WorldWideScience

Sample records for blades compressor

  1. Novel Compressor Blade Design Study

    Science.gov (United States)

    Srinivas, Abhay

    Jet engine efficiency goals are driving compressors to higher pressure ratios and engines to higher bypass ratios, each one driving to smaller cores. This is leading to larger tip gaps relative to the blade height. These larger relative tip clearances would negate some of the cycle improvements, and ways to mitigate this effect must be found. A novel split tip blade geometry has been created which helps improve the efficiency at large clearances while also improving operating range. Two identical blades are leaned in opposite directions starting at 85% span. They are cut at mid chord and the 2 halves then merged together so a split tip is created. The result is similar to the alula feathers on a soaring bird. The concept is that the split tip will energize the tip flow and increase range. For higher relative tip clearance, this will also improve efficiency. The 6th rotor of a highly loaded 10 stage machine was chosen as the baseline for this study. Three dimensional CFD simulations were performed using CD Adapco's Star-CCM+ at 5 clearances for the baseline and split tip geometry. The choking flow and stall margin of the split tip blade was higher than that of the baseline blade for all tip clearances. The pressure ratio of the novel blade was higher than that of the baseline blade near choke, but closer to stall it decreased. The sensitivity of peak efficiency to clearance was improved. At tight clearances of 0.62% of blade height, the maximum efficiency of the new design was less than the baseline blade, but as the tip clearance was increased above 2.5%, the maximum efficiency increased. Structural analysis was also performed to ascertain the feasibility of the design.

  2. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    Science.gov (United States)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified

  3. Crack Propagation in Compressor Rotor Blade

    Science.gov (United States)

    2012-08-01

    by local Public Affairs Office) 13. SUPPLEMENTARY NOTES 14. ABSTRACT Turbomachine blading crack propagation and initiations are one of...the most important problems. Design, operation and modernization of the contemporary turbomachines are impossible without a detailed numerical and...Rao, J. S., Turbine Blade Life Estimation, Narosa Publishing House, (2000). Rao, J. S., Narayan, R. and Ranjith, M. C., Lifing of Turbomachine

  4. Study of casing treatment stall margin improvement phenomena. [for compressor rotor blade tips compressor blades rotating stalls

    Science.gov (United States)

    Prince, D. C., Jr.; Wisler, D. C.; Hilvers, D. E.

    1974-01-01

    The results of a program of experimental and analytical research in casing treatments over axial compressor rotor blade tips are presented. Circumferential groove, axial-skewed slot, and blade angle slot treatments were tested. These yielded, for reduction in stalling flow and loss in peak efficiency, 5.8% and 0 points, 15.3% and 2.0 points, and 15.0% and 1.2 points, respectively. These values are consistent with other experience. The favorable stalling flow situations correlated well with observations of higher-then-normal surface pressures on the rotor blade pressure surfaces in the tip region, and with increased maximum diffusions on the suction surfaces. Annular wall pressure gradients, especially in the 50-75% chord region, are also increased and blade surface pressure loadings are shifted toward the trailing edge for treated configurations. Rotor blade wakes may be somewhat thinner in the presence of good treatments, particularly under operating conditions close to the baseline stall.

  5. Global Dynamics of a Compressor Blade with Resonances

    Directory of Open Access Journals (Sweden)

    Xiaoxia Bian

    2016-01-01

    Full Text Available The global bifurcations and chaotic dynamics of a thin-walled compressor blade for the resonant case of 2 : 1 internal resonance and primary resonance are investigated. With the aid of the normal theory, the desired form associated with a double zero and a pair of pure imaginary eigenvalues for the global perturbation method is obtained. Based on the simpler form, the method developed by Kovacic and Wiggins is used to find the existence of a Shilnikov-type homoclinic orbit. The results obtained here indicate that the orbit homoclinic to certain invariant sets for the resonance case which may lead to chaos in the sense of Smale horseshoes for the system. The chaotic motions of the rotating compressor blade are also found by using numerical simulation.

  6. Multi-objective optimization of an axial compressor blade

    Energy Technology Data Exchange (ETDEWEB)

    Samad, Abdus; Kim, Kwang Yong [Inha University, Incheon (Korea, Republic of)

    2008-05-15

    Numerical optimization with multiple objectives is carried out for design of an axial compressor blade. Two conflicting objectives, total pressure ratio and adiabatic efficiency, are optimized with three design variables concerning sweep, lean and skew of blade stacking line. Single objective optimizations have been also performed. At the data points generated by D-optimal design, the objectives are calculated by three-dimensional Reynolds-averaged Navier-Stokes analysis. A second-order polynomial based response surface model is generated, and the optimal point is searched by sequential quadratic programming method for single objective optimization. Elitist non-dominated sorting of genetic algorithm (NSGA-II) with {epsilon}-constraint local search strategy is used for multi-objective optimization. Both objective function values are found to be improved as compared to the reference one by multi-objective optimization. The flow analysis results show the mechanism for the improvement of blade performance

  7. Erosion-resistant coatings for gas turbine compressor blades

    Science.gov (United States)

    Muboyadzhyan, S. A.

    2009-06-01

    The effect of ion-plasma coatings made from high-hardness metal compounds on the erosion and corrosion resistance and the mechanical properties of alloy (substrate) + coating compositions is comprehensively studied. The effects of the thickness, composition, deposition conditions, and design of coatings based on metal nitrides and carbides on the relative gas-abrasive wear of alloy + coating compositions in a gas-abrasive flux are analyzed. The flux contains quartz sand with an average fraction of 300-350 μm; the abrasive feed rate is 200 g/min; and the angles of flux incidence are 20° (tangential flow) and 70° (near-head-on attack flow). Alloy + coating compositions based on VN, VC, Cr3C2, ZrN, and TiN coatings 15-30 μ m thick or more are shown to have high erosion resistance. A detailed examination of the coatings with high erosion resistance demonstrates that a zirconium nitride coating is most appropriate for protecting gas turbine compressor blades made of titanium alloys; this coating does not decrease the fatigue strength of these alloys. A chromium carbide coating is the best coating for protecting compressor steel blades.

  8. Flow Integrating Section for a Gas Turbine Engine in Which Turbine Blades are Cooled by Full Compressor Flow

    Energy Technology Data Exchange (ETDEWEB)

    Steward, W. Gene

    1999-11-14

    Routing of full compressor flow through hollow turbine blades achieves unusually effective blade cooling and allows a significant increase in turbine inlet gas temperature and, hence, engine efficiency. The invention, ''flow integrating section'' alleviates the turbine dissipation of kinetic energy of air jets leaving the hollow blades as they enter the compressor diffuser.

  9. Effect of blade tip winglet on the performance of a highly loaded transonic compressor rotor

    Institute of Scientific and Technical Information of China (English)

    Han Shaobing; Zhong Jingjun

    2016-01-01

    The tip leakage flow has an important influence on the performance of transonic com-pressor. Blade tip winglet has been proved to be an effective method to control the tip leakage flow in compressor, while the physical mechanisms of blade tip winglet have been poorly understood. A numerical study for a highly loaded transonic compressor rotor has been conducted to understand the effect of varying the location of blade tip winglet on the performance of the rotor. Two kinds of tip winglet were designed and investigated. The effects of blade tip winglet on the compressor over-all performance, stability and tip flow structure were presented and discussed. It is found that the interaction of the tip winglet with the flow in the tip region is different when the winglet is located at suction-side or pressure-side of the blade tip. Results indicate that the suction-side winglet (SW) is ineffective to improve the performance of compressor rotor. In addition, a significant stall range extension equivalent to 33.74% with a very small penalty in efficiency can be obtained by the pressure-side winglet (PW). An attempt has been made to explain the fundamental mechanisms of blade tip winglet in detail.

  10. Applications of numerical optimization techniques to design of axial compressor blades

    Institute of Scientific and Technical Information of China (English)

    Choon-Man Jang; Kwang-Yong Kim

    2007-01-01

    This paper describes the shape optimization of NASA rotor 37 and rotor and stator blades in a single-stage transonic axial compressor.Shape optimization of the blades operating at the design flow condition has been performed using the response surface method and three-dimensional Navier-Stokes analysis.Thin-layer approximation is introduced to the Navier-Stokes equations,and an explicit Runge-Kutta scheme is used to solve the governing equations.The three design variables,blade sweep,lean and skew,are introduced to optimize the three-dimensional stacking line of the blades.The objective function of the shape optimization is an adiabatic efficiency.Throughout the optimization of rotor and stator blades, optimal blade shape can be obtained.It is noted the increase of adiabatic efficiency by optimization of the blade shape with the stacking line in the single-stage transonic axial compressor is more effective in a rotor blade rather than a stator blade because of the large deformation of blade shape in the stator blade.

  11. Adjoint Optimization of Multistage Axial Compressor Blades with Static Pressure Constraint at Blade Row Interface

    Science.gov (United States)

    Yu, Jia; Ji, Lucheng; Li, Weiwei; Yi, Weilin

    2016-06-01

    Adjoint method is an important tool for design refinement of multistage compressors. However, the radial static pressure distribution deviates during the optimization procedure and deteriorates the overall performance, producing final designs that are not well suited for realistic engineering applications. In previous development work on multistage turbomachinery blade optimization using adjoint method and thin shear-layer N-S equations, the entropy production is selected as the objective function with given mass flow rate and total pressure ratio as imposed constraints. The radial static pressure distribution at the interfaces between rows is introduced as a new constraint in the present paper. The approach is applied to the redesign of a five-stage axial compressor, and the results obtained with and without the constraint on the radial static pressure distribution at the interfaces between rows are discussed in detail. The results show that the redesign without the radial static pressure distribution constraint (RSPDC) gives an optimal solution that shows deviations on radial static pressure distribution, especially at rotor exit tip region. On the other hand, the redesign with the RSPDC successfully keeps the radial static pressure distribution at the interfaces between rows and make sure that the optimization results are applicable in a practical engineering design.

  12. Fluid Structural Modal Coupled Numerical Investigation of Transonic Fluttering Of Axial Flow Compressor Blades

    Directory of Open Access Journals (Sweden)

    Rio Melvin Aro.T

    2015-05-01

    Full Text Available Flutter is an unstable oscillation which can lead to destruction. Flutter can occur on fixed surfaces, such as blades, wing or the stabilizer. By self-excited aeroelastic instability, flutter can lead to mechanical or structural failure of aircraft engine blades. The modern engines have been designed with increased pressure ratio and reduced weight in order to improve aerodynamic efficiency, resulting in severe aeroelastic problems. Particularly flutter in axial compressors with transonic flow can be characterized by a number of aerodynamic nonlinear effects such as shock boundary layer interaction, rotating stall, and tip vortex instability. Rotating blades operating under high centrifugal forces may also encounter structural nonlinearities due to friction damping and large deformations. In the future work a standard axial flow compressor blade will be taken for analysis, both Subsonic and Transonic range are taken for analysis. Fluid and Structure are two different domains which will be coupled by full system coupling technique to predict the fluttering effect on the compressor blade. ANSYS is a commercial simulation tool, which will be deployed in this work to perform FSI (Fluid Structure Interaction and FSI coupled Modal to predict the flutter in the compressor blades

  13. Design, Test, and Evaluation of a Transonic Axial Compressor Rotor with Splitter Blades

    Science.gov (United States)

    2013-09-01

    Postgraduate School NPSMF NPS Military Fan NTG No Tip Gap PS Pressure Side SB Splitter Blade SS Suction Side SolidWorks A solid modeling...lubrication oil to the TASR and drive turbine bearings via an air driven oil mist system. A pre-test checklist is provided in McNab [8] Appendix C...modern high- performance compressor rotors. 79 LIST OF REFERENCES [1] A. J. Wennerstrom, Design of Highly Loaded Axial-Flow Fans and Compressors, White

  14. Blade-end treatment to improve the performance of axial compressors: An overview

    Science.gov (United States)

    Zheng, Xinqian; Li, Zhihui

    2017-01-01

    This paper reviews the literature published over the past 30 years on the blade-end treatment in axial compressors. The blade-end treatment reduces the endwall losses and extends the stable margin by modifying the blade shape near the endwall region with end-bend, end-dihedral and end-sweep flow control measures. The end-bend improves the overall performance by aligning the blade inlet/outlet to the flow stream direction. The end-dihedral reduces the blade force on the endwalls, while the end-sweep not only reduces the shock losses, but also controls the spanwise migration of the blade surface boundary layer. All these effects strongly influence the compressor performance by modifying the blading loading distribution in the streamwise or spanwise directions. However, the benefit of the endwall flow control comes with increased losses in the mainstream so there is a trade-off between the improved endwall region flows and the degraded mid-span flows. Thus, how to combine end-bend, end-dihedral and end-sweep to achieve the correct balance of loss distribution, appears to be the key to a successful three-dimensional compressor design.

  15. Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report

    Science.gov (United States)

    Burger, G. D.; Lee, D.; Snow, D. W.

    1979-01-01

    A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.

  16. Blade Parameterization and Aerodynamic Design Optimization for a 3D Transonic Compressor Rotor

    Institute of Scientific and Technical Information of China (English)

    Naixing Chen; Hongwu Zhang; Yanji Xu; Weiguang Huang

    2007-01-01

    The present paper describes an optimization methodology for aerodynamic design of turbomachinery combined with a rapid 3D blade and grid generator (RAPID3DGRID), a N.S. solver, a blade parameterization method (BPM), a gradient-based parameterization-analyzing method (GPAM), a response surface method (RSM) with zooming algorithm and a simple gradient method. By the use of blade parameterization method a transonic compressor rotor can be expressed by a set of polynomials, and then it enables us to transform coordinate-expressed blade data to parameter-expressed and then to reduce the number of parameters. With changing any one of the parameters and by applying grid generator and N.S. solver, we can obtain several groups of samples. Here only ten parameters were considered to search an optimized compressor rotor. As a result of optimization, the adiabatic efficiency was increased by 1.73%.

  17. High Sensitive Methods for Health Monitoring of Compressor Blades and Fatigue Detection

    Directory of Open Access Journals (Sweden)

    Mirosław Witoś

    2013-01-01

    Full Text Available The diagnostic and research aspects of compressor blade fatigue detection have been elaborated in the paper. The real maintenance and overhaul problems and characteristic of different modes of metal blade fatigue (LCF, HCF, and VHCF have been presented. The polycrystalline defects and impurities influencing the fatigue, along with their related surface finish techniques, are taken into account. The three experimental methods of structural health assessment are considered. The metal magnetic memory (MMM, experimental modal analysis (EMA and tip timing (TTM methods provide information on the damage of diagnosed objects, for example, compressor blades. Early damage symptoms, that is, magnetic and modal properties of material strengthening and weakening phases (change of local dislocation density and grain diameter, increase of structural and magnetic anisotropy, have been described. It has been proven that the shape of resonance characteristic gives abilities to determine if fatigue or a blade crack is concerned. The capabilities of the methods for steel and titanium alloy blades have been illustrated in examples from active and passive experiments. In the conclusion, the MMM, EMA, and TTM have been verified, and the potential for reliable diagnosis of the compressor blades using this method has been confirmed.

  18. High sensitive methods for health monitoring of compressor blades and fatigue detection.

    Science.gov (United States)

    Witoś, Mirosław

    2013-01-01

    The diagnostic and research aspects of compressor blade fatigue detection have been elaborated in the paper. The real maintenance and overhaul problems and characteristic of different modes of metal blade fatigue (LCF, HCF, and VHCF) have been presented. The polycrystalline defects and impurities influencing the fatigue, along with their related surface finish techniques, are taken into account. The three experimental methods of structural health assessment are considered. The metal magnetic memory (MMM), experimental modal analysis (EMA) and tip timing (TTM) methods provide information on the damage of diagnosed objects, for example, compressor blades. Early damage symptoms, that is, magnetic and modal properties of material strengthening and weakening phases (change of local dislocation density and grain diameter, increase of structural and magnetic anisotropy), have been described. It has been proven that the shape of resonance characteristic gives abilities to determine if fatigue or a blade crack is concerned. The capabilities of the methods for steel and titanium alloy blades have been illustrated in examples from active and passive experiments. In the conclusion, the MMM, EMA, and TTM have been verified, and the potential for reliable diagnosis of the compressor blades using this method has been confirmed.

  19. Numerical Investigation & Comparison of a Tandem-Bladed Turbocharger Centrifugal Compressor Stage with Conventional Design

    Institute of Scientific and Technical Information of China (English)

    Syed Noman Danish; Shafiq Rehman Qureshi; Abdelrahman EL-Leathy; Salah Ud-Din Khan; Usama Umer; Ma Chaochen

    2014-01-01

    Extensive numerical investigations of the performance and flow structure in an unshrouded tandem-bladed centrifugal compressor are presented in comparison to a conventional compressor.Stage characteristics are explored for various tip clearance levels,axial spacings and circumferential clockings.Conventional impeller was modified to tandem-bladed design with no modifications in backsweep angle,meridional gas passage and camber distributions in order to have a true comparison with conventional design.Performance degradation is observed for both the conventional and tandem designs with increase in tip clearance.Linear-equation models for correlating stage characteristics with tip clearance are proposed.Comparing two designs,it is clearly evident that the conventional design shows better performance at moderate flow rates.However; near choke flow,tandem design gives better results primarily because of the increase in throat area.Surge point flow rate also seems to drop for tandem compressor resulting in increased range of operation.

  20. A study of casing treatment stall margin improvement phenomena. [for axial compressor rotor blade tips

    Science.gov (United States)

    Prince, D. C., Jr.; Wisler, D. C.; Hilvers, D. E.

    1975-01-01

    The results of a program of experimental and analytical research in casing treatments over axial compressor rotor blade tips are presented. Circumferential groove, axial-skewed slot and blade angle slot treatments were tested at low speeds. With the circumferential groove treatment the stalling flow was reduced 5.8% at negligible efficiency sacrifice. The axial-skewed slot treatment improved the stalling flow by 15.3%; 1.8 points in peak efficiency were sacrificed. The blade angle slot treatment improved the stalling flow by 15.0%; 1.4 points in peak efficiency were sacrificed. The favorable stalling flow situations correlated well with observations of higher-than-normal surface pressures on the rotor blade pressure surfaces in the tip region, and with increased maximum diffusions on the suction surfaces. Annulus wall pressure gradients, especially in the 50 to 75% chord region, are also increased and blade surface pressure loadings are shifted toward the trailing edge for treated configurations.

  1. Using a shock control bump to improve the performance of an axial compressor blade section

    Science.gov (United States)

    Mazaheri, K.; Khatibirad, S.

    2017-03-01

    Here, we use numerical analysis to study the effects of a shock control bump (SCB) on the performance of a transonic axial compressor blade section and to optimize its shape and location to improve the compressor performance. A section of the NASA rotor 67 blade is used for this study. Two Bézier curves, each consisting of seven control points, are used to model the suction and pressure surfaces of the blade section. The SCB is modeled with the Hicks-Henne function and, using five design parameters, is added to the suction side. The total pressure loss through a cascade of blade sections is selected as the cost function. A continuous adjoint optimization method is used along with a RANS solver to find a new blade section shape. A grid independence study is performed, and all optimization and flow solver algorithms are validated. Two single-point optimizations are performed in the design condition and in an off-design condition. It is shown that both optimized shapes have overall better performance for both on-design and off-design conditions. An analysis is given regarding how the SCB has changed the wave structure between blade sections resulting in a more favorable flow pattern.

  2. Analysis of blade vibration response induced by rotating stall in axial compressor

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    An experimental and numerical study was conducted to investigate the forced response of blade vibration induced by rotating stall in a low speed axial compressor.Measurements have been made of the transient stalling process in a low speed axial compressor stage.The CFD study was performed using solution of 3-dimensional Navier-Stokes equations,coupled with structure finite element models for the blades to identify modal shapes and structural deformations simultaneously.Interactions between fluid and structure were managed in a coupled manner,based on the interface information exchange until convergence in each time step.Based on the rotating stall measurement data obtained from a low speed axial compressor,the blade aeroelastic response induced by the rotating stall flow field was analyzed to study the vibration characteristics and the correlation between the phenomena.With this approach,good agreement between the numerical results and the experimental data was observed.The flow phenomena were well captured,and the results indicate that the rotating field stall plays a significant role in the blade vibration and stress affected by the flow excitation.

  3. Numerical simulation of three-dimensional turbulent flow in multistage axial compressor blade row

    Institute of Scientific and Technical Information of China (English)

    Jian JIANG; Bo LIU; Yangang WANG; Xiangyi NAN

    2008-01-01

    Numerical simulation of three-dimensional turbulent flow in a multistage axial compressor blade row is conducted. A high resolution, third-order ENN scheme is adopted to catch the shockwave and simulate the turbulent flow correctly, while an LU-SGS implicit method is chosen to improve computation rate. A detailed and highly efficient numerical simulation system is thus constructed. The investigation is focused on the grid con-necting methods between the rotor and the stator and the corresponding treatment of rotor-stator interactional sur-face. The final results of a three-stage axial compressor with inlet guide vanes conform well to the experimental data.

  4. Research on Flow Characteristics of Supercritical CO2 Axial Compressor Blades by CFD Analysis

    Science.gov (United States)

    Takagi, Kazuhisa; Muto, Yasushi; Ishizuka, Takao; Kikura, Hiroshige; Aritomi, Masanori

    A supercritical CO2 gas turbine of 20MPa is suitable to couple with the Na-cooled fast reactor since Na - CO2 reaction is mild at the outlet temperature of 800K, the cycle thermal efficiency is relatively high and the size of CO2 gas turbine is very compact. In this gas turbine cycle, a compressor operates near the critical point. The property of CO2 and then the behavior of compressible flow near the critical point changes very sharply. So far, such a behavior is not examined sufficiently. Then, it is important to clarify compressible flow near the critical point. In this paper, an aerodynamic design of the axial supercritical CO2 compressor for this system has been carried out based on the existing aerodynamic design method of Cohen1). The cycle design point was selected to achieve the maximum cycle thermal efficiency of 43.8%. For this point, the compressor design conditions were determined. They are a mass flow rate of 2035kg/s, an inlet temperature of 308K, an inlet static pressure of 8.26MPa, an outlet static pressure of 20.6MPa and a rotational speed of 3600rpm. The mean radius was constant through axial direction. The design point was determined so as to keep the diffusion factor and blade stress within the allowable limits. Number of stages and an expected adiabatic efficiency was 14 and 87%, respectively. CFD analyses by FLUENT have been done for this compressor blade. The blade model consists of one set of a guide vane, a rotor blade and a stator blade. The analyses were conducted under the assumption both of the real gas properties and also of the modified ideal gas properties. Using the real gas properties, analysis was conducted for the 14th blade, whose condition is remote from the critical point and the possibility of divergence is very small. Then, the analyses were conducted for the blade whose conditions are nearer to the critical point. Gradually, divergence of calculation was encountered. Convergence was relatively easy for the modified ideal

  5. Recontouring of Jet Engine Compressor Blades by Flow Simulation

    OpenAIRE

    Herwart Hönen; Matthias Panten

    2001-01-01

    In modern jet propulsion systems the core engine has an essential influence on the total engine performance. Especially the high pressure compressor plays an important role in this scheme. Substantial factors here are losses due to tip clearance effects and aerodynamic airfoil quality. During flight operation the airfoils are subject to wear and tear on the leading edge. These effects cause a shortening of the chord length and the leading edge profiles become deformed. This results in a deter...

  6. Repulsive Interaction of Sulfide Layers on Compressor Impeller Blades Remanufactured Through Plasma Spray Welding

    Science.gov (United States)

    Chang, Y.; Zhou, D.; Wang, Y. L.; Huang, H. H.

    2016-12-01

    This study investigated the repulsive interaction of sulfide layers on compressor impeller blades remanufactured through plasma spray welding (PSW). Sulfide layers on the blades made of FV(520)B steel were prepared through multifarious corrosion experiments, and PSW was utilized to remanufacture blade specimens. The specimens were evaluated through optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, 3D surface topography, x-ray diffraction, ImageJ software analysis, Vicker's micro-hardness test and tensile tests. Results showed a large number of sulfide inclusions in the fusion zone generated by sulfide layers embodied into the molten pool during PSW. These sulfide inclusions seriously degraded the mechanical performance of the blades remanufactured through PSW.

  7. Results of Investigative Tests of Gas Turbine Engine Compressor Blades Obtained by Electrochemical Machining

    Science.gov (United States)

    Kozhina, T. D.; Kurochkin, A. V.

    2016-04-01

    The paper highlights results of the investigative tests of GTE compressor Ti-alloy blades obtained by the method of electrochemical machining with oscillating tool-electrodes, carried out in order to define the optimal parameters of the ECM process providing attainment of specified blade quality parameters given in the design documentation, while providing maximal performance. The new technological methods suggested based on the results of the tests; in particular application of vibrating tool-electrodes and employment of locating elements made of high-strength materials, significantly extend the capabilities of this method.

  8. Variations in Gas-Turbine Blade Life and Cost due to Compressor Fouling – A Thermoeconomic Approach

    Directory of Open Access Journals (Sweden)

    Magnus Genrup

    2002-03-01

    Full Text Available The connection between gas turbine compressor fouling and expander blade lifetime is studied in a simplified manner for a gas turbine operating in a combined cycle with a constant power output. It is shown how blade materials and compressor fouling rate affect the blade lifetime, and with this background, based on a thermoeconomic approach, the economic aspects of compressor washing intervals and the possibility to find an economic optimum are studied. It is also discussed how it should be possible to employ on-line gas turbine monitoring based on artificial neural networks (ANN in combination with a database containing blade life behavior in order to improve the blade life management strategy for an optimization of power plant life profitability.

  9. Numerical investigation of impact of relative humidity on droplet accumulation and film cooling on compressor blades

    Science.gov (United States)

    Bugarin, Luz Irene

    During the summer, high inlet temperatures affect the power output of gas turbine systems. Evaporative coolers have gained popularity as an inlet cooling method for these systems. Wet compression has been one of the common evaporative cooling methods implemented to increase power output of gas turbine systems due to its simple installation and low cost. This process involves injection of water droplets into the continuous phase of compressor to reduce the temperature of the flow entering the compressor and in turn increase the power output of the whole gas turbine system. This study focused on a single stage rotor-stator compressor model with varying inlet temperature between 300K and 320K, as well as relative humidity between 0% and 100%. The simulations are carried out using the commercial CFD tool ANSYS: FLUENT. The study modeled the interaction between the two phases including mass and heat transfer, given different inlet relative humidity (RH) and temperature conditions. The Reynolds Averaged Navier-Stokes (RANS) equations with k-epsilon turbulence model were applied as well as the droplet coalescence and droplet breakup model considered in the simulation. Sliding mesh theory was implemented to simulate the compressor movement in 2-D. The interaction between the blade and droplets were modeled to address all possible interactions; which include: stick spread, splash, or rebound and compared to an interaction of only reflect. The goal of this study is to quantify the relation between RH, inlet temperature, overall heat transfer coefficient, and the heat transferred from the droplets to the blades surface. The result of this study lead to further proof that wet compression yields higher pressure ratios and lower temperatures in the domain under all of the cases. Additionally, droplet-wall interaction has an interesting effect on the heat transfer coefficient at the compressor blades.

  10. Numerical design optimization of compressor blade based on ADOP

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    An aerodynamic design optimization platform (ADOP) has been developed. The numerical optimization method is based on genetic algorithm (GA), Pareto ranking and fitness sharing technique. The platform was used for design optimization of the stator of an advanced transonic stage to seek high adiabatic efficiency. The compressor stage efficiency is increased by 0.502% at optimal point and the stall margin is enlarged by nearly 1.0% at design rotating speed. The flow fields of the transonic stage were simulated with FINE/Turbo software package. The optimization result indicates that the optimization platform is effective in 3D numerical design optimization problems.

  11. Calculations for axial compressor blading with uniform inlet enthalpy and radial enthalpy gradient

    OpenAIRE

    Schlachter, W

    1981-01-01

    A computer program was used to calculate the radial distribution of flow parameters in an axial compressor stage designed to have a symmetrical velocity diagram at the mean radius and particular variations of reaction from hub to tip. Uniform energy addition was assumed to occur in the rotor. Both cases of uniform enthalpy and uniform radial enthalpy gradient at the entrance to the stage were considered. Advantages were found in the selection of fully symmetric blading and in the use of the i...

  12. An experimental study on the effects of blade row interactions on aerodynamic loss mechanisms in a multistage compressor

    OpenAIRE

    Smith, Natalie Rochelle

    2015-01-01

    While the gas turbine engine has existed for nearly 80 years, much of the complex aerodynamics which governs compressor performance is still not well understood. The unsteady flow field consists of periodic blade row interactions from the wakes and potential fields of each blade and vane. Vane clocking is the relative circumferential indexing of adjacent vane rows with the same vane count, and it is one method to change blade row interactions. Though the potential of performance benefits with...

  13. EFFECTS OF SLOTTED BLADING ON SECONDARY FLOW IN HIGHLY LOADED COMPRESSOR CASCADE

    Directory of Open Access Journals (Sweden)

    RAMZI MDOUKI

    2013-10-01

    Full Text Available With the aim to increase allowable blade loadings and enlarge stable operating range in highly loaded compressor, this work is carried out in order to explore the potential of passive control via slotted bladings in linear cascade configurations under both design and stall conditions. Through an extensive 2D-numerical study, the effects of location, width and slope of slots were analysed and the best configuration was identified. Based on the optimal slot, the 3D aerodynamic performances of cascade were studied and the influence of slotted blading to control endwall flow was investigated. Both 2D and 3D calculations are performed on steady RANS solver with standard k-epsilon turbulence model and low Mach number regime. The total loss coefficient, turning angle and flow visualizations on the blade and end-wall surfaces are adopted to describe the different configurations. The obtained results show, for 2D situation, that a maximum of 28.3% reduction in loss coefficient had been reached and the flow turning was increased with approximately 5°. Concerning 3D flow fields the slots marked their benefit at large incoming flow angles which delays the separation on both end wall and blade suction surface at mid span. However, at design conditions, the slotted blades are not able to control secondary flows near the wall and so, lose their potential.

  14. Efficiency enhancement in transonic compressor rotor blades using synthetic jets: A numerical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Benini, Ernesto; Biollo, Roberto; Ponza, Rita [Department of Mechanical Engineering - University of Padova, Via Venezia, 1 - 35131 Padova (Italy)

    2011-03-15

    Several passive and active techniques were studied and developed by compressor designers with the aim of improving the aerodynamic behavior of compressor blades by reducing, or even eliminating, flow separation. Fluidic-based methods, in particular, have been investigated for a long time, including both steady and unsteady suction, blowing and oscillating jets. Recently, synthetic jets (zero mass flux) have been proposed as a promising solution to reduce low-momentum fluid regions inside turbomachines. Synthetic jets, with the characteristics of zero net mass flux and non-zero momentum flux, do not require a complex system of pumps and pipes. They could be very efficient because at the suction part of the cycle the low-momentum fluid is sucked into the device, whereas in the blowing part a high-momentum jet accelerates it. To the authors' knowledge, the use of synthetic jets has never been experimented in transonic compressor rotors, where this technique could be helpful (i) to reduce the thickness and instability of blade suction side boundary layer after the interaction with the shock, and (ii) to delay the arising of the low-momentum region which can take place from the shock-tip clearance vortex interaction at low flow operating conditions, a flow feature which is considered harmful to rotor stability. Therefore, synthetic jets could be helpful to improve both efficiency and stall margin in transonic compressor rotors. In this paper, an accurate and validated CFD model is used to simulate the aerodynamic behavior of a transonic compressor rotor with and without synthetic jets. Four technical solutions were evaluated, different for jet position and velocity, and one was investigated in detail. (author)

  15. Sensitization to Corrosion as Initiator of Fatigue Fracture in Compressor Blades

    Directory of Open Access Journals (Sweden)

    Vladimír CIHAL

    2011-06-01

    Full Text Available Certain failures of stainless steels interpreted purely in terms of fracture mechanisms may in fact be closely associated with previous damage caused by localized corrosion. The closeness of the link between fatigue and corrosion is documented by the case history of compressor blades made of grade 14Cr17Ni2 (X14CrNi17-2 stainless steel. Fatigue fracturing observed in areas near the blade root tended to follow intergranular pathways, indicating that some additional mechanism other than fatigue might be involved. This suspicion was confirmed by electrochemical potentiokinetic reactivation (EPR measurements in situ, which revealed sensitization to intergranular corrosion. It has been found that at the transition between the blade root and the blade proper the surfaces had been ground and polished too vigorously, heating the subcutaneous layers to within the danger zone of 400-600°C. Preferential integranular attack in these locations was the initiation mechanism that provoked a subsequent failure of the blades by fatigue fracture.

  16. Fracture of a compressor stator blade in a gas turbine engine; Bruch einer Verdichterleitschaufel im Vorleitrad einer Gasturbine

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Andreas; Matijasevic-Lux, Biljana [Siemens AG, Berlin (Germany). Energy Sector, Gasturbinenwerk Berlin, Werkslaboratorien

    2013-02-01

    On the occasion of the revision of a gas turbine power plant in Northern Germany, a surface crack was detected in one of the 44 stage 0 compressor stator blades during a routine non-destructive testing of the blades. By then the engine had completed more than 38,000 h of operation. The damaged blade was precision drop-forged and copy-milled of X20Cr13 and for some time was wearing a subsequently applied corrosion protection coating containing aluminium pigments. The blade's condition before the subsequent coating was applied is unknown. The metallurgical investigation found that the cause of failure was corrosion fatigue. (orig.)

  17. Investigation of Positively Curved Blade in Compressor Cascade Based on Transition Model

    Science.gov (United States)

    Chen, Shaowen; Lan, Yunhe; Zhou, Zhihua; Wang, Songtao

    2016-06-01

    Experiment and numerical simulation of flow transition in a compressor cascade with positively curved blade is carried out in a low speed. In the experimental investigation, the outlet aerodynamic parameters are measured using a five-hole aerodynamic probe, and an ink-trace flow visualization is applied to the cascade surface. The effects of transition flow on the boundary layer development, three-dimensional flow separation and aerodynamic performance are studied. The feasibility of a commercial computational fluid dynamic code is validated and the numerical results show a good agreement with experimental data. The blade-positive curving intensifies the radial force from the endwalls to the mid-span near the suction surface, which leads to the smaller scope of the intermittent region, the lesser extents of turbulence intensity and the shorter radial height of the separation bubble near the endwalls, but has little influence on the flow near the mid-span. The large passage vortex is divided into two smaller shedding vortexes under the impact of the radial pressure gradient due to the positively curved blade. The new concentrated shedding vortex results in an increase in the turbulence intensity and secondary flow loss of the corresponding region.

  18. Vibration reliability analysis for aeroengine compressor blade based on support vector machine response surface method

    Institute of Scientific and Technical Information of China (English)

    GAO Hai-feng; BAI Guang-chen

    2015-01-01

    To ameliorate reliability analysis efficiency for aeroengine components, such as compressor blade, support vector machine response surface method (SRSM) is proposed. SRSM integrates the advantages of support vector machine (SVM) and traditional response surface method (RSM), and utilizes experimental samples to construct a suitable response surface function (RSF) to replace the complicated and abstract finite element model. Moreover, the randomness of material parameters, structural dimension and operating condition are considered during extracting data so that the response surface function is more agreeable to the practical model. The results indicate that based on the same experimental data, SRSM has come closer than RSM reliability to approximating Monte Carlo method (MCM); while SRSM (17.296 s) needs far less running time than MCM (10958 s) and RSM (9840 s). Therefore, under the same simulation conditions, SRSM has the largest analysis efficiency, and can be considered a feasible and valid method to analyze structural reliability.

  19. Neutron tomography for nondestructive evaluation of hydrogen in titanium compressor blades

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, M.R.; Lades, M. [Lawrence Livermore National Lab., CA (United States); Richards, W.J. [McClellan Nuclear Radiation Center, McClellan AFB, CA (United States)] [and others

    1997-12-01

    Entrapment and precipitation of hydrogen in metals are undesirable phenomena that occur in many alloys of steel and titanium. In general, metals suffer a loss of mechanical properties, embrittlement, after long exposures to hydrogen. Neutron radiography has already proven itself to be a reliable method for the detection of hydrogenous substances, such as moisture and corrosion, in aircraft components. Traditional radiography has limits because it only provides information on the total attenuation integrated over the path of the radiation through the material. As an extension to radiographic methods, the McClellan Nuclear Radiation Center (MNRC) is investigating the use of neutron tomography to obtain quantitative hydrogen concentration data for titanium aircraft engine compressor blades.

  20. An analysis of thermal stress and gas bending effects on vibrations of compressor rotor stages. [blade torsional rigidity

    Science.gov (United States)

    Chen, L.-T.; Dugundji, J.

    1979-01-01

    A preliminary study conducted by Kerrebrock et al. (1976) has shown that the torsional rigidity of untwisted thin blades of a transonic compressor can be reduced significantly by transient thermal stresses. The aerodynamic loads have various effects on blade vibration. One effect is that gas bending loads may result in a bending-torsion coupling which may change the characteristics of the torsion and bending vibration of the blade. For a general study of transient-temperature distribution within a rotor stage, a finite-element heat-conduction analysis was developed. The blade and shroud are divided into annular elements. With a temperature distribution obtained from the heat-conduction analysis and a prescribed gas bending load distribution along the blade span, the static deformation and moment distributions of the blade can be solved iteratively using the finite-element method. The reduction of the torsional rigidity of pretwisted blades caused by the thermal stress effect is then computed. The dynamic behavior of the blade is studied by a modified Galerkin's method.

  1. Investigation of Blade-row Flow Distributions in Axial-flow-compressor Stage Consisting of Guide Vanes and Rotor-blade Row

    Science.gov (United States)

    Mahoney, John J; Dugan, Paul D; Budinger, Raymond E; Goelzer, H Fred

    1950-01-01

    A 30-inch tip-diameter axial-flow compressor stage was investigated with and without rotor to determine individual blade-row performance, interblade-row effects, and outer-wall boundary-layer conditions. Velocity gradients at guide-vane outlet without rotor approximated design assumptions, when the measured variation of leaving angle was considered. With rotor in operation, Mach number and rotor-blade effects changed flow distribution leaving guide vanes and invalidated design assumption of radial equilibrium. Rotor-blade performance correlated interpolated two-dimensional results within 2 degrees, although tip stall was indicated in experimental and not two-dimensional results. Boundary-displacement thickness was less than 1.0 and 1.5 percent of passage height after guide vanes and after rotor, respectively, but increased rapidly after rotor when tip stall occurred.

  2. A Novel Vapor Injection Structure on the Blade for Rotary Compressor

    OpenAIRE

    Wang, Baolong; Liu, Xingru; Shi, Wenxing

    2016-01-01

    Rotary compressors have been extensively used in room air conditioners and household refrigerators for their advantages, including high efficiency, strong adaptability, and low cost. However, when air source heat pumps with rotary compressors are applied in cold regions, a series of problems appear. The gas injection has been proved an effective technology to enhance both the heating capacity and COP of scroll, screw, and rotary compressors. In the one-cylinder rotary compressor with gas in...

  3. Development of end-bent/swept blade for multistage axial compressors; Jikuryu asshukukiyo end bent sweep yoku no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tanino, T.; Kuromaru, M.; Furukawa, M.; Niizeki, Y.; Inoue, M. [Kyushu University, Fukuoka (Japan). Faculty of Engineering; Kinoue, Y. [Saga University, Saga (Japan). Faculty of Science and Engineering; Okuno, K. [Toshiba Corp., Tokyo (Japan)

    1999-09-20

    The endbent/swept (EBS) blades have been developed to improve the endwall boundary layer flows in middle stages of axial compressors. They have three distinctive features: the leading-edge sweep near the tip and hub to activate the annulus boundary layer flows, the leading-edge bend near the tip and hub to meet a preferable inlet flow condition, and the same exit metal angle of blade evaluated by a conventional vortex design method. The EBS and baseline blades were designed for both of the rotor and stator, and the stage performance testing was conducted in every combination of the rotor and stator in a low speed compressor test rig. The results showed that the maximum stage efficiency of the EBS rotor was higher than the baseline rotor and the considerable increase in surge margin was obtained by using the EBS rotor and stator. The effects of the EBS rotor and stator on the endwall boundary layer flows were clarified by the flow measurements downstream of the rotor and stator with a hot-wire and 5 hole-probe. (author)

  4. Weighted Fuzzy Risk Priority Number Evaluation of Turbine and Compressor Blades Considering Failure Mode Correlations

    Science.gov (United States)

    Gan, Luping; Li, Yan-Feng; Zhu, Shun-Peng; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-06-01

    Failure mode, effects and criticality analysis (FMECA) and Fault tree analysis (FTA) are powerful tools to evaluate reliability of systems. Although single failure mode issue can be efficiently addressed by traditional FMECA, multiple failure modes and component correlations in complex systems cannot be effectively evaluated. In addition, correlated variables and parameters are often assumed to be precisely known in quantitative analysis. In fact, due to the lack of information, epistemic uncertainty commonly exists in engineering design. To solve these problems, the advantages of FMECA, FTA, fuzzy theory, and Copula theory are integrated into a unified hybrid method called fuzzy probability weighted geometric mean (FPWGM) risk priority number (RPN) method. The epistemic uncertainty of risk variables and parameters are characterized by fuzzy number to obtain fuzzy weighted geometric mean (FWGM) RPN for single failure mode. Multiple failure modes are connected using minimum cut sets (MCS), and Boolean logic is used to combine fuzzy risk priority number (FRPN) of each MCS. Moreover, Copula theory is applied to analyze the correlation of multiple failure modes in order to derive the failure probabilities of each MCS. Compared to the case where dependency among multiple failure modes is not considered, the Copula modeling approach eliminates the error of reliability analysis. Furthermore, for purpose of quantitative analysis, probabilities importance weight from failure probabilities are assigned to FWGM RPN to reassess the risk priority, which generalize the definition of probability weight and FRPN, resulting in a more accurate estimation than that of the traditional models. Finally, a basic fatigue analysis case drawn from turbine and compressor blades in aeroengine is used to demonstrate the effectiveness and robustness of the presented method. The result provides some important insights on fatigue reliability analysis and risk priority assessment of structural

  5. An experimental study on the effects of blade row interactions on aerodynamic loss mechanisms in a multistage compressor

    Science.gov (United States)

    Smith, Natalie Rochelle

    While the gas turbine engine has existed for nearly 80 years, much of the complex aerodynamics which governs compressor performance is still not well understood. The unsteady flow field consists of periodic blade row interactions from the wakes and potential fields of each blade and vane. Vane clocking is the relative circumferential indexing of adjacent vane rows with the same vane count, and it is one method to change blade row interactions. Though the potential of performance benefits with vane clocking is known, the driving flow physics have yet to be identified. This research examines the effects of blade row interactions on embedded stator total pressure loss and boundary layer transition in the Purdue 3-stage axial compressor. The inlet guide vane, Stator 1, and Stator 2 all have 44 vanes which enable vane clocking of the embedded stage, while the rotors have different blade counts producing amplitude modulation of the unsteady interactions. A detailed investigation of corrected conditions is presented to establish repeatable, compressor performance year-round in a facility utilizing ambient inlet conditions. Without proper humidity accounting of compressor corrected conditions and an understanding of the potential for inlet temperature changes to affect clearances due to thermal growth, measurements of small performance changes in detailed research studies could be indiscernible. The methodology and implementation of a powder-paint flow visualization technique along with the illuminated flow physics are presented in detail. This method assists in understanding the loss development in the compressor by highlighting stator corner separations and endwall flow patterns. Effects of loading condition, rotor tip clearance height, and stator wake and rotor tip leakage interactions are shown with this technique. Vane clocking effects on compressor performance were quantified for nine loading conditions and six clocking configurations - the largest vane clocking

  6. Comparative Research on Air Conditioner with Gas-injected Rotary Compressor through Injection Port on Blade

    OpenAIRE

    Xingru, Liu; Baolong, Wang; Wenxing, Shi

    2016-01-01

    Rotary compressors are widely utilized in air conditionders and heat pumps. However, when rotary compressors were applied in room air conditioners, VRFs and domestic water heaters, the systems will experience heavily degradation of the heating capacity and COP as the ambient temperature goes low. Aimed at these problems, considerable research has been carried out to raise a series of solutions, such as economizer technology, cascade-type vapor compression heat pump system and two stage coupli...

  7. A multidisciplinary algorithm for the 3-D design optimization of transonic axial compressor blades

    OpenAIRE

    2002-01-01

    Approved for public release; distribution is unlimited A new, multidisciplinary algorithm for the CFD design optimization of turbomachinery blades is presented. It departs from existing techniques in that it uses a simple, previously-developed Bezier geometry representation (BLADE-3D) that can be easily manipulated to achieve true 3-D changes in blade shape. The algorithm incorporates zero and first-order optimization techniques including sensitivity analyses and one-dimensional search met...

  8. System identification modeling and unstable behavior of the dynamics of flows within the tip region of an axial compressor blade passage

    Science.gov (United States)

    Sterbentz, Dane M.; Prasai, Sujan; Hofle, Mary M.; Walters, Thomas; Lin, Feng; Li, Ji-chao; Bosworth, Ken; Schoen, Marco P.

    2016-04-01

    In recent years, the correlation coefficient of pressure data from the same blade passage in an axial compressor unit has been used to characterize the state of flow in the blade passage. In addition, the correlation coefficient has been successfully used as an indicator for active control action using air injection. In this work, the correlation coefficient approach is extended to incorporate system identification algorithms in order to extract a mathematical model of the dynamics of the flows within a blade passage. The dynamics analyzed in this research focus on the flow streams and pressure along the rotor blades as well as on the unsteady tip leakage flow from the rotor tip gaps. The system identification results are used to construct a root locus plot for different flow coefficients, starting far away from stall to near stall conditions. As the compressor moves closer to stall, the poles of the identified models move towards the imaginary axis of the complex plane, indicating an impending instability. System frequency data is captured using the proposed correlation based system identification approach. Additionally, an oscillatory tip leakage flow is observed at a flow coefficient away from stall and how this oscillation changes as the compressor approaches stall is an interesting result of this research. Comparative research is analyzed to determine why the oscillatory flow behavior occurs at a specific sensor location within the tip region of the rotor blade.

  9. A FORTRAN program for calculating three dimensional, inviscid and rotational flows with shock waves in axial compressor blade rows: User's manual

    Science.gov (United States)

    Thompkins, W. T., Jr.

    1982-01-01

    A FORTRAN-IV computer program was developed for the calculation of the inviscid transonic/supersonic flow field in a fully three dimensional blade passage of an axial compressor rotor or stator. Rotors may have dampers (part span shrouds). MacCormack's explicit time marching method is used to solve the unsteady Euler equations on a finite difference mesh. This technique captures shocks and smears them over several grid points. Input quantities are blade row geometry, operating conditions and thermodynamic quanities. Output quantities are three velocity components, density and internal energy at each mesh point. Other flow quanities are calculated from these variables. A short graphics package is included with the code, and may be used to display the finite difference grid, blade geometry and static pressure contour plots on blade to blade calculation surfaces or blade suction and pressure surfaces. The flow in a low aspect ratio transonic compressor was analyzed and compared with high response total pressure probe measurements and gas fluorescence static density measurements made in the MIT blowdown wind tunnel. These comparisons show that the computed flow fields accurately model the measured shock wave locations and overall aerodynamic performance.

  10. Cathode design investigation based on iterative correction of predicted profile errors in electrochemical machining of compressor blades

    Institute of Scientific and Technical Information of China (English)

    Zhu Dong; Liu Cheng; Xu Zhengyang; Liu Jia

    2016-01-01

    Electrochemical machining (ECM) is an effective and economical manufacturing method for machining hard-to-cut metal materials that are often used in the aerospace field. Cathode design is very complicated in ECM and is a core problem influencing machining accuracy, especially for complex profiles such as compressor blades in aero engines. A new cathode design method based on iterative correction of predicted profile errors in blade ECM is proposed in this paper. A math-ematical model is first built according to the ECM shaping law, and a simulation is then carried out using ANSYS software. A dynamic forming process is obtained and machining gap distributions at different stages are analyzed. Additionally, the simulation deviation between the prediction profile and model is improved by the new method through correcting the initial cathode profile. Further-more, validation experiments are conducted using cathodes designed before and after the simulation correction. Machining accuracy for the optimal cathode is improved markedly compared with that for the initial cathode. The experimental results illustrate the suitability of the new method and that it can also be applied to other complex engine components such as diffusers.

  11. Cathode design investigation based on iterative correction of predicted profile errors in electrochemical machining of compressor blades

    Directory of Open Access Journals (Sweden)

    Zhu Dong

    2016-08-01

    Full Text Available Electrochemical machining (ECM is an effective and economical manufacturing method for machining hard-to-cut metal materials that are often used in the aerospace field. Cathode design is very complicated in ECM and is a core problem influencing machining accuracy, especially for complex profiles such as compressor blades in aero engines. A new cathode design method based on iterative correction of predicted profile errors in blade ECM is proposed in this paper. A mathematical model is first built according to the ECM shaping law, and a simulation is then carried out using ANSYS software. A dynamic forming process is obtained and machining gap distributions at different stages are analyzed. Additionally, the simulation deviation between the prediction profile and model is improved by the new method through correcting the initial cathode profile. Furthermore, validation experiments are conducted using cathodes designed before and after the simulation correction. Machining accuracy for the optimal cathode is improved markedly compared with that for the initial cathode. The experimental results illustrate the suitability of the new method and that it can also be applied to other complex engine components such as diffusers.

  12. Design of Aspirated Compressor Blades Using Three-dimensional Inverse Method

    Science.gov (United States)

    Dang, T. Q.; Rooij, M. Van; Larosiliere, L. M.

    2003-01-01

    A three-dimensional viscous inverse method is extended to allow blading design with full interaction between the prescribed pressure-loading distribution and a specified transpiration scheme. Transpiration on blade surfaces and endwalls is implemented as inflow/outflow boundary conditions, and the basic modifications to the method are outlined. This paper focuses on a discussion concerning an application of the method to the design and analysis of a supersonic rotor with aspiration. Results show that an optimum combination of pressure-loading tailoring with surface aspiration can lead to a minimization of the amount of sucked flow required for a net performance improvement at design and off-design operations.

  13. A CFD analysis of blade row interactions within a high-speed axial compressor

    Science.gov (United States)

    Richman, Michael Scott

    Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.

  14. Stalled and stall-free performance of axial-flow compressor stage with three inlet-guide-vane and stator-blade settings

    Science.gov (United States)

    Urasek, D. C.; Steinke, R. J.; Cunnan, W. S.

    1977-01-01

    The performance of the first stage of a transonic, multistage compressor was mapped over a range of inlet-guide-vane and stator-blade settings. Both stall-free and deep-stall performance data were obtained. For the settings tested, as stall was encountered and flow was further reduced, a relatively sharp drop in pressure ratio occurred and was followed by a continuing but more gradual reduction in pressure ratio with reduced flow. The position of the stall line on the map of pressure ratio against equivalent weight flow was essentially unaffected over the range of inlet-guide-vane and stator-blade settings.

  15. An experimental investigation of the generation and consequences of acoustic waves in an axial flow compressor Large axial spacings between blade rows

    Science.gov (United States)

    Parker, R.; Stoneman, S. A. T.

    1985-03-01

    The excitation of acoustic waves by vortex shedding from the inlet guide vanes in the annulus of a single-stage, low-speed axial-flow compressor test rig is investigated experimentally, in an effort to examine the assumptions made in the study of Parker (1984) and to provide data for mathematical models of these phenomena. The experimental setup and the transducers used to measure the operating and acoustic parameters are described in detail and illustrated with photographs and drawings, and the results are presented graphically. It is found that each mode excited can be associated with several excitation frequencies of the rotor blades, indicating forced blade vibration due to acoustic resonances.

  16. Idealization of a Gas Turbine Compressor Blade to a Rectangular Plate and Analyzing the Variation of Stress Concentration Factor for U-Notches

    Directory of Open Access Journals (Sweden)

    Mohammad Rafi Nadaf

    2014-01-01

    Full Text Available Aircraft turbine engines routinely experience the ingestion of debris resulting in "foreign object damage‟ FOD. The ingestion of foreign object into aircraft engines leads to severe structural damage of the fan or compressor blades. Foreign object damage by hard particles mostly occurs during motion of the aircraft on the airfield, during take-off and during landing. Typical objects ingested are stones and other debris; sizes in the millimeter regime form the airfield. The worst case condition is experienced during take-off maximum thrusts leads to maximum impact velocity. Typical impact velocities are in the regime of 100 – 400m/sec, depending on the types of engine and impact location on the blades. Foreign object damage does not always lead to sudden catastrophic failure, yet such damage can have a detrimental effect on the fatigue strength of fan and compressor aero foils. However complex stress fields and geometry of the aerofoil make it difficult to use of simple notch analysis. For finding the stress concentration factor on the notches grinded on the typical aerofoil FOD damaged gas turbine compressor blade closed form solutions are difficult proportion. In this paper a finite element analysis is carried out by idealization of the typical aerofoil to rectangular cantilever plate with single edge U-notches for finding the stress concentration factor and is then compared with the standard stress concentration data by R.E.Peterson. The study can then be extended to a typical aerofoil.

  17. blades

    Directory of Open Access Journals (Sweden)

    Shashishekara S. Talya

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  18. Reliability analysis on resonance for low-pressure compressor rotor blade based on least squares support vector machine with leave-one-out cross-validation

    Directory of Open Access Journals (Sweden)

    Haifeng Gao

    2015-04-01

    Full Text Available This research article analyzes the resonant reliability at the rotating speed of 6150.0 r/min for low-pressure compressor rotor blade. The aim is to improve the computational efficiency of reliability analysis. This study applies least squares support vector machine to predict the natural frequencies of the low-pressure compressor rotor blade considered. To build a more stable and reliable least squares support vector machine model, leave-one-out cross-validation is introduced to search for the optimal parameters of least squares support vector machine. Least squares support vector machine with leave-one-out cross-validation is presented to analyze the resonant reliability. Additionally, the modal analysis at the rotating speed of 6150.0 r/min for the rotor blade is considered as a tandem system to simplify the analysis and design process, and the randomness of influence factors on frequencies, such as material properties, structural dimension, and operating condition, is taken into consideration. Back-propagation neural network is compared to verify the proposed approach based on the same training and testing sets as least squares support vector machine with leave-one-out cross-validation. Finally, the statistical results prove that the proposed approach is considered to be effective and feasible and can be applied to structural reliability analysis.

  19. Topological Studies of Three-dimensional Flows in a High Pressure Compressor Stator Blade Row without and with Boundary Layer Aspiration

    Institute of Scientific and Technical Information of China (English)

    Ankit SACHDEVA; Francis LEBOEUF

    2011-01-01

    This paper presents a numerical study of the flow topologies of three-dimensional(3D)flows in a high pressure compressor stator blade row without and with boundary layer aspiration on the hub wall.The stator blade is representative of the first stage operating under transonic inlet conditions and the blade design encourages development of highly complex 3D flows.The blade has a small tip clearance.The computational fluid dynamics(CFD)studies show progressive increase of hub comer stall with the increase in incidence.Aspiration is implemented on the hub wall via a slot in the comer between the hub wall and the suction surface.The CFD studies show aspiration to be sensitive to the suction flow rate; lower rate leads to very complex flow structures and increased level of losses whereas higher rate renders aspiration effective for control of hub comer separation.The flow topologies are studied by trace of skin friction lines on the walls.The nature of flow can be explained by the topological rules of closed separation.Furthermore,a deeper analysis is done for a particular case with advanced criterion to test the non-degeneracy of critical points in the flow field.

  20. Сomputational and experimental researches of ice pieces impact against a plate-imitator of a blade airfoil of an aircraft engine axial compressor

    Directory of Open Access Journals (Sweden)

    B. F. Shorr

    2014-01-01

    Full Text Available Ingestion of hailstones and shedding ice in operating aircraft engine can lead to damage of compressor rotating blades, as well as to change of gas-dynamic characteristics, and loss of engine thrust.The paper presents a computational and experimental study results of an ice impact against a thin edge of the steel plate, which simulates a compressor blade.Impacts of the ice bricks against the plate with a velocity corresponding to the circumference rate of blades rotation were realized by the pneumatic gunshots. The trials were carried out under various angles attack between the direction of the ice flight and the plate plane. The experiments has shown that on impact the ice brick is covered by numerous cracks and collapsed just at the very beginning of the interaction with a plate. Thus, a leading edge of the plate has a smoothly bending form without appearing cracks.For modeling the ice an isotropic elastoplastic material was chosen. Its failure was based on shear and rupture criteria. Two models of ice with different size of the yield point were used.The test results and their comparison with the numerical ones have shown the following: 1. Calculations of brick impact against a thin edge of the plate-imitator with accepted ice characteristics yield a correct qualitative picture of the plate damage, but lead to some undersizes of its leading edge bending.2. The ice design model with a larger yield point well reflects a character of the ice brick impact destruction as a formation of numerous cracks in it and splitting the piece into small particles, which was observed in the experiments. The model with smaller yield point shows the ice brick cutting into two parts without cracking.3. The plate damage considerably increases with increasing ice brick attack angle. Under a direct impact against the plate edge, the ice brick is cut into two halves, with no plastic deformations of the plate observed.4. Available results give the grounds to use

  1. Experimental Investigation on the Ice Accretion Effects of Airplane Compressor Cascade of Stator Blades on the Aerodynamic Coefficients

    Directory of Open Access Journals (Sweden)

    M Ramezanizadeh

    2013-01-01

    Full Text Available In this paper the effects of ice accretion on the pressure distribution and the aerodynamic coefficients in a cascade of stator blades were experimentally investigated. Experiments were conducted on stage 67A type stator Controlled-Diffusion blades, which represent the mid-span of the first stage of the stator for a high-bypass turbofan engine. The measurements were carried out over a range of cascade angle of attack from 20° to 45° at Reynolds number of 500000. Experimental blade surface pressure coefficient distribution, lift and drag force coefficients, and momentum coefficients for clean blades were compared with those of the iced blades and the effects of ice accretion on these parameters were discussed. It is observed that the ice accretion on the blades causes the formation of flow bubble on the pressure side, downstream of the leading edge. By increasing the angle of attack from 20° to 35° , the bubble length decreases and the pressure coefficient increases inside the bubble region, constantly. In addition, for the iced blades the diffusion points at the suction side come closer to the trailing edge. In addition, it is found that by increasing the angle of attack up to 35° , the ice accretion has no significant effect on the lift coefficient but the drag coefficient increases comparing with the clean blades. More over at 40° and 45° , by increasing the flow interference effects between the blades, the iced blades experience higher lift and lower drag in comparison with the clean ones.

  2. Performance of High-pressure-ratio Axial-flow Compressor Using Highly Cambered NACA 65-series Blower Blades at High Mach Numbers

    Science.gov (United States)

    Voit, Charles H; Guentert, Donald C; Dugan, James F

    1950-01-01

    A complete stage of an axial-flow compressor was designed and built to investigate the possibility of obtaining a high pressure ratio with an acceptable efficiency through the use of the optimum combination of high blade loading and high relative inlet Mach number. Over-all stage performance was investigated over a range of flows at equivalent tip speeds of 418 to 836 feet per second. At design speed (836 ft/sec), a peak total-pressure ration of 1.445 was obtained with an adiabatic efficiency of 0.89. For design angle of attack at the mean radius, a total-pressure ratio of 1.392 was obtained.

  3. 压气机叶片原位超声检测对比样件与探头的研制%The Development and Manufacturing of Fixed Ultrasonic Inspection Reference Reflector and Transducer for Compressor Blade

    Institute of Scientific and Technical Information of China (English)

    熊瑛; 董德秀; 段建刚; 朱萍; 赵茂旭

    2011-01-01

    压气机叶片在使用过程中榫头处易产生裂纹,从而对发动机的使用、寿命及飞机的正常飞行构成严重威胁。研制了对比样件和特殊的专用探头,实现了发动机压气机叶片榫头裂纹的原位超声检测,对发动机的安全使用具有重要意义。%Compressor blade is susceptible to cracks at the dovetail during the usage, which shall affect the using of aero-engine, its lifespan and the flying safety of airplane. It is very important to develop reference reflector and special transducer for finding the dovetail cracks of compressor blade, thus ensuring the safe operation of engine.

  4. Method of Creating Compressor Blade Finite Element Analysis Model%创建压缩机叶片有限元分析模型的方法

    Institute of Scientific and Technical Information of China (English)

    白静

    2012-01-01

    The compressor blade is consisting of complex Free piece of bread collateral, when do an finite element analysis, a CAD mode] should be created fist. The paper aimed at those problems that came with the procedure of transforming CAD model into CAE model in the general modeling method. Before creating a CAD solid model of the blade, we should give a pre-processing for the blade section profile and positive value points, at the same time, cut the blade section curves into several segments, and can successfully creat an finite element analysis -oriented CAD entity model with this manner. Standard graphic interface and private data interfaces can be used for transmitting in the entity model, the results show us clearly that all format can be inducted into the ANSYS software except IGES, besides, the Parasolid format and the Pro/E interface work better. At last, this manner was applied with an specific models at the process of finite element, the results indicated this manner works well when transforming CAD model into geometric model that finite element analysis need.%压缩机叶片是由复杂的自由曲面包络而成的零件,在对其进行有限元分析之前需建立CAD实体模型.针对常规建模方法中CAD模型转化为CAE模型所出现的问题,提出在建立叶片的CAD实体模型前,先对叶片截面型线内、外弧的型值点进行预处理,并将叶片各截面型线分成多段,从而建立面向有限元分析的CAD实体模型.建立的叶片实体模型通过标准图形接口和专用数据接口传递,结果表明除IGES格式外,其他均能较好导入ANSYS软件中,其中以Parasolid格式和Pro/E接口为最佳.通过采用该方法,对某型号的压缩机叶片进行有限元建模,可以很好地实现在CAD下所建实体模型转化为有限元分析所需要的几何模型.

  5. Stator Indexing in Multistage Compressors

    Science.gov (United States)

    Barankiewicz, Wendy S.

    1997-01-01

    The relative circumferential location of stator rows (stator indexing) is an aspect of multistage compressor design that has not yet been explored for its potential impact on compressor aerodynamic performance. Although the inlet stages of multistage compressors usually have differing stator blade counts, the aft stages of core compressors can often have stage blocks with equal stator blade counts in successive stages. The potential impact of stator indexing is likely greatest in these stages. To assess the performance impact of stator indexing, researchers at the NASA Lewis Research Center used the 4 ft diameter, four-stage NASA Low Speed Axial Compressor for detailed experiments. This compressor has geometrically identical stages that can circumferentially index stator rows relative to each other in a controlled manner; thus it is an ideal test rig for such investigations.

  6. Meridional Considerations of the Centrifugal Compressor Development

    Directory of Open Access Journals (Sweden)

    C. Xu

    2012-01-01

    Full Text Available Centrifugal compressor developments are interested in using optimization procedures that enable compressor high efficiency and wide operating ranges. Recently, high pressure ratio and efficiency of the centrifugal compressors require impeller design to pay attention to both the blade angle distribution and the meridional profile. The geometry of the blades and the meridional profile are very important contributions of compressor performance and structure reliability. This paper presents some recent studies of meridional impacts of the compressor. Studies indicated that the meridional profiles of the impeller impact the overall compressor efficiency and pressure ratio at the same rotational speed. Proper meridional profiles can improve the compressor efficiency and increase the overall pressure ratio at the same blade back curvature.

  7. Hyperbolically Shaped Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    Romuald Puzyrewski; Pawel Flaszy(n)ski

    2003-01-01

    Starting from the classical centrifugal compressor, cone shaped in meridional cross section, two modifications are considered on the basis of results from 2D and 3D flow models. The first modification is the change of the meridional cross section to hyperbolically shaped channel. The second modification, proposed on the basis of 2D axisymmetric solution, concerns the shape of blading. On the strength of this solution the blades are formed as 3D shaped blades, coinciding with the recent tendency in 3D designs. Two aims were considered for the change of meridional compressor shape. The first was to remove the separation zone which appears as the flow tums from axial to radial direction. The second aim is to uniformize the flow at exit of impeller. These two goals were considered within the frame of 2D axisymmetric model. Replacing the cone shaped compressor by a hyperbolically shaped one, the separation at the corner was removed. The disc and shroud shape of the compressor was chosen in the way which satisfies the condition of most uniform flow at the compressor exit. The uniformity of exit flow from the rotor can be considered as the factor which influences the performance of the diffuser following the rotor. In the 2D model a family of stream surfaces of S1 type is given in order to find S2 surfaces which may be identified with the midblade surfaces of compressor blading. A computation of 3D type has been performed in order to establish the relations between 2D and 3D models in the calculation of flow parameters. In the presented example the 2D model appears as the inverse model which leads to 3D shape of blading whereas the 3D model has been used for the direct solution. In the presented example the confrontation of two models, 2D and 3D, leads to a better understanding of the application of these models to the design procedure.

  8. Research on Manufacturing Technology of IGV and 1~3 Grades Stator Blade for Gas Turbine Compressor%燃机压气机IGV和1~3级静叶毛坯制造技术研究

    Institute of Scientific and Technical Information of China (English)

    时冬清; 廖青; 龙正建; 刘明松

    2016-01-01

    On account of the characteristics of IGV and 1 ~3 grades stator blade for gas turbine compressor, by adopting the open die forging process, the tooling such as specialized swaging die and equal-height block etc. has been designed, so as to realize the batch production of products eventually.%针对燃机压气机IGV和1~3级静叶特点,通过采用自由锻成形方案,设计专用摔子和等高块等工装,最终实现产品批量化生产。

  9. Analysis of Vibration Specific and Natural Frequency of Axial-flow Compressor Blades%轴流式压缩机叶片振动特性及固有频率分析

    Institute of Scientific and Technical Information of China (English)

    白静

    2013-01-01

    The kinetic characteristics of blades of axial-flow compressor were researched by taking blades of axial-flow compressor as subjects. The static frequency, the dynamic frequency and vibration modes were calculated by the mode analysis of the blades. The difference between the dynamic frequency and the static frequency was small under each rotational speed. Because the pre-stress imposed by the centrifugal force was distributed in the groove, the centrifugal force has little influence on the vibration specific of the blades. The Campbell diagram which described the dynamic frequency under the rotational speed of 1000~3000 r/min is drew. Through an analysis of the Campbell diagram and the calculation of resonance safety ratio, it was found that there are two resonant peaks and frequency must be adjusted.%以轴流压缩机动叶片为研究对象,分析了轴流式压缩机叶片的动态特性.对叶片进行模态分析,计算得到其静频值、动频值及其相应振型.发现叶片在各个转速下的动频值与静频值相差很小,说明离心初应力对叶片的振动特性影响很小,这是因为离心力产生的预应力仅仅分布在叶根榫槽处.并将模态计算得到的转速1 000~3 000 r/min的动频绘制成Campbell图,通过对Campbell图进行分析及共振安全率的计算发现,叶片存在2个共振点,必须对其进行调频.

  10. Axial flow positive displacement worm compressor

    Science.gov (United States)

    Murrow, Kurt David (Inventor); Giffin, Rollin George (Inventor); Fakunle, Oladapo (Inventor)

    2010-01-01

    An axial flow positive displacement compressor has an inlet axially spaced apart and upstream from an outlet. Inner and outer bodies have offset inner and outer axes extend from the inlet to the outlet through first and second sections of a compressor assembly in serial downstream flow relationship. At least one of the bodies is rotatable about its axis. The inner and outer bodies have intermeshed inner and outer helical blades wound about the inner and outer axes respectively. The inner and outer helical blades extend radially outwardly and inwardly respectively. The helical blades have first and second twist slopes in the first and second sections respectively. The first twist slopes are less than the second twist slopes. An engine including the compressor has in downstream serial flow relationship from the compressor a combustor and a high pressure turbine drivingly connected to the compressor by a high pressure shaft.

  11. Effects of Blade Discharge Angle, Blade Number and Splitter Blade Length on Deep Well Pump Performance

    Directory of Open Access Journals (Sweden)

    E. Korkmaz

    2017-01-01

    Full Text Available Impellers with splitter blades are used for pumps and compressors in the design of turbomachines. Design parameters such as the number of blades, blade discharge angle and impeller discharge diameter impact affect pump performance and energy consumption. In this study, the effect of the number of blades (z=5, 6, and 7, blade discharge angles (β2b=25, and β2b=35 and splitter blade lengths (40, 55, 70, and 85% of the main blade length on Deep Well Pump (DWP performance has been studied experimentally. In the experiments, pump casing, blade inlet angle, blade thickness, blade width and impeller inlet and discharge diameters have been kept fixed while other parameters such as the number of blades, blade discharge angles and splitter blade lengths have been allowed to vary. As a result of the experimental study, the highest efficiency of all the impellers for best efficiency point (b.e.p has been obtained on the impeller with the number of blades z=6, blade discharge angle 2b=25 and 85% splitter blade addition compared to impellers without splitter blades.

  12. Research on Phased Array Ultrasonic Methods for Defect Detection of Compressor Impeller Blade Root%压缩机叶轮叶根缺陷相控阵超声检测方法研究

    Institute of Scientific and Technical Information of China (English)

    朱学耕; 董世运; 徐滨士

    2015-01-01

    Compressor impeller blade root was easy to occur fatigue cracks,holes and other inter-nal defects.Based on the principles of ultrasonic pulse reflection and phased array ultrasonic method, the testing positions of blade root defects were analysed by voice model,and the experimental plan was optimized with sound field simulation and defect testing simulation.An experiment of artificial flat bottom hole defect testing was made by focus scanning.The results show an evident defect signal of blade root is found by phased array ultrasonic testing when scanning through impeller internal.The defect location error is only 0.1 9% which shows a high accuracy.%压缩机叶轮叶根易出现疲劳裂纹、气孔等内部缺陷。基于超声脉冲反射法原理,利用相控阵超声检测技术,采用声线模型对缺陷检测位置进行分析,并通过声场分布模拟以及缺陷检测模拟优化实验方案,最后利用聚焦扫描对人工预置平底孔缺陷进行检测。检测结果表明:利用相控阵超声检测技术在叶轮内腔对叶根进行检测,缺陷信号明显,缺陷定位精度高,定位误差仅为0.19%。

  13. Stator Blade Laser Window Research

    Science.gov (United States)

    Lugas, Grant A.

    2004-01-01

    All turbofan engines used in modern aviation contain a series of fan blades and compressor blades which are all connected to one drive shaft. Inside the jet engine between each set of blades are stator blades, which are pitched opposite of the fan and compressor blades, the stator blades are both rotational and axial fixed in place. The project that I was assigned to involves the QAT 22 fan test rig; which is currently under final design review and very soon will be fabricated. The purpose of this research facility is to better understand the effects of stator blades. Stator blades are used to straiten the air in a turbine. The researcher's primary aim is to determine what the airflow is like at both the leading edge and the trailing edge of a stator blade. My work focused on designing the windows usable for both a compressor rig and a test fan rig. The difference between the two is the test fan application will be looking into a stator blade array rather than just looking at the rotor. My discussion will include a detailed explanation of how the PIV laser window system functions fiom start to finish. I will also discuss how the information is gathered and organized. Further more I plan to talk about the purpose of this kind of research and the advantages to using this technology to determine the airflow characteristics of blade designs. Finally I will discuss the researcher s conclusion on the relationship between aerodynamics of a blade and how noise is produced. NASA's main goal with this particular facility is find ways to quiet engine noise by reducing the amount of cavitations that occurs around the blades of a turbofan engine. Additional information is included in the original extended abstract.

  14. 叶尖小翼调控压气机叶栅间隙流场结构的试验研究%Experimental Study of Blade Tip Winglet on Tip Clearance Flow in Compressor Cascade

    Institute of Scientific and Technical Information of China (English)

    韩少冰; 钟兢军; 陆华伟

    2016-01-01

    The detailed experimental study on compressor cascade with three kinds of blade tip winglets has been carried out in low speed condition. The endwall flow fields are measured by static pressure taps. And the outlet flow fields of the cascade are obtained by five-hole aerodynamic probe. The effect of the blade tip winglet on the flow filed, total pressure loss and the flow capacity of the cascade are analyzed in detail. The results show that the blade tip geometry significantly affects the tip clearance flow field. Compared to the conventional cascade without blade tip winglet, the total loss can be reduced by the suction-side winglet, and the outflow blockage is reduced. The pressure-side winglet has little advantages over the baseline tip in reducing the overall losses and improving the flow capacity of the cascade. The combined winglet tip can positively affect the aerodynamic filed of the cascade by reducing the overall losses and improving the flow capacity. The flow physics are explored in detail to explain the results.%在低速条件下,对叶尖不同位置安装小翼的压气机叶栅流场进行试验研究。通过端壁静压孔对上端壁流场进行测量,叶栅出口流场利用五孔气动探针测量,细致分析不同安装方式叶尖小翼对压气机叶栅叶尖端区流场结构、气动损失和通流能力的影响。结果表明,不同安装方式的叶尖小翼对压气机叶栅间隙流场影响不同。与无叶尖小翼的常规叶栅相比,吸力面小翼使得叶栅损失降低的同时带来了流动堵塞的降低,压力面小翼使得叶栅损失和流动堵塞同时增加,组合小翼在降低叶栅损失的同时有效降低了叶栅的流动堵塞,改善了叶栅的通流能力。通过与常规叶栅叶尖区域流场结构的详细对比分析,对不同安装方式的叶尖小翼的影响机理做出解释。

  15. Blade Tip Clearance Flow Analysis of a Compressor Cascade With Tip Winglet%具有叶尖小翼的压气机叶栅间隙流动分析

    Institute of Scientific and Technical Information of China (English)

    韩少冰; 钟兢军

    2012-01-01

    A numerical study has been conducted to explore the effects of three different blade tip winglet geometries on tip leakage flow field of compressor cascade. The current results show that a significant tip leakage velocity and strength of tip leakage vortex reduction is possible by using all three kinds winglet. The blade loading near the tip and the tip leakage vortex trajectories are changed by the tip winglets, thus the interaction between passage vortex and tip leakage vortex is also changed. The suction-side winglet can reduce the intensity of tip leakage vortex and suppress the development of passage vortex, thus the aerodynamic efficiency of the cascade is significantly improved. The pressure-side winglet and combined winglet can also reduce the intensity of tip leakage flow, but they strengthen the interaction between passage vortex and tip leakage vortex, thus the total loss of the cascade is increased.%采用数值模拟方法对利用不同安装方式叶尖小翼控制压气机叶栅间隙流动进行研究。结果表明,不同安装方式叶尖小翼都可以有效降低叶顶泄漏流速,削弱泄漏涡强度。叶尖小翼改变了叶尖负荷及泄漏涡运行轨迹,进而影响了叶尖流场不同涡系之间的相互作用。吸力面小翼削弱了泄漏涡,抑制了通道涡的发展,使得叶栅总损失降低。压力面小翼及组合小翼削弱了泄漏涡,但增强了通道涡及其与泄漏涡之间的相互作用,叶栅总损失增加。

  16. A Method to Predict Compressor Stall in the TF34-100 Turbofan Engine Utilizing Real-Time Performance Data

    Science.gov (United States)

    2015-06-01

    preventive maintenance for the TF34-100 jet engine to prevent engine compressor stalls for the A-10 aircraft. Due to their destructive nature, compressor...stalls are a significant concern in axial flow compressor jet engines . A compressor stall is caused by air approaching the compressor blades at an...variables in an effort to gain a better understanding of the engine system. This would be a more comprehensive undertaking, and the complexity of work

  17. Kinetic characteristic for a synchronal rotary compressor

    Institute of Scientific and Technical Information of China (English)

    Qu Zongchang; Feng Jianmei; Zhou Hui; Yang Hua

    2007-01-01

    An angular speed, acceleration and tangential leakage of a synchronal rotary compressor in which both bladed rotor and a cylinder are discussed. The calculation formulae of revolving speed of cylinder and relative speed between the cylinder and bladed rotor are deduced detailedly in this paper. The variation of tangential speed and cylinder acceleration with angular position is investigated for a complete cycle. And some key parameters affected the relative speed are found out, viz, the relative speed depends on the radius of the cylinder and rotary speed of the axis, and the ratio of the cylinder to bladed rotor has not too much influence. It is the theoretic basis of designing and optimizing of structure characteristic of a synchronal rotary compressor. Also a computing formula of leakage related with rotary speed is deduced. It could supply

  18. Establishing a Ballistic Test Methodology for Documenting the Containment Capability of Small Gas Turbine Engine Compressors

    Science.gov (United States)

    Heady, Joel; Pereira, J. Michael; Ruggeri, Charles R.; Bobula, George A.

    2009-01-01

    A test methodology currently employed for large engines was extended to quantify the ballistic containment capability of a small turboshaft engine compressor case. The approach involved impacting the inside of a compressor case with a compressor blade. A gas gun propelled the blade into the case at energy levels representative of failed compressor blades. The test target was a full compressor case. The aft flange was rigidly attached to a test stand and the forward flange was attached to a main frame to provide accurate boundary conditions. A window machined in the case allowed the projectile to pass through and impact the case wall from the inside with the orientation, direction and speed that would occur in a blade-out event. High-peed, digital-video cameras provided accurate velocity and orientation data. Calibrated cameras and digital image correlation software generated full field displacement and strain information at the back side of the impact point.

  19. Analysis and developpment of a Turbivo compressor for MRV applications

    CERN Document Server

    Ksayer, Elias Boulawz

    2010-01-01

    The mechanical vapor recompression is an efficient process to decrease energy consumption of drying processes. In order to use the mechanical vapor recompression (MVR) in residential clothe dryers, the volumetric Turbivo technology is used to design a dry water vapor compressor. The Turbivo volumetric machine is composed mainly of a rotor with one blade, a stator, and a mobile oscillating thrust. The advantages of Turbivo(R) technology are the absence of contact between rotor and stator as well as the oil-free operation. A model of the Turbivo compressor, including kinematic, dynamic, and thermodynamic analysis is presented. The compressor internal tightness is ensured by a surface treatment of the compressor components. Using the model, a water vapor Turbivo compressor of 12m3/h and compression ratio of 5 has been sized and realized. The compressor prototype will be tested on a dedicated test bench to characterize its volumetric and isentropic efficiencies.

  20. Erosion Resistant Compressor Blade Repair Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR program will demonstrate the use of wear resistant high strength nanocomposites in the turbine engine repair and refurbishment process. The...

  1. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    Science.gov (United States)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  2. A Study of Active Rotor-Blade Vibration Control using Electro-Magnetic Actuation - Part I: Theory

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    This is the first paper in a two-part study on active rotor-blade vibration control. Blade faults are a major problem in bladed machines, such as turbines and compressors. Moreover, increasing demands for higher efficiency, lower weight and higher speed imply that blades become even more suscepti...

  3. Supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  4. Preliminary measurements of aerodynamic damping of a transonic compressor rotor

    Science.gov (United States)

    Crawley, E. F.; Kerrebrock, J. L.; Dugundji, J.

    1980-01-01

    The aeroelastic behavior of a transonic compressor rotor operated in the MIT Blowdown Compressor Facility has been examined by means of piezoelectric motion sensors at the base of each of the 23 blades. Excitation has been observed due to rotating stall, due to an incipient flutter, and due to the facility startup transient. A method has been found for determining the aerodynamic damping force by modal analysis of the blade motion. Application of this technique to the example of excitation by rotating stall has led to the conclusions that the blade loading decreases in the stall cell, and that the damping force on the blades in the clean flow is in phase with blade velocity but opposite it in sign, leading to a logarithmic decrement of 0.2. This method of force derivation has quite general applicability as it requires only blade motion data such as are routinely acquired with strain gages. It is argued that models are needed for aerodynamic damping which focus on the effects of near neighbors of a given blade, since flutter often results in large response of isolated blades or small groups of blades.

  5. Through flow analysis within axial flow turbomachinery blade rows

    Science.gov (United States)

    Girigoswami, H.

    1986-09-01

    Using Katsanis' Through Flow Code, inviscid flow through an axial flow compressor rotor blade as well as flow through inlet guide vanes are analyzed and the computed parameters such as meridional velocity distribution, axial velocity distribution along radial lines, and velocity distribution over blade surfaces are presented.

  6. Performance studies on an axial flow compressor stage

    Science.gov (United States)

    Sitaram, N.

    1986-12-01

    A low-speed, medium loaded axial flow compressor stage is studied experimentally and theoretically. The flow compressor facility, composed of an inlet guide vane row, a rotor blade row, and a stator blade row, and the principles of the streamline curvature method (SCM) and the Douglas-Neumann cascade program are described. The radial distribution of the flow properties, the rotor blade static pressure distribution, and the lift coefficient and relative flow angle derived experimentally and theoretically are compared. It is determined that there is good correlation between the experimental flow properties and the SCM data, the Douglas-Neumann cascade program and experimental rotor blade static pressure data, and the experimental and theoretical lift coefficients only in the midspan region. Modifications to the SCM and the Douglas-Neumann cascade program in order to improve their accuracy are discussed.

  7. Study of Flow-Field Interactions in a Transonic Compressor using DPIV

    Science.gov (United States)

    Estevadeordal, Jordi; Gogineni, Sivaram; Goss, Larry; Copenhaver, William; Gorrell, Steve; Koch, Peter

    1999-11-01

    The unsteadiness and spatial structures in a high-through-flow, axial-flow transonic compressor are captured using Digital Particle Image Velocimetry (DPIV). The measurements are made using both single-color and two-color DPIV systems. A special optical probe was designed for laser delivery through the inlet guide vanes (IGVs). Viewing windows on the compressor housing allow optical access. Submicron sized smoke particles are used for seeding the compressor flow and the DPIV system is synchronized with the blade passage. The interactions between the coherent structures from the IGVs with the rotor blades and the bow shock are studied for various configurations. The coherent structures interactions with the potential field of the leading edge of the blades and the shock as a function of the blade position are analyzed for a full blade passage through the wake. Comparisons are made with unsteady numerical simulations.

  8. Miniature Centrifugal Compressor

    Science.gov (United States)

    Sixsmith, Herbert

    1989-01-01

    Miniature turbocompressor designed for reliability and long life. Cryogenic system includes compressor, turboexpander, and heat exchanger provides 5 W of refrigeration at 70 K from 150 W input power. Design speed of machine 510,000 rpm. Compressor has gas-lubricated journal bearings and magnetic thrust bearing. When compressor runs no bearing contact and no wear.

  9. Optimization of the working process of the axial compressor according to the criterion of efficiency

    Science.gov (United States)

    Baturin, O. V.; Popov, G. M.; Goryachkin, E. S.; Novikova, Yu D.

    2017-01-01

    The paper shows search results of the optimal shape of low pressure compressor blades of the industrial gas turbine plant using methods of computational fluid dynamics and multicriteria methods of mathematical optimization. The essence of the methods is that an increase in compressor efficiency should be achieved by increasing the degree of compression up to 2%, and reducing the air flow to 8% relative to basic engine parameters. However, the compressor design elements should be retained as maximally unchanged as possible. During the work, the calculation model of the workflow in the test compressor has been developed and verified in the NUMECA software package, the automated algorithm of the blades shape change has been also developed using a small number of variables, while maintaining its stress-strain state. It allows reducing the number of changeable variables more than twofold. As the result of this study, the option of compressor performance was found, which can increase its efficiency by 1.3% (abs.).

  10. The effect of variable stator on performance of a highly loaded tandem axial flow compressor stage

    Science.gov (United States)

    Eshraghi, Hamzeh; Boroomand, Masoud; Tousi, Abolghasem M.; Fallah, Mohammad Toude; Mohammadi, Ali

    2016-06-01

    Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds. Considering the high aerodynamic load effects and structural concerns in the design process, it is possible to obtain higher pressure ratios compared to conventional compressors. However, it must be noted that imposing higher aerodynamic loads results in higher loss coefficients and deteriorates the overall performance. To avoid the loss increase, the boundary layer quality must be studied carefully over the blade suction surface. Employment of advanced shaped airfoils (like CDAs), slotted blades or other boundary layer control methods has helped the designers to use higher aerodynamic loads on compressor blades. Tandem cascade is a passive boundary layer control method, which is based on using the flow momentum to control the boundary layer on the suction surface and also to avoid the probable separation caused by higher aerodynamic loads. In fact, the front pressure side flow momentum helps to compensate the positive pressure gradient over the aft blade's suction side. Also, in comparison to the single blade stators, tandem variable stators have more degrees of freedom, and this issue increases the possibility of finding enhanced conditions in the compressor off-design performance. In the current study, a 3D design procedure for an axial flow tandem compressor stage has been applied to design a highly loaded stage. Following, this design is numerically investigated using a CFD code and the stage characteristic map is reported. Also, the effect of various stator stagger angles on the compressor performance and especially on the compressor surge margin has been discussed. To validate the CFD method, another known compressor stage is presented and its performance is numerically investigated and the results are compared with available experimental results.

  11. The Effect of Variable Stator on Performance of a Highly Loaded Tandem Axial Flow Compressor Stage

    Institute of Scientific and Technical Information of China (English)

    Hamzeh Eshraghi; Masoud Boroomand; Abolghasem M.Tousi; Mohammad Toude Fallah; Ali Mohammadi

    2016-01-01

    Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds.Considering the high aerodynamic load effects and structural concerns in the design process,it is possible to obtain higher pressure ratios compared to conventional compressors.However,it must be noted that imposing higher aerodynamic loads results in higher loss coefficients and deteriorates the overall performance.To avoid the loss increase,the boundary layer quality must be studied carefully over the blade suction surface.Employment of advanced shaped airfoils (like CDAs),slotted blades or other boundary layer control methods has helped the designers to use higher aerodynamic loads on compressor blades.Tandem cascade is a passive boundary layer control method,which is based on using the flow momentum to control the boundary layer on the suction surface and also to avoid the probable separation caused by higher aerodynamic loads.In fact,the front pressure side flow momentum helps to compensate the positive pressure gradient over the aft blade's suction side.Also,in comparison to the single blade stators,tandem variable stators have more degrees of freedom,and this issue increases the possibility of finding enhanced conditions in the compressor off-design performance.In the current study,a 3D design procedure for an axial flow tandem compressor stage has been applied to design a highly loaded stage.Following,this design is numerically investigated using a CFD code and the stage characteristic map is reported.Also,the effect of various stator stagger angles on the compressor performance and especially on the compressor surge margin has been discussed.To validate the CFD method,another known compressor stage is presented and its performance is numerically investigated and the results are compared with available experimental results.

  12. Detection of Rotor Forced Response Vibrations Using Stationary Pressure Transducers in a Multistage Axial Compressor

    Directory of Open Access Journals (Sweden)

    William L. Murray

    2015-01-01

    Full Text Available Blade row interactions in turbomachinery can lead to blade vibrations and even high cycle fatigue. Forced response conditions occur when a forcing function (such as impingement of stator wakes occurs at a frequency that matches the natural frequency of a blade. The objective of this research is to develop the data processing techniques needed to detect rotor blade vibration in a forced response condition from stationary fast-response pressure transducers to allow for detection of rotor vibration from transient data and lead to techniques for vibration monitoring in gas turbines. This paper marks the first time in the open literature that engine-order resonant response of an embedded bladed disk in a 3-stage intermediate-speed axial compressor was detected using stationary pressure transducers. Experiments were performed in a stage axial research compressor focusing on the embedded rotor of blisk construction. Fourier waterfall graphs from a laser tip timing system were used to detect the vibrations after applying signal processing methods to uncover these pressure waves associated with blade vibration. Individual blade response was investigated using cross covariance to compare blade passage pressure signatures through resonance. Both methods agree with NSMS data that provide a measure of the exact compressor speeds at which individual blades enter resonance.

  13. Unsteady aerodynamic interaction effects on turbomachinery blade life and performance

    Science.gov (United States)

    Adamczyk, John J.

    1992-01-01

    This paper is an attempt to address the impact of a class of unsteady flows on the life and performance of turbomachinery blading. These class of flows to be investigated are those whose characteristic frequency is an integral multiple of rotor shaft speed. Analysis of data recorded downstream of a compressor and turbine rotor will reveal that this class of flows can be highly three-dimensional and may lead to the generation of secondary flows within downstream blading. By explicitly accounting for these unsteady flows in the design of turbomachinery blading for multistage applications, it may be possible to bring about gains in performance and blade life.

  14. Compressors selection and sizing

    CERN Document Server

    Brown, Royce N

    2005-01-01

    This practical reference provides in-depth information required to understand and properly estimate compressor capabilities and to select the proper designs. Engineers and students will gain a thorough understanding of compression principles, equipment, applications, selection, sizing, installation, and maintenance. The many examples clearly illustrate key aspects to help readers understand the ""real world"" of compressor technology.Compressors: Selection and Sizing, third edition is completely updated with new API standards. Additions requested by readers include a new section on di

  15. Gravity Independent Compressor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and demonstrate a small, gravity independent, vapor compression refrigeration system using a linear motor compressor which effectively...

  16. Investigation into the Interaction of Centrifugal Compressor Impeller and Vaneless Diffuser

    Institute of Scientific and Technical Information of China (English)

    YANG Ce; ZHANG Dian-zuo; MA Chao-chen; HU Liao-ping

    2006-01-01

    Centrifugal compressors with parallel-wall and contracting wall vaneless diffuser are designed by using centrifugal compressor computer-aided integrated design system. The internal flow fields of the compressor are calculated by solving three-dimensional Navier-Stokes equation. Four aspects are investigated and calculation results show that the total efficiencies and total pressure ratios of the compressor with contracting wall vaneless diffuser is higher than that of the compressor with parallel-wall. The jet and wake don't mix rapidly inside vaneless diffuser. The outlet blade lean angle doesn't affect the compressor performance. The greater the mass flow rate through impeller, the more uneven the velocity distribution at impeller outlet is.

  17. Numerical and experimental modelling of the radial compressor stage

    Science.gov (United States)

    Syka, Tomáš; Matas, Richard; LuÅáček, Ondřej

    2016-06-01

    This article deals with the description of the numerical and experimental model of the new compressor stage designed for process centrifugal compressors. It's the first member of the new stages family developed to achieve the state of the art thermodynamic parameters. This stage (named RTK01) is designed for high flow coefficient with 3D shaped impeller blades. Some interesting findings were gained during its development. The article is focused mainly on some interesting aspects of the development methodology and numerical simulations improvement, not on the specific stage properties. Conditions and experimental equipment, measured results and their comparison with ANSYS CFX and NUMECA FINE/Turbo CFD simulations are described.

  18. Compressor station layout considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Rainer; Ohanian, Sebouh; Lubomirsky, Matt [Solar Turbines Incorporated, San Diego, CA (United States)

    2003-07-01

    This paper discusses issues that influence the decision on the arrangement of compressors and the type of equipment in gas pipeline compressor stations. Different concepts such as multiple small units versus single large units are considered, both regarding their impact on the individual station and the overall pipeline. The necessity of standby units is discussed. Various concepts for drivers (gas turbine, gas motor and electric motor) and compressors (centrifugal and reciprocating) are analyzed. The importance of considering all possible operating conditions is stressed. With the wide range of possible operating conditions for the pipeline in mind, the discussion is brought into the general context of operational flexibility, availability, reliability, installation issues, remote control, and operability of gas turbine driven centrifugal compressors compared to other solutions such as electric motor driven compressors or gas engine driven reciprocating compressors. The impact of different concepts on emissions and fuel cost is discussed. Among the assumptions in this paper are the performance characteristics of the compressor. This paper outlines how these performance characteristics influence the conclusions. (author)

  19. Stall Inception Process and Prospects for Active Hub-Flap Control in Three-Stage Axial Flow Compressor

    Institute of Scientific and Technical Information of China (English)

    Tomoya OKADA; Atsushi KAWAJIRI; Yutaka OHTA; Eisuke OUTA

    2008-01-01

    The possibility to apply the active hub-flap control method, which is a proven rotating stall control method for a single-stage compressor, to a 3-stage axial compressor is experimentally discussed, where complex rotating stall inception processes ate observed. The research compressor is a 3-stage one and could change the stagger angle settings for rotor blades and stator vanes. Sixteen rotor blade/stator vane configuration patterns were tested by changing stagger angle for the stator vanes. By measurement of surface-pressure fluctuation, stall inception proc-esses are investigated and the measured pressure fluctuation data is used as a predictive signal for rotating stall. The experimental results show that the stall detection system applied to active hub-flap control in a single-stage compressor could be usefully applied to that in a 3-stage compressor with a more complex stall inception process.

  20. Flow Modification over Rotor Blade with Suction Boundary Layer Control Technique

    Directory of Open Access Journals (Sweden)

    Navneet Kumar

    2016-06-01

    Full Text Available The efficiency of transonic aircraft engines depend upon the performance of compressor rotor. To increase compressor rotors performance flow separation around rotor blades must be delayed and controlled. The aim was to control the flow separation of blades using suction boundary layer control method. Rotor blade has been modelled in designing software CATIA and then a suction surface has been created on blade and then import these geometries to ANSYS-CFX 14.5 for computational analysis of flow around blades. Suction slot has been applied at the trailing edge of suction surface and Shear stress transport model has been used for computational analysis. Two different suction mass flow rates 1 kg/s and 1.5 kg/s have been used here and boundary layer separation effects have been changed and this could be readily seen that the velocity vectors have reattached, preventing the boundary layer separation at the suction surface of the blade.

  1. Flow and Performance Calculations of Axial Compressor near Stall Margin

    Science.gov (United States)

    Hwang, Yoojun; Kang, Shin-Hyoung

    2010-06-01

    Three-dimensional flows through a Low Speed Research Axial Compressor were numerically conducted in order to estimate the performance through unsteady and steady-state simulations. The first stage with the inlet guide vane was investigated at the design point to confirm that the rotor blade induced periodicity exists. Special attention was paid to the flow near the stall condition to inspect the flow behavior in the vicinity of the stall margin. The performance predicted under the steady-state assumption is in good agreement with the measured data. However, the steady-state calculations induce more blockage through the blade passage. Flow separations on the blade surface and end-walls are reduced when unsteady simulation is conducted. The negative jet due to the wake of the rotor blade periodically distorts the boundary layer on the surface of the stator blade and improves the performance of the compressor in terms of the pressure rise. The advantage of the unsteadiness increases as the flow rate reduces. In addition, the rotor tip leakage flow is forced downstream by the unsteadiness. Consequently, the behavior contributes to extending the range of operation by preventing the leakage flow from proceeding upstream near the stall margin.

  2. Similarity and cascade flow characteristics of a highly loaded helium compressor

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bin, E-mail: jiangbin_hrbeu@163.com [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China); Chen, Zhongliang [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China); Chen, Hang [AVIG Shenyang Engine Design and Research Institute, Shenyang 110015 (China); Zhang, Hai; Zheng, Qun [College of Power & Energy Engineering of Harbin Engineering University, Harbin 150001 (China)

    2015-05-15

    Highlights: • The deviation of different similarity criteria is analyzed theoretically. • Flow difference between helium and air compressor cascades is analyzed numerically. • The analysis of calculated results validates the theoretical derivation. • Flow characteristics of highly loaded helium compressor blade profile are computed. - Abstract: Helium compressor is a major component of the Power Conversion Unit (PCU) used in a High Temperature Gas Cooled Reactor (HTGR). Because the high cost of closed cycle test and leakage problem of helium gas, air could be used as working fluid instead of helium in compressor performance tests. However, the properties of Helium are largely different from those of air, e.g. the adiabatic exponent of Helium is 1.6, while the adiabatic exponent itself is a criterion of similarity between the two compressors. The characteristics of compressor will be different due to the effect of the adiabatic exponent of working fluid, especially for highly loaded compressor working at higher inlet Mach number. In this paper, a theoretical study on the similarity between air compressor and a highly loaded helium compressor is carried out and the deviation of similarity is analyzed. Numerical simulations are then used to confirm the theoretical analysis. The results indicate that the similarity deviation could not be neglected for highly loaded compressor cascade, which means the experience and experimental results of those conventional air compressor cannot be applied directly to the design of highly loaded helium compressor. The flow characteristics of a highly loaded helium compressor at different Reynolds numbers, attack angles, Mach numbers and cascade geometries are then investigated.

  3. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    Science.gov (United States)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  4. Robust Design Optimization Method for Centrifugal Impellers under Surface Roughness Uncertainties Due to Blade Fouling

    Institute of Scientific and Technical Information of China (English)

    JU Yaping; ZHANG Chuhua

    2016-01-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  5. Small, high pressure ratio compressor: Aerodynamic and mechanical design

    Science.gov (United States)

    Bryce, C. A.; Erwin, J. R.; Perrone, G. L.; Nelson, E. L.; Tu, R. K.; Bosco, A.

    1973-01-01

    The Small, High-Pressure-Ratio Compressor Program was directed toward the analysis, design, and fabrication of a centrifugal compressor providing a 6:1 pressure ratio and an airflow rate of 2.0 pounds per second. The program consists of preliminary design, detailed areodynamic design, mechanical design, and mechanical acceptance tests. The preliminary design evaluate radial- and backward-curved blades, tandem bladed impellers, impeller-and diffuser-passage boundary-layer control, and vane, pipe, and multiple-stage diffusers. Based on this evaluation, a configuration was selected for detailed aerodynamic and mechanical design. Mechanical acceptance test was performed to demonstrate that mechanical design objectives of the research package were met.

  6. Performance Improvement of a Centrifugal Compressor by Passive Means

    Directory of Open Access Journals (Sweden)

    N. Sitaram

    2012-01-01

    Full Text Available The present experimental investigation deals with performance improvement of a low-speed centrifugal compressor by inexpensive passive means such as turbulence generator placed at different positions and partial shroud near the rotor blade tip. The experiments are carried out at three values of tip clearance, namely 2.2%, 5.1%, and 7.9% of rotor blade height at the exit. Performance tests are carried out for a total of 13 configurations. From these measurements, partial shroud is found to give the best performance. The improvement in the compressor performance may be due to the reduction of tip leakage flows by the small extension of partial shroud (2 mm on the pressure surface side. Although there is nominal change in performance due to turbulence generator (TG, TG has beneficial effect of increased operating range.

  7. Thermoacoustic compressor; Netsuonkyo asshukuki

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Y. [Nihon University, Tokyo (Japan). Atomic Energy Research Institute

    1999-11-10

    With the advance of practical application research of pulse tube refrigerating machine, the ideal way of the compressor as a pressure oscillation source becomes a problem. Recently, the combination between heat sound compressor and pulse tube refrigerating machine, which rapidly develop, is noticed as a refrigeration system, which completely does not have mechanical moving part. Then, it tried to grope for the new possibility by comparing with the usual method. (NEDO)

  8. Verification of a three-dimensional viscous flow analysis for a single stage compressor

    Science.gov (United States)

    Matsuoka, Akinori; Hashimoto, Keisuke; Nozaki, Osamu; Kikuchi, Kazuo; Fukuda, Masahiro; Tamura, Atsuhiro

    1992-12-01

    A transonic flowfield around rotor blades of a highly loaded single stage axial compressor was numerically analyzed by a three dimensional compressible Navier-Stokes equation code using Chakravarthy and Osher type total variation diminishing (TVD) scheme. A stage analysis which calculates both flowfields around inlet guide vane (IGV) and rotor blades simultaneously was carried out. Comparing with design values and experimental data, computed results show slight difference quantitatively. But the numerical calculation simulates well the pressure rise characteristics of the compressor and its flow pattern including strong shock surface.

  9. Numerical Simulation of Flow Instabilities in High Speed Multistage Compressors

    Institute of Scientific and Technical Information of China (English)

    JunHu; ThomasPeters; 等

    1999-01-01

    In the present paper,a nonlinear multi“actuator disk” model is proposed to analyze the dynamic behavior of flow instabilities,including rotating stall and surge,in high speed multistage axial compressors.The model describes the duct flow fields using two dimensional,compressible and unsteady Euler equations,and accounts for the influences of downstream plenum and throttle in the system as well.It replaces each blade row of multistage compressore with a disk.For numerical calculations,the time marching procedure,using MacCormack two steps scheme,is used.The main pupose of this paper is to predict the mechanism of two dimensional short wavelength rotating stall inception and the interation between blade rows in high speed multistage compressors.It has been demonstrated that the model has the ability to predict those phenomena,and the results show that some system parameters have a strong effect on the stall features as well.Results for a five stage high speed compressor are analyzed in detail,and comparison with the experimental data demonstrates that the model and calculating results are reliable.

  10. Comparative Study of Unsteady Flows in a Transonic Centrifugal Compressor with Vaneless and Vaned Diffusers

    Directory of Open Access Journals (Sweden)

    Cui Michael M.

    2005-01-01

    Full Text Available To reduce vibration and noise level, the impeller and diffuser blade numbers inside an industrial compressor are typically chosen without common divisors. The shapes of volutes or collectors in these compressors are also not axis-symmetric. When impeller blades pass these asymmetric structures, the flow field in the compressor is time-dependent and three-dimensional. To obtain a fundamental physical understanding of these three-dimensional unsteady flow fields and assess their impact on the compressor performance, the flow field inside the compressors needs to be studied as a whole to include asymmetric and unsteady interaction between the compressor components. In the current study, a unified three-dimensional numerical model was built for a transonic centrifugal compressor including impeller, diffusers, and volute. HFC 134a was used as the working fluid. The thermodynamic and transport properties of the refrigerant gas were modeled by the Martin-Hou equation of state and power laws, respectively. The three-dimensional unsteady flow field was simulated with a Navier-Stokes solver using the k−ϵ turbulent model. The overall performance parameters are obtained by integrating the field quantities. Both the unsteady flow field and the overall performance are analyzed comparatively for each component. The compressor was tested in a water chiller system instrumented to obtain both the overall performance data and local flow-field quantities. The experimental and numerical results agree well. The correlation between the overall compressor performance and local flow-field quantities is defined. The methodology developed and data obtained in these studies can be applied to the centrifugal compressor design and optimization.

  11. Effects of inlet circumferential fluctuation on the sweep aerodynamic performance of axial fans/compressors

    Science.gov (United States)

    Gui, Xingmin; Zhu, Fang; Wan, Ke; Jin, Donghai

    2013-10-01

    Swept blades have been widely used in the transonic fan/compressor of aircraft engines with the aids of 3D CFD simulation since the design concept of controlling the shock structure was firstly proposed and successfully tested by Dr. Wennerstrom in the 1980s. However, some disadvantage phenomenon has also been induced by excessively 3D blade geometries on the structure stress insufficiency, vibration and reliability. Much confusion in the procedure of design practice leading us to recognize a new view on the flow mechanism of sweep aerodynamical induction: the new radial equilibrium established by the influence of inlet circumferential fluctuation (CF) changes the inlet flows of blading and induces the performance modification of axial fans/compressors blade. The view is verified by simplified models through numerical simulation and circumferentially averaged analysis in the present paper. The results show that the CF source items which originate from design parameters, such as the spanwise distributions of the loading and blading geometries, contribute to the changing of averaged incidence spanwise distribution, and further more affect the performance of axial fans/compressors with swept blades.

  12. Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method

    Science.gov (United States)

    Reddy, T. S. R.

    2010-01-01

    The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.

  13. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  14. Three-dimensional inverse method for turbomachine blades by the circulation method: The thickness problem

    Science.gov (United States)

    Jiang, Jun

    This dissertation summarizes a procedure to design blades with finite thickness in three dimensions. In this inverse method, the prescribed quantities are the blade pressure loading shape, the inlet and outlet spanwise distributions of swirl, and the blade thickness distributions, and the primary calculated quantity is the blade geometry. The method is formulated in the fully inverse mode for design of three-dimensional blades in rotational and compressible flows whereby the blade shape is determined iteratively using the flow tangency condition along the blade surfaces. This technique is demonstrated here in the first instance for the design of two-dimensional cascaded and three-dimensional blades with finite thickness in inviscid and incompressible flows. In addition, the incoming flow is assumed irrotational so that the only vorticity present in the flowfield is the blade bound and shed vorticities. Design calculations presented for two-dimensional cascaded blades include an inlet guide vane, an impulse turbine blade, and a compressor blade. Consistency check is carried out for these cascaded blade design calculations using a panel analysis method and the analytical solution for the Gostelow profile. Free-vortex design results are also shown for fully three-dimensional blades with finite thickness such as an inlet guide vane, a rotor of axial-flow pumps, and a high-flow-coefficient pump inducer with design parameters typically found in industrial applications. These three-dimensional inverse design results are verified using Adamczyk's inviscid code.

  15. Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, J. K.; Smith, J. D.

    1981-03-01

    The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

  16. Effect of tip geometry and tip clearance on aerodynamic performance of a linear compressor cascade

    Institute of Scientific and Technical Information of China (English)

    Zhong Jingjun; Han Shaobing; Lu Huawei; Kan Xiaoxu

    2013-01-01

    The tip leakage flow between a blade and a casing wall has a strong impact on compressor pressure rise capability,efficiency,and stability.Consequently,there is a strong motivation to look for means to minimize its impact on performance.This paper presents the potential of passive tip leakage flow control to increase the aerodynamic performance of highly loaded compressor blades.Experimental investigations on a linear compressor cascade equipped with blade winglets mounted to the blade tips have been carried out.Results for a variation of the tip clearance and the winglet geometry are presented.Current results indicate that the use of proper tip winglets in a compressor cascade can positively affect the local aerodynamic field by weakening the tip leakage vortex.Results also show that the suction-side winglets are aerodynamically superior to the pressure-side or combined winglets.The suction-side winglets are capable of reducing the exit total pressure loss associated with the tip leakage flow and the passage secondary flow to a significant degree.

  17. Compressor reliability survey

    NARCIS (Netherlands)

    Eijk, A.; Lier, L.J. van

    2010-01-01

    The increasing demand for economic plant operation has led to a critical discussion of the equipment as to selection, design, maintenance and automation. The well-known advantages of the reciprocating compressor such as high efficiency under many different operating conditions, comparatively easy re

  18. Numerical analysis and optimization of the inlet stage of a multi-stage high pressure compressor

    Institute of Scientific and Technical Information of China (English)

    XU Quan-yong; HOU An-ping; XIONG Jin-song; ZHOU Sheng

    2007-01-01

    An optimization process is used to redesign blades of a high-pressure compressor. An artificial neural network (ANN) method is coupled to Navier-Stokes solvers and is applied to three different redesigns. A new rotor blade of a transonic compressor is designed by modifying thick, stacking line and inlet angle using a 3D approach, with a significant efficiency improvement at the design point. The off-design behavior of this new compressor is also checked afterwards, which shows that the whole performance of the inlet stage is improved over a wide range of mass flow. The losses are reduced, proving the good performance of the optimum. The whole results indicate that the optimization method can find improved design and can be integrated in a design procedure.

  19. Spatial Dynamics of Tuned and Mistuned Bladed Disks with Cylindrical and Wedge-Shaped Friction Dampers

    Directory of Open Access Journals (Sweden)

    Lars Panning

    2003-01-01

    Full Text Available One of the main tasks in the design of turbomachines like turbines, compressors, and fans is to increase the reliability and efficiency of the arrangement. Failures due to blade cracks are still a problem and have to be minimized with respect to costs and safety aspects. To reduce the maximum stresses, the blades can be coupled via friction damping devices such as underplatform dampers that are pressed onto the blade platforms by centrifugal forces. In this work, a method will be presented to optimize two different types of underplatform dampers in bladed disk applications with respect to a maximum damping effect.

  20. Gas turbine engine with supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  1. Improved aerodynamic design of turbomachinery bladings by numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Burguburu, St.; Le Pape, A. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), Applied Aerodynamics Dept. 29, 92 - Chatillon (France)

    2003-06-01

    The aerodynamic optimization of a transonic compressor is reported in this paper. The Q3D Navier-Stokes solver COLIBRI is coupled to a gradient-based method (CONMIN) and to a genetic algorithm (GADO). The suction side of a 2-D blade is optimized by using both optimization methods with a significant efficiency improvement. In 3-D, the performance improvement is obtained by modifying the suction surface of a transonic compressor with a Bezier surface and by using the CANARI solver coupled to the gradient method (CONMIN). (authors)

  2. Numerical study of a high-speed miniature centrifugal compressor

    Science.gov (United States)

    Li, Xiaoyi

    A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the

  3. Experimental Investigation of the Three—Dimensional Flow in an Annular Compressor Cascade at Large Incidence

    Institute of Scientific and Technical Information of China (English)

    TuhongLi; DajunYe; 等

    1992-01-01

    This paper presents a detalied experimental investigation concerning the influence of blade loading (incidence) on the three -dimensional flow in an annular compressor cascade.The data are acquired at four incidence angles under low Mach number and low Reynolds number conditions.ExPerimental techniques include the oil-film visualization on the profile and the endwall surfaces,the laser-sheet visualization of the flow field inside the blade passae,and the measurement by radial-circumferential traverses using a seven-hloe probe.The behavior and nature of the three-dimensional flow with severs separations inside the blade passage and at the exit are obtained.The distributions of the total pressure loss,static pressure.Velocity and outflow angle are also given.Theses results are valuable for establishing the physical model of the three-dimensional complex flow in axial compressor and for examinig the computational procedures.

  4. Technical aspects of a large size industrial process turbo compressor revamp

    Science.gov (United States)

    Świder, Piotr; Kozanecki, Zbigniew, Jr.; Graczykowski, Marek; Kryłłowicz, Władysław

    2015-12-01

    This paper describes several modernization aspects of the process 8 MW air compressor and its driver. The main aim of the revamp was to increase internal efficiencies of both the compressor and turbine and increase the load of the compressor without additional power consumption. The original pressure ratio was preserved. To meet these requirements a redesign of the flow path of both machineswas necessary.Moreover, the turbineworking conditions were changed from extraction-condensing to condensing. In terms of compressor, impeller blade redesign, adaptation of diffusers and Abradable seals were a part of the scope. The revamp was completed in April 2014 with all the requirements met. This paper covers the general outline and a comparison of the original and modernized machine operating parameters, design and technical assumptions and also describes some problematic issues which occurred during the realization of the project.

  5. Numerical Investigation of the Unsteady Flow in a Transonic Compressor with Curved Rotors

    Institute of Scientific and Technical Information of China (English)

    Mao Mingming; Song Yanping; Wang Zhongqi

    2008-01-01

    The unsteady 3D flow fields in a single-stage transonic compressor under designed conditions are simulated numerically to inves- tigate the effects of the curved rotors on the stage performance and the aerodynamic interaction between the blade rows. The results show that, compared to the compressor with un-curved rotors, the compressor under scrutiny acquires remarkable increases in efficiency with significantly reduced amplitudes of the time-dependent fluctuation. The amplitude of the pressure fluctuation around the stator leading edge decreases at both endwalls, but increases at the mid-span in the curved rotors. The pressure fluctuation near the stator lead- ing edge, therefore, becomes more uniform in the radial direction of this compressor. Except for the leading edge area, the pressure fluc- tuation amplitude declines remarkably in the tip region of stator surface downstream of the curved rotor, but hardly changes in the mid- dle and at the hub.

  6. CMC blade with pressurized internal cavity for erosion control

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Crespo, Andres; Goike, Jerome Walter

    2016-02-02

    A ceramic matrix composite blade for use in a gas turbine engine having an airfoil with leading and trailing edges and pressure and suction side surfaces, a blade shank secured to the lower end of each airfoil, one or more interior fluid cavities within the airfoil having inlet flow passages at the lower end which are in fluid communication with the blade shank, one or more passageways in the blade shank corresponding to each one of the interior fluid cavities and a fluid pump (or compressor) that provides pressurized fluid (nominally cool, dry air) to each one of the interior fluid cavities in each airfoil. The fluid (e.g., air) is sufficient in pressure and volume to maintain a minimum fluid flow to each of the interior fluid cavities in the event of a breach due to foreign object damage.

  7. Method for evaluating the reliability of compressor impeller of turbocharger for vehicle application in plateau area

    Science.gov (United States)

    Wang, Zheng; Wang, Zengquan; Wang, A.-na; Zhuang, Li; Wang, Jinwei

    2016-10-01

    As turbocharging diesel engines for vehicle application are applied in plateau area, the environmental adaptability of engines has drawn more attention. For the environmental adaptability problem of turbocharging diesel engines for vehicle application, the present studies almost focus on the optimization of performance match between turbocharger and engine, and the reliability problem of turbocharger is almost ignored. The reliability problem of compressor impeller of turbocharger for vehicle application when diesel engines operate in plateau area is studied. Firstly, the rule that the rotational speed of turbocharger changes with the altitude height is presented, and the potential failure modes of compressor impeller are analyzed. Then, the failure behavior models of compressor impeller are built, and the reliability models of compressor impeller operating in plateau area are developed. Finally, the rule that the reliability of compressor impeller changes with the altitude height is studied, the measurements for improving the reliability of the compressor impellers of turbocharger operating in plateau area are given. The results indicate that when the operating speed of diesel engine is certain, the rotational speed of turbocharger increases with the increase of altitude height, and the failure risk of compressor impeller with the failure modes of hub fatigue and blade resonance increases. The reliability of compressor impeller decreases with the increase of altitude height, and it also decreases as the increase of number of the mission profile cycle of engine. The method proposed can not only be used to evaluating the reliability of compressor impeller when diesel engines operate in plateau area but also be applied to direct the structural optimization of compressor impeller.

  8. Gas Compressor Station Economic Optimization

    Directory of Open Access Journals (Sweden)

    Rainer Kurz

    2012-01-01

    Full Text Available When considering gas compressor stations for pipeline projects, the economic success of the entire operation depends to a significant extent on the operation of the compressors involved. In this paper, the basic factors contributing to the economics are outlined, with particular emphasis on the interaction between the pipeline and the compressor station. Typical scenarios are described, highlighting the fact that pipeline operation has to take into account variations in load.

  9. Gas Compressor Station Economic Optimization

    OpenAIRE

    2012-01-01

    When considering gas compressor stations for pipeline projects, the economic success of the entire operation depends to a significant extent on the operation of the compressors involved. In this paper, the basic factors contributing to the economics are outlined, with particular emphasis on the interaction between the pipeline and the compressor station. Typical scenarios are described, highlighting the fact that pipeline operation has to take into account variations in load.

  10. Numerical investigation of diffuser solidity effect on turbulent airflow and performance of the turbocharger compressor

    Directory of Open Access Journals (Sweden)

    Chehhat A.

    2016-12-01

    Full Text Available Low solidity diffuser in centrifugal compressors can achieve both high efficiency and wide operating ranges which is of great importance for turbocharger compressor. Low solidity is achieved by using a low chord to pitch ratio. In this work, a CFD simulation is carried out to examine the effect of solidity on airflow field of a turbocharger centrifugal compressor which consists of a simple-splitter impeller and a vaned diffuser. By changing the number of diffuser vanes while keeping the number of impeller blades constant, the solidity value of the diffuser is varied. The characteristics of the compressor are evaluated for 6, 8, 10 and 12 stator vanes which correspond to solidity of: 0.78, 1.04, 1.29 and 1.55, respectively. The spatial distribution of the pressure, velocity and turbulent kinetic energy show that the diffuser solidity has significant effect on flow field and compressor performance map. The compressor with a 6 vanes diffuser has higher efficiency and operates at a wider range of flow rate relative to that obtained with larger vans number. However a non-uniform flow at the compressor exit was observed with relatively high turbulent kinetic energy.

  11. A durability test rig and methodology for erosion-resistant blade coatings in turbomachinery

    Science.gov (United States)

    Leithead, Sean Gregory

    A durability test rig for erosion-resistant gas turbine engine compressor blade coatings was designed, completed and commissioned. Bare and coated 17-4PH steel V103-profile blades were rotated at up to 11500 rpm and impacted with Garnet sand for 5 hours at an average concentration of 2.51 gm3of air , at a blade leading edge Mach number of 0.50. The rig was determined to be an acceptable first stage axial compressor representation. Two types of 16 microm-thick coatings were tested: Titanium Nitride (TiN) and Chromium-Aluminum-Titanium Nitride (CrAlTiN), both applied using an Arc Physical Vapour Deposition technique at the National Research Council in Ottawa, Canada. A Leithead-Allan-Zhao (LAZ) score was created to compare the durability performance of uncoated and coated blades based on mass-loss and blade dimension changes. The bare blades' LAZ score was set as a benchmark of 1.00. The TiN-coated and CrAlTiN-coated blades obtained LAZ scores of 0.69 and 0.41, respectively. A lower score meant a more erosion-resistant coating. Major modes of blade wear included: trailing edge, leading edge and the rear suction surface. Trailing edge thickness was reduced, the leading edge became blunt, and the rear suction surface was scrubbed by overtip and recirculation zone vortices. It was found that the erosion effects of vortex flow were significant. Erosion damage due to reflected particles was not present due to the low blade solidity of 0.7. The rig is best suited for studying the performance of erosion-resistant coatings after they are proven effective in ASTM standardized testing. Keywords: erosion, compressor, coatings, turbomachinery, erosion rate, blade, experimental, gas turbine engine

  12. Fluid-structure interaction analysis and lifetime estimation of a natural gas pipeline centrifugal compressor under near-choke and near-surge conditions

    Science.gov (United States)

    Ju, Yaping; Liu, Hui; Yao, Ziyun; Xing, Peng; Zhang, Chuhua

    2015-11-01

    Up to present, there have been no studies concerning the application of fluid-structure interaction (FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynamic excitations. In this paper, computational fluid dynamics (CFD) simulations of a three-stage natural gas pipeline centrifugal compressor are performed under near-choke and near-surge conditions, and the unsteady aerodynamic pressure acting on impeller blades are obtained. Then computational structural dynamics (CSD) analysis is conducted through a one-way coupling FSI model to predict alternating stresses in impeller blades. Finally, the compressor lifetime is estimated using the nominal stress approach. The FSI results show that the impellers of latter stages suffer larger fluctuation stresses but smaller mean stresses than those at preceding stages under near-choke and near-surge conditions. The most dangerous position in the compressor is found to be located near the leading edge of the last-stage impeller blade. Compressor lifetime estimation shows that the investigated compressor can run up to 102.7 h under the near-choke condition and 200.2 h under the near-surge condition. This study is expected to provide a scientific guidance for the operation safety of natural gas pipeline centrifugal compressors.

  13. Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements

    Science.gov (United States)

    Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter

    2009-01-01

    In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.

  14. Evaluation of the performance and flow in an axial compressor

    Science.gov (United States)

    Waddell, J. L.

    1982-10-01

    An experimental evaluation of the axial compressor test rig with one stage of symmetric blading was conducted to determine its suitability for studies of tip clearance effects. Measurements were made of performance parameters and internal flow fields. The configuration tested was found to be unsuitable due to poor flow from the inlet guide vanes, particularly near the tip region. Secondary flows and flaws in construction of the guide vanes were suggested as probable causes. Recommendations were made for a program to resolve the problem.

  15. COMPRESSOR TYPE OZONATOR

    Directory of Open Access Journals (Sweden)

    Gulyaev P. V.

    2016-05-01

    Full Text Available The article is devoted to the development of a compressor type ozonator. It describes the design of a high-productivity compressor ozone generator, which can be used for industrial decontamination of mixed feeds, water, milk, and in the system of presowing treatment of seeds. This construction allows generating ozone with high concentration to 5 g/m3 at high feed air or oxygen from the compressor station (up to 2000 l/min. The article describes the design of the basic elements of tubular ozone generator, examines the factors influencing the productivity of the ozonator. The proposed mathematical model allows calculating the productivity of the ozonator when considering multiple influencing factors. These factors take into account: the parameters of supply voltage, such as the magnitude and frequency of the supply voltage; the configuration and geometrical parameters of electrodes such as, the area of the electrodes, the configuration of the surface of the electrodes and distance between electrodes; parameters dielectric barrier; and the transported gas parameters such as volume, temperature, pressure and composition. Special attention is paid to the design of the electrodes made of woven wire mesh with mesh sizes from 1.5×1.5 to 2.0×2.0 mm. It is noted, that such electrodes allow obtaining the maximum productivity of an ozonator, and they do not lead to overheating of the dielectric barrier, and do not output down the generator. In the same way, the article presents the results of the mathematical modeling of ozone generator productivity while changing various factors

  16. OMC Compressor Case

    Science.gov (United States)

    Humphrey, W. Donald

    1997-01-01

    This report summarizes efforts expended in the development of an all-composite compressor case. Two pre-production units have been built, one utilizing V-CAP and one utilizing AFR-700B resin systems. Both units have been rig tested at elevated temperatures well above design limit loads. This report discusses the manufacturing processes, test results, and Finite Element Analysis performed. The V-CAP unit was funded by NASA-Lewis Research Center in 1994 under contract number NAS3- 27442 for Development of an All-Composite OMC Compressor Case. This contract was followed by an Air Force study in 1996 to build and identical unit using the AFR-700B resin system in place of the V-CAP system. The second compressor case was funded under U.S. Air Force contract F33615-93-D-5326, Advanced Materials for Aerospace Structures Special Studies (AMAS3), Delivery Order 0021 entitled "Advanced Polymeric Composite Materials and Structures Technology for Advanced High Temperature Gas Turbine Engines.' Initial studies using the V-CAP resin system were undertaken in 1993 under a NASA Lewis contract (NAS3-26829). A first prototype unit was developed in a joint program between Textron-Lycoming (now Allied Signal) and Brunswick (now Lincoln Composites). This unit included composite end closures using low density, high temperature molded end closures. The units was similar in size and shape to a titanium case currently used on the PT-21 0 engine and was funded as part of the integrated High Performance Turbine Engine Technology (EHPTET) initiative of DOD and NASA.

  17. Numerical Simulation of Rotating Stall in a Centrifugal Compressor with Vaned Diffuser

    Institute of Scientific and Technical Information of China (English)

    Weiguang Huang; Shaojuan Geng; Junqiang Zhu; Hongwu Zhang

    2007-01-01

    This paper reports a numerical study on the process from normal operating conditions to rotating stall in a centrifugal compressor with vaned diffuser. The purpose is to better understand the flow characteristics near stall point under the interactions between centrifugal impeller and vaned diffuser. Numerical results show that under certain conditions just preceding stall point the tip leakage vortex begins to fluctuate at roughly half of the blade passing frequency. This phenomenon is similar to rotating instability in axial compressors. With the flow rate reduced further the impeller stalls and five stall cells propagating at a frequency of 85 percent of impeller rotation speed are found.

  18. A Simple Method of FLow Field DIagnosis in Multistage Axial Flow Compressors

    Institute of Scientific and Technical Information of China (English)

    JieLiu; DajunYe

    1994-01-01

    The calculating method of flow field diagnosis in multistage axial compressors is presented in this paper.The distributions of loss and deviation angle of every blade row,and blockage factors are evalusted using tested total temperature and total pressure at inlet and outlet of compressor,as well as the endwall static pressures.One operating Mode of a two-stage fan is presented comparing results from the diagnostic method with measurements,and the results have demonstrated the important effects of diagnostic method.

  19. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  20. Turbomachine blade reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  1. Turbomachine blade assembly

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  2. Sample of CFD optimization of a centrifugal compressor stage

    Science.gov (United States)

    Galerkin, Y.; Drozdov, A.

    2015-08-01

    Industrial centrifugal compressor stage is a complicated object for gas dynamic design when the goal is to achieve maximum efficiency. The Authors analyzed results of CFD performance modeling (NUMECA Fine Turbo calculations). Performance prediction in a whole was modest or poor in all known cases. Maximum efficiency prediction was quite satisfactory to the contrary. Flow structure in stator elements was in a good agreement with known data. The intermediate type stage “3D impeller + vaneless diffuser+ return channel” was designed with principles well proven for stages with 2D impellers. CFD calculations of vaneless diffuser candidates demonstrated flow separation in VLD with constant width. The candidate with symmetrically tampered inlet part b3 / b2 = 0,73 appeared to be the best. Flow separation takes place in the crossover with standard configuration. The alternative variant was developed and numerically tested. The obtained experience was formulated as corrected design recommendations. Several candidates of the impeller were compared by maximum efficiency of the stage. The variant with gas dynamic standard principles of blade cascade design appeared to be the best. Quasi - 3D non-viscid calculations were applied to optimize blade velocity diagrams - non-incidence inlet, control of the diffusion factor and of average blade load. “Geometric” principle of blade formation with linear change of blade angles along its length appeared to be less effective. Candidates’ with different geometry parameters were designed by 6th math model version and compared. The candidate with optimal parameters - number of blades, inlet diameter and leading edge meridian position - is 1% more effective than the stage of the initial design.

  3. Compressor performance aerodynamics for the user

    CERN Document Server

    Gresh, Theodore

    2001-01-01

    Compressor Performance is a reference book and CD-ROM for compressor design engineers and compressor maintenance engineers, as well as engineering students. The book covers the full spectrum of information needed for an individual to select, operate, test and maintain axial or centrifugal compressors. It includes basic aerodynamic theory to provide the user with the ""how's"" and ""why's"" of compressor design. Maintenance engineers will especially appreciate the troubleshooting guidelines offered. Includes many example problems and reference data such as gas propert

  4. Blade reliability collaborative :

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.; Ogilvie, Alistair B.; Paquette, Joshua A.

    2013-04-01

    The Blade Reliability Collaborative (BRC) was started by the Wind Energy Technologies Department of Sandia National Laboratories and DOE in 2010 with the goal of gaining insight into planned and unplanned O&M issues associated with wind turbine blades. A significant part of BRC is the Blade Defect, Damage and Repair Survey task, which will gather data from blade manufacturers, service companies, operators and prior studies to determine details about the largest sources of blade unreliability. This report summarizes the initial findings from this work.

  5. Dual capacity reciprocating compressor

    Science.gov (United States)

    Wolfe, Robert W.

    1984-01-01

    A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

  6. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    David P. Bloomfield; Brian S. MacKenzie

    2006-05-01

    The Electrochemical Hydrogen Compressor EHC was evaluated against DOE applications for compressing hydrogen at automobile filling stations, in future hydrogen pipelines and as a commercial replacement for conventional diaphragm hydrogen compressors. It was also evaluated as a modular replacement for the compressors used in petrochemical refineries. If the EHC can be made inexpensive, reliable and long lived then it can satisfy all these applications save pipelines where the requirements for platinum catalyst exceeds the annual world production. The research performed did not completely investigate Molybdenum as a hydrogen anode or cathode, it did show that photoetched 316 stainless steel is inadequate for an EHC. It also showed that: molybdenum bipolar plates, photochemical etching processes, and Gortex Teflon seals are too costly for a commercial EHC. The use of carbon paper in combination with a perforated thin metal electrode demonstrated adequate anode support strength, but is suspect in promoting galvanic corrosion. The nature of the corrosion mechanisms are not well understood, but locally high potentials within the unit cell package are probably involved. The program produced a design with an extraordinary high cell pitch, and a very low part count. This is one of the promising aspects of the redesigned EHC. The development and successful demonstration of the hydraulic cathode is also important. The problem of corrosion resistant metal bipolar plates is vital to the development of an inexpensive, commercial PEM fuel cell. Our research suggests that there is more to the corrosion process in fuel cells and electrochemical compressors than simple, steady state, galvanic stability. It is an important area for scientific investigation. The experiments and analysis conducted lead to several recommended future research directions. First, we need a better understanding of the corrosion mechanisms involved. The diagnosis of experimental cells with titration to

  7. Active control of surge in centrifugal compressors using magnetic thrust bearing actuation

    Science.gov (United States)

    Sanadgol, Dorsa

    This research presents a new method for active surge control in centrifugal compressors with unshrouded impellers using a magnetic thrust bearing to modulate the impeller tip clearance. Magnetic bearings offer the potential for active control of flow instabilities. This capability is highly dependent on the sensitivity of the compressor characteristics to blade tip clearance. If the position of the shaft can be actuated with sufficient authority and speed, the induced pressure modulation makes control of surge promising. The active nature of the magnetic bearing system makes the real-time static and dynamic positioning of the rotor and therefore modulation of the impeller tip clearance possible. A theoretical model is first established that describes the sensitivity of the centrifugal compressor characteristic curve to tip clearance variations induced by axial motion of the rotor. Results from simulation of the nonlinear model for a single stage high-speed centrifugal compressor show that using the proposed control method, mass flow and pressure oscillations associated with compressor surge are quickly suppressed with acceptable tip clearance excursions, typically less than 20% of the available clearance. It is shown that it is possible to produce adequate axial excursions in the clearance between the impeller blades and the adjacent stationary shroud using a magnetic thrust bearing with practical levels of drive voltage. This surge control method would allow centrifugal compressors to reliably and safely operate with a wider range than is currently done in the field. The principal advantage of the proposed approach over conventional surge control methods lies in that, in machines already equipped with magnetic bearing, the method can potentially be implemented by simply modifying controller software. This dispenses with the need to introduce additional hardware, permitting adaptation of existing machinery at virtually no cost. In addition, since the controller is

  8. A 4-spot time-of-flight anemometer for small centrifugal compressor velocity measurements

    Science.gov (United States)

    Wernet, Mark P.; Skoch, Gary J.

    1992-01-01

    The application of laser anemometry techniques in turbomachinery facilities is a challenging dilemma requiring an anemometer system with special qualities. Here, we describe the use of a novel laser anemometry technique applied to a small 4.5 kg/s, 4:1 pressure ratio centrifugal compressor. Sample velocity profiles across the blade pitch are presented for a single location along the rotor. The results of the intra-blade passage velocity measurements will ultimately be used to verify CFD 3-D viscous code predictions.

  9. Numerical simulation of compressor endwall and casing treatment flow phenomena

    Science.gov (United States)

    Crook, A. J.; Greitzer, E. M.; Tan, C. S.; Adamczyk, J. J.

    1992-01-01

    A numerical study is presented of the flow in the endwall region of a compressor blade row, in conditions of operation with both smooth and grooved endwalls. The computations are first compared to velocity field measurements in a cantilevered stator/rotating hub configuration to confirm that the salient features are captured. Computations are then interrogated to examine the tip leakage flow structure since this is a dominant feature of the endwall region. In particular, the high blockage that can exist near the endwalls at the rear of a compressor blade passage appears to be directly linked to low total pressure fluid associated with the leakage flow. The fluid dynamic action of the grooved endwall, representative of the casing treatments that have been most successful in suppressing stall, is then simulated computationally and two principal effects are identified. One is suction of the low total pressure, high blockage fluid at the rear of the passage. The second is energizing of the tip leakage flow, most notably in the core of the leakage vortex, thereby suppressing the blockage at its source.

  10. Vibration Characteristics of Aircraft Engine-Bladed-Disk Assembly

    Directory of Open Access Journals (Sweden)

    J. S. Rao

    1986-01-01

    Full Text Available This paper is concerned with the vibration characteristics of a gas-turbine blade-disk assembly and a third stage of compressor blade-disk assembly of an orpheus aircraft engine. The assembly is analyzed by considering each component individually and then combining them together with a receptance coupling technique by matching forces and displacements at each junction point. The blade is modelled by number of free-free aerofoil section beams staggered at different angles to the plane of the disk, and the non-uniform disk is modelled as numbers of concentric annuli. The natural frequencies and mode shapes for each case have been obtained. Results obtained are verified by testing both the above assemblies on a microprocessor based vibration exciter and real time analyzer. The mode shape corresponding to each natural frequency was obtained by probing with hand held accelerometer.

  11. Study on ILC bunch compressor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, we have found a new set of parameters for the short two-stage ILC bunch compres-sors. The RF sections are both in the accelerating phase rather than the decelerating phase to improve the accelerating efficiency. We have also studied the CSR related issues. The results show that the microbunch instability exists extensively in the second bunch compressor, but the emittance dilution is small due to the relatively long bunch.

  12. Aerodynamic and mechanical design of an 8:1 pressure ratio centrifugal compressor

    Science.gov (United States)

    Osborne, C.; Runstadler, P. W., Jr.; Stacy, W. D.

    1974-01-01

    A high-pressure-ratio, low-mass-flow centrifugal compressor stage was designed, fabricated, and tested. The design followed specifications that the stage be representative of state-of-the-art performance and that the stage is to be used as a workhorse compressor for planned experiments using laser Doppler velocimeter equipment. The final design is a 75,000-RPM, 19-blade impeller with an axial inducer and 30 degrees of backward leaning at the impeller tip. The compressor design was tested for two- and/or quasi-three-dimensional aerodynamic and stress characteristics. Critical speed analyses were performed for the high speed rotating impeller assembly. An optimally matched, 17-channel vane island diffuser was also designed and built.

  13. Enhancement of centrifugal compressor stable operation using an internal recirculation channel

    Directory of Open Access Journals (Sweden)

    Růžička M.

    2016-12-01

    Full Text Available Centrifugal compressors with a high pressure ratio are widely used in small aircraft turbine engines and turbocharges. At high rotational speeds they have a narrow stable operating region and the commonly used impellers with back swept blades are not able to ensure requested stability. In order to achieve a wider stable operating region, some other anti-surge measures can be used such as an Internal Recirculation Channel (IRC located in the inlet area of the compressor impeller. This paper analyses the influence of various IRC inlet slot geometries on air flow parameters. The flow velocity profiles downstream of the IRC outlet slot are evaluated and the influence of various channel configurations on compressor performance map is shown. Results from experiments as well as CFD simulations enable us to analyse the airflow in IRC and find out its most suitable geometry.

  14. Methodology for Analysing Controllability and Observability of Bladed Disc Coupled Vibrations

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    Many bladed rotating machines such as helicopters, turbines and compressors are susceptible to blade faults due to vibration problems. Typically, blade vibrations in this kind of machines are suppressed by using passive mechanical components. However, when passive control techniques...... are not efficient enough to suppress vibration problems, active control techniques might become the only feasible way of avoiding vibration problems. Implementing effectively active vibration control into any machine implies that the controllability and observability have to be analysed in order to determine where...... to place sensors and actuators so that all vibration levels can be monitored and controlled. Due to the special dynamic characteristics of rotating coupled bladed discs, where disc lateral motion is coupled to blade flexible motion, such analyses become quite complicated. The dynamics is described...

  15. Compressor bleed cooling fluid feed system

    Science.gov (United States)

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  16. Stall Characteristics and Tip Clearance Effects in Forward Swept Axial Compressor Rotors

    Institute of Scientific and Technical Information of China (English)

    Ramakrishna PV; Govardhan M

    2009-01-01

    Tilting the blade sections to the flow direction (blade sweep) would increase the operating range of an axial com-pressor due to modifications in the pressure and velocity fields on the suction surface. On the other hand, blade tip gap, though finite, has great influence on the performance of a turbomachine. The present paper investigates the combined effect of these two factors on various flow characteristics in'a low speed axial flow compressor. For this present study, nine computational domains were modeled; three rotor sweep configurations (0°, 20° and 30°) and for three different clearance levels for each rotor. Commercial CFD solver ANSYS CFX 11.0 is used for the simulations. Results indicated that tip chordline sweep is found to improve the stall margin of the compressor by modifying the suction surface boundary layer migration phenomenon. Diffusion Factor (DF) contours showed the severity of stalling with unswept rotor. For the swept rotors, the zones of high probable stall are less severe and they become less in size with increasing sweep. Increment in the tip gap is found to gradually affect the perform-ance of unswept rotor, while the effect is very high for the two swept rotors for the earlier increments. As a mini-mum clearance is unavoidable, swept rotors suffer relatively higher deviation from the idealistic behavior than the unswept rotor due to tip clearance.

  17. Application of high-turning bowed compressor stator to redesign of highly loaded fan stage

    Institute of Scientific and Technical Information of China (English)

    Shaobin LI; Jiexian SU; Zhongqi WANG

    2008-01-01

    A redesign of a highly loaded fan stage by using high-turning bowed compressor stator was conducted. The original tandem stator was replaced by the highly loaded bowed stator which was applicable to highly sub-sonic flow conditions. 3D contouring technique and local modification of blade were applied to the design of the bowed blade in order to improve the aerodynamic per-formance and the matching of the rotor and stator blade rows. Performance curves at different rotating speeds and performances at different operating points for both the original fan stage and redesigned fan stage were obtained by numerical simulations. The results show that the highly loaded bowed stator can be used not only to improve the structure and the aerodynamic performances at various operating points of the compressor stage but also to pro-vide high performances at off-design conditions. It is believed that the highly loaded bowed stator can advance the design of high-performance compressor.

  18. Conceptual Design of a Two Spool Compressor for the NASA Large Civil Tilt Rotor Engine

    Science.gov (United States)

    Veres, Joseph P.; Thurman, Douglas R.

    2010-01-01

    This paper focuses on the conceptual design of a two spool compressor for the NASA Large Civil Tilt Rotor engine, which has a design-point pressure ratio goal of 30:1 and an inlet weight flow of 30.0 lbm/sec. The compressor notional design requirements of pressure ratio and low-pressure compressor (LPC) and high pressure ratio compressor (HPC) work split were based on a previous engine system study to meet the mission requirements of the NASA Subsonic Rotary Wing Projects Large Civil Tilt Rotor vehicle concept. Three mean line compressor design and flow analysis codes were utilized for the conceptual design of a two-spool compressor configuration. This study assesses the technical challenges of design for various compressor configuration options to meet the given engine cycle results. In the process of sizing, the technical challenges of the compressor became apparent as the aerodynamics were taken into consideration. Mechanical constraints were considered in the study such as maximum rotor tip speeds and conceptual sizing of rotor disks and shafts. The rotor clearance-to-span ratio in the last stage of the LPC is 1.5% and in the last stage of the HPC is 2.8%. Four different configurations to meet the HPC requirements were studied, ranging from a single stage centrifugal, two axi-centrifugals, and all axial stages. Challenges of the HPC design include the high temperature (1,560deg R) at the exit which could limit the maximum allowable peripheral tip speed for centrifugals, and is dependent on material selection. The mean line design also resulted in the definition of the flow path geometry of the axial and centrifugal compressor stages, rotor and stator vane angles, velocity components, and flow conditions at the leading and trailing edges of each blade row at the hub, mean and tip. A mean line compressor analysis code was used to estimate the compressor performance maps at off-design speeds and to determine the required variable geometry reset schedules of the

  19. Empirical Design Considerations for Industrial Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Cheng Xu

    2012-01-01

    Full Text Available Computational Fluid Dynamics (CFD has been extensively used in centrifugal compressor design. CFD provides further optimisation opportunities for the compressor design rather than designing the centrifugal compressor. The experience-based design process still plays an important role for new compressor developments. The wide variety of design subjects represents a very complex design world for centrifugal compressor designers. Therefore, some basic information for centrifugal design is still very important. The impeller is the key part of the centrifugal stage. Designing a highly efficiency impeller with a wide operation range can ensure overall stage design success. This paper provides some empirical information for designing industrial centrifugal compressors with a focus on the impeller. A ported shroud compressor basic design guideline is also discussed for improving the compressor range.

  20. A numerical strategy for modelling rotating stall in core compressors

    Science.gov (United States)

    Vahdati, M.

    2007-03-01

    The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary

  1. Numerical simulation of axial flow compressors.

    OpenAIRE

    Jesuino Takachi Tomita

    2002-01-01

    This work deals with the numerical simulation of axial flow compressors, from design to performance prediction. The stage performance prediction uses the meanline flow properties. Stage-stacking is used to analyse a multi-stage compressor. A computer program, written in FORTRAN, was developed and is able to design an axial flow compressor given air mass flow, total pressure ratio, overall efficiency and design speed. All geometrical data relevant to the compressor performance prediction is ca...

  2. Integral Compressor/Generator/Fan Unitary Structure

    OpenAIRE

    Dreiman, Nelik

    2016-01-01

    INTEGRAL COMPRESSOR / GENERATOR / FAN UNITARY STRUCTURE.*) Dr. Nelik Dreiman Consultant, P.O.Box 144, Tipton, MI E-mail: An extremely compact, therefore space saving single compressor/generator/cooling fan structure of short axial length and light weight has been developed to provide generation of electrical power with simultaneous operation of the compressor when power is unavailable or function as a regular AC compressor powered by a power line. The generators and ai...

  3. Three-dimensional flows in a transonic compressor rotor

    Science.gov (United States)

    Reid, Lonnie; Celestina, Mark L.; Dewitt, Kenneth; Keith, Theo

    1991-01-01

    This study involves an experimental and numerical investigation of the three-dimensional flows in a transonic compressor rotor. A variety of data which could be used, in a complementary fashion, to validate/calibrate the computational fluid dynamics turbomachinery code and improve understanding of the flow physics, were acquired. Detailed radial survey data which consisted of total pressure, total temperature, static pressure and flow angle were obtained at stations upstream and downstream of the rotor blade. Detailed velocity and turbulence profiles were obtained upstream of the rotor and used as the upstream boundary conditions for the numerical analysis. Calibrated flush-mounted hot film probes were used to measure wall shear stress on the hub and casing walls upstream of the rotor. The blade-to-blade shear-stress angle distributions were obtained at two axial locations on the rotor casing, using flush-mounted hot film probes. A numerical analysis conducted using a three-dimensional Navier-Stokes code was compared with the experimental results.

  4. 某离心压缩机首级叶轮叶片断裂事故分析与改进研究%Fault Analysis and Improving Research on the Fracture of Impeller Blade at the First Stage in a Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    匡中华; 孟继纲; 刘洋; 于德梅; 李宗英

    2014-01-01

    An impeller blade fracture accident was studied in this paper. The reason of the blade fracture was analysed, and we found that the fracture of the blade was mainly caused by the resonance because the frequency of the impeller was close to the frequency of the wake of the inlet guide vane. Based on the analysis above, two improvements were presented as follows. One was to increase the thickness of the blades to avoid the natural frequency of the impeller with the frequency of the wake of the inlet guide vane. The other was to cut off the axial length of the blade by 14.4 mm to decrease the exciting force of the wake of the inlet guide vane. The site operation of the improved impeller is good until now.%本文研究了某离心压缩机首级叶轮叶片断裂事故。分析了该叶片发生断裂的原因,发现该事故主要是由于叶轮固有频率与进口导叶尾迹频率接近发生共振引起的。在此分析基础上,提出了以下改进措施:一方面通过增加叶片厚度来改变叶轮固有频率,以避开进口导叶尾迹频率;另一方面,同时通过叶片进口处沿轴向切除14.4mm,以减小进口导叶尾流激振力。到目前为止,改进后的叶轮现场运行情况良好。

  5. 40 CFR 63.1012 - Compressor standards.

    Science.gov (United States)

    2010-07-01

    ... measured during each compliance test. (g) Reciprocating compressor exemption. Any existing reciprocating... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Compressor standards. 63.1012 Section... Emission Standards for Equipment Leaks-Control Level 1 § 63.1012 Compressor standards. (a)...

  6. Compressor instability with integral methods

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Y.K. Eddie [Nanyang Technological Univ., Singapore (Singapore). School of Mechanical and Aerospace Engineering; Liu, Ningyu [Singapore National Univ. (Singapore). Dept. of Mechanical Engineering

    2007-07-01

    ''Compressor Instability with Integral Methods'' is a book, to bring together the quick integral approaches and advances in the field for the prediction of stall and surge problem in compressor. This book is useful for people involved in the flow analysis, design and testing of rotating machinery. For students, it can be used as a specialized topic of senior undergraduate or graduate study. The book can also be served as a self-study material to those who keen to acquire this knowledge. In brief, this book focuses on the numerical/computational analysis for the effect of distorted inlet flow propagation on the rotating stall and surge in axial compressors. It gains insight into the basic phenomena controlling these flow instabilities, and reveals the influence of inlet parameters on rotating stall and surge. The book starts from the confirmation and application of Kim et al's integral method and then follows by a development to this method through the proposing and applying a critical distortion line. This line is applied successfully on the stall prediction of in-flight compressor due to flaming of refueling leakage near inlet, a typical real and interesting example of compressor stall and surge operation. Further, after a parametric study on the integral method and the distorted flow field of compressor using Taguchi method, a novel integral method is formulated using more appropriate and practical airfoil characteristics, with a less assumptions needed for derivation. Finally, as an extended work, the famous Greitzer's instability flow model, the well-known B-parameter model applied for analyzing the stall and surge characteristics, is studied parametrically using Taguchi method. (orig.)

  7. Composite wind turbine blades

    Science.gov (United States)

    Ong, Cheng-Huat

    Researchers in wind energy industry are constantly moving forward to develop higher efficiency wind turbine. One major component for wind turbine design is to have cost effective wind turbine blades. In addition to correct aerodynamic shape and blade geometry, blade performance can be enhanced further through aero-elastic tailoring design and material selections. An analytical tool for blade design has been improved and validated. This analytical tool is utilized to resolve issues related to elastic tailoring design. The investigation looks into two major issues related to the design and fabrication of a bend-twist-coupled blade. Various design parameters for a blade such as materials, laminate lay-up, skin thickness, ply orientation, internal spar, etc. have been examined for designing a bend-twist-coupled blade. The parametric study indicates that the critical design parameters are the ply material, the ply orientation, and the volume fraction ratio between the anisotropic layers and orthotropic layers. To produce a blade having the bend-twist coupling characteristics, the fiber lay-ups at the top and bottom skins of the blade must have a "mirror" lay-up in relation to the middle plane of the blade. Such lay-up causes fiber discontinuation at the seam. The joint design at the seam is one major consideration in fabricating a truly anisotropic blade. A new joint design was proposed and tensile failure tests were carried out for both the old and new joint designs. The tests investigated the effects of different types of joint designs, the laminate lay-up at the joints, and the stacking sequence of the joint retention strength. A major component of a wind turbine blade, D-spar, was designed to maximum coupling. Two D-spars were then fabricated using the new joint design; one of them was subjected to both static and modal testings. Traditionally, wind turbine blades are made of low cost glass material; however, carbon fibers are proposed as alternative material. Our

  8. Calculation of the VKI turbine blade with LES and DES

    Institute of Scientific and Technical Information of China (English)

    F. Magagnato; B. Pritz; M. Gabi

    2007-01-01

    The prediction of the laminar to turbulent transition is essential in the calculation of turbine blades, compressor blades or airfoils of airplanes since a non negligible part of the flow field is laminar or transitional. In this paper we compare the prediction capability of the Detached Eddy Simulation (DES) with the Large Eddy Simulation (LES) using the high-pass filtered (HPF) Smagorinsky model (Stolz et al.[1]) when applied to the calculation of transitional flows on turbine blades. Detailed measurements from Canepa et al.[2] of the well known VKI-turbine blade served to compare our results with the experiments. The calculations have been made on a fraction of the blade (10%) using non-reflective boundary conditions of Freund at the inlet and outlet plane extended to internal flows by Magagnato et al.[3] in combination with the Synthetic Eddy Method (SEM) proposed by Jarrin et al. [4].The SEM has also been extended by Pritz et al.[5] for compressible flows. It has been repeatedly shown that hybrid approaches can satisfactorily predict flows of engineering relevance. In this work we wanted to investigate if they can also be used successfully in this difficult test case.

  9. Unsteady Rotor-Stator Interaction in High Speed Compressor and Turbine Stages

    Institute of Scientific and Technical Information of China (English)

    I.Trébinjac; D.Charbonnier; F.Leboeuf

    2005-01-01

    The blade row interaction can alter the time-mean flow and therefore be of interest for aerodynamic design analysis. Whereas results within low subsonic turbomachines are quite numerous in the literature, there have been far fewer works which give results of blade row interaction within high speed cases. Two cases are related in this paper. First, the effects of an incoming wake on the rotor flow field of a transonic compressor are analyzed. The blade row interaction proved to be positive regarding the total pressure ratio, but negative regarding the losses.The second case concerns a transonic turbine. Particular emphasis is placed on the assessment of the deterministic correlations included in the Averaged Passage Equation System.

  10. Investigation of modification design of the fan stage in axial compressor

    Science.gov (United States)

    Zhou, Xun; Yan, Peigang; Han, Wanjin

    2010-04-01

    The S2 flow path design method of the transonic compressor is used to design the one stage fan in order to replace the original designed blade cascade which has two-stage transonic fan rotors. In the modification design, the camber line is parameterized by a quartic polynomial curve and the thickness distribution of the blade profile is controlled by the double-thrice polynomial. Therefore, the inlet flow has been pre-compressed and the location and intensity of the shock wave at supersonic area have been controlled in order to let the new blade profiles have better aerodynamic performance. The computational results show that the new single stage fan rotor increases the efficiency by two percent at the design condition and the total pressure ratio is slightly higher than that of the original design. At the same time, it also meets the mass flow rate and the geometrical size requirements for the modification design.

  11. Application of computational fluid dynamics to the development of compressors for aero jet engines; Koku engine yo asshukuki kaihatsu eno CFD tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, K.; Suga, S.; Matsuoka, A.; Sakai, Y. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1997-07-20

    This paper describes studies on application of computational fluid dynamics (CFD) to the development of compressors for aero jet engines, and development of highly-loaded compressor cascade of blades. The compressor used for validation is a single-stage axial-flow transonic compressor using rotor blades with low aspect ratio, whose circumferential velocity at their tips is about 430 m/s and the relative inflow Mach number reaches 1.3. The numerical analysis used a three-dimensional viscosity analysis code based on a high-accuracy upwind scheme using as a governing equation the Navier-Stokes equation for time averaging of three-dimensional compressibility of ideal gas. The calculations were executed on models with two patterns of with or without clearance on the tip of a rotor blade. The calculations were conducted at the design rotation speed and with multiple number of flow rates. The estimation accuracy on the whole performance was evaluated by using the comparison with the test result. The calculations were found 2-4% higher than the experimental values. The maximum flow rate agreed well with the experimental value. A high-performance tandem cascade of rotor blades was developed newly by utilizing the CFD analysis. As a result, the pressure ratio has increased up to 2.7 far exceeding the conventional maximum value of 1.8. A pressure ratio as high as about 50% has been achieved. 9 figs., 1 tab.

  12. Fluid dynamics [and gas compressors

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, Rainer [Solar Turbines Inc. (United States)

    2002-02-01

    The author examines the use of computational fluid dynamics in the development of gas compressors. The background to CFD is explained including modelling the geometry and the effects of turbulence. A typical design process is briefly explained and its limitations discussed. (UK)

  13. Axial-Centrifugal Compressor Program

    Science.gov (United States)

    1975-10-01

    vanes was obtained from other engine programs. Actuation rings for the IGV and Stage 1 were manufactured irom box sec- tion extruded 6061 -T6... aluminium , while the Stage 2 actuation ring was machined from 321 stainless steel plate stock. Compressor Assembly The Stage 2 vane tips were ground to length

  14. Pulse compressor with aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States)

    2015-11-30

    In this SBIR project, Electron Optica, Inc. (EOI) is developing an electron mirror-based pulse compressor attachment to new and retrofitted dynamic transmission electron microscopes (DTEMs) and ultrafast electron diffraction (UED) cameras for improving the temporal resolution of these instruments from the characteristic range of a few picoseconds to a few nanoseconds and beyond, into the sub-100 femtosecond range. The improvement will enable electron microscopes and diffraction cameras to better resolve the dynamics of reactions in the areas of solid state physics, chemistry, and biology. EOI’s pulse compressor technology utilizes the combination of electron mirror optics and a magnetic beam separator to compress the electron pulse. The design exploits the symmetry inherent in reversing the electron trajectory in the mirror in order to compress the temporally broadened beam. This system also simultaneously corrects the chromatic and spherical aberration of the objective lens for improved spatial resolution. This correction will be found valuable as the source size is reduced with laser-triggered point source emitters. With such emitters, it might be possible to significantly reduce the illuminated area and carry out ultrafast diffraction experiments from small regions of the sample, e.g. from individual grains or nanoparticles. During phase I, EOI drafted a set of candidate pulse compressor architectures and evaluated the trade-offs between temporal resolution and electron bunch size to achieve the optimum design for two particular applications with market potential: increasing the temporal and spatial resolution of UEDs, and increasing the temporal and spatial resolution of DTEMs. Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key pulse compressor components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded

  15. Blade attachment assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  16. Flexible Blades for Wind Turbines

    Science.gov (United States)

    Collins, Madeline Carlisle; Macphee, David; Harris, Caleb

    2016-11-01

    Previous research has shown that windmills with flexible blades are more efficient than those with rigid blades. Flexibility offers passive pitch control, preferable to active pitch control which is costly and requires maintenance. Flexible blades morph such that the blade more closely resembles its design point at part load and over load. The lift-to-drag ratios on individual blades was investigated. A mold was designed and machined from an acrylic slab for the casting of blades with a NACA 0012 cross section. A flexible blade was cast from silicone and a rigid blade was cast from polyurethane. Each of these blades was tested in a wind tunnel, cantilever mounted, spanning the whole test section. The angle of attack was varied by rotating the mount. All tests were performed at the same wind speed. A load cell within the mount measured forces on the blade, from which the lift and drag forces were calculated. The stall point for the flexible blade occurred later than for the rigid blade, which agrees with previous research. Lift-to-drag ratios were larger for the flexible blade at all angles of attack tested. Flexible blades seem to be a viable option for passive pitch control. Future research will include different airfoil cross sections, wind speeds, and blade materials. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  17. Blade Testing Trends (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  18. Corner separation and the onset of stall in an axial compressor

    Science.gov (United States)

    Thiam, Aicha; Whittlesey, Robert; Wark, Candace; Williams, David

    2007-11-01

    Axial compressor performance is limited by the onset of stall between the diffusing passageways of the rotors and stators. The flow physics responsible for the stall depends on the blade geometry of the machine, and in this experiment stall develops from a blade-hub corner separation. The 1.5 stage axial compressor consists of inlet guide vanes, a rotor and stator section. Separate motors drive the downstream fan and rotor, which makes it possible to change the compressor pressure ratio and flow coefficient by changing either the wheel speed or the bulk flow rate through the machine. Detailed maps of the flow behind the stators and in front of the rotors were obtained using a Kulite stagnation pressure probe. Mean pressure measurements show the growth of the corner flow separation and divergence of the ``through flow'' toward the outer casing. Spectra show a sensitivity of the separated region to small amplitude external disturbances, in this case originating from the downstream fan. The onset of rotating stall appears as the first subharmonic of the rotor frequency, 0.5 fr, then shifts to a slightly lower frequency 0.45 fr as the flow coefficient is decreased.

  19. Unsteady Tip Clearance Flow Pattern in an Isolated Axial Compressor Rotor with Micro Tip Injection

    Institute of Scientific and Technical Information of China (English)

    Shaojuan Geng; Hongwu Zhang; Jingyi Chen; Weiguang Huang

    2007-01-01

    A numerical study of the effect of discrete micro tip injection on unsteady tip clearance flow pattern in an isolated axial compressor rotor is presented, intending to better understand the flow mechanism behind stall control measures that act on tip clearance flow. Under the influence of injection the unsteadiness of self-induced tip clearance flow could be weakened. Also the radial migration of tip clearance vortex is confined to a smaller radial extent near the rotor tip and the trajectory of tip clearance flow is pushed more downstream. So the injection is beneficial to improve compressor stability and increase static pressure rise near rotor tip region. The results of injection with different injected mass flow rates show that for the special type of injector adopted in the paper the effect of injection on tip clearance flow may be different according to the relative strength between these two streams of flow. For a fixed injected mass flow rate, reducing the injector area to increase injection velocity can improve the effect of injection on tip clearance flow and thus the compressor stability. A comparison of calculations between single blade passage and multiple blade passages validates the utility of single passage computations to investigate the tip clearance flow for the case without injection and its interaction with injected flow for the case with tip injection.

  20. Elastoplastic frictional contact problem study on interference fits of compressor

    Institute of Scientific and Technical Information of China (English)

    Hongwu ZHANG; Aihua LIAO; Changhua WU

    2008-01-01

    The FE parametric quadratic programming (PQP) method developed from the parametric variational principle (PVP) was used for the analysis of the stress distribution of the 3D elastoplastic frictional contact of an impeller-shaft sleeve-shaft. A locomotive-type turbo-charger compressor with 24 blades under combined cen-trifugal and interference-fit loading was considered in the numerical analysis. The solution of elastoplastic frictional contact problems belongs to unspecified boundary pro-blems where the interaction between two kinds of nonli-nearities should occur. To save time in the numerical computation, a multi-substructure technique was adopted in the structural modeling. The effect of fit tolerance, wall thickness of the shaft sleeve, and rotational speed on the contact stress was discussed in detail in the numerical computation. To decrease the difficulty of the assembly process and ensure the safety of the working state, the amount of interference between the shaft sleeve and shaft by press-fitting should be controlled strictly to avoid the rapid increase of contact stress. The numerical results show that the algorithm has high accuracy and good con-vergence. The study can be referred to in deciding the proper fit tolerance and improving the design and man-ufacturing technology of compressor impellers.

  1. Modelling fluid flow in a reciprocating compressor

    Directory of Open Access Journals (Sweden)

    Tuhovcak Jan

    2015-01-01

    Full Text Available Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.

  2. Modelling fluid flow in a reciprocating compressor

    Science.gov (United States)

    Tuhovcak, Jan; Hejčík, Jiří; Jícha, Miroslav

    2015-05-01

    Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.

  3. Axial Compressor Reversed Flow Performance.

    Science.gov (United States)

    1985-05-01

    change which occurs at the stall limit of the compresor , the time-owaged data indicates that another flow mode change occurs in the neighborhood of the...surging compression system Into a small amplitude oscillation about the nonrecoverable stall point. This forced oscillation can then decay Into a system...were heavily dependent upon the model used for defining compressor post- stall performance, both steady state end transient, especially In the reve a

  4. A Microwave Blade Tip Clearance Sensor for Propulsion Health Monitoring

    Science.gov (United States)

    Woike, Mark R.; Abdul-Aziz, Ali; Bencic, Timothy J.

    2010-01-01

    Microwave sensor technology is being investigated by the NASA Glenn Research Center as a means of making non-contact structural health measurements in the hot sections of gas turbine engines. This type of sensor technology is beneficial in that it is accurate, it has the ability to operate at extremely high temperatures, and is unaffected by contaminants that are present in turbine engines. It is specifically being targeted for use in the High Pressure Turbine (HPT) and High Pressure Compressor (HPC) sections to monitor the structural health of the rotating components. It is intended to use blade tip clearance to monitor blade growth and wear and blade tip timing to monitor blade vibration and deflection. The use of microwave sensors for this application is an emerging concept. Techniques on their use and calibration needed to be developed. As a means of better understanding the issues associated with the microwave sensors, a series of experiments have been conducted to evaluate their performance for aero engine applications. This paper presents the results of these experiments.

  5. Update on Scroll Compressor Chamber Geometry

    OpenAIRE

    Bell, Ian; Groll, Eckhard; Braun, James; King, Galen

    2010-01-01

    The geometry of the scroll compressor determines the efficiency of the scroll compressor and controls all elements of its operation. It is therefore critical to be able to accurately model the volumes of the compressor over the course of a revolution. This paper proposes a novel quasi-analytic formulation of the suction, compression and discharge chambers based on a change of variables from involute angle to polar integration angle. This solution has been compared against a reference polyg...

  6. Numerical simulation of a rotary engine primary compressor impacted by bird

    Institute of Scientific and Technical Information of China (English)

    Liu Jun; Li Yulong

    2013-01-01

    In order to examine the process of a rotary engine primary compressor impacted by bird,a finite element model of a bird impacted on plate is developed with the explicit code PAM-CRASH.The smooth particles hydrodynamic (SPH) method is used to simulate the bird because of the SPH method showing no signs of instability and correctly modeling the breaking-up of the bird into particles.Good agreement between the simulation results and experimental results indicates that the numerical method of bird strike used in the present paper is reasonable.Then a rotary engine primary compressor impacted by three different configurations bird named straight-ended cylinder bird,quadrangular bird,hemispherical-ended bird are investigated using the numerical simulation method.It is found that the whole process of bird strike sustained about 3.5 ms and the bird is slashed by blade during the strike.The geometry configuration of bird affected the displacement and von Mises stress of some blades severely,just because the breaking bird's mass is affected by the bird's configuration.In the event of bird striking on the site of"up" some blades may develop plastic deformation and it is very adverse for the safety work of the engine.

  7. Stepped tip gap effects on a transonic axial-flow compressor rotor

    Science.gov (United States)

    Thompson, Donald William

    The effects of stepped tip gaps and clearance levels on the performance, flowfield, and stall characteristics of a transonic axial-flow compressor rotor were experimentally and numerically determined. A theory and mechanism for relocation of blockage in the rotor tip region was developed. A two-stage compressor with no inlet guide vanes was tested in a modern transonic compressor research facility. The first-stage rotor was unswept and was tested for an optimum tip clearance with variations in stepped gaps machined into the casing near the aft tip region of the rotor. Nine casing geometries were investigated consisting of three step profiles at each of three clearance levels. For small and intermediate clearances, stepped tip gaps were found to improve pressure ratio, efficiency, and flow range for most operating conditions. At 100% design rotor speed, stepped tip gaps produced a doubling of mass flow range with as much as a 2.0% increase in mass flow and a 1.5% improvement in efficiency. The flowfield characteristics associated with performance improvements were experimentally and numerically analyzed. Stepped tip gaps were found to have no significant effect on the stall characteristics of the rotor; the stability characteristics attributable to tip geometry were determined by the clearance over the forward portion of the rotor blade. This study provides guidelines for engineers to improve compressor performance for an existing design by applying an optimum casing profile.

  8. EXPERIMENTAL INVESTIGATION OF ROTATING STALL FOR A LOW-SPEED CENTRIFUGAL COMPRESSOR

    Institute of Scientific and Technical Information of China (English)

    ZHU Xiaocheng; GUO Qiang; DU Zhaohui; CHEN Hua; ZHAO Yan

    2008-01-01

    Unsteady flows and rotating stall of a low-speed centrifugal compressor are investigated by measuring vaneless diffuser wall static pressure fluctuation and internal flow fields at different small flow fluxes. During the experiment, firstly the real time static pressure fluctuations on the vaneless diffuser shroud at different circumferential and radial position were acquired by high-frequency dynamic pressure transducers. Discrete Fourier transformation analysis and cross-correlation analysis were applied to the experimental results to ascertain the rotating stall beginning operation conditions and stall cells numbers and rotating speed. Secondly, the vaneless diffuser inlet flow angle distribution along diffuser width direction was acquired by single hotwire, which was compared with SENOO's analysis results. At last, the internal flow fields of the centrifugal compressor were investigated with a particle image velocimetry (PIV) system at different small flow fluxes. The flow field development of vaneless diffuser and blade flow passage are given at rotating stall conditions. The experiments enrich the understanding of rotating stall flow phenomenon of the low-speed centrifugal compressor and provide full experiment data for designing high performance centrifugal compressor.

  9. Rotary-Wing Relevant Compressor Aero Research and Technology Development Activities at Glenn Research Center

    Science.gov (United States)

    Welch, Gerard E.; Hathaway, Michael D.; Skoch, Gary J.; Snyder, Christopher A.

    2012-01-01

    Technical challenges of compressors for future rotorcraft engines are driven by engine-level and component-level requirements. Cycle analyses are used to highlight the engine-level challenges for 3000, 7500, and 12000 SHP-class engines, which include retention of performance and stability margin at low corrected flows, and matching compressor type, axial-flow or centrifugal, to the low corrected flows and high temperatures in the aft stages. At the component level: power-to-weight and efficiency requirements impel designs with lower inherent aerodynamic stability margin; and, optimum engine overall pressure ratios lead to small blade heights and the associated challenges of scale, particularly increased clearance-to-span ratios. The technical challenges associated with the aerodynamics of low corrected flows and stability management impel the compressor aero research and development efforts reviewed herein. These activities include development of simple models for clearance sensitivities to improve cycle calculations, full-annulus, unsteady Navier-Stokes simulations used to elucidate stall, its inception, and the physics of stall control by discrete tip-injection, development of an actuator-duct-based model for rapid simulation of nonaxisymmetric flow fields (e.g., due inlet circumferential distortion), advanced centrifugal compressor stage development and experimentation, and application of stall control in a T700 engine.

  10. Development of the recovery technology for nickel superalloy blades of the aircraft engine by laser cladding

    Science.gov (United States)

    Bykovskiy, D. P.; Petrovskiy, V. N.; Polskiy, V. I.; Chirikov, S. N.; Dzhumaev, P. S.

    2016-09-01

    Development of cladding modes was performed with a superalloy nickel based powder on a flat substrate from material identical to compressor and turbine blades. Cross sections were made, and a visual inspection of the shape and the quality of the clad track as well as themetallographic analysis were performed. Microhardness of the deposition zone, chemical composition of the base, cladded metals, and the heat affected zone were determined.

  11. Study of controlled diffusion stator blading. 1. Aerodynamic and mechanical design report

    Science.gov (United States)

    Canal, E.; Chisholm, B. C.; Lee, D.; Spear, D. A.

    1981-01-01

    Pratt & Whitney Aircraft is conducting a test program for NASA in order to demonstrate that a controlled-diffusion stator provides low losses at high loadings and Mach numbers. The technology has shown great promise in wind tunnel tests. Details of the design of the controlled diffusion stator vanes and the multiple-circular-arc rotor blades are presented. The stage, including stator and rotor, was designed to be suitable for the first-stage of an advanced multistage, high-pressure compressor.

  12. Aspirated Compressors for High Altitude Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences proposes to incorporate aspirated compressor technology into a high altitude, long endurance (HALE) concept engine. Aspiration has been proven...

  13. Research on Metal Hydride Compressor System

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Ti-Zr series Laves phase hydrogen storage alloys with good hydrogen storage properties, such as large hydrogen capacity, rapid hydriding and dehydriding rate, high compression ratio, gentle plateau, small hysteresis, easily being activated and long cyclic stability etc. for metal hydride compressor have been investigated. In addition, a hydride compressor with special characteristics, namely, advanced filling method, good heat transfer effect and reasonable structural design etc. has also been constructed. A hydride compressor cryogenic system has been assembled coupling the compressor with a J-T micro-throttling refrigeration device and its cooling capacity can reach 0.4 W at 25 K.

  14. AG Turbo, Turbotech II, project 1.244. Experimental investigations of rotary instabilities in axial compressors and their effects in terms of compressor stability. Final report; AG Turbo, Turbotech II, Vorhaben 1.244. Experimentelle Untersuchungen rotierender Instabilitaeten in Axialverdichtern und ihr Einfluss auf die Verdichterstabilitaet. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Holste, F.; Haukap, C.; Kameier, F.

    2000-07-10

    The physical phenomena of rotary instabilities in industrial compressors and high-pressure aircraft compressors were investigated, which may be a cause of compressor blade fracture. The investigations were carried out by Duesseldorf Technical University on behalf of Rolls-Royce Deutschland GmbH at the new four-stage low-pressure compressor test stand of TU Dresden University. Extensive measurements were made both in the rotary and stationary system in the third compressor stage. Rotary instabilities could be detected by increasing the clearance between the blade tip and compressor wall. Modal analyses yielded a rate of about 30 for 63 blades, i.e. a characteristic wavelength of about twice the length of a blade. So far, an accurate description of the physical mechanism was impossible. Investigations using a Snubber model showed no significant influence on the rotary instabilities. [German] Im Turbotech II Forschungsvorhaben 1.244 wurden die physikalischen Vorgaenge der rotierenden Instabilitaet untersucht, die sowohl in industriellen Verdichtern als auch in Hochdruckverdichtern von Flugtriebwerken auftreten koennen. Diese Instabilitaeten stellen eine zusaetzliche Belastung fuer die Verdichterblaetter dar und koennen damit die Ursache fuer Blattbrueche sein. Im Auftrag von Rolls-Royce Deutschland wurden die Untersuchungen von der Faachhochschule Duesseldorf durchgefuehrt. Testobjekt war der neu aufgebaute vier stufige Niedergeschwindigkeitsverdichter der TU Dresden. In enger Kooperation mit den Vorhaben 1.243 und 1.246 wurden umfangreiche Messungen sowohl im rotierenden als auch im festen System an der dritten Stufe des Verdichters durchgefuehrt. Durch Vergroesserung des Spaltes zwischen Schaufelspitze und Verdichterwandung konnten rotierenden Instabilitaeten nachgewiesen werden. Modenanalysen ergaben Umfangsordnungen von ungefaehr 30 bei einer Blattzahl von 63, wodurch die charakteristische Wellenlaenge etwa zwei Schaufelwellenlaengen entspricht. Eine exakte

  15. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems

    Science.gov (United States)

    Tomassini, R.; Rossi, G.; Brouckaert, J.-F.

    2016-10-01

    A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.

  16. Tip-Clearance Measurement in the First Stage of the Compressor of an Aircraft Engine.

    Science.gov (United States)

    García, Iker; Przysowa, Radosław; Amorebieta, Josu; Zubia, Joseba

    2016-11-11

    In this article, we report the design of a reflective intensity-modulated optical fiber sensor for blade tip-clearance measurement, and the experimental results for the first stage of a compressor of an aircraft engine operating in real conditions. The tests were performed in a ground test cell, where the engine completed four cycles from idling state to takeoff and back to idling state. During these tests, the rotational speed of the compressor ranged between 7000 and 15,600 rpm. The main component of the sensor is a tetrafurcated bundle of optical fibers, with which the resulting precision of the experimental measurements was 12 µm for a measurement range from 2 to 4 mm. To get this precision the effect of temperature on the optoelectronic components of the sensor was compensated by calibrating the sensor in a climate chamber. A custom-designed MATLAB program was employed to simulate the behavior of the sensor prior to its manufacture.

  17. Numerical investigations of shock wave interaction with laminar boundary layer on compressor profile

    Science.gov (United States)

    Piotrowicz, M.; Flaszyński, P.

    2016-10-01

    The investigation of shockwave boundary layer interaction on suction side of transonic compressor blade is one of main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to look more closely into the flow structure on suction side of a profile, a design of generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results of flow structure on a suction side of the compressor profile investigations are presented. The numerical simulations are carried out for EARSM (Explicit Algebraic Reynolds Stress Model) turbulence model with transition model. The result are compared with oil flow visualisation, schlieren pictures, Pressure Sensitive Paint (PSP) and static pressure.

  18. Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance

    Science.gov (United States)

    Wellborn, Steven R.; Okiishi, Theodore H.

    1996-01-01

    Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Data collected enabled differences in overall individual stage and the third stage blade element performance parameters to be compared. The results show conclusively that seal-tooth leakage ran have a large impact on compressor aerodynamic performance while the presence of the shrouded stator cavities alone seemed to have little influence. Overall performance data revealed that for every 1% increase in the seal-tooth clearance to blade-height ratio the pressure rise dropped up to 3% while efficiency was reduced by 1 to 1.5 points. These observed efficiency penalty slopes are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. Therefore, it appears that in order to correctly predict overall performance it is equally important to account for the effects of seal-tooth leakage as it is to include the influence of tip clearance flows. Third stage blade element performance data suggested that the performance degradation observed when leakage was increased was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near hub performance of the stator row in which leakage occurred. Second, the altered stator exit now conditions caused by increased leakage impaired the performance of the next downstream stage by decreasing the work input of the downstream rotor and increasing total pressure loss of the downstream stator. These trends caused downstream stages to progressively perform worse. Other measurements were acquired to determine spatial and temporal flow field variations within the up-and-downstream shrouded stator cavities. Flow within the cavities involved low momentum fluid traveling primarily

  19. Dynamic blade row compression component model for stability studies

    Science.gov (United States)

    Tesch, W. A.; Steenken, W. G.

    1976-01-01

    This paper describes a generalized dynamic model which has been developed for use in compression component aerodynamic stability studies. The model is a one-dimensional, pitch-line, blade row, lumped volume system. Arbitrary placement of blade free volumes upstream, within, and downstream of the compression component as well as the removal of bleed flow from the exit of any rotor or stator are model options. The model has been applied to a two-stage fan and an eight-stage compressor. The clean inlet pressure ratio/flow maps and the surge line have been reproduced, thereby validating the capability of the dynamic model to reproduce the steady-flow characteristics of the compression component. A method for determining the onset of an aerodynamic instability which is associated with surge is described. Sinusoidally time-varying inlet and exit boundary conditions have been applied to the eight stage compressor as examples of the manner in which this model may be used for stability studies.

  20. Analysis of supersonic stall bending flutter in axial-flow compressor by actuator disk theory

    Science.gov (United States)

    Adamczyk, J. J.

    1978-01-01

    An analytical model was developed for predicting the onset of supersonic stall bending flutter in axial-flow compressors. The analysis is based on two-dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils. The effects of shock waves and flow separation are included in the model. Calculations show that the model predicts the onset, in an unshrouded rotor, of a bending flutter mode that exhibits many of the characteristics of supersonic stall bending flutter. The validity of the analysis for predicting this flutter mode is demonstrated.

  1. Effect of Partial Span Aspiration on the Performance of a Transonic Axial Compressor Rotor: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Vijaykumar Jain

    2015-01-01

    Full Text Available Aspiration in an axial compressor is normally regarded as sucking out the low momentum boundary layer from blade suction surface, thus lowering the chances of flow separation and consequently that of stall under off-design operation. However, the suction mass flow does not take part in useful work and leads to loss of engine power output. This paper deals with a new concept of natural aspiration to energize blade suction surface boundary layer by injecting some fluid from pressure to suction side through a part span slot on the blade. The energized boundary layer has lesser tendency to separate, thus enhancing stall margin. Numerical simulations were carried out to study the effect of aspiration slot location and geometry on the performance and stall margin of a transonic axial compressor rotor. The computational results without aspiration slot were in fair agreement with the published experimental data. The modified rotor, with part span aspiration, showed ~3.2% improvement in stall margin at design rotational speed. The pressure ratio and efficiency of the aspirated rotor dropped by ~1.42% and ~2.0%, respectively, whereas the structural analysis did not indicate any adverse effect on the blade stress distribution in the presence of aspiration slot.

  2. Experimental Blade Research

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Branner, Kim; Berring, Peter

    This report is a summary of the results obtained in the project: Experimental Blade Research – phase 2 (EBR2). The project was supported by the Danish Energy Authority through the 2010 Energy Technology Development and Demonstration Program (EUDP 2010-II) and has journal no. 64011-0006. The project...

  3. Database about blade faults

    DEFF Research Database (Denmark)

    Branner, Kim; Ghadirian, Amin

    This report deals with the importance of measuring the reliability of the rotor blades and describing how they can fail. The Challenge is that very little non-confidential data is available and that the quality and detail in the data is limited....

  4. A numerical investigation on the unstable flow in a single stage of an axial compressors

    CERN Document Server

    Farhanieh, B; Ghorbanian, K

    2003-01-01

    An unsteady two-dimensional finite-volume solver was developed based on Van Leer's flux splitting algorithm in conjunction with sup M onotonic Upstream Scheme for Conservation Laws sup l imiters to improve the order of accuracy and the two-layer Baldwin-Lomax turbulence model was also implemented. Two test cases were prepared to validate the solver. The computed results were compared with the experimental data and a good agreement validated the solver. Finally, the solver was used for the flow through a multi-blade stage of an axial compressor in its off-design condition. The computed results showed a rotating stall-like instability with a periodic behavior. To investigate the flow properties during the instability condition, the flow pattern, vortex properties and the axial velocity were studied. It was concluded that the instability vortices in the multi-blade cascade do not have the same generation history of the separated vortices over a single body.

  5. Numerical Investigation of Inlet Distortion on an Axial Flow Compressor Rotor with Circumferential Groove Casing Treatment

    Institute of Scientific and Technical Information of China (English)

    Huang Jian; Wu Hu

    2008-01-01

    On the base of an assumed steady inlet circumferential total pressure distortion, three-dimensional time-dependent numerical simulations are conducted on an axial flow subsonic compressor rotor. The performances and flow fields of a compressor rotor, either casing treated or untreated, are investigated in detail either with or without inlet pressure distortion. Results show that the circumferential groove casing treatment can expand the operating range of the compressor rotor either with or without inlet pressure distortion at the expense of a drop in peak isentropic efficiency. The casing treatment is capable of weakening or even removing the tip leakage vortex effectively either with or without inlet distortion. In clean inlet circumstances, the enhancement and forward movement of tip leakage vortex cause the untreated compressor rotor to stall. By contrast, with circumferential groove casing, the serious flow separation on the suction surface leads to aerodynamic stalling eventually. In the presence of inlet pressure distortion, the blade loading changes from passage to passage as the distorted inflow sector is traversed. Similar to the clean inlet circumstances, with a smooth wall casing, the enhancement and forward movement of tip leakage vortex are still the main factors which lead to the compressor rotor stalling eventu-ally. When the rotor works under near stall conditions, the blockage resulting from the tip leakage vortex in all the passages is very seri-ous. Especially in several passages, flow-spillage is observed. Compared to the clean inlet circumstances, circumferential groove casing treatment can also eliminate the low energy zone in the outer end wall region effectively.

  6. 33 CFR 154.826 - Vapor compressors and blowers.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor compressors and blowers....826 Vapor compressors and blowers. (a) Each inlet and outlet to a compressor or blower which handles...) Excessive shaft bearing temperature. (d) If a centrifugal compressor, fan, or lobe blower handles vapor...

  7. 30 CFR 57.13010 - Reciprocating-type air compressors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 57.13010... Air and Boilers § 57.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  8. 30 CFR 56.13010 - Reciprocating-type air compressors.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Reciprocating-type air compressors. 56.13010... and Boilers § 56.13010 Reciprocating-type air compressors. (a) Reciprocating-type air compressors... than 25 percent. (b) However, this standard does not apply to reciprocating-type air compressors...

  9. NG compressors play role in success story

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-11

    In early 1993, Con Edison and Brooklyn Union Gas began offering rebates to manufacturers that replaced electric motor-driven air compressors with natural gas engine-driven air compressors. These rebates covered significant portions of the costs of installation. After carefully considering all options, Ultra Creative decided to order two Quincy QSS-750-NG, 220-HP units from scales Air Compressor Crop. Scales is a full-service air compressor distribution which offers complete turnkey installation service on all types of stationary air compressors, plus maintenance and repairs. The complete Quincy QSS Series of natural gas engine-driven air compressors is available in sizes from 370 to 1500 cfm. An optical heat recovery system can boost energy efficiencies over 80%. For example, heat recovered from the engine cooling water and exhaust, combined with the heat recovered from the air compressor oil cooler and aftercooler, can be used for heating boiler and laundry process water, plastics thermoforming, unit heaters for space heating, plating tanks, and a variety of other applications to displace conventional fuels.

  10. Sound generation by non-synchronously oscillating rotor blades in turbomachinery

    Science.gov (United States)

    Zhou, Di; Wang, Xiaoyu; Chen, Jun; Jing, Xiaodong; Sun, Xiaofeng

    2015-10-01

    In this paper, the sound generation by non-synchronously oscillating rotor blades in axial compressor is investigated with emphasis on establishing an analytical model for the corresponding sound field inside an annular duct. In terms of the present model, it is found that the acoustic frequency and propagating modes generated by non-synchronously oscillating rotor blades are not only associated with the blade vibration frequency and rotational speed, but also depend on the cascade inter-blade phase angle (IBPA) and the interaction between blades, which is clearly distinguished from typical Doppler effect. Moreover, it is also shown that although the IBPA of cascade is non-constant practically, the characteristics of sound generation are only slightly affected. Besides, the present work has conducted experimental investigations in order to gain insight into the generation mechanism of such complex sound field. Excellent agreement between the model prediction and experimental measurement in the near and far fields is generally observed in the circumstances with different parameter settings. Since the present study links the sound generation with blade oscillation, it would be very helpful to the fault diagnosis of rotor non-synchronous oscillation to some extent.

  11. Combined-cycle power plant. 500 MW on a single shaft. Active stability improvement of the compressor - methods of analysis. Final report; GuD-Kraftwerk, 500 MW auf einer Welle. Aktive Stabilitaetsverbesserung am Verdichter - Analyseverfahren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Stoff, H.; Methling, F.O.

    2002-07-01

    Various analysis techniques are tested as possible stall and surge avoidance monitoring systems on high-speed axial compressors. Measurements were taken in a 4-stage transonic compressor with igv in the region of stable operation as well as approaching and crossing the surge line with fully developed rotating stall. The measurements contain the static wall pressure in front of each blade row. Artificial neural networks, Fourier techniques and cepstral analysis are investigated. The different methods are checked on a single sensor signal to reduce the instrumentational effort. Using the cepstral analysis a characteristic parameter is calculated which is valid in all investigated regions of operation of the compressor. This characteristic parameter is based on the blade passing frequency, i.e. in the terms of cepstral analysis it is the intensity of the fundamental component as well as the intensities of all its higher harmonics which are covered by the sensor signal. (orig.)

  12. Constructal blade shape in nanofluids

    Directory of Open Access Journals (Sweden)

    Bai Chao

    2011-01-01

    Full Text Available Abstract Blade configuration of nanofluids has been proven to perform much better than dispersed configuration for some heat conduction systems. The analytical analysis and numerical calculation are made for the cylinder--shaped and regular-rectangular-prism--shaped building blocks of the blade-configured heat conduction systems (using nanofluids as the heat conduction media to find the optimal cross-sectional shape for the nanoparticle blade under the same composing materials, composition ratio, volumetric heat generation rate, and total building block volume. The regular-triangular-prism--shaped blade has been proven to perform better than all the other three kinds of blades, namely, the regular-rectangular-prism--shaped blade, the regular-hexagonal-prism--shaped blade, and the cylinder--shaped blade. Thus, the regular-triangular-prism--shaped blade is selected as the optimally shaped blade for the two kinds of building blocks that are considered in this study. It is also proven that the constructal cylinder--regular-triangular-prism building block performs better than the constructal regular-rectangular-prism--regular-triangular-prism building block.

  13. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  14. Compressor Part I: Measurement and Design Modeling

    Directory of Open Access Journals (Sweden)

    Thomas W. Bein

    1999-01-01

    method used to design the 125-ton compressor is first reviewed and some related performance curves are predicted based on a quasi-3D method. In addition to an overall performance measurement, a series of instruments were installed on the compressor to identify where the measured performance differs from the predicted performance. The measurement techniques for providing the diagnostic flow parameters are also described briefly. Part II of this paper provides predictions of flow details in the areas of the compressor where there were differences between the measured and predicted performance.

  15. Flow Characteristics of a Pipe Diffuser for Centrifugal Compressors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Sun

    2017-01-01

    Full Text Available The pipe diffuser, an efficient kind of radial bladed diffuser, is widely used in centrifugal compressors for gas turbine engines. This paper investigates flow characteristics of a pipe diffuser for centrifugal compressors by solving three-dimensional Reynolds-averaged Navier-Stokes equations. The results show that the pipe diffuser is adaptable to high Mach number incoming flows, and its unique leading edge could uniform the flow distortion. Numerical analysis indicates that the choke in pipe diffuser occurs suddenly, which leads to the dramatically steep performance curves near choke condition. Besides, it is found that the first half flow passage is particularly important to the pipe diffuser performance as it influences the choking behavior, the static pressure distribution, and the matching, so more attention should be paid to this region when designing or optimizing a pipe diffuser. Two counter-rotating vortices generated in the diffuser inlet region are captured by numerical simulation, and they can exist in the downstream of the diffuser passage. More detailed analysis show that these two vortices dominate the flow structure in the whole diffuser passage by shifting flow to certain positions and forming high-momentum flow cells and wake flow cells. The leading edge formed by the intersection of adjacent diffuser passages significantly affects this pair of vortices. In addition, these two vortices also affect the flow separation in pipe diffuser flow passages, they suppress separation near the front wall and back wall while facilitate separation at center locations. Therefore, it is recommended to design the leading edge of the pipe diffuser carefully to control the vortices and obtain a better flow field.

  16. High Specification Offshore Blades: Work Package: 1B: Blades Design

    OpenAIRE

    Brown, Richard; Fletcher, Timothy; Galbraith, Roderick; York, Christopher

    2008-01-01

    This report outlines the current state of the art in offshore wind turbine blade aerodynamic design, along with the key technical limitations and possible technologies which may improve the aerodynamic design of blades and turbine rotors in the future. It is suggested that there are three principal areas in which aerodynamic improvements can be made to the design of offshore wind turbine systems: improved rotor system and blade tip design for operation at higher tip speeds, optimisation of wi...

  17. Investigations on Low Speed Axial Compressor with Forward and Backward Sweep

    Institute of Scientific and Technical Information of China (English)

    M.Govardhan; O.G.Krishna Kumar; N.Sitaram

    2007-01-01

    In the recent past, experimental studies have shown some advantages of blade lean and sweep in axial compressors. As most of the experimental results are combined with other features, it is difficult to determine the effect of individual parameters on the performance of the compressor. The present numerical studies are aimed at understanding the performance and three-dimensional flow pattern at the exit of swept and unswept rotors. Three rotors, namely; unswept, 200 forward swept and 200 backward swept rotors are analysed with a specific intention of understanding the pattern of the blade boundary layer flow. The analysis was done using a fully three-dimensional viscous CFD code CFX-5. Results indicated reduction in pressure rise with sweep. Backward sweep is detrimental as far as the performance near endwalls is considered. On the other hand total pressure loss in the wake in mid span region is less with backward sweep, which favours its application here. However, backward sweep adversely affects the stall margin. The ability of the forward sweep to deflect the streamlines towards hub gets diminished at low flow rates. Forward sweep changes the streamline pattern in such a way that the suction surface streamlines are deflected towards the hub and the pressure surface streamlines are deflected towards the casing. An opposite behaviour is observed in backward swept rotors.

  18. Virtual Training of Compressor Control Room Project

    Data.gov (United States)

    National Aeronautics and Space Administration — MYMIC will analyze, design, develop and evaluate the Virtual Control Room – Compressor Station (VCoR-CS) training system. VCoR-CS will provide procedural...

  19. Refrigeration system having dual suction port compressor

    Science.gov (United States)

    Wu, Guolian

    2016-01-05

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  20. High Speed Compressor for Subcooling Propellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Propellant densification systems for LH2 require compression systems that develop significant head. In the past this has required multiple stages of compressors...

  1. Mid-section of a can-annular gas turbine engine with an improved rotation of air flow from the compressor to the turbine

    Energy Technology Data Exchange (ETDEWEB)

    Little, David A.; Schilp, Reinhard; Ross, Christopher W.

    2016-03-22

    A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the air flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).

  2. Advanced electric heat pump dual-stroke compressor and system development

    Science.gov (United States)

    Veyo, S. E.; Fagan, T. J.

    1983-12-01

    The development of an advanced electric heat pump is discussed. A two-capacity, residential, advanced electric heat pump utilizing a unique dual-stroke compressor was developed. Two nearly identical preprototype split systems of nominally 3.5 tons maximum cooling capacity were designed, built and laboratory tested. The estimated annual energy efficiency of this advanced system is 20 percent better than a two-speed electric heat pump available at contract inception in 1979. This superior performance is due to the synergism of a high-efficiency, dual-stroke reciprocating compressor, a dual-strength high-efficiency single-speed single-phase hermetic drive motor, a single-width, single-entry high-efficiency indoor blower with backward curved cambered plate blades, a high-efficiency multivane axial flow outdoor fan, high-efficiency two-speed air mover motors and a microprocessor control system. The relative proportions of heat exchangers, air flows and compressor size as well as the ratio between high and low capacity were optimized so as to minimize the annual cost of ownership in a northern climate. Constraints placed upon the optimization and design process to ensure comfort provide heating air with a temperature of at least 90(0)F and provide cooling with a sensible-to-total capacity ratio of not more than 0.7. System performance was measured in the laboratory in accordance with applicable codes and procedures. Performance data plus hardware details are provided.

  3. An Experimental Characterization of Tip Leakage Flows and Corresponding Effects on Multistage Compressor Performance

    Science.gov (United States)

    Berdanier, Reid Adam

    The effect of rotor tip clearances in turbomachinery applications has been a primary research interest for nearly 80 years. Over that time, studies have shown increased tip clearance in axial flow compressors typically has a detrimental effect on overall pressure rise capability, isentropic efficiency, and stall margin. With modern engine designs trending toward decreased core sizes to increase propulsive efficiency (by increasing bypass ratio) or additional compression stages to increase thermal efficiency by increasing the overall pressure ratio, blade heights in the rear stages of the high pressure compressor are expected to decrease. These rear stages typically feature smaller blade aspect ratios, for which endwall flows are more important, and the rotor tip clearance height represents a larger fraction of blade span. As a result, data sets collected with large relative rotor tip clearance heights are necessary to facilitate these future small core design goals. This research seeks to characterize rotor tip leakage flows for three tip clearance heights in the Purdue three-stage axial compressor facility (1.5%, 3.0%, and 4.0% as a percentage of overall annulus height). The multistage environment of this compressor provides the unique opportunity to examine tip leakage flow effects due to stage matching, stator-rotor interactions, and rotor-rotor interactions. The important tip leakage flow effects which develop as a result of these interactions are absent for previous studies which have been conducted using single-stage machines or isolated rotors. A series of compressor performance maps comprise points at four corrected speeds for each of the three rotor tip clearance heights. Steady total pressure and total temperature measurements highlight the effects of tip leakage flows on radial profiles and wake shapes throughout the compressor. These data also evaluate tip clearance effects on efficiency, stall margin, and peak pressure rise capability. An emphasis of

  4. RELAP5-3D Compressor Model

    Energy Technology Data Exchange (ETDEWEB)

    James E. Fisher; Cliff B. Davis; Walter L. Weaver

    2005-06-01

    A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

  5. A Reinforced Blade for a Wind Turbine

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a reinforced blade for a wind turbine having elongated reinforcing members in the blade extending substantially in the plane of the profile chord in order to strengthen the blade against edgewise and flapwise forces....

  6. High fidelity simulation of non-synchronous vibration for aircraft engine fan/compressor

    Science.gov (United States)

    Im, Hong-Sik

    The objectives of this research are to develop a high fidelity simulation methodology for turbomachinery aeromechanical problems and to investigate the mechanism of non-synchronous vibration (NSV) of an aircraft engine axial compressor. A fully conservative rotor/stator sliding technique is developed to accurately capture the unsteadiness and interaction between adjacent blade rows. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are implemented to take into account the effect of phase difference for a sector of annulus simulation. To resolve the nonlinear interaction between flow and vibrating blade structure, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. An advanced mesh deformation method that generates the blade tip block mesh moving with the blade displacement is developed to ensure the mesh quality. An efficient and low diffusion E-CUSP (LDE) scheme as a Riemann solver designed to minimize numerical dissipation is used with an improved hybrid RANS/LES turbulence strategy, delayed detached eddy simulation (DDES). High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI simulation methodology. The validated cases include: (1) DDES of NACA 0012 airfoil at high angle of attack with massive separation. The DDES accurately predicts the drag whereas the URANS model significantly over predicts the drag. (2) The AGARD Wing 445.6 flutter boundary is accurately predicted including the point at supersonic incoming flow. (3) NASA Rotor 67 validation for steady state speed line and radial profiles at peak efficiency point and near stall point. The

  7. An investigation of rotor tip leakage flows in the rear-block of a multistage compressor

    Science.gov (United States)

    Brossman, John Richard

    An effective method to improve gas turbine propulsive efficiency is to increase the bypass ratio. With fan diameter reaching a practical limit, increases in bypass ratio can be obtained from reduced core engine size. Decreasing the engine core, results in small, high pressure compressor blading, and large relative tip clearances. At general rule of 1% reduction in compressor efficiency with a 1% increase in tip clearance, a 0.66% change in SFC indicates the entire engine is sensitive to high pressure compressor tip leakage flows. Therefore, further investigations and understanding of the rotor tip leakage flows can help to improve gas turbine engine efficiency. The objectives of this research were to investigate tip leakage flows through computational modeling, examine the baseline experimental steady-stage performance, and acquire unsteady static pressure, over-the rotor to observe the tip leakage flow structure. While tip leakage flows have been investigated in the past, there have been no facilities capable of matching engine representative Reynolds number and Mach number while maintaining blade row interactions, presenting a unique and original flow field to investigate at the Purdue 3-stage axial compressor facility. To aid the design of experimental hardware and determine the influence of clearance geometry on compressor performance, a computational model of the Purdue 3-stage compressor was investigated using a steady RANS CFD analysis. A cropped rotor and casing recess design was investigated to increase the rotor tip clearance. While there were small performance differences between the geometries, the tip leakage flow field was found independent of the design therefore designing future experimental hardware around a casing recess is valid. The largest clearance with flow margin past the design point was 4% tip clearance based on the computational model. The Purdue 3-stage axial compressor facility was rebuilt and setup for high quality, detailed flow

  8. Optimal Design of a Centrifugal Compressor Impeller Using Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Soo-Yong Cho

    2012-01-01

    Full Text Available An optimization study was conducted on a centrifugal compressor. Eight design variables were chosen from the control points for the Bezier curves which widely influenced the geometric variation; four design variables were selected to optimize the flow passage between the hub and the shroud, and other four design variables were used to improve the performance of the impeller blade. As an optimization algorithm, an artificial neural network (ANN was adopted. Initially, the design of experiments was applied to set up the initial data space of the ANN, which was improved during the optimization process using a genetic algorithm. If a result of the ANN reached a higher level, that result was re-calculated by computational fluid dynamics (CFD and was applied to develop a new ANN. The prediction difference between the ANN and CFD was consequently less than 1% after the 6th generation. Using this optimization technique, the computational time for the optimization was greatly reduced and the accuracy of the optimization algorithm was increased. The efficiency was improved by 1.4% without losing the pressure ratio, and Pareto-optimal solutions of the efficiency versus the pressure ratio were obtained through the 21st generation.

  9. Overall and blade element performance of a 1.20 pressure ratio fan stage with rotor blades reset -7 deg

    Science.gov (United States)

    Lewis, G. W., Jr.; Kovich, G.

    1976-01-01

    A 51-cm-diam model of a fan stage for short haul aircraft was tested in a single stage compressor research facility. The rotor blades were set 7 deg toward the axial direction (opened) from the design setting angle. Surveys of the air flow conditions ahead of the rotor, between the rotor and stator, and behind the stator were made over the stable operating range of the stage. At the design speed and a weight flow of 30.9 kg/sec, the stage pressure ratio and efficiency were 1.205 and 0.85, respectively. The design speed rotor peak efficiency of 0.90 occurred at a flow rate of 32.5 kg/sec.

  10. Performance evaluation of high speed compressors for high speed multipliers

    Directory of Open Access Journals (Sweden)

    Nirlakalla Ravi

    2011-01-01

    Full Text Available This paper describes high speed compressors for high speed parallel multipliers like Booth Multiplier, Wallace Tree Multiplier in Digital Signal Processing (DSP. This paper presents 4-3, 5-3, 6-3 and 7-3 compressors for high speed multiplication. These compressors reduce vertical critical path more rapidly than conventional compressors. A 5-3 conventional compressor can take four steps to reduce bits from 5 to 3, but the proposed 5-3 takes only 2 steps. These compressors are simulated with H-Spice at a temperature of 25°C at a supply voltage 2.0V using 90nm MOSIS technology. The Power, Delay, Power Delay Product (PDP and Energy Delay Product (EDP of the compressors are calculated to analyze the total propagation delay and energy consumption. All the compressors are designed with half adder and full Adders only.

  11. Rotating Stall and Stall-Controlled Performance of a Single Stage Subsonic Axial Compressor

    Institute of Scientific and Technical Information of China (English)

    Eisuke OUTA

    2006-01-01

    Activities by various authors on aerodynamics and control dynamics of rotating stall in axial compressor are first traced. Then, a process of stall cell evolution in a subsonic stage is discussed based on a 2-D CFD. A few numbers of vortices grow ahead of the rotor accumulating vorticity ejected from lightly stalled blades, and eventually organize a cell of circumferentially aligned huge vortices, which merge and recess repeatedly during the rotation. Such stall disturbance is intensified on trailing side of a circumferential inlet distortion and decays on the leading side. Considering these features, a new algorithm for stall warning is developed based on a correlation between pressure waveforms at each passing of a fixed blade. A remarkable change in the correlation level at near-stall provides a warning signal prior to the stall onset with sufficiently large time margin. This scheme is applied to achieve rotating stall prevention by actuating flaps installed on the hub. The last issue is on characteristics of forward swept blade which has much increased throttle margin with decreased tip loss. A 3-D computation shows that a secondary vortex generated in suction surface mid span interacts to reduce the tip leakage vortex that initiates the stall.

  12. [Blade auricular septostomy].

    Science.gov (United States)

    Ledesma Velasco, M; Nuñez Garduño, D; Salgado Escobar, J L; Munayer Calderón, J; Rodríguez Hernández, L; Rangel Abundis, A

    1987-01-01

    We describe the first case of BAS in our country in a three months old child with transposition of the great arteries, restrictive atrial septal defect (RASD) and intact interventricular septum. When he was 15 days old, we performed a balloon atrial septostomy. He had temporal improvement and six weeks later his cyanosis increased, and a new catheterization showed systemic arterial oxygen saturation of 30%, RASD and an interatrial pressure gradient of 2.1 mmHg (left atrium LA: 3.9 and right atrium RA: 1.8). We decided to perform a new septostomy with Park's blade atrial septostomy catheter. After the procedure the interatrial pressure gradient decreased to 0.2 mmHg (RA: 4.3 and LA: 4.5), the angiography shunt and atrial pressures increased. Five months later the child is alive and the systemic arterial oxygen saturation is 51.3%. The technique, advantages and complications are described.

  13. Numerical Investigation of Influence of Tangent Pitch and Slanting Flow of Guide Vanes on the Axial Compressor Stage Parameters

    Directory of Open Access Journals (Sweden)

    D. V. Arkhipov

    2015-01-01

    Full Text Available The flow redistribution in the axial stage through the stator axis blade deformation can create favorable conditions for raising stage efficiency and combined actions for axial compressor elements especially in ambient conditions. For this purpose, the axis deformation impact on the gas-dynamic stability margin and the coefficient of efficiency of axial compressor has been numerically investigated.The influence of guide vane (GV axis was considered with invariable rotor blades and different variants of stator. The GV axis form was changed on the arc of a circle in the range of ± 15% guide vane height in circumferential direction and in the axial direction in the range ± 10% of guide vane height, increments ± 2.5%.As an object, for investigation was chosen a numerical 3D model of transonic stage of axial compressor with the following values of basic parameters: circumferential speed in the rotor blade trips of 345 m/s, relative diameter of the hub being 0.7, and coefficient of discharge being 0.5. The stage was profiling by classic low Cu*r=const. Rotor and stator profiles for all variants under investigation were the same in the same radii.As to initial radial axis guide vane, the losses of total pressure in stator become substantially less throughout the height of blade in case there is a guide vane axis bending in axial direction in line of flow. Bending of the axis in the circumferential direction against the rotation leads to reducing total pressure losses especially in hub and shroud regions, and in the flow core there is no change.In future, the effects of a tangent pitch and a slanting flow can be of interest in case of the simultaneous bending in both directions, as well as when studying the influence of bending of the guide vanes, which are a part of a sector of stages and a multi-stage compressor in a wide range of operating conditions.

  14. 40 CFR 60.482-3a - Standards: Compressors.

    Science.gov (United States)

    2010-07-01

    ... Administrator. (j) Any existing reciprocating compressor in a process unit which becomes an affected facility... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards: Compressors. 60.482-3a..., Reconstruction, or Modification Commenced After November 7, 2006 § 60.482-3a Standards: Compressors. (a)...

  15. Coupled Thermodynamic Behavior of New Screw Compressors Rotors Profile

    Directory of Open Access Journals (Sweden)

    Arístides Rivera Torres

    2010-05-01

    Full Text Available The article displays an evaluation of the thermodynamic behavior of screw compressor rotors with new profiles, obtained with the help of the Scorpath 2000 software. This allows predicting precisely the operation of the compressor, as well as its thermodynamic evaluation, under equal conditions, with the work of other compressors fitted with rotor profiles of other kinds.

  16. 49 CFR 178.337-15 - Pumps and compressors.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pumps and compressors. 178.337-15 Section 178.337... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.337-15 Pumps and compressors. (a) Liquid pumps or gas compressors, if used, must be of suitable design, adequately...

  17. 49 CFR 178.338-17 - Pumps and compressors.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Pumps and compressors. 178.338-17 Section 178.338... PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.338-17 Pumps and compressors. (a) Liquid pumps and gas compressors, if used, must be of suitable design, adequately...

  18. Cold Climate Heat Pumps Using Tandem Compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  19. Design and Prototyping of Micro Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    Shimpei Mizuki; Gaku Minorikawa; Toshiyuki Hirano; Yuichiro Asaga; Naoki Yamaguchi; Yutaka Ohta; Eisuke Outa

    2003-01-01

    In order to establish the design methodology of ultra micro centrifugal compressor, which is the most important component of ultra micro gas turbine unit, a 10 times of the final target size model was designed, prototyped and tested. The problems to be solved for downsizing were examined and 2-dimensional impeller was chosen as the first model due to its productivity. The conventional 1D prediction method, CFD and the inverse design were attempted. The prototyped compressor was driven by using a turbocharger and the performance characteristics were measured.

  20. Active magnetic bearings applied to industrial compressors

    Science.gov (United States)

    Kirk, R. G.; Hustak, J. F.; Schoeneck, K. A.

    1993-01-01

    The design and shop test results are given for a high-speed eight-stage centrifugal compressor supported by active magnetic bearings. A brief summary of the basic operation of active magnetic bearings and the required rotor dynamics analysis are presented with specific attention given to design considerations for optimum rotor stability. The concerns for retrofits of magnetic bearings in existing machinery are discussed with supporting analysis of a four-stage centrifugal compressor. The current status of industrial machinery in North America using this new support system is presented and recommendations are given on design and analysis requirements for successful machinery operation of either retrofit or new design turbomachinery.

  1. Investigation of turbines for driving supersonic compressors II : performance of first configuration with 2.2 percent reduction in nozzle flow area / Warner L. Stewart, Harold J. Schum, Robert Y. Wong

    Science.gov (United States)

    Stewart, Warner L; Schum, Harold J; Wong, Robert Y

    1952-01-01

    The experimental performance of a modified turbine for driving a supersonic compressor is presented and compared with the performance of the original configuration to illustrate the effect of small changes in the ratio of nozzle-throat area to rotor-throat area. Performance is based on the performance of turbines designed to operate with both blade rows close to choking. On the basis of the results of this investigation, the ratio of areas is concluded to become especially critical in the design of turbines such as those designed to drive high-speed, high-specific weight-flow compressors where the turbine nozzles and rotor are both very close to choking.

  2. Task IV: Development of Circumferential Inlet Distortion through a Representative Eleven Stage High-speed Axial Compressor

    Science.gov (United States)

    Tan, Choon-Sooi; Suder, Kenneth (Technical Monitor)

    2003-01-01

    The concepts and the procedure developed in Task I and Task III were used to determine the response of an eleven-stage high-speed compressor to an inlet distortion of 180 deg. circumferential extent for contrasting against its performance under uniform inlet flow. Using the computed results at the inlet to and outlet of the compressor, the computed total pressure ratio and efficiency for the clean condition are determined to be 14.22 and 76.9 percent respectively. As for the distorted case, these are determined to be 10.35 and 71.8 percent respectively, showing deterioration 76.9 percent vs 71.8 percent). The physical consistency of the computed flow field was assessed as a means of demonstrating the applicability and utility of the body force representation for inlet distortion computations. Specifically the computed evolution of the distorted pattern in static pressure and total pressure from compressor inlet to exit is examined. For the eleven-stage compressor examined here, the deterioration in performance has been found to be particularly severe in the last 2 stages. This suggests that the last two stages could be redesigned to alleviate the observed deterioration thus making the compressor performance insensitive to circumferential inlet distortion. This can potentially be accomplished by first determining what should the body force distribution of the last two stages should be to achieve minimal or no deterioration in performance in the last two stages. One can then in principle proceed to determine the blade design to yield such a body force distribution.

  3. Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    2016-01-01

    In this section the research program framework for European PhD network MARE-WINT is presented, particularly the technology development work focussing on reliability/maintenance and the models describing multi-body fluid structure interaction for the Rotor Blade structure. In order to give a cont...... a context for the effort undertaken by the individual researchers this section gives a general background for Wind Turbine blades identifying the trends and issues of importance for these structures as well as concepts for “smarter” blades that address these issues.......In this section the research program framework for European PhD network MARE-WINT is presented, particularly the technology development work focussing on reliability/maintenance and the models describing multi-body fluid structure interaction for the Rotor Blade structure. In order to give...

  4. Roles and expectations of cold compressor for helium refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Nobuyoshi; Asakura, Hiroshi; Yoshinaga, Seiichiro; Ishizawa, Takehiko [Ishikawajima-Harima Heavy Industries Co., Ltd., Yokohama, Kanagawa (Japan)

    2002-12-01

    Since around 1970, cryogenic systems have required the use of cold compressors. The requirement appeared for two reasons. The first was reduce the pressure of liquid helium with the intention of realizing the stable operation of large superconducting magnets with the best superconducting ability by decreasing operating temperature. The other was to improve the reliability of helium refrigerator compressors by introducing a turbo-compressor with oil-free bearings. This paper describes the circumstances and particular development of cold compressors, requirements related to helium refrigeration systems and cold compressors and future prospects. (author)

  5. Design of turbomachinery blading in three-dimensional flow by the circulation method

    Science.gov (United States)

    Hawthorne, W. R.; Tan, C. S.

    1987-01-01

    In this paper, we report on the progress of the further development and application of an analytical theory for the design of turbomachinery blading in three-dimensional flow. After a section describing the recent development of the theory, we discuss the various applications including the investigations of the design of radial inflow turbines. Numerical examples are also presented to illustrate the application of the theory to the design of a free vortex fan, an axial turbine rotor, a free vortex compressor stage for low and high Mach numbers, a non-free vortex fan with trailing vortex sheets, and a counter-rotating propeller in the limit of a large number of blades. Further possible applications of the theory to the design of other aero- and hydrodynamic devices are discussed.

  6. Blade tip timing (BTT) uncertainties

    Science.gov (United States)

    Russhard, Pete

    2016-06-01

    Blade Tip Timing (BTT) is an alternative technique for characterising blade vibration in which non-contact timing probes (e.g. capacitance or optical probes), typically mounted on the engine casing (figure 1), and are used to measure the time at which a blade passes each probe. This time is compared with the time at which the blade would have passed the probe if it had been undergoing no vibration. For a number of years the aerospace industry has been sponsoring research into Blade Tip Timing technologies that have been developed as tools to obtain rotor blade tip deflections. These have been successful in demonstrating the potential of the technology, but rarely produced quantitative data, along with a demonstration of a traceable value for measurement uncertainty. BTT technologies have been developed under a cloak of secrecy by the gas turbine OEM's due to the competitive advantages it offered if it could be shown to work. BTT measurements are sensitive to many variables and there is a need to quantify the measurement uncertainty of the complete technology and to define a set of guidelines as to how BTT should be applied to different vehicles. The data shown in figure 2 was developed from US government sponsored program that bought together four different tip timing system and a gas turbine engine test. Comparisons showed that they were just capable of obtaining measurement within a +/-25% uncertainty band when compared to strain gauges even when using the same input data sets.

  7. Advanced thin dicing blade for sapphire substrate

    Directory of Open Access Journals (Sweden)

    Koji Matsumaru, Atsushi Takata and Kozo Ishizaki

    2005-01-01

    Full Text Available Advanced thin dicing blades for cutting sapphire were fabricated and evaluated for cutting performance with respect to dicing blade wear and meandering of cutting lines. Three kinds of different commercial blades were used to compare the cutting performance. These blades had the same thickness and the same diamond grain size. The matrix material of one dicing blade was nickel–phosphorus alloy and two other were a vitric material. Newly developed dicing blades consisted of a vitric material with pore. A dicing machine was used for cutting sapphire. Turning velocity, cutting depth and feeding rate were 20,000 min−1, 200 μm and 1 mm s−1, respectivity. Cutting directions were 110 and 010. All blades could cut 1000 mm and more in the 110 direction. On the other hand, commercial dicing blades generated meandering lines and were broken only by 50 mm of cutting length in 010 direction. Fabricated blade can cut 1000 mm and more in 010 direction. The wear of fabricated dicing blade was the largest in the dicing blades. Although cutting performance of commercial dicing blades depended on the sapphire orientation, that of fabricated blade was independent of the sapphire orientation. It has been confirmed that the fabricated dicing blade was kept a cutting ability by flash diamonds on the dicing blade surface, which were created by wear of blade during cutting sapphire. Low cutting ability of commercial blades increased cutting force between with increase of cutting length. The increased cutting force produced to bend a blade and cutting lines, and finally a fracture of blade.

  8. Fault detection and diagnosis for refrigerator from compressor sensor

    Energy Technology Data Exchange (ETDEWEB)

    Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.

    2016-12-06

    A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identified if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.

  9. 30 CFR 75.344 - Compressors.

    Science.gov (United States)

    2010-07-01

    ... air course or to the surface and equipped with sensors to monitor for heat and for carbon monoxide or smoke. The sensors shall deenergize power to the compressor, activate a visual and audible alarm located... every 31 days, sensors installed to monitor for carbon monoxide shall be calibrated with a...

  10. Compressor Foundation Analysis Tool(COFANTO)

    NARCIS (Netherlands)

    Eijk, A.; Lentzen, S.S.K; Zuada Coelho, B.E.; Galanti, F.M.B.

    2012-01-01

    Reciprocating compressors are generally supported on a heavy concrete foundation. In spite of the large inertia and stiffness of the foundation, problems can occur due to interaction between the mechanical installation and the foundation. Two types of problems may occur. In the first type, the inter

  11. Performance Measurements of a Low Specific Speed TurboClaw® Compressor

    Science.gov (United States)

    Parra, J.; Cattell, R.; Etemad, S.; Pullen, K. R.

    2015-08-01

    Low specific speed compressors have been historically based on positive displacement machines. Attempts to bring advantages of turbomachinery such as oil free, low parts counts, low cost of manufacture, and reliability to low flow rate applications have not been sparse, but the principle difficulty has always been that the conventional turbomachine design operates at ultra-high speed to deliver low volume flow rates. This is synonymous with low efficiency due to higher losses (windage, surface finish, and tip clearances). The innovative TurboClaw® design is a low specific speed turbomachinery with forward swept impeller geometry. It owes its high efficiency and operational stability to careful design of its nearly tangential forward swept blading and diffuser geometry.

  12. Particle image velocimetry of active flow control on a compressor cascade

    Energy Technology Data Exchange (ETDEWEB)

    Hecklau, M.; Rennings, R. van; Zander, V.; Nitsche, W. [Technische Universitaet Berlin, Department of Aeronautics and Astronautics, Berlin (Germany); Huppertz, A.; Swoboda, M. [Rolls-Royce Deutschland Ltd. and Co. KG, Dahlewitz (Germany)

    2011-04-15

    AFC (Active Flow Control) experiments have been performed by means of steady and pulsed blowing out of the sidewalls as well as out of the blade's suction surface in a highly loaded compressor cascade. PIV (Particle Image Velocimetry) was used to evaluate the fully three-dimensional internal flow field and the impact of AFC methods. The aim was to observe the secondary flow structures and flow instabilities by PIV, to tune the AFC device operation parameters. This paper summarizes the different PIV measurements performed at the stator cascade to give an overview of the dominant flow features in the passage flow field and to obtain a detailed view of control mechanisms. In addition, a new vortex detection method is presented, based on a 2D-wavelet which is applicable in two-dimensional velocity data fields. (orig.)

  13. Performance analysis of a centrifugal compressor with variable inlet guide vanes

    Institute of Scientific and Technical Information of China (English)

    XIAO Jun; GU Chuangang; SHU Xinwei; GAO Chuang

    2007-01-01

    The flow in a centrifugal compressor stage with variable inlet guide vanes (VIGVs) is investigated by numerical simulation in this paper.Analysis of the performance curves and relative velocity vectograms indicates that performance curves shift toward small flow domain when VIGVs turn positively,and toward large flow domain when VIGVs turn negatively.Stage efficiency drops quickly after work condition enters a small flow domain through the peak efficiency point.Under the circumstance of large setting angles of the guide vanes,there exist obvious flow separations in guide vane passages within wide flow ranges,and back flow regions can be located at the front of splitter suction surfaces under large flow conditions,while under the condition of small flow,flow separations occur on suction surfaces of long blades.

  14. Materials for Advanced Turbine Engines (MATE). Project 4: Erosion resistant compressor airfoil coating

    Science.gov (United States)

    Rashid, J. M.; Freling, M.; Friedrich, L. A.

    1987-01-01

    The ability of coatings to provide at least a 2X improvement in particulate erosion resistance for steel, nickel and titanium compressor airfoils was identified and demonstrated. Coating materials evaluated included plasma sprayed cobalt tungsten carbide, nickel carbide and diffusion applied chromium plus boron. Several processing parameters for plasma spray processing and diffusion coating were evaluated to identify coating systems having the most potential for providing airfoil erosion resistance. Based on laboratory results and analytical evaluations, selected coating systems were applied to gas turbine blades and evaluated for surface finish, burner rig erosion resistance and effect on high cycle fatigue strength. Based on these tests, the following coatings were recommended for engine testing: Gator-Gard plasma spray 88WC-12Co on titanium alloy airfoils, plasma spray 83WC-17Co on steel and nickel alloy airfoils, and Cr+B on nickel alloy airfoils.

  15. Prediction of Cracking Gas Compressor Performance and Its Application in Process Optimization

    Institute of Scientific and Technical Information of China (English)

    李绍军; 李凤

    2012-01-01

    Cracking gas compressor is usually a centrifugal compressor. The information on the performance of a centrifugal compressor under all conditions is not available, which restricts the operation optimization for compressor. To solve this problem, two back propagation (BP) neural networks were introduced to model the performance of a compressor by using the data provided by manufacturer. The input data of the model under other conditions should be corrected according to the similarity theory. The method was used to optimize the system of a cracking gas compressor by embedding the compressor performance model into the ASPEN PLUS model of compressor. The result shows that it is an effective method to optimize the compressor system.

  16. Research on Aero-Thermodynamic Distortion Induced Structural Dynamic Response of Multistage Compressor Blading

    Science.gov (United States)

    1992-03-01

    compresor operating point. Also, the reduced steady surface pressure distributions and steady lift for thesolidity has much higher pressure differences and...including stall flutter and dynamic stall , Received May 9. 198 revision received Oct. 10. 1988. Copyright also have been addressed. Thus, oscillating...function, with the last ’ 2Yashima. S., and Tanaka. H.. "Torsional Flutter in Stalled stage stator vane row replaced with isolated instrumented Cascade

  17. Research on Aero-Thermodynamic Distortion Induced Structural Dynamic Response of Multi-Stage Compressor Blading.

    Science.gov (United States)

    1984-06-01

    8217 ." :’ ;’:::::. ====================================:: : " :.; :- ..’./.’ " """ ""..’’: : " ’. ’’. -. - ..: " ’] -’: ".."-".:"’. -" . . . .’.- .."... . . "".".".’.-.. . . . .. , Stlg30. Mach.• 6 .. - 2500- Ph oseO 8000- S • 30 C/S.*OO Phase

  18. Computer Program for Aerodynamic and Blading Design of Multistage Axial-Flow Compressors.

    Science.gov (United States)

    1981-12-01

    8217.f tc p c oer ~oto o c totioP Cr.o to-O i.c t loc o r--c C) ou c-ecc-oat .. .oo. . oo o o o c Lu . t tooflootoo t to totoooL to crc et<uot < toiL. c O...0CC~C-- tCC ~tC’C~ - C CCC - CCC> C-C-C’ Ct~~C~-CC-CCCC-~C - - C-Ca- ~- 00 C.~CC--N ’CC-CC C - C . .. -C - C C ~C C - 4, 92 ----- II IIIII I 00-4 - 0

  19. Aerodynamic Analysis of Morphing Blades

    Science.gov (United States)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  20. Investigation of the Effects of Airfoil-probes on the Aerodynamic Performance of an Axial Compressor

    Institute of Scientific and Technical Information of China (English)

    HE Xiang; MA Hongwei; REN Minglin; XIANG Honghui

    2012-01-01

    In order to investigate the effects of the airfoil-probes on the aerodynamic performance of an axial compressor,a numerical simulation of 3D flow field is performed in a 1.5-stage axial compressor with airfoil-probes installed at the stator leading-edge (LE).The airfoil-probes have a negative influence on the compressor aerodynamic performance at all operating points.A streamwise vortex is induced by the airfoil-probe along both sides of the blade.At the mid-operating point,the vortex is notable along the pressure side and is relatively small along the suction side (SS).At the near-stall point,the vortex is slightly suppressed in the pressure surface (PS),but becomes remarkable in the suction side.A small local-separation is induced by the interactions between the vortex and the end-wall boundary layer in the corner region near the hub.That the positive pitch angle of the airfoil-probe at 6.5% span is about 15° plays an important role in the vortex evolution near the hub,which causes the fact that the airfoil-probe near the hub has the largest effects among the four airfoil-probes.In order to get a further understanding of the vortex evolution in the stator in the numerical simulation,a flow visualization experiment in a water tunnel is performed.The flow visualization results give a deep insight into the evolution of the vortex induced by the airfoil-probe.

  1. Design and optimization of a single stage centrifugal compressor for a solar dish-Brayton system

    Science.gov (United States)

    Wang, Yongsheng; Wang, Kai; Tong, Zhiting; Lin, Feng; Nie, Chaoqun; Engeda, Abraham

    2013-10-01

    According to the requirements of a solar dish-Brayton system, a centrifugal compressor stage with a minimum total pressure ratio of 5, an adiabatic efficiency above 75% and a surge margin more than 12% needs to be designed. A single stage, which consists of impeller, radial vaned diffuser, 90° crossover and two rows of axial stators, was chosen to satisfy this system. To achieve the stage performance, an impeller with a 6:1 total pressure ratio and an adiabatic efficiency of 90% was designed and its preliminary geometry came from an in-house one-dimensional program. Radial vaned diffuser was applied downstream of the impeller. Two rows of axial stators after 90° crossover were added to guide the flow into axial direction. Since jet-wake flow, shockwave and boundary layer separation coexisted in the impeller-diffuser region, optimization on the radius ratio of radial diffuser vane inlet to impeller exit, diffuser vane inlet blade angle and number of diffuser vanes was carried out at design point. Finally, an optimized centrifugal compressor stage fulfilled the high expectations and presented proper performance. Numerical simulation showed that at design point the stage adiabatic efficiency was 79.93% and the total pressure ratio was 5.6. The surge margin was 15%. The performance map including 80%, 90% and 100% design speed was also presented.

  2. Automatic efficiency optimization of an axial compressor with adjustable inlet guide vanes

    Science.gov (United States)

    Li, Jichao; Lin, Feng; Nie, Chaoqun; Chen, Jingyi

    2012-04-01

    The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.

  3. Low-Cost Rotating Experimentation in Compressor Aerodynamics Using Rapid Prototyping

    Directory of Open Access Journals (Sweden)

    Mathias Michaud

    2016-01-01

    Full Text Available With the rapid evolution of additive manufacturing, 3D printed parts are no longer limited to display purposes but can also be used in structural applications. The objective of this paper is to show that 3D prototyping can be used to produce low-cost rotating turbomachinery rigs capable of carrying out detailed flow measurements that can be used, among other things, for computational fluid dynamics (CFD code validation. A fully instrumented polymer two-stage axial-mixed flow compressor test rig was designed and fabricated with stereolithography (SLA technology by a team of undergraduate students as part of a senior-year design course. Experiments were subsequently performed on this rig to obtain both the overall pressure rise characteristics of the compressor and the stagnation pressure distributions downstream of the blade rows for comparison with CFD simulations. In doing so, this work provides a first-of-a-kind assessment of the use of polymer additive technology for low-cost rotating turbomachinery experimentation with detailed measurements.

  4. A Model to Predict Stall Inception of Transonic Axial Flow Fan/Compressors

    Institute of Scientific and Technical Information of China (English)

    SUN Xiaofeng; SUN Dakun; YU Weiwei

    2011-01-01

    A stall inception model for transonic fan/compressors is presented in this paper.It can be shown that under some assumptions the solution of unsteady flow field consists of pressure wave which propagates upstream or downstream,vortex wave and entropy wave convected with the mean flow speed.By further using the mode-matching technique and applying the conservation law and conditions reflecting the loss characteristics of a compressor in the inlet and outlet of the rotor or stator blade rows,a group of homogeneous equations can be obtained from which the stability equation can be derived.Based on the analysis of the unsteady phenomenon caused by casing treatments,the function of casing treatments has been modeled by a wall impedance condition which has been included in the stability model through the eigenvalues and the corresponding eigenfunctions of the system.Besides,the effect of shock waves in cascade channel on the stability prediction is also considered in the stall inception model.Finally,some numerical analysis and experimental investigation are also conducted with emphasis on the mutual comparison.

  5. Off-design computer code for calculating the aerodynamic performance of axial-flow fans and compressors

    Science.gov (United States)

    Schmidt, James F.

    1995-01-01

    An off-design axial-flow compressor code is presented and is available from COSMIC for predicting the aerodynamic performance maps of fans and compressors. Steady axisymmetric flow is assumed and the aerodynamic solution reduces to solving the two-dimensional flow field in the meridional plane. A streamline curvature method is used for calculating this flow-field outside the blade rows. This code allows for bleed flows and the first five stators can be reset for each rotational speed, capabilities which are necessary for large multistage compressors. The accuracy of the off-design performance predictions depend upon the validity of the flow loss and deviation correlation models. These empirical correlations for the flow loss and deviation are used to model the real flow effects and the off-design code will compute through small reverse flow regions. The input to this off-design code is fully described and a user's example case for a two-stage fan is included with complete input and output data sets. Also, a comparison of the off-design code predictions with experimental data is included which generally shows good agreement.

  6. Development of a Gas Dynamic and Thermodynamic Simulation Model of the Lontra Blade Compressor™

    Science.gov (United States)

    Karlovsky, Jerome

    2015-08-01

    The Lontra Blade Compressor™ is a patented double acting, internally compressing, positive displacement rotary compressor of innovative design. The Blade Compressor is in production for waste-water treatment, and will soon be launched for a range of applications at higher pressure ratios. In order to aid the design and development process, a thermodynamic and gas dynamic simulation program has been written in house. The software has been successfully used to optimise geometries and running conditions of current designs, and is also being used to evaluate future designs for different applications and markets. The simulation code has three main elements. A positive displacement chamber model, a leakage model and a gas dynamic model to simulate gas flow through ports and to track pressure waves in the inlet and outlet pipes. All three of these models are interlinked in order to track mass and energy flows within the system. A correlation study has been carried out to verify the software. The main correlation markers used were mass flow, chamber pressure, pressure wave tracking in the outlet pipe, and volumetric efficiency. It will be shown that excellent correlation has been achieved between measured and simulated data. Mass flow predictions were to within 2% of measured data, and the timings and magnitudes of all major gas dynamic effects were well replicated. The simulation will be further developed in the near future to help with the optimisation of exhaust and inlet silencers.

  7. Blade loading of transonic circular cascade diffuser. Sen prime onsoku enkei yokuretsu diffuser no tsubasa fuka

    Energy Technology Data Exchange (ETDEWEB)

    Hayami, H.; Kawaguchi, N. (Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study); Sawae, M. (Nippon Mining Co. Ltd., Tokyo (Japan)); Nakamura, T. (Toshiba Corp., Tokyo (Japan))

    1992-06-25

    In this study, a low-solidity circular cascade, conformally transformed from a high-stagger linear cascade of double-circular-arc vanes with solidity of 0.69, was examined as a part of the diffuser system of a transonic centrifugal compressor. The blade loading of the cascade was also investigated by means of pressure measurement around the vane. Experiments were conducted by the testing apparatus of closed loop type compressor using fleon 12 under the condition of four rotating speeds between 15,000 and 19,000 r.p.m. Cascades with stagger angles of 69{degree} and 72{degree} were used. Consequently, it was found that the experimental data for the lift-coefficient of the vane were almost on a single straight line when plotted against angle-of-attack for a wide range of Mach numbers and flow angles. The maximum lift-coefficient of about 1.5 was recorded. It was also found that the vane functioned well even near the surge condition of the compressor. 6 refs., 6 figs.

  8. A comparison of model helicopter rotor Primary and Secondary blade/vortex interaction blade slap

    Science.gov (United States)

    Hubbard, J. E., Jr.; Leighton, K. P.

    1983-01-01

    A study of the relative importance of blade/vortex interactions which occur on the retreating side of a model helicopter rotor disk is described. Some of the salient characteristics of this phenomenon are presented and discussed. It is shown that the resulting Secondary blade slap may be of equal or greater intensity than the advancing side (Primary) blade slap. Instrumented model helicopter rotor data is presented which reveals the nature of the retreating blade/vortex interaction. The importance of Secondary blade slap as it applies to predictive techniques or approaches is discussed. When Secondary blade slap occurs it acts to enlarge the window of operating conditions for which blade slap exists.

  9. A new blade element method for calculating the performance of high and intermediate solidity axial flow fans

    Science.gov (United States)

    Borst, H. V.

    1978-01-01

    A method is presented to design and predict the performance of axial flow rotors operating in a duct. The same method is suitable for the design of ducted fans and open propellers. The unified method is based on the blade element approach and the vortex theory for determining the three dimensional effects, so that two dimensional airfoil data can be used for determining the resultant force on each blade element. Resolution of this force in the thrust and torque planes and integration allows the total performance of the rotor, fan or propeller to be predicted. Three different methods of analysis, one based on a momentum flow theory; another on the vortex theory of propellers; and a third based on the theory of ducted fans, agree and reduce cascade airfoil data to single line as a function of the loading and induced angle of attack at values of constant inflow angle. The theory applies for any solidity from .01 to over 1 and any blade section camber. The effects of the duct and blade number can be determined so that the procedure applies over the entire range from two blade open propellers, to ducted helicopter tail rotors, to axial flow compressors with or without guide vanes, and to wind tunnel drive fans.

  10. Real-time trend monitoring of gas compressor stations

    Energy Technology Data Exchange (ETDEWEB)

    Van Hardeveld, T. (Nova, an Alberta Corp., AB (Canada))

    1991-02-01

    The authors' company has developed a machinery health monitoring system (MHealth) for short-term and long-term historical trending and analysis of data from its 40 gas compressor stations. The author discusses the benefits of real-time trending in troubleshooting operations, in preventative maintenance scheduling and cites specific applications in the startup operations of several new gas compressor/centrifugal compressor units.

  11. Optimization of a scroll compressor for liquid flooding

    OpenAIRE

    Bell, Ian; Groll, Eckhard; Braun, James; King, Galen; W. Travis, Horton

    2012-01-01

    In two companion papers, simulation models for the working processes of liquid-flooded scroll compressors and expanders have been developed and validated against experimental data. In this study, analytic models are presented for the modes of irreversibility generation in the liquid-flooded scroll compressor including built-in volume ratio maladjustment, pressure drop and leakage. A thermodynamic model is used to derive the ideal volume ratio for a liquid-flooded compressor, which is higher t...

  12. Economics of water injected air screw compressor systems

    OpenAIRE

    Madhav, K. V.; Kovacevic, A.

    2015-01-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an in...

  13. An alternative compressor. A study; Alternativ kompressor. En udredning

    Energy Technology Data Exchange (ETDEWEB)

    Dall, O.; Jensen, F.; Danig, P.O.; Ritchie, E.; Kierkegaard, P.

    1997-10-01

    A linear compressor would be suitable for refrigerating systems with small effect. A computerized control system can be used to control the speed of a linear engine. A new compressor/engine with much improved energy efficiency can be designed to operate oil-free. The novel design of a compressor with smaller piston displacement is smaller than the existing models and thus more suitable for the future refrigerators. (EG) EFP-97. 71 refs.

  14. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  15. Individual blade pitch for yaw control

    NARCIS (Netherlands)

    Navalkar, S.T.; Van Wingerden, J.W.; Van Kuik, G.A.M.

    2014-01-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame

  16. A study on flow development in an APU-style inlet and its effect on centrifugal compressor performance

    Science.gov (United States)

    Lou, Fangyuan

    systems, secondary air systems, a throttle system, and different inlet configurations) were built. Additionally, three Labview programs were developed for acquiring the compressor health monitoring, steady and unsteady pressure and strain data. The baseline, steady aerodynamic performance map was established. Additionally, the unsteady pressure field in the compressor was investigated. Steady performance data have been acquired from choke to near surge at three different corrected speeds from 90% to 100% corrected speed in 5% increments. The performance of the compressor stage was characterized using total pressure ratio (TPR), total temperature ratio (TTR), and isentropic efficiency. The impeller alone and diffuser along performance were also investigated, and the high loss regions in the compressor were identified. At last, the compressor unsteady shroud pressure was investigated at 100% corrected speed in both the time domain and frequency domain. Results show strong pressure components in relation to the shaft frequency (SF). The impeller has 17 main blades and 17 splitter blades, and introduces pressure fluctuations at 17SF and its harmonics. Additionally, the diffuser has a vane count of 25 and results in pressure spectra of 59SF (17+17+25) due to the interactions between the impeller and diffuser.

  17. Small variable speed hermetic reciprocating compressors for domestic refrigerators

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.

    1996-01-01

    compressors are compared with experimental results obtained in a compressor test bench. The influence of speed on compressor performance is discussed with focus on valve modelling and internal thermal phenomena. Further plans for development and validation of the model as well as experimental investigations......This paper contains both a theoretical and experimental investigation of some of the fundamental characteristics of a smal variable speed hermetic reciprocating compressor intended for application in domestic refrigeration. The results of a previously published simulation model for variable speed...

  18. Economics of water injected air screw compressor systems

    Science.gov (United States)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  19. Optimization of the axial compressor flow passage to reduce the circumferential distortion

    Science.gov (United States)

    Popov, G.; Kolmakova, D.; Shklovets, A.; Ermakov, A.

    2015-08-01

    This work is motivated by the necessity to reduce the effects of the flow circumferential distortion in the flow passage of the aircraft gas turbine engine (GTE). In previous research, the authors have proposed the approaches to decrease of the flow circumferential distortion arising from the mid-support racks of GTE compressor and having a negative impact on the blade rows, located upstream. In particular, the idea of introducing the circumferentially non-uniform blade pitch and profile stagger angle of guide vanes located in front of the support was contributed in order to redistribute the flow and decrease the dynamic stresses in the rotor wheel of the same stage. During the research presented in this paper, another principal of reduction of the flow circumferential distortion was chosen. Firstly, the variants of upgrading the existing support racks were found. Secondly, the new design of support was offered. Both the first and the second version of the support design variation took into account the availability of technological and structural limitations associated with the location of oil pipes, springs and others elements in the support racks. Investigations of modified design showed that the support with altered racks provides a reduction of dynamic stresses by 20% at resonance with the most dangerous harmonic, and the new design of support can give the decrease of 30%.

  20. Effect of the Unsteadiness on the Diffuser Flow in a Transonic Centrifugal Compressor Stage

    Directory of Open Access Journals (Sweden)

    N. Bulot

    2009-01-01

    Full Text Available The study is focused on the analysis of the flow structure within the vaned diffuser of a transonic high-pressure centrifugal compressor stage. The analyzed time-dependent flow field comes from unsteady computations of the stage using a 3D Navier-Stokes code with a phase-lagged technique, at an operating point close to the design point. A good comparison with available experimental data allowed the use of CFD for investigating the details of the flow in order to assess the effect of the unsteadiness in the diffuser flow development. Applying various data processing techniques, it is shown that the unsteadiness is due to the jet and wake flow structure emerging from the radial impeller and to the pressure waves brought about by the interaction between the vane bow shock wave and the impeller blade. The interaction between the pressure waves and the vane pressure side boundary layer leads to a pulsating behavior of separated bubbles within the diffuser. The pressure waves are similar in shape and strength whatever the blade height. The observed change in the flow field from hub to tip is due to migration of the low momentum fluid contained in the wake toward the pressure side/hub corner.

  1. Helium compressors for closed-cycle, 4.5-Kelvin refrigerators

    Science.gov (United States)

    Hanson, T. R.

    1992-01-01

    An improved helium compressor for traveling-wave maser and closed-cycle refrigerator systems was developed and is currently being supplied to the DSN. This new 5-hp compressor package is designed to replace the current 3-hp DSN compressors. The new compressor package was designed to retrofit into the existing 3-hp compressor frame and reuse many of the same components, therefore saving the cost of documenting and fabricating these components when implementing a new 5-hp compressor.

  2. Experimental Blade Research - phase 2

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Branner, Kim; Berring, Peter

    This report is a summary of the results obtained in the project: Experimental Blade Research – phase 2 (EBR2). The project was supported by the Danish Energy Authority through the 2010 Energy Technology Development and Demonstration Program (EUDP 2010-II) and has journal no. 64011-0006. The project...

  3. Nonlinear Dynamic Analysis of Disordered Bladed-Disk Assemblies

    Science.gov (United States)

    McGee, Oliver G., III

    1997-01-01

    In a effort to address current needs for efficient, air propulsion systems, we have developed some new analytical predictive tools for understanding and alleviating aircraft engine instabilities which have led to accelerated high cycle fatigue and catastrophic failures of these machines during flight. A frequent cause of failure in Jets engines is excessive resonant vibrations and stall flutter instabilities. The likelihood of these phenomena is reduced when designers employ the analytical models we have developed. These prediction models will ultimately increase the nation's competitiveness in producing high performance Jets engines with enhanced operability, energy economy, and safety. The objectives of our current threads of research in the final year are directed along two lines. First, we want to improve the current state of blade stress and aeromechanical reduced-ordered modeling of high bypass engine fans, Specifically, a new reduced-order iterative redesign tool for passively controlling the mechanical authority of shroudless, wide chord, laminated composite transonic bypass engine fans has been developed. Second, we aim to advance current understanding of aeromechanical feedback control of dynamic flow instabilities in axial flow compressors. A systematic theoretical evaluation of several approaches to aeromechanical feedback control of rotating stall in axial compressors has been conducted. Attached are abstracts of two .papers under preparation for the 1998 ASME Turbo Expo in Stockholm, Sweden sponsored under Grant No. NAG3-1571. Our goals during the final year under Grant No. NAG3-1571 is to enhance NASA's capabilities of forced response of turbomachines (such as NASA FREPS). We with continue our development of the reduced-ordered, three-dimensional component synthesis models for aeromechanical evaluation of integrated bladeddisk assemblies (i.e., the disk, non-identical bladeing etc.). We will complete our development of component systems design

  4. Measurements of the tip-gap turbulent flow structure in a low-speed compressor cascade

    Science.gov (United States)

    Tang, Genglin

    This dissertation presents results from a thorough study of the tip-gap turbulent flow structure in a low-speed linear compressor cascade wind tunnel at Virginia Tech that includes a moving belt system to simulate the relative motion between the tip and the casing. The endwall pressure measurements and the surface oil flow visualizations were made on a stationary endwall to obtain the flow features and to determine the measurement profiles of interest. A custom-made miniature 3-orthogonal-velocity-component fiber-optic laser-Doppler velocimetry (LDV) system was used to measure all three components of velocity within a 50 mum spherical measurement volume within the gap between the endwall and the blade tip, mainly for the stationary wall with 1.65% and 3.30% tip gaps as well as some initial experiments for the moving wall. Since all of the vorticity in a flow originates from the surfaces under the action of strong pressure gradient, it was very important to measure the nearest-wall flow on the endwall and around the blade tip. The surface skin friction velocity was measured by using viscous sublayer velocity profiles, which verified the presence of an intense lateral shear layer that was observed from surface oil flow visualizations. All second- and third-order turbulence quantities were measured to provide detailed data for any parallel CFD efforts. The most complete data sets were acquired for 1.65% and 3.30% tip gap/chord ratios in a low-speed linear compressor cascade. This study found that tip gap flows are complex pressure-driven, unsteady three-dimensional turbulent flows. The crossflow velocity normal to the blade chord is nearly uniform in the and tip-gap and changes substantially from the pressure to suction side. The crossflow velocity relies on the local tip pressure loading that is different from the mid-span pressure loading because of tip leakage vortex influence. The tip gap flow is highly skewed three-dimensional flow throughout the full gap

  5. Investigation of UWB Wind Turbine Blade Deflection Sensing with a Tip Antenna inside a Blade

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej;

    2016-01-01

    An UWB blade deflection sensing system with a tip antenna inside a blade is investigated in this paper. The lower UWB band of 3.1-5.3 GHz is utilized. This system composes of two UWB radio links between one antenna inside the blade tip and two antennas outside the blade root. Blade deflections ar......, and the sensing system can realize the deflection tracking with a maximum deviation of 0.21 m and root mean squared error of 0.11 m.......An UWB blade deflection sensing system with a tip antenna inside a blade is investigated in this paper. The lower UWB band of 3.1-5.3 GHz is utilized. This system composes of two UWB radio links between one antenna inside the blade tip and two antennas outside the blade root. Blade deflections......-blade time-domain measurements are proposed to verify the simulations and realize the blade deflection sensing with an in-blade tip antenna. With the optimized in-blade tip antenna polarization and two root antenna locations, an accuracy of 2 cm is achieved for the tip-root antenna distance estimation...

  6. Sound reduction of air compressors using a systematic approach

    Science.gov (United States)

    Moylan, Justin Tharp

    The noise emitted by portable electric air compressors can often be a nuisance or potentially hazardous to the operator or others nearby. Therefore, reducing the noise of these air compressors is desired. This research focuses on compressors with a reciprocating piston design as this is the most common type of pump design for portable compressors. An experimental setup was developed to measure the sound and vibration of the air compressors, including testing inside a semi-anechoic chamber. The design of a quiet air compressor was performed in four stages: 1) Teardown and benchmarking of air compressors, 2) Identification and isolation of noise sources, 3) Development of individual means to quiet noise sources, 4) Selection and testing of integrated solutions. The systematic approach and results for each of these stages will be discussed. Two redesigned solutions were developed and measured to be approximately 65% quieter than the previous unmodified compressor. An additional analysis was performed on the solutions selected by the participants involved in the selection process. This analysis involved determining which of the design criteria each participant considered most important when selecting solutions. The results from each participant were then compared to their educational background and experience and correlations were identified. The correlations discovered suggest that educational background and experience may be key determinants for the preference models developed.

  7. 46 CFR 154.534 - Cargo pumps and cargo compressors.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo pumps and cargo compressors. 154.534 Section 154.534 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES... Equipment Cargo and Process Piping Systems § 154.534 Cargo pumps and cargo compressors. Cargo pumps...

  8. Air Compressor Driving with Synchronous Motors at Optimal Parameters

    Directory of Open Access Journals (Sweden)

    Iuliu Petrica

    2010-10-01

    Full Text Available In this paper a method of optimal compensation of the reactive load by the synchronous motors, driving the air compressors, used in mining enterprises is presented, taking into account that in this case, the great majority of the equipment (compressors, pumps are generally working a constant load.

  9. Dual-worm screw compressors; Compresseurs bi-vis

    Energy Technology Data Exchange (ETDEWEB)

    Baleydier, J.P. [Bitzer France, 69 - Lyon (France)

    1997-12-31

    Low power worm-screw moto-compressors are used in any king of refrigerating machineries and more and more in air conditioning systems. This paper presents the principle of dual-screw moto-compressors: worm-screw technology, role of oil (lubrication, tightness, cooling), compression, internal pressure, power reduction, lubrication, economizer, operation, model selection and accessories. (J.S.)

  10. Fuel efficiency, availability and compressor station configuration

    Energy Technology Data Exchange (ETDEWEB)

    Lubomirsky, Matt; Kurz, Rainer [Solar Turbines Inc., San Diego, CA (United States); Klimov, Pavel [Intergas Central Asia, Astana (Kazakhstan)

    2009-12-19

    Compressor stations play a very important role in the success of a gas pipeline design and a careful selection of centrifugal compressors and drivers are key aspects for the success of the project. The state of the art design available today for this equipment provides overall high thermodynamic performance and consequently minimizes installed power requirements and energy usage with significant savings on operating expenses during the economic life of the project For any application of machinery in a pipeline compression station, one of the key questions to answer is the number of units to install to meet the flow requirements of the pipeline. Depending on the load profile of the pipeline, the answers may look different. Other factors to consider include the fact that gas turbines can produce a significant amount of additional power at lower ambient temperatures. So, even for constant load of the pipeline, the relative load of the driver changes. In this paper, a typical transcontinental pipeline with multiple compressor stations is evaluated. The determination of the exact hydraulic behavior of the pipeline is part of the modeling effort. The site ambient conditions, with a significant swing in ambient temperatures are considered. The issue discussed in this paper evolves around the availability that can be achieved with various configurations, based on actually achieved reliability and availability numbers. The other large impact on operating costs, fuel consumption will be discussed. Here, the choice of the number of installed units has a distinct impact on annual fuel consumption, as well as the capacity of the pipeline during various scenarios. (author)

  11. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  12. Optimisation of Fan Blade Angle

    Directory of Open Access Journals (Sweden)

    Swaroop M P

    2017-01-01

    Full Text Available This report represents the optimization of fan blade angle in accordance with the various room temperatures that can be in the tropical area like India. We took this work mainly because cooling is an important factor now a days in every area where construction and rooms are there and ceiling fans are the most common device that is commonly used. So it is of utmost importance to tweak the performance of this ceiling fan so that it can function in its most optimal condition. We have modeled the fan in a modeling software (SOLIDWORKS and imported that into an analyzing software (ANSYS and a result is generated on the various blade angles (0, 4, 8 and 12.5 degrees in accordance to room conditions. A trend line curve with the obtained data is expected as the result which can be crucial for designing of future fans

  13. Effect of Non-Equilibrium Condensation of Moist Air on Unsteady Behaviour of Shock Waves around a Circular Arc Blade

    Institute of Scientific and Technical Information of China (English)

    Shigeru MATSUO; Kenbu TERAMOTO; Ashraful ALAM; Toshiaki SETOGUCHI; Heuy Dong KIM; Shen YU

    2007-01-01

    The unsteady phenomena in the transonic flow around airfoils are observed in the flow field of fan, compressor blades and butterfly valves, and this often causes serious problems such as the aeroacoustic noise, the vibration. In the transonic or supersonic flow where vapour is contained in the main flow, the rapid expansion of the flow may give rise to a non-equilibrium condensation. However, the effect of non-equilibrium condensation on the transonic internal flows around the airfoil has not yet been clarified satisfactorily. In the present study, the effect of non-equilibrium condensation of moist air on the self-excited shock wave oscillation on a circular arc blade was investigated numerically. The results showed that in the case with non-equilibrium condensation, frequencies of the flow oscillation became smaller than those without the non-equilibrium condensation.

  14. Overall and blade element performance of a 1.20-pressure-ratio fan stage with rotor blades reset -5 deg

    Science.gov (United States)

    Lewis, G. W., Jr.; Osborn, W. M.; Moore, R. D.

    1976-01-01

    A 51-cm-diam model of a fan stage for a short haul aircraft was tested in a single stage-compressor research facility. The rotor blades were set 5 deg toward the axial direction (opened) from design setting angle. Surveys of the air flow conditions ahead of the rotor, between the rotor and stator, and behind the stator were made over the stable operating range of the stage. At the design speed of 213.3 m/sec and a weight flow of 31.5 kg/sec, the stage pressure ratio and efficiency were 1.195 and 0.88, respectively. The design speed rotor peak efficiency of 0.91 occurred at the same flow rate.

  15. IC ENGINE SUPERCHARGING AND EXHAUST GAS RECIRCULATION USING JET COMPRESSOR

    Directory of Open Access Journals (Sweden)

    Adhimoulame Kalaisselvane

    2010-01-01

    Full Text Available Supercharging is a process which is used to improve the performance of an engine by increasing the specific power output whereas exhaust gas recirculation reduces the NOx produced by engine because of supercharging. In a conventional engine, supercharger functions as a compressor for the forced induction of the charge taking mechanical power from the engine crankshaft. In this study, supercharging is achieved using a jet compressor. In the jet compressor, the exhaust gas is used as the motive stream and the atmospheric air as the propelled stream. When high pressure motive stream from the engine exhaust is expanded in the nozzle, a low pressure is created at the nozzle exit. Due to this low pressure, atmospheric air is sucked into the expansion chamber of the compressor, where it is mixed and pressurized with the motive stream. The pressure of the mixed stream is further increased in the diverging section of the jet compressor. A percentage volume of the pressurized air mixture is then inducted back into the engine as supercharged air and the balance is let out as exhaust. This process not only saves the mechanical power required for supercharging but also dilutes the constituents of the engine exhaust gas thereby reducing the emission and the noise level generated from the engine exhaust. The geometrical design parameters of the jet compressor were obtained by solving the governing equations using the method of constant rate of momentum change. Using the theoretical design parameters of the jet compressor, a computational fluid dinamics analysis using FLUENT software was made to evaluate the performance of the jet compressor for the application of supercharging an IC engine. This evaluation turned out to be an efficient diagnostic tool for determining performance optimization and design of the jet compressor. A jet compressor was also fabricated for the application of supercharging and its performance was studied.

  16. Factory acceptance of the compressor skids at Samifi-Babcock. All pictures show the second stage compressor skid.

    CERN Multimedia

    G. Perinic

    2001-01-01

    Most recent pictures taken during the factory acceptance of the compressor skids at Samifi-Babcock. All pictures show the second stage compressor skid. Picture two was taken during the leak tests and shows all the pockets around flanges and valves.

  17. Compressor Part II: Volute Flow Predictions

    Directory of Open Access Journals (Sweden)

    Yu-Tai Lee

    1999-01-01

    Full Text Available A numerical method that solves the Reynolds-averaged Navier-Stokes equations is used to study an inefficient component of a shipboard air-conditioning HCFC-124 compressor system. This high-loss component of the centrifugal compressor was identified as the volute through a series of measurements given in Part I of the paper. The predictions were made using three grid topologies. The first grid closes the connection between the cutwater and the discharge diffuser. The other two grids connect the cutwater area with the discharge diffuser. Experiments were performed to simulate both the cutwater conditions used in the predictions. Surface pressures along the outer wall and near the inlet of the volute were surveyed for comparisons with the predictions. Good agreements between the predicted results and the measurements validate the calculations. Total pressure distributions and flow stream traces from the prediction results support the loss distribution through the volute. A modified volute configuration is examined numerically for further loss comparison.

  18. Centrifugal compressor design choices for chillers

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, J.J. [United Technologies Carrier, New York, NY (United States)

    1999-07-01

    The use of centrifugal compressors in the air conditioning and refrigeration industry is currently limited to large water cooled chillers varying in size from about 0.5 to 6 MW cooling capacity. These systems are primarily used for comfort or process cooling applications. All systems try to chill relatively large amounts of indoor or process water by a few degrees Celsius in a refrigerant evaporator. The heat removed from the chilled water is released together with the heat of compression in a refrigerant condenser to cooling tower water, from where it is discharged to the atmosphere. Different centrifugal compressor design concepts are used by the various chiller manufacturers: single-stage versus multi-stage, vaneless versus vaned diffuser, hermetic versus open-drive motors, shrouded versus open impellers, fixed versus variable diffuser geometry, low- versus high-pressure refrigerant. This variability seems strange for a mature industry like the air conditioning and refrigeration industry. This paper will show that the reason for this variability is the product compromise between the various conflicting system requirements with respect to size, cost, efficiency and refrigerant choice. The different system applications of the chillers (e.g. comfort cooling in a equatorial region versus process cooling in a moderate climate zone) play another major role in selecting an optimal centrifugal compression concept. Some general recommendations will be given for applications where a clear choice can be made. (Author)

  19. High Efficiency Centrifugal Compressor for Rotorcraft Applications

    Science.gov (United States)

    Medic, Gorazd; Sharma, Om P.; Jongwook, Joo; Hardin, Larry W.; McCormick, Duane C.; Cousins, William T.; Lurie, Elizabeth A.; Shabbir, Aamir; Holley, Brian M.; Van Slooten, Paul R.

    2014-01-01

    The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were

  20. Cooling arrangement for a tapered turbine blade

    Science.gov (United States)

    Liang, George

    2010-07-27

    A cooling arrangement (11) for a highly tapered gas turbine blade (10). The cooling arrangement (11) includes a pair of parallel triple-pass serpentine cooling circuits (80,82) formed in an inner radial portion (50) of the blade, and a respective pair of single radial channel cooling circuits (84,86) formed in an outer radial portion (52) of the blade (10), with each single radial channel receiving the cooling fluid discharged from a respective one of the triple-pass serpentine cooling circuit. The cooling arrangement advantageously provides a higher degree of cooling to the most highly stressed radially inner portion of the blade, while providing a lower degree of cooling to the less highly stressed radially outer portion of the blade. The cooling arrangement can be implemented with known casting techniques, thereby facilitating its use on highly tapered, highly twisted Row 4 industrial gas turbine blades that could not be cooled with prior art cooling arrangements.

  1. Diagnostic methods of a bladed disc mode shape evaluation used for shrouded blades in steam turbines

    Science.gov (United States)

    Strnad, Jaromir; Liska, Jindrich

    2015-11-01

    This paper deals with advanced methods for the evaluation of a bladed disc behavior in terms of the wheel vibration and blade service time consumption. These methods are developed as parts of the noncontact vibration monitoring system of the steam turbine shrouded blades. The proposed methods utilize the time-frequency processing (cross spectra) and the method using least squares to analyse the data from the optical and magnetoresistive sensors, which are mounted in the stator radially above the rotor blades. Fundamentally, the blade vibrations are detected during the blade passages under the sensors and the following signal processing, which covers also the proposed methods, leads to the estimation of the blade residual service life. The prototype system implementing above mentioned techniques was installed into the last stage of the new steam turbine (LP part). The methods for bladed disc mode shape evaluation were successfully verified on the signals, which were obtained during the commission operation of the turbine.

  2. STUDY ON THERMODYNAMIC MODEL OF A COMPRESSOR WITH ARTIFICIAL NEURAL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    A new compressor thermodynamic model is set up. Artificial neural networks(ANN) which have self-adjusting functions are adopted to calculate volumetric efficiency and electrical efficiency of a compressor. The new compressor model composed of the theoretical model and ANN reaches more precise results than traditional ones. Furthermore, the new compressor model is of better flexibility in a large scale.

  3. Wind turbine blade testing under combined loading

    DEFF Research Database (Denmark)

    Roczek-Sieradzan, Agnieszka; Nielsen, Magda; Branner, Kim;

    2011-01-01

    The paper presents full-scale blade tests under a combined flap- and edgewise loading. The main aim of this paper is to present the results from testing a wind turbine blade under such conditions and to study the structural behavior of the blade subjected to combined loading. A loading method using...... anchor plates was applied, allowing transverse shear distortion. The global and local deformation of the blade as well as the reproducibility of the test was studied and the results from the investigations are presented....

  4. Reliability design method for steam turbine blades

    Institute of Scientific and Technical Information of China (English)

    Jinyuan SHI

    2008-01-01

    Based on theories of probability and statistics, and taking static stresses, dynamic stresses, endurance strength, safety ratios, vibration frequencies and exciting force frequencies of blades as random variables, a reliabil-ity design method for steam turbine blades is presented. The purport and calculation method for blade reliability are expounded. The distribution parameters of random variables are determined after analysis and numerical cal-culation of test data. The fatigue strength and the vibra-tion design reliability of turbine blades are determined with the aid of a probabilistic design method and by inter-ference models for stress distribution and strength distri-bution. Some blade reliability design calculation formulas for a dynamic stress design method, a safety ratio design method for fatigue strength, and a vibration reliability design method for the first and second types of tuned blades and a packet of blades on a disk connected closely, are given together with some practical examples. With these methods, the design reliability of steam turbine blades can be guaranteed in the design stage. This research may provide some scientific basis for reliability design of steam turbine blades.

  5. CFD Analysis of a supercritical carbon dioxide compressor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Gu; Lee, Jeong Ik; Ahn, Yoon Han; Lee, Jek Young; Cha, Jae Eun; Addad, Yacine [KAIST, Daejeon (Korea, Republic of)

    2012-10-15

    The supercritical carbon dioxide Brayton cycle is considered as an attractive cycle for the next generation nuclear systems. It was identified that the compressor can achieve very small compressing work as operating conditions become closer to the critical point. Smaller amount of input work contributes to the enhancement of overall net cycle efficiency. Comparing to traditional water vapor cycle and helium cycle, the S CO{sup 2} cycle has relatively much less volume and component size. Therefore, S CO{sup 2} cycle can be used for many purposes such as nuclear ship propulsion where volume requirement is strict, or a small nuclear reactor when it is constructed on geographically limited area One of the main factors for determining the supercritical Brayton cycle efficiency is the performance of turbomachineries. Many research organizations already obtained experimental data of S CO{sup 2} cycle turbomachineries, but the amount of data is still limited. Our research team is conducting a S CO{sup 2} compressor test to obtain fundamental data for advanced compressor design and measure the performance of the compressor near the critical point. The S CO{sup 2} compressor testing loop is specially designed to test main compressor of the loop. The S CO{sup 2} fluid shows the properties of gases and liquids at the same time, but its behavior is closer to the liquid rather than gas near the critical point. Therefore, we are performing compressor test with canned motor pump which is unique from other previous studies.

  6. Core compressor exit stage study. 1: Aerodynamic and mechanical design

    Science.gov (United States)

    Burdsall, E. A.; Canal, E., Jr.; Lyons, K. A.

    1979-01-01

    The effect of aspect ratio on the performance of core compressor exit stages was demonstrated using two three stage, highly loaded, core compressors. Aspect ratio was identified as having a strong influence on compressors endwall loss. Both compressors simulated the last three stages of an advanced eight stage core compressor and were designed with the same 0.915 hub/tip ratio, 4.30 kg/sec (9.47 1bm/sec) inlet corrected flow, and 167 m/sec (547 ft/sec) corrected mean wheel speed. The first compressor had an aspect ratio of 0.81 and an overall pressure ratio of 1.357 at a design adiabatic efficiency of 88.3% with an average diffusion factor or 0.529. The aspect ratio of the second compressor was 1.22 with an overall pressure ratio of 1.324 at a design adiabatic efficiency of 88.7% with an average diffusion factor of 0.491.

  7. Modeling and control of surge and rotating stall in compressors

    Energy Technology Data Exchange (ETDEWEB)

    Gravdahl, Jan Tommy

    1998-12-31

    Compressors are used in power generation and a variety of other applications. This thesis contains new results in the field of modeling and control of rotating stall and surge in compressors. A close coupled valve is included in the Moore-Greitzer compression system model and controllers for both surge and rotating stall is derived using backstepping. Disturbances, constant and time varying, are then taken into account, and non-linear controllers are derived. Stability results are given. Then, passivity is used to derive a simple surge control law for the closed coupled valve. This propositional control law is shown to stabilize the system even in the presence of time varying disturbances in mass flow and pressure. A novel model for an axial compression system with non-constant compressor speed is derived by extending the Moore-Greitzer model. Rotating stall and surge is studied in connection with acceleration of the compressor. Finally, a model for a centrifugal compression system with time varying compressor speed is derived. The variable speed compressor characteristic is derived based on energy losses in the compressor components. Active control of surge in connection with varying speed is studied. Semi-global exponential stability of the compression system with both surge and speed control is proven. 103 refs., 38 figs., 5 tabs.

  8. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hughes, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paquette, J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  9. Internal hysteresis experienced on a high pressure syn gas compressor

    Science.gov (United States)

    Zeidan, F. Y.

    1984-01-01

    A vibration instability phenomenon experienced in operating high pressure syn gas centrifugal compressors in two ammonia plants is described. The compressors were monitored by orbit and spectrum analysis for changes from baseline readings. It is found that internal hysteresis was the major destabilizing force; however, the problem was further complicated by seal lockup at the suction end of the compressor. A coupling lockup problem and a coupling fit problem, which frettage of the shaft, are also considered as contributors to the self excited vibrations.

  10. Expert system for compressor maintenance support; Sistema especialista para apoio a manutencao de compressores

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jonny Carlos da [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica; Caletti, Luciano [KEOHPS - Knowledge Engineering on Hydraulic and Pneumatic System, SC (Brazil); Luna, Paulo de T.M. [Universidade Regional de Blumenau - FURB, SC (Brazil)

    2004-07-01

    The performance of critical machines in industrial processes, such as compressors used in industrial plants, is fundamental for overall company operation. In this context, it becomes strategic the application of methods and tools to support the operation and maintenance of the most relevant process equipment. Among these computational tools are the Expert Systems, which aim to emulate the decision making process of human experts in a specific knowledge domain. In Oil and Gas domain, an example of such tools is the SEGRED project, which combines expert system techniques with dynamic simulation of transport and distribution natural gas networks. The SECOMP project, Expert System for Compressor Maintenance, is considered a spin-off of the SEGRED. Its objective is to develop an expert system to support maintenance activities, aiming to increase reliability, improve performance and reduce maintenance and operational costs. This article presents the first phase of the SECOMP project, which is related to the development of an expert system prototype for corrective maintenance of natural gas reciprocating compressors. The paper discusses the context of this knowledge domain, the prototype development and its potential contribution in an industrial environment. (author)

  11. An experimental study on the effects of tip clearance on flow field and losses in an axial flow compressor rotor

    Science.gov (United States)

    Lakshminarayana, B.; Zhang, J.; Murthy, K. N. S.

    1987-01-01

    Detailed measurement of the flow field in the tip region of a compressor rotor was carried out using a Laser Doppler Velocimeter (LDV) and a Kiel probe at two different tip clearance heights. At both clearance sizes, the relative stagnation pressure and the axial and tangential components of relative velocities were measured upstream, inside the passage and downstream of the rotor, up to about 20 percent of the blade span from the annulus wall. The velocities, outlet angles, losses, momentum thickness, and force defect thickness are compared for the two clearances. A detailed interpretation of the effect of tip clearance on the flow field is given. There are substantial differences in flow field, on momentum thickness, and performance as the clearance is varied. The losses increase linearly within the passage and their values increase in direct proportion to tip clearance height. No discernable vortex (discrete) is observed downstream of the rotor.

  12. Experimental Blade Research - phase 2

    OpenAIRE

    Eder, Martin Alexander; Branner, Kim; Berring, Peter; Belloni, Federico; Stensgaard Toft, Henrik; Sørensen, John Dalsgaard; Corre, Adrien; Lindby, Torben; Quispitupa, Amilcar; Petersen, Thomas Karl

    2015-01-01

    This report is a summary of the results obtained in the project: Experimental Blade Research – phase 2 (EBR2). The project was supported by the Danish Energy Authority through the 2010 Energy Technology Development and Demonstration Program (EUDP 2010-II) and has journal no. 64011-0006. The project has been running from spring 2011 to the end of 2014.Being a summary report, this report only contains a collection of the research topics and the major results. For more details, see the publicati...

  13. Robotic Hot-Blade Cutting

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Feringa, Jelle; Nørbjerg, Toke Bjerge;

    2016-01-01

    This paper presents a novel method for cost-effective, robotic production of double curved formwork in Expanded Polystyrene (EPS) for in situ and prefabricated concrete construction. A rationalization and segmentation procedure is developed, which allows for the transliteration of double curved...... NURBS surfaces to Euler elastica surface segments, while respecting various constraints of production. An 18 axis, tri-robot system approximates double curved NURBS surfaces by means of an elastically deformed and heated blade, mounted on the flanges of two manipulators. Re-orienting or translating...

  14. Stabilized Liner Compressor: The Return of Linus

    Science.gov (United States)

    Turchi, Peter; Frese, Sherry; Frese, Michael; Mielke, Charles; Hinrichs, Mark; Nguyen, Doan

    2015-11-01

    To access the lower cost regime of magneto-inertial fusion at megagauss magnetic field-levels requires the use of dynamic conductors in the form of imploding cylindrical shells, aka, liners. Such liner implosions can compress magnetic flux and plasma to attain fusion conditions, but are subject to Rayleigh-Taylor instabilities, both in the launch and recovery of the liner material and in the final few diameters of implosion. These instabilities were overcome in the Linus program at the Naval Research Laboratory, c. 1979, providing the experimentally-demonstrated basis for repetitive operation and leading to an economical reactor concept at low fusion gain. The recent ARPA-E program for low-cost fusion technology has revived interest in this approach. We shall discuss progress in modeling and design of a Stabilized Liner Compressor (SLC) that extends the earlier work to higher pressures and liner speeds appropriate to potential plasma targets. Sponsored by ARPA-E ALPHA Program.

  15. Demonstration of PIV in a Transonic Compressor

    Science.gov (United States)

    Wernet, Mark P.

    1998-01-01

    Particle Imaging Velocimetry (PIV) is a powerful measurement technique which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. PIV data are measured simultaneously at multiple points in space, which enables the investigation of the non-stationary spatial structures typically encountered in turbomachinery. Many of the same issues encountered in the application of LDV techniques to rotating machinery apply in the application of PIV. Preliminary results from the successful application of the standard 2-D PIV technique to a transonic axial compressor are presented. The lessons learned from the application of the 2-D PIV technique will serve as the basis for applying 3-component PIV techniques to turbomachinery.

  16. Effect of blade surface roughness on performance of axial flow fans with different blade cambers

    Science.gov (United States)

    Kaneko, K.; Setoguchi, T.; Nakano, T.; Inoue, M.

    1985-07-01

    Three kinds of axial fan rotor blades with different cambers were designed, and performance tests with various blade surface roughnesses were conducted. The total pressure coefficient, the fan efficiency, and the torque coefficient decrease with increasing surface roughness. The selection of the design camber has a significant influence on the deterioration of fan performance with surface roughness. For a smooth surface, a high-cambered blade indicates a more favorable performance than a low-cambered rotor blade, but such a blade is very sensitive to surface roughness and exhibits a remarkable deterioration in performance with increased roughness. For a low-cambered rotor blade, the torque coefficient changes little with increasing roughness. The empirical relation between turning angle variation of a two-dimensional cascade and surface roughness agrees well with these results only for a rotor blade designed for the optimum angle of attack.

  17. Prismatic Blade Measuring on a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Stech J.

    2013-04-01

    Full Text Available The results from measurement on the straight blade cascade are presented in the paper. The cascade is placed at the outlet of wind tunnel in ŠKODA POWER experimental base. The results in the form of velocity and loss fields behind blade cascade as well as the distribution of the loss coefficient in selected cross-section are evaluated.

  18. Method of making counterrotating aircraft propeller blades

    Science.gov (United States)

    Nelson, Joey L. (Inventor); Elston, III, Sidney B. (Inventor); Tseng, Wu-Yang (Inventor); Hemsworth, Martin C. (Inventor)

    1990-01-01

    An aircraft propeller blade is constructed by forming two shells of composite material laminates and bonding the two shells to a metallic spar with foam filler pieces interposed between the shells at desired locations. The blade is then balanced radially and chordwise.

  19. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  20. Study of Wear of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2000-01-01

    Full Text Available A study was made of the erosion of blades of pitched blade impellers in a suspension of solid particles in a liquid under a turbulent regime of flow of an agitated charge. The wear of the impeller is described by an analytical approximation in exponential form, and the influence of the pitch angle on the impeller blade wear was studied experimentally. It follows from the results of the experiments made that the wear rate of the pitched blade impellers increases linearly with the decreasing pitch angle within the interval a Î á15°; 45° ń. The proposed form of radial profile of the leading edge of the impeller blade enables us to calculate the surface of the worn blade. This quantity significantly decreases with the length of the period when the blades are affected by the solid particles, and its values calculated according to the suggested profile of the worn blade fit fairly well with the experimentally determined values. The results of the experiments performed are valid for homogeneous distribution of solid particles in an agitated suspension.

  1. Structural dynamics studies of rotating bladed-disk assemblies coupled with flexible shaft motions

    Science.gov (United States)

    Loewy, R. G.; Khader, N.

    1983-01-01

    In order to analyze the dynamic behavior of the first stage compressor/fan of the 'E3' turbofan engine, a classical structural dynamics approach is employed to couple the motions of a flexible bladed disk to a rotating flexible shaft. The analysis accounts for flexible disk displacements which are transverse to the plane of rotation, and radial as well as tangential, and also accounts for rigid disk translations along, and rotations about, axes normal to the undeformed shaft axes. In the case of a wide range of E3 engine shaft flexibilities and speeds, some of the one-diametral node frequencies are shown to be affected by shaft degrees of freedom whose stiffness values are in general range of design practice. Coriolis forces are also found to significantly affect natural frequencies where strong coupling between certain modes is present.

  2. Coatings for Fuel Cell Propulsion Compressor Bearings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fuel cell air handling systems require clean and contaminant-free inlet air, which dictates that oil-free, motorized, compressor/expander systems should be used....

  3. A Novel Plasma-Based Compressor Stall Control System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Modern aircraft gas turbine engines utilize highly loaded airfoils in both the compressor and turbine to maximize performance while minimizing weight, cost, and...

  4. The performance of a linear compressor with triangle flexure bearings

    Science.gov (United States)

    Zhou, Wenjie; Wang, Longyi; Gan, Zhihua; Qiu, L. M.; Pfotenhauer, John

    2012-06-01

    This paper reports the performance of a self-fabricated moving coil linear compressor at Zhejiang University. The efficiency of this compressor is tested by an RC load method. From experimental results, its resonant frequency is below 30Hz. When combined with a pulse tube cryocooler (PTC) working at 40Hz, the minimum temperature is 49.1K; the cooling power at 80K is 4.5W, with 540W electricity power input. From the RC load experiment, the maximum efficiency of this compressor is only 37% at 21 Hz. Therefore, this compressor has the potential to drive a three stage PTC at liquid helium temperature by running at 25Hz or lower.

  5. EFRC guidelines for vibrations in reciprocating compressor systems

    NARCIS (Netherlands)

    Eijk, A.

    2008-01-01

    One of the disadvantages of a reciprocating compressor is that it generates pulsations and vibrations, which, without limitation and proper attention during design, manufacturing, installation and operation, can lead to fatigue failures, inefficiency, capacity limitations and unsafe situations. To j

  6. Compressor-fan unitary structure for air conditioning system

    Science.gov (United States)

    Dreiman, N.

    2015-08-01

    An extremely compact, therefore space saving unitary structure of short axial length is produced by radial integration of a revolving piston rotary compressor and an impeller of a centrifugal fan. The unitary structure employs single motor to run as the compressor so the airflow fan and eliminates duality of motors, related power supply and control elements. Novel revolving piston rotary compressor which provides possibility for such integration comprises the following: a suction gas delivery system which provides cooling of the motor and supplies refrigerant into the suction chamber under higher pressure (supercharged); a modified discharge system and lubricating oil supply system. Axial passages formed in the stationary crankshaft are used to supply discharge gas to a condenser, to return vaporized cooling agent from the evaporator to the suction cavity of the compressor, to pass a lubricant and to accommodate wiring supplying power to the unitary structure driver -external rotor electric motor.

  7. A Novel Aerodynamic Design Method for Centrifugal Compressor Impeller

    Directory of Open Access Journals (Sweden)

    Mahdi Nili-Ahmadabadi

    2014-01-01

    Full Text Available This paper describes a new quasi-3D design method for centrifugal compressor impeller. The method links up a novel inverse design algorithm, called Ball-Spine Algorithm (BSA, and a quasi-3D analysis. Euler equation is solved on the impeller meridional plane. The unknown boundaries (hub and shroud of numerical domain are iteratively modified by BSA until a target pressure distribution in flow passage is reached. To validate the quasi-3D analysis code, existing compressor impeller is investigated experimentally. Comparison between the quasi-3D analysis and the experimental results shows good agreement. Also, a full 3D Navier-Stokes code is used to analyze the existing and designed compressor numerically. The results show that the momentum decrease near the shroud wall in the existing compressor is removed by hub-shroud modifications resulting an improvement in performance by 0.6 percent.

  8. Development Of A Centrifugal Hydrogen Pipeline Gas Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A. [Concepts NREC, White River Junction, VY (United States)

    2015-04-16

    Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary to relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.

  9. Vapor Compressor Driven Hybrid Two-Phase Loop Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  10. Numerical study of a 3.5-stage axial compressor at on-and off-design conditions

    Institute of Scientific and Technical Information of China (English)

    ZhuoWang

    2007-01-01

    Numerical investigation is conducted on a 3.5-stage axial compressor,on which numerous experimental projects were carried out at the Institute during the last years and an experimental database was established.In the current study five on- and off-design operating points are simulated using a RANS solver and the results are compared with the measurement.The result shows that the compressor performance can be qualitatively predicted by the mixing-plane method.Better agreement is obtained for the on-design operating point.However,as the flow unsteadiness is insufficiently considered,the numerical method produces end-wall low-speed flow layers accumulated with the flow passing through the passage,which is in no good agreement with the experimental data.In the numerical simulation the rotor rows receive less work and this difference from the measurement increases with the rotational speed.In contrast,the stator rows increase the pressure more efficiently than the measurement.In the simulation the flow in the last stator row tends more to separate on the pressure side of the blade.For the operating points close to the surge line,the predicted separation is more intense than the experimental observation.But for the operating points close to the choke,the separation is suppressed.

  11. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  12. The SNL100-01 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  13. Advanced Blade Manufacturing Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  14. Failure analysis of air fan blades

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-qing; JI Zhe; CUI Yong-li; CUI Chun-zhi; SUN Zhi

    2008-01-01

    The failure of all 12 blades of an air fan was investigated by metallurgical and mechanical experiments and an examina-tion of the fracture surface. The experimental results show that the cast aluminium-silicon alloy without any modification had a number of material defects, such as coarse grains, a loose structure, a large number of shrinkage holes, a long and thin bold-pin shaped silicon-phase, poor material strength and serious brittleness. In addition, installed on the spindle without elastic conjunction,blade No. 10 vibrated and inevitably.spun off due to the large centrifugal force. Therefore, blade No. 10 first cracked at the locking handle, then broke at the root, which caused all the other 11 blades to be broken by the crack of blade No.10.

  15. Modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, M.H.; Baumgart, A.

    2002-01-01

    The modal analysis technique has been used to identify essential dynamic properties of wind turbine blades like natural frequencies, damping characteristics and mode shapes. Different experimental procedures have been considered, and the most appropriateof these has been selected. Although...... the comparison is based on measurements on a LM 19 m blade, the recommendations given are believed to be valid for other wind turbine blades as well. The reliability of the selected experimental analysis has beenquantified by estimating the unsystematic variations in the experimental findings. Satisfactory....... The experimental analysis of the LM 19 m blade has been compared with results from a state-of-the-art FE-modeling ofthe same blade. For some of the higher modes substantial discrepancies between the natural frequencies originating from the FE-modeling and the modal analysis, respectively, are observed. In general...

  16. Applied modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Pedersen, H.B.; Kristensen, O.J.D.

    2003-01-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Differentequipment for mounting the accelerometers...... is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use ofaccelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded...... and unloaded wind turbine blade. During this campaign the modal analysis are performed on ablade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Øyes blade_EV1...

  17. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  18. Compound fuzzy model for thermal performance of refrigeration compressors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The fuzzy method is introduced to the calculation of thermal performance of refrigeration compressors. A compound model combining classical thermodynamic theory and fuzzy theory is presented and compared with a simple fuzzy model without classical thermodynamic fundamentals. Case study of refrigeration compressors shows that the compound fuzzy model and the simple fuzzy model are both more efficient than the classical thermodynamic method. However, the compound fuzzy model is of better precision and adaptability.

  19. Internal combustion engine for natural gas compressor operation

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, Christopher; Babbitt, Guy

    2016-12-27

    This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.

  20. Longitudinal Beam Diagnostics for the ILC Injectors and Bunch Compressors

    Energy Technology Data Exchange (ETDEWEB)

    Piot, Philippe [Northern Illinois U.; Bracke, Adam [Northern Illinois U.; Demir, Veysel [Northern Illinois U.; Maxwell, Timothy [Fermilab; Rihaoui, Marwan [Argonne; Jing, Chunguang [Euclid Techlabs, Solon; Power, John [Argonne

    2010-12-01

    We present a diagnostics suite and analyze techniques for setting up the longitudinal beam dynamics in ILC e⁻ injectors and e⁺ and e⁻ bunch compressors. Techniques to measure the first order moments and recover the first order longitudinal transfer map of the injector's intricate bunching scheme are presented. Coherent transition radiation diagnostics needed to measure and monitor the bunch length downstream of the ~5 GeV bunch compressor are investigated using a vector diffraction model.

  1. Hyper dispersion pulse compressor for chirped pulse amplification systems

    Science.gov (United States)

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  2. Crack of a first stage blade in a steam turbine

    Directory of Open Access Journals (Sweden)

    M. Nurbanasari

    2014-10-01

    Full Text Available The failure of the first stage blade in a steam turbine of 55 MW was investigated. The blade was made of 17-4 PH stainless steel and has been used for 12 years before failure. The current work aims to find out the main cause of the first stage blade failure. The methods for investigation were metallurgical analysis, chemical composition test, and hardness measurement. The result showed that there was no evidence the blade failure was due to material. The damage found on the blade namely crack on the blade root. Two locations of the crack observed at the blade root, which was at the tang and the fillet, with different failure modes. In general, the damage of the blade was started by the corrosion occurred on the blade root. The crack at the blade root tang was due to corrosion fatigue and the crack occurred at the blade root fillet owing to stress corrosion cracking.

  3. Helium compressor for GM and pulse-tube expanders

    Science.gov (United States)

    Longsworth, R. C.

    2002-05-01

    A new compressor system has been developed for cooling MRI magnets which has more displacement than the present compressor. By increasing the displacement from 2.9 L/s to 5.2 L/s at 60 Hz it is possible to provide more refrigeration at lower temperatures with both GM and Pulse-tube expanders. The 2.9 L/s compressor is a rolling piston type, which is cooled by water circulating through tubes bonded to the outside of the compressor shell. The 5.2 L/s compressor is a scroll type that is cooled by circulating oil to an external heat exchanger. One of the key features of the design is an oil removal system that enables the adsorber replacement interval to be increased to 5 years. A diagnostic module is incorporated in the control circuit to alert the user to an abnormal condition and show the reason for a shut down if it occurs. This paper describes essential design features and the extensive testing that has been done to characterize the compressor over a wide range of operating conditions including extremes that it might experience.

  4. Design and Characterization of a Centrifugal Compressor Surge Test Rig

    Directory of Open Access Journals (Sweden)

    Kin Tien Lim

    2011-01-01

    Full Text Available A detailed description of a new centrifugal compressor surge test rig is presented. The objective of the design and development of the rig is to study the surge phenomenon in centrifugal compression systems and to investigate a novel method of surge control by active magnetic bearing servo actuation of the impeller axial tip clearance. In this paper, we focus on the design, initial setup, and testing of the rig. The latter two include the commissioning of the rig and the experimental characterization of the compressor performance. The behavior of the compressor during surge is analyzed by driving the experimental setup into surge. Two fundamental frequencies, 21 Hz and 7 Hz, connected to the surge oscillation in the test rig are identified, and the observed instability is categorized according to the intensity of pressure fluctuations. Based on the test results, the excited pressure waves are clearly the result of surge and not stall. Also, they exhibit the characteristics of mild and classic surge instead of deep surge. Finally, the change in the compressor performance due to variation in the impeller tip clearance is experimentally examined, and the results support the potential of the tip clearance modulation for the control of compressor surge. This is the first such demonstration of the feasibility of surge control of a compressor using active magnetic bearings.

  5. Transient characteristic of reciprocating compressors in household refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Porkhial, S.; Khastoo, B. [Amirkabir University, Tehran (Iran). Dept. of Mechanical Engineering; Modarres Razavi, M.R. [Ferdowsi University, Mashhad (Iran). Dept. of Mechanical Engineering

    2002-08-01

    Reduction in energy consumption associated with household appliances is a challenging subject. One of the appliances with great contribution in energy consumption is the household refrigerators [1 and 2]. Among the different components of a refrigerator, the compressor has the most effect on system energy consumption. A knowledge of the transient performance of compressors is vital for reduction of energy consumption and improving the overall performance of a refrigerator. In this paper the M7 model of 1/5 hp Nicchi compressor belonging to 12 ft{sup 3} refrigerators with refrigerant R12 is selected as a sample and different tests are carried out to determine its transient behavior. Based on the analysis of experimental results, the governing equations and the simulation program of transient behavior have been developed. Good agreement between theoretical and experimental results means that the simulation model could be an appropriate tool to study the transient behavior of reciprocating compressors in different conditions. Analysis of predicted and experimental results shows that refrigerators consume more power in the transient mode as compared to the steady mode, therefore shortening the transient period can lower the energy consumption of the system. Also an isentropic assumption for the hermetic compressor is not a correct assumption, especially for the transient mode. With appropriate design of compressor inlet which locates it near to the suction valve, the energy efficiency will be improved. (author)

  6. The new performance calculation method of fouled axial flow compressor.

    Science.gov (United States)

    Yang, Huadong; Xu, Hong

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds' law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  7. The New Performance Calculation Method of Fouled Axial Flow Compressor

    Directory of Open Access Journals (Sweden)

    Huadong Yang

    2014-01-01

    Full Text Available Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds’ law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail.

  8. Operating experiences and test results of six cold helium compressors

    Science.gov (United States)

    Brown, D. P.; Gibbs, R. J.; Schlafke, A. P.; Sondericker, J. H.; Wu, K. C.

    Three small and three large cold helium centrifugal compressors have been operated at Brookhaven National Laboratory between 1981 and 1986. The three small cold compressors have been installed on a 1000 W refrigerator for testing a string of superconducting magnets and for R and D purposes. The three large units are components of the BNL 24.8 KW refrigerator to be used to provide cooling for the RHIC project. These compressors are used either to circulate a large amount of supercritical helium through a group of magnets or to pump on the helium bath to reduce temperature in the system. One small circulating compressor tested employs tilting-pad gas bearings and is driven by a DC motor. The two small cold vacuum pumps tested use oil bearings and are driven by oil turbines. The three large oil-bearing cold compressors are driven by DC motors through a gear box. A unique feature of the large vacuum pump is the combination of two pumps with a total of four stages on the same shaft. The adiabatic efficiencies are found to be 57% for the large vacuum pumps and close to 50% for the large circulating compressor. Good overall reliability has been experienced.

  9. Insulation system in an integrated motor compressor

    Energy Technology Data Exchange (ETDEWEB)

    Sihvo, V.

    2010-07-01

    A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 - 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 - 120 mum. The chemical aging of the insulation when exposed to raw

  10. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)

    1997-08-01

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)

  11. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  12. The SNL100-02 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-11-01

    A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

  13. Blade Deterioration in a Gas Turbine Engine

    Directory of Open Access Journals (Sweden)

    W. Tabakoff

    1998-01-01

    Full Text Available A study has been conducted to predict blade erosion of gas turbine engines. The blade material erosion model is based on three dimensional particle trajectory simulation in the three-dimensional turbine flow field. The trajectories provide the special distribution of the particle impact parameters over the blade surface. A semi-empirical erosion model, derived from erosion tests of material samples at different particulate flow conditions, is used in the prediction of blade surface erosion based on the trajectory impact data. To improve the blade erosion resistance and to decrease the blade deterioration, the blades must be coated. For this purpose, an experimental study was conducted to investigate the behavior of rhodium platinum aluminide coating exposed to erosion by fly ash particles. New protective coatings are developed for erosion and thermal barrier. Chemical vapor deposition technique (CVD was used to apply the ceramic TiC coatings on INCO 718 and stainless steel 410. The erosive wear of the coated samples was investigated experimentally by exposing them to particle laden flow at velocities from 180 to 305m/s and temperatures from ambient to 538°C in a specially designed erosion wind tunnel. Both materials (INCO 718 and stainless steel 410 coated with CVD TiC showed one order of magnitude less erosion rate compared to some commercial coatings on the same substrates.

  14. Wind turbine blade waste in 2050.

    Science.gov (United States)

    Liu, Pu; Barlow, Claire Y

    2017-02-16

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%.

  15. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...

  16. Structural optimization study of composite wind turbine blade

    DEFF Research Database (Denmark)

    Chen, Jin; Shen, Wen Zhong; Wang, Quan;

    2013-01-01

    In this paper the initial layout of a 2. MW composite wind turbine blade is designed first. The new airfoils families are selected to design a 2. MW wind turbine blade. The finite element parametric model for the blade is established. Based on the modified Blade Element Momentum theory, a new one...

  17. Wind turbine blade with viscoelastic damping

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Ryan A.; Mullings, Justin L.

    2017-01-10

    A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).

  18. Predicted electrothermal deicing of aircraft blades

    Science.gov (United States)

    Keith, T. G., Jr.; Masiulaniec, K. C.; Dewitt, K. J.; Chao, D. F.

    1984-01-01

    A finite difference method is presented for the transient two-dimensional simulation of an electrothermal de-icer pad of an aircraft wing or blade. The irregular geometry of the composite ice laden blade is handled by use of a body fitted coordinate transformation. By this approach the various blade layers are mapped into a set of stacked rectangular strips in which the numerical solution takes place. Several heat conduction examples are presented in order to demonstrate the accuracy of the numerical procedure. Ice melting time predictions are made and compared to earlier predictions where possible. Finally, a new graphical presentation of thermal results is shown.

  19. Rotating blade vibration analysis using shells

    Science.gov (United States)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    Shallow shell theory and the Ritz method are employed to determine the frequencies and mode shapes of turbomachinery blades having both camber and twist, rotating with non-zero angles of attack. Frequencies obtained for different degrees of shallowness and thickness are compared with results available in the literature, obtained from finite element analyses of nonrotating blades. Frequencies are also determined for a rotating blade, showing the effects of changing the (1) angular velocity of rotation, (2) disk radius and (3) angle of attack, as well as the significance of the most important body force terms.

  20. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element....... The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes....

  1. New morphing blade section designs and structural solutions for smart blades

    DEFF Research Database (Denmark)

    Karakalas, Anargyros A.; Machairas, Theodore; Solomou, Alexandros;

    2015-01-01

    .e. no loss of local/global stiffness or strength and/or fatigue life. The purpose is to report efforts towards the use of new morphing blade section designs and the structural solutions for smart blades (developed in Task 2.3). The objective is to define, assess and demonstrate innovative concepts...... the efforts performed within Task 2.2 “Lightweight structural design” of INNWIND.Eu work-package WP2 “Lightweight Rotor” regarding the structural solutions necessary to accommodate the requirements of smart blades developed within work-package WP2 Task 2.3 “Active and passive loads control and alleviation...... (smart blades) design”. The research performed within Task 2.2 and reported herein does not cover investigations for the complete set of design requirements of smart blades, such as aerodynamic control surface size. Rather it focuses on answers relevant to integration within the blade structure, i...

  2. Investigation of Axial-flow Fan and Compressor Rotors Designed for Three-dimensional Flow

    Science.gov (United States)

    Kahane, A

    1947-01-01

    An investigation has been conducted to determine whether three-dimensional flows may be utilized in axial-flow fan and compressor rotors so that the spanwise load distribution may be varied to obtain high pressure rise. Two rotors, one with approximately uniform and one with solid-body downstream tangential-velocity distributions, were designed and tested at the design blade angle. Radial surveys of total pressure, static pressure, and flow angle were made upstream and downstream of the test rotors through a quantity-coefficient range. Tests of the solid-body rotor were also conducted at a large value of tip clearance. The results indicated that the three-dimensional flows may be utilized with high efficiency and that the three-dimensional theory used in conjunction with two-dimensional cascade data is sufficiently accurate for design purposes. The tests also showed that the tip-clearance losses of rotors highly loaded at the tips are not excessive. The existing three-dimensional theory in simplified for and an illustrative rotor design are presented in appendixes.

  3. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor

    Science.gov (United States)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-01-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  4. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor

    Energy Technology Data Exchange (ETDEWEB)

    Suder, K.L. [NASA-Lewis Research Center, Cleveland, OH (United States); Celestina, M.L. [Sverdrup Technology Inc., Cleveland, OH (United States). Lewis Research Center Group

    1996-04-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part-speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100 percent design speed and at near peak efficiency at 60 percent design speed. The role of the passage shock/leakage vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only five times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the end-wall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with the primary flow downstream of the rotor at both design and part-speed conditions is also discussed.

  5. A Developed Methodology in Design of Highly Loaded Tandem Axial Flow Compressor Stage

    Directory of Open Access Journals (Sweden)

    Masoud Boroomand

    2016-01-01

    Full Text Available This study, primarily reports the development of a 3D design procedure for axial flow tandem compressor stages and then the method is used to design a highly loaded tandem stage. In order to investigate the effects of such arrangement, another stage with conventional loading with single blade for both rotor and stator rows is designed with similar specification. In order to ease the comparison of results, chord lengths and hub/shroud geometries are selected with the same dimensions. At the next stage a three dimensional numerical model is developed to predict the characteristic performance of both tandem and conventional stages. The model is validated with the experimental results of NASA-67 stage and the level of the accuracy of the model is presented. Employing the model to simulate the performance of both stages at design and offdesign operating points show that, tandem stage can provide higher pressure ratio with acceptable efficiency. In another word, tandem stage is capable having the same pressure ratio at lower rotational speed. The safe operation domain and loss mechanism in tandem stage are also discussed in this report.

  6. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  7. 多级轴流压气机内部声共振的噪声特征研究%Investigation into noise characteristics corresponding to acoustic resonance in a multi-stage axial compressor

    Institute of Scientific and Technical Information of China (English)

    栾孝驰; 沙云东; 赵奉同; 崔现智

    2014-01-01

    基于某型多级轴流压气机部件试验,主要研究高压一级转子叶片出现高振幅级叶片振动时,压气机流道内部的噪声特性,重点分析换算流量(ma)的变化和静子导流叶片连动角度(S0)的变化对压气机内部噪声信号的影响。分析结果表明,此现象可能与压气机环形空间中的声共振有关,压气机中发生的所有共振都在一个频率下,即声共振频率呈现锁频现象;此外,谐振最大时,声共振频率处的声能量超过了通常较大的叶片通过频率处的声能量,在整个声压级谱中占主导地位;ma 和S0的变化对声共振频率不产生影响,但ma 和S0的变化对压气机内部噪声信号特征和转子叶片振动应力幅值影响较大。研究结果对进一步研究声共振现象有一定的参考价值。%Based on a certain type of a multi-stage axial compressor rig testing,the characteristics of noise in the compressor passage compressor is investigated under the condition that blade vibrations of high amplitude levels occurred to the first rotor blades of high pressure. And the analysis focuses on the effect of the changes of the corrected mass flow( ma ) and the linkage angle of stator guide vane ( S0 ) on the noise signal in the compressor. The results show thatthis phenomenon is associated with acoustic resonance of the compressor annulus space,and the resonance occurring all over the compressor is under one single frequency,which means that the acoustic frequency locking takes place. In addition,the sound energy of the acoustic resonance frequency exceeds that of the usually dominated blade passing that frequency when the amplitude of blade vibrations reaches the maximum,which dominates in the whole sound pressure level spectrum. The acoustic resonance frequency is unaffected by and,but the changes of ma and S0 have significant influence on internal noise signal characteristics in the compressor and the vibration stress

  8. Research Progress of Multiaxial Fatigue Test Methods on Blades of Aviation Engine%航空发动机叶片多轴疲劳试验研究进展

    Institute of Scientific and Technical Information of China (English)

    马楠楠; 陶春虎; 何玉怀; 刘新灵

    2012-01-01

    Based on the failure analysis of blades in recent years, the common failure mode gas turbine blades and compressor blades is caused by fatigue. The blades are required to resist high mechanical load, imposed by the high rotational speed which applies a large centrifugal load and by vibration stress of blades under rotating state. The research progress of biaxial fatigue load test methods in both domestic and overseas academic circles is reviewed, including their merits and demerits. In addition, the representative international research on multiaxial fatigue test methods of blades which can simulate the effects of centrifugal load and blade vibration are emphasized. Finally, the successful experiences of foreign countries in multiaxial fatigue test methods of blades should be learned and the Chinese multiaxial fatigue test system of blades should be formed as soon as possible.%近几年航空发动机叶片失效分析的统计表明,叶片失效多由离心力叠加异常振动的多轴疲劳载荷引起.总结现有单一载荷加载、双轴载荷加载等多轴疲劳试验方法的优缺点,并分析其在评价航空发动机叶片多轴疲劳时存在的问题.重点介绍目前国际上最新研制的可有效模拟发动机叶片受力状态的拉伸-弯曲振动多轴疲劳试验方法.建议尽快建立适合我国航空发动机叶片的多轴疲劳试验系统.

  9. Blade system design studies volume II : preliminary blade designs and recommended test matrix.

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Dayton A. (Global Energy Concepts, LLC, Kirkland, WA)

    2004-06-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

  10. Development of fluorine-coated wiper blade; Fusso coating blade no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Awano, Y.; Imamura, S.; Yokoo, K. [Nippon Wiper Blade Co. Ltd., Saitama (Japan); Satoji, F.; Umemoto, N.

    1998-05-01

    Recently many car drivers have used water repellency for windshields to improve a field of view, however, it causes troublesome stick-slip motion of wiper blades. Stick-slip motion increases with frictional load acting on rubber of wiper blades, and fluctuation of frictional load. To prevent such a motion, antifriction materials such as molybdenum and graphite are, in some cases, coated on rubber of wiper blades to reduce frictional load, however, the life of antifriction materials is short because of abrasion of antifriction materials, and such materials also deteriorates the wiping performance of wiper blades. The high-performance long-life wiper blade was thus developed which generates no stick-slip motion for glass coated or uncoated with water repellency by coating a specific fluororesin on rubber of wiper blades. This blade naturally guarantees higher performance and longer wiper blade life than those of conventional blades for not only glass coated with water repellency but also glass uncoated with water repellency. 2 refs., 9 figs.

  11. Low-cost FM oscillator for capacitance type of blade tip clearance measurement system

    Science.gov (United States)

    Barranger, John P.

    1987-01-01

    The frequency-modulated (FM) oscillator described is part of a blade tip clearance measurement system that meets the needs of a wide class of fans, compressors, and turbines. As a result of advancements in the technology of ultra-high-frequency operational amplifiers, the FM oscillator requires only a single low-cost integrated circuit. Its carrier frequency is 42.8 MHz when it is used with an integrated probe and connecting cable assembly consisting of a 0.81 cm diameter engine-mounted capacitance probe and a 61 cm long hermetically sealed coaxial cable. A complete circuit analysis is given, including amplifier negative resistance characteristics. An error analysis of environmentally induced effects is also derived, and an error-correcting technique is proposed. The oscillator can be calibrated in the static mode and has a negative peak frequency deviation of 400 kHz for a rotor blade thickness of 1.2 mm. High-temperature performance tests of the probe and 13 cm of the adjacent cable show good accuracy up to 600 C, the maximum permissible seal temperature. The major source of error is the residual FM oscillator noise, which produces a clearance error of + or - 10 microns at a clearance of 0.5 mm. The oscillator electronics accommodates the high rotor speeds associated with small engines, the signals from which may have frequency components as high as 1 MHz.

  12. Two3-D multi-cascade co-design inverse methods based on streamline curvature approach and Clebsch formulation for single-stage centrifugal compressors%Two 3-D multi-cascade co-design inverse methods based on streamline curvature approach and Clebsch formulation for single-stage centrifugal compressors

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiao-pei; SHAN Peng

    2013-01-01

    Two strategies extended the single-cascade methods from a compressible three-dimensional inverse method for radial and mixed flow turbomachines to two three dimensional multi-cascade co-design methods for single-stage centrifugal compressors.These two three dimensional methods and a typical quasi-threedimensional streamline curvature through-flow inverse method were employed to design the same subsonic high-speed single-stage centrifugal compressors.The compressor performances were simulated by a commercial Reynolds averaged Navier-Stokes (RANS) equations solver.The studies show that two three-dimensional codesign methods are reasonable and feasible.It was found that:firstly the blade camber angle designed by the three-dimensional methods was larger than that designed by the quasi-three-dimensional method;and secondly with regard to two three-dimensional methods with different boundary conditions,the co-design result differences between the diffusers were small,but those between the deswirlers were relatively large.

  13. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  14. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  15. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Berring, Peter; Branner, Kim; Berggreen, Christian

    2007-01-01

    The complete 3D static responses of two different eight meter long wind turbine blade sections were tested. To experimentally investigate the 3D response, an advanced 3D digital optical deformation measuring system (ARAMIS 2M and 4M) was applied in this work. This system measures the full......-field displacements (ux, uy and uz) of the blade surface. A least squares algorithm was developed, which fits a plane through each deformed cross section, and defines a single set of displacements and rotations (three displacements and rotations) per cross section. This least squares algorithm was also used...... to accommodate problems with a flexible boundary condition by determining the displacements and rotations for a cross section near the boundary. These displacements and rotations are subtracted from all other cross sections along the blade and thereby making the blade section fully fixed at the chosen cross...

  16. Shape Optimization of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun

    2009-01-01

    This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero-elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero-elastic behaviour of a real wind turbine...... of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero-elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used...... in the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 k...

  17. COMPARISON OF TWO METHODS TO INCREASE TIP CLEARANCE AND ITS EFFECT ON PERFORMANCE OF TURBOCHARGER CENTRIFUGAL COMPRESSOR STAGE

    Institute of Scientific and Technical Information of China (English)

    SYED Noman Danish; MA Chaochen; YANG Ce; L(U) Wei

    2007-01-01

    Tip clearance between the blade tip and casing of a centrifugal compressor can be varied through two methods: by changing the blade height (M1) or by changing the casing diameter (M2). Numerical simulations are carried out to compare these two methods and their effect on the stage and impeller performance. The impeller and diffuser are connected through rotor Stator boundary using frozen rotor approach. Overall stage performance and the flow configuration have been investigated for nine tip clearance levels from no gap to 1 mm. Impeller and diffuser performances are also presented separately. It has been found that the overall and impeller performance are comparatively better for Ml below tip clearance of 0.5 mm whereas M2 is found advantageous above 0.5 mm of tip clearance. Both M1 and M2 show performance degradation with the increase in tip clearance. Two models have been proposed for the stage total pressure ratio and efficiency, which are found to be in agreement with experimental results. The impeller efficiency and the pressure ratio are found to be maximum at tip clearance of 0.1 mm for both the cases however minimum diffuser effectiveness is also observed at the same clearance level. Diffuser effectiveness is found to be maximum at zero gap for both cases. As it is practically impossible to have zero gap for unshrouded impellers so it is concluded that the Optimum thickness is 0.5 mm onwards for Ml and 0.5 mm for M2 in terms of diffuser effectiveness. Mass averaged flow parameters, entropy, blade loading diagram and relative pressure fields are presented, showing the loss production within the impeller passage with tip clearance.

  18. Lubricants for HFC-134a Compatible Rotary Compressors

    Science.gov (United States)

    Takaichi, Kenji; Sakai, Hisakazu

    In replacing CFC-12 with HFC-134a for refrigerator compressors, the compatibility with lubricating oil, and lubrication in general, are of major concern. HFC-134a dose not have adequate solubility with current lubricating oils because of its molecular structure. Current oils also do not provide enough lubricating action when using HFC-134a. A new oil and new materials have to be utilized in order to use HFC-134a. Developing a new lubricating oil involved numerous tests of different combinations of many polyolester synthetic oils and additives. One of the pre-evaluated methods was pursued via sealed tube tests. Lubricated parts were selected by studies involving a plane-on-roller type of wear test machine and by analyzing the traces of acid material commonly created during the lubricating action. The matrices of new lubricating oils and new lubricated materials were estimated based on durability tests conducted on compressors and refrigerators. Results showed that polyolester synthetic oils having a low total acid value and including certain quantities of additives did not break down into a tar-like substance and they did not produce composite particles in the operating compressors and refrigerators. The study also found that ceramics and anti-corrosion alloy steel possessed good adrasion-reducing qualities. Based on our evaluation, we will implement compressor reliability tests and apply HFC-134a to rotary compressors for refrigerators.

  19. Noise evaluation of automotive A/C compressor

    Directory of Open Access Journals (Sweden)

    Sameh M. Metwally, Mohamed I. Khalil, Shawki A. Abouel-seoud

    2011-05-01

    Full Text Available Passenger compartment's interior noise and thermal performance are essential criteria for the driving comfort of vehicles. The air-conditioning system influences both field of comfort. It creates comfortable thermal conditions. On the other hand, the noise radiation of the air-condition system's components can be annoying. The blower, the air distribution ducts and the registers affect air rush noise. In some cases, the refrigerant flow creates hissing noise. Such noise has a great influence on vehicle acoustical comfort and on overall quality perception of a vehicle Therefore, the acoustic performance of air-condition compressors become more important for passenger comfort. At engine idling and at extreme temperatures the air-condition compressor can be audible as the significant sound source. However, the aim of this paper is to quantify air-borne noise characteristics of vehicle air-condition compressor. A simulated experimental model comprises a small wooden box with dimensions of 0.5 x 0.5 x 0.5 m represented the principle of hemi-anechoic room was designed and acoustic characteristics of the sound field inside the box were determined. The air-condition compressor characteristics parameters considered in this paper are fan position and electric motor speed. In addition, a single number of the air column natural frequency is calculated. The results indicate that significant information can be obtained in order to investigate the vehicle air-condition compressor and consequently improve the vehicle interior quietness.

  20. A high pressure ratio DC compressor for tactical cryocoolers

    Science.gov (United States)

    Chen, Weibo; Cameron, Benjamin H.; Zagarola, Mark V.; Narayanan, Sri R.

    2016-05-01

    A high pressure ratio DC compressor is a critical component for many cryocooler cycles. Prior research has focused on the adaptation of commercial compressor technology (scroll, screw, linear with rectification valves, and regenerative) for use in cryogenic applications where long-life and oil-free (i.e., volatile contamination free) are unique requirements. In addition, many cryocooler applications are for cooling imaging instruments making low vibration an additional requirement. Another candidate compressor technology has emerged from the fuel cell industry. Proton Exchange Membranes (PEMs) are used in fuel cells to separate reactants and transport protons, and these capabilities may be used in cryocoolers to compress hydrogen from low to high pressure. A particular type of PEM utilizing an anhydrous membrane forms the basis of a solid-state cryocooler. Creare has been investigating the use of PEM compressors for low temperature Joule-Thomson and dilution cryocoolers. These cryocoolers have no moving parts, can operate at temperatures down to nominally 23 K, produce no vibration, and are low cost. Our work on the cycle optimization, cryocooler design, and development and demonstration of the compressor technology is the subject of this paper.

  1. Flexure bearing compressor in the one watt linear (OWL) envelope

    Science.gov (United States)

    Rühlich, I.; Mai, M.; Wiedmann, Th.; Rosenhagen, C.

    2007-04-01

    For high performance IR detectors the split linear cooler is a preferred solution. High reliability, low induced vibration and low audible noise are major benefits of such coolers. Today, most linear coolers are qualified for MTTF of 8,000h or above. It is a strong customer desire to further reduce the maintenance costs on system level with significantly higher cooler lifetime. Increased cooler MTTF figures are also needed for IR applications with high lifetime requirements like missile warning applications, border surveillance or homeland security applications. AIM developed a Moving Magnet Flexure Bearing compressor to meet a MTTF of minimum 20,000h. The compressor has a full flexure bearing support on both sides of the driving mechanism. In the assembly process of the compressor an automated alignment process is used to achieve the necessary accuracy. Thus, side-forces on the pistons are minimized during operation, which significantly reduces the wear-out. In order to reduce the outgassing potential most of the internal junctions are welded and the use of all non-metallic components is minimized. The outline dimensions comply with the SADA2 requirements in length and diameter. Further, when operated with a 1/2" SADA type coldfinger, the cooler meets all specified performance data for SADA2. The compressor can be combined with different Stirling type coldfingers and also with the AIM Pulse Tube coldfinger, which gives increased lifetime potential up to 50,000h MTTF. Technical details and performance data of the new compressor are shown.

  2. Turbo-alternator-compressor design for supercritical high density working fluids

    Science.gov (United States)

    Wright, Steven A.; Fuller, Robert L.

    2013-03-19

    Techniques for generating power are provided. Such techniques involve a thermodynamic system including a housing, a turbine positioned in a turbine cavity of the housing, a compressor positioned in a compressor cavity of the housing, and an alternator positioned in a rotor cavity between the turbine and compressor cavities. The compressor has a high-pressure face facing an inlet of the compressor cavity and a low-pressure face on an opposite side thereof. The alternator has a rotor shaft operatively connected to the turbine and compressor, and is supported in the housing by bearings. Ridges extending from the low-pressure face of the compressor may be provided for balancing thrust across the compressor. Seals may be positioned about the alternator for selectively leaking fluid into the rotor cavity to reduce the temperature therein.

  3. Failure analysis of jet engine turbine blade

    OpenAIRE

    MILAN T. JOVANOVIĆ; Vesna Maksimović; Ivana Cvijović-Alagić

    2016-01-01

    Jet engine turbine blade cast by investment precision casting of Ni-base superalloy, which failed during exploatation, was the subject of investigation. Failure analysis was executed applying optical microscopy (OM), transmission electron microscopy (TEM) using replica technique, scaning electron microscopy (SEM) and stress rupture life tests. On the ground of obtained results it was concluded that the failure occurred as a result of structural changes caused by turbine blade overheating abov...

  4. Failure analysis of jet engine turbine blade

    Directory of Open Access Journals (Sweden)

    Milan T. Jovanović

    2016-03-01

    Full Text Available Jet engine turbine blade cast by investment precision casting of Ni-base superalloy, which failed during exploatation, was the subject of investigation. Failure analysis was executed applying optical microscopy (OM, transmission electron microscopy (TEM using replica technique, scaning electron microscopy (SEM and stress rupture life tests. On the ground of obtained results it was concluded that the failure occurred as a result of structural changes caused by turbine blade overheating above the exploitation temperature.

  5. FEM Analysis of Turgo Impulse Turbine Blade

    Directory of Open Access Journals (Sweden)

    Sourabh KHURANA

    2013-07-01

    Full Text Available The present research work describes the development of Turgo turbine blades on the Solidworks software. Finite element simulation (Ansys V14 has been used for analysis of stress and total deformation produced inside the Turgo impulse turbine. Finite element simulation is effective when it is used to analyze the strain and stress distribution. It has been observed during analysis that the maximum stress occurs at the root of blade suction side.

  6. Data Management Techniques for Blade Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Przysowa Radosław

    2016-07-01

    Full Text Available Well-designed procedures are required to handle large amounts of data, generated by complex measurement systems used in engine tests. The paper presents selected methodologies and software tools for characterisation and monitoring of blade vibration. Common file formats and data structures as well as methods to process and visualise tip-timing data are discussed. Report Generation Framework (RGF developed in Python is demonstrated as a flexible tool for processing and publishing blade vibration results.

  7. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  8. High efficiency turbine blade coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  9. Recent Development in Turbine Blade Film Cooling

    Directory of Open Access Journals (Sweden)

    Je-Chin Han

    2001-01-01

    Full Text Available Gas turbines are extensively used for aircraft propulsion, land-based power generation, and industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature (RIT. The current RIT level in advanced gas turbines is far above the .melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. Gas turbine blades are cooled internally and externally. This paper focuses on external blade cooling or so-called film cooling. In film cooling, relatively cool air is injected from the inside of the blade to the outside surface which forms a protective layer between the blade surface and hot gas streams. Performance of film cooling primarily depends on the coolant to mainstream pressure ratio, temperature ratio, and film hole location and geometry under representative engine flow conditions. In the past number of years there has been considerable progress in turbine film cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling.

  10. The environmental impact of wind turbine blades

    Science.gov (United States)

    Liu, P.; Barlow, C. Y.

    2016-07-01

    The first generation of wind turbine (WT) blades are now reaching their end of life, signalling the beginning of a large problem for the future. Currently most waste is sent to landfill, which is not an environmentally desirable solution. Awareness of this issue is rising, but no studies have fully assessed the eco impact of WT blades. The present study aims to provide a macroscopic quantitative assessment of the lifetime environmental impact of WT blades. The first stage has been to analyse global data to calculate the amount of WT blade materials consumed in the past. The life cycle environmental impact of a single WT blade has then been estimated using eco data for raw materials, manufacturing processes, transportation, and operation and maintenance processes. For a typical 45.2 meter 1.5 MW blade this is 795 GJ (CO2 footprint 42.1 tonnes), dominated by manufacturing processes and raw materials (96% of the total. Based on the 2014 installed capacity, the total mass of WTB is 78 kt, their energy consumption is 82 TJ and the carbon dioxide footprint is 4.35 Mt. These figures will provide a basis for suggesting possible solutions to reduce WTB environmental impact.

  11. Sandwich materials for wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Thybo Thomsen, O. [Aalborg Univ., Dept. of Mechanical Engineering, Aalborg (Denmark)

    2006-07-01

    Wind turbine blades are being manufactured using polymer matrix composite materials (PMC), in a combination of monolithic (single skin) and sandwich composites. Present day designs are mainly based on glass fibre reinforced composites (GFRP), but for very large blades carbon fibre reinforced composites (CFRP) are being used increasingly, in addition to GFRP by several manufacturers to reduce the weight. The size of wind turbines have increased significantly over the last 25 years, and this trend is expected to continue in the future. Thus, it is anticipated that wind turbines with a rated power output in the range of 8-10 MW and a rotor diameter about 170-180 m will be developed and installed within the next 10-15 years. The paper presents an overview of current day design principles and materials technology applied for wind turbine blades, and it highlights the limitations and important design issues to be addressed for up-scaling of wind turbine blades from the current maximum length in excess of 61 m to blade lengths in the vicinity of 90 m as envisaged for future very large wind turbines. In particular, the paper discusses the potential advantages and challenges of applying sandwich type construction to a larger extent than is currently being practiced for the load carrying parts of wind turbine blades. (au)

  12. Unsteady turbulence interaction in a tip leakage flow downstream of a simulated axial compressor rotor

    Science.gov (United States)

    Ma, Ruolong

    The unsteady behavior of a tip leakage flow downstream of a simulated axial compressor rotor has been studied. The Virginia Tech low speed linear cascade wind tunnel was adapted to model the unsteady tip leakage flow produced by a rotor operating in the vortical wakes of a set of stator vanes. The cascade, consisting of 8 GE rotor B blades, has adjustable tip gap, inlet angle of 65.1°, turning angle of 11.8° and solidity of 1.076. The cascade Reynolds number, based on blade chord, was 393,000. A moving end wall was used to simulate the relative motion between rotor and casing, and vortex generators attached to the moving end wall were used to produce an idealized periodic unsteady vortical inflow similar to that shed by the junction of a row of inlet guide vanes. Measurements of the vortical inflow to the cascade produced by the generators and of the mean blade loading at the mid span are presented. The periodic and aperiodic behavior of the tip leakage flow downstream of the cascade, produced by this vortical disturbance, is also presented using phase and time averaged 3-component turbulence and pressure fluctuation measurements. These measurements are made for tip gap from 0.83% to 3.3% chord and streamwise locations from 0.772% to 1.117% blade spacing axially downstream of the cascade. The phase averaged inflow measurements reveal that the inflow produced by the vortex generators consists of a pair asymmetric counter-rotating vortices embedded in a thin (4.6% chord) endwall boundary layer. The vortices extend some 7.4% chord from the end wall. Their strength is about two orders smaller than the typical circulation of the tip leakage vortices produced by the cascade. Phase averaged single point three component hot-wire measurements downstream of the cascade reveal that the vortical inflow is, however, capable of producing significant large scale fluctuations in the size, strength, structure and position of the tip leakage vortex. These effects increase in

  13. Study of Sweep and Induced Dihedral Effects in Subsonic Axial Flow Compressor Passages—Part I: Design Considerations—Changes in Incidence, Deflection, and Streamline Curvature

    Directory of Open Access Journals (Sweden)

    P. V. Ramakrishna

    2009-01-01

    Full Text Available This article presents the study of Tip Chordline Sweeping (TCS and Axial Sweeping (AXS of low-speed axial compressor rotor blades against the performance of baseline unswept rotor (UNS for different tip clearance levels. The first part of the paper discusses the changes in design parameters when the blades are swept, while the second part throws light on the effect of sweep on tip leakage flow-related phenomena. 15 domains are studied with 5 sweep configurations (0∘, 20∘ TCS, 30∘ TCS, 20∘ AXS, and 30∘ AXS and for 3 tip clearances (0.0%, 0.7%, and 2.7% of the blade chord. A commercial CFD package is employed for the flow simulations and analysis. Results are well validated with experimental data. Forward sweep reduced the flow incidences. This is true all over the span with axial sweeping while little higher incidences below the mid span are observed with tip chordline sweeping. Sweeping is observed to lessen the flow turning. AXS rotors demonstrated more efficient energy transfer among the rotors. Tip chordline sweep deflected the flow towards the hub while effective positive dihedral induced with axial sweeping resulted in outward deflection of flow streamlines. These deflections are more at lower mass flow rates.

  14. Study of Sweep and Induced Dihedral Effects in Subsonic Axial Flow Compressor Passages—Part II: Detailed Study of the Effects on Tip Leakage Phenomena

    Directory of Open Access Journals (Sweden)

    P. V. Ramakrishna

    2010-01-01

    Full Text Available This article presents the detailed study of rotor tip leakage related phenomena in a low speed axial compressor rotor passages for three sweep configurations [Unswept (UNS, Tip Chordline Swept (TCS and Axially Swept (AXS]. Fifteen domains are numerically studied with 5 sweep configurations (0°, 20° TCS, 30° TCS, 20° AXS, and 30° AXS and for 3 tip clearances (0.0%, 0.7% and 2.7% of the blade chord. Results were well validated with experimental data. Observations near the tip reveal that UNS rotor shows high sensitivity than the swept rotors in the blade pressure distribution with change in tip clearance. AXS rotor has high loading capability and less tip clearance effect on blade loading at the near stall mass flow. Downstream shift of the vortex rollup along the chord is observed with increased flow coefficient and increment in the tip gap height. In particular, the effect of flow coefficient is more predominant on this effect. Tip vortex-related flow blockage is less with the swept rotors. Among the rotors, the AXS rotor is found to incur low total pressure losses attributable to tip leakage. Effect of incidence is observed on the flow leakage direction.

  15. Forced response of rotating bladed disks: Blade Tip-Timing measurements

    Science.gov (United States)

    Battiato, G.; Firrone, C. M.; Berruti, T. M.

    2017-02-01

    The Blade Tip-Timing is a well-known non-contact measurement technique currently employed for the identification of the dynamic behaviours of rotating bladed disks. Although the measurement system has become a typical industry equipment for bladed disks vibration surveys, the type of sensors, the positioning of the sensors around the bladed disk and the used algorithm for data post-processing are still not standard techniques, and their reliability has to be proved for different operation conditions by the comparison with other well-established measurement techniques used as reference like strain gauges. This paper aims at evaluating the accuracy of a latest generation Tip-Timing system on two dummy blisks characterized by different geometrical, structural and dynamical properties. Both disks are tested into a spin-rig where a fixed number of permanent magnets excite synchronous vibrations with respect to the rotor speed. A new positioning for the Blade Tip-Timing optical sensors is tested in the case of a shrouded bladed disk. Due to the presence of shrouds, the sensors cannot be positioned at the outer radius of the disk pointing radially toward the rotation axis as in the most common applications, since the displacements at the tips are very small and cannot be detected. For this reason a particular placement of optical laser sensors is studied in order to point at the leading and trailing edges' locations where the blades experience the largest vibration amplitudes with the aim of not interfering with the flow path. Besides the typical Blade Tip-Timing application aimed at identifying the dynamical properties of each blade, an original method is here proposed to identify the operative deflection shape of a bladed disk through the experimental determination of the nodal diameters. The method is applicable when a small mistuning pattern perturbs the ideal cyclic symmetry of the bladed disk.

  16. Development of an Electrochemical Separator and Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Trent Molter

    2011-04-28

    Global conversion to sustainable energy is likely to result in a hydrogen-based economy that supports U.S. energy security objectives while simultaneously avoiding harmful carbon emissions. A key hurdle to successful implementation of a hydrogen economy is the low-cost generation, storage, and distribution of hydrogen. One of the most difficult requirements of this transformation is achieving economical, high density hydrogen storage in passenger vehicles. Transportation applications may require compression and storage of high purity hydrogen up to 12,000 psi. Hydrogen production choices range from centralized low-pressure generation of relatively impure gas in large quantities from steam-methane reformer plants to distributed generation of hydrogen under moderate pressure using water electrolysis. The Electrochemical Hydrogen Separator + Compressor (EHS+C) technology separates hydrogen from impurities and then compresses it to high pressure without any moving parts. The Phase I effort resulted in the construction and demonstration of a laboratory-scale hardware that can separate and compress hydrogen from reformate streams. The completion of Phase I has demonstrated at the laboratory scale the efficient separation and compression of hydrogen in a cost effective manner. This was achieved by optimizing the design of the Electrochemical Hydrogen Compression (EHC) cell hardware and verified by parametric testing in single cell hardware. A broad range of commercial applications exist for reclamation of hydrogen. One use this technology would be in combination with commercial fuel cells resulting in a source of clean power, heat, and compressed hydrogen. Other applications include the reclamation of hydrogen from power plants and other industrial equipment where it is used for cooling, recovery of process hydrogen from heat treating processes, and semiconductor fabrication lines. Hydrogen can also be recovered from reformate streams and cryogenic boil-offs using this

  17. Prediction of gas pulsation of an industrial compressor

    Institute of Scientific and Technical Information of China (English)

    Heuicheol; Kim; Mi-Gyung; Cho; Jaehong; Park; Cheolho; Bai; Jaesool; Shim

    2013-01-01

    The measurement and prediction of gas pulsations are performed along the discharge pipeline of a reciprocating compressor for a refrigerator. A regression based experimental model of the one-dimensional acoustic field is developed. First, the conventional method for gas pulsation measurement and prediction, which separates the incident and reflected wave of acoustic waves traveling in the frequency domain, is discussed. Then, regression based on our proposed simple model, which is able to predict gas pulsation compared to the conventional method, is introduced for the analysis of a reciprocating compressor(The conventional method requires the value of sound speed in the piping line for the reciprocating compressor). A numerical prediction is made for the regression method. Three power spectrum values along the discharge pipeline are used for analysis, and two values are used for verification. Our results are in a good agreement with the conventional method.

  18. Performance Comparison of Capacity Control Methods for Reciprocating Compressors

    Science.gov (United States)

    Wang, L.; Liu, G. B.; Zhao, Y. Y.; Li, L. L.

    2015-08-01

    Different capacity control methods are used for adjusting suction flow of reciprocating compressors to meet process need. Compared with recycle or bypass and suction throttling, three capacity control methods of speed control, clearance pockets and suction valve unloading are preferred due to their energy-saving at operating condition of partial load. The paper reviewed state of the art of the current capacity control technologies and their principles. A comprehensive mathematical model was developed to predict thermodynamic and dynamic performance of reciprocating compressors equipped with the capacity control systems of four above-mentioned methods. Comparison of shaft work and mechanical efficiency were conducted for different capacity control methods at the same condition. In addition, their influence on p-v diagram and valve motion were also studied, which is important for reliability and life of the reciprocating compressors. These results were helpful for selection of the capacity control systems by end-users and optimum design by manufacturers.

  19. Investigation of Surge Behavior in a Micro Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    Shimpei MIZUKI; Yuichiro ASAGA; Yushi ONO; Hoshio TSUJITA

    2006-01-01

    This paper reports the experimental and theoretical study of the surge occurred in prototyping an ultra micro centrifugal compressor. As the first step, the 10 times size model of an ultra micro centrifugal compressor having the 40 mm outer diameter was designed and manufactured. The detailed experimental investigations for the transient behavior of surge with several different values of B parameter were carried out. The experimental results during the surge were compared with those obtained by the non-linear lumped parameter theory in order to validate the effectiveness of the theoretical surge model for the micro centrifugal compressor. As a result, the quite different behavior of the surge appeared for the different values of B both in the experiment and in the analysis.

  20. Unsteady cooperative flow type in the axial compressor

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xinqian; ZHOU Sheng; HOU Anping; XIONG Jinsong

    2005-01-01

    For increasing the performance of the axial compressor, a method for realizing unsteady cooperative flow type is proposed in this paper as a critical objective in the new generation of the axial compressor design system. Unsteady excitations were utilized to trigger the transformation from the unsteady natural flow pattern into the unsteady cooperative flow pattern, resulting in increment of aerodynamic performances of axial compressor. Numerical simulations show that distinct positive effect can be obtained for the 2D cascade in a wide range of subsonic working conditions. No positive effect can be observed under the 2D supersonic working conditions and unsteady excitations have little influence on the flow field space-time structure. However, positive effect can be obtained under the 3D transsonic working conditions. In addition, engineering applications of unsteady cooperative flow type are discussed.

  1. Fault detection in reciprocating compressor valves under varying load conditions

    Science.gov (United States)

    Pichler, Kurt; Lughofer, Edwin; Pichler, Markus; Buchegger, Thomas; Klement, Erich Peter; Huschenbett, Matthias

    2016-03-01

    This paper presents a novel approach for detecting cracked or broken reciprocating compressor valves under varying load conditions. The main idea is that the time frequency representation of vibration measurement data will show typical patterns depending on the fault state. The problem is to detect these patterns reliably. For the detection task, we make a detour via the two dimensional autocorrelation. The autocorrelation emphasizes the patterns and reduces noise effects. This makes it easier to define appropriate features. After feature extraction, classification is done using logistic regression and support vector machines. The method's performance is validated by analyzing real world measurement data. The results will show a very high detection accuracy while keeping the false alarm rates at a very low level for different compressor loads, thus achieving a load-independent method. The proposed approach is, to our best knowledge, the first automated method for reciprocating compressor valve fault detection that can handle varying load conditions.

  2. A cryogenic axial-centrifugal compressor for superfluid helium refrigeration

    CERN Document Server

    Decker, L; Schustr, P; Vins, M; Brunovsky, I; Lebrun, P; Tavian, L

    1997-01-01

    CERN's new project, the Large Hadron Collider (LHC), will use superfluid helium as coolant for its high-field superconducting magnets and therefore require large capacity refrigeration at 1.8 K. This may only be achieved by subatmospheric compression of gaseous helium at cryogenic temperature. To stimulate development of this technology, CERN has procured from industry prototype Cold Compressor Units (CCU). This unit is based on a cryogenic axial-centrifugal compressor, running on ceramic ball bearings and driven by a variable-frequency electrical motor operating under low-pressure helium at ambient temperature. The machine has been commissioned and is now in operation. After describing basic constructional features of the compressor, we report on measured performance.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, FRANCE COMPRESSOR PRODUCTS EMISSIONS PACKING, PHASE I REPORT

    Science.gov (United States)

    The report presents results of a Phase I test of emissions packing technology offered by France Compressor Products which is designed to reduce methane leaks from compressor rod packing when a compressor is in a standby and pressurized state. This Phase I test was executed betwee...

  4. EFRC guidelines on how to avoid liquid problems in reciprocating compressor systems

    NARCIS (Netherlands)

    Shoeibi Omrani, P.; Eijk, A.

    2014-01-01

    Reciprocating compressors are widely used in a variety of industries. Issues with using reciprocating compressors are reliability concerns, especially system failures due to the presence of liquids. The working principle of reciprocating compressors are based on the gas compression of a closed volum

  5. An Experimental Investigation of the Flow Physics Associated With End Wall Losses and Large Rotor Tip Clearances as Found in the Rear Stages of a High Pressure Compressor

    Science.gov (United States)

    Berdanier, Reid A.; Key, Nicole L.

    2015-01-01

    measurements have also been used to calculate streamwise vorticity. Time-resolved static pressure measurements have been collected over the rotor tips for all rotors with each of the three tip clearance configurations for up to five loading conditions along the 100% corrected speedline using fast-response piezoresistive pressure sensors. These time-resolved static pressure measurements, as well as the time-resolved total pressures and velocities have helped to reveal a profound influence of the upstream stator vane on the size and shape of the rotor tip leakage flow. Finally, a novel particle image velocimetry (PIV) technique has been developed as a proof-of- concept. In contrast to PIV methods that have been typically been utilized for turbomachinery applications in the past, the method used for this study introduced the laser light through the same access window that was also used to image the flow. This new method addresses potential concerns related to the intrusive laser-introducing techniques that have typically been utilized by other authors in the past. Ultimately, the data collected for this project represent a unique data set which contributes to build a better understanding of the tip leakage flow field and its associated loss mechanisms. These data will facilitate future engine design goals leading to small blade heights in the rear stages of high pressure compressors and aid in the development of new blade designs which are desensitized to the performance penalties attributed to rotor tip leakage flows.

  6. Gas turbine blade with metal core and ceramic blade. Gasturbinenschaufel mit Metallkern und Keramikblatt

    Energy Technology Data Exchange (ETDEWEB)

    Huether, W.

    1984-03-29

    This is a gas turbine blade with a metal core connected to the rotor disc and a ceramic profile blade surrounding this core at a certain spacing, where a metal mesh is inserted between the metal core and the ceramic covering.

  7. Impact on the magnetic compressor due to CSR

    Institute of Scientific and Technical Information of China (English)

    LIU Chu-Yu; WANG Fang; WANG Er-Dong; QUAN Sheng-Wen; HAO Jian-Kui; LU Xiang-Yang; ZHANG Bao-Cheng; ZHAO Kui

    2008-01-01

    When an electron bunch is compressed in a chicane compressor,the CSR (coherent synchrotron radiation) will induce energy redistribution along the bunch.Such energy redistribution will affect the longitudinal emittance as a direct consequence.It will also excite betatron oscillation due to the chromatic transfer functions,and hence a transverse emittance change.So,it is indispensable for us to find a way to alleviate the CSR-cansed emittance dilution and the bad result of chicane compressor in PKU-FEL.

  8. Hermetic compressor and block expansion valve in refrigeration performance

    Science.gov (United States)

    Santoso, Budi; Susilo, Didik Djoko; Tjahjana, D. D. D. P.

    2016-03-01

    Vehicle cabin in tropical countries requires the cooling during the day for comfort of passengers. Air conditioning machine is commonly driven by an internal combustion engine having a great power, which the conventional compressor is connected to crank shaft. The stage of research done is driving the hermetic compressor with an electric motor, and using block expansion valve. The HFC-134a was used as refrigerant working. The primary parameters observed during the experiment are pressure, temperature, and power consumption for different cooling capacities. The results show that the highest coefficient of performance (COP) and the electric power of system are 6.3 and 638 Watt, respectively.

  9. Single-grating laser pulse stretcher and compressor.

    Science.gov (United States)

    Lai, M; Lai, S T; Swinger, C

    1994-10-20

    Stretching and compressing of laser pulses is demonstrated with a single-grating apparatus. A laser pulse of 110 fs is stretched to 250 ps and then recompressed to 115 fs. The apparatus exploits a two-level structure: one level for stretching and the other for compressing. This single-grating configuration shows significant simplification in structure and alignment over existing multiple-grating systems. Such a stretcher-compressor is particularly suitable for use with chirped-pulse amplification in which laser wavelength tuning is desirable. Only one rotational adjustment is rquired to restore the alignment of the entire stretcher and compressor when the laser wavelength is changed.

  10. Performance of Oil-Injected Scroll Compressors for Helium Refrigerators

    Science.gov (United States)

    Shiibayashi, Masao; Izunaga, Yasushi; Sado, Shintaro

    In recent years there arises growing demand of helium liquefaction refrigerators for the magnetic resonance imaging systems, magnetically levitated vehicles and other systems using superconducting magnet. From this background, a small size, scroll type of hermetic helium compressor capable of compressing helium gas to the pressure ratio of 20 in a single stage is developed. Main features of this compressor are as follows. 1) Discharge capacity can be varied from 7 to 20 Nm3/h by changing driving motor frequency from 30 to 80 Hz. 2) The overall adiabatic efficiency showed 72%∼79% under the pressure ratio range of 11∼20 at 60 Hz using oil injection cooling device.

  11. A Supercritical 250 kW Industrial Air Compressor Prototype

    Science.gov (United States)

    Lantto, Erkki; Tommila, Ville

    This paper presents the active magnetic bearing control system synthesis and practical rotor dynamic experiences with a supercritical 250 kW turbo compressor. First, the physical boundary conditions of passing the first bending critical speed and feasible bearing characteristics near the critical speed are considered. Then, the control system is synthesized and analyzed using complex formulation. A synchronous response controller is added in parallel with the position controller in order to achieve the preferred bearing characteristics. Finally, measured performance of the control system when passing the critical speed with a real life compressor is presented.

  12. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P. [Gas Turbine Efficiency, Jarfalla (Sweden)

    1998-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  13. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions.

  14. Evaluation of a natural gas compressor building with switch-back air inlet entrances and ventilated by compressor package coolers

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Timothy G. [HFP Acoustical Consultants Inc. (United States)], email: tim.simmons@hfpacoustical.com

    2011-07-01

    The booming natural gas market in the Marcellus shale region has seen the appearance of many oil and gas processing stations, the latter generating a great deal of noise, which disturbs local residents. The oil and gas companies have therefore developed a patchwork of noise reduction techniques, from basic mufflers to engineered, sound-proof buildings. This paper focuses on a compromise: a gas compressor station, located in Lycoming County, Pennsylvania, encased in a light-weight, metal building with switch-back air inlet openings for cooling and noise reduction. This case study aims to measure the noise emissions of the compressor, and possibly propose solutions for its mitigation. Since Lycoming County has a fairly stringent policy on noise disturbance, especially for low-frequency sounds, noise emission results showed that switch-back openings and the walls of the compressor building must be mitigated and that action must be taken by the gas company to meet the noise ordinance requirements.

  15. Successful Solutions to SSME/AT Development Turbine Blade Distress

    Science.gov (United States)

    Montgomery, Stuart K.

    1999-01-01

    As part of the High-Pressure Fuel Turbopump/Alternate Turbopump (HPFTP/AT) turbine blade development program, unique turbine blade design features were implemented to address 2nd stage turbine blade high cycle fatigue distress and improve turbine robustness. Features included the addition of platform featherseal dampers, asymmetric blade tip seal segments, gold plating of the blade attachments, and airfoil tip trailing edge modifications. Development testing shows these features have eliminated turbine blade high cycle fatigue distress and consequently these features are currently planned for incorporation to the flight configuration. Certification testing will begin in 1999. This presentation summarizes these features.

  16. Further development of the swinging-blade Savonius rotor

    Science.gov (United States)

    Aldoss, T. K.; Najjar, Y. S. H.

    Savonius rotor performance is improved by allowing both downwind and upwind rotor blades to swing back through an optimum angle. This will minimize the drag on the upwind blade and maximize the drag on the down-wind blade. A combination of 50 degrees upwind blade swing angle and 13.5 degrees downwind blade swing angle have been found experimentally to be the optimum swing angles that increased the rotor maximum power coefficient to about 23.5 percent compared with 18 percent with optimum upwind blade swing alone.

  17. Modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H.; Baumgart, A.; Carlen, I.

    2002-02-01

    The modal analysis technique has been used to identify essential dynamic properties of wind turbine blades like natural frequencies, damping characteristics and mode shapes. Different experimental procedures have been considered, and the most appropriate of these has been selected. Although the comparison is based on measurements on a LM 19 m blade, the recommendations given are believed to be valid for other wind turbine blades as well. The reliability of the selected experimental analysis has been quantified by estimating the unsystematic variations in the experimental findings. Satisfactory results have been obtained for natural frequencies, damping characteristics and for the dominating deflection direction of the investigated mode shapes. For the secondary deflection directions, the observed experimental uncertainty may be considerable - especially for the torsional deflection. The experimental analysis of the LM 19 m blade has been compared with results from a state-of-the-art FE-modeling of the same blade. For some of the higher modes substantial discrepancies between the natural frequencies originating from the FE-modeling and the modal analysis, respectively, are observed. In general the qualitative features of measured and computed modes shapes are in good agreement. However, for the secondary deflection directions, substantial deviations in the absolute values may occur (when normalizing with respect to the primary deflection direction). Finally, suggestions of potential future improvements of the experimental procedure are discussed. (au)

  18. 3X-100 blade field test.

    Energy Technology Data Exchange (ETDEWEB)

    Zayas, Jose R.; Johnson, Wesley D.

    2008-03-01

    In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

  19. Blade containment evaluation of civil aircraft engines

    Institute of Scientific and Technical Information of China (English)

    Yang Bin

    2013-01-01

    The potential hazard resulting from uncontained turbine engine rotor blade failure has always been the long-term concern of each aero engine manufacturer,and to fully contain the failed blades under critical operating conditions is also one of the most important considerations to meet the rotor integrity requirements.Usually,there are many factors involving the engine containment capability which need to be reviewed during the engine design phases,such as case thickness,rotor support structure,blade weight and shape,etc.However,the premier method to demonstrate the engine containment capability is the fan blade-off test and margin of safety (MS) analysis.Based on a concrete engine model,this paper aims to explain the key points of aero engine containment requirements in FAR Part 33,and introduces the implementation of MS analysis and fan blade-off test in the engine airworthiness certification.Through the introduction,it would be greatly helpful to the industrial community to evaluate the engine containment capability and prepare the final test demonstration in engine certification procedure.

  20. Blade manipulators in turbulent channel flow

    Science.gov (United States)

    Vasudevan, B.; Prabhu, A.; Narasimha, R.

    1992-01-01

    We report here the results of a series of careful experiments in turbulent channel flow, using various configurations of blade manipulators suggested as optimal in earlier boundary layer studies. The mass flow in the channel could be held constant to better than 0.1%, and the uncertainties in pressure loss measurements were less than 0.1 mm of water; it was therefore possible to make accurate estimates of the global effects of blade manipulation of a kind that are difficult in boundary layer flows. The flow was fully developed at the station where the blades were mounted, and always relaxed to the same state sufficiently far downstream. It is found that, for a given mass flow, the pressure drop to any station downstream is always higher in the manipulated than in the unmanipulated flow, demonstrating that none of the blade manipulators tried reduces net duct losses. However the net increase in duct losses is less than the drag of the blade even in laminar flow, showing that there is a net reduction in the total skin friction drag experienced by the duct, but this relief is only about 20% of the manipulator drag at most.

  1. Service failure of hot-stage turbine blades:

    Science.gov (United States)

    Oldfield, William; Oldfield, Freda M.

    1993-10-01

    Surface-connected porosity in current military aircraft hot-stage turbine engine blades is associated with blade failure. Oxidation ratcheting is suggested as the failure mechanism. Sta- tistical comparison of new and used blade populations showed that for blades cast with an equiaxed structure, the porosity in new blades was associated with crack formation on the con- cave surface of the used blades. The pores did not tend to develop into cracks on the compressed (convex) surface of the blade. Insufficient suitable data on directionally solidified blades pre- vented similar statistical correlations. However, metallography of the directionally solidified blades showed that the in-service cracks were related to oxidation inside surface-connected pores and that the cracks were oriented in the same direction as the (axial) casting pores. Thus, the proposed failure mechanism through ratcheting is based on the following insights: (1) the blades are thermally cycled as a normal part of service; (2) the hot blades expand and the open pores are filled with oxide; (3) when the blade is cooled, thermal contraction of the metal is greater than the oxide, causing compressive stress and yield; and (4) thermal expansion of the blades opens the pores again, since yield relaxed compressive stress at low temperature. These insights were supported by metallographic and computer-simulation studies which showed that the pores grow 20 to 50 pct in width per 100 missions (about 90 hours of operation) for a military aircraft on a typical mission profile.

  2. Experiments of Wind Turbine Blades with Rocket Triggered Lightning

    Science.gov (United States)

    Minowa, Masayuki; Sumi, Shinichi; Minami, Masayasu; Horii, Kenji

    This paper describes the results of the experiments of wind turbine blades with rocket triggered lightning. A number of wind power stations have been projected and planted. Lightning damage to wind turbines has been an increasing problem recently. So development on protection of wind power plants from lightning is necessary to be fully run for the future. In the experiments, the 1.8m long blade was struck by the lightning discharge triggered by rocket. For the blade kept dry inside, the very strong discharge of positive peak current 28kV, total charge 520 Coulombs, was triggered, but the breakdown did not occur through the blade into inside. Another blade polluted by salty wet inside was struck by the lightning discharge of negative peak current of 4kA with 0.5 Coulombs. The lightning was small, nevertheless, the blade was broken at the upper edge and the blade was disconnected by crack. For the protection of blade, the blade surface was covered with stainless steel plate. The blade itself was safe when the big positive lightning discharged, while most part of stainless steel cover was burned out. Supplement breakdown tests of wind turbine blade were carried out with lightning impulse voltage in laboratory. As a result, it became clear that the blade kept dry inside was an effective lightning protection of wind turbine blades.

  3. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  4. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    Science.gov (United States)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  5. Theoretical and experimental investigations on the match between pulse tube cold fingers and linear compressors

    Science.gov (United States)

    Tan, Jun; Dang, Haizheng; Zhang, Lei

    2015-12-01

    The match between the cold finger and the linear compressor of the Stirling-type pulse tube cryocooler plays a vital role in optimizing the compressor efficiency and in improving the cold finger cooling performance. To reveal the match mechanism between the linear compressor and pulse tube cold finger (PTCF), detailed analyses have been made to understand the interactions between them. Based on the theoretical investigations, both of the design method of the PTCF to match the given linear compressor and a reverse method of the linear compressor to match the given PTCF have been proposed. In order to verify the validity of these theories and methods, actual PTCF and linear compressor are developed to match the existing linear compressor and PTCF, respectively. The experimental results show good agreements with the simulated ones.

  6. Technological advances of compressors in refrigerating machines. Evolutions technologiques des compresseurs de machines frigorifiques

    Energy Technology Data Exchange (ETDEWEB)

    Sartre, V.; Lallemand, M. (Centre National de la Recherche Scientifique, 69 - Villleurbanne (France)); Chiaffi, M. (Societe Bertin et Compagnie, 78 - Plaisir (France))

    1994-03-01

    The present study is related to the development of compressors for heat pumps and refrigerating machines. For a given application, various compressor technologies are possible. The choice is often dictated by the experience acquired on a compressor type, ensuring good reliability and a reasonable cost of the plant. In our study, we examine the limits of various compressor types: piston, screw, scroll, rotary vane, rolling piston and centrifugal. A comparison of the theoretical and practical limits of the compressors' operating ranges shows the necessity of better adaptation of the compressor type to each application. Finally, we suggest the main research focus for the development of future compressors. The new technologies should evolve towards a variable-speed operation, without lubricating oil or with refrigerant lubrication. Acoustic comfort is also an important criterion. (author)

  7. Aero-Mechanical Coupling in a High-Speed Compressor

    Science.gov (United States)

    2010-02-01

    noise over a wide range of turbomachine operating conditions. Furthermore, such a scaling simplifies data processing since the average blade...J. Sound and Vibration, 237(2). Belz, J. and Hennings, H. (2006). Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines , chapter...Aeroelasticity of Turbomachines . Springer. Gallego-Garrido, J., Dimitriadis, G., and Wright, J. (2007). A class of methods for the analysis of blade tip

  8. Variable speed hermetic reciprocating compressors for domestic refrigerators

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.

    1998-01-01

    This article describes the results of a both theoretical and experimental investigation of the performance of variable speed hermetic reciprocating compressors for domestic refrigerators. The investigation was performed as a part of a larger research project with the objective of reducing...

  9. A Device for Measuring Sonic Velocity and Compressor Mach Number

    Science.gov (United States)

    1948-07-01

    resonator (the only 4 NACA TN No. 1664 accurate measurement required) is measured, as shomn in figure 1, by means of a mercury manometer . The compressor Mach...tube vs not connected to the ccmpressor inlet until after calibration. The pressure in the device was measured by means of the mercury manometer . Fram

  10. Development of the Larzac Engine Rig for Compressor Stall Testing

    Science.gov (United States)

    2011-12-01

    prediction, and experiments to detect and identify stall and surge precursors in the operation of multi stage compressors in aero engines. He received...similarly to an iris or a camera shutter and achieved its throttling by the gradual reduction of the effective area of the by-pass exit annulus

  11. Optimisation of acoustic silencer for the screw compressor system

    NARCIS (Netherlands)

    Swamy, M.; Lier, L.J. van; Smeulers, J.P.M.

    2014-01-01

    In one of the screw compressor system, designed silencer was not optimal. A great challenge was the large variation in operating conditions, especially the variation of the molecular weight of the gas. There was need to optimize the silencer. This paper describes the acoustic modelling tools to opti

  12. An experimental method for validating compressor valve vibration theory

    NARCIS (Netherlands)

    Habing, R.A.; Peters, M.C.A.M.

    2006-01-01

    This paper presents an experimental method for validating traditional compressor valve theory for unsteady flow conditions. Traditional valve theory considers the flow force acting on the plate and the flow rate as quasi-steady variables. These variables are related via semi-empirical coefficients w

  13. Development of Compressor for Ultra Micro Gas Turbine

    Institute of Scientific and Technical Information of China (English)

    Shimpei MIZUKI

    2007-01-01

    The major problems for the development of an ultra micro gas turbine system were discussed briefly from the stand point of the internal flow and the performance characteristics. Following to these, the development of ultra micro centrifugal compression systems for the ultra micro gas turbine is explained with the design and the manufacturing processes. The measured results of ultra micro centrifugal compressors are shown.

  14. Increased turbo compressor reliability by analysis of fluid structure interaction

    NARCIS (Netherlands)

    Smeulers, J.P.M.; González Díez, N.

    2012-01-01

    The integrity of compressors and pumps is of paramount importance for the gas and oil industry. Failures may result in serious production losses that are in no proportion with the cost of the equipment involved. Besides, the equipment may be inaccessible for maintenance for a long period of time due

  15. Motor-driven compressor-condenser group for cooling cycles

    Energy Technology Data Exchange (ETDEWEB)

    Giuffrida, G.G.

    1984-07-17

    A motor-driven compressor condenser group for equipment actuating cooling-cycles, such as for example cooling apparatuses and heat pumps, enclosed in a single container. The cooling fluid of the heat-exchanger connected to the condenser passing to and from the container is to be used in domestic cooling systems to heat water.

  16. Numerical Study of Unsteady Flow in Centrifugal Cold Compressor

    Science.gov (United States)

    Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing

    In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.

  17. Data compressor designed to improve recognition of magnetic phases

    Science.gov (United States)

    Vogel, E. E.; Saravia, G.; Cortez, L. V.

    2012-02-01

    Data compressors available in the web have been used to determine magnetic phases for two-dimensional (2D) systems [E. Vogel, G. Saravia, F. Bachmann, B. Fierro, J. Fischer, Phase transitions in Edwards-Anderson model by means of information theory, Physica A 388 2009 4075-4082]. In the present work, we push this line forward along four different directions. First, the compressor itself: we design a new data compressor, named wlzip, optimized for the recognition of information having physical (or scientific) information instead of the random digital information usually compressed. Second, for the first time we extend the data compression analysis to the 3D Ising ferromagnetic model using wlzip. Third, we discuss the tuning possibilities of wlzip in terms of the number of digits considered in the compression to yield maximum definition; in this way, the transition temperature of both 2D and 3D Ising ferromagnets can be reported with very good resolution. Fourth, the extension of the time window through which the data file is actually compressed is also considered to get optimum accuracy. The paper is focused on the new compressor, its algorithm in general and the way to apply it. Advantages and disadvantages of wlzip are discussed. Toward the end, we mention other possible applications of this technique to recognize stable and unstable regimes in the evolution of variables in meteorology (such as pollution content or atmospheric pressure), biology (blood pressure) and econophysics (prices of the stock market).

  18. IEMDC -IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Crowley; Prem N. Bansal; John E. Tessaro

    2004-01-01

    Dresser-Rand completed the preliminary aerodynamic flowpath of the volute and inlet design for the compressor section. This has resulted in considerable progress being made on the development of the compressor section and ultimately towards the successful integration of the IEMDC System design. Significant effort was put forth in the design of aerodynamic components which resulted in a design that meets the limits of aerodynamically induced radial forces previously established. Substantial effort has begun on the mechanical design of the compressor pressure containing case and other internal components. These efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. All efforts continue to confirm the feasibility of the IEMDC system design. During the third quarter reporting period, the focus was to further refine the motor design and to ensure that the IEMDC rotor system supported on magnetic bearing is in compliance with the critical speed and vibration requirements of the API standards 617 and 541. Consequently specification to design magnetic bearings was developed and an RFQ to three magnetic bearing suppliers was issued. Considerable work was also performed to complete preliminary reports on some of the deliverable tasks under phase 1.0. These include specification for the VFD, RFQ for the magnetic bearings, and preliminary write-up for motor instrumentation and control schematic. In order to estimate motor efficiency at various operating points, plots of calculated motor losses, and motor cooling gas flow rates were also prepared. Preliminary evaluations of motor support concepts were performed via FEA to determine modal frequencies. Presentation was made at DOE Morgantown on August 12, 2003 to provide project status update. Preparations for the IEMDC motor-compressor presentation, at the GMRC conference in Salt Lake City to be held on October 5, 2003, were also

  19. Measurements of wakes originated from 2-bladed and 3-bladed rotors

    Science.gov (United States)

    Wu, Yu-Ting; Lyu, Shao-Dong; Chen, Bo-Wei

    2016-04-01

    Measurements of wakes originated from 2-bladed and 3-bladed rotors were carried out using a hot-wire probe system in an open jet wind tunnel. Hot-wire anemometry was adopted to characterize the spanwise profiles of mean wind speed, turbulence intensity and momentum flux for downwind locations at 0.5, 1, 2, 3, and 4 rotor diameters. The results showed that the 2-bladed rotor spun faster than the 3-bladed one, where the ratio of the two blade angular velocities was 1.065:1 under the same inflow condition with a uniform distribution of 5.4 m/s flow velocity. The turbulence flow statistics of the rotor wakes showed that the wake originated from the 3-bladed rotor has larger velocity deficit, streamwise turbulence intensity, momentum flux magnitude, but smaller spanwise turbulence intensity. The velocity spectrum showed peaks associated with the presence of the blade-induced tip vortices in the near wake region (approximately within 3 rotor diameters).

  20. Aerodynamics of Rotor Blades for Quadrotors

    CERN Document Server

    Bangura, Moses; Naldi, Roberto; Mahony, Robert

    2016-01-01

    In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...

  1. Bolt Cutter Blade's Imprint in Toolmarks Examination.

    Science.gov (United States)

    Volkov, Nikolai; Finkelstein, Nir; Novoselsky, Yehuda; Tsach, Tsadok

    2015-11-01

    Bolt cutters are known as cutting tools which are used for cutting hard objects and materials, such as padlocks and bars. Bolt cutter blades leave their imprint on the cut objects. When receiving a cut object from a crime scene, forensic toolmarks examiners can determine whether the suspected cutting tool was used in a specific crime or not based on class characteristic marks and individual marks that the bolt cutter blades leave on the cut object. The paper presents preliminary results of a study on ten bolt cutters and suggests a quick preliminary examination-the comparison between the blade thickness and the width of the imprint left by the tool on the cut object. Based on the comparison result, if there is not a match, the examiner can eliminate the feasibility of the use of the suspected cutting tool in a specific crime. This examination simplifies and accelerates the comparison procedure.

  2. Microtextured Surfaces for Turbine Blade Impingement Cooling

    Science.gov (United States)

    Fryer, Jack

    2014-01-01

    Gas turbine engine technology is constantly challenged to operate at higher combustor outlet temperatures. In a modern gas turbine engine, these temperatures can exceed the blade and disk material limits by 600 F or more, necessitating both internal and film cooling schemes in addition to the use of thermal barrier coatings. Internal convective cooling is inadequate in many blade locations, and both internal and film cooling approaches can lead to significant performance penalties in the engine. Micro Cooling Concepts, Inc., has developed a turbine blade cooling concept that provides enhanced internal impingement cooling effectiveness via the use of microstructured impingement surfaces. These surfaces significantly increase the cooling capability of the impinging flow, as compared to a conventional untextured surface. This approach can be combined with microchannel cooling and external film cooling to tailor the cooling capability per the external heating profile. The cooling system then can be optimized to minimize impact on engine performance.

  3. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  4. Wind blade spar cap and method of making

    Science.gov (United States)

    Mohamed, Mansour H.

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  5. Computational method for the design of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)

  6. Approach to novel design of CO2 based centrifugal compressor

    Directory of Open Access Journals (Sweden)

    Kura Tomasz

    2016-01-01

    Full Text Available Even though turbomachinery design issues have been investigated almost since the beginning of engineering, its optimization process is still important. With the development of refrigeration devices and ORC based distributed generation facilities, a need for efficient and low-energy compressors and turbines became even more demanding. Such machines working with typical fluid, like air, are well described, but there is a room regarding the fluids like CO2, vapour of organic fluids, etc. The main objective of present studies is to propose a numerical model of the centrifugal compressor, with CO2 as the working fluid. Such unit may be a part of refrigeration cycle. Commonly, the scroll or piston compressors are used in such cases, however some discussed disadvantages show that the novel designs should be looked for. Properly designed centrifugal compressors can have higher efficiency than the presently used. Three dimensional analyses of proposed geometries were conducted – using a model including heat, mass and momentum conservation laws as well as ideal gas law. Verification of the proposed mesh and results was performed in the basis of values obtained using theoretical and empirical equations. With about 700 000 control volumes in the validated model, error of the results was no higher than 5%, with only about 1% in regards to the thermal parameters. Two design proposals were analysed, with performance maps as the main comparison factor. Apart from performance characteristics, the pressure and velocity fields were presented, showing the process of flow structure optimization. The main goal was to reduce negative effects of pressure and velocity gradients on the performance. Proposed precursory design might be a good starting point for further development of compressors. The results of numerical analysis were promising and shows the possibility of proposed design usage in practical applications, however to obtain deep understanding of the

  7. Measurement on stages with 3D bladings and different relative width of stator blades

    Directory of Open Access Journals (Sweden)

    Zitek Pavel

    2012-04-01

    Full Text Available Two variants of a stage with modern 3D bladings were tested on a single-stage air turbine to determine the influence of relative width of stator blades (nozzles. The first case means a high-density nozzle row with t/Bax = 0.61; the second one represents a low-density row with t/Bax = 1.12. The 3D shaping of both nozzle cases is based on the same design features. Rotor blades (buckets are kept the same (also 3D shaped. Comparisons of overall stage efficiency as well as measured flow fields data are presented in the paper.

  8. Unsteady transonic flow over cascade blades

    Science.gov (United States)

    Surampudi, S. P.; Adamczyk, J. J.

    1986-01-01

    An attempt is made to develop an efficient staggered cascade blade unsteady aerodynamics model for the neighborhood of March 1, representing the blade row by a rectilinear two-dimensional cascade of thin, flat plate airfoils. The equations of motion are derived on the basis of linearized transonic small perturbation theory, and an analytical solution is obtained by means of the Wiener-Hopf procedure. Making use of the transonic similarity law, the results obtained are compared with those of other linearized cascade analyses. A parametric study is conducted to find the effects of reduced frequency, stagger angle, solidity, and the location of the pitching axis on cascade stability.

  9. Extreme Loading of Aircraft Fan Blade

    CERN Document Server

    Datta, Dibakar

    2013-01-01

    The response of an aircraft fan blade manufactured by composites under the action of static and impact load has been studied in this report. The modeling and analysis of the geometry has been done using CASTEM 2007 version. For the quasi static analysis, the pressure has been incrementally applied until it satisfies the failure criteria. The deformed configuration, strain, Von-Mises stress, and the deflection of the blade have been studied. The response of the system e.g. deformation time history due to the impact of the projectile has been studied where the Newmark method for the dynamic problem has been implemented.

  10. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The last...... two models investigated use a combination of shell and solid elements. The results from the numerical investigations are compared with measurements from testing of a section of a full-scale wind turbine blade. It is found that only the combined shell/solid models give reliable results in torsion. Both...

  11. Bamboo as a potential material used for windmill turbine blades

    OpenAIRE

    Xu, Jie; Qin, Yinyao; Zhang, Yu

    2009-01-01

    A mass of studies about windmill turbine blades have been addressed in the recent few decades. This report focus on the development of using bamboo composite materials for producing windmill turbine blades related to the life cycle assessment with sustainable perspective. So we made the problem formulation like this: How can bamboo fibers be used in the design and production of wind mill blades and how would it influence the impact of wind mill blades in a lifecycle perspective? In order to a...

  12. 提高9FA燃机压气机可靠运行的措施%Measures to Improve the Operation Reliability of the 9FA Gas Turbine Compressor

    Institute of Scientific and Technical Information of China (English)

    姜凯超; 肖维龙

    2012-01-01

    针对S109FA-SS燃气—蒸汽联合循环发电机组投运后发生的多起压气机故障及一级静叶断裂事故,分析了压气机的故障原因和工作机理,介绍了改进压气机进口可转导叶、优化可转导叶叶型、升级压气机软件包、改进0级动叶片、升级改造压气机等技术措施及实践经验,提高了压气机运行的可靠性;通过梳理定期水洗压气机在线用水清洗和离线喷射清洁剂注意事项和工艺流程,提高了压气机运行的经济性,同时指出要尽量减少机组的启停次数,尽可能地保持基本负荷连续运行,用以降低设备发生事故的风险。%Since several S109FA-SS gas-steam combined cycle generating units have encountered compressor failures or S1 stator vane fracture accidents after they were put into operation,this paper analyzed the failure causes and working mechanism of the compressor,introduced some technical measures and practices to improve thecompressor running reliability by improving the compressor IGV(inlet adjustable guide vane),optimizing the IGV airfoil,upgrading the compressor software package,improving the R0 blades and upgrading the compressor;and to improve the compressor running economic efficiency by reviewing and sorting the precautions and processes of compressor regular wash including on-line water wash and off-line cleaning agent spraying.This paper also pointed out that it was very important to minimize the unit startup/shutdown times and maintain the unit continuous running at base load as far as possible so as to reduce the risk of equipment accident.

  13. Digital radiographic technology; non-destructive testing of tubine blades

    NARCIS (Netherlands)

    Penumadu, P.S.

    2014-01-01

    Inspection of turbine blades has always been a big challenge. Any irregularities in the blade have a huge impact on the gas turbine, so these blades have to be manufactured and inspected in the most sophisticated way possible. The evolution of digital radiographic technology took a leap forward to s

  14. Multidisciplinary design optimization of film-cooled gas turbine blades

    Directory of Open Access Journals (Sweden)

    Talya Shashishekara S.

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  15. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  16. A method to estimate wind turbine blade damage and to design damage-resilient blades

    Science.gov (United States)

    Fiore, Giovanni

    Wind turbine blades are affected by continuous impacts with airborne particles that deteriorate the blade surface and yield to a drop in output power. Based on the climatic conditions and geographic locations of a given wind farm, multiple types of particles are observed in air. The present study focuses on simulating the impact of four types of particles, namely insects, sand grains, hailstones, and rain drops with the blade surface. A numerical inviscid flowfield code, coupled with a particle position predictor code was used. Upon impact, the damaging effect to the blade surface was evaluated. Each type of particle was associated with a damage mode, which depends on the mass, size, and hardness of the particle. It was found that insects strike and adhere to the blade in a region close to the leading edge. On the other hand, it was seen that sand grains promote erosion just downstream of the leading edge, where local velocity reaches a maximum and the impact angle is shallow. Moreover, particles such as rain drops are associated with fatigue and erosion at the very leading edge and on the upper side of the blade section. Finally, hailstones promote delamination and fatigue in the composite panels of the blade surface. Photographic evidence of damaged blade surfaces was used in the present research as a comparison with the simulations performed for various types of particle and different initial conditions. Based on such observations, a theorization of the damage pattern and evolution was proposed. Finally, given a set of well-established blade section geometries, such as the Delft University and NREL S airfoil families, a comparison of airfoil damage fitness was proposed and possible means of shape optimization were discussed. The investigation of blade geometry features to mitigate damage was performed. Based on previous results, it was argued that a viable blade section optimization may be performed for the lightest and smallest particles considered in the study

  17. Numerical Investigation of Flow Separation Control on a Highly Loaded Compressor Cascade by Plasma Aerodynamic Actuation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiaohu; LI Yinghong; WU Yun; ZHU Tao; LI Yiwen

    2012-01-01

    To discover the characteristic of separated flows and mechanism of plasma flow control on a highly loaded compressor cascade,numerical investigation is conducted.The simulation method is validated by oil flow visualization and pressure distribution.The loss coefficients,streamline patterns,and topology structure as well as vortex structure are analyzed.Results show thai the numbers of singular points increase and three pairs of additional singular points of topology structure on solid surface generate with the increase of angle of attack,and the total pressure loss increases greatly.There are several principal vortices inside the cascade passage.The pressure side leg of horse-shoe vortex coexists within a specific region together with passage vortex,but finally merges into the latter.Comer vortex exists independently and does not evolve from the suction side leg of horse-shoe vortex.One pair of radial coupling-vortex exists near blade trailing edge and becomes the main part of backflow on the suction surface.Passage vortex interacts with the concentrated shedding vortex and they evolve into a large-scale vortex rotating in the direction opposite to passage vortex.The singular points and separation lines represent the basic separation feature of cascade passage.Plasma actuation has better effect at low freestream velocity,and the relative reductions of pitch-averaged total pressure loss coefficient with different actuation layouts of five and two pairs of electrodes are up to 30.8% and 26.7% while the angle of attack is 2°.Plasma actuation changes the local topology structure,but does not change the number relation of singular points.One pair of additional singular point of topology structure generates with plasma actuation and one more reattachment line appears,both of which break the separation line on the suction surface.

  18. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton

    2016-01-01

    variability in the (economically allowed) designs - i.e., to allow them to think out of the box. To address this challenge The Danish National Advanced Technology Foundation (now InnovationsFonden) is currently supporting the BladeRunner project that involves several Danish companies and public institutions...

  19. Lightning transient analysis in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...

  20. Double-Blade Sword: Trade Surplus

    Institute of Scientific and Technical Information of China (English)

    Eva

    2007-01-01

    @@ In the famous animation Saint Saiya,the golden saint of Gemini, Saga,Left audience the deepest impression of being an angel at one side and a demon at the other.So does China's trade surplus.It is a double-blade sword.

  1. Structural characterization of rotor blades through photogrammetry

    Science.gov (United States)

    Bernardini, Giovanni; Serafini, Jacopo; Enei, Claudio; Mattioni, Luca; Ficuciello, Corrado; Vezzari, Valerio

    2016-06-01

    This paper deals with the use of photogrammetry for the experimental identification of structural and inertial properties of helicopter rotor blades4. The identification procedure is based upon theoretical/numerical algorithms for the evaluation of mass and flexural stiffness distributions which are an extension of those proposed in the past by Larsen, whereas the torsional properties (stiffness and shear center position) are determined through the Euler-Bernoulli beam theory. The identification algorithms require the knowledge of the blade displacement field produced by known steady loads. These data are experimentally obtained through photogrammetric detection technique, which allows the identification of 3D coordinates of labeled points (markers) on the structure through the correlation of 2D digital photos. Indeed, the displacement field is simply evaluated by comparing the markers positions on the loaded configuration with those on the reference one. The proposed identification procedure, numerically and experimentally validated in the past by the authors, has been here applied to the structural characterization of two main rotor blades, designed for ultra-light helicopters. Strain gauges measurements have been used to assess the accuracy of the identified properties through natural frequencies comparison as well as to evaluate the blades damping characteristics.

  2. Designing for hot-blade cutting

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Clausen, Kenn

    2016-01-01

    -trivial constraints of blade-cutting in a bottom-up fashion, enabling an exploration of the unique architectural potential of this fabrication approach. The method is implemented as prototype design tools in MatLAB, C++, GhPython, and Python and demonstrated through cutting of expanded polystyrene foam design...

  3. Fatigue Life of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The present paper analyses the possibility of reducing the expected damage accumulation during tower passage by modifying the wind turbine tower design from a traditional mono-tower to a tripod. Due to a narrow stagnation zone the stress reversals and hence the damage accumulation in the blades...

  4. Parametric study of composite wind turbine blades

    DEFF Research Database (Denmark)

    Kim, Taeseong; Branner, Kim; Hansen, Anders Melchior

    2011-01-01

    In this paper an anisotropic beam element for a composite wind turbine blades is developed. Eigenvalue analysis with the new beam element is conducted in order to understand its responses associated with the wind turbine performances. From the results of natural frequencies and mode shapes...

  5. Intermetallic blades for fabric cutting. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Blue, C.A.; Sklad, S. [Oak Ridge National Lab., TN (United States); Shih, H.R. [Jackson State Univ., MS (United States); Off, J.W.A. [Textile/Clothing Technology Corp., Cary, NC (United States)

    1998-08-01

    This report describes the evaluation of nickel- and iron-aluminide blades for cutting fabric as opposed to conventional steel blades. The aluminides were selected as blade material because of their extremely high work-hardening rate and the possibility of forming aluminum oxide on the surface to further enhance the wear resistance. Unlike steel blades, they do not require heat treating to become strong. A testing facility using an Eastman cutter was designed and built at the Oak Ridge National Laboratory (ORNL) for testing of blades. Denim fabric supplied by Levi Strauss was used. For lack of sufficient fabric, heavy paper was also used. Extensive testing revealed that there were several issues in getting the true comparison between various blades. The most important issue was the consistent sharpening of the blade edge. With all of the effort and precautions, identical edges could not be put on the blades of all the different materials. The second issue was the limited availability of fabric to evaluate the end-of-life limit for the blade edges. Two nickel- and three iron-aluminide compositions were evaluated. Under test conditions, the iron-aluminide alloy (PM-60), based on FeAl, was found to outperform other aluminides and the steel blade. Based on the data presented in this report, the authors recommend that additional testing be carried out on both the steel and aluminide blades to determine the number of times each blade can be sharpened prior to its replacement. However, the recommended testing needs to be conducted on blades for which the identical cutting edges and sharpening are incorporated. They further recommend that if the iron-aluminide blade is truly superior, a cost analysis be performed to determine its commercial feasibility. The best aluminide blades should be tested by commercial textile companies.

  6. Separated Pitch Control at Tip: Innovative Blade Design Explorations for Large MW Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Ranjeet Agarwala

    2015-01-01

    Full Text Available This paper focuses on the deployment and evaluation of a separated pitch control at blade tip (SePCaT control strategy for large megawatt (MW wind turbine blade and explorations of innovative blade designs as a result of such deployment. SePCaT configurations varied from five to thirty percent of the blade length in 5 percentage increments (SePCaT5, SePCaT10, SePCaT15, SePCaT20, SePCaT25, and SePCaT30 are evaluated by comparing them to aerodynamical responses of the traditional blade. For low, moderate, high, and extreme wind speed variations treated as 10, 20, 30, and 40 percent of reference wind speeds, rotor power abatement in region 3 of the wind speed power curve is realized by feathering full length blade by 6, 9, 12, and 14 degrees, respectively. Feathering SePCaT30, SePCaT25, SePCaT20, and SePCaT15 by 14, 16, 26, and 30 degrees, respectively, achieves the same power abatement results when compared to traditional blade at low wind speeds. Feathering SePCaT30, SePCaT25, and SePCaT20 by 18, 26, and 30 degrees on the other hand has the same effect at high wind speeds. SePCaT30 feathered to 26 and 30 degrees has the same abatement effects when compared to traditional blade at high and extreme wind speeds.

  7. Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor with LES And PIV

    Science.gov (United States)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David

    2015-01-01

    The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow

  8. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  9. IEMDC IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Crowley; Prem N. Bansal

    2004-10-01

    This report contains the final project summary and deliverables required by the award for the development of an In-line Electric Motor Driven Compressor (IEMDC). Extensive work was undertaken during the course of the project to develop the motor and the compressor section of the IEMDC unit. Multiple design iterations were performed to design an electric motor for operation in a natural gas environment and to successfully integrate the motor with a compressor. During the project execution, many challenges were successfully overcome in order to achieve the project goals and to maintain the system design integrity. Some of the challenges included limiting the magnitude of the compressor aerodynamic loading for appropriate sizing of the magnetic bearings, achieving a compact motor rotor size to meet the rotor dynamic requirements of API standards, devising a motor cooling scheme using high pressure natural gas, minimizing the impact of cooling on system efficiency, and balancing the system thrust loads for the magnetic thrust bearing. Design methods that were used on the project included validated state-of-the-art techniques such as finite element analysis and computational fluid dynamics along with the combined expertise of both Curtiss-Wright Electro-Mechanical Corporation and Dresser-Rand Company. One of the most significant areas of work undertaken on the project was the development of the unit configuration for the system. Determining the configuration of the unit was a significant step in achieving integration of the electric motor into a totally enclosed compression system. Product review of the IEMDC unit configuration was performed during the course of the development process; this led to an alternate design configuration. The alternate configuration is a modular design with the electric motor and compressor section each being primarily contained in its own pressure containing case. This new concept resolved the previous conflict between the aerodynamic flow

  10. Performance prediction for windmills with linkage-guided blades

    Energy Technology Data Exchange (ETDEWEB)

    Nahas, M.N.; Akyurt, M. (Mechanical Engineering Dept., King Abdul Aziz Univ., Jeddah (SA))

    1992-01-01

    Three windmills with linkage-guided blades that were previously described by the authors are future studied to predict their performance. The present paper concentrates on the guiding mechanisms of the active power producing surfaces (or blades) and on the output torque. Also investigated here is the effect of the orientation of these blades with respect to their guiding links. The fluctuation in the output torque of one-blade windmills has led to the investigation of the output torque that can be obtained from three-bladed machines. These latter windmills are found to reduce the fluctuation in the output torque considerably. Areas for further improvement are discussed.

  11. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...

  12. New Design of Blade Untwisting Device of Cyclone Unit

    Directory of Open Access Journals (Sweden)

    D. I. Misiulia

    2010-01-01

    Full Text Available The paper presents a new design of a blade untwisting device where blades are considered as a main element of the device. A profile of the blades corresponds to a circular arch. An inlet angle of  the blades is determined by stream aerodynamics in an exhaust pipe, and an exit angle is determined by rectilinear gas motion. Optimum geometrical parameters of the untwisting device have been determined and its application allows to reduce a pressure drop in the ЦН-15 cyclones by 28–30 % while screw-blade untwisting device recovers only 19–20 % of energy.

  13. Comparative assessment of characteristic part-load performances of screw compressors and turbo-compressors; Vergleich der charakteristischen Teillastwirkungsgrade von Schrauben- und Turboverdichtern

    Energy Technology Data Exchange (ETDEWEB)

    Brasz, J.J.; Hartmann, K. [Carrier Corp., Syracuse, NY (United States)]|[Carrier Corp., Muenchen (Germany)

    2006-07-01

    The relative part-load performance of screw compressors and radial compressors is compared. Compressor part load is represented by a 2D characteristic field with the pressure on the vertical axis as a function of mass flow on the horizontal axis, with efficiencies given for any possible combination of pressure and mass flow. While this manner of representation is common for radial compressors, it is new for screw compressors. In the comparison of compression efficiencies, the focus is on vapour compression. For a valid comparative assessment of total compression, also the mechanical and/or electric loss through bearings, transmission, drive and (in case of variable-speed drives) frequency converters must be taken into account. (orig.)

  14. Development of Standard Approach for Sickle Blade Manufacturing

    Directory of Open Access Journals (Sweden)

    M. N. A. Noordin

    2016-10-01

    Full Text Available The sickle blade used in the motorised palm cutter known as “CANTAS” provides fast, easy and safe pruning and harvesting for those hard to reach applications. Jariz Technologies Company is experiencing problem in the consistency of sickle blade which was supplied by various blade manufacturers. Identifying the proper blade material with a certain hardness value would produce a consistent as well as long lasting sickle blade. A Standard Operating Procedure (SOP in the manufacturing of the sickle blades was suggested to ensure a consistent blade. From this study, the optimum temperature for hardening and tempering of SUP 9 had been identified as 850 °C for hardening and 480 °C for tempering. The final hardness after heat treatment for SUP 9 was around 55HRC.

  15. Study on Aerodynamic Design Optimization of Turbomachinery Blades

    Institute of Scientific and Technical Information of China (English)

    Naixing CHEN; Hongwu ZHANG; Weiguang HUANG; Yanji XU

    2005-01-01

    This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few years. The present paper describes the aspects mainly on how to use a rapid approach of profiling a 3D blading and of grid generation for computation, a fast and accurate viscous computation method and an appropriate optimization methodology_ including a blade parameterization algorithm to optimize turbomachinery blading aerodynamically. Any blade configuration can be expressed by three curves, they are the camber lines, the thickness distributions and the radial stacking line, and then the blade geometry can be easily parameterized by a number of parameters with three polynomials. A gradient-based parameterization analytical method and a response surface method were applied herein for blade optimization. It was found that the optimization process provides reliable design for turbomachinery with reasonable computing time.

  16. Plowing of granular surface by a vertical blade

    Science.gov (United States)

    Judge, Vachitar Singh; Dressaire, Emilie; Sauret, Alban

    2016-11-01

    The interaction of a blade with a layer of fluid is an important industrial problem involved in coating of substrates, removing of snow, plowing the fields for agriculture. Most experimental and theoretical work has focused on the drag and lift forces on plowing blade as it is dragged on a granular surface or studying the flow of the fluid while plowing. However the study of deformation of a granular surface by a vertical plow blade has received less attention, despite significant practical and fundamental implications. In this study, we investigate experimentally the behavior of a granular substrate as a vertical plow blade of finite width is translated at constant speed. The vertical blade directs the granular material outward and sand piles form on either sides. We characterize the dynamics of plowing by measuring and rationalizing the influence of the width of the vertical plow blade, the height of the plow blade, and the depth granular substrate.

  17. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades. Advances...... in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials...

  18. Comparison of linear and non-linear blade model predictions in Bladed to measurement data from GE 6MW wind turbine

    Science.gov (United States)

    Collier, W.; Milian Sanz, J.

    2016-09-01

    The length and flexibility of wind turbine blades are increasing over time. Typically, the dynamic response of the blades is analysed using linear models of blade deflection, enhanced by various ad-hoc non-linear correction models. For blades undergoing large deflections, the small deflection assumption inherent to linear models becomes less valid. It has previously been demonstrated that linear and nonlinear blade models can show significantly different blade response, particularly for blade torsional deflection, leading to load prediction differences. There is a need to evaluate how load predictions from these two approaches compare to measurement data from the field. In this paper, time domain simulations in turbulent wind are carried out using the aero-elastic code Bladed with linear and non-linear blade deflection models. The turbine blade load and deflection simulation results are compared to measurement data from an onshore prototype of the GE 6MW Haliade turbine, which features 73.5m long LM blades. Both linear and non-linear blade models show a good match to measurement turbine load and blade deflections. Only the blade loads differ significantly between the two models, with other turbine loads not strongly affected. The non-linear blade model gives a better match to the measured blade root flapwise damage equivalent load, suggesting that the flapwise dynamic behaviour is better captured by the non-linear blade model. Conversely, the linear blade model shows a better match to measurements in some areas such as blade edgewise damage equivalent load.

  19. Dynamical System Analysis of Unsteady Phenomena in Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    YasuyukiKomatsubara; ShimpeiMizuki

    1997-01-01

    Surge and rotating stall occurring in a centrifugal compressor system are investigated by using a phase portrait reconstruction method.From experimentally measured time series of data,the method clarified the cyclic behavior of surge.For rotating stall,there still remain problems in the phase portrait due to the chaotic behavior.However,the results obtained by the present method are able to provide new insights to the modelings for surge and rotating stall.Surge and roatting stall occurring in a centrifugal compressor system are investigated by using a phase portrait reconstruction method.From experimentally measured time series of data,the method clarified the cylcic behavior of surge.For rotating stall,there still remain problems in the phase portrait due to the chaotic behavior.However,the results obtained by the present method are able to provide new insights to the modelings for surge and rotating stall.

  20. Heat powered refrigeration compressor. Semi-annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    Goad, R.R.

    1981-01-01

    The objective of this program is to develop and improve the design of previously started prototypes of the Heat Powered Refrigeration Compressor. To build this prototype and ready it for testing by the University of Evansville is another goal. This prototype will be of similar capacity as the compressor that will eventually be commercially produced. This unit can operate on almost any moderate temperature water heat source. This heat source could include such applications as industrial waste heat, solar, wood burning stove, resistance electrical heat produced by a windmill, or even perhaps heat put out by the condenser of another refrigeration system. Work performed in the past four months has consisted of: engineering of HX-1; comparisons of specifications from different companies to ensure state of the art applications of parts for project; coordinating project requirements with machine shop; designing condenser; and partial assembly of HX-1.

  1. Quasi-Optical 34-GHz Rf Pulse Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2007-06-19

    Designs have been carried out on non-high-vacuum, low-power versions of three- and four-mirror quasi-optical passive and active Ka-band pulse compressors, and prototypes built and tested based on these designs. The active element is a quasi-optical grating employing gas discharge tubes in the gratings. Power gains of about 3:1 were observed experimentally for the passive designs, and about 7:1 with the active designs. High-power, high-vacuum versions of the three-and four-mirror quasi-optical pulse compressors were built and tested at low power. These now await installation and testing using multi-MW power from the 34-GHz magnicon.

  2. Experimental study on neon refrigeration system using commercial helium compressor

    Science.gov (United States)

    Ko, Junseok; Kim, Hyobong; Hong, Yong-Ju; Yeom, Hankil; Koh, Deuk-Yong; Park, Seong-Je

    2012-06-01

    In this study, we developed neon refrigeration system using commercial helium compressor which was originally designed for GM cryocooler. We performed this research as precedent study before developing neon refrigeration system for small-scale hydrogen liquefaction system. The developed system is based on precooled Linde-Hampson system with liquid nitrogen as precoolant. Design parameters of heat exchangers are determined from thermodynamic cycle analysis with operating pressure of 2 MPa and 0.4 MPa. Heat exchangers have concentric-tube heat exchanger configuration and orifice is used as Joule- Thomson expansion device. In experiments, pressure, temperature, mass flow rate and compressor input power are measured as charging pressure. With experimental results, the characteristics of heat exchanger, Joule-Thomson expansion and refrigeration effect are discussed. The developed neon refrigeration system shows the lowest temperature of 43.9 K.

  3. Numerical Simulation and Performance Analysis of Twin Screw Air Compressors

    Directory of Open Access Journals (Sweden)

    W. S. Lee

    2001-01-01

    Full Text Available A theoretical model is proposed in this paper in order to study the performance of oil-less and oil-injected twin screw air compressors. Based on this model, a computer simulation program is developed and the effects of different design parameters including rotor profile, geometric clearance, oil-injected angle, oil temperature, oil flow rate, built-in volume ratio and other operation conditions on the performance of twin screw air compressors are investigated. The simulation program gives us output variables such as specific power, compression ratio, compression efficiency, volumetric efficiency, and discharge temperature. Some of the above results are then compared with experimentally measured data and good agreement is found between the simulation results and the measured data.

  4. Linear Gain for the Microbunching Instability in an RF Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Vaccarezza, C.

    2009-05-01

    Velocity (or rf) compression has been suggested as a technique for bunch compression complementary to the more established technique involving magnetic chicanes and represents an important research item being investigated at the SPARC test facility. One of the aspects of this technique still not sufficiently understood is its possible impact on the microbunching instability. The purpose of this report is to present the analytical framework for investigating this instability in rf compressors. We use methods similar to those successfully applied to magnetic compressors and derive some integral equations yielding the gain for the instability in linear approximation. The focus here is on the derivation of the relevant equations. Although examples of solutions to these equations are provided we defer a more comprehensive discussion of their implication to a future report. The present study is part of a larger effort for a more comprehensive investigation that eventually will include macroparticle simulations and experiments.

  5. Basic Study on Engine with Scroll Compressor and Expander

    Science.gov (United States)

    Morishita, Etsuo; Kitora, Yoshihisa; Nishida, Mitsuhiro

    Scroll compressors are becoming popular in air conditioning and refrigeration. This is primarily due to their higher efficiency and low noise/vibration characteristics. The scroll principle can be applied also to the steam expander and the Brayton cycle engine,as shown in the past literature. The Otto cycle spark-ignition engine with a scroll compressor and expander is studied in this report. The principle and basic structure of the scroll engine are explained,and the engine characteristic are calculated based on the idealized cycles and processes. A prototype model has been proposed and constructed. The rotary type engine has always had a problem with sealing. The scroll engine might overcome this shortcoming with its much lower rubbing speed compared to its previous counterparts,and is therefore worth investigating.

  6. IEMDC-IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Crowley; Prem N. Bansal; John E. Tessaro

    2003-06-01

    During this reporting period, significant progress has been made towards the development of the IEMDC System design. Considerable effort was put forth by Curtiss-Wright EMD in the resolution of the technical issue of aerodynamically induced radial forces. This has provided a design basis with which to establish the radial magnetic bearing load capacity and the rotordynamic design. Dresser-Rand has made considerable progress on the flowpath design for the compressor section particularly on the volute and inlet aerodynamic design. All efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. These efforts continue to confirm the feasibility of the IEMDC system design.

  7. Trends in high performance compressors for petrochemical and natural gas industry in China

    Science.gov (United States)

    Zhao, Yuanyang; Li, Liansheng

    2015-08-01

    Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.

  8. Dedicated monitoring and machinery protection systems on reciprocating compressors

    Energy Technology Data Exchange (ETDEWEB)

    Grande, Alvaro; Wenisch, Markus [Hoerbiger Ventilwerke GmbH and Co KG, Wien (Austria); Jacobs, Denis [HOERBIGER do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Growing demands on reciprocating compressors (recips) in the process gas industry require particular solutions for machinery protection and performance monitoring systems. Compared to rotating equipment, monitoring systems for recips have to consider the special mechanical and physical characteristics, such as oscillating masses, variable vibration behaviour and varying operating conditions. Furthermore, they provide valuable information about the performance of cylinder related components allowing the operator the optimization of efficiency and availability, and therefore increase production. (author)

  9. Computational and Experimental Study of an Industrial Centrifugal Compressor Volute

    Institute of Scientific and Technical Information of China (English)

    HarriPitkanen; HannuEsa; 等

    2000-01-01

    A centrifugal compressor with a vaneless diffuser was studied experimentally and numericallly.The main target of the study was to analyze the volute flow.Two different volute geometries was studied.The numerical solution was done by using a steady-state RANS code at both design and off-design conditions.Both calculated and measured pressure and velocity distributions are presented.

  10. Stall inception in a high-speed axial compressor

    Science.gov (United States)

    Cameron, Joshua David

    A research program designed to provide understanding of the fluid dynamic mechanisms that lead to rotating stall in the Notre Dame Stage 01 high-speed axial compressor is described. The stalling behavior of this compressor was studied with unsteady casing pressure measurements from a circumferentially spaced array of sensors. In addition, over rotor casing surface streak measurements were performed to investigate the time-averaged end-wall flow near the rotor at operating points near stall. Several investigative tools were applied to the analysis and interpretation of the unsteady casing pressure data. Traditional methods such as visual inspection, spatial Fourier decomposition, traveling wave energy and wavelet analysis were shown to be insufficient to characterize the pre-stall and stall inception behavior of the compressor. A new technique based on a windowed two-point correlation between adjacent sensors was developed and demonstrated to provide spatial and temporal resolution of both pre-stall and stall inception behavior. The spatial correlation technique was then applied to the analysis of stall inception data from experiments with asymmetric tip clearance. The non-uniform tip clearance was produced using the magnetic bearings which levitate the rotor shaft of the Notre Dame Transonic Axial Compressor facility. Both steady rotor centerline offset and rotor whirl were investigated. The results of these experiments, along with the surface streak measurements, provide evidence in support of recent computational observations (found in the literature) that predict that short length scale stall inception is related to specific features of the rotor tip clearance flow.

  11. Design and Characterization of a Centrifugal Compressor Surge Test Rig

    OpenAIRE

    2011-01-01

    A detailed description of a new centrifugal compressor surge test rig is presented. The objective of the design and development of the rig is to study the surge phenomenon in centrifugal compression systems and to investigate a novel method of surge control by active magnetic bearing servo actuation of the impeller axial tip clearance. In this paper, we focus on the design, initial setup, and testing of the rig. The latter two include the commissioning of the rig and the experimental characte...

  12. Oil Leakage from the Seal Ring of a Scroll Compressor

    Science.gov (United States)

    Kobayashi, Naoki; Fukui, Atsushi; Horiguchi, Hironori; Tsujimoto, Yoshinobu; Toyama, Toshiyuki

    In scroll compressors for air conditioners, there is a compressor with back-pressure chamber spaced by seal ring behind orbiting scroll. High pressure in the backpressure chamber presses the orbiting scroll to fixed scroll. In the case that lubrication oil and refrigerant gas with high pressure and temperature in the backpressure chamber leak to low pressure chamber through the seal ring, the efficiency of compressor decreases and the oil circulation rate can increase. In the present study the leakage characteristics of lubrication oil from the backpressure chamber to the low pressure chamber were investigated. In experiment, it was found that the oil leakage is larger for higher rotational speed of rotating disk, higher viscosity of oil and smaller pressure difference between the backpressure and low-pressure chambers. This could be explained by the calculation in which the seal ring was assumed to have a tilt angle. It was also found in the calculation that oil leakage is larger due to the thicker oil film between the seal ring and the rotating disk in the case of higher rotational speed of the disk, higher viscosity of oil and smaller pressure difference between the backpressure and low-pressure chambers.

  13. Structure Analysis of a Turbocharger Compressor Wheel Using FEA

    Directory of Open Access Journals (Sweden)

    Shaik Mohammad Rafi

    2014-10-01

    Full Text Available When people talk about race cars or high-performance sports cars, the topic of turbochargers usually comes up. Turbochargers also appear on large diesel engines. A turbo can significantly boost an engine's horsepower without significantly increasing its weight, which is the huge benefit that makes turbos so popular. Turbochargers are a type of forced induction system. They compress the air flowing into the engine. The advantage of compressing the air is that it lets the engine squeeze more air into a cylinder, and more air means that more fuel can be added. Therefore, you get more power from each explosion in each cylinder. Here in this project we are designing the compressor wheel by using Pro-E and doing analysis by using FEA package. The main aim of the project is to increase the performance of the compressor wheel for this we are changing the material and also we are changing the existing design. By comparing the results we will get the best model from this data we suggests the design modifications to the company to improve the performance of the compressor wheel.

  14. Dynamic Analysis of Integrally Geared Compressors with Varying Workloads

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2016-01-01

    Full Text Available Integrally geared compressors are characterized by compact and high efficiency machines, which are widely used in modern processing industries. As an important part of integrally geared compressors, a geared rotor-bearing system exhibits complicated dynamic behaviors. When running at rated speeds, a coupling system likely produces resonance with an adjusted workload, and a critical load phenomenon occurs. The dynamic coefficients of bearings, axial force and torque, and gear meshing stiffness vary with workload because of the interaction between rotors. In this study, a dynamic model of a geared rotor-bearing system influenced by the dynamic coefficients of bearings, axial force and torque, and gear meshing stiffness is developed. The dynamic responses of the coupling system are calculated and analyzed by using a typical five-shaft integrally geared compressor as an example. The effects of different parameters on the dynamic behaviors of the proposed system are also considered in the discussion. The geared rotor-bearing system is further investigated to examine the failure mechanism of the critical load.

  15. Frictional Characteristics of Thrust Bearing in Scroll Compressor

    Science.gov (United States)

    Sato, Hajime; Itoh, Takahide; Kobayashi, Hiroyuki

    This paper presents frictional characteristics of thrust bearing in scroll compressor focusing on the behavior of sliding portion which affects the generation of oil film. The coefficient of friction and tilt angle of sliding portion in the thrust bearing are obtained through both elemental friction test and cylinder pressure measurement of actual scroll compressor. Both tests showed that the coefficient of friction in low contact pressure rose with increase of tilt angle of sliding portion. The value of contact pressure which the coefficient of friction turns into increase was in agreement of the value which tilt angle become to increase. Numerical analysis using mixed lubrication theory was also performed. Analytical result indicated the same characteristics as the experiments, and the correlation between the coefficient of friction and the behavior of sliding portion was confirmed. Based on the experimental and the analytical results obtained here, the optimization of thrust bearing for commercial scroll compressor was applied. 2% improvement of total efficiency in rated condition was archived by optimization of thrust bearing.

  16. Avoiding compressor surge during emergency shutdown hybridturbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Pezzini, Paolo [University of Genova, Italy; Tucker, David [U.S. DOE; Traverso, Alberto [University of Genova, Italy

    2013-01-01

    A new emergency shutdown procedure for a direct-fired fuel cell turbine hybrid power system was evaluated using a hardware-based simulation of an integrated gasifier/fuel cell/turbine hybrid cycle (IGFC), implemented through the Hybrid Performance (Hyper) project at the National Energy Technology Laboratory, U.S. Department of Energy (NETL). The Hyper facility is designed to explore dynamic operation of hybrid systems and quantitatively characterize such transient behavior. It is possible to model, test, and evaluate the effects of different parameters on the design and operation of a gasifier/fuel cell/gas turbine hybrid system and provide a means of quantifying risk mitigation strategies. An open-loop system analysis regarding the dynamic effect of bleed air, cold air bypass, and load bank is presented in order to evaluate the combination of these three main actuators during emergency shutdown. In the previous Hybrid control system architecture, catastrophic compressor failures were observed when the fuel and load bank were cut off during emergency shutdown strategy. Improvements were achieved using a nonlinear fuel valve ramp down when the load bank was not operating. Experiments in load bank operation show compressor surge and stall after emergency shutdown activation. The difficulties in finding an optimal compressor and cathode mass flow for mitigation of surge and stall using these actuators are illustrated.

  17. Experimental investigation on a high subsonic compressor cascade flow

    Directory of Open Access Journals (Sweden)

    Zhang Haideng

    2015-08-01

    Full Text Available With the aim of deepening the understanding of high-speed compressor cascade flow, this paper reports an experimental study on NACA-65 K48 compressor cascade with high subsonic inlet flow. With the increase of passage pressurizing ability, endwall boundary layer behavior is deteriorated, and the transition zone is extended from suction surface to the endwall as the adverse pressure gradient increases. Cross flow from endwall to midspan, mixing of corner boundary layer and the main stream, and reversal flow on the suction surface are caused by corner separation vortex structures. Passage vortex is the main corner separation vortex. During its movement downstream, the size grows bigger while the rotating direction changes, forming a limiting circle. With higher incidence, corner separation is further deteriorated, leading to higher flow loss. Meanwhile, corner separation structure, flow mixing characteristics and flow loss distribution vary a lot with the change of incidence. Compared with low aspect-ratio model, corner separation of high aspect-ratio model moves away from the endwall and is more sufficiently developed downstream the cascade. Results obtained present details of high-speed compressor cascade flow, which is rare in the relating research fields and is beneficial to mechanism analysis, aerodynamic optimization and flow control design.

  18. High-energy pulse compressor using self-defocusing spectral broadening in anomalously dispersive media

    DEFF Research Database (Denmark)

    2015-01-01

    A method and a pulse compressor (1) for compressing an optical pulse, wherein the pulse compressor comprising a bulk quadratic nonlinear medium (2) adapted for generating a negative nonlinear phase variation on the optical pulse and having a negative group-velocity dispersion, and a dispersive un...... subsequently be compressed by providing normal dispersion. As KDP crystals can be glued together, large apertures of the pulse compressor are possible making this method suitable for pulse compression in Joule-class lasers....

  19. Development of DC Inverter Scroll Compressor used for Marine Container Refrigeration Unit

    OpenAIRE

    Yokoyama, Tomomi; Kato, Katsumi; Nojima, Nobuhiro; Yoshimura, Keiji; Kitaura, Hiroshi

    2012-01-01

    In recent years, energy saving of a container ship is becoming one of the most important issues from the point of environmental protection of the global marine transportation business. To solve this problem, we have developed a new gas injection inverter scroll compressor for marine container refrigeration unit. The new compressor is based on a conventional scroll compressor, which has been used in various industrial air conditioners for a long time, with some greatly improved technologies. F...

  20. Performance and Operating Characteristics of a Novel Positive-Displacement Oil-Free CO2 Compressor

    OpenAIRE

    Kurtulus, Orkan; YANG Bin; Lumpkin, Dominique; Eckhard A. Groll; Jestings, Lee; Conde, Ricardo

    2014-01-01

    Research activities towards developing CO2 compressors have increased drastically during the last couple years. Since the transcritical CO2 cycle operates at much higher absolute pressures as compared to the conventional vapor compression cycles, it is necessary to develop new compressors or modify existing ones. In this paper, a novel positive-displacement oil-free CO2 compressor will be introduced. The compressor’s mechanical linkage system will be described. In addition, preliminary compre...