council Meeting (IC-3), held on 21-22 April 1993, in Tokyo, Japan, and the fourth ITER Council Meeting (IC-4) held on 29 September - 1 October 1993 in San Diego, USA, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA), such as the text of the draft of Protocol 2 further elaborated in ''ITER EDA Agreement and Protocol 2'' (ITER EDA Documentation Series No. 5), recommendations on future work programmes: a description of technology R and D tasks; the establishment of a trust fund for the ITER EDA activities; arrangements for Visiting Home Team Personnel; the general framework for the involvement of other countries in the ITER EDA; conditions for the involvement of Canada in the Euratom Contribution to the ITER EDA; and other attachments as parts of the Records of Decision of the aforementioned ITER Council Meetings

  20. ITER council proceedings: 2000

    International Nuclear Information System (INIS)

    2001-01-01

    No ITER Council Meetings were held during 2000. However, two ITER EDA Meetings were held, one in Tokyo, January 19-20, and one in Moscow, June 29-30. The parties participating in these meetings were those that partake in the extended ITER EDA, namely the EU, the Russian Federation, and Japan. This document contains, a/o, the records of these meetings, the list of attendees, the agenda, the ITER EDA Status Reports issued during these meetings, the TAC (Technical Advisory Committee) reports and recommendations, the MAC Reports and Advice (also for the July 1999 Meeting), the ITER-FEAT Outline Design Report, the TAC Reports and Recommendations both meetings), Site requirements and Site Design Assumptions, the Tentative Sequence of technical Activities 2000-2001, Report of the ITER SWG-P2 on Joint Implementation of ITER, EU/ITER Canada Proposal for New ITER Identification

  1. Proceedings of the sixth international workshop on ceramic breeder blanket interactions

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji [ed.

    1998-03-01

    This report is the Proceedings of `the Sixth International Workshop on Ceramic Breeder Blanket Interactions` which was held as a workshop on ceramic breeders under Annex II of IEA Implementing Agreement on a Programme of Research and Development on Fusion Materials, and Japan-US Workshop 97FT4-01. This workshop was held in Mito city, Japan on October 22-24, 1997. About forty experts from EU, Japan, USA, and Chile attended the workshop. The scope of the workshop included the following: (1) fabrication and characterization of ceramic breeders, (2) properties data for ceramic breeders, (3) tritium release characteristics, (4) modeling of tritium behavior, (5) irradiation effects on performance behavior, (6) blanket design and R and D requirements, (7) hydrogen behavior in materials, and (8) blanket system technology and structural materials. In the workshop, information exchange was performed for fabrication technology of ceramic breeder pebbles in EU and Japan, data of various properties of Li{sub 2}TiO{sub 3}, tritium release behavior of Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} including tritium diffusion, modeling of tritium release from Li{sub 2}ZrO{sub 3} in ITER condition, helium release behavior from Li{sub 2}O, results of tritium release irradiation tests of Li{sub 4}SiO{sub 4} pebbles in EXOTIC-7, R and D issues for ceramic breeders for ITER and DEMO blankets, etc. The 23 of the papers are indexed individually. (J.P.N.)

  2. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  3. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    International Nuclear Information System (INIS)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse.

    1988-03-01

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs

  4. Experimental investigation of MHD pressure losses in a mock-up of a liquid metal blanket

    Science.gov (United States)

    Mistrangelo, C.; Bühler, L.; Brinkmann, H.-J.

    2018-03-01

    Experiments have been performed to investigate the influence of a magnetic field on liquid metal flows in a scaled mock-up of a helium cooled lead lithium (HCLL) blanket. During the experiments pressure differences between points on the mock-up have been recorded for various values of flow rate and magnitude of the imposed magnetic field. The main contributions to the total pressure drop in the test-section have been identified as a function of characteristic flow parameters. For sufficiently strong magnetic fields the non-dimensional pressure losses are practically independent on the flow rate, namely inertia forces become negligible. Previous experiments on MHD flows in a simplified test-section for a HCLL blanket showed that the main contributions to the total pressure drop in a blanket module originate from the flow in the distributing and collecting manifolds. The new experiments confirm that the largest pressure drops occur along manifolds and near the first wall of the blanket module, where the liquid metal passes through small openings in the stiffening plates separating two breeder units. Moreover, the experimental data shows that with the present manifold design the flow does not distribute homogeneously among the 8 stacked boxes that form the breeding zone.

  5. Investigation of heat treatment conditions of structural material for blanket fabrication process

    International Nuclear Information System (INIS)

    Hirose, Takanori; Suzuki, Satoshi; Akiba, Masato; Shiba, Kiyoyuki; Sawai, Tomotsugu; Jitsukawa, Shiro

    2004-01-01

    This paper presents recent results of thermal hysteresis effects on ceramic breeder blanket structural material. Reduced activation ferritic/martensitic (RAF) steel is the leading candidates for the first wall structural materials of breeding blankets. RAF steel demonstrates superior resistance to high dose neutron irradiation, because the steel has tempered martensite structure which contains the number of sink site for radiation defects. This microstructure obtained by two-step heat treatment, first is normalizing at temperature above 1200 K and the second is tempering at temperature below 1100 K. Recent study revealed the thermal hysteresis has significant impacts on the post-irradiation mechanical properties. The breeding blanket has complicated structure, which consists of tungsten armor and thin first wall with cooling pipe. The blanket fabrication requires some high temperature joining processes. Especially hot isostatic pressing (HIP) is examined as a near-net-shape fabrication process for this structure. The process consists of heating above 1300 K and isostatic pressing at the pressure above 150 MPa followed by tempering. Moreover ceramics pebbles are packed into blanket module and the module is to be seamed by welding followed by post weld heat treatment in the final assemble process. Therefore the final microstructural features of RAFs strongly depend on the blanket fabrication process. The objective of this work is to evaluate the effects of thermal hysteresis corresponding to blanket fabrication process on RAFs microstructure in order to establish appropriate blanket fabrication process. Japanese RAFs F82H (Fe-0.1C-8Cr-2W-0.2V-0.05Ta) was investigated by metallurgical method after isochronal heat treatment up to 1473 K simulating high temperature bonding process. Although F82H showed significant grain growth after conventional solid HIP conditions (1313 K x 2 hr.), this coarse grained microstructure was refined by the post HIP normalizing at

  6. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-04

    The Committee`s evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is United and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical worlding experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, h is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium allay option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan.

  7. Fusion materials: Technical evaluation of the technology of vandium alloys for use as blanket structural materials in fusion power systems

    International Nuclear Information System (INIS)

    1993-01-01

    The Committee's evaluation of vanadium alloys as a structural material for fusion reactors was constrained by limited data and time. The design of the International Thermonuclear Experimental Reactor is still in the concept stage, so meaningful design requirements were not available. The data on the effect of environment and irradiation on vanadium alloys were sparse, and interpolation of these data were made to select the V-5Cr-5Ti alloy. With an aggressive, fully funded program it is possible to qualify a vanadium alloy as the principal structural material for the ITER blanket in the available 5 to 8-year window. However, the data base for V-5Cr-5Ti is United and will require an extensive development and test program. Because of the chemical reactivity of vanadium the alloy will be less tolerant of system failures, accidents, and off-normal events than most other candidate blanket structural materials and will require more careful handling during fabrication of hardware. Because of the cost of the material more stringent requirements on processes, and minimal historical worlding experience, it will cost an order of magnitude to qualify a vanadium alloy for ITER blanket structures than other candidate materials. The use of vanadium is difficult and uncertain; therefore, other options should be explored more thoroughly before a final selection of vanadium is confirmed. The Committee views the risk as being too high to rely solely on vanadium alloys. In viewing the state and nature of the design of the ITER blanket as presented to the Committee, h is obvious that there is a need to move toward integrating fabrication, welding, and materials engineers into the ITER design team. If the vanadium allay option is to be pursued, a large program needs to be started immediately. The commitment of funding and other resources needs to be firm and consistent with a realistic program plan

  8. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  9. Tritium behaviour in ceramic breeder blankets

    International Nuclear Information System (INIS)

    Miller, J.M.

    1989-01-01

    Tritium release from the candidate ceramic materials, Li 2 O, LiA10 2 , Li 2 SiO 3 , Li 4 SiO 4 and Li 2 ZrO 3 , is being investigated in many blanket programs. Factors that affect tritium release from the ceramic into the helium sweep gas stream include operating temperature, ceramic microstructure, tritium transport and solubility in the solid. A review is presented of the material properties studied and of the irradiation programs and the results are summarized. The ceramic breeder blanket concept is briefly reviewed

  10. LMFBR blanket physics project progress report No. 4

    International Nuclear Information System (INIS)

    Driscoll, M.J.; Lanning, D.D.; Kaplan, I.; Supple, A.T.

    1973-01-01

    During the period covered by the report, July 1, 1972, through June 30, 1973, work was devoted to completion of experimental measurements and data analysis on Blanket Mockup No. 3, a graphite-reflected blanket, and to initiation of experimental work on Blanket Mockup No. 4, a steel-reflected assembly designed to mock up a demonstration plant blanket. Work was also carried out on the analysis of a number of advanced blanket concepts, including the use of high-albedo reflectors, the use of thorium in place of uranium in the blanket region, and the ''parfait'' or completely internal blanket concept. Finally, methods development work was initiated to develop the capability for making gamma heating measurements in the blanket mockups. (U.S.)

  11. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shijie; Zhang, Dalin, E-mail: dlzhang@mail.xjtu.edu.cn; Cheng, Jie; Tian, Wenxi; Su, G.H.

    2017-01-15

    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  12. ITER EDA newsletter. V. 7, no. 11

    International Nuclear Information System (INIS)

    1998-11-01

    This ITER EDA Newsletter contains a report on the delivery of the outer module of the CS model coil to Naka by K. Okuno et al, a special lecture by H. Yoshikawa, the president of the Science Council of Japan on the future outlook of nuclear fusion and a report on an ITER display during the 17th IAEA Fusion Energy Conference, held in Yokohama, Japan, from October 19 to 24, 1998

  13. Nuclear-thermal-coupled optimization code for the fusion breeding blanket conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jia, E-mail: lijia@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China); Nie, Xingchen [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230027, Anhui (China); Zhu, Qinjun; Liu, Songlin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2016-12-15

    Highlights: • A nuclear-thermal-coupled predesign code has been developed for optimizing the radial build arrangement of fusion breeding blanket. • Coupling module aims at speeding up the efficiency of design progress by coupling the neutronics calculation code with the thermal-hydraulic analysis code. • Radial build optimization algorithm aims at optimal arrangement of breeding blanket considering one or multiple specified objectives subject to the design criteria such as material temperature limit and available TBR. - Abstract: Fusion breeding blanket as one of the key in-vessel components performs the functions of breeding the tritium, removing the nuclear heat and heat flux from plasma chamber as well as acting as part of shielding system. The radial build design which determines the arrangement of function zones and material properties on the radial direction is the basis of the detailed design of fusion breeding blanket. For facilitating the radial build design, this study aims for developing a pre-design code to optimize the radial build of blanket with considering the performance of nuclear and thermal-hydraulic simultaneously. Two main features of this code are: (1) Coupling of the neutronics analysis with the thermal-hydraulic analysis to speed up the analysis progress; (2) preliminary optimization algorithm using one or multiple specified objectives subject to the design criteria in the form of constrains imposed on design variables and performance parameters within the possible engineering ranges. This pre-design code has been applied to the conceptual design of water-cooled ceramic breeding blanket in project of China fusion engineering testing reactor (CFETR).

  14. ITER council proceedings: 1995

    International Nuclear Information System (INIS)

    1996-01-01

    Records of the 8. ITER Council Meeting (IC-8), held on 26-27 July 1995, in San Diego, USA, and the 9. ITER Council Meeting (IC-9) held on 12-13 December 1995, in Garching, Germany, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA) and the ITER Interim Design Report Package and Relevant Documents. Figs, tabs

  15. 75 FR 51482 - Woven Electric Blankets From China

    Science.gov (United States)

    2010-08-20

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1163 (Final)] Woven Electric Blankets... injured by reason of imports from China of woven electric blankets, provided for in subheading 6301.10.00... notification of a preliminary determination by Commerce that imports of woven electric blankets from China were...

  16. Electro-mechanical connection system for ITER in-vessel magnetic sensors

    International Nuclear Information System (INIS)

    Rizzolo, Andrea; Brombin, Matteo; Gonzalez, Winder; Marconato, Nicolò; Peruzzo, Simone; Arshad, Shakeib; Ma, Yunxing; Vayakis, George; Williams, Adrian

    2016-01-01

    Highlights: • Latest status of the ITER “Generic In-Vessel Magnetic Platform” design activity. • Integration within the ITER In-Vessel configuration model. • Geometry optimization based on thermo-mechanical and magnetic field 3D calculation. • Assessment of the remote handling maintenance compatibility. - Abstract: This paper presents the preliminary design of the “In-Vessel Magnetic platform”, which is a subsystem of the magnetic diagnostics formed by all the components necessary for guaranteeing the thermo-mechanical interface of the actual magnetic sensors with the vacuum vessel (VV), their protection and the electrical connection to the in-vessel wiring for the transmission of the detected signal with a minimum level of noise. The design has been developed in order to comply with different functional requirements: the mechanical attachment to the VV; the electrical connection to the in-vessel wiring; efficient heat transfer to the VV; the compatibility with Remote Handling (RH) system for replacement; the integration of metrology features for post-installation control; the Electro Magnetic Interference (EMI) shielding from Electron Cyclotron Heating (ECH) stray radiation without compromising the sensor pass band (15 kHz). Significant effort has been dedicated to develop the CAD model, integrated within the ITER In-Vessel configuration model, taking care of the geometrical compliance with the Blanket modules (modified in order to accommodate the magnetic sensors in suitable grooves) and the RH compatibility. Thorough thermo-mechanical and electro-magnetic Finite Element Method (FEM) analyses have been performed to assess the reliability of the system in standard and off-normal operating conditions for the low frequency magnetic sensors.

  17. Electro-mechanical connection system for ITER in-vessel magnetic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Rizzolo, Andrea; Brombin, Matteo; Gonzalez, Winder [Consorzio RFX, Corso Stati Uniti, 4, 35127 Padova (Italy); Marconato, Nicolò, E-mail: nicolo.marconato@igi.cnr.it [Consorzio RFX, Corso Stati Uniti, 4, 35127 Padova (Italy); Peruzzo, Simone [Consorzio RFX, Corso Stati Uniti, 4, 35127 Padova (Italy); Arshad, Shakeib [Fusion for Energy, C/Josep Pla, 2, 08019 Barcelona (Spain); Ma, Yunxing; Vayakis, George [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); Williams, Adrian [Oxford Technologies Ltd, 7 Nuffield Way, Abingdon, Oxon, OX14 1RL (United Kingdom)

    2016-11-01

    Highlights: • Latest status of the ITER “Generic In-Vessel Magnetic Platform” design activity. • Integration within the ITER In-Vessel configuration model. • Geometry optimization based on thermo-mechanical and magnetic field 3D calculation. • Assessment of the remote handling maintenance compatibility. - Abstract: This paper presents the preliminary design of the “In-Vessel Magnetic platform”, which is a subsystem of the magnetic diagnostics formed by all the components necessary for guaranteeing the thermo-mechanical interface of the actual magnetic sensors with the vacuum vessel (VV), their protection and the electrical connection to the in-vessel wiring for the transmission of the detected signal with a minimum level of noise. The design has been developed in order to comply with different functional requirements: the mechanical attachment to the VV; the electrical connection to the in-vessel wiring; efficient heat transfer to the VV; the compatibility with Remote Handling (RH) system for replacement; the integration of metrology features for post-installation control; the Electro Magnetic Interference (EMI) shielding from Electron Cyclotron Heating (ECH) stray radiation without compromising the sensor pass band (15 kHz). Significant effort has been dedicated to develop the CAD model, integrated within the ITER In-Vessel configuration model, taking care of the geometrical compliance with the Blanket modules (modified in order to accommodate the magnetic sensors in suitable grooves) and the RH compatibility. Thorough thermo-mechanical and electro-magnetic Finite Element Method (FEM) analyses have been performed to assess the reliability of the system in standard and off-normal operating conditions for the low frequency magnetic sensors.

  18. ITER EDA technical activities

    International Nuclear Information System (INIS)

    Aymar, R.

    1998-01-01

    Six years of technical work under the ITER EDA Agreement have resulted in a design which constitutes a complete description of the ITER device and of its auxiliary systems and facilities. The ITER Council commented that the Final Design Report provides the first comprehensive design of a fusion reactor based on well established physics and technology

  19. ITER radio frequency systems

    International Nuclear Information System (INIS)

    Bosia, G.

    1998-01-01

    Neutral Beam Injection and RF heating are two of the methods for heating and current drive in ITER. The three ITER RF systems, which have been developed during the EDA, offer several complementary services and are able to fulfil ITER operational requirements

  20. ITER council proceedings: 1999

    International Nuclear Information System (INIS)

    1999-01-01

    In 1999 the ITER meeting in Cadarache (10-11 March 1999) and the Programme Directors Meeting in Grenoble (28-29 July 1999) took place. Both meetings were exclusively devoted to ITER engineering design activities and their agendas covered all issues important for the development of ITER. This volume presents the documents of these two important meetings

  1. ITER council proceedings: 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Records of the 10. ITER Council Meeting (IC-10), held on 26-27 July 1996, in St. Petersburg, Russia, and the 11. ITER Council Meeting (IC-11) held on 17-18 December 1996, in Tokyo, Japan, are presented, giving essential information on the evolution of the ITER Engineering Design Activities (EDA) and the cost review and safety analysis. Figs, tabs

  2. Qualification test for ITER HCCR-TBS mockups with high heat flux test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon, E-mail: skkim93@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The test mockups for ITER HCCR (Helium Cooled Ceramic Reflector) TBS (Test Blanket System) in Korea were designed and fabricated. • A thermo-hydraulic analysis was performed using a high heat flux test facility by using electron beam. • The plan for qualification tests was developed to evaluate the thermo-hydraulic efficiency in accordance with the requirements of the ITER Organization. - Abstract: The test mockups for ITER HCCR (Helium Cooled Ceramic Reflector) TBS (Test Blanket System) in Korea were designed and fabricated, and an integrity and thermo-hydraulic performance test should be completed under the same or similar operation conditions of ITER. The test plan for a thermo-hydraulic analysis was developed by using a high heat flux test facility, called the Korean heat load test facility by using electron beam (KoHLT-EB). This facility is utilized for a qualification test of the plasma facing component (PFC) for the ITER first wall and DEMO divertor, and for the thermo-hydraulic experiments. In this work, KoHLT-EB will be used for the plan of the performance qualification test of the ITER HCCR-TBS mockups. This qualification tests should be performed to evaluate the thermo-hydraulic efficiency in accordance with the requirements of the ITER Organization (IO), which describe the specifications and qualifications of the heat flux test facility and test procedure for ITER PFC.

  3. Results on the ITER Technology R and D

    International Nuclear Information System (INIS)

    1999-01-01

    The ITER Engineering Design Activities (EDA) have passed their originally planned six years by approval of the ITER Final Design Report at a meeting of the ITER Council held in July, 1998. The four Parties (EU, Japan, Russia, and USA) had hoped to make a decision for its construction by end of the EDA. However, the financial environment of these Parties were not optimistic to directly start construction of the device scooped in the Report. The ITER Technology R and D has been conducted by cooperation of these four Parties to provide data base and demonstrate technical feasibility on the ITER design. It contains, not only component technologies on tokamak reactor core, but also peripheral system technologies such as heating and current drive technique, remote maintenance technique, tritium technology, fuel air-in-taking/-exhausting technique, measurement diagnosis element technique, safety, and so on. Above all, seven large R and D projects are identified to demonstrate technical feasibility of manufacturing and system tests. They were planned to have scales capable of extrapolating to the ITER and of carrying out by joint efforts of a plural Parties. These projects were relating to superconducting magnet technology; vacuum vessel technology, blanket technology, divertor technology, and remote maintenance technology, among which three projects were promoted under leading of Japan. This report was prepared so as to enable to understand outline of results obtained under the seven projects on the ITER Technology R and D. (G.K.)

  4. Preliminary accident analysis of Loss of Off-Site Power and In-Box LOCA for the CFETR helium cooled solid breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Qiang; Cui, Shijie [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Tian, Wenxi, E-mail: wxtian@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Zhang, Jing; Zhang, Dalin; Su, G.H. [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China); Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi’an Jiaotong University, Xi’an, 710049 (China)

    2017-05-15

    Highlights: • The CFETR HCSB blanket has been investigated using RELAP5. • Loss of Off-Site Power is investigated. • The parametric analyses during In-Box LOCA are investigated. • The HCSB blanket for CFETR is designed with sufficient decay heat removal capability. - Abstract: As one of three candidate tritium breeding blanket concepts for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of helium cooled solid breeder (HCSB) blanket was recently proposed. In this paper, the preliminary thermal-hydraulic and safety analyses of the typical outboard equatorial blanket module (No.12) have been carried out using RELAP5/Mod3.4 code. Two design basis accidents are investigated based on the steady-state initialization, including Loss of Off-Site Power and In-Box Loss of Coolant Accident (LOCA). The differences between circulator coast down and circulator rotor locked under Loss of Off-Site Power are compared. Regarding the In-Box LOCA, the influences of different break sizes and locations are thoroughly analyzed based on a relatively accurate modeling method of the heat structures in sub-modules. The analysis results show that the blanket and the combined helium cooling system (HCS) are designed with sufficient decay heat removal capability for both accidents, which can preliminarily verify the feasibility of the conceptual design. The research work can also provide an important reference for parameter optimization of the blanket and its HCS in the next stage.

  5. The climatic impact of supervolcanic ash blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Morgan T.; Sparks, R.S.J. [University of Bristol, Department of Earth Sciences, Bristol (United Kingdom); Valdes, Paul J. [University of Bristol, School of Geographical Sciences, Bristol (United Kingdom)

    2007-11-15

    Supervolcanoes are large caldera systems that can expel vast quantities of ash, volcanic gases in a single eruption, far larger than any recorded in recent history. These super-eruptions have been suggested as possible catalysts for long-term climate change and may be responsible for bottlenecks in human and animal populations. Here, we consider the previously neglected climatic effects of a continent-sized ash deposit with a high albedo and show that a decadal climate forcing is expected. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, covering much of North America. Reflectivity measurements of dry volcanic ash show albedo values as high as snow, implying that the effects of an ash blanket would be severe. The modeling results indicate major disturbances to the climate, particularly to oscillatory patterns such as the El Nino Southern Oscillation (ENSO). Atmospheric disruptions would continue for decades after the eruption due to extended ash blanket longevity. The climatic response to an ash blanket is not significant enough to investigate a change to stadial periods at present day boundary conditions, though this is one of several impacts associated with a super-eruption which may induce long-term climatic change. (orig.)

  6. Optimization of beryllium for fusion blanket applications

    International Nuclear Information System (INIS)

    Billone, M.C.

    1993-01-01

    The primary function of beryllium in a fusion reactor blanket is neutron multiplication to enhance tritium breeding. However, because heat, tritium and helium will be generated in and/or transported through beryllium and because the beryllium is in contact with other blanket materials, the thermal, mechanical, tritium/helium and compatibility properties of beryllium are important in blanket design. In particular, tritium retention during normal operation and release during overheating events are safety concerns. Accommodating beryllium thermal expansion and helium-induced swelling are important issues in ensuring adequate lifetime of the structural components adjacent to the beryllium. Likewise, chemical/metallurgical interactions between beryllium and structural components need to be considered in lifetime analysis. Under accident conditions the chemical interaction between beryllium and coolant and breeding materials may also become important. The performance of beryllium in fusion blanket applications depends on fabrication variables and operational parameters. First the properties database is reviewed to determine the state of knowledge of beryllium performance as a function of these variables. Several design calculations are then performed to indicate ranges of fabrication and operation variables that lead to optimum beryllium performance. Finally, areas for database expansion and improvement are highlighted based on the properties survey and the design sensitivity studies

  7. Aerogel Blanket Insulation Materials for Cryogenic Applications

    Science.gov (United States)

    Coffman, B. E.; Fesmire, J. E.; White, S.; Gould, G.; Augustynowicz, S.

    2009-01-01

    Aerogel blanket materials for use in thermal insulation systems are now commercially available and implemented by industry. Prototype aerogel blanket materials were presented at the Cryogenic Engineering Conference in 1997 and by 2004 had progressed to full commercial production by Aspen Aerogels. Today, this new technology material is providing superior energy efficiencies and enabling new design approaches for more cost effective cryogenic systems. Aerogel processing technology and methods are continuing to improve, offering a tailor-able array of product formulations for many different thermal and environmental requirements. Many different varieties and combinations of aerogel blankets have been characterized using insulation test cryostats at the Cryogenics Test Laboratory of NASA Kennedy Space Center. Detailed thermal conductivity data for a select group of materials are presented for engineering use. Heat transfer evaluations for the entire vacuum pressure range, including ambient conditions, are given. Examples of current cryogenic applications of aerogel blanket insulation are also given. KEYWORDS: Cryogenic tanks, thermal insulation, composite materials, aerogel, thermal conductivity, liquid nitrogen boil-off

  8. European blanket development for a demo reactor

    International Nuclear Information System (INIS)

    Giancarli, L.; Proust, E.; Anzidei, L.

    1994-01-01

    There are four breeding blanket concepts for a fusion DEMO reactor under development within the framework of the fusion technology programme of the European Union (EU). This paper describes the design of these concepts, the accompanying R + D programme and the status of the development. (authors). 8 figs., 1 tab

  9. ITER Neutral Beam Injection System

    International Nuclear Information System (INIS)

    Ohara, Yoshihiro; Tanaka, Shigeru; Akiba, Masato

    1991-03-01

    A Japanese design proposal of the ITER Neutral Beam Injection System (NBS) which is consistent with the ITER common design requirements is described. The injection system is required to deliver a neutral deuterium beam of 75MW at 1.3MeV to the reactor plasma and utilized not only for plasma heating but also for current drive and current profile control. The injection system is composed of 9 modules, each of which is designed so as to inject a 1.3MeV, 10MW neutral beam. The most important point in the design is that the injection system is based on the utilization of a cesium-seeded volume negative ion source which can produce an intense negative ion beam with high current density at a low source operating pressure. The design value of the source is based on the experimental values achieved at JAERI. The utilization of the cesium-seeded volume source is essential to the design of an efficient and compact neutral beam injection system which satisfies the ITER common design requirements. The critical components to realize this design are the 1.3MeV, 17A electrostatic accelerator and the high voltage DC acceleration power supply, whose performances must be demonstrated prior to the construction of ITER NBI system. (author)

  10. ITER-FEAT safety

    International Nuclear Information System (INIS)

    Gordon, C.W.; Bartels, H.-W.; Honda, T.; Raeder, J.; Topilski, L.; Iseli, M.; Moshonas, K.; Taylor, N.; Gulden, W.; Kolbasov, B.; Inabe, T.; Tada, E.

    2001-01-01

    Safety has been an integral part of the design process for ITER since the Conceptual Design Activities of the project. The safety approach adopted in the ITER-FEAT design and the complementary assessments underway, to be documented in the Generic Site Safety Report (GSSR), are expected to help demonstrate the attractiveness of fusion and thereby set a good precedent for future fusion power reactors. The assessments address ITER's radiological hazards taking into account fusion's favourable safety characteristics. The expectation that ITER will need regulatory approval has influenced the entire safety design and assessment approach. This paper summarises the ITER-FEAT safety approach and assessments underway. (author)

  11. ITER council proceedings: 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This volume of the ITER EDA Documentation Series presents records of the 12th ITER Council Meeting, IC-12, which took place on 23-24 July, 1997 in Tampere, Finland. The Council received from the Parties (EU, Japan, Russia, US) positive responses on the Detailed Design Report. The Parties stated their willingness to contribute to fulfil their obligations in contributing to the ITER EDA. The summary discussions among the Parties led to the consensus that in July 1998 the ITER activities should proceed for additional three years with a general intent to enable an efficient start of possible, future ITER construction

  12. Magnetic forces on a ferromagnetic HT-9 first wall/blanket and coolant pipe

    International Nuclear Information System (INIS)

    Lechtenberg, T.A.; Dahms, C.; Attaya, H.; Univ. of Wisconsin, Madison)

    1984-01-01

    The GFUN 3D code was used to model the toroidal fields and determine the magnetic body forces on the STARFIRE design for coolant pipes exiting the first wall sector and first wall/blanket modules. The HT-9 coolant pipes were modeled on the basis of a square bar having the same length and material volume as the coolant pipes. The stress analysis was performed using these magnetic forces applied to a pipe of 4 meters length, 8.25 cm O.D., and 0.75 cm thickness by the MODSAP stress analysis code. For the first wall/blanket module, GFUN 3D does not allow full modeling of the complex thin-walled structure or numerous small tubes because of the element aspect ratio limitations. Therefore, to obtain three dimensional loads, a solid homogeneous equivalent structure was used

  13. Parameter study on Japanese proposal of ITER hydrogen isotope separation system

    International Nuclear Information System (INIS)

    Yoshida, Hiroshi; Enoeda, Mikio; Tanaka, Shigeru; Ohokawa, Yoshinao; Ohara, Atsushi; Nagakura, Masaaki; Naito, Taisei; Nagashima, Kazuhiro.

    1991-01-01

    As part of Japanese design contribution in the ITER activity, conceptual design of an entire ITER tritium system and their safety analysis have been carried out through the three-year period since 1988. The tritium system includes the following subsystems; - Fuelling (gas puffing and pellet injection) subsystem, - Torus vacuum pumping subsystem, - Plasma exhaust gas purification subsystem, - Hydrogen isotope separation subsystem, - NBI gas processing subsystem, - Blanket tritium recovery subsystem, - Tritiated water processing subsystem, - Tritium safety subsystem. Hydrogen isotope separation system is a key subsystem in the ITER tritium system because it is connected to all above subsystems. This report describes an analytical study on the Japanese concept of hydrogen isotope separation system. (author)

  14. Packed-fluidized-bed blanket concept for a thorium-fueled commercial tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Miller, J.W.; Karbowski, J.S.; Chapin, D.L.; Kelly, J.L.

    1980-09-01

    A preliminary design of a thorium blanket was carried out as a part of the Commercial Tokamak Hybrid Reactor (CTHR) study. A fixed fuel blanket concept was developed as the reference CTHR blanket with uranium carbide fuel and helium coolant. A fixed fuel blanket was initially evaluated for the thorium blanket study. Subsequently, a new type of hybrid blanket, a packed-fluidized bed (PFB), was conceived. The PFB blanket concept has a number of unique features that may solve some of the problems encountered in the design of tokamak hybrid reactor blankets. This report documents the thorium blanket study and describes the feasibility assessment of the PFB blanket concept

  15. Present status of irradiation tests on tritium breeding blanket for fusion reactor

    International Nuclear Information System (INIS)

    Futamura, Yoshiaki; Sagawa, Hisashi; Shimakawa, Satoshi; Tsuchiya, Kunihiko; Kuroda, Toshimasa; Kawamura, Hiroshi.

    1994-01-01

    To develop a tritium breeding blanket for a fusion reactor, irradiation tests in fission reactors are indispensable for obtaining data on irradiation effects on materials, and neutronics/thermal characteristics and tritium production/recovery performance of the blanket. Various irradiation tests have been conducted in the world, especially to investigate tritium release characteristics from tritium breeding and neutron multiplier materials, and materials integrity under irradiation. In Japan, VOM experiments at JRR-2 for ceramic breeders and experiments at JMTR for ceramic breeders and beryllium as a neutron multiplier have been performed. Several universities have also investigated ceramic breeders. In the EC, the EXOTIC experiments at HFR in the Netherlands and the SIBELIUS, the LILA, the LISA and the MOZART experiments for ceramic breeders have carried out. In Canada, NRU has been used for the CRITIC experiments. The TRIO experiments at ORR(ORNL), experiments at RTNS-II, FUBR and ATR have been conducted in the USA. The last two are experiments with high neutron fluence aiming at investigating materials integrity under irradiation. The BEATRIX-I and -II experiments have proceeded under international collaboration of Japan, Canada, the EC and the USA. This report shows the present status of these irradiation tests following a review of the blanket design in the ITER CDA(Conceptual Design Activity). (author)

  16. Water-cooled blanket concepts for the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    Morgan, G.D.; Bowers, D.A.; Jung, J.; Misra, B.; Ruester, D.E.

    1985-01-01

    The primary goal of the Blanket Comparison and Selection Study (BCSS) was to select a limited number of blanket concepts for fusion power reactors, to serve as the focus for the U.S. Department of Energy blanket research and development program. The concepts considered most seriously by the BCSS can be grouped for discussion purposes by coolant: liquid metals and alloys, pressurized water, helium, and nitrate salts. Concepts using pressurized water as the coolant are discussed. Water-cooled concepts using liquid breeders-lithium and 17Li-83Pb (LiPb)-have severe fundamental safety problems. The use of lithium and water in the blanket was considered unacceptable. Initial results of tests at Hanford Engineering Development Laboratory using steam injected into molten LiPb indicate that use of LiPb and water together in a blanket is a very serious concern from the safety standpoint. Key issues for water-cooled blankets with solid tritium breeders (Li 2 O, or a ternary oxide such as LiAlO 2 ) were identified and examined: reliability against leaks, control of tritium permeation into the coolant, retention of breeder physical integrity, breeder temperature predictability, determination of allowable temperature limits for breeders, and 6 Li burnup effects (for LiAlO 2 ). The BCSS's final rankings and associated rationale for all water-cooled concepts are examined. Key issues and factors for tokamak and tandem mirror reactor versions of water-cooled solid breeder concepts are discussed. The reference design for the top-ranked concept-LiAlO 2 breeder, ferritic steel structure, and beryllium neutron multiplier-is presented. Finally, some general conclusions for water-cooled blanket concepts are drawn based on the study's results

  17. Effect of graphite reflector on activation of fusion breeding blanket

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young-Ouk; Lee, Dong Won; Cho, Seungyon; Ahn, Mu-Young

    2016-01-01

    Highlights: • The graphite reflector concept has been applied in the design of the Korea HCCR TBM for ITER and this concept is also a candidate design option for Korea Demo. • In the graphite reflector, C-14, B-11 and Be-10 are produced after an irradiation. Impurities in both case of beryllium and graphite is dominant in the shutdown dose after an irradiation. • Based on the evaluation, the graphite reflector is a good alternative of the beryllium multiplier in the view of induced activity and shutdown dose. But C-14 produced in the graphite reflector should be considered carefully in the view of radwaste management. - Abstract: Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. In this paper, activity analysis was performed and the effect of graphite reflector in the view of activation was compared to the beryllium multiplier. As a result, it is expected that using the graphite reflector instead of the beryllium multiplier decreases total activity very effectively. But the graphite reflector produces C-14 about 17.2 times than the beryllium multiplier. Therefore, C-14 produced in the graphite reflector is expected as a significant nuclide in the view of radwaste management.

  18. Blankets for fusion reactors : materials and neutronics

    International Nuclear Information System (INIS)

    Carvalho, S.H. de.

    1980-03-01

    The studies about Fusion Reactors have lead to several problems for which there is no general agreement about the best solution. Nevertheless, several points seem to be well defined, at least for the first generation of reactors. The fuel, for example, should be a mixture of deuterium and tritium. Therefore, the reactor should be able to generate the tritium to be burned and also to transform kinetic energy of the fusion neutrons into heat in a process similar to the fission reactors. The best materials for the composition of the blanket were first selected and then the neutronics for the proposed system was developed. The neutron flux in the blanket was calculated using the discrete ordinates transport code, ANISN. All the nuclides cross sections came from the DLC-28/CTR library, that processed the ENDF/B data, using the SUPERTOG Program. (Author) [pt

  19. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-01-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-I through IV. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies. ARIES-1 investigated the use of SiC composite as the structural material to increase the blanket temperature and reduce the blanket activation. Li 2 ZrO 3 was used as the breeding material due to its high temperature stability and good tritium recovery characteristics. The ARIES-IV is a modification of ARIES-1. The plasma was in the second stability regime. Li 2 O was used as the breeding material to remove Zr. A gaseous divertor was used to replace the conventional divertor so that high Z divertor target is not required. The physics of ARIES-II was the same as ARIES-IV. The engineering design of the ARIES-II was based on a self-cooled lithium blanket with a V-alloy as the structural material. Even though it was assumed that the plasma was in the second stability regime, the plasma beta was still rather low (3.4%). The ARIES-III is an advanced fuel (D- 3 He) tokamak reactor. The reactor design assumed major advancement on the physics, with a plasma beta of 23.9%. A conventional structural material is acceptable due to the low neutron wall loading. From the radiation damage point of view, the first wall can last the life of the reactor, which is expected to be a major advantage from the engineering design and waste disposal point of view

  20. Economic evaluation of the Blanket Comparison and Selection Study

    International Nuclear Information System (INIS)

    Waganer, L.M.

    1985-01-01

    The economic impact of employing the highly ranked blankets in the Blanket Comparison and Selection Study (BCSS) was evaluated in the context of both a tokamak and a tandem mirror power reactor (TMR). The economic evaluation criterion was determined to be the cost of electricity. The influencing factors that were considered are the direct cost of the blankets and related systems; the annual cost of blanket replacement; and the performance of the blanket, heat transfer, and energy conversion systems. The technical and cost bases for comparison were those of the STARFIRE and Mirror Advanced Reactor Study conceptual design power plants. The economic evaluation results indicated that the nitrate-salt-cooled blanket concept is an economically attractive concept for either reactor type. The water-cooled, solid breeder blanket is attractive for the tokamak and somewhat less attractive for the TMR. The helium-cooled, liquidlithium breeder blanket is the least economically desirable of higher ranked concepts. The remaining self-cooled liquid-metal and the helium-cooled blanket concepts represent moderately attractive concepts from an economic standpoint. These results are not in concert with those found in the other BCSS evaluation areas (engineering feasibility, safety, and research and development (R and D) requirements). The blankets faring well economically had generally lower cost components, lower pumping power requirements, and good power production capability. On the other hand, helium- and lithium-cooled systems were preferred from the standpoints of safety, engineering feasibility, and R and D requirements

  1. Analysis of Consistency of Printing Blankets using Correlation Technique

    Directory of Open Access Journals (Sweden)

    Lalitha Jayaraman

    2010-01-01

    Full Text Available This paper presents the application of an analytical tool to quantify material consistency of offset printing blankets. Printing blankets are essentially viscoelastic rubber composites of several laminas. High levels of material consistency are expected from rubber blankets for quality print and for quick recovery from smash encountered during the printing process. The present study aims at determining objectively the consistency of printing blankets at three specific torque levels of tension under two distinct stages; 1. under normal printing conditions and 2. on recovery after smash. The experiment devised exhibits a variation in tone reproduction properties of each blanket signifying the levels of inconsistency also in thicknessdirection. Correlation technique was employed on ink density variations obtained from the blanket on paper. Both blankets exhibited good consistency over three torque levels under normal printing conditions. However on smash the recovery of blanket and its consistency was a function of manufacturing and torque levels. This study attempts to provide a new metrics for failure analysis of offset printing blankets. It also underscores the need for optimizing the torque for blankets from different manufacturers.

  2. Design of the APT Target/Blanket

    Science.gov (United States)

    Cappiello, M. W.

    1998-04-01

    The Accelerator Production of Tritium Target/Blanket system is composed of a separated tungsten spallation target surrounded by a lead moderator, as well as attendant heat removal systems. The system is housed in a building located at the end of a 1.3 km long linear accelerator, which can produce a 100 mA proton beam up to 1700 MeV (170MW). The beam is expanded by a rastering system to a 0.19m x 190.m shape before passing through an Inconel window and impacting the heavy-water cooled tungsten target. Neutrons produced in the tungsten by the spallation process are further multiplied and moderated in a surrounding light-water cooled lead blanket. Neutron capture in tubes of Helium-3 gas inserted in the blanket produce tritium which is removed on a continual basis in an adjacent Tritium Separation Facility (TSF). The APT T/B is a robust design based on existing technology. Where possible, proven materials and component designs are used. To accommodate uncertainties in predicted lifetimes, the design is modularized to allow for a straightforward replacement of spent components. The thermal hydraulic design is well within allowable limits and due to the low temperature and pressure systems, offers additional safety and reliability benefits. The safety by design process has incorporated passive design features, redundancy, and defense in depth to provide adequate protection of both the worker and the public.

  3. ITER fuel cycle systems layout

    International Nuclear Information System (INIS)

    Kveton, O.K.

    1990-10-01

    The ITER fuel cycle building (FCB) will contain the following systems: fuel purification - permeator based; fuel purification - molecular sieves; impurity treatment; waste water storage and treatment; isotope separation; waste water tritium extraction; tritium extraction from solid breeder; tritium extraction from test modules; tritium storage, shipping and receiving; tritium laboratory; atmosphere detritiation systems; fuel cycle control centre; tritiated equipment maintenance space; control maintenance space; health physics laboratory; access, access control and facilities. The layout of the FCB and the requirements for these systems are described. (10 figs.)

  4. Impact analysis of the time trend of TBR and irradiation damage assessment of HCSB blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qin, E-mail: zengqin@ustc.edu.cn; Chen, Hongli; Lv, Zhongliang; Pan, Lei; Zhang, Haoran; Shi, Wei

    2017-01-15

    Chinese Fusion Engineering Testing Reactor (CFETR) is a test tokamak reactor to bridge the gap between ITER and future fusion power plants and to demonstrate generation of fusion power in China. In fusion power plants, tritium is generated from the reaction of neutron and Lithium. One of the missions of CFETR is the full cycle of tritium self-sufficiency. For the mission, a Helium Cooled Solid Breeder blanket (HCSB) was proposed for CFETR and its conceptual design has been carried out. In order to assess the capacity of the tritium breeding and irradiation damage of first wall of the HCSB blanket during the 8 years’ engineering test stage, this paper presents the time trend of TBR analysis and irradiation damage assessment of HCSB blanket based on the three-dimensional (3D) neutronics model which is created by McCad. In the 3D neutronics model, the outboard blanket on equatorial plane is described based on the detailed 3D engineering model. The calculations were performed by MCNP and FISPACT with FENDL/2.1 data library. The impact analysis of the thickness of coolant plates (CP) and the structural material content in CPs to the TBR is assessment.

  5. ITER EDA newsletter. V. 8, no. 6

    International Nuclear Information System (INIS)

    1999-06-01

    A ceremony was held on 1 June 1999 at the Naka Fusion Research Establishment of JAERI to celebrate the successful development and fabrication of the ITER Central Solenoid Model Coil Inner Module and Outer Module and the CS Insert Coil. At this occasion, Dr. Martha Krebs from the US-DOE regretted the withdrawal of the United States from the ITER project, the US are now looking for Japan, the European Union and the Russian Federation to continue making progress. In response to this speech, Mr. Tsutomu Imamura said, that that was to be regretted and stated that Japan actively promoted the ITER project. Then, Dr. Michel Huguet, representing the JCT, presented a message from Dr. R. Aymar, the director of the ITER program. In this message he indicated that each and every one who had been involved in that project could take great pride. The ceremony was concluded by warm and thoughtful words from Dr. Masami Fujiwara and a toast by Dr. Masaji Yoshikawa. At the end, all participants praised each other for their efforts and the three coils, the CS Model Coil Inner Module, the Outer Module and the the CS Insert Coil, seemed to be smiling at them

  6. Nuclear characteristics of D-D fusion reactor blankets

    International Nuclear Information System (INIS)

    Nakashima, Hideki; Ohta, Masao

    1978-01-01

    Fusion reactors operating on deuterium (D-D) cycle are considered to be of long range interest for their freedom from tritium breeding in the blanket. The present paper discusses the various possibilities of D-D fusion reactor blanket designs mainly from the standpoint of the nuclear characteristics. Neutronic and photonic calculations are based on presently available data to provide a basis of the optimal blanket design in D-D fusion reactors. It is found that it appears desirable to design a blanket with blanket/shield (BS) concept in D-D fusion reactors. The BS concept is designed to obtain reasonable shielding characteristics for superconducting magnet (SCM) by using shielding materials in the compact blanket. This concept will open the possibility of compact radiation shield design based on assured technology, and offer the advantage from the system economics point of view. (auth.)

  7. United States rejoin ITER

    International Nuclear Information System (INIS)

    Roberts, M.

    2003-01-01

    Upon pressure from the United States Congress, the US Department of Energy had to withdraw from further American participation in the ITER Engineering Design Activities after the end of its commitment to the EDA in July 1998. In the years since that time, changes have taken place in both the ITER activity and the US fusion community's position on burning plasma physics. Reflecting the interest in the United States in pursuing burning plasma physics, the DOE's Office of Science commissioned three studies as part of its examination of the option of entering the Negotiations on the Agreement on the Establishment of the International Fusion Energy Organization for the Joint Implementation of the ITER Project. These were a National Academy Review Panel Report supporting the burning plasma mission; a Fusion Energy Sciences Advisory Committee (FESAC) report confirming the role of ITER in achieving fusion power production, and The Lehman Review of the ITER project costing and project management processes (for the latter one, see ITER CTA Newsletter, no. 15, December 2002). All three studies have endorsed the US return to the ITER activities. This historical decision was announced by DOE Secretary Abraham during his remarks to employees of the Department's Princeton Plasma Physics Laboratory. The United States will be working with the other Participants in the ITER Negotiations on the Agreement and is preparing to participate in the ITA

  8. Analysis of electromagnetic loads on EU-DEMO inboard and outboard blanket vertical segments

    International Nuclear Information System (INIS)

    Maione, I.A.; Vaccaro, A.

    2014-01-01

    An analysis of the EM loads acting on a DEMO reactor configuration based on Multi Module Segment (MMS) design is presented in this work as part of the ongoing EU DEMO studies. Lorentz's forces and moments, both on the single module as well as on the complete blanket segment, are calculated for both the European HCPB and HCLL concepts. The system is analyzed considering a major central disruption scenario with a linear current quench of 42 ms using the ANSYS finite element software. The results are also compared to linear analyses to underline the effect of the non-linearity of the ferromagnetic materials

  9. ITER at Cadarache; ITER a Cadarache

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-15

    This public information document presents the ITER project (International Thermonuclear Experimental Reactor), the definition of the fusion, the international cooperation and the advantages of the project. It presents also the site of Cadarache, an appropriate scientifical and economical environment. The last part of the documentation recalls the historical aspect of the project and the today mobilization of all partners. (A.L.B.)

  10. A review of fusion breeder blanket technology, part 1

    International Nuclear Information System (INIS)

    Jackson, D.P.; Selander, W.N.; Townes, B.M.

    1985-01-01

    This report presents the results of a study of fusion breeder blanket technology. It reviews the role of the breeder blanket, the current understanding of the scientific and engineering bases of liquid metal and solid breeder blankets and the programs now underway internationally to resolve the uncertainities in current knowledge. In view of existing national expertise and experience, a solid breeder R and D program for Canada is recommended

  11. A conceptual composite blanket design for the Tokamak type of thermonuclear reactor incorporating thermoelectric pumping of liquid lithium

    International Nuclear Information System (INIS)

    Dutta Gupta, P.B.

    1981-01-01

    The conceptual liquid lithium blanket design for the tokamak type of thermonuclear reactor put forward is a modification of the initial simple but novel design concept enunciated earlier that exploits the availability of suitably oriented magnetic fields and temperature gradients within the blanket to pump the liquid as has been shown feasible by laboratory model experiments. The modular construction of the blanket cells is retained but the earlier simple back to back double spiralling channel module is replaced by a composite unit of three radially nested layer-structures to optimise heat and tritium extraction from the blanket. The layer-structure at the first wall generates liquid lithium circulation by thermoelectric magnetohydrodynamic forces and the segregated double spiralling channels serve as inlet-outlet driving devices. The outermost layer-structure is cooled by helium. Liquid lithium in the intermediate layer-structure is pumped at a very slow rate. The choice of the relative dimensional proportions of the three layer-structure and the channel cross-section, material property and the spiralling contour is of critical importance for the design. This paper presents the design data for a conceptual design of such a blanket with a 5000 MW (th) rating. (author)

  12. ITER council proceedings: 1992

    International Nuclear Information System (INIS)

    1994-01-01

    At the signing of the ITER EDA Agreement on July, 1992, each of the Parties presented to the Director General the names of their designated members of the ITER Council. Upon receiving those names, the Director General stated that the ITER Engineering Design Activities were ''ready to begin''. The next step in this process was the convening of the first meeting of the ITER Council. The first meeting of the Council, held in Vienna, was opened by Director General Hans Blix. The second meeting was held in Moscow, the formal seat of the Council. This volume presents records of these first two Council meetings and, together with the previous volumes on the text of the Agreement and Protocol 1 and the preparations for their signing respectively, represents essential information on the evolution of the ITER EDA

  13. Fuel cycle design for ITER and its extrapolation to DEMO

    International Nuclear Information System (INIS)

    Konishi, Satoshi; Glugla, Manfred; Hayashi, Takumi

    2008-01-01

    ITER is the first fusion device that continuously processes DT plasma exhaust and supplies recycled fuel in a closed loop. All the tritium and deuterium in the exhaust are recovered, purified and returned to the tokamak with minimal delay, so that extended burn can be sustained with limited inventory. To maintain the safety of the entire facility, plant scale detritiation systems will also continuously run to remove tritium from the effluents at the maximum efficiency. In this entire tritium plant system, extremely high decontamination factor, that is the ratio of the tritium loss to the processing flow rate, is required for fuel economy and minimized tritium emissions, and the system design based on the state-of-the-art technology is expected to satisfy all the requirements without significant technical challenges. Considerable part of the fusion tritium system will be verified with ITER and its decades of operation experiences. Toward the DEMO plant that will actually generate energy and operate its closed fuel cycle, breeding blanket and power train that caries high temperature and pressure media from the fusion device to the generation system will be the major addition. For the tritium confinement, safety and environmental emission, particularly blanket, its coolant, and generation systems such as heat exchanger, steam generator and turbine will be the critical systems, because the tritium permeation from the breeder and handling large amount of high temperature, high pressure coolant will be further more difficult than that required for ITER. Detritiation of solid waste such as used blanket and divertor will be another issue for both tritium economy and safety. Unlike in the case of ITER that is regarded as experimental facility, DEMO will be expected to demonstrate the safety, reliability and social acceptance issue, even if economical feature is excluded. Fuel and environmental issue to be tested in the DEMO will determine the viability of the fusion as a

  14. ITER CTA newsletter. No. 3

    International Nuclear Information System (INIS)

    2001-11-01

    This ITER CTA newsletter comprises reports of Dr. P. Barnard, Iter Canada Chairman and CEO, about the progress of the first formal ITER negotiations and about the demonstration of details of Canada's bid on ITER workshops, and Dr. V. Vlasenkov, Project Board Secretary, about the meeting of the ITER CTA project board

  15. Analysis of deficiencies in fast reactor blanket physics predictions

    International Nuclear Information System (INIS)

    Hill, R.N.

    1987-12-01

    This analysis addresses a deviation between experimental measurements and fast reactor blanket physics predictions. A review of worldwide results reveals that reaction rates in the blanket are underpredicted with the discrepancy increasing with penetration into the blanket. The analysis of this discrepancy involves two parts: quantifying possible error reductions using the most advanced methods and investigating deficiencies in current methodology. The source of these discrepancies was investigated by application of ''state-of-the-art'' group constant generation and flux prediction methodology to flux calculations for the Purdue University Fast Breeder Blanket Facility (FBBF). Refined group constant generation methods yielded a significant reduction in the blanket deviations; however, only about half of the discrepancy can be accounted for in this manner. Transport theory calculations were used to predict the blanket neutron transmission problem. The surprising result is that transport theory predictions utilizing diffusion theory group constants did not improve the blanket results. Transport theory predictions exhibited blanket underpredictions similar to the diffusion theory results. The residual blanket discrepancies not explained using advanced methods require a refinement of the theory. For this purpose an analysis of deficiencies in current methodology was performed

  16. Minimum thickness blanket-shield for fusion reactors

    International Nuclear Information System (INIS)

    Karni, Y.; Greenspan, E.

    1989-01-01

    A lower bound on the minimum thickness fusion reactor blankets can be designed to have, if they are to breed 1.267 tritons per fusion neutron, is identified by performing a systematic nucleonic optimization of over a dozen different blanket concepts which use either Be, Li 17 Pb 83 , W or Zr for neutron multiplication. It is found that Be offers minimum thickness blankets; that the blanket and shield (B/S) thickness of Li 17 Pb 83 based blankets which are supplemented by Li 2 O and/or TiH 2 are comparable to the thickness of Be based B/S; that of the Be based blankets, the aqueous self-cooled one offers one of the most compact B/S; and that a number of blanket concepts might enable the design of B/S which is approximately 12 cm and 39 cm thinner than the B/S thickness of, respectively, conventional self-cooled Li 17 Pb 83 and Li blankets. Aqueous self-cooled tungsten blankets could be useful for experimental fusion devices provided they are designed to be heterogeneous. (orig.)

  17. ITER Equatorial Port plug engineering: Design and remote handling activities supported by Virtual Reality tools

    International Nuclear Information System (INIS)

    Keller, Delphine; Dechelle, Christian; Doceul, Louis; Madeleine, Sylvain; Martins, Jean Pierre; Measson, Yvan; Patterlini, Jean Claude; Wagrez, Julien

    2011-01-01

    In the context of ITER, CEA/IRFM has participated to the design and integration of several components in the Equatorial Port plug region. Particularly, in the framework of the grant F4E-2008-GRT-09-PNS-TBM, CEA/IRFM has contributed to the test blanket module system (TBS) design and robot access feasibility study in the Port Cell. Simulations of the maintenance procedure were studied and fully integrated to the design process, enabling to provide space reservation for human and robotic access. For this mean, CEA/IRFM has used a CEA LIST Virtual Reality simulation software directly integrated to the Solidworks CAD software. The feasibility to connect/dis-connect the pipes in front of the Bioshield by a set of potential standard industrial arms was demonstrated. Aiming to give more realism to maintenance scenario and CAD models, CEA IRFM has decided to build a Virtual Reality platform in the institute, integrated to the design office. With the expertise of CEA LIST, this platform aims to provide the nearest possible links between design and remote handling needs. This paper presents the outcome of the robot access study and discusses about the Virtual Reality tools that are being developed for these applications.

  18. Tokamak blanket design study: FY 78 summary report

    International Nuclear Information System (INIS)

    1979-06-01

    A tokamak blanket cylindrical module concept was designed, developed, and analyzed after review of several existing generic concepts. The design is based on use of state-of-the-art structural materials (20% cold worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders and features direct wall cooling by flowing helium between the outer (first wall) cylinder and the inner lithium containing cylinder. Each cylinder is capable of withstanding full coolant pressure for enhanced reliability. Results show that stainless steel is a viable material for a first wall subjected to 4 MW/m 2 neutron and 1 MW/m 2 particle heat flux. A lifetime analysis showed that the first wall design meets the goal of operating at 20 minute cycles with 95% duty for 10 5 cycles. The design is attractive for further development, and additional work and supporting experiments are identified to reduce analytical uncertainties and enhance the design reliability

  19. Conceptual study of fusion-driven transmutation reactor with ITER physics and engineering constraints

    Science.gov (United States)

    Hong, Bong

    2011-10-01

    A conceptual study of fusion-driven transmutation reactor was performed based on ITER physics and engineering constraints. A compact reactor concept is desirable from an economic viewpoint. For the optimal design of a reactor, a radial build of reactor components has to be determined by considering the plasma physics and engineering constraints which inter-relate various reactor components. In a transmutation reactor, design of blanket and shield play a key role in determining the size of a reactor; the blanket should produce enough tritium for tritium self-sufficiency, the transmutation rate of waste has to be maximized, and the shield should provide sufficient protection for the superconducting toroidal field (TF) coil. To determine the radial build of the blanket and the shield, not only a radiation transport analysis but also a burnup calculation were coupled with the system analysis and it allowed the self-consistent determination of the design parameters of a transmutation reactor.

  20. Status of development of functional materials with perspective on beyond ITER

    International Nuclear Information System (INIS)

    Shikama, T.; Knitter, R.; Moeslang, A.; Konys, J.; Deli, L.; Muroga, T.; Kawamura, H.; Kohyama, A.

    2007-01-01

    Any engineering system is composed of functional materials as well as of structural materials, and more advanced systems tend to demand a more important and versatile role to functional materials. In nuclear fusion systems, examples of principle functional materials will be breeders and neutron multipliers for tritium production, coatings on structural materials for corrosion-resistance, MHD-loss-reduction and control of tritium permeation, thermal insertions for heat transport control, and optical and electrical materials for plasma and environmental diagnostics. For incarnation of a nuclear fusion power plant, namely DEMO, development of the functional materials with appropriate properties is essential. A role of functional materials depends strongly on a specific design of DEMO, namely designs of systems for tritium-breeding, system-cooling and heat-transfer. In the framework of ITER project, development of tritium blanket modules (TBM) is underway. Also, in parallel with the ITER project, a complemental program called the BA (Broader Approach) is launched for realization of a DEMO nuclear fusion reactor in an appropriate time schedule, where key issues of the nuclear fusion engineering needed for the DEMO will be studied under EU/Japan collaboration. In the meantime, technologies and materials needed for diagnostics and control of burning plasma are extensively discussed under the framework of International Tokamak Physics Activity (ITPA). The present paper reviews a present status of development of functional materials from views of internationally coordinated activities based on fundamental aspects of the DEMO demands as well as from views of activities based on specific but currently dominant DEMO designs. Examples of functional materials reviewed here are solid breeders, beryllium and beryllium alloys, coating layers on structural materials, thermal inserts, and some electrical and optical materials. (orig.)

  1. Beryllium research on FFHR molten salt blanket

    International Nuclear Information System (INIS)

    Terai, T.; Tanaka, S.; Sze, D.-K.

    2000-01-01

    Force-free helical reactor, FFHR, is a demo-relevant heliotron-type D-T fusion reactor based on the great amount of R and D results obtained in the LHD project. Since 1993, collaboration works have made great progress in design studies of FFHR with standing on the major advantage of current-less steady operation with no dangerous plasma disruptions. There are two types of reference designs, FFHR-1 and FFHR-2, where molten Flibe (LiF-BeF2) is utilized as tritium breeder and coolant. In this paper, we present the outline of FFHR blanket design and some related R and D topics focusing on Be utilization. Beryllium is used as a neutron multiplier in the design and Be pebbles are placed in the front part of the tritium breeding zone. In a Flibe blanket, HF (TF) generated due to nuclear transmutation will be a problem because of its corrosive property. Though nickel-based alloys are thought to be intact in such a corrosive environment, FFHR blanket design does not adopt the alloys because of their induced radioactivity. The present candidate materials for the structure are low-activated ferritic steel (JLF-1), V-4Cr-4Ti, etc. They are capable to be corroded by HF in the operation condition, and Be is expected to work as a reducing agent in the system as well. Whether Be pebbles placed in a Flibe flow can work well or not is a very important matter. From this point, Be solubility in Flibe, reaction rate of the Redox reaction with TF in the liquid and on the surface of Be pebbles under irradiation, flowing behavior of Flibe through a Be pebble bed, etc. should be investigated. In 1997, in order to establish more practical and new data bases for advanced design works, we started a collaboration work of R and D on blanket engineering, where the Be research above mentioned is included. Preliminary dipping-test of Be sheets and in-situ tritium release experiment from Flibe with Be sheets have got started. (orig.)

  2. Recent designs for advanced fusion reactor blankets

    International Nuclear Information System (INIS)

    Sze, D.K.

    1994-06-01

    A series of reactor design studies based on the Tokamak configuration have been carried out under the direction of Professor Robert Conn of UCLA. They are called ARIES-1 through 4 and PULSAR 1 and 2. The key mission of these studies is to evaluate the attractiveness of fusion assuming different degrees of advancement in either physics or engineering development. Also, the requirements of engineering and physics systems for a pulsed reactor were evaluated by the PULSAR design studies. This paper discusses the directions and conclusions of the blanket and related engineering systems for those design studies

  3. Nuclear maintenance strategy and first steps for preliminary maintenance plan of the EU HCLL & HCPB Test Blanket Systems

    Energy Technology Data Exchange (ETDEWEB)

    Galabert, Jose, E-mail: jose.galabert@f4e.europa.eu [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); Hopper, Dave [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom); Neviere, Jean-Cristophe [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Nodwell, David [CCFE, Culham Science Centre, Abingdon, OX14 3DB, Oxfordshire (United Kingdom); Pascal, Romain [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, 13067, St. Paul Lez Durance Cedex (France); Poitevin, Yves; Ricapito, Italo [F4E Fusion for Energy, EU Domestic Agency, c/Josep Pla, 2. B3, 08019, Barcelona (Spain); White, Gareth [AMEC Foster Wheeler, Faraday Street, Birchwood Park, WA3 6GN (United Kingdom)

    2017-03-15

    Highlights: • Nuclear maintenance strategy for the two European (EU) Test Blanket Systems (TBS): i/. Helium Cooled Lead Lithium (HCLL) and ii/. Helium Cooled Pebble Bed (HCPB). • Preliminary identification of maintenance tasks for most relevant components of the EU HCLL & HCPB TBS. • Preliminary feasibility analysis for hands-on maintenance tasks of some relevant components of the European Test Blanket Systems. • Design recommendations for enhancement of the European Test Blanket Systems maintainability. - Abstract: This paper gives an overview of nuclear maintenance strategy to be followed for the European HCLL & HCPB Test Blanket Systems (TBS) to be installed in ITER. One of the several core documents to prepare in view of their licensing is their respective ‘Maintenance Plan’. This document is fundamental for ensuring sound performance and safety of the TBS during ITER’s operational phase and shall include, amongst others, relevant information on: maintenance organization, preventive and corrective maintenance task procedures, condition monitoring for key components, maintenance work planning, and a spare parts plan, just to mention some of the key topics. In compliance with the ITER Plant Maintenance policy, first steps have been taken aimed at defining nuclear maintenance strategy for some of the most relevant HCLL & HCPB TBS components, conducted by F4E in collaboration with industry. After a brief recall of maintenance strategy of the TBM Program (PBS-56), this paper analyses main features of EU HCLL & HCPB TBS maintainability and identifies, at their conceptual design phase, a preliminary list of maintenance tasks to be developed for their most representative components. In addition, the paper also presents the first nuclear maintenance studies conducted for replacement of the Q{sub 2} Getter Beds, identifying some design recommendations for their sound maintainability.

  4. Systematic methodology for estimating direct capital costs for blanket tritium processing systems

    International Nuclear Information System (INIS)

    Finn, P.A.

    1985-01-01

    This paper describes the methodology developed for estimating the relative capital costs of blanket processing systems. The capital costs of the nine blanket concepts selected in the Blanket Comparison and Selection Study are presented and compared

  5. Phase change of First Wall in Water-Cooled Breeding Blankets of K-DEMO for Vertical

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon Woo; Lee, Jeong Hun; Cho, Hyoung Kyu; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of); Im, Ki Hak [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of this study is to simulate thermal-hydraulic behavior of a single blanket module when plasma disruption occurs. Plasma disruptions, such as vertical displacement events (VDE), with high heat flux can cause melting and vaporization of plasma facing materials and also burnout of coolant channels. The thermal design, evaluation and validation have been performed in order to establish the conceptual design guidelines of the water-cooled breeding blanket for the K-DEMO reactor. As a part of the NFRI research, Seoul National University (SNU) is conducting transient thermal-hydraulic analysis to confirm the integrity of blanket system for plasma disruption events. Vertical displacement events (VDE) with high heat flux can cause melting and vaporization of plasma facing materials (PFCs) and also burnout of coolant channels. In order to simulate melting of first wall in blanket module when VDE occurs, one-dimensional heat conduction equations were solved numerically with modification of the specific heat of the first wall materials using effective heat capacity method. Temperature profiles in first wall for VDE are shown in fig 7 - 9. At first, temperature of tungsten rapidly raised and even exceeded its melting temperature. When VDE just ended at 0.1 second, 0.83 mm thick of tungsten melted. But the other materials including vanadium and RAFM didn't exceed their melting temperatures after 500 seconds.

  6. ITER days in Moscow

    International Nuclear Information System (INIS)

    Golubchikov, L.

    2001-01-01

    In connection with the successful completion of the Engineering Design of the International Thermonuclear Reactor (ITER) and the 50th anniversary of fusion research in the USSR, the Ministry of the Russian Federation for Atomic Energy (Minatom) with the participation of the Russian Academy of Sciences, organized the International Symposium 'ITER days in Moscow' on 7-8 June 2001. About 250 people from more than 20 states took part in the Meeting. The participants welcomed the R and D results of the ITER project and considered it as a necessary step to establish a basis for a fusion energy source. There were also some scientific presentations on the following topics: ITER physics basis; Effect of fusion research on general physics; Fusion power reactors; US interests in burning plasma

  7. ITER definition phase

    International Nuclear Information System (INIS)

    1989-01-01

    The International Thermonuclear Experimental Reactor (ITER) is envisioned as a fusion device which would demonstrate the scientific and technological feasibility of fusion power. As a first step towards achieving this goal, the European Community, Japan, the Soviet Union, and the United States of America have entered into joint conceptual design activities under the auspices of the International Atomic Energy Agency. A brief summary of the Definition Phase of ITER activities is contained in this report. Included in this report are the background, objectives, organization, definition phase activities, and research and development plan of this endeavor in international scientific collaboration. A more extended technical summary is contained in the two-volume report, ''ITER Concept Definition,'' IAEA/ITER/DS/3. 2 figs, 2 tabs

  8. Power converters for ITER

    CERN Document Server

    Benfatto, I

    2006-01-01

    The International Thermonuclear Experimental Reactor (ITER) is a thermonuclear fusion experiment designed to provide long deuterium– tritium burning plasma operation. After a short description of ITER objectives, the main design parameters and the construction schedule, the paper describes the electrical characteristics of the French 400 kV grid at Cadarache: the European site proposed for ITER. Moreover, the paper describes the main requirements and features of the power converters designed for the ITER coil and additional heating power supplies, characterized by a total installed power of about 1.8 GVA, modular design with basic units up to 90 MVA continuous duty, dc currents up to 68 kA, and voltages from 1 kV to 1 MV dc.

  9. Development of ITER in-vessel viewing and metrology systems

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Kenjiro; Kakudate, Satoshi; Nakahira, Masataka; Ito, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The ITER in-vessel viewing system is vital for detecting and locating damage to in-vessel components such as the blankets and divertors and in monitoring and assisting in-vessel maintenance. This system must be able to operate at high temperature (200degC) under intense gamma radiation ({approx}30 kGy/h) in a high vacuum or 1 bar inert gas. A periscope viewing system was chosen as a reference due to its clear, wide view and a fiberscope viewing system chosen as a backup for viewing in narrow confines. According to the ITER R and D program, both systems and a metrology system are being developed through the joint efforts of Japan, the U.S., and RF Home Teams. This paper outlines design and technology development mainly on periscope in-vessel viewing and laser metrology contributed by the Japan Home Team. (author)

  10. ITER vacuum vessel: Design review and start of procurement process

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance (France)], E-mail: Kimihiro.Ioki@iter.org; Bachmann, C.; Chappuis, P.; Cordier, J.-J.; Giraud, B.; Gribov, Y. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance (France); Jones, L. [F4E, c/Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019, Barcelona (Spain); Jun, C. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon, 305-333 (Korea, Republic of); Kuzmin, E. [NTC ' Sintez' , Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Pathak, H. [IPR, Near Indira bridge, Bhat, Gandhinagar-382 428 (India); Readman, P.; Sugihara, M.; Utin, Yu.; Wang, X.; Wu, S. [ITER Organization, CS 90 046, 13067 St. Paul lez Durance (France)

    2009-06-15

    The ITER vacuum vessel (VV) is one of the most critical components in the ITER project. It is on the critical path in the construction schedule and it is also a safety important class component (SIC), providing the first confinement barrier. As a result of reviews and the latest physics analyses, design requirements have been updated (e.g. ELM/VS coils) and a few design changes have to be implemented. This paper covers the updates of the VV vertical and horizontal EM load conditions during asymmetric VDEs, the design analysis of the ELM/VS coils and their interfaces to the VV, the blanket manifold design and the preparation of the technical specification in preparation for the procurement arrangement to be signed.

  11. Optimization of up-flow anaerobic sludge blanket reactor for ...

    African Journals Online (AJOL)

    Optimization of up-flow anaerobic sludge blanket reactor for treatment of composite fermentation and distillation wastewater. ... Keywords: Composite wastewater, up-flow anaerobic sludge blanket (UASB), anaerobic biological treatment, biogas, granulated anaerobic sludge, industrial wastewater. African Journal of ...

  12. 18 CFR 284.402 - Blanket marketing certificates.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Blanket marketing... RELATED AUTHORITIES Certain Sales for Resale by Non-interstate Pipelines § 284.402 Blanket marketing... effective for an affiliated marketer with respect to transactions involving affiliated pipelines when an...

  13. Accelerator driven heavy water blanket on circulating fuel

    International Nuclear Information System (INIS)

    Kazaritsky, V.D.; Blagovolin, P.P.; Mladov, V.R.; Okhlopkov, M.L.; Batyaev, V.F.; Stepanov, N.V.; Seliverstov, V.V.

    1997-01-01

    A conceptual design of a heavy water blanket with circulating fuel for an accelerator driven transmutation system is described. The hybrid system consists of a high-current linear accelerator of protons and 4 targets, each placed inside a subcritical blanket

  14. 75 FR 11557 - Woven Electric Blankets From China

    Science.gov (United States)

    2010-03-11

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1163 (Final)] Woven Electric Blankets... States is materially retarded, by reason of less-than-fair-value imports from China of woven electric... merchandise as finished, semi- finished, and unassembled woven electric blankets, including woven electric...

  15. Approximate iterative algorithms

    CERN Document Server

    Almudevar, Anthony Louis

    2014-01-01

    Iterative algorithms often rely on approximate evaluation techniques, which may include statistical estimation, computer simulation or functional approximation. This volume presents methods for the study of approximate iterative algorithms, providing tools for the derivation of error bounds and convergence rates, and for the optimal design of such algorithms. Techniques of functional analysis are used to derive analytical relationships between approximation methods and convergence properties for general classes of algorithms. This work provides the necessary background in functional analysis a

  16. ITER EDA and technology

    International Nuclear Information System (INIS)

    Baker, C.C.

    2001-01-01

    The year 1998 was the culmination of the six-year Engineering Design Activities (EDA) of the International Thermonuclear Experimental Reactor (ITER) Project. The EDA results in design and validating technology R and D, plus the associated effort in voluntary physics research, is a significant achievement and major milestone in the history of magnetic fusion energy development. Consequently, the ITER EDA was a major theme at this Conference, contributing almost 40 papers

  17. ITER explorations started

    International Nuclear Information System (INIS)

    Golubchikov, L.

    2000-01-01

    Opening this first Explorers' Meeting, Minister Adamov welcomed the participants, thanked the ITER parties for their positive response to his invitation and expressed the desire of the Russian Federation to see ITER realized, stressing the importance of continued progress with the project as an outstanding example of international scientific co-operation. During the meeting, the exploration tasks were discussed and agreed upon, as well as the work plan and schedule

  18. ITER Status and Plans

    Science.gov (United States)

    Greenfield, Charles M.

    2017-10-01

    The US Burning Plasma Organization is pleased to welcome Dr. Bernard Bigot, who will give an update on progress in the ITER Project. Dr. Bigot took over as Director General of the ITER Organization in early 2015 following a distinguished career that included serving as Chairman and CEO of the French Alternative Energies and Atomic Energy Commission and as High Commissioner for ITER in France. During his tenure at ITER the project has moved into high gear, with rapid progress evident on the construction site and preparation of a staged schedule and a research plan leading from where we are today through all the way to full DT operation. In an unprecedented international effort, seven partners ``China, the European Union, India, Japan, Korea, Russia and the United States'' have pooled their financial and scientific resources to build the biggest fusion reactor in history. ITER will open the way to the next step: a demonstration fusion power plant. All DPP attendees are welcome to attend this ITER town meeting.

  19. LMFBR Blanket Physics Project progress report No. 2

    International Nuclear Information System (INIS)

    Forbes, I.A.; Driscoll, M.J.; Rasmussen, N.C.; Lanning, D.D.; Kaplan, I.

    1971-01-01

    This is the second annual report of an experimental program for the investigation of the neutronics of benchmark mock-ups of LMFBR blankets. Work was devoted primarily to measurements on Blanket Mock-Up No. 2, a simulation of a typical large LMFBR radial blanket and its steel reflector. Activation traverses and neutron spectra were measured in the blanket; calculations of activities and spectra were made for comparison with the measured data. The heterogeneous self-shielding effect for 238 U capture was found to be the most important factor affecting the comparison. Optimization and economic studies were made which indicate that the use of a high-albedo reflector material such as BeO or graphite may improve blanket neutronics and economics

  20. MIT LMFBR blanket research project. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record.

  1. Self-cooled liquid-metal blanket concept

    International Nuclear Information System (INIS)

    Malang, S.; Arheidt, K.; Barleon, L.

    1988-01-01

    A blanket concept for the Next European Torus (NET) where 83Pb-17Li serves both as breeder material and as coolant is described. The concept is based on the use of novel flow channel inserts for a decisive reduction of the magnetohydrodynamic (MHD) pressure drop and employs beryllium as neutron multiplier in order to avoid the need for breeding blankets at the inboard side of the torus. This study includes the design, neutronics, thermal hydraulics, stresses, MHDs, corrosion, tritium recovery, and safety of a self-cooled liquid-metal blanket. The results of the investigations indicate that the self-cooled blanket is an attractive alternative to other driver blanket concepts for NET and that it can be extrapolated to the conditions of a DEMO reactor

  2. Parametric systems studies of the aqueous-based (slurry) blanket concept for accelerator transmutation of waste

    International Nuclear Information System (INIS)

    Beard, C.A.; Davidson, J.W.; Krakowski, R.A.; Battat, M.E.

    1995-01-01

    Transmutation of long-lived nuclear waste currently stored in spent reactor fuels may represent an attractive alternative to deep geologic disposal. The aqueous-based accelerator transmutation of waste (ATW) concept uses a proton accelerator to produce a 1.6-GeV, 250-mA ( ca. 400 MW) beam that is split four ways and directed to four D 2 O-cooled solid W-Pb composite targets. Each target in turn is centered in a heavy water moderated, highly multiplying, actinide (oxide)-slurry blanket. The target-blanket system for ATW resides at an interface separating two major systems that are crucial to the economic and technical success of the concept: (a) the high-energy (power-intensive) accelerator delivering 0.8 to 1.6 GeV protons to the high-Z spallation neutron source and (b) the chemical-plant equipment (CPE) that provides feedstock appropriate for efficient and effective transmutation. Parametric studies have been performed to assess the effects of the target-blanket on overall system performance with regard to neutron economy, chemical-processing efficiency and thermal-hydraulic design options. Based on these parametric evaluations, an interim base-case aqueous-slurry ATW design was selected for more detailed analysis. This base-case target-blanket consists of an array of Zr-Nb pressure tubes placed in a heavy water moderator surrounding a heavy-water-cooled W-Pb target. Neutronics and thermal-hydraulic calculations indicate that each of the four ATW target-blanket modules operating with a neutron multiplication k eff = 0.95 can transmute the actinide waste and the technetium and iodine waste from ca. 2.5 light water reactors. By recovering the fission heat, sufficient electricity can be produced both to operate the accelerator and to supply power to the grid for revenue generation. These broad-based parametric studies have provided guidance to a preliminary conceptual engineering design of the aqueous-slurry ATW blanket concept

  3. Pre-conceptual design study on K-DEMO ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Sung, E-mail: jspark@nfri.re.kr [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Kwon, Sungjin; Im, Kihak; Kim, Keeman [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Brown, Thomas; Neilson, George [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2015-11-15

    A pre-conceptual design study has been carried out for the Korean fusion demonstration reactor (K-DEMO) tokamak featured by high magnetic field (B{sub T0} = 7.4 T), R = 6.8 m, a = 2.1 m, and a steady-state operation. The design concepts of the K-DEMO blanket system considering the cooling in-vessel components with pressurized water and a solid pebble breeder are described herein. The structure of the K-DEMO blanket is toroidally subdivided into 16 inboard and 32 outboard sectors, in order to allow the vertical maintenance. Each blanket module is composed of plasma-facing first wall, layers of breeding parts, shielding and manifolds. A ceramic breeder using Li{sub 4}SiO{sub 4} pebbles with Be{sub 12}Ti as neuron multiplier is employed for study. MCNP neutronic simulations and thermo-hydraulic analyses are interactively performed in order to satisfy two key aspects: achieving a global Tritium Breeding Ratio (TBR) >1.05 and operating within the maximum allowable temperature ranges of materials.

  4. Prospects of the aqueous self-cooled blanket concept for NET

    International Nuclear Information System (INIS)

    Snykers, M.; Bruggeman, A.; Bogaerts, W.F.; Embrechts, M.J.; Steiner, D.; Daenner, W.

    1989-01-01

    A low-technology Aqueous Self-Cooled Blanket (ASCB) concept has been proposed for the Next European Torus (NET). This concept relies on structural material and cooling water, with small amounts of lithium compounds for tritium production. Following preliminary investigations, LiOH, LiNO 3 , LiNO 2 and Li 2 SO 4 are currently under consideration as tritium breeding materials in solution. The concept may benefit from the proven technologies from the PWRs and from the CANDU tritium extraction systems. It combines good shielding and breeding capabilities. It would serve as a reliable environment for experimenting with several DEMOnstration reactor-relevant blanket modules in NET. Since net tritium breeding is not a design requirement for NET, sufficient tritium breeding can be obtained without the application of external neutron multipliers if enrichment in 6 Li is utilized. For a DEMOnstration reactor ASCB-based blanket, neutron multipliers have to be incorporated and temperature and pressure have to be increased. Radiolysis and corrosion aspects are of particular concern and need further investigation. (orig.)

  5. System engineering approach in the EU Test Blanket Systems Design Integration

    International Nuclear Information System (INIS)

    Panayotov, D.; Sardain, P.; Boccaccini, L.V.; Salavy, J.-F.; Cismondi, F.; Jourd'Heuil, L.

    2011-01-01

    The complexity of the Test Blanket Systems demands diverse and comprehensive integration activities. Test Blanket Modules - Consortia of Associates (TBM-CA) applies the system engineering methods in all stages of the Test Blanket System (TBS) design integration. Completed so far integration engineering tasks cover among others status and initial set of TBS operating parameters; list of codes, standards and regulations related to TBS; planning of the TBS interfaces and baseline documentation. Most of the attention is devoted to the establishment the Helium-Cooled Lithium Lead (HCLL) and Helium-Cooled Pebble Bed Lead (HCPB) TBS configuration baseline, TBS break down into sub-systems, identification, definition and management of the internal and external interfaces, development of the TBS plant break down structure (PBS), establishment and management of the required TBS baseline documentation infrastructure. Break down of the TBS into sub-systems that is crucial for the further design and interfaces' management has been selected considering several options and using specific evaluation criteria. Process of the TBS interfaces management covers the planning, definition and description, verification and review, non-conformances and deviations, and modification and improvement processes. Process of interfaces review is developed, identifying the actors, input, activities and output of the review. Finally the relations and interactions of system engineering processes with TBM configuration management and TBM-CA Quality Management System are discussed.

  6. Heat Flux Tests of the ITER FWQMs at KoHLT-1

    International Nuclear Information System (INIS)

    Bae, Young Dug; Kim, Suk Kwon; Shin, Hee Yun; Lee, Dong Won; Hong, Bong Guen

    2009-05-01

    As a party of the ITER, especially as a procurement party of the ITER blanket, we have designed the First Wall Qualification Mockup (FWQM) and fabricated five FWQMs. Two of them have been tested up to 12,690/12,020 cycles at a heat flux higher than 0.625 MW/m 2 at the KoHLT-1 facility established in the Korea Atomic Energy Research Institute (KAERI). Two KO FWQMs successfully passed the normal heat flux tests, and there was no indication of defect in the Be-to-CuCrZr joints

  7. ITER CTA newsletter. No. 2

    International Nuclear Information System (INIS)

    2001-10-01

    This ITER CTA newsletter contains results of the ITER toroidal field model coil project presented by ITER EU Home Team (Garching) and an article in commemoration of the late Dr. Charles Maisonnier, one of the former leaders of ITER who made significant contributions to its development

  8. Twelfth ITER negotiation meeting

    International Nuclear Information System (INIS)

    2006-01-01

    Delegations from China, European Union, Japan, the Republic of Korea, the Russian Federation and the United States of America gathered on Jeju Island, Korea, on 6 December 2005, to complete their negotiations on an Agreement on the joint implementation of the ITER international fusion energy project. At the start of the Meeting, the Delegations unanimously and enthusiastically welcomed India as a full Party to the ITER venture. A Delegation from India then joined the Meeting and participated fully in the discussions that followed. The seven ITER Delegations also welcomed to the Meeting the newly designated Nominee Director-General for the prospective ITER Organization, Ambassador Kaname Ikeda, who is to take up his duties as leader of the project. Based on the results of intensive working level meetings held throughout the previous week, the Delegations have succeeded in clearing the remaining key issues such as decision-making, intellectual property and management within the prospective ITER Organization and adjustments to the sharing of resources as a result of India's participation, including in particular cost sharing and in-kind contributions, leaving only a few legal points requiring resolution during the final lawyers' meeting to review the text for coherence and internal consistency

  9. Overview of solid breeder TBM concepts and programme for testing in ITER

    International Nuclear Information System (INIS)

    Boccaccini, L.V.; Akiba, M.; Enoeda, M.; Cho, S.; Demidov, V.; Feng, K.M.; Hong, B.G.; Kovalenko, V.; Ying, A.

    2007-01-01

    The use of the solid breeder (SB) material technology offers attractive solutions for blankets of a first generation of Fusion Power Plant according to the possibility of a relatively simple design and operation of this component in reactor with high performances in term of thermal efficiency, tritium recovery and reduced dimensions. Almost all the ITER international parties have performed studies on such a concept and have presented an own blanket design for testing in ITER. Also if several different configurations of this kind of concept have been proposed during the past years, a set of common features can be identified that characterise this first generation concept, like the extern cooling of the breeder zone materials, the use of an independent low pressure helium flow for tritium recovery and Ceramic Breeder materials, mainly ternary Li-compounds, in form of a pebble bed. Furthermore, Ferritic/Ferritic-Martensitic steels at reduced activation grade have been selected for the structures; this choice dictates in strong way the performances of this kind of concept in term of minimum/maximum temperatures. All these concepts necessitate addition of large quantities (up to 4 times the amount of ceramic breeder) of beryllium or beryllium alloys as neutron multiplier in order to achieve a sufficient tritium breeder ratio with a reduced blanket thickness. Starting from this common base, different variants of this concept have been proposed. According to the coolant selection, two major classes of SB blanket can be identified, namely water cooled (SBWC) and helium cooled (SBHC) concepts. He cooling concepts have the advantage of a better chemical compatibility with the other materials and, in particular, with beryllium; water cooling concepts promise better thermo-hydraulics performances in term of cooling capacity of the first wall and a well proved cooling technology. Also the different arrangements of the breeder materials or the inclusion in the design of

  10. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1984-02-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matricies. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  11. Neutronic study of fusion reactor blanket

    International Nuclear Information System (INIS)

    Barre, F.

    1983-06-01

    The problem of effective regeneration is a crucial issue for the fusion reactor, specially for the power reactor because of the conflicting requirements of heat removal and tritium breeding. For that, calculations are performed to evaluate blanket materials. Precise techniques are herein developed to improve the accuracy of the tritium production and the neutron and gamma transport calculations. Many configurations are studied with realistic breeder, structure, and coolant proportions. Accuracy of the results are evaluated from the sensitivity theory and uncertainty study using covariance matrices. At the end of this work, we presented the needs of nuclear data for fusion reactors and we give some advices for improving our knowledge of these data [fr

  12. Design analyses of self-cooled liquid metal blankets

    International Nuclear Information System (INIS)

    Gohar, Y.

    1986-12-01

    A trade-off study of liquid metal self-cooled blankets was carried out to define the performance of these blankets and to determine the potential to operate at the maximum possible values of the performance parameters. The main parameters considered during the course of the study were the tritium breeding ratio (TBR), the blanket energy multiplication factor, the energy fraction lost to the shield, the lithium-6 enrichment in the breeder material, the total blanket thickness, the reflector material selection, and the compositions of the different blanket zones. Also, a study was carried out to assess the impact of different reactor design choices on the reactor performance parameters. The design choices include the impurity control system (limiter or divertor), the material choice for the limiter, the elimination of tritium breeding from the inboard section of tokamak reactors, and the coolant choice for the nonbreeding inboard blanket. In addition, tritium breeding benchmark calculations were performed using different transport codes and nuclear data libraries. The importance of the TBR in the blanket design motivated the benchmark calculations

  13. Heat transfer problems in gas-cooled solid blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    In all fusion reactors using the deuterium-tritium fuel cycle, a large fraction approximately 80 percent of the fusion energy will be released as approximately 14 MeV neutrons which must be slowed down in a relatively thick blanket surrounding the plasma, thereby, converting their kinetic energy to high temperature heat which can be continuously removed by a coolant stream and converted in part to electricity in a conventional power turbine. Because of the primary goal of achieving minimum radioactivity, to date Brookhaven blanket concepts have been restricted to the use of some form of solid lithium, with inert gas-cooling and in some design cases, water-cooling of the shell structure. Aluminum and graphite have been identified as very promising structural materials for fusion blankets, and conceptual designs based on these materials have been made. Depending on the thermal loading on the ''first'' wall which surrounds the plasma as well as blanket design, heat transfer problems may be noticeably different in gas-cooled solid blankets. Approaches to solution of heat removal problems as well as explanation of: (a) the after-heat problems in blankets; (b) tritium breeding in solids; and (c) materials selection for radiation shields relative to the minimum activity blanket efforts at Brookhaven are discussed

  14. Benchmarking the cad-based attila discrete ordinates code with experimental data of fusion experiments and to the results of MCNP code in simulating ITER

    International Nuclear Information System (INIS)

    Youssef, M. Z.

    2007-01-01

    Attila is a newly developed finite element code based on Sn neutron, gamma, and charged particle transport in 3-D geometry in which unstructured tetrahedral meshes are generated to describe complex geometry that is based on CAD input (Solid Works, Pro/Engineer, etc). In the present work we benchmark its calculation accuracy by comparing its prediction to the measured data inside two experimental mock-ups bombarded with 14 MeV neutrons. The results are also compared to those based on MCNP calculations. The experimental mock-ups simulate parts of the International Thermonuclear Experimental Reactor (ITER) in-vessel components, namely: (1) the Tungsten mockup configuration (54.3 cm x 46.8 cm x 45 cm), and (2) the ITER shielding blanket followed by the SCM region (simulated by alternating layers of SS316 and copper). In the latter configuration, a high aspect ratio rectangular streaming channel was introduced (to simulate steaming paths between ITER blanket modules) which ends with a rectangular cavity. The experiments on these two fusion-oriented integral experiments were performed at the Fusion Neutron Generator (FNG) facility, Frascati, Italy. In addition, the nuclear performance of the ITER MCNP 'Benchmark' CAD model has been performed with Attila to compare its results to those obtained with CAD-based MCNP approach developed by several ITER participants. The objective of this paper is to compare results based on two distinctive 3-D calculation tools using the same nuclear data, FENDL2.1, and the same response functions of several reaction rates measured in ITER mock-ups and to enhance confidence from the international neutronics community in the Attila code and how it can precisely quantify the nuclear field in large and complex systems, such as ITER. Attila has the advantage of providing a full flux mapping visualization everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. In addition, the

  15. Design and technical status of the EU contribution to ITER

    International Nuclear Information System (INIS)

    Gasparotto, Maurizio; Federici, Gianfranco; Casci, Federico Riccardo

    2009-01-01

    Europe is involved in the procurement of most of the high-technology items for the ITER device (e.g. parts of the superconducting Toroidal (TF) and Poloidal Field (PF) coils, the vacuum vessel (VV), the in-vessel components, the remote handling, the additional heating systems, the tritium plant and cryoplant and finally parts of the diagnostics). In many cases the technologies required to manufacture these components are well established, in others there is still ongoing design and R and D work to select and optimise the final design solutions and to consolidate the underlying technologies as, for example, in the areas of heating and current drive, plasma diagnostics, shield blanket and first wall, remote handling, etc. A design review has recently been conducted by the ITER Organisation, with the support of the Domestic Agencies (DAs) established by the countries participating to ITER, to address the remaining outstanding technical issues and understand the associated implications for design, machine performance, schedule and cost. This paper provides an update of the design and technical status of EU contributions to ITER.

  16. Earthly sun called ITER

    International Nuclear Information System (INIS)

    Pozdeyev, Mikhail

    2002-01-01

    Full text: Participating in the film are Academicians Velikhov and Glukhikh, Mr. Filatof, ITER Director from Russia, Mr. Sannikov from Kurchatov Institute. The film tells about the starting point of the project (Mr. Lavrentyev), the pioneers of the project (Academicians Tamme, Sakharov, Artsimovich) and about the situation the project is standing now. Participating in [ITER now are the US, Russia, Japan and the European Union. There are two associated members as well - Kazakhstan and Canada. By now the engineering design phase has been finished. Computer animation used in the video gives us the idea how the first thermonuclear reactor based on famous Russian TOKOMAK works. (author)

  17. Iterated multidimensional wave conversion

    International Nuclear Information System (INIS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-01-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  18. Physics fundamentals for ITER

    International Nuclear Information System (INIS)

    Rosenbluth, M.N.

    1999-01-01

    The design of an experimental thermonuclear reactor requires both cutting-edge technology and physics predictions precise enough to carry forward the design. The past few years of worldwide physics studies have seen great progress in understanding, innovation and integration. We will discuss this progress and the remaining issues in several key physics areas. (1) Transport and plasma confinement. A worldwide database has led to an 'empirical scaling law' for tokamaks which predicts adequate confinement for the ITER fusion mission, albeit with considerable but acceptable uncertainty. The ongoing revolution in computer capabilities has given rise to new gyrofluid and gyrokinetic simulations of microphysics which may be expected in the near future to attain predictive accuracy. Important databases on H-mode characteristics and helium retention have also been assembled. (2) Divertors, heat removal and fuelling. A novel concept for heat removal - the radiative, baffled, partially detached divertor - has been designed for ITER. Extensive two-dimensional (2D) calculations have been performed and agree qualitatively with recent experiments. Preliminary studies of the interaction of this configuration with core confinement are encouraging and the success of inside pellet launch provides an attractive alternative fuelling method. (3) Macrostability. The ITER mission can be accomplished well within ideal magnetohydrodynamic (MHD) stability limits, except for internal kink modes. Comparisons with JET, as well as a theoretical model including kinetic effects, predict such sawteeth will be benign in ITER. Alternative scenarios involving delayed current penetration or off-axis current drive may be employed if required. The recent discovery of neoclassical beta limits well below ideal MHD limits poses a threat to performance. Extrapolation to reactor scale is as yet unclear. In theory such modes are controllable by current drive profile control or feedback and experiments should

  19. Molten salt cooling/17Li-83Pb breeding blanket concept

    International Nuclear Information System (INIS)

    Sze, D.K.; Cheng, E.T.

    1985-02-01

    A description of a fusion breeding blanket concept using draw salt coolant and static 17 Li- 83 Pb is presented. 17 Li- 83 Pb has high breeding capability and low tritium solubility. Draw salt operates at low pressure and is inert to water. Corrosion, MHD, and tritium containment problems associated with the MARS design are alleviated because of the use of a static LiPb blanket. Blanket tritium recovery is by permeation toward the plasma. A direct contact steam generator is proposed to eliminate some generic problems associated with a tube shell steam generator

  20. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT

    International Nuclear Information System (INIS)

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Groden, Christoph; Henzler, Thomas

    2016-01-01

    •Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose.•Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT.•State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. Superiority of spiral versus sequential cCT in image quality and organ-specific-radiation dose. Spiral cCT: lower organ-specific-radiation-dose in eye lense compared to tilted sequential cCT. State-of-the-art IR spiral cCT techniques has significant advantages over sequential cCT techniques. To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1–5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1–5) when compared to sequential cCT with a mean

  1. Research and development needs for ITER engineering design

    International Nuclear Information System (INIS)

    Flanagan, C.; Alikaev, V.; Baker, C.

    1991-01-01

    In the series of documents that summarize the results of the Conceptual Design Activities (CDA) for the International Thermonuclear Experimental Reactor (ITER), this document describes the research and development (R and D) plans for 1991 - 1995. Part A describes the physics R and D, part B the technology R and D. The Physics R and D needs are presented in terms of task descriptions of an ITER-related R and D programme for 1991/1992 and beyond, while diagnostics R and D needs, although covered in Appendix A, are described in Part B. In Chapter II of Part A, ''ITER-related Physics R and D Needs for 91/92 and Beyond'', the following tasks are described as most crucial: (1) demonstration that (i) operation with a cold divertor plasma is possible, (ii) the peak heat flux onto the divertor plate can be kept below about 10 MW per square meter, (iii) and helium exhaust conditions allow a fractional burnup of about 3 percent or more; (2) a characterisation of disruptions that allows to specify their consequences for the plasma-facing-components, and that provides evidence that the number of disruptions expected allows acceptable plasma-facing-component lifetimes; (3) demonstration that steady-state operation in an enhanced-confinement regime and satisfactory plasma purity is possible, and provision of energy confinement scaling allowing the prediction of ITER performance; and (4) ensurance that the presence of a fast ion population does not jeopardize plasma performance in ITER. Part B, ''ITER Technology Research and Development Needs'', describes planning R and D for magnets, containment structure, assembly and maintenance, current drive and heating, plasma facing components, blanket, fuel cycle, structural materials, and diagnostics. A table of key milestones for Technology R and D is included, as well as cost estimates. Figs and tabs

  2. ITER conceptual design

    International Nuclear Information System (INIS)

    Tomabechi, K.; Gilleland, J.R.; Sokolov, Yu.A.; Toschi, R.

    1991-01-01

    The Conceptual Design Activities of the International Thermonuclear Experimental Reactor (ITER) were carried out jointly by the European Community, Japan, the Soviet Union and the United States of America, under the auspices of the International Atomic Energy Agency. The European Community provided the site for joint work sessions at the Max-Planck-Institut fuer Plasmaphysik in Garching, Germany. The Conceptual Design Activities began in the spring of 1988 and ended in December 1990. The objectives of the activities were to develop the design of ITER, to perform a safety and environmental analysis, to define the site requirements as well as the future research and development needs, to estimate the cost and manpower, and to prepare a schedule for detailed engineering design, construction and operation. On the basis of the investigation and analysis performed, a concept of ITER was developed which incorporated maximum flexibility of the performance of the device and allowed a variety of operating scenarios to be adopted. The heart of the machine is a tokamak having a plasma major radius of 6 m, a plasma minor radius of 2.15 m, a nominal plasma current of 22 MA and a nominal fusion power of 1 GW. The conceptual design can meet the technical objectives of the ITER programme. Because of the success of the Conceptual Design Activities, the Parties are now considering the implementation of the next phase, called the Engineering Design Activities. (author). Refs, figs and tabs

  3. ITER power electrical networks

    International Nuclear Information System (INIS)

    Sejas Portela, S.

    2011-01-01

    The ITER project (International Thermonuclear Experimental Reactor) is an international effort to research and development to design, build and operate an experimental facility to demonstrate the scientific and technological possibility of obtaining useful energy from the physical phenomenon known as nuclear fusion.

  4. ITER-FEAT operation

    International Nuclear Information System (INIS)

    Shimomura, Y.; Huget, M.; Mizoguchi, T.; Murakami, Y.; Polevoi, A.; Shimada, M.; Aymar, R.; Chuyanov, V.; Matsumoto, H.

    2001-01-01

    ITER is planned to be the first fusion experimental reactor in the world operating for research in physics and engineering. The first 10 years' operation will be devoted primarily to physics issues at low neutron fluence and the following 10 years' operation to engineering testing at higher fluence. ITER can accommodate various plasma configurations and plasma operation modes such as inductive high Q modes, long pulse hybrid modes, non-inductive steady-state modes, with large ranges of plasma current, density, beta and fusion power, and with various heating and current drive methods. This flexibility will provide an advantage for coping with uncertainties in the physics database, in studying burning plasmas, in introducing advanced features and in optimizing the plasma performance for the different programme objectives. Remote sites will be able to participate in the ITER experiment. This concept will provide an advantage not only in operating ITER for 24 hours per day but also in involving the world-wide fusion communities and in promoting scientific competition among the Parties. (author)

  5. ITER conceptual design report

    International Nuclear Information System (INIS)

    1991-01-01

    Results of the International Thermonuclear Experimental Reactor (ITER) Conceptual Design Activity (CDA) are reported. This report covers the Terms of Reference for the project: defining the technical specifications, defining future research needs, define site requirements, and carrying out a coordinated research effort coincident with the CDA. Refs, figs and tabs

  6. US ITER Management Plan

    International Nuclear Information System (INIS)

    1991-12-01

    This US ITER Management Plan is the plan for conducting the Engineering Design Activities within the US. The plan applies to all design, analyses, and associated physics and technology research and development (R ampersand D) required to support the program. The plan defines the management considerations associated with these activities. The plan also defines the management controls that the project participants will follow to establish, implement, monitor, and report these activities. The activities are to be conducted by the project in accordance with this plan. The plan will be updated to reflect the then-current management approach required to meet the project objectives. The plan will be reviewed at least annually for possible revision. Section 2 presents the ITER objectives, a brief description of the ITER concept as developed during the Conceptual Design Activities, and comments on the Engineering Design Activities. Section 3 discusses the planned international organization for the Engineering Design Activities, from which the tasks will flow to the US Home Team. Section 4 describes the US ITER management organization and responsibilities during the Engineering Design Activities. Section 5 describes the project management and control to be used to perform the assigned tasks during the Engineering Design Activities. Section 6 presents the references. Several appendices are provided that contain detailed information related to the front material

  7. Iterative List Decoding

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom; Hjaltason, Johan

    2005-01-01

    We analyze the relation between iterative decoding and the extended parity check matrix. By considering a modified version of bit flipping, which produces a list of decoded words, we derive several relations between decodable error patterns and the parameters of the code. By developing a tree...

  8. ITER at Cadarache

    International Nuclear Information System (INIS)

    2005-06-01

    This public information document presents the ITER project (International Thermonuclear Experimental Reactor), the definition of the fusion, the international cooperation and the advantages of the project. It presents also the site of Cadarache, an appropriate scientifical and economical environment. The last part of the documentation recalls the historical aspect of the project and the today mobilization of all partners. (A.L.B.)

  9. Iterative software kernels

    Energy Technology Data Exchange (ETDEWEB)

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  10. ITER, a major step toward nuclear fusion energy; ITER, une etape majeure vers l'energie de fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Holtkamp, N.; Pick, M.; Gauche, F.; Garin, P.; Bigot, B.; Luciani, J.F.; Mougniot, J.C.; Watteau, J.P.; Saoutic, B.; Becoulet, A.; Libeyre, P.; Beaumont, B.; Simonin, A.; Giancarli, L.; Rosenvallon, S.; Gastaldi, O.; Marbach, G.; Boudot, C.; Ioki, K.; Mitchell, N.; Girard, J.Ph.; Giraud, B.; Lignini, F.; Giguet, E.; Bofusch, E.; Friconneau, J.P.; Di Pace, L.; Pampin, R.; Cook, I.; Maisonnier, D.; Campbell, D.; Hayward, J.; Li Puma, A.; Norajitra, P.; Sardain, P.; Tran, M.Q.; Ward, D.; Moslang, A.; Carre, F.; Serpantie, J.P

    2007-01-15

    This document gathers together a series of articles dedicated to ITER. They are organized into 5 parts. The first part describes the potential of fusion as a source of energy that will be able to face the challenge of a continuously increasing demand. After a reminder of the main fusion reactions and the conditions to obtain fusion, the second part focuses on the magnetic fusion based concepts with a special emphasis on the tokamak configuration. In the third part the main components of ITER are described: first the plasma facing components, then the vacuum vessel, the superconducting magnets and the heating systems. In the fourth part short papers concerning ITER safety, the maintenance through remote handling systems, the tritium breeding blanket, are given, along with a full article on the waste management. It is interesting to notice that the nuclear wastes will represent: -) between 1600 and 3800 tons of housekeeping and process wastes produced during the 20 years of operation of ITER (20% very low level waste, 75% low or medium activity with short life and 5% medium activity with long life), -) about 750 tons from component replacement during ITER active operation, and -) about 30000 tons from the decommissioning of ITER. The last part presents the European concepts for a power plant based on a fusion reactor. A basic design is given along with a state of the art of the research on the materials that will be used for the structures. It is highlighted that synergies between fission and fusion technologies exist in at least 4 areas: nuclear design code system, high temperature materials, safety approach, and in-service inspection, maintenance and dismantling. (A.C.)

  11. Status of ITER

    International Nuclear Information System (INIS)

    Aymar, R.

    2002-01-01

    At the end of engineering design activities (EDA) in July 2001, all the essential elements became available to make a decision on construction of ITER. A sufficiently detailed and integrated engineering design now exists for a generic site, has been assessed for feasibility, and costed, and essential physics and technology R and D has been carried out to underpin the design choices. Formal negotiations have now begun between the current participants--Canada, Euratom, Japan, and the Russian Federation--on a Joint Implementation Agreement for ITER which also establishes the legal entity to run ITER. These negotiations are supported on technical aspects by Coordinated Technical Activities (CTA), which maintain the integrity of the project, for the good of all participants, and concentrate on preparing for procurement by industry of the longest lead items, and for formal application for a construction license with the host country. This paper highlights the main features of the ITER design. With cryogenically-cooled magnets close to neutron-generating plasma, the design of shielding with adequate access via port plugs for auxiliaries such as heating and diagnostics, and of remote replacement and refurbishing systems for in-vessel components, are particularly interesting nuclear technology challenges. Making a safety case for ITER to satisfy potential regulators and to demonstrate, as far as possible at this stage, the environmental attractiveness of fusion as an energy source, is also important. The paper gives illustrative details on this work, and an update on the progress of technical preparations for construction, as well as the status of the above negotiations

  12. Probabilistic analysis of welded joints in blanket design

    International Nuclear Information System (INIS)

    Zhang, S.; Riesch-Oppermann, H.

    1995-01-01

    In the reliability assessment of blanket design, failure of welds is a crucial point. This is accounted for by design requirements but has also to be confirmed by quantitative assessment of the system reliability of a whole blanket containing a very large number of different welds. Blankets contain specific weldments for which there are no empirical failure rates available. A probabilistic analysis of the reliability of welds is therefore used to give failure rates which are dependent on the welding procedure, the geometry of the welded component and on the nondestructive evaluation procedure used to ensure proper quality of the welds. The following paper gives an outline of the methodology which is applied. The reference weld is taken from the dual coolant liquid metal breeder blanket design but results can be easily generalized. (orig.)

  13. Electromagnetic effects involving a tokamak reactor first wall and blanket

    International Nuclear Information System (INIS)

    Turner, L.R.; Evans, K. Jr.; Gelbard, E.; Prater, R.

    1980-01-01

    Four electromagnetic effects experienced by the first wall and blanket of a tokamak reactor are considered. First, the first wall provides reduction of the growth rate of vertical axisymmetric instability and stabilization of low mode number interval kink modes. Second, if a rapid plasma disruption occurs, a current will be induced on the first wall, tending to maintain the field formerly produced by the plasma. Third, correction of plasma movement can begin on a time scale much faster than the L/R time of the first wall and blanket. Fourth, field changes, especially those from plasma disruption or from rapid discharge of a toroidal field coil, can cause substantial eddy current forces on elements of the first wall and blanket. These effects are considered specifically for the first wall and blanket of the STARFIRE commercial reactor design study

  14. Advanced Acoustic Blankets for Improved Aircraft Interior Noise Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project advanced acoustic blankets for improved low frequency interior noise control in aircraft will be developed and demonstrated. The improved performance...

  15. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  16. Blanket options for high-efficiency fusion power

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  17. Fusion blanket for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by Ar) utilizing Li 2 O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  18. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1981-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 deg C) of conventional structural materials such as stainless steels. In this project 'two-zone' blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 deg C leading to an overall efficiency estimate of 55 to 60% for this reference case. (author)

  19. Radiation-induced tensile stresses in fission-blanket components

    International Nuclear Information System (INIS)

    Kipp, M.E.

    1981-11-01

    A particle-beam fusion-fission hybrid reactor includes a surrounding blanket for energy production and for breeding fissile fuel. The blanket is subjected to radiation deposition pulses at the operating frequency of the fusion driver. A circulating coolant will remove heat from the blanket region. One-dimensional studies were made to examine possible configurations for the blanket elements. Depleted uranium solid plates, cylinders, and spheres were the initial choices. Depleted uranium solid plates, cylinders, and spheres were the initial choices. Uniform radiation deposition was assumed across the geometry, with the particular concern being the level of tension induced by the deposition pulse. The high tensions that appear in the solid cylindrical and spherical cases could be mitigated by the presence of hollow cores

  20. Blast venting through blanket material in the HYLIFE ICF reactor

    International Nuclear Information System (INIS)

    Liu, J.C.; Peterson, P.F.; Schrock, V.E.

    1992-01-01

    This work presents a numerical study of blast venting through various blanket configurations in the HYLIFE ICF reactor design. The study uses TSUNAMI -- a multi-dimensional, high-resolution, shock capturing code -- to predict the momentum exchange and gas dynamics for blast venting in complex geometries. In addition, the study presents conservative predictions of wall loading by gas shock and impulse delivered to the protective liquid blanket. Configurations used in the study include both 2700 MJ and 350 MJ fusion yields per pulse for 5 meter and 3 meter radius reactor chambers. For the former, an annular jet array is used for the blanket geometry, while in the latter, both annular jet array as well as slab geometries are used. Results of the study indicate that blast venting and wall loading may be manageable in the HYLIFE-II design by a judicious choice of blanket configuration

  1. Aqueous self-cooled blanket concepts for fusion reactors

    International Nuclear Information System (INIS)

    Varsamis, G.; Embrechts, M.J.; Steiner, D.; Deutsch, L.; Gierszewski, P.

    1987-01-01

    A novel aqueous self-cooled blanket (ASCB) concept has been proposed. The water coolant also serves as the tritium breeding medium by dissolving small amounts of lithium compound in the water. The tritium recovery requirements of the ASCB concept may be facilitated by the novel in-situ radiolytic tritium separation technique in development at Chalk River Nuclear Laboratories. In this separation process deuterium gas is bubbled through the blanket coolant. Due to radiation induced processes, the equilibrium constant favors tritium migration to the deuterium gas stream. It is expected that the inherent simplicity of this design will result in a highly reliable, safe and economically attractive breeding blanket for fusion reactors. The available base of relevant information accumulated through water-cooled fission reactor programs should greatly facilitate the R and D effort required to validate the proposed blanket concept. Tests for tritium separation and corrosion compatibility show encouraging results for the feasibility of this concept

  2. High performance blanket for ARIES-AT power plant

    Energy Technology Data Exchange (ETDEWEB)

    Raffray, A.R. E-mail: raffray@fusion.ucsd.edu; El-Guebaly, L.; Gordeev, S.; Malang, S.; Mogahed, E.; Najmabadi, F.; Sviatoslavsky, I.; Sze, D.K.; Tillack, M.S.; Wang, X

    2001-11-01

    The ARIES-AT blanket has been developed with the overall objective of achieving high performance while maintaining attractive safety features, simple design geometry, credible maintenance and fabrication processes, and reasonable design margins as an indication of reliability. The design is based on Pb-17Li as breeder and coolant and SiC{sub f}/SiC composite as structural material. This paper summarizes the results of the design study of this blanket.

  3. High performance blanket for ARIES-AT power plant

    International Nuclear Information System (INIS)

    Raffray, A.R.; El-Guebaly, L.; Gordeev, S.; Malang, S.; Mogahed, E.; Najmabadi, F.; Sviatoslavsky, I.; Sze, D.K.; Tillack, M.S.; Wang, X.

    2001-01-01

    The ARIES-AT blanket has been developed with the overall objective of achieving high performance while maintaining attractive safety features, simple design geometry, credible maintenance and fabrication processes, and reasonable design margins as an indication of reliability. The design is based on Pb-17Li as breeder and coolant and SiC f /SiC composite as structural material. This paper summarizes the results of the design study of this blanket

  4. Overview of first wall/blanket/shield technology

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1983-04-01

    This brief overview of first wall, blanket, and shield technology focuses first on changes and trends in important design issues from the 1970's to the 1980's, then on current perceptions of critical issues in first wall, blanket, and shield design and related technology. The emphasis is on base technology rather than either systems engineering or materials development, on the two primary confinement systems, tokamaks and mirrors, and on production of electricity as the primary goal for development

  5. Blanket of a hybrid thermonuclear reactor with liquid- metal cooling

    International Nuclear Information System (INIS)

    Terent'ev, I.K.; Fedorovich, E.P.; Paramonov, P.M.; Zhokhov, K.A.

    1982-01-01

    Blanket design of a hybrid thermopuclear reactor with a liquid metal coolant is described. To decrease MHD-resistance for uranium zone fuel elements a cylindrical shape is suggested and movement of liquid-metal coolant in fuel element packets is presumed to be in perpendicular to the magnetic field and fuel element axes direction. The first wall is cooled by water, blanket-by lithium-lead alloy

  6. Applications of the Aqueous Self-Cooled Blanket concept

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.J.; Varsamis, G.; Wrisley, K.; Deutch, L.; Gierszewski, P.

    1986-01-01

    In this paper a novel water-cooled blanket concept is examined. This concept, designated the Aqueous Self-Cooled Blanket (ASCB), employs water with small amounts of dissolved fertile compounds as both the coolant and the breeding medium. The ASCB concept is reviewed and its application in three different contexts is examined: (1) power reactors; (2) near-term devices such as NET; and (3) fusion-fission hybrids

  7. Stress analysis of blanket vessel for JAERI experimental fusion reactor

    International Nuclear Information System (INIS)

    Sako, K.; Minato, A.

    1979-01-01

    A blanket structure of JAERI Experimental Fusion Reactor (JXFR) consists of about 2,300 blanket cells with round cornered rectangular cross sections (twelve slightly different shapes) and is placed in a vacuum vessel. Each blanket vessel is a double-walled thin-shell structure made of Type 316 stainless steel with a spherical domed surface at the plasma side. Ribs for coolant channel are provided between inner and outer walls. The blanket cell contains Li 2 O pebbles and blocks for tritium breeding and stainless steel blocks for neutron reflection. A coolant is helium gas at 10 kgf/cm 2 (0.98 MPa) and its inlet and outlet temperatures are 300 0 C and 500 0 C. The maxima of heat flux and nuclear heating rate at the first wall are 12 W/cm 2 and 2 W/cc. A design philosophy of the blanket structure is based on high tritium breeding ratio and more effective shielding performance. The thin-shell vessel with a rectangular cross section satisfies the design philosophy. We have designed the blanket structure so that the adjacent vessels are mutually supporting in order to decrease the large deformation and stress due to internal pressure in case of the thin-shell vessel. (orig.)

  8. Studies on steps affecting tritium residence time in solid blanket

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    1987-01-01

    For the self sustaining of CTR fuel cycle, the effective tritium recovery from blankets is essential. This means that not only tritium breeding ratio must be larger than 1.0, but also high recovering speed is required for the short residence time of tritium in blankets. Short residence time means that the tritium inventory in blankets is small. In this paper, the tritium residence time and tritium inventory in a solid blanket are modeled by considering the steps constituting tritium release. Some of these tritium migration processes were experimentally evaluated. The tritium migration steps in a solid blanket using sintered breeding materials consist of diffusion in grains, desorption at grain edges, diffusion and permeation through grain boundaries, desorption at particle edges, diffusion and percolation through interconnected pores to purging stream, and convective mass transfer to stream. Corresponding to these steps, diffusive, soluble, adsorbed and trapped tritium inventories and the tritium in gas phase are conceivable. The code named TTT was made for calculating these tritium inventories and the residence time of tritium. An example of the results of calculation is shown. The blanket is REPUTER-1, which is the conceptual design of a commercial reversed field pinch fusion reactor studied at the University of Tokyo. The experimental studies on the migration steps of tritium are reported. (Kako, I.)

  9. Iterative Algorithms for Nonexpansive Mappings

    Directory of Open Access Journals (Sweden)

    Yao Yonghong

    2008-01-01

    Full Text Available Abstract We suggest and analyze two new iterative algorithms for a nonexpansive mapping in Banach spaces. We prove that the proposed iterative algorithms converge strongly to some fixed point of .

  10. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer; Knudsen, Kim

    2014-01-01

    For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...

  11. Design of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.

    1995-01-01

    The ITER vacuum vessel is a major safety barrier and must support electromagnetic loads during plasma disruptions and vertical displacement events (VDE) and withstand plausible accidents without losing confinement.The vacuum vessel has a double wall structure to provide structural and electrical continuity in the toroidal direction. The inner and outer shells and poloidal stiffening ribs between them are joined by welding, which gives the vessel the required mechanical strength. The space between the shells will be filled with steel balls and plate inserts to provide additional nuclear shielding. Water flowing in this space is required to remove nuclear heat deposition, which is 0.2-2.5% of the total fusion power. The minor and major radii of the tokamak are 3.9 m and 13 m respectively, and the overall height is 15 m. The total thickness of the vessel wall structure is 0.4-0.7 m.The inboard and outboard blanket segments are supported from the vacuum vessel. The support structure is required to withstand a large total vertical force of 200-300 MN due to VDE and to allow for differential thermal expansion.The first candidate for the vacuum vessel material is Inconel 625, due to its higher electric resistivity and higher yield strength, even at high temperatures. Type 316 stainless steel is also considered a vacuum vessel material candidate, owing to its large database and because it is supported by more conventional fabrication technology. (orig.)

  12. Current status of fusion reactor blanket thermodynamics

    International Nuclear Information System (INIS)

    Veleckis, E.; Yonco, R.M.; Maroni, V.A.

    1979-04-01

    Recent studies of liquid lithium have concentrated on its sorption characteristics for hydrogen isotopes and its interaction with common impurity elements. Hydrogen isotope sorption data (P-C-T relations, activity coefficients, Sieverts' constants, plateau pressures, isotope effects, free energies of formation, phase boundaries etc.) are presented in a tabular form that can be conveniently used to extract thermodynamic information for the α-phase of the Li-LiH, Li-LiD, and Li-LiT systems and to construct complete phase diagrams. Recent solubility data for Li 3 N, Li 2 O, and Li 2 C 2 in liquid lithium are discussed with emphasis on the prospects for removing these species by cold-trapping methods. Current studies on the sorption of hydrogen in solid lithium alloys (e.g., Li--Al and Li--Pb), made using a new technique (the hydrogen titration method), have shown that these alloys should lead to smaller blanket-tritium inventories than are attainable with liquid lithium and that the P-C-T relationships for hydrogen in Li--M alloys can be estimated from lithium activity data for these alloys

  13. Resource Usage Protocols for Iterators

    NARCIS (Netherlands)

    Huisman, Marieke; Haack, C.; Müller, P.; Hurlin, C.

    We discuss usage protocols for iterator objects that prevent concurrent modifications of the underlying collection while iterators are in progress. We formalize these protocols in Java-like object interfaces, enriched with separation logic contracts. We present examples of iterator clients and

  14. ITER CTA newsletter. No. 4

    International Nuclear Information System (INIS)

    2001-12-01

    This ITER CTA Newsletter contains information about the organization of the ITER Co-ordinated Technical Activities (CTA) International Team as the follow-up of the ITER CTA project board meeting in Toronto on 7 November 2001. It also includes a summary on the start of the international tokamak physics activity by Dr. D. Campbell, Chair of the ITPA Co-ordinating Committee

  15. Status of the ITER EDA

    International Nuclear Information System (INIS)

    Aymar, R.

    2000-01-01

    This article summarizes progress made in the ITER Engineering Design Activities in the period between the ITER Meeting in Tokyo (January 2000) and June 2000. Topics: Termination of EDA, Joint Central Team and Support, Task Assignments, ITER Physics, Urgent and High Priority Physics Research Areas

  16. Iterative supervirtual refraction interferometry

    KAUST Repository

    Al-Hagan, Ola

    2014-05-02

    In refraction tomography, the low signal-to-noise ratio (S/N) can be a major obstacle in picking the first-break arrivals at the far-offset receivers. To increase the S/N, we evaluated iterative supervirtual refraction interferometry (ISVI), which is an extension of the supervirtual refraction interferometry method. In this method, supervirtual traces are computed and then iteratively reused to generate supervirtual traces with a higher S/N. Our empirical results with both synthetic and field data revealed that ISVI can significantly boost up the S/N of far-offset traces. The drawback is that using refraction events from more than one refractor can introduce unacceptable artifacts into the final traveltime versus offset curve. This problem can be avoided by careful windowing of refraction events.

  17. ITER technical basis

    International Nuclear Information System (INIS)

    2002-01-01

    Following on from the Final Report of the EDA(DS/21), and the summary of the ITER Final Design report(DS/22), the technical basis gives further details of the design of ITER. It is in two parts. The first, the Plant Design specification, summarises the main constraints on the plant design and operation from the viewpoint of engineering and physics assumptions, compliance with safety regulations, and siting requirements and assumptions. The second, the Plant Description Document, describes the physics performance and engineering characteristics of the plant design, illustrates the potential operational consequences foe the locality of a generic site, gives the construction, commissioning, exploitation and decommissioning schedule, and reports the estimated lifetime costing based on data from the industry of the EDA parties

  18. Iterative participatory design

    DEFF Research Database (Denmark)

    Simonsen, Jesper; Hertzum, Morten

    2010-01-01

    The theoretical background in this chapter is information systems development in an organizational context. This includes theories from participatory design, human-computer interaction, and ethnographically inspired studies of work practices. The concept of design is defined as an experimental...... iterative process of mutual learning by designers and domain experts (users), who aim to change the users’ work practices through the introduction of information systems. We provide an illustrative case example with an ethnographic study of clinicians experimenting with a new electronic patient record...... system, focussing on emergent and opportunity-based change enabled by appropriating the system into real work. The contribution to a general core of design research is a reconstruction of the iterative prototyping approach into a general model for sustained participatory design....

  19. The state of the art report on the fabrication of FW blanket for the fusion reactor and mock-up development in Europe

    International Nuclear Information System (INIS)

    Kim, Jun Whan; Baek, Jong Hyuk; Park, Jeong Yong; Kim, Hyun Gil; Jeong, Yong Hwan

    2004-08-01

    Blanket-shield system in ITER is the component where it directly is faced with high-heat plasma. Function of blanket is to sustain extremely high temperature environment as well as to remove heat flux generated its surface. It mainly consists of plasma facing part, heat sinking part and structural part. Plasma facing part is made of armour materials such as beryllium, tungsten and carbon fiber composite. Heat sinking part is made of copper alloy to maximize heat transfer into flowing coolant inside of blanket. Structural material is used in 316LN stainless steel. As joining such dissimilar materials emerged as an issue, many developed countries have spurred the development of joint technology. This technical report was focused on the activities of EU regarding joining beryllium, copper and stainless steel. EU have adopted to Hot Isostatic Pressing (HIP) to join beryllium, copper and stainless steel. Although brazing process is not actively investigated compared as HIP, it still investigated in some countries to support HIP. Fabrication of mock-up is accomplished by CEA in France to finish small scale mock-up in 1996, medium and large scale mock-up in 1997. In recent, FRAMATOME in EU has focused on manufacturing prototype used for ITER

  20. Conformable variational iteration method

    Directory of Open Access Journals (Sweden)

    Omer Acan

    2017-02-01

    Full Text Available In this study, we introduce the conformable variational iteration method based on new defined fractional derivative called conformable fractional derivative. This new method is applied two fractional order ordinary differential equations. To see how the solutions of this method, linear homogeneous and non-linear non-homogeneous fractional ordinary differential equations are selected. Obtained results are compared the exact solutions and their graphics are plotted to demonstrate efficiency and accuracy of the method.