WorldWideScience

Sample records for blade loading

  1. Wind turbine blade testing under combined loading

    DEFF Research Database (Denmark)

    Roczek-Sieradzan, Agnieszka; Nielsen, Magda; Branner, Kim;

    2011-01-01

    The paper presents full-scale blade tests under a combined flap- and edgewise loading. The main aim of this paper is to present the results from testing a wind turbine blade under such conditions and to study the structural behavior of the blade subjected to combined loading. A loading method using...... anchor plates was applied, allowing transverse shear distortion. The global and local deformation of the blade as well as the reproducibility of the test was studied and the results from the investigations are presented....

  2. Extreme Loading of Aircraft Fan Blade

    CERN Document Server

    Datta, Dibakar

    2013-01-01

    The response of an aircraft fan blade manufactured by composites under the action of static and impact load has been studied in this report. The modeling and analysis of the geometry has been done using CASTEM 2007 version. For the quasi static analysis, the pressure has been incrementally applied until it satisfies the failure criteria. The deformed configuration, strain, Von-Mises stress, and the deflection of the blade have been studied. The response of the system e.g. deformation time history due to the impact of the projectile has been studied where the Newmark method for the dynamic problem has been implemented.

  3. Ultimate Strength of Wind Turbine Blades under Multiaxial Loading

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich

    Modern wind turbine rotor blades are sophisticated lightweight structures, optimised towards achieving the best compromise between aerodynamic and structural design as well as a cost efficient manufacturing processes. They are usually designed for a lifetime of minimum 20 years, where they must...... loading effects and its influence on the ultimate strength of typical wind turbine rotor blade structures and to develop methods to perform reliable prediction of failure. For this purpose, origin and consequence of some of the typically occurring failure types in wind turbine rotor blades...... are investigated. The research aims on predicting more accurately when and how blades fail under complex loading. The main contribution from this PhD study towards more reliable and robust operating wind turbine systems can be divided into two fields. One part covers numerical modelling approaches and the other...

  4. Blade loading and slip factor in centrifugal compressor impellers

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J.S. [Korea Institute of Machinery and Materials, Taejon (Korea)

    1999-04-01

    In the present numerical analysis, to investigate the effect of blade loadings from design shape on the slip factor variation, both the Eckardt radial bladed impeller and the back swept impeller were analyzed. In addition, a new design of the blade profile was arbitrarily attempted to generate a center-loading pattern in the original back swept impeller. Three dimensional compressible Navier-Stokes flow analysis with the Baldwin-Lomax turbulence model was applied to get the numerical slip factor at each impeller exit plane using the mass-averaging technique. The numerical slip factors are in good agreement with the experimental ones, and the Wiesner's slip factors deviate further from the numerical and experimental ones in both back swept Deviation angles and meridional channel loadings are found in no relation with the trend of change of the slip factor. Blade-to-blade loadings in midspan location are, however, found in direct relation, especially at the sections where maximum loadings are to be expected. That information can be utilized in establishing an improved expression for slip factor in the future. (author). 4 refs., 9 figs.

  5. Reduced Design Load Basis for Ultimate Blade Loads Estimation in Multidisciplinary Design Optimization Frameworks

    Science.gov (United States)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.; Kim, Taeseong; Thomsen, Kenneth

    2016-09-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.

  6. MEMS inertial sensors for load monitoring of wind turbine blades

    Science.gov (United States)

    Cooperman, Aubryn M.; Martinez, Marcias J.

    2015-03-01

    Structural load monitoring of wind turbines is becoming increasingly important due increasing turbine size and offshore deployment. Rotor blades are key components that can be monitored by continuously measuring their deflection and thereby determining strain and loads on the blades. In this paper, a method is investigated for monitoring blade deformation that utilizes micro-electromechanical systems (MEMS) comprising triaxial accelerometers, magnetometers and gyroscopes. This approach is demonstrated using a cantilever beam instrumented with 5 MEMS and 4 strain gauges. The measured changes in angles obtained from the MEMS are used to determine a deformation surface which is used as an input to a finite element model in order to estimate the strain throughout the beam. The results are then verified by comparison with strain gauge measurements.

  7. Load alleviation on wind turbine blades using variable geometry

    DEFF Research Database (Denmark)

    Basualdo, Santiago

    2005-01-01

    ) wind turbines, which mainly operate under this flow condition. The results show evident reductions in the airfoil displacements by using simple control strategies having the airfoil position and its first and second derivatives as input, especially at the system's eigenfrequency. The use of variable...... airfoil geometry is an effective means of reducing the vibration magnitudes of an airfoil that represents a section of a wind turbine blade, when subject to stochastic wind signals. The results of this investigation encourage further investigations with 3D aeroelastic models to predict the reduction...... in loads in real wind turbines. Keywords: Variable Geometry, Wind Turbine, Load Alleviation, Fatigue Load, Trailing Edge Flap....

  8. Full scale test SSP 34m blade, combined load. Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Nielsen, Magda; Jensen, Find M. (and others)

    2010-11-15

    This report is part of the research project where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55% of an imaginary extreme event based on the certification load of the blade. This report describes the reason for choosing the loads and the load direction and the method of applying the loads to the blade. A novel load introduction allows the blade to deform in a more realistic manner, allowing the observation of e.g. transverse shear distortion. The global and local deformation of the blade as well as the blades' respond to repeated tests has been studied and the result from these investigations are presented, including the measurements performed. (Author)

  9. Full scale testing of wind turbine blade to failure - flapwise loading

    DEFF Research Database (Denmark)

    Jørgensen, E.R.; Borum, Kaj Kvisgaard; McGugan, Malcolm;

    2004-01-01

    A 25m wind turbine blade was tested to failure when subjected to a flapwise load. With the test setup, it was possible to test the blade to failure at three different locations. The objective of these tests is to learn about how a wind turbine bladefails when exposed to a large flapwise load...... for the detection of damages in the blade during the test. The report contains measurements of the total deflection of the blade, the local deflection of the skinand the load carrying main spar and also measurement of strain all as a function of the applied load and up to failure of the blade. The “post mortem...... and how failures propagate. The report shows also results from ultrasonic scan of the surface of the blade and it is seen to be very useful for the detection of defects, especially in the layer between the skinlaminate and the load carrying main spar. Acoustic emission was successfully used as sensor...

  10. A simplified model predicting the weight of the load carrying beam in a wind turbine blade

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    2016-01-01

    Based on a simplified beam model, the loads, stresses and deflections experienced by a wind turbine blade of a given length is estimated. Due to the simplicity of the model used, the model is well suited for work investigating scaling effects of wind turbine blades. Presently, the model is used t...... by the fatigue resistance in orderto making the material survive the 100 to 500 million load cycles experience of the windturbine blade throughout the lifetime. The aluminium blade is also found to be considerably heavier compared with the composite blades....

  11. Combined wind turbine fatigue and ultimate load reduction by individual blade control

    International Nuclear Information System (INIS)

    If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads

  12. Effect of Load on Dry Abrasive Wear in Blades of Hand Hacksaw.

    Directory of Open Access Journals (Sweden)

    Mohd Saad Saleem

    2015-07-01

    Full Text Available In this study, the abrasive wear is calculated in the High Carbon Steel (HCS blades of Hand Hacksaw at different Loads. The wear is calculated by Mass Loss of blade before and after cutting the prepared specimen of Mild steel. The Wear is calculated for different specimen of blades at different Loads ie. 5N,10N,15N and 20N with the help of the experimental Setup prepared. The result indicates that the wear in the blades increases with the increase in load.

  13. Effect of Load on Dry Abrasive Wear in Blades of Hand Hacksaw.

    OpenAIRE

    Mohd Saad Saleem; Mohd Shadab Khan

    2015-01-01

    In this study, the abrasive wear is calculated in the High Carbon Steel (HCS) blades of Hand Hacksaw at different Loads. The wear is calculated by Mass Loss of blade before and after cutting the prepared specimen of Mild steel. The Wear is calculated for different specimen of blades at different Loads ie. 5N,10N,15N and 20N with the help of the experimental Setup prepared. The result indicates that the wear in the blades increases with the increase in load.

  14. Loadings in thermal barrier coatings of jet engine turbine blades an experimental research and numerical modeling

    CERN Document Server

    Sadowski, Tomasz

    2016-01-01

    This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.

  15. Controller Design for Blade Load Reduction Using Synthetic Jets

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Mirzaei, Mahmood

    2014-01-01

    strain gauges along the blade and the tower to estimate the contribution of each blade modal state to the vibration of the tower and the blades. The synthetic jet actuators are then controlled, such that the desired vibration modes are damped effectively. Designed estimator and controller are implemented...

  16. blades

    Directory of Open Access Journals (Sweden)

    Shashishekara S. Talya

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  17. Calibration procedures for improved accuracy of wind turbine blade load measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Johansson, Hjalmar [Teknikgruppen AB, Sollentuna (Sweden)

    1996-12-01

    External loads acting on wind turbine blades are mainly transferred via the hub to the rest of the structure. It is therefore a normal approach to measure the loads acting on the turbine by load measurements in the blade roots. The load measurement is often accomplished by measurements of strain on the surface of the blade or the hub. The strain signals are converted to loads by applying calibration factors to the measurements. This paper deals with difficulties associated with load measurements on two different wind turbines; one with strain gauges applied to a steel hub where a linear stress-load relationship is expected and the other with strain gauges applied to the GFRP blade close to the bearings where strong non-linearity`s and temperature effects are expected. This paper suggests calibration methods to overcome these problems. 2 refs, 11 figs

  18. Evaluation of Rotor Structural and Aerodynamic Loads using Measured Blade Properties

    Science.gov (United States)

    Jung, Sung N.; You, Young-Hyun; Lau, Benton H.; Johnson, Wayne; Lim, Joon W.

    2012-01-01

    The structural properties of Higher harmonic Aeroacoustic Rotor Test (HART I) blades have been measured using the original set of blades tested in the wind tunnel in 1994. A comprehensive rotor dynamics analysis is performed to address the effect of the measured blade properties on airloads, blade motions, and structural loads of the rotor. The measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. The measured properties are correlated against the estimated values obtained initially by the manufacturer of the blades. The previously estimated blade properties showed consistently higher stiffnesses, up to 30% for the flap bending in the blade inboard root section. The measured offset between the center of gravity and the elastic axis is larger by about 5% chord length, as compared with the estimated value. The comprehensive rotor dynamics analysis was carried out using the measured blade property set for HART I rotor with and without HHC (Higher Harmonic Control) pitch inputs. A significant improvement on blade motions and structural loads is obtained with the measured blade properties.

  19. Failure Test and Finite Element Simulation of a Large Wind Turbine Composite Blade under Static Loading

    OpenAIRE

    Xiao Chen; Wei Zhao; Xiao Lu Zhao; Jian Zhong Xu

    2014-01-01

    This study presented a failure analysis of a 52.3 m composite wind turbine blade under static loading. Complex failure characteristics exhibited at the transition region of the blade were thoroughly examined and typical failure modes were indentified. In order to predict multiple failure modes observed in the tests and gain more insights into the failure mechanisms of the blade, a Finite Element (FE) simulation was performed using a global-local modeling approach and Progressive Failure Anal...

  20. A simplified model predicting the weight of the load carrying beam in a wind turbine blade

    Science.gov (United States)

    Mikkelsen, Lars P.

    2016-07-01

    Based on a simplified beam model, the loads, stresses and deflections experienced by a wind turbine blade of a given length is estimated. Due to the simplicity of the model used, the model is well suited for work investigating scaling effects of wind turbine blades. Presently, the model is used to predict the weight of the load carrying beam when using glass fibre reinforced polymers, carbon fibre reinforced polymers or an aluminium alloy as the construction material. Thereby, it is found that the weight of a glass fibre wind turbine blade is increased from 0.5 to 33 tons when the blade length grows from 20 to 90 m. In addition, it can be seen that for a blade using glass fibre reinforced polymers, the design is controlled by the deflection and thereby the material stiffness in order to avoid the blade to hit the tower. On the other hand if using aluminium, the design will be controlled by the fatigue resistance in order to making the material survive the 100 to 500 million load cycles experience of the wind turbine blade throughout the lifetime. The aluminium blade is also found to be considerably heavier compared with the composite blades.

  1. Effect of blade loading and rotor speed on the optimal aerodynamic performance of wind turbine blades

    Science.gov (United States)

    Bryson, Christopher; Hussain, Fazle; Barhorst, Alan

    2015-11-01

    Optimization of wind turbine torque as a function of angle of attack - over the entire speed range from start-up to cut-off - is studied by considering the full trigonometric relations projecting lift and drag to thrust and torque. Since driving force and thrust are geometrically constrained, one cannot be changed without affecting the other. Increasing lift to enhance torque simultaneously increases thrust, which subsequently reduces the inflow angle with respect to the rotor plane via an increased reduction in inflow velocity. Reducing the inflow angle redirects the lift force away from the driving force generating the torque, which may reduce overall torque. Similarly, changes in the tip-speed ratio (TSR) affect the inflow angle and thus the optimal torque. Using the airfoil data from the NREL 5 MW reference turbine, the optimal angle of attack over the operational TSR range (4 to 15) was computed using a BEM model to incorporate the dynamic coupling, namely the interdependency of blade loading and inflow angle. The optimal angle of attack is close to minimum drag during start-up phase (high TSR) and continuously increases toward maximum lift at high wind speeds (low TSR).

  2. A Low Order Model for Analyzing effects of Blade Fatigue Load Control

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2006-01-01

    A new low order mathematical model is introduced to analyse blade dynamics and blade load reducing control strategies for wind turbines. The model consists of a typical wing section model combined with a rotor speed model, leading to four structural degrees of freedom (flapwise, edgewise, and...

  3. Effect of blade flutter and electrical loading on small wind turbine noise

    Science.gov (United States)

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  4. Load consequences when sweeping blades - A case study of a 5 MW pitch controlled wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Verelst, D.R.S.; Larsen, Torben J.

    2010-08-15

    The generic 5 MW NREL wind turbine model is used in Risoe's aeroelastic simulator HAWC2 to investigate 120 different swept blade configurations (forward and backward sweep). Sensitivity for 2 different controllers is considered as well. Backward sweep results in a pitch to feather torsional moment of the blade, effectively reducing blade twist angles under increased loading. This behaviour results in decreased flap-wise fatigue and extreme loads, an increase for edge-wise fatigue loading and status quo or slight decrease in extreme loads (depending on the controller). Tower base and shaft-end bending moments are reduced as well. Forward sweep leads to an increase in angle of attack under loading. For a pitch controlled turbine this leads to an increase in fatigue and extreme loading in all cases. A controller inflicted instability is present for the more extreme forward swept cases. Due to the shape of considered sweep curves, an inherent and significant increase in torsional blade root bending moment is noted. A boomerang shaped sweep curve is proposed to counteract this problematic increased loading. Controller sensitivity shows that adding sweep affects some loadings differently. Power output is reduced for backward sweep since the blade twist is optimized as a rigid structure, ignoring the torsional deformations which for a swept blade can be significant. (author)

  5. Evaluation of a Blade Force Measurement System for a Vertical Axis Wind Turbine Using Load Cells

    OpenAIRE

    Morgan Rossander; Eduard Dyachuk; Senad Apelfröjd; Kristian Trolin; Anders Goude; Hans Bernhoff; Sandra Eriksson

    2015-01-01

    Unique blade force measurements on an open site straight-bladed vertical axis wind turbine have been performed. This paper presents a method for measuring the tangential and normal forces on a 12-kW vertical axis wind turbine prototype with a three-bladed H-rotor. Four single-axis load cells were installed in-between the hub and the support arms on one of the blades. The experimental setup, the measurement principle, together with the necessary control and measurement system are described. Th...

  6. Material matters: Controllable rubber trailing edge flap regulates load on wind turbine blades

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge

    2010-01-01

    In wind farms, nearby wind turbines exert considerable influence and generate turbulence on turbine blades. Because the blades are so long, there can be considerable differences in localized loading from the gusts along the blade. The Risø DTU researchers has developed a controllable rubber...... in an open jet wind tunnel shows promising results. In the wind tunnel, it is possible to regulate the wind speed as well as turn the blade profile to simulate a change in wind direction in relation to the profile....

  7. Influence of Thermodynamic Effect on Blade Load in a Cavitating Inducer

    Directory of Open Access Journals (Sweden)

    Kengo Kikuta

    2010-01-01

    Full Text Available Distribution of the blade load is one of the design parameters for a cavitating inducer. For experimental investigation of the thermodynamic effect on the blade load, we conducted experiments in both cold water and liquid nitrogen. The thermodynamic effect on cavitation notably appears in this cryogenic fluid although it can be disregarded in cold water. In these experiments, the pressure rise along the blade tip was measured. In water, the pressure increased almost linearly from the leading edge to the trailing edge at higher cavitation number. After that, with a decrease of cavitation number, pressure rise occurred only near the trailing edge. On the other hand, in liquid nitrogen, the pressure distribution was similar to that in water at a higher cavitation number, even if the cavitation number as a cavitation parameter decreased. Because the cavitation growth is suppressed by the thermodynamic effect, the distribution of the blade load does not change even at lower cavitation number. By contrast, the pressure distribution in liquid nitrogen has the same tendency as that in water if the cavity length at the blade tip is taken as a cavitation indication. From these results, it was found that the shift of the blade load to the trailing edge depended on the increase of cavity length, and that the distribution of blade load was indicated only by the cavity length independent of the thermodynamic effect.

  8. Cracks path growth in turbine blades with TBC under thermo – mechanical cyclic loadings

    Directory of Open Access Journals (Sweden)

    T. Sadowski

    2016-02-01

    Full Text Available Blades of combustion turbines are extremely loaded turbojet elements, which transmit operative energy onto a rotor. Experiences of many years indicate, that cracks initiation and propagation in the blades during the operation time can cause destruction not only of the engine, but sometimes an airplane. In high temperature one of the most often occuring interactions in the turbine engine are time variable force fields, caused by non-stationary flowing of an exhaust gas and aerodynamical interaction of the engine elements. The extremal thermo-mechanical loadings initiate gradual degradation process of the blades as a result of fatigue and material creep. More often Thermal Barrier Coatings (TBCs are applied on the turbine blade surface to provide protection not only against the high temperature but also against aggressive environment. The paper presents the advantages of applying of the TBC layers for increase of the cracks resistance to gradual degradation of the turbine blades. The level of save values of thermo-mechanical loading was estimated. Analysis of critical values of loading leading to crack initiation, further growth and the final blade fragmentation was performed. The most efforted places of the turbine blades were selected and crack paths due to thermo-mechanical cyclic loading were determined.

  9. Design of fatigue loading monitoring system for wind turbine blades under dual-axes resonance mode

    Directory of Open Access Journals (Sweden)

    Leian ZHANG

    2016-02-01

    Full Text Available In order to shorten fatigue test period of wind turbine blades, a fatigue loading method based on the dual-axes resonance driven by electricity is proposed. The method for detecting the speed and phase of the two loading sources is given, and the synchronization control strategy is formulated. The master-slave network framework mode is applied in the control system. The speed and phase of the two loading sources are measured by using high-speed pulse counting sensor, the blade amplitude is obtained by laser range finder, and the PC monitoring interface is developed by using Labview. Test results show that the speed, phase, blade amplitude of the loading sources and other characteristic parameters can be measured well by using the monitoring system, which provides a new test platform for dual-axis resonance fatigue test of wind turbine blades.

  10. Use of the WEST-1 wind turbine simulator to predict blade fatigue load distribution

    Science.gov (United States)

    Janetzke, D. C.

    1983-01-01

    To test the ability of WEST-1 to predict blade fatigue load distribution, actual wind signals were fed into the simulator and the response data were recorded and processed in the same manner as actual wind turbine data. The WEST-1 simulator was operated in a stable, unattended mode for six hours. The probability distribution of the cyclic flatwise bending moment for the blade was comparable to that for an actual wind turbine in winds with low turbulence. The input from a stationary anemometer was found to be inadequate for use in the prediction of fatigue load distribution for blade design purposes and modifications are necessary.

  11. Load Consequences when Sweeping Blades - A Case Study of a 5 MW Pitch Controlled Wind Turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.

    moments are reduced as well. Forward sweep leads to an increase in angle of attack under loading. For a pitch controlled turbine this leads to an increase in fatigue and extreme loading in all cases. An controller inflicted instability is present for the more extreme forward swept cases. Due to the shape......The generic 5 MW NREL wind turbine model is used in Risø’s aeroelastic simulator HAWC2 to investigate 120 different swept blade configurations (forward and backward sweep). Sensitivity for 2 different controllers is considered as well. Backward sweep results in a pitch to feather torsional moment...... of the blade, effectively reducing blade twist angles under increased loading. This behaviour results in decreased flap-wise fatigue and extreme loads, an increase for edge-wise fatigue loading and status quo or slight decrease in extreme loads (depending on the controller). Tower base and shaft-end bending...

  12. Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines

    International Nuclear Information System (INIS)

    A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body

  13. Structural qualification testing and operational loading on a fiberglass rotor blade for the Mod-OA wind turbine

    Science.gov (United States)

    Sullivan, T. L.

    1983-03-01

    Fatigue tests were performed on full- and half-scale root end sections, first to qualify the root retention design, and second to induce failure. Test methodology and results are presented. Two operational blades were proof tested to design limit load to ascertain buckling resistance. Measurements of natural frequency, damping ratio, and deflection under load made on the operational blades are documented. The tests showed that all structural design requirements were met or exceeded. Blade loads measured during 3000 hr of field operation were close to those expected. The measured loads validated the loads used in the fatigue tests and gave high confidence in the ability of the blades to achieve design life.

  14. Blade design loads on the flow exciting force in centrifugal pump

    Science.gov (United States)

    Xu, Y.; Yang, A. L.; Langand, D. P.; Dai, R.

    2012-11-01

    The three-dimensional viscous flow field of two centrifugal pumps, which have the same volute, design head, design flow rate and rotational speed but the blade design load, are analyzed based on large eddy simulation. The comparisons are implemented including the hydraulic efficiencies, flow field characteristics, pressure pulsations and unsteady forces applied on the impellers to investigate the effect of the design blade load on hydraulic performance and flow exciting force. The numerical results show that the efficiency of the pump, the impeller blade of which has larger design load, is improved by 1.1%~2.9% compared to the centrifugal pump with lower blade design load. The pressure fluctuation of the pump with high design load is more remarkable. Its maximum amplitude of coefficient of static pressure is higher by 43% than the latter. At the same time the amplitude of unsteady radial force is increased by 11.6% in the time domain. The results also imply that the blade design load is an important factor on the excitation force in centrifugal pumps.

  15. Method and apparatus for reducing rotor blade deflections, loads, and/or peak rotational speed

    Science.gov (United States)

    Moroz, Emilian Mieczyslaw; Pierce, Kirk Gee

    2006-10-17

    A method for reducing at least one of loads, deflections of rotor blades, or peak rotational speed of a wind turbine includes storing recent historical pitch related data, wind related data, or both. The stored recent historical data is analyzed to determine at least one of whether rapid pitching is occurring or whether wind speed decreases are occurring. A minimum pitch, a pitch rate limit, or both are imposed on pitch angle controls of the rotor blades conditioned upon results of the analysis.

  16. Full Scale Test SSP 34m blade, Combined load. Data report

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Nielsen, Magda; Jensen, Find Mølholt;

    This report is part of the research project entitled “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last” where a 34m wind turbine blade from SSP-Technology A/S was tested in combined flap and edgewise load. The applied load is 55% of...

  17. Calculation and characteristics analysis of blade pitch loads for large scale wind turbines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the electric pitch system of large scale horizontal-axis wind turbines,the blade pitch loads coming mainly from centrifugal force,aerodynamic force and gravity are analyzed,and the calculation models for them are established in this paper.For illustration,a 1.2 MW wind turbine is introduced as a practical sample,and its blade pitch loads from centrifugal force,aerodynamic force and gravity are calculated and analyzed separately and synthetically.The research results showed that in the process of rotor rotating 360o,the fluctuation of blade pitch loads is similar to cosine curve when the rotor rotational speed,in-flow wind speed and pitch angle are constant.Furthermore,the amplitude of blade pitch load presents quite a difference at a different pitch angle.The ways of calculation for blade pitch loads are of the universality,and are helpful for further research of the individual pitch control system.

  18. Optimum blade loading for a powered rotor in descent

    Institute of Scientific and Technical Information of China (English)

    Ramin Modarres; David A. Peters

    2016-01-01

    The optimum loading for rotors has previously been found for hover, climb and wind turbine conditions;but, up to now, no one has determined the optimum rotor loading in descent. This could be an important design consideration for rotary-wing parachutes and low-speed des-cents. In this paper, the optimal loading for a powered rotor in descent is found from momentum theory based on a variational principle. This loading is compared with the optimal loading for a rotor in hover or climb and with the Betz rotor loading (which is optimum for a lightly-loaded rotor). Wake contraction for each of the various loadings is also presented.

  19. Ultimate Strength of Wind Turbine Blades under Multiaxial Loading

    OpenAIRE

    Haselbach, Philipp Ulrich; Branner, Kim; Berggreen, Christian; Bitsche, Robert

    2015-01-01

    Modern wind turbine rotor blades are sophisticated lightweight structures, optimised towards achieving the best compromise between aerodynamic and structural design as well as a cost efficient manufacturing processes. They are usually designed for a lifetime of minimum 20 years, where they must endure a variety of weather conditions including uncontrollable, extreme winds without developing damage and fracture.The trend in the development of wind turbines is towards larger, more efficient win...

  20. Evaluation of MOSTAS computer code for predicting dynamic loads in two-bladed wind turbines

    Science.gov (United States)

    Kaza, K. R. V.; Janetzke, D. C.; Sullivan, T. L.

    1979-01-01

    Calculated dynamic blade loads are compared with measured loads over a range of yaw stiffnesses of the DOE/NASA Mod-0 wind turbine to evaluate the performance of two versions of the MOSTAS computer code. The first version uses a time-averaged coefficient approximation in conjunction with a multiblade coordinate transformation for two-bladed rotors to solve the equations of motion by standard eigenanalysis. The results obtained with this approximate analysis do not agree with dynamic blade load amplifications at or close to resonance conditions. The results of the second version, which accounts for periodic coefficients while solving the equations by a time history integration, compare well with the measured data.

  1. AERODYNAMIC DESIGN METHOD OF CASCADE PROFILES BASED ON LOAD AND BLADE THICKNESS DISTRIBUTION

    Institute of Scientific and Technical Information of China (English)

    姚征; 刘高联

    2003-01-01

    A cascade profile design method was proposed using the aerodynamic load and blade thickness distribution as the design constraints, which were correspondent to the demands from the aerodynamic characteristics and the blade strength. These constraints,together with all the other boundary conditions, were involved in the stationary conditions of a variational principle, in which the angle-function was employed as the unknown function.The angle-function ( i. e. , the circumferential angular coordinate ) was defined in the image plane composed of the stream function coordinate ( circumferential direction ) and streamline coordinate. The solution domain, i. e., the blade-to-blade passage, was transformed into a square in the image plane, while the blade contour was projected to a straight line ; thus, the difficulty of the unknown blade geometry was avoided. The finite element method was employed to establish the calculation code. Applications show that this method can satisfy the design requests on the blade profile from both aerodynamic and strength respects. In addition, quite different from the most inverse-problem approaches that often encounter difficulties in the convergence of iteration, the present method shows a stable and fast convergence tendency. This will be significant for engineering applications.

  2. Analysis of wind turbine blade behavior under static dual axis loads

    Energy Technology Data Exchange (ETDEWEB)

    Son, Byung Jik [Korea Univ., Seoul (Korea, Republic of); Huh, Yong Hak; Kim, Dong Jin; Kim, Jong Il [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2012-03-15

    For the assessment of the performance of a wind turbine blade, a simulated loading test may be required. In this study, the blade behavior was investigated through numerical analysis using a dual axis loading test, closely simulating the real operation conditions. The blade structure for the 100 kw class wind turbine system was modeled using the finite element (FE) program ANSYS. The failure criteria and buckling analysis under dual axis loading were examined. The failure analysis, including fiber failure and inter fiber failure, was performed with Puck's failure criterion. As the dual axis load ratio increases, the relatively increased stress occurs at the trailing edge and skin surface 3300-3600mm away from the root. Furthermore, it is revealed that increasing the dual axis load ratio makes the location that is weakest against buckling move toward the root part. Thus, it is seen that the dual axis load test may be an essential requirement for the verification of blade performance.

  3. EFFECTS OF SLOTTED BLADING ON SECONDARY FLOW IN HIGHLY LOADED COMPRESSOR CASCADE

    Directory of Open Access Journals (Sweden)

    RAMZI MDOUKI

    2013-10-01

    Full Text Available With the aim to increase allowable blade loadings and enlarge stable operating range in highly loaded compressor, this work is carried out in order to explore the potential of passive control via slotted bladings in linear cascade configurations under both design and stall conditions. Through an extensive 2D-numerical study, the effects of location, width and slope of slots were analysed and the best configuration was identified. Based on the optimal slot, the 3D aerodynamic performances of cascade were studied and the influence of slotted blading to control endwall flow was investigated. Both 2D and 3D calculations are performed on steady RANS solver with standard k-epsilon turbulence model and low Mach number regime. The total loss coefficient, turning angle and flow visualizations on the blade and end-wall surfaces are adopted to describe the different configurations. The obtained results show, for 2D situation, that a maximum of 28.3% reduction in loss coefficient had been reached and the flow turning was increased with approximately 5°. Concerning 3D flow fields the slots marked their benefit at large incoming flow angles which delays the separation on both end wall and blade suction surface at mid span. However, at design conditions, the slotted blades are not able to control secondary flows near the wall and so, lose their potential.

  4. A Two-Bladed Teetering Hub configuration for the DTU 10 MW RWT: loads considerations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Aagaard Madsen, Helge; Rasmussen, Flemming

    2014-01-01

    , and the rotor solidity is kept constant by increasing the blade chord by 50 %. The configuration allows saving 30 % of the rotor weight and material, corresponding to one blade, but implies several complications: lower power output due to increased tip losses effects, and increased load variations. The increase......As the size of wind turbine rotors continuously grows, the need for innovative solutions that would yield to lighter rotor configurations becomes more urgent. Traditional wind turbine designs have favored the classic three-bladed upwind rotor configuration. This work presents instead a concept...... study on an alternative downwind two-bladed rotor configuration. The study is based on a model representative of next generation multi-MW wind turbines: the DTU 10-MW Reference Wind Turbine (RWT). As a first design iteration, the aerodynamic characteristics of the original rotor are maintained...

  5. A Two-Bladed Teetering Hub configuration for the DTU 10 MW RWT: loads considerations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Aagaard Madsen, Helge; Rasmussen, Flemming

    , and the rotor solidity is kept constant by increasing the blade chord by 50 %. The configuration allows saving 30 % of the rotor weight and material, corresponding to one blade, but implies several complications: lower power output due to increased tip losses effects, and increased load variations. The increase......As the size of wind turbine rotors continuously grows, the need for innovative solutions that would yield to lighter rotor configurations becomes more urgent. Traditional wind turbine designs have favored the classic three-bladed upwind rotor configuration. This work presents instead a concept...... study on an alternative downwind two-bladed rotor configuration. The study is based on a model representative of next generation multi-MW wind turbines: the DTU 10-MW Reference Wind Turbine (RWT). As a first design iteration, the aerodynamic characteristics of the original rotor are maintained...

  6. Early operation experience on the ERDA/NASA 100 kW wind turbine. [rotor blade loads

    Science.gov (United States)

    Glasgow, J. C.; Linscott, B. S.

    1976-01-01

    As part of the Energy Research and Development Administration (ERDA) wind energy program, NASA Lewis Research Center is testing an experimental 100-kW wind turbine. Rotor blade and drive shaft loads and tower deflection were measured during operation of the wind turbine at rated rpm. The blade loads measured are higher than anticipated. Preliminary results indicate that air flow blockage by the tower structure probably caused the high rotor blade bending moments.

  7. Evaluation of MOSTAS computer code for predicting dynamic loads in two bladed wind turbines

    Science.gov (United States)

    Kaza, K. R. V.; Janetzke, D. C.; Sullivan, T. L.

    1979-01-01

    Calculated dynamic blade loads were compared with measured loads over a range of yaw stiffnesses of the DOE/NASA Mod-O wind turbine to evaluate the performance of two versions of the MOSTAS computer code. The first version uses a time-averaged coefficient approximation in conjunction with a multi-blade coordinate transformation for two bladed rotors to solve the equations of motion by standard eigenanalysis. The second version accounts for periodic coefficients while solving the equations by a time history integration. A hypothetical three-degree of freedom dynamic model was investigated. The exact equations of motion of this model were solved using the Floquet-Lipunov method. The equations with time-averaged coefficients were solved by standard eigenanalysis.

  8. Full Scale Test of SSP 34m blade, edgewise loading LTT

    DEFF Research Database (Denmark)

    Nielsen, Magda; Jensen, Find Mølholt; Nielsen, Per Hørlyk;

    This report is a part of the research project “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last” where a 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The applied load is 60% of an unrea...

  9. Comparison of blade loads of fixed and free yawing wind turbine

    Science.gov (United States)

    Cheney, M. C.; Bielawa, R. L.

    1978-01-01

    The self regulating composite bearingless wind turbine utilizes an automatic pitch control concept and a completely unrestrained yawing degree of freedom. Aerodynamic moments caused by skewed flow provide the control to align the wind turbine with the wind. Model tests demonstrated the feasibility of the concept and analytical studies showed the free system to experience lower blade loads compared to the fixed system.

  10. The Effect of Mass and Web Spacing on the Loads and Structural Response of Increasing Wind Turbine Blade Size

    OpenAIRE

    Bennett, Jeffrey

    2012-01-01

    The research presented considers the effect of varying shear web spacing and mass for two blades; a61.5m 5MW blade (based on the NREL5MW reference turbine) and a 100m 13.2MW blade (based onthe SNL100 blade). The variations are analyzed using HAWC2 aeroelastic simulations and Abaqus/CAE finite element simulations;and the effect of the variations is measured by comparing natural frequencies, loads, tip deflection,equivalent fatigue loads, material strength and buckling. Additionally, a tool was...

  11. Full Scale Test of SSP 34m blade, edgewise loading LTT. Data Report 1

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Magda; Jensen, Find M.; Nielsen, Per H. (and others)

    2010-01-15

    This report is a part of a research project where a 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The applied load is 60% of an unrealistic extreme event, corresponding to 75% of a certificated extreme load. This report describes the background, the test set up, the tests and the results. For this project, a new solution has been used for the load application and the solution for the load application is described in this report as well. The blade has been submitted to thorough examination. More areas have been examined with DIC, both global and local deflections have been measured, and also 378 strain gauge measurements have been performed. Furthermore Acoustic Emission has been used in order to detect damage while testing new load areas. The global deflection is compared with results from a previous test and results from FEM analyses in order to validate the solution as to how the gravity load on the blade was handled. Furthermore, the DIC measurement and the displacement sensors measurements are compared in order to validate the results from the DIC measurements. The report includes the results from the test and a description of the measurement equipment and the data acquisition. (author)

  12. Evaluation of a Blade Force Measurement System for a Vertical Axis Wind Turbine Using Load Cells

    Directory of Open Access Journals (Sweden)

    Morgan Rossander

    2015-06-01

    Full Text Available Unique blade force measurements on an open site straight-bladed vertical axis wind turbine have been performed. This paper presents a method for measuring the tangential and normal forces on a 12-kW vertical axis wind turbine prototype with a three-bladed H-rotor. Four single-axis load cells were installed in-between the hub and the support arms on one of the blades. The experimental setup, the measurement principle, together with the necessary control and measurement system are described. The maximum errors of the forces and accompanying weather data that can be obtained with the system are carefully estimated. Measured forces from the four load cells are presented, as well as the normal and tangential forces derived from them and a comparison with theoretical data. The measured torque and bending moment are also provided. The influence of the load cells on the turbine dynamics has also been evaluated. For the aerodynamic normal force, the system provides periodic data in agreement with simulations. Unexpected mechanical oscillations are present in the tangential force, introduced by the turbine dynamics. The measurement errors are of an acceptable size and often depend on the measured variable. Equations are presented for the calculation of measurement errors.

  13. Investigation of Maximum Blade Loading Capability of Lift-Offset Rotors

    Science.gov (United States)

    Yeo, Hyeonsoo; Johnson, Wayne

    2013-01-01

    Maximum blade loading capability of a coaxial, lift-offset rotor is investigated using a rotorcraft configuration designed in the context of short-haul, medium-size civil and military missions. The aircraft was sized for a 6600-lb payload and a range of 300 nm. The rotor planform and twist were optimized for hover and cruise performance. For the present rotor performance calculations, the collective pitch angle is progressively increased up to and through stall with the shaft angle set to zero. The effects of lift offset on rotor lift, power, controls, and blade airloads and structural loads are examined. The maximum lift capability of the coaxial rotor increases as lift offset increases and extends well beyond the McHugh lift boundary as the lift potential of the advancing blades are fully realized. A parametric study is conducted to examine the differences between the present coaxial rotor and the McHugh rotor in terms of maximum lift capabilities and to identify important design parameters that define the maximum lift capability of the rotor. The effects of lift offset on rotor blade airloads and structural loads are also investigated. Flap bending moment increases substantially as lift offset increases to carry the hub roll moment even at low collective values. The magnitude of flap bending moment is dictated by the lift-offset value (hub roll moment) but is less sensitive to collective and speed.

  14. Flow separation control by using bowed blade in highly loaded turbine cascades

    Institute of Scientific and Technical Information of China (English)

    YAMAMOTO; Atsumasa

    2009-01-01

    Due to the serious flow separations and centralized vortices,there are high secondary losses in highly loaded turbines.It is imperative to find measures to control the flow separation and vortices hence improve the turbine performance.This paper reports our recent progress on flow separation and vor-tices control in highly loaded turbine cascades by using bowed blades.Two sets of highly loaded tur-bine cascades with the turning angles of 113° and 160°,and each with 7 bowed blade angles 0°(straight),±10°,±20° and ±30° were experimentally investigated.Both internal flow field measurement and flow visualization on the blade surfaces were conducted,and the effects of blade bowing on the flow topology,distribution of vorticity and the flow energy loss were discussed.The results show that,for the cascade with the turning angle of 113°,the appropriately positive bow angle could reduce the flow energy loss;whereas for the cascade with the turning angle of 160°,the well selected negative bow angle can give the better aerodynamic performance.

  15. Flow separation control by using bowed blade in highly loaded turbine cascades

    Institute of Scientific and Technical Information of China (English)

    TAN ChunQing; ZHANG HuaLiang; CHEN HaiSheng; DONG XueZhi; ZHAO HongLei; YAMAMOTO Atsumasa

    2009-01-01

    Due to the serious flow separations and centralized vortices, there are high secondary losses in highly loaded turbines. It is imperative to find measures to control the flow separation and vortices hence improve the turbine performance. This paper reports our recent progress on flow separation and vor-tices control in highly loaded turbine cascades by using bowed blades. Two sets of highly loaded tur-bine cascades with the turning angles of 113°and 160°, and each with 7 bowed blade angles 0°(straight),±10°, ±20° and ±30° were experimentally investigated. Both internal flow field measurement and flow visualization on the blade surfaces were conducted, and the effects of blade bowing on the flow topology, distribution of vorticity and the flow energy loss were discussed. The results show that, for the cascade with the turning angle of 113°, the appropriately positive bow angle could reduce the flow energy loss; whereas for the cascade with the turning angle of 160°, the well selected negative bow angle can give the better aerodynamic performance.

  16. Novelty detection applied to vibration data from a CX-100 wind turbine blade under fatigue loading

    Science.gov (United States)

    Dervilis, N.; Choi, M.; Antoniadou, I.; Farinholt, K. M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Worden, K.; Farrar, C. R.

    2012-08-01

    The remarkable evolution of new generation wind turbines has led to a dramatic increase of wind turbine blade size. In turn, a reliable structural health monitoring (SHM) system will be a key factor for the successful implementation of such systems. Detection of damage at an early stage is a crucial issue as blade failure would be a catastrophic result for the entire wind turbine. In this study the SHM analysis will be based on experimental measurements of Frequency Response Functions (FRFs) extracted by using an input/output acquisition technique under a fatigue loading of a 9m CX-100 blade at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC) performed in the Los Alamos National Laboratory. The blade was harmonically excited at its first natural frequency using a Universal Resonant Excitation (UREX) system. For analysis, the Auto-Associative Neural Network (AANN) is a non-parametric method where a set of damage sensitive features gathered from the measured structure are used to train a network that acts as a novelty detector. This traditionally has a highly complex "bottleneck" structure with five layers in the AANN. In the current paper, a new attempt is also exploited based on an AANN with one hidden layer in order to reduce the theoretical and computational difficulties. Damage detection of composite bodies of blades is a "grand challenge" due to varying aerodynamic and gravitational loads and environmental conditions. A study of the noise tolerant capability of the AANN which is associated to its generalisation capacity is addressed. It will be shown that vibration response data combined with AANNs is a robust and powerful tool, offering novelty detection even when operational and environmental variations are present. The AANN is a method which has not yet been widely used in the structural health monitoring of composite blades.

  17. Application of Load Carrying Sandwich Elements in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jensen, Jacob Fisker; Schultz, Jacob Pagh; Berggreen, Carl Christian;

    2005-01-01

    The present work investigates the possibilities and drawbacks when applying sandwich as opposed to single skin composites in the flanges of the load carrying spar in a future 180 m wind turbine rotor. FEA is applied to investigate two basic designs with single skin and sandwich flanges respectively...

  18. Reduction of aerodynamic load fluctuation on wind turbine blades through active flow control

    Science.gov (United States)

    Velarde, John-Michael; Coleman, Thomas; Magstadt, Andrew; Aggarwal, Somil; Glauser, Mark

    2015-11-01

    The current set of experiments deals with implementing active flow control on a Bergey Excel 1, 1kW turbine. The previous work in our group demonstrated successfully that implementation of a simple closed-loop controller could reduce unsteady aerodynamic load fluctuation by 18% on a vertically mounted wing. Here we describe a similar flow control method adapted to work in the rotating frame of a 2.5m diameter wind turbine. Strain gages at the base of each blade measure the unsteady fluctuation in the blades and pressure taps distributed along the span of the blades feed information to the closed-loop control scheme. A realistic, unsteady flow field has been generated by placing a cylinder upstream of the turbine to induce shedding vortices at frequencies in the bandwidth of the first structural bending mode of the turbine blades. The goal of these experiments is to demonstrate closed-loop flow control as a means to reduce the unsteady fluctuation in the blades and increase the overall lifespan of the wind turbine.

  19. Failure Test and Finite Element Simulation of a Large Wind Turbine Composite Blade under Static Loading

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2014-04-01

    Full Text Available This study presented a failure analysis of a 52.3 m composite wind turbine blade under static loading. Complex failure characteristics exhibited at the transition region of the blade were thoroughly examined and typical failure modes were indentified. In order to predict multiple failure modes observed in the tests and gain more insights into the failure mechanisms of the blade, a Finite Element (FE simulation was performed using a global-local modeling approach and Progressive Failure Analysis (PFA techniques which took into account material failure and property degradation. Failure process and failure characteristics of the transition region were satisfactorily reproduced in the simulation, and it was found that accumulated delamination in spar cap and shear web failure at the transition region were the main reasons for the blade to collapse. Local buckling played an important role in the failure process by increasing local out-of-plane deformation, while the Brazier effect was found not to be responsible for the blade failure.

  20. Combining Unsteady Blade Pressure Measurements and a Free-Wake Vortex Model to Investigate the Cycle-to-Cycle Variations in Wind Turbine Aerodynamic Blade Loads in Yaw

    Directory of Open Access Journals (Sweden)

    Moutaz Elgammi

    2016-06-01

    Full Text Available Prediction of the unsteady aerodynamic flow phenomenon on wind turbines is challenging and still subject to considerable uncertainty. Under yawed rotor conditions, the wind turbine blades are subjected to unsteady flow conditions as a result of the blade advancing and retreating effect and the development of a skewed vortical wake created downstream of the rotor plane. Blade surface pressure measurements conducted on the NREL Phase VI rotor in yawed conditions have shown that dynamic stall causes the wind turbine blades to experience significant cycle-to-cycle variations in aerodynamic loading. These effects were observed even though the rotor was subjected to a fixed speed and a uniform and steady wind flow. This phenomenon is not normally predicted by existing dynamic stall models integrated in wind turbine design codes. This paper couples blade pressure measurements from the NREL Phase VI rotor to a free-wake vortex model to derive the angle of attack time series at the different blade sections over multiple rotor rotations and three different yaw angles. Through the adopted approach it was possible to investigate how the rotor self-induced aerodynamic load fluctuations influence the unsteady variations in the blade angles of attack and induced velocities. The hysteresis loops for the normal and tangential load coefficients plotted against the angle of attack were plotted over multiple rotor revolutions. Although cycle-to-cycle variations in the angles of attack at the different blade radial locations and azimuth positions are found to be relatively small, the corresponding variations in the normal and tangential load coefficients may be significant. Following a statistical analysis, it was concluded that the load coefficients follow a normal distribution at the majority of blade azimuth angles and radial locations. The results of this study provide further insight on how existing engineering models for dynamic stall may be improved through

  1. Loads and Performance Data from a Wind-Tunnel Test of Generic Model Helicopter Rotor Blades

    Science.gov (United States)

    Yeager, William T., Jr.; Wilbur, Matthew L.

    2005-01-01

    An investigation was conducted in the NASA Langley Transonic Dynamics Tunnel to acquire data for use in assessing the ability of current and future comprehensive analyses to predict helicopter rotating-system and fixed-system vibratory loads. The investigation was conducted with a generic model helicopter rotor system using blades with rectangular planform, no built-in twist, uniform radial distribution of mass and stiffnesses, and a NACA 0012 airfoil section. Rotor performance data, as well as mean and vibratory components of blade bending and torsion moments, fixed-system forces and moments, and pitch link loads were obtained at advance ratios up to 0.35 for various combinations of rotor shaft angle-of-attack and collective pitch. The data are presented without analysis.

  2. Prediction of dynamic blade loading of the Francis-99 turbine

    Science.gov (United States)

    Nicolle, J.; Cupillard, S.

    2015-01-01

    CFD simulations focusing on capturing dynamic fluctuations of the flow for three operating points were performed for a scale model of a high head Francis turbine. A mesh sensitivity study showed an influence of the near wall resolution, consequently a low Reynolds mesh with a SST turbulence model was used. Rotor/stator fluctuations are well reproduced with the full turbine simulation at all operating points. Velocity contours and average velocity profiles from LDV measurements in the draft tube confirm that the flow physics is generally well reproduced. Simplified approaches such as profile transform and Fourier transform underestimated the measured fluctuations. As full turbine simulations were time-consuming, a simulation with only the draft tube was performed at part load to predict the fluctuations in the draft tube cone. The SAS-SST turbulence model was able to capture the vortex rope behavior.

  3. Design optimization of blade stiffened laminated composite plates for maximum buckling load

    OpenAIRE

    Achenbach, Mark R.

    1990-01-01

    Approved for public release; distribution unlimited. The buckling load of a blade stiffened laminated composite plate having midplane symmetry is maximized for a given total weight. The thickness of the layers and the width and height of the stiffener are taken as the design variables. Buckling analysis is carried out using a finite element method. The optimization problem is solved using commercially available optimization packages. Due to the highly nonlinear nature of the optimality equ...

  4. Investigation of the effect of bending twisting coupling on the loads in wind turbines with superelement blade definition

    International Nuclear Information System (INIS)

    Bending-twisting coupling in the composite blades is exploited for load alleviation in the whole turbine system. For the purpose of the study, inverse design of a reference blade is performed such that sectional beam properties of the 3D blade design approximately match the sectional beam properties of NREL's 5MW turbine blade. In order to appropriately account for the bending-twisting coupling effect, dynamic superelement of the blade is created and introduced into the multi-body dynamic model of the wind turbine system. Initially, a comparative study is conducted on the performance of wind turbines which have blades defined as superelements and geometrically nonlinear beams, and conclusions are inferred with regard to the appropriateness of the use of superelement blade definition in the transient analysis of the 5MW wind turbine system that is set up in the present study. Multi-body dynamic simulations of the wind turbine system are performed for the power production load case with the constant wind and the normal turbulence model as external wind loadings. For the internal loads, fatigue damage equivalent load is used as the metric to assess the effect of bending-twisting coupling on the load alleviation in the whole wind turbine system. Results show that in the overall, through the bending-twisting coupling induced with the use of off-axis plies in the main spar caps of the blade, damage equivalent loads associated with the critical load components can be reduced in the wind turbine system

  5. Loads and performance data from a wind-tunnel test of model articulated helicopter rotors with 2 different blade torsional stiffnesses

    Science.gov (United States)

    Yeager, W. T., Jr.; Mantay, W. R.

    1983-01-01

    A passive means of tailoring helicopter rotor blades to improve performance and reduce loads was evaluated. The parameters investigated were blade torsional stiffness, blade section camber, and distance between blade structural elastic axis and blade tip aerodynamic center. This offset was accomplished by sweeping the tip. The investigation was conducted at advance ratios of 0.20, 0.30, and 0.40. Data are presented without analysis; however, cross referencing of performance data and harmonic loads data may be useful to the analyst for validating aeroelastic theories and design methodologies as well as for evaluating passive aeroelastic tailoring or rotor blade parameters.

  6. Full scale test SSP 34m blade, edgewise loading LTT. Extreme load and PoC{sub I}nvE Data report

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Magda; Roczek-Sieradzan, A.; Jensen, Find M. (and others)

    2010-09-15

    This report is the second report covering the research and demonstration project 'Experimental blade research: Structural mechanisms in current and future large blades under combined loading', supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested in edgewise direction (LTT). The blade has been submitted to thorough examination by means of strain gauges, displacement transducers and a 3D optical measuring system. This data report presents results obtained during full scale testing of the blade up to 80% Risoe load, where 80% Risoe load corresponds to 100% certification load. These pulls at 80% Risoe load were repeated and the results from these pulls were compared. The blade was reinforced according to a Risoe DTU invention, where the trailing edge panels are coupled. The coupling is implemented to prevent the out of plane deformations and to reduce peeling stresses in the adhesive joints. Test results from measurements with the reinforcement have been compared to results without the coupling. The report presents only the relevant results for the 80% Risoe load and the results applicable for the investigation of the influence of the invention on the profile deformation. (Author)

  7. Effect of the flap and edgewise bending moment phase relationships on the fatigue loads of a typical HAWT blade

    Science.gov (United States)

    Sutherland, H. J.

    The load spectrum unposed upon a horizontal-axis wind turbine blade is typically decomposed into two primary bending moments; flap and edgewise bending. The critical fatigue loads (stress cycles) imposed on the blade may not be on one of these axes, especially if die two bending loads are in-phase with one another. To quantify the correlation of these two bending moments and determine the impact of this correlation on off-axis fatigue loads, an extensive data set for a typical wind turbine blade is examined. The results are compared using their respective cycle count matrices. These results illustrate that the harmonic components of die principal bending stresses are correlated, and that the random components are not. The analysis techniques described in the paper provide the turbine designer with a spectral technique for combining primary bending spectra into off-axis fatigue loads.

  8. Immediately loaded blade implants. a histological and histomorphometrical evaluation after a long loading period. a retrospective 20 years analysis (1989-2009

    Directory of Open Access Journals (Sweden)

    Giovanna Iezzi

    2012-10-01

    Full Text Available Aim: Although the presence of mineralized tissues at the interface with blade implants has been reported, the view that blade implants cannot integrate still persists. Blades are the immediately loaded implants with the longest clinical history, so their histological evaluation may give results applicable to root-form implants. The aim of the present retrospective study was a histological evaluation of the peri-implant tissues in immediately loaded human blade implants retrieved after a long loading history. Materials and methods: Thirty-one implants were included in the present report, after a loading history varying from 2 to 23 years, with a mean of 15 years. The implants were processed for histological examination. Results: Histologically, the bone was in close and tight contact with the implants surface and no gaps or connective fibrous tissues were present at the implant-bone interface. The peri-implant bone was compact, mature, with the presence of small marrow spaces and Haversian canals. Many osteons were in contact with the implan surface. Most Haversian systems ran perpendicular to the major axis of the blades. In some fields it was possible to observe the presence of a few osteoblasts. Remodelling areas were present. Mean bone to implant contact percentage was, for all 31 implants, 43±5.2%. Conclusion: The present report showed that immediately loaded blade implants can achieve and maintain osseointegration under long-term function (more than 20 years.

  9. Wind-Tunnel Evaluation of the Effect of Blade Nonstructural Mass Distribution on Helicopter Fixed-System Loads

    Science.gov (United States)

    Wilbur, Matthew L.; Yeager, William T., Jr.; Singleton, Jeffrey D.; Mirick, Paul H.; Wilkie, W. Keats

    1998-01-01

    This report provides data obtained during a wind-tunnel test conducted to investigate parametrically the effect of blade nonstructural mass on helicopter fixed-system vibratory loads. The data were obtained with aeroelastically scaled model rotor blades that allowed for the addition of concentrated nonstructural masses at multiple locations along the blade radius. Testing was conducted for advance ratios ranging from 0.10 to 0.35 for 10 blade-mass configurations. Three thrust levels were obtained at representative full-scale shaft angles for each blade-mass configuration. This report provides the fixed-system forces and moments measured during testing. The comprehensive database obtained is well-suited for use in correlation and development of advanced rotorcraft analyses.

  10. A new method for dual-axis fatigue testing of large wind turbine blades using resonance excitation and spectral loading

    Science.gov (United States)

    White, Darris L.

    The demand for cost effective renewable energy sources has resulted in the continual refinement of modern wind turbine designs. These refinements generally result in larger wind turbines and wind turbine blades. In order to reduce maintenance expenses, and improve quality and reliability, each new blade design must be subjected to a high cycle fatigue test. With blades expected to soon reach 70 meters in length, traditional fatigue test systems and methods are becoming less practical. Additionally, the relationship between the flap and lead-lag bending moments has not been well understood. This work explores the accuracy of current test methods compared to service loads, presents a new method for fatigue testing larger blades and experimentally validates the analysis. A dynamic model of a generic wind turbine blade and test system has been developed to evaluate the strain profiles during testing, evaluate control strategies and optimize the test accuracy. The relationship between the flap and lead-lag strains resulting from service bending moments has been analyzed. A load spectrum based on the relationship between the flap and lead-lag loads has been developed and compared to traditional test conditions. The effect of using the load spectrum on the test system stability has been analyzed and a new state-space controller has been designed. A 3-D finite element model of a generic wind turbine blade has been used to evaluate the damage accumulation for current test load conditions and the proposed load spectrum. A nonlinear damage accumulation model has been derived to evaluate the effects of load sequencing. Additionally, a new method for applying the fatigue loads to the blades has been developed and implemented. A system that applies a harmonic force at the resonance frequency of the blade in the flap direction has been designed. The new system will reduce the costs and time associated with performing a fatigue test on wind turbine blades. The new system is also

  11. PREDICTION OF LOADING DISTRIBUTION AND HYDRODYNAMIC MEASUREMENTS FOR PROPELLER BLADES IN A RIM DRIVEN THRUSTER

    Institute of Scientific and Technical Information of China (English)

    CAO Qing-ming; HONG Fang-wen; TANG Deng-hai; HU Fang-lin; LU Lin-zhang

    2012-01-01

    This article presents an approach which employs a commercial Reynolds-Averaged Navier-Stokes (RANS) solver to predict the steady wake field and loading distributions for a rim driven thruster.Four different cases of propeller blades are chosen to be calculated with the presented method.The propeller blade radial circulation and chordwise circulation density distributions are analyzed.The maximum radial circulation is found at the blade tip,which is different from conventional shaft drven propeller.The numerical results indicate that there is no tip leakage vortex in rim driven propulors.But there exist the tip joint vortex and the root region vortex.Bollard characteristics are calculated by taking rim surface effect into account.From the predicted results the second case in this paper is selected as the final one to perform hydrodynamic experiment.The calculation results with empirical rim surface corrections are compared with the measurement.It shows that the developed numerical method can well predict hydrodynamic performances of the rim driven thruster.

  12. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    Science.gov (United States)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  13. Non-steady dynamics of atmospheric turbulence interaction with wind turbine loadings through blade-boundary-layer-resolved CFD

    Science.gov (United States)

    Vijayakumar, Ganesh

    Modern commercial megawatt-scale wind turbines occupy the lower 15-20% of the atmospheric boundary layer (ABL), the atmospheric surface layer (ASL). The current trend of increasing wind turbine diameter and hub height increases the interaction of the wind turbines with the upper ASL which contains spatio-temporal velocity variations over a wide range of length and time scales. Our interest is the interaction of the wind turbine with the energetic integral-scale eddies, since these cause the largest temporal variations in blade loadings. The rotation of a wind turbine blade through the ABL causes fluctuations in the local velocity magnitude and angle of attack at different sections along the blade. The blade boundary layer responds to these fluctuations and in turn causes temporal transients in local sectional loads and integrated blade and shaft bending moments. While the integral scales of the atmospheric boundary layer are ˜ O(10--100m) in the horizontal with advection time scales of order tens of seconds, the viscous surface layer of the blade boundary layer is ˜ O(10 -- 100 mum) with time scales of order milliseconds. Thus, the response of wind turbine blade loadings to atmospheric turbulence is the result of the interaction between two turbulence dynamical systems at extremely disparate ranges of length and time scales. A deeper understanding of this interaction can impact future approaches to improve the reliability of wind turbines in wind farms, and can underlie future improvements. My thesis centers on the development of a computational framework to simulate the interaction between the atmospheric and wind turbine blade turbulence dynamical systems using a two step one-way coupled approach. Pseudo-spectral large eddy simulation (LES) is used to generate a true (equilibrium) atmospheric boundary layer over a flat land with specified surface roughness and heating consistent with the stability state of the daytime lower troposphere. Using the data from the

  14. CFD computations of wind turbine blade loads during standstill operation KNOW-BLADE, Task 3.1 report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.; Johansen, J.; Conway, S.

    2004-06-01

    Two rotors blades are computed during standstill conditions, using two different Navier-Stokes solvers EDGE and EllipSys3D. Both steady and transient linear {kappa} - {omega} RANS turbulence models are applied, along with steady non-linear RANS and transient DES simulations. The STORK 5.0 WPX blade is computed a three different tip pitch angles, 0, 26 and 50 degrees tip pitch angle, while the NREL Phase-VI blade is computed at 90 degrees tip pitch angle. Generally the CFD codes reproduce the measured trends quite well and the two involved CFD codes give very similar results. The discrepancies observed can be explained by the difference in the applied turbulence models and the fact that the results from one of the solvers are presented as instantaneous values instead of averaged values. The comparison of steady and transient RANS results show that the gain of using time true computations are very limited for this case, with respect to mean quantities. The same can be said for the RANS/DES comparison performed for the NREL rotor, even though the DES computation shows improved agreement at the tip and root sections. Finally, it is shown that the DES methodology provides a much more physical representation of the heavily stalled part of the flow over blades at high angles of attack. (au)

  15. Non-intrusive aerodynamic loads analysis of an aircraft propeller blade

    Energy Technology Data Exchange (ETDEWEB)

    Ragni, D.; Oudheusden, B.W. van; Scarano, F. [Delft University of Technology, Faculty of Aerospace Engineering, Delft (Netherlands)

    2011-08-15

    The flow field in a cross-sectional plane of a scaled Beaver DHC aircraft propeller has been measured by means of a stereoscopic PIV setup. Phase-locked measurements are obtained in a rotational frequency range from 18,900 to 21,000 rpm, at a relative Mach number of 0.6 at 3/4 propeller radius. The use of an adapted formulation of the momentum equation in differential form for rotating frame of references, integrated with isentropic relations as boundary conditions, allowed to compute the pressure field around the blade and the surface pressure distribution directly from the velocity data in the compressible regime. The procedure, extended to the computation of the aerodynamic lift and drag coefficients by a momentum contour integral approach, proved to be able to couple the aerodynamical loads to the flow field on the moving propeller blade, comparing favorably with a numerical simulation of the entire scaled model. Results are presented for two propeller rotation speeds and three different yawing angles. (orig.)

  16. Analysis of 7- X 10-foot high speed wind tunnel shaft loads in support of fan blade failure investigation

    Science.gov (United States)

    Faison, Richard W.

    1987-01-01

    This is a report of the investigation of the High-Speed 7- X 10-Foot Wind Tunnel at NASA Langley Research Center, which experienced a catastrophic failure of all 18 Sitka spruce fan blades during operation at 0.8 Mach number on 2 July 1985. The High-Speed Tunnel, a closed-circuit/single-return atmospheric wind tunnel, had been operated since 1945 to support a wide range of subsonic aerodynamic tests and studies. The failed blade set had been in use since 1975. In addition to blade loss, the most significant damage was a bent main drive shaft for a total estimated damage loss of 1.7 million dollars. An analysis of the natural frequency characteristics as well as loads, reactions, stresses, and deflections of the fan drive system resulting from steady-state and dynamic loads due to unbalance was performed. Transient load cases were simulated by step input and ramp input loading functions intended to simulate the loss of one to nine blades (maximum unbalance forces).

  17. Wind Turbine Blade Design

    OpenAIRE

    Richard J. Crossley; Peter J. Schubel

    2012-01-01

    A detailed review of the current state-of-art for wind turbine blade design is presented, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads. The review provides a complete picture of wind turbine blade design and shows the dominance of modern turbines almost exclusive use of horizontal axis rotors. The aerodynamic design principles for a modern wind turbine blade are detailed, including blade plan shape/quantity, aerofoil selection ...

  18. Comprehensive Forced Response Analysis of J2X Turbine Bladed-Discs with 36- Degree Variation in CFD Loading

    Science.gov (United States)

    Elrod, David; Christensen, Eric; Brown, Andrew

    2011-01-01

    At NASA/MSFC, Structural Dynamics personnel continue to perform advanced analysis for the turbomachinery in the J2X Rocket Engine, which is under consideration for the new Space Launch System. One of the most challenging analyses in the program is predicting turbine blade structural capability. Resonance was predicted by modal analysis, so comprehensive forced response analyses using high fidelity cyclic symmetric finite element models were initiated as required. Analysis methodologies up to this point have assumed the flow field could be fully described by a sector, so the loading on every blade would be identical as it travelled through it. However, in the J2X the CFD flow field varied over the 360 deg of a revolution because of the flow speeds and tortuous axial path. MSFC therefore developed a complex procedure using Nastran Dmap's and Matlab scripts to apply this circumferentially varying loading onto the cyclically symmetric structural models to produce accurate dynamic stresses for every blade on the disk. This procedure is coupled with static, spin, and thermal loading to produce high cycle fatigue safety factors resulting in much more accurate analytical assessments of the blades.

  19. Investigation of Rotor Performance and Loads of a UH-60A Individual Blade Control System

    Science.gov (United States)

    Yeo, Hyeonsoo; Romander, Ethan A.; Norman, Thomas R.

    2011-01-01

    Wind tunnel measurements of performance, loads, and vibration of a full-scale UH-60A Black Hawk main rotor with an individual blade control (IBC) system are compared with calculations obtained using the comprehensive helicopter analysis CAMRAD II and a coupled CAMRAD II/OVERFLOW 2 analysis. Measured data show a 5.1% rotor power reduction (8.6% rotor lift to effective-drag ratio increase) using 2/rev IBC actuation with 2.0 amplitude at = 0.4. At the optimum IBC phase for rotor performance, IBC actuator force (pitch link force) decreased, and neither flap nor chord bending moments changed significantly. CAMRAD II predicts the rotor power variations with the IBC phase reasonably well at = 0.35. However, the correlation degrades at = 0.4. Coupled CAMRAD II/OVERFLOW 2 shows excellent correlation with the measured rotor power variations with the IBC phase at both = 0.35 and = 0.4. Maximum reduction of IBC actuator force is better predicted with CAMRAD II, but general trends are better captured with the coupled analysis. The correlation of vibratory hub loads is generally poor by both methods, although the coupled analysis somewhat captures general trends.

  20. Rotordynamic analysis of asymmetric turbofan rotor due to fan blade-loss event with contact-impact rub loads

    Science.gov (United States)

    Sinha, Sunil K.

    2013-04-01

    Loss of a blade from a running turbofan rotor introduces not only huge imbalance into the dynamical system rather it makes the entire rotor asymmetric as well. In a nonsymmetric rotor, the various terms of mass, gyroscopic and stiffness matrices also become time-dependent. In this paper, all the dynamical equations include the effect of the rotary inertia and gyroscopic moments as a result of both shaft bending as well as staggered blades flexing in-and-out of the plane of the disk. The governing equations also account for internal material damping in the shaft and the external damping in the support bearing system. In addition to the unbalance load at the disk location, the shaft may also be subjected to a torque and axial forces. Here, the fan blades are modeled as pre-twisted thin shallow shells. They have coupled flexural-torsional motion in the lateral out-of-plane direction as well as extensional degrees-of-freedom in the longitudinal spanwise direction of the blade airfoil. The effect of blade tip rub forces being transmitted to the shaft are analyzed in terms of the dynamic stability of the rotor, especially during windmilling.

  1. Wind Turbine Blade Design

    Directory of Open Access Journals (Sweden)

    Richard J. Crossley

    2012-09-01

    Full Text Available A detailed review of the current state-of-art for wind turbine blade design is presented, including theoretical maximum efficiency, propulsion, practical efficiency, HAWT blade design, and blade loads. The review provides a complete picture of wind turbine blade design and shows the dominance of modern turbines almost exclusive use of horizontal axis rotors. The aerodynamic design principles for a modern wind turbine blade are detailed, including blade plan shape/quantity, aerofoil selection and optimal attack angles. A detailed review of design loads on wind turbine blades is offered, describing aerodynamic, gravitational, centrifugal, gyroscopic and operational conditions.

  2. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    Science.gov (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  3. Comprehensive Forced Response Analysis of J2X Turbine Bladed-Discs with 360 Degree Variation in CFD Loading

    Science.gov (United States)

    Elrod, David; Christensen, Eric; Brown, Andrew

    2011-01-01

    The temporal frequency content of the dynamic pressure predicted by a 360 degree computational fluid dynamics (CFD) analysis of a turbine flow field provides indicators of forcing function excitation frequencies (e.g., multiples of blade pass frequency) for turbine components. For the Pratt and Whitney Rocketdyne J-2X engine turbopumps, Campbell diagrams generated using these forcing function frequencies and the results of NASTRAN modal analyses show a number of components with modes in the engine operating range. As a consequence, forced response and static analyses are required for the prediction of combined stress, high cycle fatigue safety factors (HCFSF). Cyclically symmetric structural models have been used to analyze turbine vane and blade rows, not only in modal analyses, but also in forced response and static analyses. Due to the tortuous flow pattern in the turbine, dynamic pressure loading is not cyclically symmetric. Furthermore, CFD analyses predict dynamic pressure waves caused by adjacent and non-adjacent blade/vane rows upstream and downstream of the row analyzed. A MATLAB script has been written to calculate displacements due to the complex cyclically asymmetric dynamic pressure components predicted by CFD analysis, for all grids in a blade/vane row, at a chosen turbopump running speed. The MATLAB displacements are then read into NASTRAN, and dynamic stresses are calculated, including an adjustment for possible mistuning. In a cyclically symmetric NASTRAN static analysis, static stresses due to centrifugal, thermal, and pressure loading at the mode running speed are calculated. MATLAB is used to generate the HCFSF at each grid in the blade/vane row. When compared to an approach assuming cyclic symmetry in the dynamic flow field, the current approach provides better assurance that the worst case safety factor has been identified. An extended example for a J-2X turbopump component is provided.

  4. Performance and Vibratory Loads Data From a Wind-Tunnel Test of a Model Helicopter Main-Rotor Blade With a Paddle-Type Tip

    Science.gov (United States)

    Yeager, William T., Jr.; Noonan, Kevin W.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Mirick, Paul H.

    1997-01-01

    An investigation was conducted in the Langley Transonic Dynamics Tunnel to obtain data to permit evaluation of paddle-type tip technology for possible use in future U.S. advanced rotor designs. Data was obtained for both a baseline main-rotor blade and a main-rotor blade with a paddle-type tip. The baseline and paddle-type tip blades were compared with regard to rotor performance, oscillatory pitch-link loads, and 4-per-rev vertical fixed-system loads. Data was obtained in hover and forward flight over a nominal range of advance ratios from 0.15 to 0.425. Results indicate that the paddle-type tip offers no performance improvements in either hover or forward flight. Pitch-link oscillatory loads for the paddle-type tip are higher than for the baseline blade, whereas 4-per-rev vertical fixed-system loads are generally lower.

  5. Subsonic flow past an oscillating cascade with steady blade loading - Basic formulation

    Science.gov (United States)

    Verdon, J. M.; Caspar, J. R.; Adamczyk, J. J.

    1975-01-01

    A nonlinear boundary value problem governing the subsonic flow in a single, extended, blade passage region of a high-deflection, two dimensional, oscillating cascade is derived. The blades are assumed to be undergoing identical harmonic motions of small amplitude with constant phase angle between the motion of adjacent blades. An asymptotic perturbation approach is used to determine the velocity potential. This formulation can be used in the numerical determination of unsteady potential and thus the unsteady aerodynamic force and moment under various combinations of cascade and flow parameters.

  6. Direct Embedding of Fiber-Optical Load Sensors into Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars; Buggy, Stephen; Olesen, Ib S.;

    Long Period Gratings were embedded into the adhesive utilized in the matrix of a wind turbine blade. The LPGs were subsequently subjected to temperature-testing in order to assess their performance, which illustrates good embedding capabilities....

  7. Long-period gratings for selective monitoring of loads on a wind turbine blade.

    Science.gov (United States)

    Glavind, L; Buggy, S; Canning, J; Gao, S; Cook, K; Luo, Y; Peng, G D; Skipper, B F; Kristensen, M

    2014-06-20

    An optical fiber sensor based on long-period gratings (LPG) for selective measurements of flap- and edge-wise bending of a wind turbine blade is presented. Two consecutive LPGs separated by 40 mm interfere to improve resolution and reduce noise in a D-shaped fiber. The mode profile of the device was characterized experimentally to provide a model describing the mode couplings. The sensor was tested on a wind turbine blade.

  8. Full Scale Test SSP 34m blade, edgewise loading LTT. Extreme load and PoC_InvE Data report

    DEFF Research Database (Denmark)

    Nielsen, Magda; Roczek-Sieradzan, Agnieszka; Jensen, Find Mølholt;

    This report is the second report covering the research and demonstration project “Eksperimentel vingeforskning: Strukturelle mekanismer i nutidens og fremtidens store vinger under kombineret last”, supported by the EUDP program. A 34m wind turbine blade from SSP-Technology A/S has been tested...

  9. A Critical Evaluation of Structural Analysis Tools used for the Design of Large Composite Wind Turbine Rotor Blades under Ultimate and Cycle Loading

    DEFF Research Database (Denmark)

    Lekou, D.J.; Bacharoudis, K. C.; Farinas, A. B.;

    2015-01-01

    properties of the constitutive layers and the aero-elastic loads formed the base by which global and local blade stiffness and strength are evaluated and compared. Static, modal, buckling and fatigue analysis of the blade were performed by each partner using their own tools; fully in-house developed...... or combined with commercially available ones, with its specific structural analysis approach (thin wall theory and finite element models using beam, shell or solid elements) and their preferable analysis type (linear or geometrical non-linear). Along with sectional mass and stiffness properties, the outcome......Rotor blades for 10-20MW wind turbines may exceed 120m. To meet the demanding requirements of the blade design, structural analysis tools have been developed individually and combined with commercial available ones by blade designers. Due to the various available codes, understanding and estimating...

  10. Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Punit; Nestmann, Franz [Institute for Water and River Basin Management (IWG), University of Karlsruhe, Kaiser Str. 12, D 76128 Karlsruhe (Germany)

    2010-09-15

    A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle could be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)

  11. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    Science.gov (United States)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  12. Parameter Survey of Thermally Highly Loaded, Porous and Cooled Multi-Layer Systems for Turbine Blades

    Institute of Scientific and Technical Information of China (English)

    Peng Shan; Dieter Bohn; Jing Ren; N.Surken

    2007-01-01

    This study is an advanced investigation for the cooling of high temperature turbine vanes and blades. The efficient heat exchanging near the surface of a blade may be achieved by forcing a cooling air flow emitting out of a thin layer of the porous metal which is pasted on the structural high strength metal. The contents include the consideration on the computational model of heat transfer through a layer of porous material, the concrete modeling and the analysis of the model, the numerical survey of key parameters for both the two-layer porous materials and the heat transfer fluid flow passing through the model channels. The results revealed that the constructed system is reasonable. Proposed an evaluation formula for the porous material heat transfer efficiency.

  13. Wind-tunnel investigation of the effects of blade tip geometry on the interaction of torsional loads and performance for an articulated helicopter rotor

    Science.gov (United States)

    Yeager, W. T.; Mantay, W. R.

    1981-01-01

    The Langley transonic dynamics tunnel was used to determine the degree of correlation between rotor performance and the dynamic twist generated by changes in blade tip geometry using an articulated rotor with four different tip geometries at advance ratios of 0.20, 0.30 and 0.35. Based on the data obtained, it is concluded that: (1) there appears to be no strong correlation between blade torsion loads and rotor performance prediction; (2) for a given rotor task at each advance ratio investigated, both the azimuthal variation of torsional moment and the mean torsional moment at 81% radius are configuration dependent; (3) reducing the nose down twist on the advancing blade appears to be more important to forward flight performance than increasing the nose down twist on the retreating blade; (4) the rotor inflow model used was important in predicting the performance of the adaptive rotor; and (5) neither rigid blade solidity effects, inflow environment, nor blade torsion loads can be used alone to accurately predict active rotor performance.

  14. Pultrusion of a vertical axis wind turbine blade part-II: combining the manufacturing process simulation with a subsequent loading scenario

    NARCIS (Netherlands)

    Baran, Ismet; Hattel, Jesper H.; Tutum, Cem C.; Akkerman, Remko

    2015-01-01

    This paper in particular deals with the integrated modeling of a pultruded NACA0018 blade profile being a part of EU funded DeepWind project. The manufacturing aspects of the pultrusion process are associated with the preliminary subsequent service loading scenario. A 3D thermo-chemical analysis of

  15. Active control of tiltrotor blade in-plane loads during maneuvers

    Science.gov (United States)

    Miller, David G.; Ham, Norman D.

    1988-01-01

    The origin of one/rev rotor aerodynamic loads which arise in tiltrotor aircraft during airplane-mode high speed pull-up and push-over maneuvers is examined using a coupled rotor/fuselage dynamic simulation. A modified eigenstructure assignment technique is used to design a controller which alleviates the in-plane loads during high pitch rate maneuvers. The controller utilizes rotor cyclic pitch inputs to restructure the aircraft short period and phugoid responses in order to achieve the coupling between pitch rate and rotor flapping responses which minimizes the rotor aerodynamic loading. Realistic time delays in the feedback path are considered during the controller design. Stability robustness in the presence of high frequency modeling errors is ensured through the use of singular value analysis.

  16. Fatigue behaviour of fiberglass wind turbine blade material under variable amplitude loading

    Energy Technology Data Exchange (ETDEWEB)

    Delft, D.R.V. Van; Winkel, G.D. de [Delft Univ. of Technology, STEVIN Lab., Delft (Netherlands); Joosse, P.A. [Stork Product Engineering b.v., Amsterdam (Netherlands)

    1996-09-01

    In the work presented here fatigue tests with the WISPER and WISPERX load sequence have been carried out and analysed. The test programme includes tests at low stress levels which results in fatigue lives of 50 millions of cycles. The results are compared with constant amplitude tests in the very high cycle range, carried out in a previous programme. The results are also compared with ECN results in the lower cycle range (on identical specimens). It appeared, that the difference between the fatigue life of the specimens tested with the WISPER and the WISPERX load sequence is larger than can be expected from the theoretical damage rates. Moreover, the slope of the S-N data differs from theoretical values obtained by using commonly applied design rules. (au)

  17. Effect of bow-type initial imperfection on the buckling load and mass of graphite-epoxy blade-stiffened panels

    Science.gov (United States)

    Stroud, W. J.; Anderson, M. S.; Hennessy, K. W.

    1977-01-01

    A structural synthesis computer code which accounts for first order effects of an initial bow and which can be used for sizing stiffened composite panels having an arbitrary cross section is used to study graphite blade-stiffened panels. The effect of a small initial bow on both the load carrying ability of panels and on the mass of panels designed to carry a specified load is examined. Large reductions in the buckling load caused by a small initial bow emphasize the need for considering a bow when a panel is designed.

  18. Pultrusion of a vertical axis wind turbine blade part-II: combining the manufacturing process simulation with a subsequent loading scenario

    DEFF Research Database (Denmark)

    Baran, Ismet; Hattel, Jesper Henri; Tutum, Cem Celal;

    2015-01-01

    of the pultrusion process is sequentially coupled with a 2D quasi-static mechanical analysis in which the process induced residual stresses and distortions are predicted using the generalized plane stain elements in a commercial finite element software ABAQUS. The temperature- and cure-dependent resin modulus...... is implemented by employing the cure hardening instantaneous linear elastic (CHILE) model in the process simulation. The subsequent bent-in place simulation of the pultruded blade profile is performed taking the residual stresses into account. The integrated numerical simulation tool predicts the internal stress......This paper in particular deals with the integrated modeling of a pultruded NACA0018 blade profile being a part of EU funded DeepWind project. The manufacturing aspects of the pultrusion process are associated with the preliminary subsequent service loading scenario. A 3D thermochemical analysis...

  19. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines

    International Nuclear Information System (INIS)

    Design load simulations for wind turbines are traditionally based on the blade- element-momentum theory (BEM). The BEM approach is derived from a simplified representation of the rotor aerodynamics and several semi-empirical correction models. A more sophisticated approach to account for the complex flow phenomena on wind turbine rotors can be found in the lifting-line free vortex wake method. This approach is based on a more physics based representation, especially for global flow effects. This theory relies on empirical correction models only for the local flow effects, which are associated with the boundary layer of the rotor blades. In this paper the lifting-line free vortex wake method is compared to a state- of-the-art BEM formulation with regard to aerodynamic and aeroelastic load simulations of the 5MW UpWind reference wind turbine. Different aerodynamic load situations as well as standardised design load cases that are sensitive to the aeroelastic modelling are evaluated in detail. This benchmark makes use of the AeroModule developed by ECN, which has been coupled to the multibody simulation code SIMPACK

  20. Blade lock for a rotor disk and rotor blade assembly

    Science.gov (United States)

    Moore, Jerry H. (Inventor)

    1992-01-01

    A rotor disk 18 and rotor blade 26 assembly is disclosed having a blade lock 66 which retains the rotor blade against axial movement in an axially extending blade retention slot 58. Various construction details are developed which shield the dead rim region D.sub.d and shift at least a portion of the loads associated with the locking device from the dead rim. In one detailed embodiment, a projection 68 from the live rim D.sub.1 of the disk 18 is adapted by slots 86 to receive blade locks 66.

  1. Study on testing method of mechanical load of blade root%一种叶根机械载荷测试方法的研究

    Institute of Scientific and Technical Information of China (English)

    邢作霞; 薛田威; 张军阳

    2013-01-01

    A method to measure load of wind turbine blade is introduced. To overcome difficulties of load signals collection, foil strain gauge is introduced to measure the loads of wind turbine blade. The principle of strain gauge is described, the method of choosing gauges and determining measurement point are explained. Wheatstone bridge method is used in the measurement in this paper. The influencing factors are summarized and the methods to reduce interference are developed in the results of blade measurements so as to ensure the accuracy and the reliability of the results.%提出了一种风机叶片应变量的测量方法.在测量过程中,载荷信号的采集难度较大,一旦采集不准确,将直接影响到整个软件系统的分析结果.文章主要讨论了如何利用箔式应变片进行测量的相关问题,阐述了箔式应变片的选择方法以及测点位置的确定方法,介绍了应变片的工作原理,并将惠斯通电桥法引入到叶片载荷测试中.在不同叶片的测量结果的比较中,分析了测量结果的影响因素,并指出了减小测量干扰的方法,提高了测量结果的准确性、可靠性.

  2. Wide bandsaw blade under cutting conditions. Part I: Vibration of a plate moving in its plane while subjected to tangential edge loading

    Science.gov (United States)

    Lengoc, L.; McCallion, H.

    1995-09-01

    The cutting span of a bandsaw blade is modelled as a moving plate and a simple, yet powerful, method is presented for analyzing its vibration when subjected to various in-plane stresses, including stresses due to tangential cutting forces. Time-independent tangential edge-loading couples modes of vibration and can lead to divergent buckling. The effects of transport velocity, "back-crowning" and "prestressing" on the vibration of a moving plate under tangential cutting forces are also investigated. Graphical representations of the modes of vibration are presented.

  3. Individual blade pitch for yaw control

    NARCIS (Netherlands)

    Navalkar, S.T.; Van Wingerden, J.W.; Van Kuik, G.A.M.

    2014-01-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame

  4. Analysis and Calculation of Large Wind Turbine Blades' Load in Three-dimensional Turbulence%大型风力机叶片在三维湍流下的载荷分析与计算

    Institute of Scientific and Technical Information of China (English)

    邓新丽; 孙文磊

    2013-01-01

    风力机叶片载荷的分析和计算是叶片结构设计的重要依据,也是整个机组设计过程中的关键和基础性工作之一.在叶片坐标系下,分析了1.5 MW风力机叶片的主要载荷并介绍了载荷的计算方法;应用Bladed软件将得到的湍流风文件加载到风力机叶片模型上,采用Improved von Karman湍流模型,分析叶片在正常风工况及极端湍流风况下的载荷情况,为叶片的结构设计及强度校核提供参考.%The analysis and calculation of wind turbine blades' load are the major basis of blade structure design, and they are also one of critical and fundamental work in the whole unit design process. In the blades coordinate system, the major blade load of one 1. S MW wind turbine was analyzed, and their calculation method was introduced. By applying software of Bladed for windows, the turbulent wind files were loaded into the model of wind turbine blades, and using the Improved von Karman turbulent model, the load conditions of blades in the normal wind and extreme turbulence conditions were analyzed, which provide references for blades' structure design and intensity exam.

  5. Snubber assembly for turbine blades

    Science.gov (United States)

    Marra, John J

    2013-09-03

    A snubber associated with a rotatable turbine blade in a turbine engine, the turbine blade including a pressure sidewall and a suction sidewall opposed from the pressure wall. The snubber assembly includes a first snubber structure associated with the pressure sidewall of the turbine blade, a second snubber structure associated with the suction sidewall of the turbine blade, and a support structure. The support structure extends through the blade and is rigidly coupled at a first end portion thereof to the first snubber structure and at a second end portion thereof to the second snubber structure. Centrifugal loads exerted by the first and second snubber structures caused by rotation thereof during operation of the engine are at least partially transferred to the support structure, such that centrifugal loads exerted on the pressure and suctions sidewalls of the turbine blade by the first and second snubber structures are reduced.

  6. MW级风机叶片静力加载系统设计与研究%Design of MW Blade Static Loading System

    Institute of Scientific and Technical Information of China (English)

    张磊安; 乌建中; 王伟达

    2011-01-01

    In order to meet the demand of static loading testing of MW-class wind turbine blades, a distributed multi-node hydraulic loading system based on CAN bus is designed, which does not adopt the widely used semi-automatie loading mode. Due to the large and irregular bending deformation of blades during static loading, the hydraulic winch is adopted as traction output device, and the variable traction feature is analyzed. To improve the precision of traction and the trucking performance of loading system, the "V - F" control mode is adopted, which adjusts the constant speed valve to ensure the traction of all nodes. The loading procedure is divided into sever-al stages and the variable proportional-integral control algorithm with amplitude limit is proposed. The adaptive ability of the system is greatly enhanced. Experiments show that the experiment equipment makes the automatization of statir loading testing of wind turbine blades grcatly improving. Every node has the good coordination feature in loading procedure. Also, its traction error is less than ±2 kN, and fully meets the requirements of static loading testing.%为了满足MW级风机叶片静力加载试验的要求,改变国内普遍采用的半自动加载模式,设计了一套基于CAN总线的分布式多节点液压静力加载试验台.叶片在静力加载过程中弯曲极大且不规则,采用液压绞车作为牵引力输出设备,并分析了加载过程中的变牵引特性;为了提高加载过程中的牵引力精度及跟随性能,采用“V—F”的控制模式,通过比例调速阀的开口度来满足各加载节点的输出牵引力;将加载过程分成几个阶段,并采用限幅变比例积分分离控制算法,增强了系统的自适应能力.试验证明,该试验台使风机叶片静力加载试验的自动化程度大大提高,各节点在加载过程中具有良好的协调性能,牵引力误差小于±2 kN,完全满足叶片静力加载试验的要求.

  7. 载荷分布规律对混流泵叶轮设计的影响%Influences of blade loading distribution law on design of mixed-flow pump impeller

    Institute of Scientific and Technical Information of China (English)

    常书平; 王永生; 靳栓宝; 苏永生

    2013-01-01

    Based on three-dimensional inverse design theory, the meridional gradient of circulation vur was adopted as control parameter of blade loading distributions. Two parabolic curves were proposed to describe blade loading distributions along meridional streamlines. In order to analyze influences of blade loading distributions on design of mixed-flow pump impellers, three impellers respectively with fore-loaded, mid-loaded and aft-loaded blade loading distributions were designed. Based on the RANS equations, SST turbulence model and multiple-reference-frame model, flow fields of the impellers were simulated and the impeller performances and blade surface pressure distributions were analyzed. The results show that it's practicable to apply two parabolic curves to describe blade loading distributions. Three-dimensional inverse design theory with adjustable blade loading distributions can effectively control pressure distributions on blade surfaces. As the location of blade loading peak approaches leading edges, impellers performances of head, power and efficiency all increase. At the design flow rate, differences of head, power and efficiency between fore-loaded impellers and aft-loaded impellers are 18.3% , 16.4% and 2.01% respectively. With different loading distributions, differences of three impeller performances are gradually obvious as flow rate increases.%基于三元反设计理论,将环量vur沿轴面流线的变化梯度作为载荷分布的控制参数,采用两段抛物线来描述载荷沿轴面流线的分布规律.为了分析载荷分布规律对混流泵叶轮设计结果的影响,建立了“前载型”、“中载型”和“后载型”3种混流泵叶轮.基于雷诺时均的Navier-Stokes方程、SST湍流模型和多参考坐标系模型对3种叶轮内流场进行数值模拟,对叶轮的能量性能和叶片表面压力分布进行分析.结果表明:采用两段抛物线表示载荷沿轴面流线的分布规律是合理的,基于载荷分布

  8. The strength of glued-in bolts after 9 years in situ loading. An investigation of fatigue loaded glued-in bolts from the blade-to-hub connection of the Nibe Windmill-B

    Energy Technology Data Exchange (ETDEWEB)

    Uhre Pedersen, M.; Clorius, C.O.

    1995-07-01

    In 1993 one of the three 2.5 t blades from the 20 m radius rotor of the Nibe-B windmill was struck by lightning and subsequently dismounted. The blades had a solid leading edge of glulam and each blade was connected to the hub by 28 glued-in bolts arranged circumferentially in the root section. The mishap offered a unique opportunity to investigate the residual strength of the glued-in bolts after 9 years of oscillating load including a total of 5.0 10{sup 7} cycles. The bolts investigated have a hollow tapering. This geometry was developed at the Department of Structural Engineering and has been reported to give a 20% higher load bearing capacity than similar solid bolts. The holes in the glulam were 2 mm oversized and an epoxy glue was used to bond the shot blasted bolts to the glulam. A test specimen was cut from the root section of one blade. This produced a 0.8 m high solid glulam cylinder with a diameter of 0.86 m containing the 28 glued-in bolts. A 500 kN servo hydraulic double acting actuator delivered the pull-out force at the circumferential position of the bolts, and a hydraulic press delivered a counter force at the centre of the test specimen. The displacement of the actuator piston was used to control the pull-out tests. The time from test start to bolt failure was approximately 4 minutes. A total of 11 bolts were pulled out between undamaged bolts. The mean strength of these bolts was found to be 362 kN with a standard deviation of 37 kN. When comparing this mean residual strength with previously recorded test data a 5% strength reduction was observed. The force displacement curves showed no plastic capacity in the connections. A displacement between 0.4 mm and 1.0 mm was observed at fracture. The bolts pulled out between failed bolts showed a surprisingly high mean residual strength of 304 kN. (EG) 14 refs.

  9. 定向凝固涡轮叶片高温低周疲劳的破坏特点%Failure Characteristics of Directional Solidification Turbine Blade Under High Temperature Low Cycle Fatigue Load

    Institute of Scientific and Technical Information of China (English)

    孙瑞杰; 闫晓军; 聂景旭

    2011-01-01

    针对几何形状完全相同但材料不同的两种涡轮叶片,采用相同的试验方法进行高温低周疲劳试验,普通铸造K403合金叶片和定向凝固DZ22B合金叶片却在不同的部位破坏,K403合金叶片在试验考核的榫齿部位断裂,而DZ22B合金叶片的榫齿在叶身根部断裂前均未出现裂纹.为了解释上述试验结果,展开了两类叶片试验条件应力场的有限元分析和定向凝同叶片晶粒形貌的数值模拟.研究结果表明:相同几何结构的普通铸造叶片和定向凝固叶片,其应力分布趋势相似,应力峰值均出现在叶片第一榫齿处;定向凝固叶片的失效模式与普通铸造叶片不同,其破坏不仅与应力场分布有关,而且受叶片各部位的晶粒形貌影响,叶片的失效不一定发生在应力最大的部位.%Under high temperature Iow cycle fatigue (LOF) loads, directional solidification (DS) turbine blades present quite different failure features as compared with equiaxed (EQ) turbine blades with identical geometry and similar stress distribution. All the EQ blade specimens fractured in the key section located at the serration part of the blade. However, this part of the DS blade specimens exhibited no microcrack before the fracture in the root of the blade body. Obviously, the damage characteristic of the DS blade is different from that of the conventional EQ blade, which fractures at the highest stress point. Further theoretical investigation indicates that grain structure of the DS blade has a significant impact on both the properties of the material and its subsequent load capacity. For the DS blade, the LCF damage is not only related to its stress field, but also affected by the microstructure of various parts.

  10. Aerodynamic Load Calculation and Blade Deflection Analysis for Horizontal Axis Wind Turbine%水平轴风力机叶片气动载荷计算和偏移分析

    Institute of Scientific and Technical Information of China (English)

    张少帅; 王璋奇; 孔屹刚; 陈建华; 温和煦; 牛硕丰

    2011-01-01

    In order to master the blade deflection regularity of wind turbine under the various wind speeds, and find out the pitch-control impact on blade deflection, this paper studies the aerodynamic load calculation method of wind turbine, taking into account balde tip and root loss, and summarizing a more comprehensive and accurate calculation process. Based on Bladed software, 2 MW three-blade horizontal axis wind turbine model is established, whereby this research calculates the edgewise ( the direction of parallel to the wind wheel plane) load and flapwise ( the direction of perpendicular to the wind wheel plane) load under steady load, as well as the deflections on edgewise direction and flapwise direction. Calculation results show that the aerodynamic loads lead to obvious blade deflection.%为掌握风力机叶片在不同风速下的偏移规律,了解变桨对叶片偏移的影响,研究了风力机气动载荷的计算方法,并充分考虑叶片稍部损失和根部损失,总结出一种较为完整精确的计算步骤。基于Bladed软件,建立2MW水平轴三叶片风力机模型,并以此为例,计算了稳态下的摆振(即平行于风轮平面的方向)载荷和挥舞(即垂直于风轮平面的方向)载荷,并对摆振方向和挥舞方向的偏移进行计算和分析,表明气动载荷使叶片产生明显的偏移现象。

  11. Comparison of calculated and measured blade loads on a full-scale tilting proprotor in a wind tunnel

    Science.gov (United States)

    Johnson, W.

    1980-01-01

    The loads measured in a wind tunnel on a full-scale tilting proprotor are compared with calculated results. The data consists primarily of oscillatory beamwise bending moments at 35% radial station, oscillatory spindle chord bending moments, and oscillatory pitch link loads. The measured and calculated results as a function of thrust are compared over a range of nacelle angles from 0 to 75 deg, and a range of speeds from 80 to 185 knots.

  12. Research on Fatigue Loading Integrated Test System for Wind Turbine Blade%风电机组叶片疲劳加载综合测试系统

    Institute of Scientific and Technical Information of China (English)

    廖高华; 乐韵斐; 周文

    2015-01-01

    利用LabVIEW研制了风电叶片疲劳加载综合测试系统,包括数据采集显示、数据存储和通信控制等功能。采用激光传感器测距,虚拟仪器软件采集数据处理,PLC趋势二分法搜索频率,执行相关程序算法对频率跟踪、输出控制,完成叶片疲劳加载测试过程。试验结果表明:使用图形化软件编程,数据处理功能强大,操作简便,检测效率得到很大提高,降低了设备成本,为风电叶片检测与分析提供一种的实用手段。%A fatigue loading test system for wind turbine blade using virtual instrument software LabVIEW was developed suc-cessfully, including the function of data acquisition and display, data storage and communication control.The laser sensor was used to measure the distance, and the virtual instrument software was used to collect the data.The frequency was searched with PLC trend dichotomy.Frequency tracking and output control were realized by implementing related procedure algorithm, thus the fatigue test process was finished.The experimental results show that the system is powerful in data processing and simple to operate by using the graphical programming software, the detection efficiency is greatly improved and the equipment cost was reduced, thus providing a practical way for the test and analysis of wind turbine blade.

  13. 变风速下风力机叶片载荷特性研究%Study on the Characteristics of Blade Load of Wind Turbine under Variable Wind

    Institute of Scientific and Technical Information of China (English)

    张浬萍; 郭刚

    2011-01-01

    Based on the aerodynamic theory of wind turbine, the aerodynamic loads calculation model of wind turbine blade was established according to wind shear, wind turbine structure and geometric parameters. Variable speed model was established based on the basic wind speed, the gradient wind speed, gustiness and fluctuating wind and applied to calculation model to count the speed aerodynamic load of blade under varying wind speed. Taking a MW wind power generator as an example, the numerical simulation of wind turbine have been worked out. The results show that, firsty, the aerodynamic loads of wind turbine are mainly located in the middle and tip of blade, and the load ups and downs with wind speed, but the change of aerodynamic loads of blade root is not obvious. Secondly, the load fluctuations of blade is more significant when the wind speed is high. The research contents of the paper provide loading conditions for structural design and dynamics analysis of blade.%根据风力机的气动理论,并考虑风切变和风力机结构、几何参数的影响,建立了风力机叶片的气动载荷计算模型.以基本风速、渐变风速、阵风风速和脉动风速4种风速类型建立了变风速模型,并应用于叶片载荷计算模型,实现变风速下的叶片气动载荷的计算.以某MW级风力机为对象,给出了数值计算流程并进行了实例计算,结果显示:风力机叶片的气动载荷主要分布在叶片的中段和叶尖,且载荷大小随风速起伏变化,叶根的气动载荷随风速变化的趋势不明显,风速较大时,叶片上的载荷波动较为显著.结果可为叶片的结构设计和动力学分析提供参考.

  14. Active Aerodynamic Blade Distributed Flap Control Design Procedure for Load Reduction on the UpWind 5MW Wind Turbine

    NARCIS (Netherlands)

    Wilson, D.G.; Resor, B.R.; Berg, D.E.; Barlas, T.K.; Van Kuik, G.A.M.

    2010-01-01

    This paper develops a system identification approach and procedure that is employed for distributed control system design for large wind turbine load reduction applications. The primary goal of the study is to identify the process that can be used with multiple sensor inputs of varying types (such a

  15. A Critical Evaluation of Structural Analysis Tools used for the Design of Large Composite Wind Turbine Rotor Blades under Ultimate and Cycle Loading

    OpenAIRE

    Lekou, D.J.; Bacharoudis, K. C.; Farinas, A. B.; Branner, Kim; Berring, Peter; CROCE, A.; Philippidis, T.P.; De Winkel, G.D.

    2015-01-01

    Rotor blades for 10-20MW wind turbines may exceed 120m. To meet the demanding requirements of the blade design, structural analysis tools have been developed individually and combined with commercial available ones by blade designers. Due to the various available codes, understanding and estimating the uncertainty introduced in the design calculations by using these tools is needed to allow assessment of the effectiveness of any future design modification. For quantifying the introduced uncer...

  16. Forces and Moments on Flat Plates of Small Aspect Ratio with Application to PV Wind Loads and Small Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Xavier Ortiz

    2015-03-01

    Full Text Available To improve knowledge of the wind loads on photovoltaic structures mounted on flat roofs at the high angles required in high latitudes, and to study starting flow on low aspect ratio wind turbine blades, a series of wind tunnel tests were undertaken. Thin flat plates of aspect ratios between 0.4 and 9.0 were mounted on a sensitive three-component instantaneous force and moment sensor. The Reynolds numbers varied from 6 × 104 to 2 × 105. Measurements were made for angles of attack between 0° and 90° both in the free stream and in wall proximity with increased turbulence and mean shear. The ratio of drag to lift closely follows the inverse tangent of the angle of incidence for virtually all measurements. This implies that the forces of interest are due largely to the instantaneous pressure distribution around the plate and are not significantly influenced by shear stresses. The instantaneous forces appear most complex for the smaller aspect ratios but the intensity of the normal force fluctuations is between 10% and 20% in the free-steam but can exceed 30% near the wall. As the wind tunnel floor is approached, the lift and drag reduce with increasing aspect ratio, and there is a reduction in the high frequency components of the forces. It is shown that the centre of pressure is closer to the centre of the plates than the quarter-chord position for nearly all cases.

  17. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hughes, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paquette, J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  18. Preliminary blade design using integrated computer codes

    Science.gov (United States)

    Ryan, Arve

    1988-12-01

    Loads on the root of a horizontal axis wind turbine (HAWT) rotor blade were analyzed. A design solution for the root area is presented. The loads on the blades are given by different load cases that are specified. To get a clear picture of the influence of different parameters, the whole blade is designed from scratch. This is only a preliminary design study and the blade should not be looked upon as a construction reference. The use of computer programs for the design and optimization is extensive. After the external geometry is set and the aerodynamic loads calculated, parameters like design stresses and laminate thicknesses are run through the available programs, and a blade design optimized on basis of facts and estimates used is shown.

  19. Simulation of Flexible Mechanisms in a Rotating Blade for Smart-Blade Applications

    OpenAIRE

    Paternoster, A.R.A.; Loendersloot, R.; Boer; Akkerman, R.

    2012-01-01

    The active Gurney flap technology is investigated to improve the performance of rotorblades by allowing helicopter blades to further control the lift unbalance that rises at high speed and by damping vibration loads on the rotor hub. This technology needs validation by wind tunnel testing of a scaled model blade under rotational loading. An optimised geometry of a flexible actuation system has been designed to provide motion for the deployment of the Gurney flap for a Mach-scale model blade [...

  20. Research of Aerodynamic Performance of Turbine Blade with Different Loading Distribution at Wind Range Incidence%宽广攻角范围内不同加载形式涡轮气动性能研究

    Institute of Scientific and Technical Information of China (English)

    白涛

    2016-01-01

    攻角和负荷分布形式的变化必然会导致涡轮叶片边界层结构的改变,从而影响涡轮的损失特性。本文通过设计负荷能力相同而负荷分布形式不同的3种叶型分析在宽广的攻角范围内,负荷分布对涡轮叶型边界层发展的影响规律。研究结果表明:前加载和均匀加载叶型在宽广的攻角范围内表现较低的损失特性,尤其是在负攻角范围内;后加载叶型的设计使得边界层提前转捩,气动损失较大。%The boundary layer structure would be changed because of varies of incidence and loading distribution,so the loss property will be varied. The effect law of loading distribution on boundary layer development at wide range incidence was studied through design three turbine blades with different load distribution but same load level. The research indicates that:the aerodynamic loss is at low level for front and middle loaded turbine blade at wind range incidence especially for negative incidence,while the aerodynamic loss of aft loaded blade is high because of the advanced boundary layer transition.

  1. FEM SIMULATION OF DISTRIBUTED FORCE FUNCTION LOADING APPLIED ON WIND TURBINE BLADE%风力机叶片分布力函数加载方式有限元分析

    Institute of Scientific and Technical Information of China (English)

    李慧; 王同光

    2013-01-01

    在复合材料风力机叶片有限元模型的基础上,给出一种新型的分布力函数加载方法,沿叶片展向将各截面的挥舞集中力和摆振集中力转化为叶片展长不同位置的分布力函数,同时考虑翼型的压力分布特性将弦向的单点集中力转化为分布力函数,从而将叶片展向分布力和弦向分布力加载于叶片有限元模型的外壳轮廓面上.通过有限元分析分布力函数加载方式下的叶片挠度、静强度和稳定性,与叶片各截面的集中力载荷通过多点约束的加载方式作用于叶片节点上的结构特性相比较,结果表明,采用分布力函数表达式加载能真实模拟叶片的受力特性,为叶片结构设计和结构校核提供了一种新的加载方法.%Based on the FEM model of composite wind turbine blade, a novel loading-distributed force function was proposed. The flapwise concentrated force and edgewise concentrated force on the blade sections were transferred to the distributed forces along the span, and concentration load on the chord were also transferred to the distributed force by considering the pressure distribution over the airfoil. Both of the distributed forces on the blade span and section chord were applied on the outline of the FEM model. The deflection, strength and stability of the blade due to the distributed forces were analyzed and compared with the results from traditional multi-point constraint concentration loading by the FEM computation, demonstrating that this novel loading way can make a better match of practical load-carrying capability in terms of structural property. It provides an efficient way for blade structural design and check.

  2. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...... the fatigue loads, the rotor, blades and tower moments are presented. The fatigue loads are evaluated using rainflow counting described in detail in Ref. [1]. The 1Hz equivalent load ranges are calculated at different wind speeds. All information regarding the instrumentation is collected in [ref 4] and [ref...

  3. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  4. Investigation of guide blade vibrations induced by transient loads with flow indentations in the wake. DMS multistage axial compressor; Erfassen der Schwingungsanregung der Leitschaufeln bedingt durch die instationaere Beaufschlagung mit Nachlaufdellen. DMS Mehrstufiger Axialverdichter

    Energy Technology Data Exchange (ETDEWEB)

    Theobald, K. [RWTH Aachen (Germany). Inst. fuer Strahlenantriebe und Turboarbeitsmaschinen; Michel, A. [MTU Aero Engines GmbH, Muenchen (Germany)

    2003-07-01

    For investigating 3D flow phenomena in turbomachinery, a 3.5-stage axial compressor with CDA blading was constructed at the Institute of Jet Propulsion Systems and Turbo-Engines, and vibrations in the guide blades were investigated on selected guide blades of all four guide wheels on which semiconductor straing gauges had been attached in positions calculated according to a NASTRAN calculation. The data provided by the strain gauges were recorded digitally. The harmonics of the rotor wheels were clearly identified as the main influencing factors of guide blade vibration. The effects of flow indentations in the wake was more pronounced than the effects of potential-theoretic flow effects. The vibration characteristics of the guide blades are first of all determined by the rotational speed of the compressor; the throttle state has hardly any effect. Within one guide blade row, differences in their intrinsic frequencies were observed. As the measuring system had not been calibrated, mechanical stress in the strain gauges and material stress in the blades were estimated only, using the known basic equations and assuming worst case. The estimates showed that the values are safely below the limiting load. (orig.) [German] Zur Untersuchung der dreidimensionalen Stroemungsvorgaenge in Turbomaschinen wurde am Institut fuer Strahlantriebe und Turboarbeitsmaschinen ein 3,5 stufiger Axialverdichter mit CDA-Beschaufelung aufgebaut. Anliegen des hier vorgestellten Kurzprojektes war die schwingungsmechanische Untersuchung der Leitschaufeln der Maschine. Dazu wurden ausgewaehlte Leitschaufeln aus allen vier Leitraedern mit Halbleiter-Dehnungsmessstreifen bestueckt. Die HL-DMS wurden an durch eine NASTRAN-Rechnung ermittelte Positionen auf die Schaufeln geklebt. Die gemessenen Spannungen der DMS wurden nach Verstaerkung mit einem digitalen Bandgeraet aufgezeichnet. Die Harmonischen der Laufraeder zeichneten sich klar als der Haupteinflussfaktor fuer die Schwingungen der

  5. Optimization of the hydraulic pre formance of a centrifugal pump impeller based on the blade load distribution%基于叶片载荷分布的离心泵叶轮水力性能优化

    Institute of Scientific and Technical Information of China (English)

    江伟; 李国君; 张新盛

    2015-01-01

    The load distribution of a blade is the key parameter of the 3-D inverse design method.In order to analyze the influence of the load distribution of blade on the hydraulic and cavitation performance of the impeller of centrifu-gal pump, the software CFX is used to simulate internal flow field of three impellers of centrifugal pump with different blade load distributions, i.e.impeller a, impeller b and impeller c.Analysis results showed that different blade load distributions have great influence on the hydraulic and cavitation performance of the centrifugal pump.The impeller has a better external characteristic performance and the maximum static pressure at the inlet of the suction face of blade.The impeller b has the best external characteristic performance, but the static pressure at the inlet of the suc-tion face of blade is the minimum.Therefore, under the conditions of considering both the impeller efficiency and cavitation performance of the impeller of centrifugal pump, the impeller has the optimum load distribution, i.e.the external characteristic and cavitation are the best.On the basis of the optimum load, the load distribution is optimized again and the load distribution of the impeller a-3 has better hydraulic and cavitation performance.The results provid-ed a reference for 3-D inverse design of impeller in a centrifugal pump.%载荷分布是三元反问题设计中的关键参数,为分析叶片载荷分布规律对离心泵叶轮水力性能和气蚀性能的影响,采用软件CFX对叶轮a、b和c 3种不同叶片载荷方式的离心泵叶轮内流场进行数值模拟。由分析结果可知:不同叶片载荷对离心泵叶轮外特性存在较大影响,外特性性能最好的是叶轮b,但其吸力面进口处静压值最小,外特性性能其次的为叶轮a,其吸力面进口处静压值最大,所以在兼顾离心泵叶轮效率与气蚀性能的条件下,优化出最佳载荷分布方式为叶轮a,即外特性和气蚀

  6. Development of smart blade technology - trailing edge flaps

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge

    2014-01-01

    With blade lengths presently up to 80+ m there is a need for a supplement to the standard pitch system for control of power and loads. Distributed load control along the blade span with trailing edge flaps is a promising concept where numerical simulations have shown considerable load alleviation...

  7. Aerodynamic Load Calculation and Blade Deflections Analysis for Horizontal Axis Wind Turbine%基于三维风模型的风力机叶片载荷计算和偏移分析

    Institute of Scientific and Technical Information of China (English)

    张少帅; 高桃桃; 顾兆丹; 程颖

    2012-01-01

    研究了风剪切、塔影效应和湍流影响下的叶片有效风速模型和气动载荷的计算方法.并以额定功率为2 MW水平轴三叶片风力机为例,应用Bladed软件,分别在考虑风剪切、塔影效应和考虑风剪切、塔影效应、风湍流2种情况下,对叶素挥舞方向(即垂直于风轮平面的方向)的风速分量、摆振方向(即平行于风轮平面的方向)的风速分量,相对风速,摆振载荷和挥舞载荷,以及叶尖在摆振和挥舞方向的偏移进行计算和仿真分析.%This paper studied the effective wind speed models and the aerodynamic load calculation method considering the impact of wind shear,tower shadow and turbulence. Based on Bladed software, established 2 MW three - blade horizontal axis wind turbine model, and as an example, calculated and analyze the wind speed components on edgewise (the direction of parallel to the wind wheel plane) direction and flapwise (the direction of perpendicular to the wind wheel plane) direction, the relative wind speed, edgewise load and flapwise load,the deflection of blade on edgewise direction and flapwise direction.

  8. Design and Analysis of Composite Propeller Blade for Aircraft

    OpenAIRE

    Madhusudhan BM; Dr P.V Srihari

    2014-01-01

    Fiber reinforced composites is used for twin blade propeller because of its high strength, low temperature applications. Fiber has to be oriented in the loading direction while designing the composite propeller blade. The blade geometry and design are more complex involving many controlling parameters. In the present work a methodology to design a composite propeller to analyze its strength and deformation using ANSYS software. The weight of the composite blade is reduced comp...

  9. Load Measurements

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regardi...

  10. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...

  11. Cavitation flow and blade loading characteristic in impeller tip region of axial flow pump%轴流泵叶顶区的空化流场与叶片载荷分布特性

    Institute of Scientific and Technical Information of China (English)

    张德胜; 潘大志; 施卫东; 邵佩佩; 王海宇; 李通通

    2014-01-01

    针对轴流泵叶顶区空化流气液混合区域密度变化,以SST k-ω湍流模型为基础,对湍流黏度项进行了修正。基于输运方程的完全空化模型对轴流泵NPSH曲线、空化特性及其叶片载荷进行了数值模拟和分析,并与实验结果进行了对比。研究结果表明,修正的SST k-ω湍流模型和空化模型较准确地预测了叶顶区空化流,临界空化数预测误差为7.79%。通过高速摄影实验观测到轴流泵的初生空化为刮起涡空化、间隙附着空化和涡带区空化,空化区域也随着空化数的降低而不断扩大,直至在叶片后缘脱落和爆破,爆破位置也不断向叶片中部移动;叶片吸力面的低压区主要集中在叶顶翼型间隔角为-13°~+13°的区域;在叶轮叶顶间隙的3%区域,随着半径系数增大,叶片压力面压力逐渐减小,叶片载荷不断降低,且越接近间隙边缘,叶片载荷降低越明显,从机理上找到了空化诱导轴流泵性能下降的原因。%In order to take into account the local density of gas-liquid mixing area in cavitation flow field in impeller tip region of axial flow pump, the turbulent viscosity term in SST k-ωturbulence mode was corrected. NPSH curves, cavitation characteristic and blade loading were analyzed based on full cavitation model with simulation and experimental methods. The investigation results show that the modified SST k-ωturbulence model and cavitation model can predict the cavitation flow field with gas-liquid two-phase flow in the impeller tip region, and the relative error of the critical cavitation number between experimental and predicted values is 7.79%under design conditions, which is satisfactory for the computational accuracy. The high speed phohography experiments show that the cavitation inception is induced by blowing cavitation, clearance attached cavitation and tip leakage vortex cavitation, and the cavitation region continually spreads

  12. Smart helicopter rotor with active blade tips

    Science.gov (United States)

    Bernhard, Andreas Paul Friedrich

    2000-10-01

    control algorithm. Effective background vibration reduction of an intentional 1/rev hover imbalance was demonstrated. The control algorithm also showed the capability to generate desired multi-frequency control loads on the hub, based on artificial signal injection into the vibration measurement. The research program demonstrates the technical feasibility of the active blade tip concept for vibration reduction and warrants further investigation in terms of closed loop forward flight tests in the windtunnel and full scale design studies.

  13. Test evaluation of a laminated wood wind turbine blade concept

    Science.gov (United States)

    Faddoul, J. R.

    1981-01-01

    A series of tests conducted on a root end section of a laminated wood wind turbine blade are reported. The blade to hub transition of the wood blade uses steel studs cast into the wood D spar with a filled epoxy. Both individual studs and a full scale, short length, root section were tested. Results indicate that the bonded stud concept is more than adequate for both the 30 year life fatigue loads and for the high wind or hurricane gust loads.

  14. 涡轮叶片复合疲劳特性曲线及其规律的试验%Experimental study on fatigue curve law of turbine blade under combined high and low cycle loading

    Institute of Scientific and Technical Information of China (English)

    闫晓军; 孙瑞杰; 邓瑛; 刘芝娜; 聂景旭

    2011-01-01

    为了解高周振动载荷对于涡轮叶片高温疲劳性能的影响,对某型涡轮叶片进行高低周复合疲劳试验.试验结果表明,在低周载荷基础上叠加高频振动载荷,显著缩短了叶片的疲劳寿命;复合疲劳的分散性很大,且不存在疲劳极限,当叶片高周循环次数超过10^7时,继续试验叶片仍会发生断裂;在双对数坐标下,叶片的振动应力与其高周循环寿命成线性关系,即复合疲劳特性曲线(应力-寿命曲线、概率应力-寿命曲线)服从双对数线性规律,进一步研究发现该规律对于高温合金材料的复合疲劳特性曲线具有普遍性.%The effect of the high cycle vibration load on the high-temperature fatigue properties of the turbine blade were addressed. Combined high and low cycle fatigue tests were carried out on several blade specimens. The results show that the superposition of high-frequency vibration on low-cycle load can significantly reduce the fatigue life of the blade. It is noteworthy that combined high and low cycle fatigue has two features: great dispersion and no fatigue limit. The former is exhibited by much broader life range than the low cycle fatigue (LCF) test, and the latter indicated by fracture of the blades over 107 high cycles (which is considered as the life limit of the metal materials for the invariable-amplitude fatigue). In addition, the fatigue data suggest a double logarithmic linear relationship between vibration stress level and the combined fatigue life. Further research has found that the law for superalloys operates universally .

  15. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades. Advances......Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades...

  16. New morphing blade section designs and structural solutions for smart blades

    DEFF Research Database (Denmark)

    Karakalas, Anargyros A.; Machairas, Theodore; Solomou, Alexandros;

    2015-01-01

    the efforts performed within Task 2.2 “Lightweight structural design” of INNWIND.Eu work-package WP2 “Lightweight Rotor” regarding the structural solutions necessary to accommodate the requirements of smart blades developed within work-package WP2 Task 2.3 “Active and passive loads control and alleviation...... (smart blades) design”. The research performed within Task 2.2 and reported herein does not cover investigations for the complete set of design requirements of smart blades, such as aerodynamic control surface size. Rather it focuses on answers relevant to integration within the blade structure, i.......e. no loss of local/global stiffness or strength and/or fatigue life. The purpose is to report efforts towards the use of new morphing blade section designs and the structural solutions for smart blades (developed in Task 2.3). The objective is to define, assess and demonstrate innovative concepts...

  17. Control of LP turbine rotor blade underloading using stator blade compound lean at root

    Science.gov (United States)

    Lampart, Piotr

    2000-06-01

    Due to a large gradient of reaction, LP rotor blades remain underloaded at the root over some range of volumetric flow rates. An interesting design to control the flow through the root passage of the overloaded stator and underloaded moving blade row is compound lean at the root of stator blades. The paper describes results of numerical investigations from a 3D NS solver FlowER conducted for several configurations of stator blade compound lean. The computations are carried out for a wide range of volumetric flow rates, accounting for the nominal operating regime as well as low and high load. It is found that compound lean induces additional blade force, streamwise curvature and redistribution of flow parameters in the stage, including pressure and mass flow rate spanwise that can improve the flow conditions in both the stator and the rotor. The obtained efficiency improvements depend greatly on the flow regime, with the highest gains in the region of low load.

  18. RESEARCH ON FATIGUE NUMERICAL CALCULATION METHOD OF WIND TURBINE BLADE UNDER GRAVITY LOAD%重力载荷下风电叶片疲劳数值计算方法研究

    Institute of Scientific and Technical Information of China (English)

    石可重; 赵晓路; 徐建中

    2013-01-01

    针对风电叶片疲劳数值计算方法进行研究.依据风电叶片结构与载荷特点,分别从结构强度、材料疲劳性能,损伤累计理论等方面展开探讨.基于结构非线性瞬态动力学有限元数值分析,结合Besquin方程所建立的S-N(单轴应力-循环次数)寿命曲线及Miner损伤累计理论,建立了一套开展结构寿命及损伤分析的计算方法.利用该方法,以1.5MW风电叶片为例,计算重力载荷作用下的疲劳损伤情况,并对Besquin方程中系数选取对计算结果的影响予以分析.%The fatigue numerical calculation method of wind blade was studied. Accoding to structure property and load property, the structure intensity, material fatigue parameter and damage cumulation rule were discused. The blade fatigue calculation method was set up, including nonlinear dynamic analysis based FEM, Besquin S-N equation , and Miner rule. The fatigue analysis of one 1. 5 MW horizontal axis wind blade was carried out by the method, and the effect of coefficient of Besquin equation was studied.

  19. BLADED IMPELLER FOR TURBOBLOWERS

    Science.gov (United States)

    Baumann, K.

    1949-10-01

    A means is given of holding open-sided impeller blades in a turbo-rotor. Two half blades, with dovetail roots of sufficient weight to contain the center of gravity, are fitted into slots cut in the rotor so as to form the desired angle between the blade faces. The adjoining edges of the half blades are welded to form one solid blade that is securely locked an the rotor. This design permits the manufacture of a V shaped impeller blade without the need of machining the entire V shaped contour from a single blank, and furthermore provides excellent locking characteristics for attachment to the rotor.

  20. Growian rotor blades: Production development, construction and test

    Science.gov (United States)

    Thiele, H. M.

    1984-01-01

    Development and construction of three 50 m rotor blades for a 3 MW wind turbine are described. A hybrid concept was chosen, i.e., a load carrying inflexible steel spar and a glass fiber reinforced plastic skin. A test blade was constructed and static loading tests, dynamic vibration tests and fatigue tests on critical welds as well as at the connection between spar and blade skin were performed. All test results show good accordance with calculated values, and were taken into consideration during the construction of two rotor blades.

  1. Effects of splitter blades on the flows and characteristics in centrifugal impellers

    Science.gov (United States)

    Miyamoto, Hiroyuki; Nakashima, Yukitoshi; Ohba, Hideki

    1992-05-01

    A five-flow pressure probe was used to perform flow measurements in an unshrouded impeller and in a shrouded impeller with splitter blades. The effect of the splitter blade on passage flow and impeller performance was analyzed by comparing the results with those of impellers without splitter blades. It is found that, in impellers with splitter blades, the blade loadings tend to become smaller, and the absolute circumferential velocities and total pressures become considerably larger than those in impellers without splitter blades. It is noted that the splitter blade effect on static pressure differs between the unshrouded and shrouded impellers.

  2. Analysis on Stall of Double Stage Adjustable-blade AXial Flow Induced Draft Fan in High-load Operation%双级动叶可调式轴流引风机高负荷失速分析

    Institute of Scientific and Technical Information of China (English)

    王军民

    2016-01-01

    Through the elaboration on the mechanism of axial flow fan stall and in combination with double stage adjustable-blade axial flow induced draft fan stall in actual production of a power plant, the paper ana-lyzes the deep-seated causes of the stall and thus puts forward the principle of stall handling of induced draft fan in high load and effective measures for install prevention.%通过阐述轴流通风机失速的机理,结合某发电厂实际生产中双级动叶可调式轴流引风机失速的现象,分析发生失速的深层次原因,提出机组高负荷下处理引风机失速异常的原则以及防止失速的有效措施。

  3. Blade system design studies volume II : preliminary blade designs and recommended test matrix.

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Dayton A. (Global Energy Concepts, LLC, Kirkland, WA)

    2004-06-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts, LLC is performing a Blade System Design Study (BSDS) concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The BSDS Volume I project report addresses issues and constraints identified to scaling conventional blade designs to the megawatt size range, and evaluated candidate materials, manufacturing and design innovations for overcoming and improving large blade economics. The current report (Volume II), presents additional discussion of materials and manufacturing issues for large blades, including a summary of current trends in commercial blade manufacturing. Specifications are then developed to guide the preliminary design of MW-scale blades. Using preliminary design calculations for a 3.0 MW blade, parametric analyses are performed to quantify the potential benefits in stiffness and decreased gravity loading by replacement of a baseline fiberglass spar with carbon-fiberglass hybrid material. Complete preliminary designs are then presented for 3.0 MW and 5.0 MW blades that incorporate fiberglass-to-carbon transitions at mid-span. Based on analysis of these designs, technical issues are identified and discussed. Finally, recommendations are made for composites testing under Part I1 of the BSDS, and the initial planned test matrix for that program is presented.

  4. Innovative design approaches for large wind turbine blades : final report.

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    The goal of the Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. A series of analysis tasks were completed in support of the design effort. We began with a parametric scaling study to assess blade structure using current technology. This was followed by an economic study of the cost to manufacture, transport and install large blades. Subsequently we identified several innovative design approaches that showed potential for overcoming fundamental physical and manufacturing constraints. The final stage of the project was used to develop several preliminary 50m blade designs. The key design impacts identified in this study are: (1) blade cross-sections, (2) alternative materials, (3) IEC design class, and (4) root attachment. The results show that thick blade cross-sections can provide a large reduction in blade weight, while maintaining high aerodynamic performance. Increasing blade thickness for inboard sections is a key method for improving structural efficiency and reducing blade weight. Carbon/glass hybrid blades were found to provide good improvements in blade weight, stiffness, and deflection when used in the main structural elements of the blade. The addition of carbon resulted in modest cost increases and provided significant benefits, particularly with respect to deflection. The change in design loads between IEC classes is quite significant. Optimized blades should be designed for each IEC design class. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of blade fasteners has a positive effect on total weight, because it reduces the required root laminate thickness.

  5. Structural Analysis and Design of the Composite Wind Turbine Blade

    Science.gov (United States)

    Wu, Wen-Hsiang; Young, Wen-Bin

    2012-06-01

    The wind turbine blade sustains various kinds of loadings during the operation and parking state. Due to the increasing size of the wind turbine blade, it is important to arrange the composite materials in a sufficient way to reach the optimal utilization of the material strength. Most of the composite blades are made of glass fibers composites while carbon fibers are also employed in recent years. Composite materials have the advantages of high specific strength and stress. This study develops a GUI interface to construct the blade model for the stress analysis using ANSYS. With the aid of visualization interface, the geometric model of the blade can be constructed by only a few data inputs. Based on the numerical stress analysis of the turbine blade, a simple iterative method was proposed to design the structure of the composite blade.

  6. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  7. Turbomachine blade reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  8. Turbomachine blade assembly

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  9. Sweep-twist adaptive rotor blade : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  10. Stress analysis and life prediction of gas turbine blade

    Science.gov (United States)

    Hsiung, H. C.; Dunn, A. J.; Woodling, D. R.; Loh, D. L.

    1988-01-01

    A stress analysis procedure is presented for a redesign of the Space Shuttle Main Engine high pressure fuel turbopump turbine blades. The analysis consists of the one-dimensional scoping analysis to support the design layout and the follow-on three-dimensional finite element analysis to confirm the blade design at operating loading conditions. Blade life is evaluated based on high-cycle fatigue and low-cycle fatigue.

  11. Blade reliability collaborative :

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.; Ogilvie, Alistair B.; Paquette, Joshua A.

    2013-04-01

    The Blade Reliability Collaborative (BRC) was started by the Wind Energy Technologies Department of Sandia National Laboratories and DOE in 2010 with the goal of gaining insight into planned and unplanned O&M issues associated with wind turbine blades. A significant part of BRC is the Blade Defect, Damage and Repair Survey task, which will gather data from blade manufacturers, service companies, operators and prior studies to determine details about the largest sources of blade unreliability. This report summarizes the initial findings from this work.

  12. Effects of diffuser blade geometry at leading edge on a highly-loaded centrifugal compressor%高负荷离心压气机扩压器叶片前缘结构分析

    Institute of Scientific and Technical Information of China (English)

    王毅; 卢新根; 赵胜丰; 朱俊强

    2011-01-01

    为拓宽离心压气机稳定工作范围,以某高负荷离心压气机为研究对象,对径向扩压器叶片前缘进行盘侧开槽处理,借助数值模拟手段,探讨了开槽处理对离心压气机性能和稳定工作范围的影响,并对开槽结构进行了参数化研究,确定了主要开槽参数对离心压气机的影响.数值计算表明,径向扩压器前缘盘侧开槽能够在一定程度上提高离心压气机的稳定工作裕度,但同时伴随着压气机性能的降低.详细对比分析了开槽结构引人前后离心压气机内部流场结构,揭示了径向扩压器叶片前缘开槽提高离心压气机稳定工作裕度机理.%To extend the stable operating range of centrifugal compressor, a series of numerical simulations were performed for a highly - loaded centrifugal compressor with slotted radial diffuser blade at the bottom of leading edge, and the effects of slotted radial diffuser blade on performance and stable operating range of the centrifugal compressor were investigated in detail. In addition, parametric studies on slot depth and slot width were conducted in order to explore the key role parameters for optimum performance. The simulation results indicate that slotted radial diffuser blade at leading edge could extend the stable operating range, but slightly decrease the pressure ratio and efficiency. Detailed analysis of the flow visualization has exposed the different tip flow topologies between the cases with original radial diffuser and slotted radial diffuser, therefore led to some preliminary conclusions as to the flow physics involved in the stall margin improvements afforded by the use of slotted radial diffuser.

  13. SSME HPFTP/AT Turbine Blade Platform Featherseal Damper Design

    Science.gov (United States)

    Montgomery, S. K.

    1999-01-01

    During the Space Shuttle Main Engines (SSM) HPFtP/AT development program, engine hot fire testing resulted in turbine blade fatigue cracks. The cracks were noted after only a few tests and a several hundred seconds versus the design goal of 60 tests and >30,000 seconds. Subsequent investigation attributed the distress to excessive steady and dynamic loads. To address these excessive turbine blade loads, Pratt & Whitney Liquid Space Propulsion engineers designed and developed retrofitable turbine blade to blade platform featherseal dampers. Since incorporation of these dampers, along with other turbine blade system improvements, there has been no observed SSME HPFTP/AT turbine blade fatigue cracking. The high time HPFTP/AT blade now has accumulated 32 starts and 19,200 seconds hot fire test time. Figure #1 illustrates the HPFTP/AT turbine blade platform featherseal dampers. The approached selected was to improve the turbine blade structural capability while simultaneously reducing loads. To achieve this goal, the featherseal dampers were designed to seal the blade to blade platform gap and damp the dynamic motions. Sealing improves the steady stress margins by increasing turbine efficiency and improving turbine blade attachment thermal conditioning. Load reduction was achieved through damping. Thin Haynes 188 sheet metal was selected based on its material properties (hydrogen resistance, elongation, tensile strengths, etc.). The 36,000 rpm wheel speed of the rotor result in a normal load of 120#/blade. The featherseals then act as micro-slip dampers during actual SSME operation. After initial design and analysis (prior to full engine testing), the featherseal dampers were tested in P&W's spin rig facility in West Palm Beach, Florida. Both dynamic strain gages and turbine blade tip displacement measurements were utilized to quantify the featherseal damper effectiveness. Full speed (36,000 rpm), room temperature rig testing verified the elimination of fundamental mode

  14. Analysis of three-dimensional blading influence on highly loaded transonic fan stator%三维造型对高负荷跨声风扇静子的影响分析

    Institute of Scientific and Technical Information of China (English)

    徐朋飞; 刘宝杰; 赵斌

    2012-01-01

    以负荷系数高达0.42的跨声风扇进口级为背景,利用三维数值模拟手段,研究了叶片三维气动造型技术对高负荷跨声风扇静子气动性能的影响,并深入地分析了其影响机理.结果表明:由于激波在静子叶根有垂直于轮毂端壁的趋势,因此前掠造型对于激波/端壁附面层所主导的静子角区分离的控制效果并不明显;相比之下,正弯静子通过加入叶片力使得角区中的低速流体向叶中发生径向迁移,显著地改善了静子的性能;而复合弯掠进一步提高了静子的性能,说明单纯使用前掠造型收效不佳,需要配合正弯造型才能达到最佳效果.%Under the background of highly loaded transonic inlet fan stage, which pro- duces loading coefficient of 0.42, three-dimensional (3-D) blading influence on transonic stator aerodynamic performance was analyzed as well as its mechanism with numerical simu lation technology. The result indicates that the forward sweep is not effective to control the corner separation conducted by shock/endwall boundary layer interaction because of the trend that the shock always tends to remain perpendicular to the endwall. Positive bow mod- ifies the stator performance obviously through adding the blade force to migrate the low speed corner fluid toward to mid-span. Sweep/bow composition improves the stator per- formance further, illustrating that the benefit from pure forward sweep is limited and for ward sweep can attain optimum effect when combining the positive bow.

  15. Structural Reliability of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    and design. Reliability-based analysis methods have the potential of being a valuable tool which can improve the state of knowledge by explaining the uncertainties, and form the probabilistic basis for calibration of deterministic design tools. The present thesis focuses on reliability-based design of wind...... turbine blades. The main purpose is to draw a clear picture of how reliability-based design of wind turbines can be done in practice. The objectives of the thesis are to create methodologies for efficient reliability assessment of composite materials and composite wind turbine blades, and to map...... for the fatigue strength of balsa core subjected to transverse shear loading is calibrated to the test data. ⋅ A review study evaluates and compares several widely-used statistical extrapolation methods for their capability of modelling the short-term statistical distribution of blade loads and tip deflection...

  16. Rotor blade dynamic design

    Science.gov (United States)

    Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1989-01-01

    The rotor dynamic design considerations are essentially limitations on the vibratory response of the blades which in turn limit the dynamic excitation of the fuselage by forces and moments transmitted to the hub. Quantities which are associated with the blade response and which are subject to design constraints are discussed. These include blade frequencies, vertical and inplane hub shear, rolling and pitching moments, and aeroelastic stability margin.

  17. Band Saw Blade Crack before and after Comparison and Analysis of Experiments (2

    Directory of Open Access Journals (Sweden)

    Gao Jin-gui

    2016-01-01

    Full Text Available Based on MJ3310 woodworking band saw machine as the research object, under the no-load and load of Vib system vibration signal acquisition, processing and analysis software of band saw blade transverse vibration test and the signal acquisition and analysis of the collected signals obtained: to determine the transverse vibration displacement 5.66μm ~ 7.86μm and the main vibration frequency between 624 Hz ~ 792 Hz, then saw blade crack at least 3 mm, need timely saw blade, cutting high hardness of wood band saw blade transverse vibration displacement and frequency will increase sharply. Can be generated according to the band saw blade crack before and after the changing rule of the horizontal vibration displacement and frequency of transverse vibration and scope, judgment and replacement time of saw blade saw blade defect types, which can fully rational utilization of saw blade work effectively.

  18. Design and Analysis of Composite Propeller Blade for Aircraft

    Directory of Open Access Journals (Sweden)

    Madhusudhan BM

    2014-09-01

    Full Text Available Fiber reinforced composites is used for twin blade propeller because of its high strength, low temperature applications. Fiber has to be oriented in the loading direction while designing the composite propeller blade. The blade geometry and design are more complex involving many controlling parameters. In the present work a methodology to design a composite propeller to analyze its strength and deformation using ANSYS software. The weight of the composite blade is reduced compared to wooden blade by adopting the shell model. The present work is to carryout the static analysis of composite propeller which is a combination CFRP (Carbon Fiber Reinforced Plastics and epoxy resin materials. In order to evaluate the effectiveness of the composite blade over wooden stress analysis is performed on both the blades. To define the orientation and number of layers in the composite blade ANSYS classic software is used. From the results, the stresses of composite propeller obtained in static analysis are within the allowable stress limit. The deflection of the composite blade is less compared to the wooden blade.

  19. An investigation of the vibration characteristics of shrouded-bladed-disk rotor stages

    Science.gov (United States)

    Chen, L.-T.; Dugundji, J.

    1979-01-01

    Coupled differential equations of motion are given for application to a rotating, pretwisted and heated beam under the effects of thermal stresses and gas bending loads. The circumferential modes of the multi-blade vibration of a bladed-disk rotor stage were studied. A finite element method was developed for the dynamic and static deformation analysis of the blade. The deformations of a bladed disk and a shrouded-bladed disk were studied by introducing a special bladed-disk element and a special shrouded-blade element. Some features of the vibration of part-span-shrouded, bladed-disk rotor stages are discussed. The static deformation, thermal stress and gas bending effects on the blade vibration were presented previously.

  20. Optimization Design and Experimental Study of Low-Pressure Axial Fan with Forward-Skewed Blades

    Directory of Open Access Journals (Sweden)

    Li Yang

    2007-01-01

    Full Text Available This paper presents an experimental study of the optimization of blade skew in low pressure axial fan. Using back propagation (BP neural network and genetic algorithm (GA, the optimization was performed for a radial blade. An optimized blade is obtained through blade forward skew. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the optimized blade demonstrated improvements in efficiency, total pressure ratio, stable operating range, and aerodynamic noise. Detailed flow measurement was performed in outlet flow field for investigating the responsible flow mechanisms. The optimized blade can cause a spanwise redistribution of flow toward the blade midspan and reduce tip loading. This results in reduced significantly total pressure loss near hub and shroud endwall region, despite the slight increase of total pressure loss at midspan. In addition, the measured spectrums show that the broadband noise of the impeller is dominant.

  1. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    Science.gov (United States)

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  2. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  3. Accelerated fatigue testing of LM 19.1 blades

    DEFF Research Database (Denmark)

    Kristensen, Ole Jesper Dahl; Jørgensen, E.

    2003-01-01

    if it is possible to increase the load in fatigue test to shorten test time. The tests were carried out as a part of a project financed by the Danish Energy Agency. During the fatigue tests the blades have beensurveyed with thermal imaging equipment to determine how an increase in fatigue load affects the blade...... material. In addition to the thermal imaging surveillance the blades were instrumented with strain gauges. This report presents the temperature duringtest, calibration test results, moment range measurements, strain statistics, thermal imaging registrations and a determination of the size and cause...

  4. Acoustic design of rotor blades using a genetic algorithm

    Science.gov (United States)

    Wells, V. L.; Han, A. Y.; Crossley, W. A.

    1995-01-01

    A genetic algorithm coupled with a simplified acoustic analysis was used to generate low-noise rotor blade designs. The model includes thickness, steady loading and blade-vortex interaction noise estimates. The paper presents solutions for several variations in the fitness function, including thickness noise only, loading noise only, and combinations of the noise types. Preliminary results indicate that the analysis provides reasonable assessments of the noise produced, and that genetic algorithm successfully searches for 'good' designs. The results show that, for a given required thrust coefficient, proper blade design can noticeably reduce the noise produced at some expense to the power requirements.

  5. Aeroelastic tailoring in wind-turbine blade applications

    Energy Technology Data Exchange (ETDEWEB)

    Veers, P.; Lobitz, D. [Sandia National Labs., Albuquerque, NM (United States); Bir, G. [National Renewable Energy Lab., Golden, CO (United States). National Wind Technology Center

    1998-04-01

    This paper reviews issues related to the use of aeroelastic tailoring as a cost-effective, passive means to shape the power curve and reduce loads. Wind turbine blades bend and twist during operation, effectively altering the angle of attack, which in turn affects loads and energy production. There are blades now in use that have significant aeroelastic couplings, either on purpose or because of flexible and light-weight designs. Since aeroelastic effects are almost unavoidable in flexible blade designs, it may be desirable to tailor these effects to the authors advantage. Efforts have been directed at adding flexible devices to a blade, or blade tip, to passively regulate power (or speed) in high winds. It is also possible to build a small amount of desirable twisting into the load response of a blade with proper asymmetric fiber lay up in the blade skin. (Such coupling is akin to distributed {delta}{sub 3} without mechanical hinges.) The tailored twisting can create an aeroelastic effect that has payoff in either better power production or in vibration alleviation, or both. Several research efforts have addressed different parts of this issue. Research and development in the use of aeroelastic tailoring on helicopter rotors is reviewed. Potential energy gains as a function of twist coupling are reviewed. The effects of such coupling on rotor stability have been studied and are presented here. The ability to design in twist coupling with either stretching or bending loads is examined also.

  6. Numerical Simulation on Flow Performance and Blade Profile Optimal Design of Light Load Type Axial Flow Pump%轻载型轴流泵的流场分析和叶型优化

    Institute of Scientific and Technical Information of China (English)

    张宇; 管仁伟; 安伟; 徐峰

    2013-01-01

    在不同工况下,采用商业软件Numeca的Fine/Turbo模块,对包含叶轮、导叶、弯管、喇叭管的轻载型轴流泵进行了全流道的三维湍流数值模拟计算,并在与已有试验数据进行了较好吻合的基础上,对其内部流场进行了详细地数值分析,通过分析轴流泵内部的流动特点,找出了造成原模型流动损失的可能原因,发现由于局部结构设计不合理,流道内产生了漩涡区.针对这一问题提出了改进措施,采用商业软件Numeca的Design3D模块对叶轮叶型压力面和吸力面进行多参数化优化.结果表明,控制压力面、吸力面型线可以有效控制叶片出口处的漩涡,改进后的流道内存在的涡团和流动损失减少,叶轮的水力效和扬程等性能参数相对提高.%Using a commercial software Numeca Fine/Turbo, a numerical algorithm is presented to simulate three-dimensional turbulent flow for a light load type axial flow pump impeller, including the impeller, the guide vane and the bend pipe under different conditions. Through analyzing the axial flow pump internal flow characteristics, we find out the flow loss of the original model, such as vast vortexes areas and wall flow separations. Furthermore, we use the Numeca/Design3D software to optimize the parameters and to redesign the blade profile. The results show that changing the pressure and suctione lines can effectively control the blade of the swirl, resulting in the vortex and flow loss reduction and increasing the efficiency of the impeller hydraulic lift.

  7. Composite wind turbine blades

    Science.gov (United States)

    Ong, Cheng-Huat

    Researchers in wind energy industry are constantly moving forward to develop higher efficiency wind turbine. One major component for wind turbine design is to have cost effective wind turbine blades. In addition to correct aerodynamic shape and blade geometry, blade performance can be enhanced further through aero-elastic tailoring design and material selections. An analytical tool for blade design has been improved and validated. This analytical tool is utilized to resolve issues related to elastic tailoring design. The investigation looks into two major issues related to the design and fabrication of a bend-twist-coupled blade. Various design parameters for a blade such as materials, laminate lay-up, skin thickness, ply orientation, internal spar, etc. have been examined for designing a bend-twist-coupled blade. The parametric study indicates that the critical design parameters are the ply material, the ply orientation, and the volume fraction ratio between the anisotropic layers and orthotropic layers. To produce a blade having the bend-twist coupling characteristics, the fiber lay-ups at the top and bottom skins of the blade must have a "mirror" lay-up in relation to the middle plane of the blade. Such lay-up causes fiber discontinuation at the seam. The joint design at the seam is one major consideration in fabricating a truly anisotropic blade. A new joint design was proposed and tensile failure tests were carried out for both the old and new joint designs. The tests investigated the effects of different types of joint designs, the laminate lay-up at the joints, and the stacking sequence of the joint retention strength. A major component of a wind turbine blade, D-spar, was designed to maximum coupling. Two D-spars were then fabricated using the new joint design; one of them was subjected to both static and modal testings. Traditionally, wind turbine blades are made of low cost glass material; however, carbon fibers are proposed as alternative material. Our

  8. Three-dimensional inverse method for turbomachine blades by the circulation method: The thickness problem

    Science.gov (United States)

    Jiang, Jun

    This dissertation summarizes a procedure to design blades with finite thickness in three dimensions. In this inverse method, the prescribed quantities are the blade pressure loading shape, the inlet and outlet spanwise distributions of swirl, and the blade thickness distributions, and the primary calculated quantity is the blade geometry. The method is formulated in the fully inverse mode for design of three-dimensional blades in rotational and compressible flows whereby the blade shape is determined iteratively using the flow tangency condition along the blade surfaces. This technique is demonstrated here in the first instance for the design of two-dimensional cascaded and three-dimensional blades with finite thickness in inviscid and incompressible flows. In addition, the incoming flow is assumed irrotational so that the only vorticity present in the flowfield is the blade bound and shed vorticities. Design calculations presented for two-dimensional cascaded blades include an inlet guide vane, an impulse turbine blade, and a compressor blade. Consistency check is carried out for these cascaded blade design calculations using a panel analysis method and the analytical solution for the Gostelow profile. Free-vortex design results are also shown for fully three-dimensional blades with finite thickness such as an inlet guide vane, a rotor of axial-flow pumps, and a high-flow-coefficient pump inducer with design parameters typically found in industrial applications. These three-dimensional inverse design results are verified using Adamczyk's inviscid code.

  9. Optimization Method for Girder of Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Yuqiao Zheng

    2014-01-01

    Full Text Available This paper presents a recently developed numerical multidisciplinary optimization method for design of wind turbine blade. The objective was the highest possible blade weight under specified atmospheric conditions, determined by the design giving girder layer and location parameter. Wind turbine blade on box-section beams girder is calculated by ply thickness, main girder and trailing edge. In this study, a realistic 30 m blade from a 1.2 MW wind turbine model of blade girder parameters is established. The optimization evolves a structure which transforms along the length of the blade, changing from a design with spar caps at the maximum thickness and a trailing edge mass to a design with spar caps toward the tip. In addition, the cross-section structural properties and the modal characteristics of a 62 m rotor blade were predicted by the developed beam finite element. In summary, these findings indicate that the conventional structural layout of a wind turbine blade is suboptimal under the static load conditions, suggesting an opportunity to reduce blade weight and cost.

  10. Methodology for Structural Integrity Analysis of Gas Turbine Blades

    Directory of Open Access Journals (Sweden)

    Tiago de Oliveira Vale

    2012-03-01

    Full Text Available One of the major sources of stress arising in turbomachinery blades are the centrifugal loads acting at any section of the airfoil. Accounting for this phenomenon stress evaluation of the blade attachment region in the disc has to be performed in order to avoid blade failure. Turbomachinery blades are generally twisted, and the cross section area varies from the root of the blade to the tip. The blade root shape at the attachment region is of great concern. Stress concentrations are predictable at this contact region. In this paper, a finite element model has been created for the purpose of assessing stress at the joint region connecting the blade to the disc slot. Particular attention was paid to the geometric modeling of the "fir-tree" fixing, which is now used in the majority of gas turbine engines. This study has been performed using the commercial software ANSYS 13.0. The disc and blade assembly are forced to move with a certain rotational velocity. Contact connections are predicted on the common faces of the blade and on the disc at the root. Solutions can be obtained to allow the evaluation of stresses. Results can be compared with the mechanical properties of the adopted material.

  11. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element....... The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes....... formulation accounts for arbitrary mass density distributions, general elastic crosssection properties and geometric stiffness effects due to internal stresses. A compact, linear formulation for aerodynamic forces with associated stiffness and damping terms is established and added to the structural model...

  12. Construction of low-cost, Mod-OA wood composite wind turbine blades

    Science.gov (United States)

    Lark, R. F.

    1983-01-01

    Two sixty-foot, low-cost, wood composite blades for service on 200 kW Mod-OA wind turbines were constructed. The blades were constructed of epoxy resin-bonded Douglas fir veneers for the leading edge sections, and paper honeycombcored, birch plywood faced panels for the afterbody sections. The blades were joined to the wind turbine hub by epoxy resin-bonded steel load take-off studs embedded into the root end of the blades. The blades were installed on the 200 kW Mod-OA wind turbine facility at Kahuku, Hawaii, The blades completed nearly 8,000 hours of operation over an 18 month period at an average power of 150 kW prior to replacement with another set of wood composite blades. The blades were replaced because of a corrosion failure of the steel shank on one stud. Inspections showed that the wood composite structure remained in excellent condition.

  13. Instability of a penetrating blade

    Science.gov (United States)

    Bigoni, D.; Bosi, F.; Dal Corso, F.; Misseroni, D.

    2014-03-01

    Application of a dead compressive load at the free end of an elastic rod (the ‘blade') induces its penetration into a sliding sleeve ending with a linear elastic spring. Bifurcation and stability analysis of this simple elastic system shows a variety of unexpected behaviors: (i) an increase of buckling load at decreasing of elastic stiffness; (ii) a finite number of buckling loads for a system with infinite degrees of freedom (leading to a non-standard Sturm-Liouville problem); (iii) more than one bifurcation load associated to each bifurcation mode; (iv) a restabilization of the straight configuration after the second bifurcation load associated to the first instability mode; (v) the presence of an Eshelby-like (or configurational) force, deeply influencing stability. Only the first of these behaviors was previously known, the second and third ones disprove common beliefs, the fourth highlights a sort of ‘island of instability', and the last one shows surprising phenomena and effects on stability.

  14. Swept Blade Aero-Elastic Model for a Small Wind Turbine (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, R.; Lee, S.; Larwood, S.

    2014-07-01

    A preprocessor for analyzing preswept wind turbines using the in-house aero-elastic tool coupled with a multibody dynamic simulator was developed. A baseline 10-kW small wind turbine with straight blades and various configurations that featured bend-torsion coupling via blade-tip sweep were investigated to study their impact on ultimate loads and fatigue damage equivalent loads.

  15. Blade attachment assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  16. Saw Blades and Resonance

    Science.gov (United States)

    Liebl, Michael

    2005-05-01

    This paper describes an inexpensive, classroom experiment that allows students to quantitatively investigate resonance using a hacksaw blade. The blade clamped to the edge of a table forms a cantilever that may vibrate at any of a number of preferred frequencies. A small cylindrical magnet is fixed to the saw blade. An electromagnetic coil powered by a frequency generator causes large-amplitude vibrations of the saw blade at the resonant frequencies. Vibrations of a similar system, a vibrating car antenna, have been discussed by Newburgh and Newburgh. The dramatic increases in the oscillation amplitude are both instructive and fascinating. Analogies may be drawn to systems ranging from a child on a swing to the Tacoma Narrows bridge.

  17. Numerical and Experimental Study of Friction Damping Blade Attachments of Rotating Bladed Disks

    Directory of Open Access Journals (Sweden)

    D. Charleux

    2006-01-01

    Full Text Available In order to mitigate high cycle fatigue risks in bladed disks, the prediction of the vibration levels early in the design process is important. Therefore, the different sources of damping need to be modeled accurately. In this paper the impact of friction in blade attachments on forced response is investigated both numerically and experimentally. An efficient multiharmonic balance method is proposed in order to compute the forced response of bladed disks with contact and friction nonlinearities in blade roots. For experimental validation purposes, a rotating bladed disk was tested in a vacuum chamber, with excitation being provided by piezoelectric actuators. A model of the rig was built and numerical results were obtained with a normal load dependent coefficient of friction and a constant material damping ratio. Nonlinear behavior observed experimentally at resonances was well reproduced and an acceptable correlation was found with experimental resonant frequencies, amplitudes, and amount of damping throughout the spinning speed and excitation level range. The proposed numerical method can therefore serve to enhance the prediction of the alternating stresses in bladed disk assemblies.

  18. Blade Testing Trends (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  19. Simulation of Flexible Mechanisms in a Rotating Blade for Smart-Blade Applications

    NARCIS (Netherlands)

    Paternoster, A.R.A.; Loendersloot, R.; Boer, de A.; Akkerman, R.

    2012-01-01

    The active Gurney flap technology is investigated to improve the performance of rotorblades by allowing helicopter blades to further control the lift unbalance that rises at high speed and by damping vibration loads on the rotor hub. This technology needs validation by wind tunnel testing of a scale

  20. Improving Bending Moment Measurements on Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Post, Nathan L.

    2016-03-15

    Full-scale fatigue testing of wind turbine blades is conducted using resonance test techniques where the blade plus additional masses is excited at its first resonance frequency to achieve the target loading amplitude. Because there is not a direct relationship between the force applied by an actuator and the bending moment, the blade is instrumented with strain gauges that are calibrated under static loading conditions to determine the sensitivity or relationship between strain and applied moment. Then, during dynamic loading the applied moment is calculated using the strain response of the structure. A similar procedure is also used in the field to measure in-service loads on turbine blades. Because wind turbine blades are complex twisted structures and the deflections are large, there is often significant cross-talk coupling in the sensitivity of strain gauges placed on the structure. Recent work has shown that a sensitivity matrix with nonzero cross terms must be employed to find constant results when a blade is subjected to both flap and lead-lag loading. However, even under controlled laboratory conditions, potential for errors of 3 percent or more in the measured moment exist when using the typical cross-talk matrix approach due to neglecting the influence of large deformations and torsion. This is particularly critical when considering a biaxial load as would be applied on the turbine or during a biaxial fatigue test. This presentation describes these results demonstrating errors made when performing current loads measurement practices on wind turbine blades in the lab and evaluating potential improvements using enhanced cross-talk matrix approaches and calibration procedures.

  1. Structural characterization of rotor blades through photogrammetry

    Science.gov (United States)

    Bernardini, Giovanni; Serafini, Jacopo; Enei, Claudio; Mattioni, Luca; Ficuciello, Corrado; Vezzari, Valerio

    2016-06-01

    This paper deals with the use of photogrammetry for the experimental identification of structural and inertial properties of helicopter rotor blades4. The identification procedure is based upon theoretical/numerical algorithms for the evaluation of mass and flexural stiffness distributions which are an extension of those proposed in the past by Larsen, whereas the torsional properties (stiffness and shear center position) are determined through the Euler-Bernoulli beam theory. The identification algorithms require the knowledge of the blade displacement field produced by known steady loads. These data are experimentally obtained through photogrammetric detection technique, which allows the identification of 3D coordinates of labeled points (markers) on the structure through the correlation of 2D digital photos. Indeed, the displacement field is simply evaluated by comparing the markers positions on the loaded configuration with those on the reference one. The proposed identification procedure, numerically and experimentally validated in the past by the authors, has been here applied to the structural characterization of two main rotor blades, designed for ultra-light helicopters. Strain gauges measurements have been used to assess the accuracy of the identified properties through natural frequencies comparison as well as to evaluate the blades damping characteristics.

  2. Control of LP Turbine Rotor Blade Underloading Using Stator Blade Compound Lean at Root

    Institute of Scientific and Technical Information of China (English)

    PiotrLampart

    2000-01-01

    Due to a large gradient of reaction,LP rotor blades remain underloaded at the root over some range of volumetric flow rates.An interesting design to control the flow through the root passage of the overloaded stator and underloaded moving blade row is compound lean at the root of stator blades.The paper describes results of numerical investigations from a 3D NS solver FlowER conducted for several configurations of stator blade compund lean.The computations are carried out for a wide range of volumetric flow rates.accounting for the nominal operating regime as well as low and high load.It is found that compund lean induces additional blade force.streamwise curature and redistribution of flow parameters in the stage,including pressure and mass flow rate spanwise that can improve the flow conditions in both the stator and the rotor.The obtained efficiency improvements depend greatly on the flow regime,with the highest gains in the region of low load.

  3. Design and evaluation of low-cost laminated wood composite blades for intermediate size wind turbines: Blade design, fabrication concept, and cost analysis

    Science.gov (United States)

    Lieblein, S.; Gaugeon, M.; Thomas, G.; Zueck, M.

    1982-01-01

    As part of a program to reduce wind turbine costs, an evaluation was conducted of a laminated wood composite blade for the Mod-OA 200 kW wind turbine. The effort included the design and fabrication concept for the blade, together with cost and load analyses. The blade structure is composed of laminated Douglas fir veneers for the primary spar and nose sections, and honeycomb cored plywood panels for the trailing edges sections. The attachment of the wood blade to the rotor hub was through load takeoff studs bonded into the blade root. Tests were conducted on specimens of the key structural components to verify the feasibility of the concept. It is concluded that the proposed wood composite blade design and fabrication concept is suitable for Mod-OA size turbines (125-ft diameter rotor) at a cost that is very competitive with other methods of manufacture.

  4. The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel; Richards, Phillip William

    2014-09-01

    A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) was prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.

  5. Effect of blade outlet angle on radial thrust of single-blade centrifugal pump

    Science.gov (United States)

    Nishi, Y.; Fukutomi, J.; Fujiwara, R.

    2012-11-01

    Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate

  6. Life assessment of gas turbine blades after long term service

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, Pertti; Salonen, Jorma [VTT, Espoo (Finland); Maekinen, Sari [Helsingin Energia, Helsinki (Finland); Karvonen, Ikka; Tanttari, Heikki [Lappeenrannan Laempoevoima, Lappeenranta (Finland); Kangas, Pekka [Neste Oil, Kilpilahti (Finland); Scholz, Alfred [Technische Univ. Darmstadt (Germany); Vacchieri, Erica [Ansaldo Richerche, Genoa (Italy)

    2010-07-01

    Turbine blade samples from three land based gas turbines have been subjected to systematic condition and life assessment after long term service (88000 - 109000 equivalent operating hours, eoh), when approaching the nominal or suggested life limits. The blades represent different machine types, materials and design generations, and uncooled blading outside the hottest front end of the turbine, i.e. blades with relatively large size and considerable expected life. For a reasonable assessment, a range of damage mechanisms need to be addressed and evaluated for the impact in the residual life. The results suggested significant additional safe life for all three blade sets. In some cases this could warrant yet another life cycle comparable to that of new blades, even after approaching the nominal end of life in terms of recommended equivalent operating hours. This is thought to be partly because of base load combined cycle operation and natural gas fuel, or modest operational loading if the design also accounted for more intensive cycling operation and more corrosive oil firing. In any case, long term life extension is only appropriate if not intervened by events of overloading, overheating or other sudden events such as foreign object damage (FOD), and if supported by the regular inspection and maintenance program to control in-service damage. Condition based assessment therefore remains an important part of the blade life management after the decision of accepted life extension. (orig.)

  7. Vibrational analyses of cracked pre-twisted blades

    Science.gov (United States)

    Chen, L. W.; Jeng, C. H.

    1993-01-01

    A finite element model is utilized to analyze the vibrational behavior of a pre-twisted rotating blade with a single edge crack. This model can satisfy both geometric boundary conditions and natural boundary conditions of the blade. The effects of the transverse shear deformation, rotary inertia and the pre-twisted angle are taken into account. The influences of the crack location and the crack size on natural frequencies, buckling loads and dynamic instability regions are studied. It is found that a crack has great influences on these dynamic characteristics of the rotating blade.

  8. Ultimate strength of a large wind turbine blade

    OpenAIRE

    Jensen, Find Mølholt; Stang, Henrik; Branner, Kim

    2009-01-01

    The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural behaviour of wind turbine blades. Four failure mechanisms observed during the fullscale tests and the corresponding FE-analysis are presented. Elastic mechanisms associated with failure, such as buckling...

  9. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    International Nuclear Information System (INIS)

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors. (paper)

  10. INTERNAL FLOW MECHANISM AND EXPERIMENTAL RESEARCH OF LOW PRESSURE AXIAL FAN WITH FORWARD-SKEWED BLADES

    Institute of Scientific and Technical Information of China (English)

    LI Yang; LIU Jie; OUYANG Hua; DU Zhao-Hui

    2008-01-01

    This article presents the flow mechanism analysis and experimental study of a forward-skewed impeller and a radial impeller in low pressure axial fan. The forward-skewed blade was obtained by the optimization design of the radial blade and CFD technique. Measurement of the two blades was carried out in aerodynamic and aeroacoustic performance. Compared to the radial blade, the forward-skewed blade has demonstrated the improvements in efficiency, total pressure ratio, Stable Operating Range (SOR) and less aerodynamic noise. Detailed flow measurement and computation were performed for outlet flow field for investigating the responsible flow mechanisms. The results show the forward-skewed blade can cause a spanwise redistribution of flow toward the blade mid-span and reduce tip loading. This results in reduced significantly total pressure loss near hub and shroud endwall region, despite the slight increase of total pressure loss at mid-span.

  11. Non-linear ultimate strength and stability limit state analysis of a wind turbine blade

    DEFF Research Database (Denmark)

    Rosemeier, Malo; Berring, Peter; Branner, Kim

    2016-01-01

    According to the design codes for wind turbine blades, it is sufficient to evaluate the blade's limit states using solely a linear analysis. This study, however, shows the need of non-linear analyses in blade design. Therefore, a geometrically non-linear structural response of a 34 m blade under...... flap-wise loading has been compared with a linear response to determine the blade's resistance in the ultimate strength and stability limit states. The linear analysis revealed an unrealistic failure mechanism and failure mode. Further, it did not capture the highly non-linear response of the blade...... of an imperfection. The more realistic non-linear approaches yielded more optimistic results than the mandatory linear bifurcation analysis. Consequently, the investigated blade designed after the lesser requirements was sufficient. Using the non-linear approaches, considering inter-fibre failure as the critical...

  12. Cooled snubber structure for turbine blades

    Science.gov (United States)

    Mayer, Clinton A; Campbell, Christian X; Whalley, Andrew; Marra, John J

    2014-04-01

    A turbine blade assembly in a turbine engine. The turbine blade assembly includes a turbine blade and a first snubber structure. The turbine blade includes an internal cooling passage containing cooling air. The first snubber structure extends outwardly from a sidewall of the turbine blade and includes a hollow interior portion that receives cooling air from the internal cooling passage of the turbine blade.

  13. Gas Turbine Blade Damper Optimization Methodology

    Directory of Open Access Journals (Sweden)

    R. K. Giridhar

    2012-01-01

    Full Text Available The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to develop an analytical model of blade damper system. The second phase is experimentation and model tuning necessary for response studies while the third phase is evaluating damper performance. The reduced model of blade is developed corresponding to the mode under investigation incorporating the friction damper then the simulations were carried out to arrive at an optimum design point of the damper. Bench tests were carried out in two phases. Phase-1 deals with characterization of the blade dynamically and the phase-2 deals with finding optimal normal load at which the blade resonating response is minimal for a given excitation. The test results are discussed, and are corroborated with simulated results, are in good agreement.

  14. Damage localization in a residential-sized wind turbine blade by use of the SDDLV method

    DEFF Research Database (Denmark)

    Johansen, Rasmus Johan; Hansen, Lasse Majgaard; Ulriksen, Martin Dalgaard;

    2015-01-01

    of the SDDLV method for localization of structural damages in a cantilevered residential-sized wind turbine blade. The blade was excited by an unmeasured multi-impulse load and the resulting dynamic response was captured through accelerometers mounted along the blade. The static pseudo-loads were applied......The stochastic dynamic damage location vector (SDDLV) method has previously proved to facilitate effective damage localization in truss- and plate-like structures. The method is based on interrogating damage-induced changes in transfer function matrices in cases where these matrices cannot...... to a finite element (FE) blade model, which was tuned against the modal parameters of the actual blade. In the experiments, an undamaged blade configuration was analysed along with different damage scenarios, hereby testing the applicability of the SDDLV method....

  15. Particle swarm-based structural optimization of laminated composite hydrokinetic turbine blades

    Science.gov (United States)

    Li, H.; Chandrashekhara, K.

    2015-09-01

    Composite blade manufacturing for hydrokinetic turbine application is quite complex and requires extensive optimization studies in terms of material selection, number of layers, stacking sequence, ply thickness and orientation. To avoid a repetitive trial-and-error method process, hydrokinetic turbine blade structural optimization using particle swarm optimization was proposed to perform detailed composite lay-up optimization. Layer numbers, ply thickness and ply orientations were optimized using standard particle swarm optimization to minimize the weight of the composite blade while satisfying failure evaluation. To address the discrete combinatorial optimization problem of blade stacking sequence, a novel permutation discrete particle swarm optimization model was also developed to maximize the out-of-plane load-carrying capability of the composite blade. A composite blade design with significant material saving and satisfactory performance was presented. The proposed methodology offers an alternative and efficient design solution to composite structural optimization which involves complex loading and multiple discrete and combinatorial design parameters.

  16. Blade System Design Studies Volume I: Composite Technologies for Large Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN, DAYTON A.; ASHWILL, THOMAS D.

    2002-07-01

    As part of the U.S. Department of Energy's Wind Partnerships for Advanced Component Technologies (WindPACT) program, Global Energy Concepts LLC (GEC) is performing a study concerning innovations in materials, processes and structural configurations for application to wind turbine blades in the multi-megawatt range. The project team for this work includes experts in all areas of wind turbine blade design, analysis, manufacture, and testing. Constraints to cost-effective scaling-up of the current commercial blade designs and manufacturing methods are identified, including self-gravity loads, transportation, and environmental considerations. A trade-off study is performed to evaluate the incremental changes in blade cost, weight, and stiffness for a wide range of composite materials, fabric types, and manufacturing processes. Fiberglass/carbon fiber hybrid blades are identified as having a promising combination of cost, weight, stiffness and fatigue resistance. Vacuum-assisted resin transfer molding, resin film infision, and pre-impregnated materials are identified as having benefits in reduced volatile emissions, higher fiber content, and improved laminate quality relative to the baseline wet lay-up process. Alternative structural designs are identified, including jointed configurations to facilitate transportation. Based on the results to date, recommendations are made for further evaluation and testing under this study to verify the predicted material and structural performance.

  17. Database about blade faults

    DEFF Research Database (Denmark)

    Branner, Kim; Ghadirian, Amin

    This report deals with the importance of measuring the reliability of the rotor blades and describing how they can fail. The Challenge is that very little non-confidential data is available and that the quality and detail in the data is limited....

  18. Simulation of realistic rotor blade-vortex interactions using a finite-difference technique

    Science.gov (United States)

    Hassan, Ahmed A.; Charles, Bruce D.

    1989-01-01

    A numerical finite-difference code has been used to predict helicopter blade loads during realistic self-generated three-dimensional blade-vortex interactions. The velocity field is determined via a nonlinear superposition of the rotor flowfield. Data obtained from a lifting-line helicopter/rotor trim code are used to determine the instantaneous position of the interaction vortex elements with respect to the blade. Data obtained for three rotor advance ratios show a reasonable correlation with wind tunnel data.

  19. Optimization design of spar cap layup for wind turbine blade

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Based on the aerodynamic shape and structural form of the blade are fixed,a mathematical model of optimization design for wind turbine blade is established.The model is pursued with respect to minimum the blade mass to reduce the cost of wind turbine production.The material layup numbers of the spar cap are chosen as the design variables;while the demands of strength,stiffness and stability of the blade are employed as the constraint conditions.The optimization design for a 1.5 MW wind turbine blade is carried out by combing above objective and constraint conditions at the action of ultimate flapwise loads with the finite element software ANSYS.Compared with the original design,the optimization design result achieves a reduction of 7.2% of the blade mass,the stress and strain distribution of the blade is more reasonable,and there is no occurrence of resonance,therefore its effectiveness is verified.

  20. Strength Reliability Analysis of Turbine Blade Using Surrogate Models

    Directory of Open Access Journals (Sweden)

    Wei Duan

    2014-05-01

    Full Text Available There are many stochastic parameters that have an effect on the reliability of steam turbine blades performance in practical operation. In order to improve the reliability of blade design, it is necessary to take these stochastic parameters into account. In this study, a variable cross-section twisted blade is investigated and geometrical parameters, material parameters and load parameters are considered as random variables. A reliability analysis method as a combination of a Finite Element Method (FEM, a surrogate model and Monte Carlo Simulation (MCS, is applied to solve the blade reliability analysis. Based on the blade finite element parametrical model and the experimental design, two kinds of surrogate models, Polynomial Response Surface (PRS and Artificial Neural Network (ANN, are applied to construct the approximation analytical expressions between the blade responses (including maximum stress and deflection and random input variables, which act as a surrogate of finite element solver to drastically reduce the number of simulations required. Then the surrogate is used for most of the samples needed in the Monte Carlo method and the statistical parameters and cumulative distribution functions of the maximum stress and deflection are obtained by Monte Carlo simulation. Finally, the probabilistic sensitivities analysis, which combines the magnitude of the gradient and the width of the scatter range of the random input variables, is applied to evaluate how much the maximum stress and deflection of the blade are influenced by the random nature of input parameters.

  1. An evaluation of wind turbine blade cross section analysis techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Paquette, Joshua A.; Griffith, Daniel Todd; Laird, Daniel L.; Resor, Brian Ray

    2010-03-01

    The blades of a modern wind turbine are critical components central to capturing and transmitting most of the load experienced by the system. They are complex structural items composed of many layers of fiber and resin composite material and typically, one or more shear webs. Large turbine blades being developed today are beyond the point of effective trial-and-error design of the past and design for reliability is always extremely important. Section analysis tools are used to reduce the three-dimensional continuum blade structure to a simpler beam representation for use in system response calculations to support full system design and certification. One model simplification approach is to analyze the two-dimensional blade cross sections to determine the properties for the beam. Another technique is to determine beam properties using static deflections of a full three-dimensional finite element model of a blade. This paper provides insight into discrepancies observed in outputs from each approach. Simple two-dimensional geometries and three-dimensional blade models are analyzed in this investigation. Finally, a subset of computational and experimental section properties for a full turbine blade are compared.

  2. Damage detection in turbine wind blades by vibration based methods

    Energy Technology Data Exchange (ETDEWEB)

    Dolinski, L; Krawczuk, M, E-mail: l.dolinski@ely.pg.gda.gda.p, E-mail: mk@imp.gda.p [Gdansk University of Technology, Faculty of Electrical and Control Engineering, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2009-08-01

    The paper describes results of numerical simulation for damage localization in the composite coat of a wind turbine blade using modal parameters and a modern damage detection method (wavelet transform). The presented results were obtained in the first period of research on the diagnostic method, which is aimed at detecting damage in the blades of large wind turbines during normal operation. A blade-modelling process including the geometry, loads and failures has been introduced in the paper. A series of simulations has been carried out for different localizations and size of damage for finding the method's limits. To verify the results of numeric simulations a subscale blade has been built which has geometric features and mechanical properties similar to the computer model.

  3. Comparison of damping treatments for gas turbine blades

    Science.gov (United States)

    Gordon, Robert W.; Hollkamp, Joseph J.

    1996-05-01

    High frequency vibration of gas turbine fan blades is a high cycle fatigue concern. Friction damping devices are ineffective in suppressing high frequency vibration modes and external damping treatments are plagued by creep concerns. An alternative approach is to apply viscoelastic material internally in the blades. In this paper, an analytical comparison of internal damping treatments for fan blades is presented. The fan blade is modeled as a solid, flat, cantilevered titanium plate. Internal portions are removed producing cavities that are filled with viscoelastic material. Configurations with one, two, and three cavities are modeled using the modal strain energy method in conjunction with finite element analysis to estimate damping. Results show that appreciable damping levels for high frequency modes are possible with stiff viscoelastic material. Other design criteria are also considered. Results indicate that the hydrostatic load from the viscoelastic material on the cavity walls may be a concern.

  4. Structural Evaluation of Exo-Skeletal Engine Fan Blades

    Science.gov (United States)

    Kuguoglu, Latife; Abumeri, Galib; Chamis, Christos C.

    2003-01-01

    The available computational simulation capability is used to demonstrate the structural viability of composite fan blades of innovative Exo-Skeletal Engine (ESE) developed at NASA Glenn Research Center for a subsonic mission. Full structural analysis and progressive damage evaluation of ESE composite fan blade is conducted through the NASA in-house computational simulation software system EST/BEST. The results of structural assessment indicate that longitudinal stresses acting on the blade are in compression. At a design speed of 2000 rpm, pressure and suction surface outer most ply stresses in longitudinal, transverse and shear direction are much lower than the corresponding composite ply strengths. Damage is initiated at 4870 rpm and blade fracture takes place at rotor speed of 7735 rpm. Damage volume is 51 percent. The progressive damage, buckling, stress and strength results indicate that the design at hand is very sound because of the factor of safety, damage tolerance, and buckling load of 6811 rpm.

  5. Vortex-induced vibrations on a modern wind turbine blade

    DEFF Research Database (Denmark)

    Heinz, Joachim Christian; Sørensen, Niels N.; Zahle, Frederik;

    2016-01-01

    with blade tip amplitudes of several metres. The investigated inflow conditions are considered realistic and might occur when the wind turbine is idling or standing still and the yaw system is unable to align the wind turbine with the incoming wind. Copyright © 2016 John Wiley & Sons, Ltd.......This article investigates the aero-elastic response of the DTU 10-MW RWT blade in deep stall conditions with angles of attack in the vicinity of 90 degrees. The simulations were conducted with the high-fidelity fluid–structure interaction simulation tool HAWC2CFD employing the multi......-body-based structural model of HAWC2 and the incompressible computational fluid dynamics solver EllipSys3D. The study utilizes detached eddy simulation computations and considers the three-dimensional blade geometry including blade twist and taper. A preliminary frequency analysis of the load variations on a stiff...

  6. Evaluation of the durability of composite tidal turbine blades.

    Science.gov (United States)

    Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique

    2013-02-28

    The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models. PMID:23319705

  7. Determination of the angle of attack on rotor blades

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær

    2009-01-01

    Two simple methods for determining the angle of attack (AOA) on a section of a rotor blade are proposed. Both techniques consist of employing the Biot-Savart integral to determine the influence of the bound vorticity on the velocity field. In the first technique, the force distribution along...... the blade and the velocity at a monitor point in the vicinity of the blade are assumed to be known from experiments or CFD computations. The AOA is determined by subtracting the velocity induced by the bound circulation, determined from the loading, from the velocity at the monitor point. In the second...... to be located closer to the blade, and thus to determine the AOA with higher accuracy. Data from CFD computations for flows past the Tellus 95 kW wind turbine at different wind speeds are used to test both techniques. Comparisons show that the proposed methods are in good agreement with existing techniques...

  8. Interdependence of centrifugal compressor blade geometry and relative flow field

    Science.gov (United States)

    Krain, H.

    1985-03-01

    The influence of the impeller blade geometry on the calculated relative flow field has been studied by means of an impeller design program available at DFVLR (Krain, 1984). Several geometrical parameters were varied, however, the meridional channel geometry was always kept constant. By this approach the blade wrap angle has been found to react significantly on the relative flow which is illustrated by comparing two designs with different wrap angles. Primarily in the hub/leading edge area a better boundary layer flow connected with a reduction of blade loading was obtained by increasing the wrap angle. But also in the shroud/pressure side area the increased blade looping attributed to an additional flow stabilization.

  9. Using Pretwist to Reduce Power Loss of Bend-Twist Coupled Blades

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Tibaldi, Carlo; Hansen, Morten Hartvig

    2016-01-01

    Bend-twist coupling of wind turbine blades is known as a means to reduce the structural loads of the turbine. While the load reduction is desirable, bend-twist coupling also leads to a decrease in the annual energy production of the turbine. The reduction is mainly related to a no longer optimal...... twist distribution along the blade due to the coupling induced twist. Some of the power loss can be compensated by pretwisting the blade. This paper presents a pretwisting procedure for large blade deflections and investigates the effect of pretwisting on blade geometry, annual energy production......, and fatigue load for the DTU 10 MW Reference Wind Turbine. The analysis was carried out by calculating the nonlinear steady state rotor deflection in an uniform inflow over the operational range of the turbine. The steady state power curve together with a Rayleigh wind speed distribution has been used...

  10. POD based analysis of three-dimensional stall over a pitching wind turbine blade

    Science.gov (United States)

    Melius, Matthew; Bayoan Cal, Raul; Mulleners, Karen

    2015-11-01

    Aerodynamic performance of a wind turbine blade is a predominant factor in its power production. Under dynamic loading conditions, predicted aerodynamic loads often do not match operational loads. In the interest of gaining understanding of the complex flow over wind turbine blades, a three-dimensional scaled blade model has been designed and manufactured to be dynamically similar to a rotating full-scale NREL 5MW wind turbine blade. Time resolved particle image velocimetry (PIV) measurements collected over the suction surface of an inboard section of the experimental turbine blade. Flow characteristics are analyzed using coherent structure identification techniques to capture dynamic stall behavior. Proper orthogonal decomposition (POD) is applied to the velocity field providing information about separation point and stall development time scales based on the associated time coefficients and modes. Additionally, continuity and circulation calculations are used to capture three dimensional effects within stalled volumes during developing stall and re-attachment phases of dynamic stall.

  11. Model Predictive Control of Trailing Edge Flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien; Poulsen, Niels Kjølstad; Buhl, Thomas;

    2011-01-01

    Trailing Edge Flaps on wind turbine blades have been studied in order to achieve fatigue load reduction on the turbine components. We show in this paper how Model Predictive Control can be used to do frequency weighted control of the trailing edge flaps in order to reduce fatigue damage...... on the blade root. The design model is based on a modal model of the blade structure and a steady state aerodynamic model of the blade airfoils. Depending on the output filter, loads within different frequency range are decreased. A fine tuning of the Kalman filter and of the cost function allows to decrease...... significantly the blade root loads without damaging excessively the trailing edge flap actuators....

  12. Fluid-structure interaction of a wind turbine blade employing a refined finite element model coupled with a blade-element momentum method

    OpenAIRE

    Peeters, Mathijs; Van Paepegem, Wim

    2015-01-01

    Typically the aero-elastic simulation tools that are used in industry employ simple beam models to represent the blades of a wind turbine. The aerodynamic loads are usually calculated using a fast blade-element momentum (BEM) method. These models allow relatively fast calculation of the aero-elastic behavior of the blade which is required in order to allow the simulation of a large number of load cases as required by the IEC 61400 [1] and GL [2] standards in a feasible amount of time. Such b...

  13. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  14. Experimental Blade Research

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Branner, Kim; Berring, Peter;

    This report is a summary of the results obtained in the project: Experimental Blade Research – phase 2 (EBR2). The project was supported by the Danish Energy Authority through the 2010 Energy Technology Development and Demonstration Program (EUDP 2010-II) and has journal no. 64011-0006. The proje...... has been running from spring 2011 to the end of 2014. Being a summary report, this report only contains a collection of the research topics and the major results. For more details, see the publications listed at the end of this report.......This report is a summary of the results obtained in the project: Experimental Blade Research – phase 2 (EBR2). The project was supported by the Danish Energy Authority through the 2010 Energy Technology Development and Demonstration Program (EUDP 2010-II) and has journal no. 64011-0006. The project...

  15. System ID Modern Control Algorithms for Active Aerodynamic Load Control and Impact on Gearbox Loading

    NARCIS (Netherlands)

    Berg, D.; Wilson, D.; Resor, B.; Berg, J.; Barlas, J.; Crowther, A.; Halse, C.

    2010-01-01

    Prior work on active aerodynamic load control (AALC) of wind turbine blades has demonstrated that appropriate use of this technology has the potential to yield significant reductions in blade loads, leading to a decrease in wind cost of energy. While the general concept of AALC is usually discussed

  16. Ultimate strength of a large wind turbine blade

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt

    2009-01-01

    The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural...... behaviour of wind turbine blades. Four failure mechanisms observed during the fullscale tests and the corresponding FE-analysis are presented. Elastic mechanisms associated with failure, such as buckling, localized bending and the Brazier effect, are studied. In the thesis six different types of structural...... reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load...

  17. Constructal blade shape in nanofluids

    OpenAIRE

    Bai Chao; Wang Liqiu

    2011-01-01

    Abstract Blade configuration of nanofluids has been proven to perform much better than dispersed configuration for some heat conduction systems. The analytical analysis and numerical calculation are made for the cylinder--shaped and regular-rectangular-prism--shaped building blocks of the blade-configured heat conduction systems (using nanofluids as the heat conduction media) to find the optimal cross-sectional shape for the nanoparticle blade under the same composing materials, composition r...

  18. Materials of large wind turbine blades: Recent results in testing and modeling

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Brøndsted, Povl; Nijssen, Rogier;

    2012-01-01

    for the experimental determination of reliable material properties used in the design of wind turbine blades and experimental validation of design models, (ii) development of predictive models for the life prediction, prediction of residual strength and failure probability of the blades and (iii) analysis...... of the effect of the microstructure of wind turbine blade composites on their strength and ways of microstructural optimization of the materials. By testing reference coupons, the effect of testing parameters (temperature and frequency) on the lifetime of blade composites was investigated, and the input data...... for advanced design of wind turbine blades were collected. For assessing the residual strength and stiffness of wind turbine blades subjected to irregular cyclic loads, a shell-based finite element numerical methodology was developed, taking into account the non-linear response of plies, and experimentally...

  19. The Effect of Composite Flexures on Aeroelastic Stability of a Hingeless Rotor Blade

    Institute of Scientific and Technical Information of China (English)

    Shi; Qinghua

    2007-01-01

    The effects of ply orientation angle of composite flexures on stability of hingeless rotor blade system are studied.The composite hingeless rotor blade system is simplified as a hub,a flap flexure and a lag flexure.pitch bearing and main blade.The kinematics formulations are inferred by employing the moderate deflection beam theory.The shear deformation and warping related to torsion are considered.The quasi-steady strip theory with dynamic inflow effects is applied to obtain the aerodynamic loads acting on the blade.Based on these.the set of finite element formulations of a hingeless rotor blade system is worked out.The numerical results show that the ply angle of the composite flexures has great effects on the aeroelastic stability of rotor blade.

  20. Aero-Thermo-Structural Design Optimization of Internally Cooled Turbine Blades

    Science.gov (United States)

    Dulikravich, G. S.; Martin, T. J.; Dennis, B. H.; Lee, E.; Han, Z.-X.

    1999-01-01

    A set of robust and computationally affordable inverse shape design and automatic constrained optimization tools have been developed for the improved performance of internally cooled gas turbine blades. The design methods are applicable to the aerodynamics, heat transfer, and thermoelasticity aspects of the turbine blade. Maximum use of the existing proven disciplinary analysis codes is possible with this design approach. Preliminary computational results demonstrate possibilities to design blades with minimized total pressure loss and maximized aerodynamic loading. At the same time, these blades are capable of sustaining significantly higher inlet hot gas temperatures while requiring remarkably lower coolant mass flow rates. These results suggest that it is possible to design internally cooled turbine blades that will cost less to manufacture, will have longer life span, and will perform as good, if not better than, film cooled turbine blades.

  1. Tuned liquid column dampers for mitigation of edgewise vibrations in rotating wind turbine blades

    DEFF Research Database (Denmark)

    Zhang, Zili; Basu, Biswajit; Nielsen, Søren R.K.

    2015-01-01

    Edgewise vibrations in wind turbine blades are lightly damped, and large amplitude vibrations induced by the turbulence may significantly shorten the fatigue life of the blade. This paper investigates the performance of tuned liquid column dampers (TLCDs) for mitigating edgewise vibrations...... in rotating wind turbine blades. Normally, the centrifugal acceleration at the outboard portion of a rotating blade can reach to a magnitude of 7–8 g, which makes it possible to use a TLCD with a very small mass for suppressing edgewise vibrations effectively. The parameters of the TLCD to be optimized......, with the consideration of both the space limitation inside the blade and the constraint of the liquid motion. The edgewise modal load for the 2-DOF model has been calculated from a more sophisticated 13-DOF aeroelastic wind turbine model, which includes the coupling of the blade-tower-drivetrain vibration...

  2. CHARACTERIZATION OF A MOBILE OSCILLATORY FATIGUE OPERATOR FOR WIND TURBINE BLADE TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo, P.E.; Cotrell, J.

    2008-01-01

    Laboratory testing of wind turbine blades is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and fi nancial risks of deploying mass-produced wind turbine models. Fatigue testing at the National Wind Technology Center (NWTC) is currently conducted using Universal Resonance Excitation (UREX) technology. In a UREX test, the blade is mounted to a rigid stand and hydraulic exciters mounted to the blade are used to excite the blade to its resonant frequency. A drawback to UREX technology is that mounting hydraulic systems to the blade is diffi cult and requires a relatively long set-up period. An alternative testing technology called the Mobile Oscillatory Fatigue Operator (MOFO) has been analyzed. The MOFO uses an oscillating blade test-stand rather than a rigid stand, avoiding the need to place hydraulic systems on the blade. The MOFO will be demonstrated by converting an existing test-stand at the NWTC to an oscillating stand that can test blades up to 25 m in length. To obtain the loads necessary to design the MOFO, the system motion is modeled using rigid body and lumped mass dynamics models. Preliminary modeling indicates the existing stand can be converted to a MOFO relatively easily. However, the blade dynamic models suggest that blade bending moment distributions are signifi cantly different for UREX and MOFO testing; more sophisticated models are required to assess the implication of this difference on the accuracy of the test.

  3. Unsteady potential flow past a propeller blade section

    Science.gov (United States)

    Takallu, M. A.

    1990-01-01

    An analytical study was conducted to predict the effect of an oscillating stream on the time dependent sectional pressure and lift coefficients of a model propeller blade. The assumption is that as the blade sections encounter a wake, the actual angles of attack vary in a sinusoidal manner through the wake, thus each blade is exposed to an unsteady stream oscillating about a mean value at a certain reduced frequency. On the other hand, an isolated propeller at some angle of attack can experience periodic changes in the value of the flow angle causing unsteady loads on the blades. Such a flow condition requires the inclusion of new expressions in the formulation of the unsteady potential flow around the blade sections. These expressions account for time variation of angle of attack and total shed vortices in the wake of each airfoil section. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficients exhibit a hysteresis loop.

  4. Cable connected active tuned mass dampers for control of in-plane vibrations of wind turbine blades

    Science.gov (United States)

    Fitzgerald, B.; Basu, B.

    2014-11-01

    In-plane vibrations of wind turbine blades are of concern in modern multi-megawatt wind turbines. Today's turbines with capacities of up to 7.5 MW have very large, flexible blades. As blades have grown longer the increasing flexibility has led to vibration problems. Vibration of blades can reduce the power produced by the turbine and decrease the fatigue life of the turbine. In this paper a new active control strategy is designed and implemented to control the in-plane vibration of large wind turbine blades which in general is not aerodynamically damped. A cable connected active tuned mass damper (CCATMD) system is proposed for the mitigation of in-plane blade vibration. An Euler-Lagrangian wind turbine model based on energy formulation has been developed for this purpose which considers the structural dynamics of the system and the interaction between in-plane and out-of-plane vibrations and also the interaction between the blades and the tower including the CCATMDs. The CCATMDs are located inside the blades and are controlled by an LQR controller. The turbine is subject to turbulent aerodynamic loading simulated using a modification to the classic Blade Element Momentum (BEM) theory with turbulence generated from rotationally sampled spectra. The turbine is also subject to gravity loading. The effect of centrifugal stiffening of the rotating blades has also been considered. Results show that the use of the proposed new active control scheme significantly reduces the in-plane vibration of large, flexible wind turbine blades.

  5. Subcomponent testing of trailing edge panels in wind turbine blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Haselbach, Philipp Ulrich

    2016-01-01

    This paper proposes a static subcomponent test method designed to check the compressive strength of the trailing edge region in wind turbine blades under a simplified loading. The paper presents numerical simulations using the proposed subcomponent test method and discusses its ability to be used...

  6. Structural response of fiber composite fan blades

    Science.gov (United States)

    Chamis, C. C.; Minich, M. D.

    1975-01-01

    A fiber composite airfoil, typical for high-tip speed compressor applications, is subjected to load conditions anticipated to be encountered in such applications, and its structural response is theoretically investigated. The analysis method used consists of composite mechanics embedded in pre- and post-processors and coupled with NASTRAN. The load conditions examined include thermal due to aerodynamic heating, pressure due to aerodynamic forces, centrifugal, and combinations of these. The various responses investigated include root reactions due to various load conditions, average composite and ply stresses, ply delaminations, and the fundamental modes and the corresponding reactions. The results show that the thermal and pressure stresses are negligible compared to those caused by the centrifugal forces. Also, the core-shell concept for composite blades is an inefficient design (core plies not highly stressed) and appears to be sensitive to interply delaminations. The results are presented in graphical and tabular forms to illustrate the types and amount of data required for such an analysis, and to provide quantitative data of the various responses which can be helpful in designing such composite blades.

  7. Aeroelastic behavior of twist-coupled HAWT blades

    Energy Technology Data Exchange (ETDEWEB)

    Lobitz, D.W.; Veers, P.S.

    1998-12-31

    As the technology for horizontal axis wind turbines (HAWT) development matures, more novel techniques are required for the capture of additional amounts of energy, alleviation of loads and control of the rotor. One such technique employs the use of an adaptive blade that could sense the wind velocity or rotational speed in some fashion and accordingly modify its aerodynamic configuration to meet a desired objective. This could be achieved in either an active or passive manner, although the passive approach is much more attractive due to its simplicity and economy. As an example, a blade design might employ coupling between bending and/or extension, and twisting so that, as it bends and extends due to the action of the aerodynamic and inertial loads, it also twists modifying the aerodynamic performance in some way. These performance modifications also have associated aeroelastic effects, including effects on aeroelastic instability. To address the scope and magnitude of these effects a tool has been developed for investigating classical flutter and divergence of HAWT blades. As a starting point, an adaptive version of the uniform Combined Experiment Blade will be investigated. Flutter and divergence airspeeds will be reported as a function of the strength of the coupling and also be compared to those of generic blade counterparts.

  8. A Reinforced Blade for a Wind Turbine

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a reinforced blade for a wind turbine having elongated reinforcing members in the blade extending substantially in the plane of the profile chord in order to strengthen the blade against edgewise and flapwise forces.......The present invention relates to a reinforced blade for a wind turbine having elongated reinforcing members in the blade extending substantially in the plane of the profile chord in order to strengthen the blade against edgewise and flapwise forces....

  9. Useful life consumption analysis of the blades of a gas turbine by thermofluency during constant load operation; Analisis de consumo de vida util por termofluencia en alabes de turbinas de gas durante operacion con carga constante

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Quiroz, Gerardo Daniel

    2005-08-15

    A new analytical model for creep life prediction of gas turbine blades is proposed. The ultimate tensile strength is included to reflect heat-to-heat variations in strength. A thermo mechanical analysis is made using the finite element method. With the stress distribution obtained, some creep life prediction models as the Norton-Bailey and Dorn-Bailey models were reviewed as well as the Larson-Miller parameter. The time to failure data obtained with the previous analysis, was used to determine the new creep life prediction model coefficients. The results obtained are in good concordance with experimental data for IN-738-LN gas turbine blades. [Spanish] En el presente trabajo se propone un nuevo modelo analitico para predecir la vida util por termofluencia en alabes de turbinas de gas, donde se incluye el esfuerzo ultimo de tension para reflejar el efecto que tiene la variacion de la temperatura en la rigidez del material. Para lograr esto, primero se hizo un analisis termomecanico del alabe, utilizando el metodo de elementos finitos. Con los esfuerzos obtenidos, se hizo una revision de los modelos de consumo de vida de Norton-Bailey y de Dorn-Bailey. Tambien se utilizo el parametro Larson-Miller para obtener datos de consumo de vida. Con los resultados de los analisis anteriores, fue posible determinar los coeficientes del modelo propuesto. Los resultados obtenidos estan en buena concordancia con los datos experimentales del alabe, y muestran un error menor que el de los modelos revisados.

  10. Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

    Science.gov (United States)

    Arakere, Nagaraj K.; Swanson, Gregory

    2000-01-01

    Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach

  11. Design of centrifugal impeller blades

    Science.gov (United States)

    Betz, A; Flugge-Lotz, I

    1939-01-01

    This paper restricts itself to radial impellers with cylindrical blades since, as Prasil has shown, the flow about an arbitrarily curved surface of revolution may be reduced to this normal form we have chosen by a relatively simple conformal transformation. This method starts from the simple hypotheses of the older centrifugal impeller theory by first assuming an impeller with an infinite number of blades. How the flow is then modified is then investigated. For the computation of flow for a finite number of blades, the approximation method as developed by Munk, Prandtl and Birnbaum, or Glauert is found suitable. The essential idea of this method is to replace the wing by a vortex sheet and compute the flow as the field of these vortices. The shape of the blades is then obtained from the condition that the flow must be along the surface of the blade.

  12. SERI advanced wind turbine blades

    Science.gov (United States)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10 percent to 30 percent more energy than conventional blades.

  13. Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade

    Energy Technology Data Exchange (ETDEWEB)

    Bir, G. S.; Lawson, M. J.; Li, Y.

    2011-10-01

    This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-based structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.

  14. Experimental Investigation of the Influence of Local Flow Features on the Aerodynamic Damping of an Oscillating Blade Row

    OpenAIRE

    Sanz Luengo, Antonio

    2014-01-01

    The general trend of efficiency increase, weight and noise reduction has derived in the design of more slender, loaded, and 3D shaped blades. This has a significant impact on the stability of fan, and low pressure turbine blades, which are more prone to aeroelastic phenomena such as flutter. The flutter phenomenon is a self-excited, self-sustained unstable vibration produced by the interaction of flow and structure. These working conditions will induce either blade overload, or High Cycle Fat...

  15. A tip deflection calculation method for a wind turbine blade using temperature compensated FBG sensors

    International Nuclear Information System (INIS)

    The tip deflections of wind turbine blades should be monitored continuously to prevent catastrophic failures of wind turbine power plants caused by blades hitting the tower. In this paper, a calculation method for wind turbine blade tip deflection is proposed using a finite difference method based on arbitrary beam bending and moment theory using measured strains. The blade strains were measured using fiber optic Bragg grating sensors. In order to confirm this method, a 100 kW composite wind turbine blade was manufactured with epoxy molded fiber optic Bragg grating (FBG) sensors installed in the shear web of the blade. A number of these sensors, normal FBG probes, were fabricated to only measure strains and the other sensors, temperature compensated FBG probes, were prepared to also measure strain and temperature. Because the output signals of FBG sensors are dependent on strains as well as temperatures, the sensor output signals should be compensated by the temperatures to obtain accurate strains. These FBG sensors were attached on the lower and upper parts of the web at one meter intervals throughout the entire length of the blade. To evaluate the measurement accuracy of the FBG sensors, conventional electrical strain gauges were also bonded onto the surface of the web beside each FBG sensor. By performing a static load test of the blade, the calculated tip deflection of the blade was well determined within an average error of 2.25%. (paper)

  16. Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Project Report

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Dayton A.

    2005-09-29

    Evaluation of Aeroelastically Tailored Small Wind Turbine Blades Final Report Global Energy Concepts, LLC (GEC) has performed a conceptual design study concerning aeroelastic tailoring of small wind turbine blades. The primary objectives were to evaluate ways that blade/rotor geometry could be used to enable cost-of-energy reductions by enhancing energy capture while constraining or mitigating blade costs, system loads, and related component costs. This work builds on insights developed in ongoing adaptive-blade programs but with a focus on application to small turbine systems with isotropic blade material properties and with combined blade sweep and pre-bending/pre-curving to achieve the desired twist coupling. Specific goals of this project are to: (A) Evaluate and quantify the extent to which rotor geometry can be used to realize load-mitigating small wind turbine rotors. Primary aspects of the load mitigation are: (1) Improved overspeed safety affected by blades twisting toward stall in response to speed increases. (2) Reduced fatigue loading affected by blade twisting toward feather in response to turbulent gusts. (B) Illustrate trade-offs and design sensitivities for this concept. (C) Provide the technical basis for small wind turbine manufacturers to evaluate this concept and commercialize if the technology appears favorable. The SolidWorks code was used to rapidly develop solid models of blade with varying shapes and material properties. Finite element analyses (FEA) were performed using the COSMOS code modeling with tip-loads and centripetal accelerations. This tool set was used to investigate the potential for aeroelastic tailoring with combined planform sweep and pre-curve. An extensive matrix of design variables was investigated, including aerodynamic design, magnitude and shape of planform sweep, magnitude and shape of blade pre-curve, material stiffness, and rotor diameter. The FEA simulations resulted in substantial insights into the structural

  17. Turbine blade friction damping study

    Science.gov (United States)

    Dominic, R. J.

    1985-01-01

    A lumped parameter method, implemented on a VAX 11/780 computer shows that the primary parameters affecting the performance of the friction damper of the first stage turbine of the SSME high pressure fuel pump are: the damper-blade coefficient of friction; the normal force applied to the friction interface; the amplitude of the periodic forcing function; the relative phase angle of the forcing functions for adjacent blades bridged by a damper (effectively, the engine order of the forcing function); and the amount of hysteretic damping that acts to limit the vibration amplitude of the blade in its resonance modes. The low order flexural resonance vibration modes of HPFTP blades without dampers, with production dampers, and with two types of lightweight experimental dampers were evaluated in high speed spin pit tests. Results agree with those of the analytical study in that blades fitted with production friction dampers experienced the airfoil-alone flexural resonance mode, while those without dampers or with lighter weight dampers did not. No blades fitted with dampers experienced the whole blade flexural resonance mode during high speed tests, while those without dampers did.

  18. Sources of fatigue damage to passive yaw wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  19. Fundamentals for remote condition monitoring of offshore wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Sørensen, Bent F.

    2007-01-01

    of safety and reduce the requirement for manual inspections. The turbine blades of a modern wind farm are incredibly large rotating components Subjected to cyclic load variations (both the aerodynamic loading and the constant variation in gravitational loading during rotation) which can lead to fatigue......It is anticipated that the large offshore wind farms planed for the near future will require a level of sensor technology sufficient to monitor their general condition from on-shore stations. The continuous monitoring of operational condition and structural responses will give a higher level...... damage or failure in the Structural materials. The vision is of future blades containing sensors that give very early indications of any damage that is classed as critical or that is developing unacceptably rapidly. This early indication allows the option of changing operating conditions, and of a timely...

  20. Life assessment and extension for gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, P.; Salonen, J.; Rantala, J. (VTT Technical Research Centre of Finland, Espoo (Finland)); Maekinen, S. (Helsingin Energia, Helsinki (Finland)); Karvonen, I.; Tanttari, H. (Lappeenrannan Energia, Lappeenranta (Finland)); Kangas, P. (Neste Oil, Porvoo (Finland)); Taattola, J. (FIAF, Tampere (Finland))

    2010-05-15

    Gas turbine blades operate under severe loading conditions, and for satisfactory service must be designed to withstand multiple damage mechanisms. On the other hand, if the assumptions on the future service are sufficiently conservative or actual service conditions more benign than foreseen, there is potential for blade life extension. This generally does not justify fully omitting intermediate inspections, as intervening damage by e.g. overheating or foreign objects is not excluded, and restoring coatings or other repairs could be needed. Nevertheless, a significant extension to the time of final replacement can be possible. In this work, example cases are used to highlight the technical challenges and results of blade life extension. Such aspects include assessment of in-service stress and temperature histories, interpretation of condition assessment, and materials performance. The example cases refer to ex-service blade samples extracted at the time approximately corresponding to the nominal blade life as defined by the engine supplier. Both land based and aircraft turbines are considered, and in spite of the differences in design and service profiles, similarities can be pointed out. The results for the example cases generally suggest significant potential for life extension, for reasons related to the case-specific service histories. (orig.)

  1. Incipient Crack Detection in Composite Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Stuart G. [Los Alamos National Laboratory; Choi, Mijin [Chonbuk National University, Korea; Jeong, Hyomi [Chonbuk National University, Korea; Jang, Jae Kyeong [Chonbuk National University, Korea; Park, Gyuhae [Chonnam National University, Korea; Farinholt, Kevin [Commonwealth Center for Advanced Manufacturing, VA; Farrar, Charles R. [Los Alamos National Laboratory; Ammerman, Curtt N. [Los Alamos National Laboratory; Todd, Michael D. [Los Alamos National Laboratory; Lee, Jung-Ryul [Chonbuk National University, Korea

    2012-08-28

    This paper presents some analysis results for incipient crack detection in a 9-meter CX-100 wind turbine blade that underwent fatigue loading to failure. The blade was manufactured to standard specifications, and it underwent harmonic excitation at its first resonance using a hydraulically-actuated excitation system until reaching catastrophic failure. This work investigates the ability of an ultrasonic guided wave approach to detect incipient damage prior to the surfacing of a visible, catastrophic crack. The blade was instrumented with piezoelectric transducers, which were used in an active, pitchcatch mode with guided waves over a range of excitation frequencies. The performance results in detecting incipient crack formation in the fiberglass skin of the blade is assessed over the range of frequencies in order to determine the point at which the incipient crack became detectable. Higher excitation frequencies provide consistent results for paths along the rotor blade's carbon fiber spar cap, but performance falls off with increasing excitation frequencies for paths off of the spar cap. Lower excitation frequencies provide more consistent performance across all sensor paths.

  2. Stall Flutter Control of a Smart Blade Section Undergoing Asymmetric Limit Oscillations

    Directory of Open Access Journals (Sweden)

    Nailu Li

    2016-01-01

    Full Text Available Stall flutter is an aeroelastic phenomenon resulting in unwanted oscillatory loads on the blade, such as wind turbine blade, helicopter rotor blade, and other flexible wing blades. Although the stall flutter and related aeroelastic control have been studied theoretically and experimentally, microtab control of asymmetric limit cycle oscillations (LCOs in stall flutter cases has not been generally investigated. This paper presents an aeroservoelastic model to study the microtab control of the blade section undergoing moderate stall flutter and deep stall flutter separately. The effects of different dynamic stall conditions and the consequent asymmetric LCOs for both stall cases are simulated and analyzed. Then, for the design of the stall flutter controller, the potential sensor signal for the stall flutter, the microtab control capability of the stall flutter, and the control algorithm for the stall flutter are studied. The improvement and the superiority of the proposed adaptive stall flutter controller are shown by comparison with a simple stall flutter controller.

  3. EFFECTS OF SPLITTER BLADES ON THE LAW OF INNER FLOW WITHIN CENTRIFUGAL PUMP IMPELLER

    Institute of Scientific and Technical Information of China (English)

    YUAN Shouqi; ZHANG Jinfeng; YUAN Jianping; HE Youshi; FU Yuedeng

    2007-01-01

    Analysis on the inner flow field of a centrifugal pump impeller with splitter blades is carried out by numerical simulation. Based on this analysis, the principle of increasing pump head and efficiency are discussed. New results are obtained from the analysis of turbulence kinetic energy and relative velocity distribution: Firstly, unreasonable length or deviation design of the splitter blades may cause great turbulent fluctuation in impeller channel, which has a great effect on the stability of impeller outlet flow; Secondly, it is found that the occurrence of flow separation can be decreased or delayed with splitter blades from the analysis of blade loading; Thirdly, the effect of splitter blades on reforming the structure of "jet-wake" is explained from the relative velocity distribution at different flow cross-sections, which shows the flow process in the impeller. The inner flow analysis verifies the results of performance tests results and the PIV test.

  4. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage...... accumulation is determined from variable amplitude fatigue tests with the Wisper and Wisperx spectra. The statistical uncertainty for the assessment of the fatigue loads is also investigated. The partial safety factors are calibrated for design load case 1.2 in IEC 61400-1. The fatigue loads are determined...

  5. Blade tip timing (BTT) uncertainties

    Science.gov (United States)

    Russhard, Pete

    2016-06-01

    Blade Tip Timing (BTT) is an alternative technique for characterising blade vibration in which non-contact timing probes (e.g. capacitance or optical probes), typically mounted on the engine casing (figure 1), and are used to measure the time at which a blade passes each probe. This time is compared with the time at which the blade would have passed the probe if it had been undergoing no vibration. For a number of years the aerospace industry has been sponsoring research into Blade Tip Timing technologies that have been developed as tools to obtain rotor blade tip deflections. These have been successful in demonstrating the potential of the technology, but rarely produced quantitative data, along with a demonstration of a traceable value for measurement uncertainty. BTT technologies have been developed under a cloak of secrecy by the gas turbine OEM's due to the competitive advantages it offered if it could be shown to work. BTT measurements are sensitive to many variables and there is a need to quantify the measurement uncertainty of the complete technology and to define a set of guidelines as to how BTT should be applied to different vehicles. The data shown in figure 2 was developed from US government sponsored program that bought together four different tip timing system and a gas turbine engine test. Comparisons showed that they were just capable of obtaining measurement within a +/-25% uncertainty band when compared to strain gauges even when using the same input data sets.

  6. Actuator control of edgewise vibrations in wind turbine blades

    Science.gov (United States)

    Staino, A.; Basu, B.; Nielsen, S. R. K.

    2012-03-01

    Edgewise vibrations with low aerodynamic damping are of particular concern in modern multi-megawatt wind turbines, as large amplitude cyclic oscillations may significantly shorten the life-time of wind turbine components, and even lead to structural damages or failures. In this paper, a new blade design with active controllers is proposed for controlling edgewise vibrations. The control is based on a pair of actuators/active tendons mounted inside each blade, allowing a variable control force to be applied in the edgewise direction. The control forces are appropriately manipulated according to a prescribed control law. A mathematical model of the wind turbine equipped with active controllers has been formulated using an Euler-Lagrangian approach. The model describes the dynamics of edgewise vibrations considering the aerodynamic properties of the blade, variable mass and stiffness per unit length and taking into account the effect of centrifugal stiffening, gravity and the interaction between the blades and the tower. Aerodynamic loads corresponding to a combination of steady wind including the wind shear and the effect of turbulence are computed by applying the modified Blade Element Momentum (BEM) theory. Multi-Blade Coordinate (MBC) transformation is applied to an edgewise reduced order model, leading to a linear time-invariant (LTI) representation of the dynamic model. The LTI description obtained is used for the design of the active control algorithm. Linear Quadratic (LQ) regulator designed for the MBC transformed system is compared with the control synthesis performed directly on an assumed nominal representation of the time-varying system. The LQ regulator is also compared against vibration control performance using Direct Velocity Feedback (DVF). Numerical simulations have been carried out using data from a 5-MW three-bladed Horizontal-Axis Wind Turbine (HAWT) model in order to study the effectiveness of the proposed active controlled blade design in

  7. Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    Snowberg, D.; Dana, S.; Hughes, S.; Berling, P.

    2014-09-01

    A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axis testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.

  8. Ultimate strength of a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Moelholt Jensen, Find

    2008-05-15

    The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural behaviour of wind turbine blades. Four failure mechanisms observed during the fullscale tests and the corresponding FE-analysis are presented. Elastic mechanisms associated with failure, such as buckling, localized bending and the Brazier effect, are studied. Six different types of structural reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load carrying box girder. In total, five full-scale tests have been performed involving one complete blade and two shortened box girders. The second box girder was submitted to three independent tests covering different structural reinforcement alternatives. The advantages and disadvantages of testing a shortened load carrying box girder vs. an entire blade are discussed. Changes in the boundary conditions, loads and additional reinforcements, which were introduced in the box girder tests in order to avoid undesired structural elastic mechanisms, are presented. New and advanced measuring equipment was used in the fullscale tests to detect the critical failure mechanisms and to get an understanding of the complex structural behaviour. Traditionally, displacement sensors and strain gauges in blade tests are arranged based on an assumption of a Bernoulli-Euler beam structural response. In the present study it is shown that when following this procedure important information about distortions of the cross sections is lost. In the tests presented here, one of the aims was to measure distortion

  9. The Analysis of the Aerodynamic Character and Structural Response of Large-Scale Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2013-06-01

    Full Text Available A process of detailed CFD and structural numerical simulations of the 1.5 MW horizontal axis wind turbine (HAWT blade is present. The main goal is to help advance the use of computer-aided simulation methods in the field of design and development of HAWT-blades. After an in-depth study of the aerodynamic configuration and materials of the blade, 3-D mapping software is utilized to reconstruct the high fidelity geometry, and then the geometry is imported into CFD and structure finite element analysis (FEA software for completely simulation calculation. This research process shows that the CFD results compare well with the professional wind turbine design and certification software, GH-Bladed. Also, the modal analysis with finite element method (FEM predicts well compared with experiment tests on a stationary blade. For extreme wind loads case that by considering a 50-year extreme gust simulated in CFD are unidirectional coupled to the FE-model, the results indicate that the maximum deflection of the blade tip is less than the distance between the blade tip (the point of maximum deflection and the tower, the material of the blade provides enough resistance to the peak stresses the occur at the conjunction of shear webs and center spar cap. Buckling analysis is also included in the study.

  10. Fabrication of low-cost Mod-OA wood composite wind turbine blades

    Science.gov (United States)

    Lark, R. F.; Gougeon, M.; Thomas, G.; Zuteck, M.

    1983-01-01

    The wood composite blades were fabricated by using epoxy resin-bonded laminates of Douglas fir veneers for the leading edge spar sections and honeycomb-cored birch plywood panels for the blade trailing edge or afterbody sections. The blade was joined to the wind turbine hub assembly by epoxy resin-bonded steel load take-off studs. The wood composite blades were installed in the Mod-OA wind turbine test facility at Kahuku, Hawaii. The wood composite blades have successfully completed high power (average of 150 kW) operations for an eighteen month period (nearly 8,000 hr) before replacement with another set of wood composite blades. The original set of blades was taken out of service because of the failure of the shank on one stud. An inspection of the blades at NASA-Lewis showed that the shank failure was caused by a high stress concentration at a corrosion pit on the shank fillet radius which resulted in fatigue stresses in excess of the endurance limit.

  11. BLADE SECTION DESIGN OF MARINE PROPELLERS WITH MAXIMUM CAVITATION INCEPTION SPEED

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhi-bo; KUIPER Gert

    2012-01-01

    Kuiper and Jessup (1993) developed a design method for propellers in a wake based on the Eppler foil design method.The optimized section is transformed into the three-dimensional propeller flow using the approach of the effective blade sections.Effective blade sections are two-dimensional sections in two-dimensional flow which have the same chordwise loading distribution as the three-dimensional blade sections of a propeller.However,the design procedure is laborious in two aspects:finding an optimum blade section using the Eppler program requires much skill of the designer,and transforming the two-dimensional blade section into a propeller blade section in three-dimensional flow is complex.In this work,these two problems were coped with.A blade section design procedure was presented using an optimization technique and an alternative procedure for the effective blade section is developed using a lifting surface design method.To validate the method a benchmark model of a naval ship was used.This benchmark model was extended by new appendices and a reference propeller,and designed using conventional design methods.This reference propeller was optimized using the new design procedure and model tests were carried out.Special attention was given to the data of the model and the reference propeller,to make the configuration suitable for the Reynolds-Averaged Navier-Stokes (RANS) calculations.

  12. Development of Cutting Condition Monitoring System for ID-blade Saw Slicing Machine

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhongwei; LI Fenlan; KAWASHIMA Kazuo

    2006-01-01

    The purpose of this study is focused on development of an online monitoring system for measuring and evaluating the cutting condition as the ID-blade saw is cutting a silicon ingot. First, the cutting experiments are carried out and the cutting signals during the blade slicing a six-inch ingot are measured by a 3-axes load sensor which is mounted on the top of the ingot. To evaluate the blade condition in slicing, a novel data processing method, combining the discrete Fourier transform(DFT) with the discrete Wavelet transform(DWT), is proposed in this paper for extracting the components due to the rotation of the blade and the cutting impedance. To validate the effect of the method, four ID-blades with three different types of the blade edge are used and discussed. The obtained results show that the component induced from the rotation and the component due to the blade slicing can be extracted efficiently by introduction of the proposed method. Furthermore, a simple online monitoring system,which consists of a 3-axes load sensor or acceleration sensor, DC cuts high-pass filter, and AD converter embedded microcomputer, is designed. The estimated cutting condition information obtained from the proposed monitoring system can be used as a feedback signal to the slicing machine for production of high quality wafer.

  13. Steady and unsteady blade stresses within the SSME ATD/HPOTP inducer

    Science.gov (United States)

    Gross, R. Steven

    1994-10-01

    There were two main goals of the ATD HPOTP (alternate turbopump development)(high pressure oxygen turbopump). First, determine the steady and unsteady inducer blade surface strains produced by hydrodynamic sources as a function of flow capacity (Q/N), suction specific speed (Nss), and Reynolds number (Re). Second, to identify the hydrodynamic source(s) of the unsteady blade strains. The reason the aforementioned goals are expressed in terms of blade strains as opposed to blade hydrodynamic pressures is because of the interest regarding the high cycle life of the inducer blades. This report focuses on the first goal of the test program which involves the determination of the steady and unsteady strain (stress) values at various points within the inducer blades. Strain gages were selected as the strain measuring devices. Concurrent with the experimental program, an analytical study was undertaken to produce a complete NASTRAN finite-element model of the inducer. Computational fluid dynamics analyses were utilized to provide the estimated steady-state blade surface pressure loading needed as load input to the NASTRAN inducer model.

  14. Development of a High-fidelity Experimental Substructure Test Rig for Grid-scored Sandwich Panels in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Laustsen, Steffen; Lund, Erik; Kühlmeier, L.;

    2014-01-01

    This paper outlines high-fidelity experimental substructure testing of sandwich panels which constitute the aerodynamic outer shell of modern wind turbine blades. A full-scale structural experimental and numerical characterisation of a composite wind turbine blade has been conducted. The developm...... of substructure tests for composite wind turbine blades. Furthermore, recommendations on the use of grid-scored sandwich structures in wind turbine blades are presented, which outline the sensitivity in terms of quasi-static strength to the established loading conditions.......This paper outlines high-fidelity experimental substructure testing of sandwich panels which constitute the aerodynamic outer shell of modern wind turbine blades. A full-scale structural experimental and numerical characterisation of a composite wind turbine blade has been conducted...

  15. Model predictive control of trailing edge flaps on a wind turbine blade

    DEFF Research Database (Denmark)

    Castaignet, Damien Bruno

    with three trailing edge flaps on one blade, located on DTU’s Risø Campus in Roskilde, Denmark. This thesis is divided into three parts: the controller design, results from simulations, and results from the experiments. The trailing edge flaps controller designed for this project is based on a frequency......, in Roskilde, Denmark. One blade of the turbine was equipped with three independent trailing edge flaps. In spite of the failure of several sensors and actuators, the test of the trailing edge flaps controller described in this thesis showed a consistent flapwise blade root fatigue load reduction. An average...

  16. Assessment Report on Innovative Rotor Blades (MAREWINT WP1,D1.3)

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Leble, Vladimir; Pereira, Gilmar Ferreira

    The offshore wind energy industry faces many challenges in the short to medium term if it is to meet the ambitions of the global community for sustainable energy supply in the future. Not least among these challenges is the issue of rotor blades. Innovative design for “smart” rotor blades with...... innovative concept development for wind turbine blades. This covers models and experiments with damage measurement systems embedded within the composite material/structure and numerical methods investigating the effects of leading and trailing edge flaps on modifying the aerodynamic loads on the operating...

  17. Flap-lag dynamics of hingeless helicopter blades at moderate and high advance ratios

    Science.gov (United States)

    Friedman, P.; Silverthorn, L. J.

    1974-01-01

    Equations for large amplitude coupled flaplag motion of a hingeless elastic helicopter blade in forward flight are derived. Only a torsionally rigid blade exicted by quasi-steady aerodynamic loads is considered. The effects of reversed flow together with some new terms due to forward flight are included. Using Galerkin's method the spatial dependence is eliminated and the equations are linearized about a suitable equilibrium position. The resulting system of equations is solved using multivariable Floquet-Liapunov theory, and the transition matrix at the end of the period is evaluated by two separate methods. Results illustrating the effects of forward flight and various important blade parameters on the stability boundaries are presented.

  18. Comparative analysis of steady state heat transfer in a TBC and functionally graded air cooled gas turbine blade

    Indian Academy of Sciences (India)

    Nilanjan Coomar; Ravikiran Kadoli

    2010-02-01

    Internal cooling passages and thermal barrier coatings (TBCs) are presently used to control metal temperatures in gas turbine blades. Functionally graded materials (FGMs), which are typically mixtures of ceramic and metal, have been proposed for use in turbine blades because they possess smooth property gradients thereby rendering them more durable under thermal loads. In the present work, a functionally graded model of an air-cooled turbine blade with airfoil geometry conforming to the NACA0012 is developed which is then used in a finite element algorithm to obtain a non-linear steady state solution to the heat equation for the blade under convection and radiation boundary conditions. The effects of external gas temperature, coolant temperature, surface emissivity changes and different average ceramic/metal content of the blade on the temperature distributions are examined. Simulations are also carried out to compare cooling effectiveness of functionally graded blades with that of blades having TBC. The results highlight the effect of including radiation in the simulation and also indicate that external gas temperature influences the blade heat transfer more strongly. It is also seen that graded blades with about 70% ceramic content can deliver better cooling effectiveness than conventional blades with TBC.

  19. Mechanical characterization of composite repairs for fiberglass wind turbine blades

    Science.gov (United States)

    Chawla, Tanveer Singh

    While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part

  20. Investigation of Dynamic Aerodynamics and Control of Wind Turbine Sections Under Relevant Inflow/Blade Attitude Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Naughton, Jonathan W. [University of Wyoming

    2014-08-05

    The growth of wind turbines has led to highly variable loading on the blades. Coupled with the relative reduced stiffness of longer blades, the need to control loading on the blades has become important. One method of controlling loads and maximizing energy extraction is local control of the flow on the wind turbine blades. The goal of the present work was to better understand the sources of the unsteady loading and then to control them. This is accomplished through an experimental effort to characterize the unsteadiness and the effect of a Gurney flap on the flow, as well as an analytical effort to develop control approaches. It was planned to combine these two efforts to demonstrate control of a wind tunnel test model, but that final piece still remains to be accomplished.

  1. Large, low cost composite wind turbine blades

    Science.gov (United States)

    Gewehr, H. W.

    1979-01-01

    A woven roving E-glass tape, having all of its structural fibers oriented across the tape width was used in the manufacture of the spar for a wind turbine blade. Tests of a 150 ft composite blade show that the transverse filament tape is capable of meeting structural design requirements for wind turbine blades. Composite blades can be designed for interchangeability with steel blades in the MOD-1 wind generator system. The design, analysis, fabrication, and testing of the 150 ft blade are discussed.

  2. Two LQRI based Blade Pitch Controls for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yoonsu Nam

    2012-06-01

    Full Text Available As the wind turbine size has been increasing and their mechanical components are built lighter, the reduction of the structural loads becomes a very important task of wind turbine control in addition to maximum wind power capture. In this paper, we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI, and utilize Kalman filters to estimate system states and wind speed. Compared to previous works in this area, our pitch control algorithms can control rotor speed and blade bending moments at the same time to improve the trade-off between rotor speed regulation and load reduction, while both collective and individual pitch controls can be designed separately. Simulation results show that the proposed collective and individual pitch controllers achieve very good rotor speed regulation and significant reduction of blade bending moments.

  3. Improved design for large wind turbine blades of fibre composites (Phase 4) - Summary report

    OpenAIRE

    Sørensen, Bent F; Toftegaard, Helmuth Langmaack; Goutianos, Stergios; Branner, Kim; Berring, Peter; Lund, E.; Wedel-Heinen, J.; Garm, J.H.

    2010-01-01

    Results are summarised for the project "Improved design for large wind turbine blades (Phase 4)", partially supported by the Danish Energy Agency under the Ministry of Climate and Energy through the EUDP journal no.: 33033-0267. The aim of the project was to develop new and better design methods for wind turbine blades, so that uncertainties associated with damage and defects can be reduced. The topics that are studied include buckling-driven delamination of flat load-carrying laminates, crac...

  4. Is blade element momentum theory (BEM) enough for smart rotor design

    NARCIS (Netherlands)

    Yu, W.; Simao Ferreira, C.J.; van Kuik, G.A.M.

    2014-01-01

    Smart rotor emerges as an innovation technique to reduce the impact of dynamic loading on wind turbines. Local movements of distributed aerodynamic devices will enhance the non-uniformity and dynamic effects of loading, which will challenge the applicability of the blade element momentum theory (BEM

  5. Damage localization in a residential-sized wind turbine blade by use of the SDDLV method

    Science.gov (United States)

    Johansen, R. J.; Hansen, L. M.; Ulriksen, M. D.; Tcherniak, D.; Damkilde, L.

    2015-07-01

    The stochastic dynamic damage location vector (SDDLV) method has previously proved to facilitate effective damage localization in truss- and plate-like structures. The method is based on interrogating damage-induced changes in transfer function matrices in cases where these matrices cannot be derived explicitly due to unknown input. Instead, vectors from the kernel of the transfer function matrix change are utilized; vectors which are derived on the basis of the system and state-to-output mapping matrices from output-only state-space realizations. The idea is then to convert the kernel vectors associated with the lowest singular values into static pseudo-loads and apply these alternately to an undamaged reference model with known stiffness matrix. By doing so, the stresses in the potentially damaged elements will, theoretically, approach zero. The present paper demonstrates an application of the SDDLV method for localization of structural damages in a cantilevered residential-sized wind turbine blade. The blade was excited by an unmeasured multi-impulse load and the resulting dynamic response was captured through accelerometers mounted along the blade. The static pseudo-loads were applied to a finite element (FE) blade model, which was tuned against the modal parameters of the actual blade. In the experiments, an undamaged blade configuration was analysed along with different damage scenarios, hereby testing the applicability of the SDDLV method.

  6. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    2016-08-01

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both of the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.

  7. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    2016-07-29

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both of the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.

  8. Structural response of a fiber composite compressor fan blade airfoil

    Science.gov (United States)

    Chamis, C. C.; Minich, M. D.

    1975-01-01

    A theoretical investigation was performed to determine the structural response of a fiber composite airfoil typical of those encountered in high-tip speed compressor fan blades when subjected to load conditions anticipated in such applications. The analysis method consisted of composite mechanics embedded in pre- and post-processors coupled with NASTRAN. The load conditions examined include thermal due to aerodynamic heating, pressure due to aerodynamic forces, and centrifugal. Root reactions due to various load conditions, average composite and ply stresses, ply delaminations, and the fundamental modes and the corresponding reactions were investigated. The results show that the thermal and pressure stresses are negligible compared to those caused by the centrifugal forces. The core-shell concept for composite blades is an inefficient design and is sensitive to interply delaminations. The results are presented in graphical and tabular forms to illustrate the types and amount of data required for the analysis, and to provide quantitative data associated with the various responses which can be helpful in designing composite blades.

  9. Load prediction of stall regulated wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, A.; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Carlen, I. [Chalmers Univ. of Technology, Goeteborg (Sweden). Div. of Marine Structural Engineering; Ganander, H. [Teknikgruppen AB, Sollentua (Sweden)

    1996-12-01

    Measurements of blade loads on a turbine situated in a small wind farm shows that the highest blade loads occur during operation close to the peak power i.e. when the turbine operates in the stall region. In this study the extensive experimental data base has been utilised to compare loads in selected campaigns with corresponding load predictions. The predictions are based on time domain simulations of the wind turbine structure, performed by the aeroelastic code VIDYN. In the calculations a model were adopted in order to include the effects of dynamic stall. This paper describes the work carried out so far within the project and key results. 5 refs, 10 figs

  10. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  11. Use of blade lean in turbomachinery redesign

    Science.gov (United States)

    Moore, John; Moore, Joan G.; Lupi, Alex

    1993-07-01

    Blade lean is used to improve the uniformity of exit flow distributions from turbomachinery blading. In turbines, it has been used to control secondary flows by tailoring blade turning to reduce flow overturning and underturning and to create more uniform loss distributions from hub to shroud. In the present study, the Pump Consortium centrifugal impeller has been redesigned using blade lean. The flow at the exit of the baseline impeller had large blade-to-blade variations, creating a highly unsteady flow for the downstream diffuser. Blade lean is used to redesign the flow to move the high loss fluid from the suction side to the hub, significantly reducing blade-toblade variations at the exit.

  12. Application of Out-of-Plane Warping to Control Rotor Blade Twist

    Science.gov (United States)

    VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh

    2012-01-01

    The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.

  13. The impact of inertial forces on morphing wind turbine blade in vertical axis configuration

    International Nuclear Information System (INIS)

    Highlights: • A novel flexible VAWT has been experimentally tested alongside numerically simulations. • Using FEA and CFD, direction of blade bending was predicted from inertial and aerodynamic forces. • High-speed camera footage has been used to validate the model. • The flexible VAWT was found to self-start in the majority of tests, while the rigid one did not. • It is suggested that flexible VAWTs can have improved performance in part-load applications. - Abstract: A novel flexible blade concept with the ability to morph and geometrically adapt to changing flow conditions has been proposed to improve part-load performance of horizontal-axis wind turbines. The extension of these benefits to a vertical axis wind turbine would make wind technology a more competitive player in the energy market. Both flexible and rigid wind turbine rotor blades for vertical axis application were modeled, designed, manufactured and tested. Their performances were tested in a low speed wind tunnel. The predicted magnitude and direction of blade morph was validated using a high speed camera as well as finite element analysis. The comparative results of straight rigid and straight morphing blades show that the coefficient of performance greatly depends on the tip speed ratio. Overall, the morphing blade has better performance at low RPMs, but the rigid blade performed better at high RPMs. It was observed that the flexible blade self-started in the majority of the experiments. At high RPM, the centrifugal force overwhelmed the lift force, bending the flexible blade out of phase in an undesired direction increasing drag and therefore reducing the coefficient of performance

  14. Load alleviation of wind turbines by yaw misalignment

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Hansen, Morten Hartvig

    2014-01-01

    Vertical wind shear is one of the dominating causes of load variations on the blades of a horizontal axis wind turbine. To alleviate the varying loads, wind turbine control systems have been augmented with sensors and actuators for individual pitch control. However, the loads caused by a vertical...... wind shear can also be affected through yaw misalignment. Recent studies of yaw control have been focused on improving the yaw alignment to increase the power capture at below rated wind speeds. In this study, the potential of alleviating blade load variations induced by the wind shear through yaw...... applied without power loss for wind speeds above rated wind speed. In deterministic inflow, it is shown that the range of the steady-state blade load variations can be reduced by up to 70%. For turbulent inflows, it is shown that the potential blade fatigue load reductions depend on the turbulence level...

  15. Non-Harmonic Fourier Analysis for bladed wheels damage detection

    Science.gov (United States)

    Neri, P.; Peeters, B.

    2015-11-01

    The interaction between bladed wheels and the fluid distributed by the stator vanes results in cyclic loading of the rotating components. Compressors and turbines wheels are subject to vibration and fatigue issues, especially when resonance conditions are excited. Even if resonance conditions can be often predicted and avoided, high cycle fatigue failures can occur, causing safety issues and economic loss. Rigorous maintenance programs are then needed, forcing the system to expensive shut-down. Blade crack detection methods are beneficial for condition-based maintenance. While contact measurement systems are not always usable in exercise conditions (e.g. high temperature), non-contact methods can be more suitable. One (or more) stator-fixed sensor can measure all the blades as they pass by, in order to detect the damaged ones. The main drawback in this situation is the short acquisition time available for each blade, which is shortened by the high rotational speed of the components. A traditional Discrete Fourier Transform (DFT) analysis would result in a poor frequency resolution. A Non-Harmonic Fourier Analysis (NHFA) can be executed with an arbitrary frequency resolution instead, allowing to obtain frequency information even with short-time data samples. This paper shows an analytical investigation of the NHFA method. A data processing algorithm is then proposed to obtain frequency shift information from short time samples. The performances of this algorithm are then studied by experimental and numerical tests.

  16. A morphing trailing edge flap system for wind turbine blades

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Barlas, Athanasios; Løgstrup Andersen, Tom

    2015-01-01

    The development of a morphing trailing edge system for wind turbines, also called a flap system, is presented. The functionality is simple as the flap deflection is controlled by pressurized air or a fluid in a number of voids in the flap made of an elastic material. It is thus a robust system...... as no mechanical or metal parts are used. The prototypes tested in the laboratory and on a blade section in a wind tunnel in the period from 2007-2010 demonstrated the functionality and the aerodynamic performance of the flap concept. In a recent research and development project INDUFLAP from 2011-2014 the flap...... and glued together with a load carrying part with a connector part that allows an easy attachment on the blade section. After tests in the laboratory the flap was mounted on a 2m long blade section mounted on a newly developed test rig. A 10m long boom with the blade section was installed on a 100kW turbine...

  17. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  18. Computer Program Aids Design Of Impeller Blades

    Science.gov (United States)

    Chen, Wei-Chung; Galazin, John V.

    1992-01-01

    Impeller blades for centrifugal turbopumps designed quickly with help of computer program. Generates blade contours and continually subjects them to evaluation. Checks physical parameters to ensure they are compatible with required performance and recycles design if criteria not met. Program written for centrifugal turbomachinery, also adapted to such axial pump components as inducer blades and stator vanes.

  19. Local fatigue behavior in tapered areas of large offshore wind turbine blades

    Science.gov (United States)

    Aydin Raeis Hosseiny, Seyed; Jakobsen, Johnny

    2016-07-01

    Thickness transitions in load carrying elements lead to improved geometries and efficient material utilization. However, these transitions may introduce localized areas with high stress concentrations and may act as crack initiators that could potentially cause delamination and further catastrophic failure of an entire blade structure. The local strength degradation under an ultimate static loading, subsequent to several years of fatigue, is predicted for an offshore wind turbine blade. Fatigue failure indexes of different damage modes are calculated using a sub-modeling approach. Multi axial stresses are accounted for using a developed failure criterion with residual strengths instead of the virgin strengths. Damage initiation is predicted by including available Wohler curve data of E-Glass fabrics and epoxy matrix into multi-axial fatigue failure criteria. As a result of this study, proper knock-down factors for ply-drop effects in wind turbine blades under multi-axial static and fatigue loadings can be obtained.

  20. Quantifying the benefits of a slender, high tip speed blade for large offshore wind turbiness

    Science.gov (United States)

    Blonk, Lindert; Rainey, Patrick; Langston, David A. J.; Vanni, Francesco

    2014-06-01

    An in-depth study has been completed to study the effects of slender, flexible blades in combination with high rotor speed operation on load mitigation, targeted at cost reductions of the structural components of large wind turbines, consequently lowering the levelized cost of energy. An overview of existing theory of sensitivity of turbine fatigue loading to the blade chord and rotor speed was created, and this was supplemented by a proposed theory for aboverated operation including the pitch controller. A baseline jacket-supported offshore turbine (7 MW) was defined, of which the blade was then redesigned to be more slender and flexible, at the same time increasing rotor speed. The blade redesign and optimisation process was guided by cost of energy assessments using a reduced loadset. Thereafter, a full loadset conform IEC61400-3 was calculated for both turbines. The expected support structure load reductions were affirmed, and it was shown that reductions of up to 18.5% are possible for critical load components. Cost modelling indicated that turbine and support structure CapEx could be reduced by 6%. Despite an energy production reduction of 0.44% related to the thicker airfoils used, the blade redesign led to a reduction in Cost of Energy.

  1. Quantifying the benefits of a slender, high tip speed blade for large offshore wind turbiness

    International Nuclear Information System (INIS)

    An in-depth study has been completed to study the effects of slender, flexible blades in combination with high rotor speed operation on load mitigation, targeted at cost reductions of the structural components of large wind turbines, consequently lowering the levelized cost of energy. An overview of existing theory of sensitivity of turbine fatigue loading to the blade chord and rotor speed was created, and this was supplemented by a proposed theory for aboverated operation including the pitch controller. A baseline jacket-supported offshore turbine (7 MW) was defined, of which the blade was then redesigned to be more slender and flexible, at the same time increasing rotor speed. The blade redesign and optimisation process was guided by cost of energy assessments using a reduced loadset. Thereafter, a full loadset conform IEC61400-3 was calculated for both turbines. The expected support structure load reductions were affirmed, and it was shown that reductions of up to 18.5% are possible for critical load components. Cost modelling indicated that turbine and support structure CapEx could be reduced by 6%. Despite an energy production reduction of 0.44% related to the thicker airfoils used, the blade redesign led to a reduction in Cost of Energy

  2. COBSTRAN - COMPOSITE BLADE STRUCTURAL ANALYZER

    Science.gov (United States)

    Aiello, R. A.

    1994-01-01

    The COBSTRAN (COmposite Blade STRuctural ANalyzer) program is a pre- and post-processor that facilitates the design and analysis of composite turbofan and turboprop blades, as well as composite wind turbine blades. COBSTRAN combines composite mechanics and laminate theory with a data base of fiber and matrix properties. As a preprocessor for NASTRAN or another Finite Element Method (FEM) program, COBSTRAN generates an FEM model with anisotropic homogeneous material properties. Stress output from the FEM program is provided as input to the COBSTRAN postprocessor. The postprocessor then uses the composite mechanics and laminate theory routines to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. COBSTRAN is designed to carry out the many linear analyses required to efficiently model and analyze blade-like structural components made of multilayered angle-plied fiber composites. Components made from isotropic or anisotropic homogeneous materials can also be modeled as a special case of COBSTRAN. NASTRAN MAT1 or MAT2 material cards are generated according to user supplied properties. COBSTRAN is written in FORTRAN 77 and was implemented on a CRAY X-MP with a UNICOS 5.0.12 operating system. The program requires either COSMIC NASTRAN or MSC NASTRAN as a structural analysis package. COBSTRAN was developed in 1989, and has a memory requirement of 262,066 64 bit words.

  3. Design studies for twist-coupled wind turbine blades.

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, Ulyses (Wichita State University, Wichita, KS); Locke, James (Wichita State University, Wichita, KS)

    2004-06-01

    This study presents results obtained for four hybrid designs of the Northern Power Systems (NPS) 9.2-meter prototype version of the ERS-100 wind turbine rotor blade. The ERS-100 wind turbine rotor blade was designed and developed by TPI composites. The baseline design uses e-glass unidirectional fibers in combination with {+-}45-degree and random mat layers for the skin and spar cap. This project involves developing structural finite element models of the baseline design and carbon hybrid designs with and without twist-bend coupling. All designs were evaluated for a unit load condition and two extreme wind conditions. The unit load condition was used to evaluate the static deflection, twist and twist-coupling parameter. Maximum deflections and strains were determined for the extreme wind conditions. Linear and nonlinear buckling loads were determined for a tip load condition. The results indicate that carbon fibers can be used to produce twist-coupled designs with comparable deflections, strains and buckling loads to the e-glass baseline.

  4. Stability analysis of flexible wind turbine blades using finite element method

    Science.gov (United States)

    Kamoulakos, A.

    1982-01-01

    Static vibration and flutter analysis of a straight elastic axis blade was performed based on a finite element method solution. The total potential energy functional was formulated according to linear beam theory. The inertia and aerodynamic loads were formulated according to the blade absolute acceleration and absolute velocity vectors. In vibration analysis, the direction of motion of the blade during the first out-of-lane and first in-plane modes was examined; numerical results involve NASA/DOE Mod-0, McCauley propeller, north wind turbine and flat plate behavior. In flutter analysis, comparison cases were examined involving several references. Vibration analysis of a nonstraight elastic axis blade based on a finite element method solution was performed in a similar manner with the straight elastic axis blade, since it was recognized that a curved blade can be approximated by an assembly of a sufficient number of straight blade elements at different inclinations with respect to common system of axes. Numerical results involve comparison between the behavior of a straight and a curved cantilever beam during the lowest two in-plane and out-of-plane modes.

  5. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    Science.gov (United States)

    Coroneos, Rula M.

    2012-01-01

    This report addresses the structural analysis and optimization of a composite fan blade sized for a large aircraft engine. An existing baseline solid metallic fan blade was used as a starting point to develop a hybrid honeycomb sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replacing the original baseline solid metallic fan model made of titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements, a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized whereas the overall blade thickness is held fixed so as to not alter the original airfoil geometry. Weight is taken as the objective function to be minimized by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  6. Investigation of Structural Behavior due to Bend-Twist Couplings in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimirov; Berggreen, Christian;

    2010-01-01

    One of the problematic issues concerning the design of future large composite wind turbine blades is the prediction of bend-twist couplings and torsion behaviour. The current work is a continuation of a previous work [1,2], and it examines different finite element modelling approaches for predict......One of the problematic issues concerning the design of future large composite wind turbine blades is the prediction of bend-twist couplings and torsion behaviour. The current work is a continuation of a previous work [1,2], and it examines different finite element modelling approaches...... for predicting the torsional response of the wind turbine blades with built-in bend-twist couplings. Additionally, a number of improved full-scale tests using an advanced bi-axial servo-hydraulic load control have been performed on a wind turbine blade section provided by Vestas Wind Systems A/S. In the present...... of the blade cross section as the defining surface, off-setting the location of the shell elements according to the specified thickness. The experimental full-scale tests were carried out on an 8 m section of a 23 m wind turbine blade with specially implemented bend-twist coupling. The blade was tested under...

  7. Turbine blade tip gap reduction system

    Science.gov (United States)

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  8. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade

    Science.gov (United States)

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815

  9. Influence of Reynolds Number on Multi-Objective Aerodynamic Design of a Wind Turbine Blade.

    Science.gov (United States)

    Ge, Mingwei; Fang, Le; Tian, De

    2015-01-01

    At present, the radius of wind turbine rotors ranges from several meters to one hundred meters, or even more, which extends Reynolds number of the airfoil profile from the order of 105 to 107. Taking the blade for 3MW wind turbines as an example, the influence of Reynolds number on the aerodynamic design of a wind turbine blade is studied. To make the study more general, two kinds of multi-objective optimization are involved: one is based on the maximum power coefficient (CPopt) and the ultimate load, and the other is based on the ultimate load and the annual energy production (AEP). It is found that under the same configuration, the optimal design has a larger CPopt or AEP (CPopt//AEP) for the same ultimate load, or a smaller load for the same CPopt//AEP at higher Reynolds number. At a certain tip-speed ratio or ultimate load, the blade operating at higher Reynolds number should have a larger chord length and twist angle for the maximum Cpopt//AEP. If a wind turbine blade is designed by using an airfoil database with a mismatched Reynolds number from the actual one, both the load and Cpopt//AEP will be incorrectly estimated to some extent. In some cases, the assessment error attributed to Reynolds number is quite significant, which may bring unexpected risks to the earnings and safety of a wind power project. PMID:26528815

  10. Fluid-structure coupling for wind turbine blade analysis using OpenFOAM

    Science.gov (United States)

    Dose, Bastian; Herraez, Ivan; Peinke, Joachim

    2015-11-01

    Modern wind turbine rotor blades are designed increasingly large and flexible. This structural flexibility represents a problem for the field of Computational Fluid Dynamics (CFD), which is used for accurate load calculations and detailed investigations of rotor aerodynamics. As the blade geometries within CFD simulations are considered stiff, the effect of blade deformation caused by aerodynamic loads cannot be captured by the common CFD approach. Coupling the flow solver with a structural solver can overcome this restriction and enables the investigation of flexible wind turbine blades. For this purpose, a new Finite Element (FE) solver was implemented into the open source CFD code OpenFOAM. Using a beam element formulation based on the Geometrically Exact Beam Theory (GEBT), the structural model can capture geometric non-linearities such as large deformations. Coupled with CFD solvers of the OpenFOAM package, the new framework represents a powerful tool for aerodynamic investigations. In this work, we investigated the aerodynamic performance of a state of the art wind turbine. For different wind speeds, aerodynamic key parameters are evaluated and compared for both, rigid and flexible blade geometries. The present work is funded within the framework of the joint project Smart Blades (0325601D) by the German Federal Ministry for Economic Affairs and Energy (BMWi) under decision of the German Federal Parliament.

  11. Aerodynamic pressure and flow-visualization measurement from a rotating wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Butterfield, C P

    1988-11-01

    Aerodynamic, load, flow-visualization, and inflow measurements have been made on a 10-m, three-bladed, downwind, horizontal-axis wind turbine (HAWT). A video camera mounted on the rotor was used to record nighttime and daytime video images of tufts attached to the low-pressure side of a constant-chord, zero-twist blade. Load measurements were made using strain gages mounted at every 10% of the blade's span. Pressure measurements were made at 80% of the blade's span. Pressure taps were located at 32 chordwise positions, revealing pressure distributions comparable with wind tunnel data. Inflow was measured using a vertical-plane array of eight propvane and five triaxial (U-V-W) prop-type anemometers located 10 m upwind in the predominant wind direction. One objective of this comprehensive research program was to study the effects of blade rotation on aerodynamic behavior below, near, and beyond stall. To this end, flow patterns are presented here that reveal the dynamic and steady behavior of flow conditions on the blade. Pressure distributions are compared to flow patterns and two-dimensional wind tunnel data. Separation boundary locations are shown that change as a function of spanwise location, pitch angle, and wind speed. 6 refs., 23 figs., 1 tab.

  12. NUMERICAL PREDICTION OF BLADE FREQUENCY NOISE OF CAVITATING PROPELLER

    Institute of Scientific and Technical Information of China (English)

    YE Jin-ming; XIONG Ying; LI Fang; WANG Zhan-zhi

    2012-01-01

    The blade frequency noise of a cavitating propeller in a uniform flow is analyzed in the time domain.The unsteady loading (of a dipole source) and the sheet cavity volume (of a monopole source) on the propeller surface are calculated by a potential-based surface panel method.Then the time-dependent pressure and the cavity volume data are used as the input for the Fowcs Williams-Hawkings formulation to predict the acoustics pressure.The integration of the noise source is performed over the true blade surface rather than the ideal blade surface without thickness.The noise characteristics of the cavitating propeller are discussed.With the sheet cavitation,the thickness (cavitation) noise is larger than the loading noise and is the dominant noise source.The noise directivity is not as clear as that of the noise under a non-cavitation condition.The cavitation noise is attenuated more slowly than the non-cavitation noise.

  13. Structural and mechanism design of an active trailing-edge flap blade

    DEFF Research Database (Denmark)

    Lee, Jae Hwan; Natarajan, Balakumaran; Eun, Won Jong;

    2013-01-01

    , as the blade is able to withstand increased centrifugal force. The cross-section of the active blade is designed first. A stress/strain recovery analysis is then conducted to verify its structural integrity. A one-dimensional beam analysis is also carried out to assist with the construction of the fan diagram...... of the rotor through modification of unsteady aerodynamic loads. Piezoelectric actuators installed inside the blade manipulate the motion of the trailing edge flap. The proposed blade rotates at higher speed and additional structures are included to support the actuators and the flap. This improves the design....... To select the actuator and design the flap actuation region, the flap hinge moment is estimated via a CFD analysis. To obtain the desired flap deflection of ±4°, three actuators are required. The design of the flap actuation region is validated using a test bed with a skin hinge. However, because the skin...

  14. Blade Motion Correlation for the Full-Scale UH-60A Airloads Rotor

    Science.gov (United States)

    Romander, Ethan A.; Meyn, Larry A.; Barrows, Danny; Burner, Alpheus

    2014-01-01

    Testing was successfully completed in May 2010 on a full-scale UH-60A rotor system in the USAF's National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel.[1] The primary objective of this NASA Army sponsored test program was to acquire a comprehensive set of validation-quality measurements ona full-scale pressure-instrumented rotor system at conditions that challenge the most sophisticated modeling andsimulation tools. The test hardware included the same rotor blades used during the UH-60A Airloads flight test.[2] Key measurements included rotor performance, blade loads, blade pressures, blade displacements, and rotorwake measurements using large-field Particle Image Velocimetry (PIV) and Retro-reflective Background Oriented Schlieren (RBOS).

  15. Initiation of trailing edge failure in full-scale wind turbine blade test

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Branner, Kim

    2016-01-01

    non-linear buckling effect of the trailing edge under combined loading, and how it affects the ultimate strength of a blade in a trailing-edge failure dominated load direction were investigated. The study details the interaction between trailing edge buckling on damage onset and sandwich panel failure......The reliability and accuracy of a numerical shell model simulation and its predictive capabilities with existing failure criteria are compared to experiments of a 34 m long blade tested to ultimate failure. Strengths and weaknesses of in-plane failure criteria are highlighted and the geometrical...

  16. Optimization of Blade Stiffened Composite Panel under Buckling and Strength Constraints

    Science.gov (United States)

    Todoroki, Akira; Sekishiro, Masato

    This paper deals with multiple constraints for dimension and stacking-sequence optimization of a blade-stiffened composite panel. In a previous study, a multiple objective genetic algorithm using a Kriging response surface with a buckling load constraint was the target. The present study focuses on dimension and stacking-sequence optimization with both a buckling load constraint and a fracture constraint. Multiple constraints complicate the process of selecting sampling analyses to improve the Kriging response surface. The proposed method resolves this problem using the most-critical-constraint approach. The new approach is applied to a blade stiffened composite panel and the approach is shown to be efficient.

  17. Preliminary analysis of performance and loads data from the 2-megawatt mod-1 wind turbine generator

    Science.gov (United States)

    Spera, D. A.; Viterna, L. A.; Richards, T. R.; Neustadter, H. E.

    1979-01-01

    Preliminary test data on output power versus wind speed, rotor blade loads, system dynamic behavior, and start-stop characteristics on the Mod-1 wind turbine generator are presented. These data were analyzed statistically and are compared with design predictions of system performance and loads. To date, the Mod-1 wind turbine generator has produced up to 1.5 MW of power, with a measured power versus wind speed curve which agrees closely with design. Blade loads were measured at wind speeds up to 14 m/s and also during rapid shutdowns. Peak transient loads during the most severe shutdowns are less than the design limit loads. On the inboard blade sections, fatigue loads are approximately equal to the design cyclic loads. On the outboard blade sections, however, measured cyclic loads are significantly larger than design values, but they do not appear to exceed fatigue allowable loads as yet.

  18. Mechanisms and actuators for rotorcraft blade morphing

    Science.gov (United States)

    Vocke, Robert D., III

    The idea of improved fight performance through changes in the control surfaces dates back to the advent of aviation with the Wright brothers' pioneering work on "wing warping," but it was not until the recent progress in material and actuator development that such control surfaces seemed practical for modern aircraft. This has opened the door to a new class of aircraft that have the ability to change shape or morph, which are being investigated due to the potential to have a single platform serve multiple mission objectives, as well as improve performance characteristics. While the majority of existing research for morphing aircraft has focused on fixedwing aircraft, rotary-wing aircraft have begun to receive more attention. The purpose of this body of work is to investigate the current state of morphing actuation technology for rotorcraft and improve upon it. Specifically, this work looks at two types of morphing: Pneumatic Artificial Muscle (PAM) actuated trailing edge flaps and conformal variable diameter morphing. First, active camber changes through the use of PAM powered trailing edge flaps were investigated due to the potential for reductions in power requirements and vibration/noise levels. A PAM based antagonistic actuation system was developed utilizing a novel combination of mechanism geometry and PAM bias contraction optimization to overcome the natural extension stiffening characteristics of PAMs. In open-loop bench-top testing against a "worst-case" constant torsional loading, the system demonstrated actuation authority suitable for both primary control and vibration/noise reduction. Additionally, closed-loop test data indicated that the system was capable of tracking complex waveforms consistent with those needed for rotorcraft control. This system demonstrated performance on-par with the state of the art pneumatic trailing edge flap actuators, yet with a much smaller footprint and impact on the rotor-blade. The second morphing system developed in

  19. Influence of Blade Chordwise Lean on Development of Cascade Losses

    Institute of Scientific and Technical Information of China (English)

    HanWanjin; HuangHongyan; 等

    1996-01-01

    An experimetal investigation was carried out on the effect of blade chordwise lean on the losse in highly loaded rectangular turbine cascades,Datailed measurements include 10 traverses from upstream to downstream of the cascades with five-hole spherical probes.Compared with the experimental data of the coventional Straight and pitchwise lean blades under the same conditions,it is shown that the effect of chordwise lean on the development of the cascade losses is similar to that of pitchwise lean.However,the chordwise lean produces smaller streamwise adverse pressure gradients near both endwalls and a smaller spanwise negative one starting from the actute angle side in the first part of the passages in chordwise lean cascade,thereby the saddle point separations and intensities of the passage vortices are weakened and the secondary vorte losses are cut down notably.

  20. Bondlines – Online blade measurements (October 2012 and January 2013)

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Chiesura, Gabriele

    panels were connected, and with a displacement of between 6.5 - 10mm when the panels were free to flex as they do in normal operating conditions. Shear distortion within the main loading spar of the blade (at approximately R10m) showed a fluctuating cross beam shear distortion of about 9mm. The trailing...... edge displacement was re-measured (during January 2013) following a reinforcement of the blade to prevent trailing edge distortion. This trial showed that the new displacement values were below 1mm during similar operating conditions. This report describes the planning for and procurement of hardware...... for the on-site measurements. The data output is then summarised. The full data files will be used to improve models and sub-component testing of these structures, as well as the continuing development of the reinforcement approaches designed to prolong structural life....

  1. Optimal Design and Acoustic Assessment of Low-Vibration Rotor Blades

    Directory of Open Access Journals (Sweden)

    G. Bernardini

    2016-01-01

    Full Text Available An optimal procedure for the design of rotor blade that generates low vibratory hub loads in nonaxial flow conditions is presented and applied to a helicopter rotor in forward flight, a condition where vibrations and noise become severe. Blade shape and structural properties are the design parameters to be identified within a binary genetic optimization algorithm under aeroelastic stability constraint. The process exploits an aeroelastic solver that is based on a nonlinear, beam-like model, suited for the analysis of arbitrary curved-elastic-axis blades, with the introduction of a surrogate wake inflow model for the analysis of sectional aerodynamic loads. Numerical results are presented to demonstrate the capability of the proposed approach to identify low vibratory hub loads rotor blades as well as to assess the robustness of solution at off-design operating conditions. Further, the aeroacoustic assessment of the rotor configurations determined is carried out in order to examine the impact of low-vibration blade design on the emitted noise field.

  2. Experimental Blade Research - phase 2

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Branner, Kim; Berring, Peter;

    This report is a summary of the results obtained in the project: Experimental Blade Research – phase 2 (EBR2). The project was supported by the Danish Energy Authority through the 2010 Energy Technology Development and Demonstration Program (EUDP 2010-II) and has journal no. 64011-0006. The proje...... has been running from spring 2011 to the end of 2014. Being a summary report, this report only contains a collection of the research topics and the major results. For more details, see the publications listed at the end of this report.......This report is a summary of the results obtained in the project: Experimental Blade Research – phase 2 (EBR2). The project was supported by the Danish Energy Authority through the 2010 Energy Technology Development and Demonstration Program (EUDP 2010-II) and has journal no. 64011-0006. The project...

  3. Multiple piece turbine rotor blade

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Keith D.; Plank, William L.

    2016-07-19

    A spar and shell turbine rotor blade with a spar and a tip cap formed as a single piece, the spar includes a bottom end with dovetail or fir tree slots that engage with slots on a top end of a root section, and a platform includes an opening on a top surface for insertion of the spar in which a shell made from an exotic high temperature resistant material is secured between the tip cap and the platform. The spar is tapered to form thinner walls at the tip end to further reduce the weight and therefore a pulling force due to blade rotation. The spar and tip cap piece is made from a NiAL material to further reduce the weight and the pulling force.

  4. 高负荷低压涡轮叶片边界层损失机理研究%Boundary layer loss mechanisms of highly-loaded LPturbine blades

    Institute of Scientific and Technical Information of China (English)

    綦蕾; 邹正平; 刘火星; 王雷

    2012-01-01

      Numerical simulations of boundary layer flow of a highly-loaded low pressure turbine airfoil with different Reynolds numbers and freestream turbulence intensities (FSTIs) were carried out. The effects of Reynolds number and FSTI on the flow separation and transition were investigated. The results indicate that the total pressure loss at the cascade exit rises with a decrease of Reynolds number. The low Reynolds number causes the separation resisting ability of the boundary layer to diminish, and the flow separation loss to increase. Additionally, the friction loss of the laminar boundary layer increases as Reynolds number increases. The total pressure lossdrops firstandthenrises with theincrease inFSTI. This is because that the separation flow loss predominates at low FSTIs. The increased FSTI reduces the separation bubble size and, consequently, reduces the total pressure loss at the cascade exit. In contrast, at high FSTIs, the boundary layer friction loss predominates. The friction loss increases due to the increased FSTI, leading to the total pressure lossatthecascadeexit.%  对不同雷诺数、不同来流湍流度条件下某典型高负荷低压涡轮叶片边界层流动进行了数值模拟,详细分析了雷诺数和湍流度对边界层分离与转捩的影响机制。结果表明:随着雷诺数的降低叶栅出口总压损失增大,一方面雷诺数减小吸力面边界层抗分离能力减弱,边界层分离引起损失增加,另一方面雷诺数减小吸力面层流边界层摩擦损失增大;随着湍流度的升高叶栅出口总压损失先减小后增大,这是因为低湍流度时流动分离损失占主要地位,湍流度增大分离减弱,叶栅总压损失减小;高湍流度时流动分离损失较小,边界层摩擦损失占主要地位,湍流度增大摩擦损失相应增加,叶栅总压损失增大。

  5. Synthetic jet actuation for load control

    NARCIS (Netherlands)

    Vries, de H.; Weide, van der E.T.A.; Hoeijmakers, H.W.M.

    2014-01-01

    The reduction of wind turbine blade loads is an important issue in the reduction of the costs of energy production. Reduction of the loads of a non-cyclic nature requires so-called smart rotor control, which involves the application of distributed actuators and sensors to provide fast and local chan

  6. Design and two dimensional cascade test of a jet-flap turbine stator blade with ratio of axial chord to spacing of 0.5

    Science.gov (United States)

    Stabe, R. G.

    1971-01-01

    A jet-flap blade was designed for a velocity diagram typical of the first-stage stator of a jet engine turbine and was tested in a simple two-dimensional cascade of six blades. The principal measurements were blade surface static pressure and cross-channel surveys of exit total pressure, static pressure, and flow angle. The results of the experimental investigation include blade loading, exit angle, flow, and loss data for a range of exit critical velocity ratios and three jet flow conditions.

  7. Effect of Trailing Edge Damage on Full-Scale Wind Turbine Blade Failure

    DEFF Research Database (Denmark)

    Haselbach, Philipp Ulrich; Branner, Kim

    2015-01-01

    Modern wind turbine rotor blades are normally assembled from large parts bonded together by adhesive joints. The structural parts of wind turbine blades are usually made of composite materials, where sandwich core materials as well as fibre composites are used. For most of the modern wind turbine...... where the load bearing structure is connected to the shells and at the joints of the upper and lower shells, usually at the leading and trailing edges. Maintenance inspections of wind turbines show that cracks in the vicinity of the trailing edge are typically occurring forms of damage. The cause...... blades the aerodynamically formed outer shell structure is manufactured as an upper and a lower part in separate moulds in order to simplify the production process. The aerodynamic shell structures are then bonded to internal load bearing structures during the production process. Adhesive joints exist...

  8. Design and test of box girder for a large wind turbine blade

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Tesauro, Angelo; Bitsche, Robert;

    This report is covering the structural design and full scale test of a box girder as a part of the project “Demonstration of new blade design using manufacturing process simulations” supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions...... that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes......, which create an inner structure in the box girder. With a combination of advanced FEM analysis and the inventions it was possible to reduce the material thickness of the cap by up to 40%. The new design of the box girder was manufactured at SSP Technology A/S, where it was demonstrated...

  9. Cyclic Structural Analyses of SSME Turbine Blades

    Science.gov (United States)

    Kaufman, A.; Manderscheid, J. M.

    1985-01-01

    The problems of calculating the structural response of high-temperature space propulsion components such as turbine blades for the fuel turbopump are addressed. The first high-pressure-stage fuel turbine blade (HPFTB) in the liquid-hydrogen turbopump of the space shuttle main engine (SSME) was selected for this study. In the past these blades have cracked in the blade shank region and at the airfoil leading edge adjacent to the platform. To achieve the necessary durability, these blades are currently being cast by using directional solidification. Single-crystal alloys are also being investigated for future SSME applications. The study evaluated the utility of advanced structural analysis methods in assessing the low-cycle fatigue lives of these anisotropic components. The turbine blade airfoil of the high-pressure stage of the SSME fuel turbopump was analyzed because it has a history of rapid crack initiation.

  10. FOD impact testing of composite fan blades

    Science.gov (United States)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin, and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  11. Impact testing on composite fan blades

    Science.gov (United States)

    Johns, R. H.

    1974-01-01

    The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category.

  12. Study on finite deformation finite element analysis algorithm of turbine blade based on CPU+GPU heterogeneous parallel computation

    Directory of Open Access Journals (Sweden)

    Liu Tian-Yuan

    2016-01-01

    Full Text Available Blade is one of the core components of turbine machinery. The reliability of blade is directly related to the normal operation of plant unit. However, with the increase of blade length and flow rate, non-linear effects such as finite deformation must be considered in strength computation to guarantee enough accuracy. Parallel computation is adopted to improve the efficiency of classical nonlinear finite element method and shorten the blade design period. So it is of extraordinary importance for engineering practice. In this paper, the dynamic partial differential equations and the finite element method forms for turbine blades under centrifugal load and flow load are given firstly. Then, according to the characteristics of turbine blade model, the classical method is optimized based on central processing unit + graphics processing unit heterogeneous parallel computation. Finally, the numerical experiment validations are performed. The computation speed of the algorithm proposed in this paper is compared with the speed of ANSYS. For the rectangle plate model with mesh number of 10 k to 4000 k, a maximum speed-up of 4.31 can be obtained. For the real blade-rim model with mesh number of 500 k, the speed-up of 4.54 times can be obtained.

  13. Study of Wear of Pitched Blade Impellers

    OpenAIRE

    I. Fořt; F. Ambros; J. Medek

    2000-01-01

    A study was made of the erosion of blades of pitched blade impellers in a suspension of solid particles in a liquid under a turbulent regime of flow of an agitated charge. The wear of the impeller is described by an analytical approximation in exponential form, and the influence of the pitch angle on the impeller blade wear was studied experimentally. It follows from the results of the experiments made that the wear rate of the pitched blade impellers increases linearly with the decreasing pi...

  14. Impeller blade design method for centrifugal compressors

    Science.gov (United States)

    Jansen, W.; Kirschner, A. M.

    1974-01-01

    The design of a centrifugal impeller with blades that are aerodynamically efficient, easy to manufacture, and mechanically sound is discussed. The blade design method described here satisfies the first two criteria and with a judicious choice of certain variables will also satisfy stress considerations. The blade shape is generated by specifying surface velocity distributions and consists of straight-line elements that connect points at hub and shroud. The method may be used to design radially elemented and backward-swept blades. The background, a brief account of the theory, and a sample design are described.

  15. Structural tailoring of engine blades (STAEBL)

    Science.gov (United States)

    Brown, K. W.; Pratt, T. K.; Chamis, C. C.

    1983-01-01

    Mathematical optimization is applied to the design of gas turbine fan blades. The automated procedure replaces the current manual process which requires experience and intuition on the part of the designer to achieve successful blade designs. The optimization procedure that is developed utilizes the COPES/CONMIN optimization code. Approximate vibration and stress analyses are used for the optimization process. Analysis recalibrations are achieved through the application of more detailed, refined analysis. Optimizations of a hollow titanium fan blade with composite inlays and of a superhybrid composite blade are demonstrated.

  16. Reliability design method for steam turbine blades

    Institute of Scientific and Technical Information of China (English)

    Jinyuan SHI

    2008-01-01

    Based on theories of probability and statistics, and taking static stresses, dynamic stresses, endurance strength, safety ratios, vibration frequencies and exciting force frequencies of blades as random variables, a reliabil-ity design method for steam turbine blades is presented. The purport and calculation method for blade reliability are expounded. The distribution parameters of random variables are determined after analysis and numerical cal-culation of test data. The fatigue strength and the vibra-tion design reliability of turbine blades are determined with the aid of a probabilistic design method and by inter-ference models for stress distribution and strength distri-bution. Some blade reliability design calculation formulas for a dynamic stress design method, a safety ratio design method for fatigue strength, and a vibration reliability design method for the first and second types of tuned blades and a packet of blades on a disk connected closely, are given together with some practical examples. With these methods, the design reliability of steam turbine blades can be guaranteed in the design stage. This research may provide some scientific basis for reliability design of steam turbine blades.

  17. Fiber composite fan blade impact improvement

    Science.gov (United States)

    Graff, J.; Stoltze, L.; Varholak, E. M.

    1976-01-01

    The improved foreign object damage resistance of a metal matrix advanced composite fan blade was demonstrated. The fabrication, whirl impact test and subsequent evaluation of nine advanced composite fan blades of the "QCSEE" type design were performed. The blades were designed to operate at a tip speed of 282 m/sec. The blade design was the spar/shell type, consisting of a titanium spar and boron/aluminum composite airfoils. The blade retention was designed to rock on impact with large birds, thereby reducing the blade bending stresses. The program demonstrated the ability of the blades to sustain impacts with up to 681 g slices of birds at 0.38 rad with little damage (only 1.4 percent max weight loss) and 788 g slices of birds at 0.56 rad with only 3.2 percent max weight loss. Unbonding did not exceed 1.1 percent of the post-test blade area during any of the tests. All blades in the post-test condition were judged capable of operation in accordance with the FAA guidelines for medium and large bird impacts.

  18. Structural Analysis and Optimization of a Composite Fan Blade for Future Aircraft Engine

    Science.gov (United States)

    Coroneos, Rula M.; Gorla, Rama Subba Reddy

    2012-09-01

    This paper addresses the structural analysis and optimization of a composite sandwich ply lay-up of a NASA baseline solid metallic fan blade comparable to a future Boeing 737 MAX aircraft engine. Sandwich construction with a polymer matrix composite face sheet and honeycomb aluminum core replaces the original baseline solid metallic fan model made of Titanium. The focus of this work is to design the sandwich composite blade with the optimum number of plies for the face sheet that will withstand the combined pressure and centrifugal loads while the constraints are satisfied and the baseline aerodynamic and geometric parameters are maintained. To satisfy the requirements a sandwich construction for the blade is proposed with composite face sheets and a weak core made of honeycomb aluminum material. For aerodynamic considerations, the thickness of the core is optimized where as the overall blade thickness is held fixed in order not to alter the original airfoil geometry. Weight reduction is taken as the objective function by varying the core thickness of the blade within specified upper and lower bounds. Constraints are imposed on radial displacement limitations and ply failure strength. From the optimum design, the minimum number of plies, which will not fail, is back-calculated. The ply lay-up of the blade is adjusted from the calculated number of plies and final structural analysis is performed. Analyses were carried out by utilizing the OpenMDAO Framework, developed at NASA Glenn Research Center combining optimization with structural assessment.

  19. Numerical Analysis of Stress on Pump Blade by One-Way Coupled Fluid-Structure Simulation

    Science.gov (United States)

    Kobayashi, Katsutoshi; Ono, Shigeyoshi; Harada, Ichiro; Chiba, Yoshimasa

    A mixed-flow pump with an unshrouded impeller was computed by a one-way coupled fluid-structure simulation to evaluate a prediction accuracy of stress and analyze a flow pattern which caused the largest stress. The stress occurring around a blade root was predicted by a numerical simulation and compared with an experimental one. Five flow rates, Q/Qbep=0,40,70,100 and 120% were simulated and the predicted stresses at all flow rates agreed with the experimental ones within -11˜+6% accuracy. The largest stress occurred around a blade root on a pressure side of blade surface at all flow rates. The stress became largest at 70% flow rate. A flow pattern around the blade was analyzed to investigate how the largest stress occurred at 70% flow rate. It was found in this study that a flow separation occurred around a leading edge on a suction side of blade surface at 70% flow rate and the largest load was acting on an outside region of blade.

  20. Energy saving in a deep well pump with splitter blade

    Energy Technology Data Exchange (ETDEWEB)

    Goelcue, Mustafa [Department of Mechanical Education, Pamukkale University, 20017 Kinikli, Denizli (Turkey)]. E-mail: mgolcu@pamukkale.edu.tr; Pancar, Yasar [Department of Mechanical Engineering, Osman Gazi University, 26480 Eskisehir (Turkey); Sekmen, Yakup [Karabuk Vocational Collage, Zonguldak Karaelmas University, 78100 Karabuk (Turkey)

    2006-03-15

    Design parameters, like blade number, blade outlet angle and impeller outlet diameter, affect pump performance and energy consumption. Deep well pumps with splitter blades (DWPwsb) are manufactured to achieve energy saving and improve efficiency. Splitter blades are generally located at the centerline of the main blades. Blade number and blade discharge angle should be conveniently determined when splitter blades are used on the impellers. In this study, impellers having different numbers of blades (z = 5, 6, 7) with and without splitter blades (35%, 60% and 80% of the main blade length) were tested in a deep well pump. Tests have been conducted on a total of 12 impellers, and the characteristics of deep well pumps without splitter blade (DWPwosb) and DWPwsb were obtained experimentally. These results show that splitter blades cause negative effects on pump performance in impellers with blade numbers of 6 and 7. When the splitter blade is added to the impeller with the blade number of 5, the efficiency increases with flow up to 10 l/s flow rate, after which it decreases as the splitter blade length increases. The highest efficiency and the lowest energy consumption were obtained in DWPwsb with 80% of the main blade length. At the best efficiency point (b.e.p), an energy saving of 6.6% and an improvement of 1.14% in efficiency were achieved. An analysis of the additional cost of the splitter blade and the application in an agricultural area were performed.

  1. Performance of twist-coupled blades on variable speed rotors

    Energy Technology Data Exchange (ETDEWEB)

    Lobitz, D.W.; Veers, P.S.; Laino, D.J.

    1999-12-07

    The load mitigation and energy capture characteristics of twist-coupled HAWT blades that are mounted on a variable speed rotor are investigated in this paper. These blades are designed to twist toward feather as they bend with pretwist set to achieve a desirable twist distribution at rated power. For this investigation, the ADAMS-WT software has been modified to include blade models with bending-twist coupling. Using twist-coupled and uncoupled models, the ADAMS software is exercised for steady wind environments to generate C{sub p} curves at a number of operating speeds to compare the efficiencies of the two models. The ADAMS software is also used to generate the response of a twist-coupled variable speed rotor to a spectrum of stochastic wind time series. This spectrum contains time series with two mean wind speeds at two turbulence levels. Power control is achieved by imposing a reactive torque on the low speed shaft proportional to the RPM squared with the coefficient specified so that the rotor operates at peak efficiency in the linear aerodynamic range, and by limiting the maximum RPM to take advantage of the stall controlled nature of the rotor. Fatigue calculations are done for the generated load histories using a range of material exponents that represent materials from welded steel to aluminum to composites, and results are compared with the damage computed for the rotor without twist-coupling. Results indicate that significant reductions in damage are achieved across the spectrum of applied wind loading without any degradation in power production.

  2. The Internal Stress Evaluation of Pultruded Blades for a Darrieus Wind Turbine

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2013-01-01

    This paper investigates the integrated modeling of a pultruded NACA0018 blade profile which is a part of the FP7 EU project DeepWind. The pultrusion process simulation is combined with the preliminary subsequent in-service load scenario. In particular, the process induced residual stresses and di...

  3. Fatigue life prediction and strength degradation of wind turbine rotor blade composites

    NARCIS (Netherlands)

    Nijssen, R.P.L.

    2006-01-01

    Wind turbine rotor blades are subjected to a large number of highly variable loads, but life predictions are typically based on constant amplitude fatigue behaviour. Therefore, it is important to determine how service life under variable amplitude fatigue can be estimated from constant amplitude fat

  4. Numerical analysis of linear buckling of wind turbine blade with different trailing bonding models

    Science.gov (United States)

    Zhang, J. D.; Xu, Y.

    2013-12-01

    The work focus on the linear buckling analysis of wind turbine blade with different trailing bonding models. Based on finite element model, it has been demonstrated that there are some differences for buckling load factor between different models. Several different models are valid for buckling analysis.

  5. Reliability-Based Calibration of Partial Safety Factors for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Branner, Kim; Sørensen, John Dalsgaard;

    2011-01-01

    can be taken into account. Stochastic models for the material properties and the load-effect are formulated in order to take physical, model and statistical uncertainties into account. The blade fails due to buckling of the main spar cap which results in high stresses in the transverse direction...

  6. Recent results in characterisation and modeling of composites for wind turbine blades

    NARCIS (Netherlands)

    Nijssen, R.P.L.; Westphal, T.; Lahuerta Calahorra, F.; Van Delft, D.R.V.

    2013-01-01

    Wind turbine rotor blades are large structures which are designed to withstand extreme loading at low cost. Material and structural characterisation through modeling combined with tests are continuously developed to enable further design optimisation, larger rotors and new design concepts. This pape

  7. Design of a fibrous composite preform for wind turbine rotor blades

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Brøndsted, Povl; Kofoed, M.

    2014-01-01

    The present work addresses the different factors and challenges one must cope with in the design process of a composite preform used for the load-carrying main laminate of a wind turbine rotor blade. The design process is split up into different key elements, each of which are presented and...

  8. 3D flows near a HAWT rotor: A dissection of blade and wake contributions

    NARCIS (Netherlands)

    Micallef, D.

    2012-01-01

    Investigating the flow physics in the vicinity of the wind turbine blade is a challenging endeavour. In the past, focus was placed on the understanding of near wake flows arising from wake vorticity and the rotor loading. In this work, a different approach is taken by considering the flow field in t

  9. Energy harvesting to power sensing hardware onboard wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Clinton P [Los Alamos National Laboratory; Schichting, Alexander D [Los Alamos National Laboratory; Quellette, Scott [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory

    2009-10-05

    Wind turbines are becoming a larger source of renewable energy in the United States. However, most of the designs are geared toward the weather conditions seen in Europe. Also, in the United States, manufacturers have been increasing the length of the turbine blades, often made of composite materials, to maximize power output. As a result of the more severe loading conditions in the United States and the material level flaws in composite structures, blade failure has been a more common occurrence in the U.S. than in Europe. Therefore, it is imperative that a structural health monitoring system be incorporated into the design of the wind turbines in order to monitor flaws before they lead to a catastrophic failure. Due to the rotation of the turbine and issues related to lightning strikes, the best way to implement a structural health monitoring system would be to use a network of wireless sensor nodes. In order to provide power to these sensor nodes, piezoelectric, thermoelectric and photovoltaic energy harvesting techniques are examined on a cross section of a CX-100 wind turbine blade in order to determine the feasibility of powering individual nodes that would compose the sensor network.

  10. Parametric study of turbine NGV blade lean and vortex design

    Institute of Scientific and Technical Information of China (English)

    Zhang Shaowen; David G. MacManus; Luo Jianqiao

    2016-01-01

    The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV) are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainties which have arisen from previous studies where conflicting results have been reported for the effect on the NGV. The configuration was initially based on the energy efficient engine turbine which also served as the validation case for the computational method. A total of 17 NGV configurations were evaluated to study the effects of lean and vortex design on row efficiency and secondary kinetic energy. The distribution of mass flow ratio is introduced as an additional factor in the assessment of blade lean effects. The results show that in the turbine entry NGV, the secondary flow strength is not a dominant factor that determines NGV losses and therefore the changes of loading distribution due to blade lean and the associated loss mecha-nisms should be regarded as a key factor. Radial mass flow redistribution under different NGV lean and twist is demonstrated as an addition key factor influencing row efficiency.

  11. Parametric study of turbine NGV blade lean and vortex design

    Directory of Open Access Journals (Sweden)

    Zhang Shaowen

    2016-02-01

    Full Text Available The effects of blade lean and vortex design on the aerodynamics of a turbine entry nozzle guide vane (NGV are considered using computational fluid dynamics. The aim of the work is to address some of the uncertainties which have arisen from previous studies where conflicting results have been reported for the effect on the NGV. The configuration was initially based on the energy efficient engine turbine which also served as the validation case for the computational method. A total of 17 NGV configurations were evaluated to study the effects of lean and vortex design on row efficiency and secondary kinetic energy. The distribution of mass flow ratio is introduced as an additional factor in the assessment of blade lean effects. The results show that in the turbine entry NGV, the secondary flow strength is not a dominant factor that determines NGV losses and therefore the changes of loading distribution due to blade lean and the associated loss mechanisms should be regarded as a key factor. Radial mass flow redistribution under different NGV lean and twist is demonstrated as an addition key factor influencing row efficiency.

  12. Reinforced wind turbine blades--an environmental life cycle evaluation.

    Science.gov (United States)

    Merugula, Laura; Khanna, Vikas; Bakshi, Bhavik R

    2012-09-01

    A fiberglass composite reinforced with carbon nanofibers (CNF) at the resin-fiber interface is being developed for potential use in wind turbine blades. An energy and midpoint impact assessment was performed to gauge impacts of scaling production to blades 40 m and longer. Higher loadings force trade-offs in energy return on investment and midpoint impacts relative to the base case while remaining superior to thermoelectric power generation in these indicators. Energy-intensive production of CNFs forces impacts disproportionate to mass contribution. The polymer nanocomposite increases a 2 MW plant's global warming potential nearly 100% per kWh electricity generated with 5% CNF by mass in the blades if no increase in electrical output is realized. The relative scale of impact must be compensated by systematic improvements whether by deployment in higher potential zones or by increased life span; the trade-offs are expected to be significantly lessened with CNF manufacturing maturity. Significant challenges are faced in evaluating emerging technologies including uncertainty in future scenarios and process scaling. Inventories available for raw materials and monte carlos analysis have been used to gain insight to impacts of this development.

  13. Trailing edge noise theory for rotating blades in uniform flow

    CERN Document Server

    Sinayoko, Samuel; Agarwal, Anurag

    2013-01-01

    This paper presents a new formulation for trailing edge noise radiation from rotating blades based on an analytical solution of the convective wave equation. It accounts for distributed loading and the effect of mean flow and spanwise wavenumber. A commonly used theory due to Schlinker and Amiet (1981) predicts trailing edge noise radiation from rotating blades. However, different versions of the theory exist; it is not known which version is the correct one and what the range of validity of the theory is. This paper addresses both questions by deriving Schlinker and Amiet's theory in a simple way and by comparing it to the new formulation, using model blade elements representative of a wind turbine, a cooling fan and an aircraft propeller. The correct form of Schlinker and Amiet's theory (1981) is identified. It is valid at high enough frequency, i.e. for a Helmholtz number relative to chord greater than one and a rotational frequency much smaller than the angular frequency of the noise sources.

  14. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading......The structural reliability of wind turbine components can have a profound impact on both the profitability and reputation of a wind turbine manufacturer or supplier of wind turbine components. The issue of reliability is of critical concern when large wind farm co-operatives are considered...

  15. Failures in Trailing Edge Bondlines of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jensen, F. M.; Sørensen, John Dalsgaard; Nielsen, P. H.;

    2011-01-01

    Bonded joints in composite structures are often en object for concern. This is also true for wind turbine blades, where damage occurs in the trailing edge due to fatigue loads. Reliability of wind turbines becomes increasingly important when used offshore, where operation and maintenance costs...... constitute a significant part of the cost per kWh produced. However, the wind turbine industy is reluctant to share statistical values for damages, and this makes it more difficult to assess the reliability. Instead of analyzing the joint and reinforce the connection, research at Risø DTU has shown...

  16. Damage tolerance and structural monitoring for wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Pereira, Gilmar Ferreira; Sørensen, Bent F.;

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation...... it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective...... exploitation of offshore wind....

  17. Damage tolerance and structural monitoring for wind turbine blades

    Science.gov (United States)

    McGugan, M.; Pereira, G.; Sørensen, B. F.; Toftegaard, H.; Branner, K.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858

  18. Damage tolerance and structural monitoring for wind turbine blades.

    Science.gov (United States)

    McGugan, M; Pereira, G; Sørensen, B F; Toftegaard, H; Branner, K

    2015-02-28

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind. PMID:25583858

  19. Electro-thermal protection system design against atmospheric frost on turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Noui, M.A.; Perron, J.; Fortin, G. [Quebec Univ., Chicoutimi, PQ (Canada). Anti-Icing Materials International Laboratory

    2010-07-01

    This presentation discussed a research program developed to adapt de-icing thermal heating systems for use in wind turbines. The presence of ice on turbine blades can significantly deteriorate rotor performance. Accumulations of ice can increase the radial load on the turbine blades. The uneven formations of ice can lead to vibrations and the expulsion of pieces of ice into surrounding areas. Ice can also reduce the accuracy of various wind measuring devices. A recent study in Finland showed that turbine heating systems consume 3.6 per cent of annual wind production energy. De-icing systems include protective covers; air inlets; sealing systems; inflation tubes; elastomeric ply; and bond ply. The systems also include blade trailing and loading edges, and blade roots. The energy dissipated by the system's heating element is lost by conduction to the interior of the profile. The research program is now developing a system to improve electrothermal protection against frost that is suitable for turbine blades, as well as a thermal model for simulating its operation in a wind turbine. tabs., figs.

  20. Robotic Hot-Blade Cutting

    DEFF Research Database (Denmark)

    Søndergaard, Asbjørn; Feringa, Jelle; Nørbjerg, Toke Bjerge;

    2016-01-01

    This paper presents a novel method for cost-effective, robotic production of double curved formwork in Expanded Polystyrene (EPS) for in situ and prefabricated concrete construction. A rationalization and segmentation procedure is developed, which allows for the transliteration of double curved...... NURBS surfaces to Euler elastica surface segments, while respecting various constraints of production. An 18 axis, tri-robot system approximates double curved NURBS surfaces by means of an elastically deformed and heated blade, mounted on the flanges of two manipulators. Re-orienting or translating...

  1. Pressure Pulsation Signal Analysis for Centrifugal Compressor Blade Crack Determination

    OpenAIRE

    Hongkun Li; Xuefeng Zhang; Xiaowen Zhang; Shuhua Yang; Fujian Xu

    2014-01-01

    Blade is a key piece of component for centrifugal compressor. But blade crack could usually occur as blade suffers from the effect of centrifugal forces, gas pressure, friction force, and so on. It could lead to blade failure and centrifugal compressor closing down. Therefore, it is important for blade crack early warning. It is difficult to determine blade crack as the information is weak. In this research, a pressure pulsation (PP) sensor installed in vicinity to the crack area is used to d...

  2. Research on Blade Thickness Influencing Pump as Turbine

    OpenAIRE

    Sun-Sheng Yang; Chao Wang; Kai Chen; Xin Yuan

    2014-01-01

    Research on the efficiency improvement of pump as turbine (PAT) is inadequate. Blade thickness is an important geometry parameter in blade design. To explore effects of blade thickness on the influence of PAT, numerical research on three different specific speeds of PATs with different blade thickness was carried out. Their performance changes with blade thickness were presented. Besides, the variations of hydraulic loss distribution with increasing blade thickness were performed. Theoretical...

  3. Fully three-dimensional and viscous semi-inverse method for axial/radial turbomachine blade design

    Science.gov (United States)

    Ji, Min

    2008-10-01

    A fully three-dimensional viscous semi-inverse method for the design of turbomachine blades is presented in this work. Built on a time marching Reynolds-Averaged Navier-Stokes solver, the inverse scheme is capable of designing axial/radial turbomachinery blades in flow regimes ranging from very low Mach number to transonic/supersonic flows. In order to solve flow at all-speed conditions, the preconditioning technique is incorporated into the basic JST time-marching scheme. The accuracy of the resulting flow solver is verified with documented experimental data and commercial CFD codes. The level of accuracy of the flow solver exhibited in those verification cases is typical of CFD analysis employed in the design process in industry. The inverse method described in the present work takes pressure loading and blade thickness as prescribed quantities and computes the corresponding three-dimensional blade camber surface. In order to have the option of imposing geometrical constraints on the designed blade shapes, a new inverse algorithm is developed to solve the camber surface at specified spanwise pseudo stream-tubes (i.e. along grid lines), while the blade geometry is constructed through ruling (e.g. straight-line element) at the remaining spanwise stations. The new inverse algorithm involves re-formulating the boundary condition on the blade surfaces as a hybrid inverse/analysis boundary condition, preserving the full three-dimensional nature of the flow. The new design procedure can be interpreted as a fully three-dimensional viscous semi-inverse method. The ruled surface design ensures the blade surface smoothness and mechanical integrity as well as achieves cost reduction for the manufacturing process. A numerical target shooting experiment for a mixed flow impeller shows that the semi-inverse method is able to accurately recover the target blade composed of straightline element from a different initial blade. The semi-inverse method is proved to work well with

  4. Investigation of UWB Wind Turbine Blade Deflection Sensing with a Tip Antenna inside a Blade

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej;

    2016-01-01

    An UWB blade deflection sensing system with a tip antenna inside a blade is investigated in this paper. The lower UWB band of 3.1-5.3 GHz is utilized. This system composes of two UWB radio links between one antenna inside the blade tip and two antennas outside the blade root. Blade deflections ar......, and the sensing system can realize the deflection tracking with a maximum deviation of 0.21 m and root mean squared error of 0.11 m.......An UWB blade deflection sensing system with a tip antenna inside a blade is investigated in this paper. The lower UWB band of 3.1-5.3 GHz is utilized. This system composes of two UWB radio links between one antenna inside the blade tip and two antennas outside the blade root. Blade deflections...... are tracked via two radio links using delay-based distance estimation and triangulation. In order to build reliable radio links, time-domain pulse field distributions are simulated to optimize the in-blade tip antenna polarization and the locations of the two root antennas around the root surface. Full...

  5. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    Science.gov (United States)

    Howard, Samuel A.; Hammer, Jeremiah T.; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990 to 2007 in the US alone (Ref. 1). As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a nonrotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various non-rotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the prestress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in

  6. Study of Wear of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2000-01-01

    Full Text Available A study was made of the erosion of blades of pitched blade impellers in a suspension of solid particles in a liquid under a turbulent regime of flow of an agitated charge. The wear of the impeller is described by an analytical approximation in exponential form, and the influence of the pitch angle on the impeller blade wear was studied experimentally. It follows from the results of the experiments made that the wear rate of the pitched blade impellers increases linearly with the decreasing pitch angle within the interval a Î á15°; 45° ń. The proposed form of radial profile of the leading edge of the impeller blade enables us to calculate the surface of the worn blade. This quantity significantly decreases with the length of the period when the blades are affected by the solid particles, and its values calculated according to the suggested profile of the worn blade fit fairly well with the experimentally determined values. The results of the experiments performed are valid for homogeneous distribution of solid particles in an agitated suspension.

  7. Prismatic Blade Measuring on a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Stech J.

    2013-04-01

    Full Text Available The results from measurement on the straight blade cascade are presented in the paper. The cascade is placed at the outlet of wind tunnel in ŠKODA POWER experimental base. The results in the form of velocity and loss fields behind blade cascade as well as the distribution of the loss coefficient in selected cross-section are evaluated.

  8. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  9. Turbomachine blading with splitter blades designed by solving the inverse flow field problem

    Science.gov (United States)

    Luu, T. S.; Viney, B.; Bencherif, L.

    1992-04-01

    The paper presents an inverse method for the turbomachine blading design in incompressible non viscous flow in order to avoid cavitation and gives a new approach of the boundary conditions to be settled in relation with bound vorticity distribution on the blades. Treating first the 2D cascade design, it shows how the blade must be generated with the given thickness distribution and must be loaded in order to obtain the desired outlet flow angle. The 3D design is analysed by two steps S2-S1 approach proposed by Wu[1]. For the meridian flow (S2 approach), the blade thickness is taken into account by the modification of metric tensor in the continuity equation. The governing one is provided by the hub to shroud equilibrium condition and the meridian stream function is choosen to define the flow field. This step leads to the determination of axisymmetrical stream sheets as well as the approximate camber surface of the blades. In the second step, blade to blade flow (S1 approach) is analyzed. The governing equation is deduced from the momentum equation which implies that the vorticity of the absolute velocity must be tangential to the stream sheet. The bound vorticity distribution must be the same one as in S2 approach and the residual flux crossing over the blade be conservative (transpiration model). These two relations constitute the boundary conditions for the S1 flow. The detection of this residual flux due to the normal component of the relative velocity on the blade surface leads to the rectification of the camber surface. The optimized design of the blading of a centifugal impeller with splitter blades is presented. Pour définir la géométrie des aubages, les méthodes conventionnelles prennent la distribution de vitesse sur les deux faces de l'aube comme données initiales. En appliquant cette approche, on perd le contrôle de l'épaisseur de l'aube. Pour y remédier, la présente méthode suggère une méthode inverse en représentant les aubes par une

  10. Effects of rotor location, coning, and tilt on critical loads in large wind turbines

    Science.gov (United States)

    Spera, D. A.; Janetzke, D. C.

    1978-01-01

    Several large (1500 kW) horizontal rotor configurations were analyzed to determine the effects on dynamic loads of upwind downwind rotor locations, coned and radial blade positions, and tilted and horizontal rotor axis positions. Loads were calculated for a range of wind velocities at three locations in the structure: (1) the blade shank; (2) the hub shaft; and (3) the yaw drive. Blade axis coning and rotor axis tilt were found to have minor effects on loads. However, locating the rotor upwind of the tower significantly reduced loads at all locations analyzed.

  11. The SNL100-01 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  12. Wave-induced dynamics of flexible blades

    CERN Document Server

    Luhar, M

    2015-01-01

    We present an experimental and numerical study that describes the motion of flexible blades, scaled to be dynamically similar to natural aquatic vegetation, forced by wave-induced oscillatory flows. For the conditions tested, blade motion is governed primarily by two dimensionless variables: (i) the Cauchy number, $Ca$, which represents the ratio of the hydrodynamic forcing to the restoring force due to blade stiffness, and (ii) the ratio of the blade length to the wave orbital excursion, $L$. For flexible blades with $Ca \\gg 1$, the relationship between drag and velocity can be described by two different scaling laws at the large- and small-excursion limits. For large excursions ($L \\ll 1$), the flow resembles a unidirectional current and the scaling laws developed for steady-flow reconfiguration studies hold. For small excursions ($L \\gg 1$), the beam equations may be linearized and a different scaling law for drag applies. The experimental force measurements suggest that the small-excursion scaling applies...

  13. Advanced Blade Manufacturing Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  14. Failure analysis of air fan blades

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-qing; JI Zhe; CUI Yong-li; CUI Chun-zhi; SUN Zhi

    2008-01-01

    The failure of all 12 blades of an air fan was investigated by metallurgical and mechanical experiments and an examina-tion of the fracture surface. The experimental results show that the cast aluminium-silicon alloy without any modification had a number of material defects, such as coarse grains, a loose structure, a large number of shrinkage holes, a long and thin bold-pin shaped silicon-phase, poor material strength and serious brittleness. In addition, installed on the spindle without elastic conjunction,blade No. 10 vibrated and inevitably.spun off due to the large centrifugal force. Therefore, blade No. 10 first cracked at the locking handle, then broke at the root, which caused all the other 11 blades to be broken by the crack of blade No.10.

  15. Magnetic nondestructive testing of rotor blade tips

    Science.gov (United States)

    Cardelli, E.; Faba, A.; Marsili, R.; Rossi, G.; Tomassini, R.

    2015-05-01

    This paper deals with a particular magnetic nondestructive technique applied to the control of the position of the steel blades in rotating parts of turbines and engines. The working principle is based on a bridge of four identical magneto-resistive sensors. One sensor is placed near the blades, and the change in magnetic field produced by a permanent magnet and deviated by the change in position of the blade is detected by the sensor bridge. The position of the sensor is indicated, via dedicated FEM simulations, in order to have high sensitivity to the position change and high output signal. The accuracy and effectiveness of the proposed method are shown by experimental tests carried out in our laboratories. In particular, the tests indicate that the proposed magnetic nondestructive technique can be used in an almost large velocity range, and for quite different values of blade tip. The method seems also promising for the detection of blade vibrations.

  16. Large Scale Flutter Data for Design of Rotating Blades Using Navier-Stokes Equations

    Science.gov (United States)

    Guruswamy, Guru P.

    2012-01-01

    A procedure to compute flutter boundaries of rotating blades is presented; a) Navier-Stokes equations. b) Frequency domain method compatible with industry practice. Procedure is initially validated: a) Unsteady loads with flapping wing experiment. b) Flutter boundary with fixed wing experiment. Large scale flutter computation is demonstrated for rotating blade: a) Single job submission script. b) Flutter boundary in 24 hour wall clock time with 100 cores. c) Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries. Further wall-clock speed-up is possible by performing parallel computations within each case.

  17. High-tip-speed fiber composite compressor blades: Vibration and strength analysis

    Science.gov (United States)

    Chamis, C. C.; Lynch, J. E.

    1974-01-01

    An analytical procedure is described which couples composite mechanics computer codes with NASTRAN. This procedure was used to perform a detailed analysis of a high-tip-speed fiber composite compressor fan blade. The results indicate that the various vibration modes of this blade are highly coupled. Mechanical load ply stresses are well below the corresponding room temperature strengths. Lamination residual stresses are likely to cause transply cracks and interply delamination. Transply cracks and relaxation of root fixity decrease the vibrational frequencies whereas centrifugal stiffening increases them. Comparisons of results for various parameters are presented in tabular and graphical form.

  18. Qualification of a Glassy Carbon Blade for a LHC Fast Vacuum Valve

    CERN Document Server

    Garion, C

    2013-01-01

    To protect sensitive LHC machine systems against an unexpected gas inrush, a fast vacuum valve system is under development at CERN. The design of the shutter has to be compatible with dynamic loads occurring during the fast closure, namely in the 20 ms range. The material has to fulfil all main requirements such as transparency, high melting temperature, dust free and adequate leak tightness. A development of a blade in vitreous carbon material has been carried out at CERN. The blade has been successfully integrated in a commercial pendulum fast valve. In this paper, the vacuum and mechanical qualification tests are presented.

  19. Investigation of Structural Behavior due to Bend-Twist Couplings in Wind Turbine Blades

    OpenAIRE

    Fedorov, Vladimir; Dimitrov, Nikolay Krasimirov; Berggreen, Christian; Krenk, Steen; Branner, Kim; Berring, Peter

    2010-01-01

    One of the problematic issues concerning the design of future large composite wind turbine blades is the prediction of bend-twist couplings and torsion behaviour. The current work is a continuation of a previous work [1,2], and it examines different finite element modelling approaches for predicting the torsional response of the wind turbine blades with built-in bend-twist couplings. Additionally, a number of improved full-scale tests using an advanced bi-axial servo-hydraulic load control ha...

  20. Prediction of blade-vortex interaction noise using airloads generated by a finite-difference technique

    Science.gov (United States)

    Tadghighi, Hormoz; Hassan, Ahmed A.; Charles, Bruce

    1990-01-01

    The present numerical finite-difference scheme for helicopter blade-load prediction during realistic, self-generated three-dimensional blade-vortex interactions (BVI) derives the velocity field through a nonlinear superposition of the rotor flow-field yielded by the full potential rotor flow solver RFS2 for BVI, on the one hand, over the rotational vortex flow field computed with the Biot-Savart law. Despite the accurate prediction of the acoustic waveforms, peak amplitudes are found to have been persistently underpredicted. The inclusion of BVI noise source in the acoustic analysis significantly improved the perceived noise level-corrected tone prediction.

  1. Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Guntur, Srinivas; Sørensen, Niels N.; Schreck, Scott;

    2016-01-01

    This paper presents an investigation of two well-known aerodynamic phenomena, rotational augmentation and dynamic stall, together in the inboard parts of wind turbine blades. This analysis is carried out using the following: (1) the National Renewable Energy Laboratory’s Unsteady Aerodynamics...... a reduced order dynamic stall model that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional two-dimensional, non-rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared...... with a robust rotational augmentation model. Copyright © 2015 John Wiley & Sons, Ltd....

  2. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    Science.gov (United States)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  3. High-tip-speed fiber composite compressor blades - Vibration and strength analyses

    Science.gov (United States)

    Chamis, C. C.; Lynch, J. E.

    1974-01-01

    An analytical procedure is described which couples composite mechanics computer codes with NASTRAN. This procedure was used to perform a detailed analysis of a high-tip-speed fiber composite compressor fan blade. The results indicate that the various vibration modes of this blade are highly coupled. Mechanical load ply stresses are well below the corresponding room temperature strengths. Lamination residual stresses are likely to cause transply cracks and interply delamination. Transply cracks and relaxation of root fixity decrease the vibrational frequencies whereas centrifugal stiffening increases them. Comparisons of results for various parameters are presented in tabular and graphical form.

  4. Crack of a first stage blade in a steam turbine

    Directory of Open Access Journals (Sweden)

    M. Nurbanasari

    2014-10-01

    Full Text Available The failure of the first stage blade in a steam turbine of 55 MW was investigated. The blade was made of 17-4 PH stainless steel and has been used for 12 years before failure. The current work aims to find out the main cause of the first stage blade failure. The methods for investigation were metallurgical analysis, chemical composition test, and hardness measurement. The result showed that there was no evidence the blade failure was due to material. The damage found on the blade namely crack on the blade root. Two locations of the crack observed at the blade root, which was at the tang and the fillet, with different failure modes. In general, the damage of the blade was started by the corrosion occurred on the blade root. The crack at the blade root tang was due to corrosion fatigue and the crack occurred at the blade root fillet owing to stress corrosion cracking.

  5. Airfoil family design for large offshore wind turbine blades

    Science.gov (United States)

    Méndez, B.; Munduate, X.; San Miguel, U.

    2014-06-01

    Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design

  6. Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

    Science.gov (United States)

    Ernst, Benedikt; Schmitt, Henning; Seume, Jörg R.

    2014-12-01

    Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made.

  7. Effect of Geometric Uncertainties on the Aerodynamic Characteristic of Offshore Wind Turbine Blades

    International Nuclear Information System (INIS)

    Offshore wind turbines operate in a complex unsteady flow environment which causes unsteady aerodynamic loads. The unsteady flow environment is characterized by a high degree of uncertainty. In addition, geometry variations and material imperfections also cause uncertainties in the design process. Probabilistic design methods consider these uncertainties in order to reach acceptable reliability and safety levels for offshore wind turbines. Variations of the rotor blade geometry influence the aerodynamic loads which also affect the reliability of other wind turbine components. Therefore, the present paper is dealing with geometric uncertainties of the rotor blades. These can arise from manufacturing tolerances and operational wear of the blades. First, the effect of geometry variations of wind turbine airfoils on the lift and drag coefficients are investigated using a Latin hypercube sampling. Then, the resulting effects on the performance and the blade loads of an offshore wind turbine are analyzed. The variations of the airfoil geometry lead to a significant scatter of the lift and drag coefficients which also affects the damage-equivalent flapwise bending moments. In contrast to that, the effects on the power and the annual energy production are almost negligible with regard to the assumptions made

  8. Composite Structural Analysis of Flat-Back Shaped Blade for Multi-MW Class Wind Turbine

    Science.gov (United States)

    Kim, Soo-Hyun; Bang, Hyung-Joon; Shin, Hyung-Ki; Jang, Moon-Seok

    2014-06-01

    This paper provides an overview of failure mode estimation based on 3D structural finite element (FE) analysis of the flat-back shaped wind turbine blade. Buckling stability, fiber failure (FF), and inter-fiber failure (IFF) analyses were performed to account for delamination or matrix failure of composite materials and to predict the realistic behavior of the entire blade region. Puck's fracture criteria were used for IFF evaluation. Blade design loads applicable to multi-megawatt (MW) wind turbine systems were calculated according to the Germanischer Lloyd (GL) guideline and the International Electrotechnical Commission (IEC) 61400-1 standard, under Class IIA wind conditions. After the post-processing of final load results, a number of principal load cases were selected and converted into applied forces at the each section along the blade's radius of the FE model. Nonlinear static analyses were performed for laminate failure, FF, and IFF check. For buckling stability, linear eigenvalue analysis was performed. As a result, we were able to estimate the failure mode and locate the major weak point.

  9. Finite element model for aero-elastically tailored residential wind turbine blade design

    Science.gov (United States)

    Robinson, Eric Alan

    Advances in passive wind turbine control systems have allowed wind turbines to achieve higher efficiencies and operate in wider inflow conditions than ever before. Within recent years, the adoption of aero-elastically tailored (bend-twist coupled) composite blades have been a pursued strategy. Unfortunately, for this strategy to be applied, traditional means of modeling, designing and manufacturing are no longer adequate. New parameters regarding non-linearities in deflections, stiffness, and aerodynamic loadings must now be implemented. To aid in the development of passive wind turbine system design, a finite element based aero-elastic program capable of computationally predicting blade deflection and twist under loading was constructed. The program was built around the idea of iteratively solving a blade composite structure to reach a maximum aero-elastic twist configuration under elevated wind speeds. Adopting a pre-existing blade geometry, from a pitch controlled small scale (3.5kW) turbine design, the program was tested to discover the geometry bend-twist coupling potential. This research would be a contributing factor in designing a passive pitch control replacement system for the turbine. A study of various model loading configurations was first performed to insure model validity. Then, a final model was used to analyze composite layups for selected spar configurations. Results characterize the aero-elastic twist properties for the selected configurations.

  10. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  11. Influence of blade motion on mass flux to a model seagrass blade

    Science.gov (United States)

    Lei, Jiarui; Nepf, Heidi

    2015-11-01

    Seagrass and other freshwater macrophytes can acquire nutrients from surrounding water through their blades. While we anticipate that blade motion and reconfiguration may impact mass flux at the blade surface, this topic is an area of open discussion and research. We seek to better understand the interaction of individual blades with both unidirectional and oscillatory flows and how this interaction impacts mass flux. The degree of reconfiguration can be quantified by two dimensionless numbers, the Cauchy number, Ca, and the buoyancy parameter, B. For unidirectional currents (U) , a theoretical model for the transfer velocity (K) was constructed assuming the boundary layer on the blade surface remained laminar and developed like that over a flat plate, which predicts K ~U 0 . 5 . When the blades were bent-over, the model predicted the measured flux well; when the blades remained upright, the flux to the blade diminished relative to the model. Preliminary wave experiments show that blade motion increased with wave amplitude, and that there are two distinct regimes. In the first regime (Ca15. In this regime, the phase difference was approximately zero and the blade moved passively with the wave. NSF.

  12. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)

    1997-08-01

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)

  13. Photogrammetric detection technique for rotor blades structural characterization

    Science.gov (United States)

    Enei, C.; Bernardini, G.; Serafini, J.; Mattioni, L.; Ficuciello, C.; Vezzari, V.

    2015-11-01

    This paper describes an innovative use of photogrammetric detection techniques to experimentally estimate structural/inertial properties of helicopter rotor blades. The identification algorithms for the evaluation of mass and flexural stiffness distributions are an extension of the ones proposed by Larsen, whereas the procedure for torsional properties determination (stiffness and shear center position) is based on the Euler-Prandtl beam theory. These algorithms rely on measurements performed through photogrammetric detection, which requires the collection of digital photos allowing the identification of 3D coordinates of labeled points (markers) on the structure through the correlation of 2D pictures. The displacements are evaluated by comparing the positions of markers in loaded and reference configuration. Being the applied loads known, the structural characteristics can be directly obtained from the measured displacements. The accuracy of the proposed identification algorithms has been firstly verified by comparison with numerical and experimental data, and then applied to the structural characterization of two main rotor blades, designed for ultra-light helicopter applications.

  14. Blade Deterioration in a Gas Turbine Engine

    Directory of Open Access Journals (Sweden)

    W. Tabakoff

    1998-01-01

    Full Text Available A study has been conducted to predict blade erosion of gas turbine engines. The blade material erosion model is based on three dimensional particle trajectory simulation in the three-dimensional turbine flow field. The trajectories provide the special distribution of the particle impact parameters over the blade surface. A semi-empirical erosion model, derived from erosion tests of material samples at different particulate flow conditions, is used in the prediction of blade surface erosion based on the trajectory impact data. To improve the blade erosion resistance and to decrease the blade deterioration, the blades must be coated. For this purpose, an experimental study was conducted to investigate the behavior of rhodium platinum aluminide coating exposed to erosion by fly ash particles. New protective coatings are developed for erosion and thermal barrier. Chemical vapor deposition technique (CVD was used to apply the ceramic TiC coatings on INCO 718 and stainless steel 410. The erosive wear of the coated samples was investigated experimentally by exposing them to particle laden flow at velocities from 180 to 305m/s and temperatures from ambient to 538°C in a specially designed erosion wind tunnel. Both materials (INCO 718 and stainless steel 410 coated with CVD TiC showed one order of magnitude less erosion rate compared to some commercial coatings on the same substrates.

  15. The SNL100-02 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-11-01

    A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

  16. FOD Simulation for Ceramic Turbine Blades

    Science.gov (United States)

    Yoshida, Hiro; Li, Yinsheng

    Foreign object impact damage is a serious problem for ceramic gas turbines. In this paper, a series of finite element analyses with an elastic assumption was made to estimate the plausible damage behavior of axial and radial ceramic blades. Foreign objects were assumed to impact the leading part of the blade suction surface. The present analysis showed that the stress peaking process is strongly influenced by the interaction of various stress waves, leading to structural damage. The locations of the peak principal tensile stress (peak stress) in the axial blade corresponded well with the damaged parts of the blade observed experimentally. The maximum peak stress appeared in the suction surface and the averaged peak stress value in this surface was roughly double that in the pressure surface. Unlike the axial blade, the radial blade reached maximum peak stress in the pressure surface. The value was much larger than the initial impact stress due to the wave interactions. For the effect of the rotation, centrifugal force did not change the basic distribution of peak stresses, but it caused additional stress peaks near the hub in the pressure surface. Moreover, the centrifugal force caused appreciable differences in the averaged peak stresses in the suction and the pressure surfaces. The present finite element analysis with elastic assumption seems useful for understanding structural fracture behavior, when designing ceramic blades.

  17. Unified continuum damage model for matrix cracking in composite rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Pollayi, Hemaraju; Harursampath, Dineshkumar [Nonlinear Multifunctional Composites - Analysis and Design Lab (NMCAD Lab) Department of Aerospace Engineering Indian Institute of Science Bangalore - 560012, Karnataka (India)

    2015-03-10

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.

  18. Static and Fatigue Analysis of Wind Turbine Blades Subject to Cold Weather Conditions Using Finite Element Analysis

    Science.gov (United States)

    Lillo Gallardo, Patricio Andres

    Canada has aggressive targets for introducing wind energy across the country, but also faces challenges in achieving these goals due to the harsh Canadian climate. One issue which has received little attention in other countries not experiencing these extremes is the behaviour of composite blades in winter conditions. The scope of the work presented is to analyze the static stresses and fatigue response in cold climates using finite element models of the blade. The work opens with a quantification of the extremes of cold experienced in candidate Canadian wind turbine deployment locations. The thesis then narrows its focus to a consideration of the stresses in the root of the composite blades, specifically two common blade-hub connection methods: embedded root carrots and T-bolts. Finite element models of the root are proposed to properly simulate boundary conditions, applied loading and thermal stresses for a 1.5 MW wind turbine. It is shown that the blade root is strongly affected by the thermal stresses caused by the mismatch and orthotrophy of the coefficients of thermal expansion of the blade root constituents. Fatigue analysis of a blade is then presented using temperature dependent material properties including estimated fatigue coefficients.It was found that the natural frequencies of a 1.5 MW wind turbine blade are not significantly altered at cold temperatures. Additionally, cold temperatures slightly increase stresses in the composite blade skin when the blade is loaded, due to an increase in stiffness. Cold temperatures also lead to higher cyclic flapwise bending moments acting on the blade. However, this increase was found not to affect the lifetime fatigue damage. Finally, it was found that the cold climate as seen in Canada improves the fatigue strength of the saturated composite materials used in the blade. The predicted fatigue damage of the triaxial fabric and the spar cap layers in cold climates was therefore predicted to be half that of the

  19. Improved design for large wind turbine blades of fibre composites (Phase 4) - Summary report

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Toftegaard, Helmuth Langmaack; Goutianos, Stergios;

    Results are summarised for the project "Improved design for large wind turbine blades (Phase 4)", partially supported by the Danish Energy Agency under the Ministry of Climate and Energy through the EUDP journal no.: 33033-0267. The aim of the project was to develop new and better design methods...... for wind turbine blades, so that uncertainties associated with damage and defects can be reduced. The topics that are studied include buckling-driven delamination of flat load-carrying laminates, cracking along interfaces in material joints (fracture mechanical characterisation and modelling), cyclic crack...... growth with large scale bridging and the use of cohesive laws in finite element programmes for simulating wind turbine blade failure. An overview is given of the methods and the major research results of the project. The implementation of the knowledge in the industry is discussed. Finally, some ideas...

  20. Reliability-Based Calibration of Partial Safety Factors for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Branner, Kim; Sørensen, John Dalsgaard;

    2011-01-01

    The reliability of a wind turbine blade can be estimated using a response surface technique, the First Order Reliability Method (FORM) and Monte Carlo simulation. The response surface is here estimated based on nonlinear finite element analysis by which nonlinear failure modes due to e.g. buckling...... can be taken into account. Stochastic models for the material properties and the load-effect are formulated in order to take physical, model and statistical uncertainties into account. The blade fails due to buckling of the main spar cap which results in high stresses in the transverse direction...... of the unidirectional laminas. For this failure mode the reliability is estimated along the centreline of the main spar cap. The results show significant variations in the reliability along the blade length....

  1. Fatigue fracture of cutter blade made of high-speed steel

    Directory of Open Access Journals (Sweden)

    Beata Letkowska

    2015-04-01

    Full Text Available The quality of the surface of cyclically loaded components is very important. Many observations confirm that the root cause of the micro cracks (causing the fatigue fracture are primarily a surface's defects appearing during production process. These surface defects can be also caused by engraving processes used to perform identification marks. This paper presents the failure analysis of broken blade of the cutter Ku 500VX. The blade was subject of standard metallographic examination, hardness measurements, fractography analysis and metallographic studies using stereoscopic, light and scanning electron microscopes. The damage of the blade was caused by changes of the structure (formation of the brittle micro dendritic structure that occurred during manual electric engraving process when the material was heated till its melting point. As a result the stresses occurred in surface what provided to micro cracking and to propagate the fatigue fracture. The origin of this fatigue fracture was in the place where the inscription was made.

  2. Shaft flexibility effects on the forced response of a bladed-disk assembly

    Science.gov (United States)

    Khader, N.; Loewy, R. G.

    1990-01-01

    A model analysis approach is used to study the forced response of an actual flexible bladed-disk-shaft system. Both in-plane and out-of-plane flexible deformations of the bladed-disk assembly are considered, in addition to its rigid-body translations and rotations, resulting from the bending of the supporting flexible shaft in two orthogonal planes. The effects of Coriolis forces and structural coupling between flexible and rigid disk motions on the system's response are investigated. Aerodynamic loads acting on the rotating and vibrating bladed-disk assembly are accounted for through a simple quasi-steady representation, to evaluate their influence, combined with shaft flexibility and Coriolis effects.

  3. Improved design for large wind turbine blades of fibre composites (Phase 4) - Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B.F.; Toftegaard, H.; Goutanos, S. (Risoe DTU, Materials Research Div., Roskilde (Denmark)); Branner, K.; Berring, P. (Risoe DTU, Wind Energy Div., Roskilde (Denmark)); Lund, E. (Aalborg Univ., Dept. of Mechanical Engineering, Aalborg (Denmark)); Wedel-Heinen, J. (Vestas Wind System, Randers (Denmark)); Garm, J.H. (LM Wind Power, Kolding (Denmark))

    2010-06-15

    Results are summarised for the project 'Improved design for large wind turbine blades (Phase 4)', partially supported by the Danish Energy Agency under the Ministry of Climate and Energy through the EUDP journal no.: 33033-0267. The aim of the project was to develop new and better design methods for wind turbine blades, so that uncertainties associated with damage and defects can be reduced. The topics that are studied include buckling-driven delamination of flat load-carrying laminates, cracking along interfaces in material joints (fracture mechanical characterisation and modelling), cyclic crack growth with large scale bridging and the use of cohesive laws in finite element programmes for simulating wind turbine blade failure. An overview is given of the methods and the major research results of the project. The implementation of the knowledge in the industry is discussed. Finally, some ideas for future research activities are considered. (author)

  4. Aeroelastic stability of coupled flap-lag motion of hingeless helicopter blades at arbitrary advance ratios

    Science.gov (United States)

    Friedmann, P.; Silverthorn, L. J.

    1974-01-01

    Equations for large amplitude coupled flap-lag motion of a hingeless elastic helicopter blade in forward flight are derived. Only a torsionally rigid blade excited by quasi-steady aerodynamic loads is considered. The effects of reversed flow together with some new terms due to radial flow are included. Using Galerkin's method the spatial dependence is eliminated and the equations are linearized about a suitable equilibrium position. The resulting system of homogeneous periodic equations is solved using multivariable Floquet-Liapunov theory, and the transition matrix at the end of the period is evaluated by two separate methods. Computational efficiency of the two numerical methods is compared. Results illustrating the effects of forward flight and various important blade parameters on the stability boundaries are presented.

  5. Effect of blade tip configuration on tip clearance loss of a centrifugal impeller

    Science.gov (United States)

    Ishida, Masahiro; Ueki, Hironobu; Senoo, Yasutoshi

    1989-06-01

    The effect of blade tip configuration on the tip clearance loss was examined experimentally using an unshrouded centrifugal impeller with backward-leaning blades. Tips with rounded edges, sharp square edges, and edges with end plates were tested. The observed tip clearance effects could be theoretically predicted by assuming reasonable values of the contraction coefficent alpha = 0.91 for the round edge, 0.73 for the sharp square edge, and 0.53 for the end-plate edge. The impeller efficiency was improved by about 1.5 point by reducing the contraction coefficient from 0.91 to 0.53. The effect of contraction coefficient on impeller efficiency depends on the ratio of leakage loss to the tip clearance loss. Improved efficiency for impellers with highly loaded blades is expected from reducing the contraction coefficient.

  6. Full-Scale Field Test of a Blade-Integrated Dual-Telescope Wind Lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Sjöholm, Mikael; Angelou, Nikolas;

    -dimensional plane upwind was installed in the turbine and the first results from these experiments will be presented in another EWEA 2013 contribution. The lidar logged the raw Doppler spectra and the wind speed estimation was done subsequently using software designed specifically for the blade-mounted lidar...... in the top and bottom of the rotor plane. Conclusion We present here what we believe is the first successful wind speed measurements from a dual-telescope lidar installed on the blade of an operating wind turbine. The full-scale field test performed in the summer of 2012 has clearly demonstrated...... for load reduction and power optimization. To date, main attention has been on control schemes where measurements of wind speeds and direction upwind are used for yaw and speed corrections. In this study we investigate experimentally the feasibility of using lidars integrated in the turbine blades...

  7. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...

  8. Rotor blade full-scale fatigue testing technology and research

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Berring, Peter; Pavese, Christian;

    Full scale fatigue test is an important part of the development and design of wind turbine blades. Testing is also needed for the approval of the blades in order for them to be used on large wind turbines. However, usually only one prototype blade is tested. Fatigue test of wind turbine blades...

  9. Photoelastic Investigation of Turbine Rotor Blade Shrouds

    Directory of Open Access Journals (Sweden)

    U. Chandrasekhar

    1988-10-01

    Full Text Available This paper deals with the photoelastic stress analysis carried out to investigate the premature failure of low pressure turbine rotor blade shrouds of an experimental gas turbine. Stress distribution at the shroud aerofoil interface was studied for the original rectangular shroud geometry by stress freezing the photoelastic model blades under rotating conditions. The combined influence of taper shroud geometry and larger fillet radius in mitigating the shroud stress is studied by the three dimensional photoelastic technique and an optimised shroud geometry subject to the stress requirements of blade material is suggested.

  10. Rotating blade vibration analysis using shells

    Science.gov (United States)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    Shallow shell theory and the Ritz method are employed to determine the frequencies and mode shapes of turbomachinery blades having both camber and twist, rotating with non-zero angles of attack. Frequencies obtained for different degrees of shallowness and thickness are compared with results available in the literature, obtained from finite element analyses of nonrotating blades. Frequencies are also determined for a rotating blade, showing the effects of changing the (1) angular velocity of rotation, (2) disk radius and (3) angle of attack, as well as the significance of the most important body force terms.

  11. Modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, M.H.; Baumgart, A.;

    2002-01-01

    The modal analysis technique has been used to identify essential dynamic properties of wind turbine blades like natural frequencies, damping characteristics and mode shapes. Different experimental procedures have been considered, and the most appropriateof these has been selected. Although...... the comparison is based on measurements on a LM 19 m blade, the recommendations given are believed to be valid for other wind turbine blades as well. The reliability of the selected experimental analysis has beenquantified by estimating the unsystematic variations in the experimental findings. Satisfactory...

  12. Pitched Blade Turbine Efficiency at Particle Suspension

    OpenAIRE

    D. Ceres; T. Jirout; Rieger, F.

    2010-01-01

    Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel ...

  13. Anisotropic beam model for analysis and design of passive controlled wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Branner, K.; Blasques, J.P.; Kim, T.; Fedorov, V.A.; Berring, P.; Bitsche, R.D.; Berggreen, C.

    2012-02-15

    The main objective of the project was, through theoretical and experimental research, to develop and validate a fully coupled, general beam element that can be used for advanced and rapid analysis of wind turbine blades. This is fully achieved in the project and the beam element has even been implemented in the aeroelastic code HAWC2. It has also been demonstrated through a parametric study in the project that a promising possibility with the tool is to reduce fatigue loads through structural couplings. More work is needed before these possibilities are fully explored and blades with structural couplings can be put into production. A cross section analysis tool BECAS (BEam Cross section Analysis Software) has been developed and validated in the project. BECAS is able to predict all geometrical and material induced couplings. This tool has obtained great interest from both industry and academia. The developed fully coupled beam element and cross section analysis tool has been validated against both numerical calculations and experimental measurements. Numerical validation has been performed against beam type calculations including Variational Asymptotical Beam Section Analysis (VABS) and detailed shell and solid finite element analyses. Experimental validation included specially designed beams with built-in couplings, a full-scale blade section originally without couplings, which subsequently was modified with extra composite layers in order to obtain measurable couplings. Both static testing and dynamic modal analysis tests have been performed. The results from the project now make it possible to use structural couplings in an intelligent manner for the design of future wind turbine blades. The developed beam element is especially developed for wind turbine blades and can be used for modeling blades with initial curvature (pre-bending), initial twist and taper. Finally, it have been studied what size of structural couplings can be obtained in current and future

  14. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.

    Science.gov (United States)

    Suslov, D; Schulz, A; Wittig, S

    2001-05-01

    The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.

  15. In-situ damage localization for a wind turbine blade through outlier analysis of SDDLV-induced stress resultants

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Hansen, L.m.;

    2016-01-01

    Today, structural integrity inspections of wind turbine blades are typically carried out by the use of rope or platform access. Since these inspection approaches are both tedious and extremely costly, a need for a method facilitating reliable, remote monitoring of the blades has been identified....... In the present paper, it is examined whether a vibrationbased damage localization method proposed by the authors can provide such reliable monitoring of the location of a structural damage in a wind turbine blade. The blade, which is analysed in idle condition, is subjected to unmeasured hits from a mounted...... that interrogates damaged-induced changes in a surrogate of the transfer function matrix. The surrogate’s quasi-null vector associated with the lowest singular value is converted into a pseudo-load vector and applied to a mechanical model of the healthy structure in question, hereby, theoretically, yielding...

  16. Effects of geometric non-linearity on energy release rates in a realistic wind turbine blade cross section

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert; Belloni, Federico

    2015-01-01

    of their structural behaviour, little is known about the root causes of adhesive joint failure. This paper investigates the effects of geometrical non-linearity on energy release rates (ERRs) of transversely oriented cracks present in the adhesive joints of a wind turbine rotor blade. Utilising a computationally......Most wind turbine rotor blades comprise several adhesively connected sub-components typically made from glass fibre reinforced polymer composite materials. It is a well-known fact that wind turbine blades are prone to fail in their adhesive joints. However, owing to the complexity...... efficient numerical slice modelling approach, the Virtual Crack Closure Technique (VCCT) is used to compute Mode-I and Mode-II ERRs induced by bi-axial bending. Generic critical loading directions are identified; these may have far-reaching consequences for blade design, analysis and testing....

  17. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....

  18. A Model Based Control methodology combining Blade Pitch and Adaptive Trailing Edge Flaps in a common framework

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Bergami, Leonardo; Andersen, Peter Bjørn

    2013-01-01

    This work investigates how adaptive trailing edge flaps and classical blade pitch can work in concert using a model-based state space control formulation. The trade-off between load reduction and actuator activity is decided by setting different weights in the objective function used by the model......-based controller. The combined control approach allow to achieve higher load alleviations, furthermore, in the presence of e.g. deterioration of an actuator, it enables an online re-tuning of the workload distribution of blade pitch and trailing edge flaps, thus potentially increasing the smart rotor reliability....

  19. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  20. Numerical and Experimental Study of Friction Damping Blade Attachments of Rotating Bladed Disks

    OpenAIRE

    Charleux, D.; Gibert, C; Thouverez, F.; Dupeux, J.

    2006-01-01

    In order to mitigate high cycle fatigue risks in bladed disks, the prediction of the vibration levels early in the design process is important. Therefore, the different sources of damping need to be modeled accurately. In this paper the impact of friction in blade attachments on forced response is investigated both numerically and experimentally. An efficient multiharmonic balance method is proposed in order to compute the forced response of bladed disks with contact and friction nonlineariti...

  1. Low-pressure reversible axial fan with straight profile blades and relatively high efficiency

    Directory of Open Access Journals (Sweden)

    Spasić Živan T.

    2012-01-01

    Full Text Available The paper presents the design and operating characteristics of a model of reversible axial fan with only one impeller, whose reversibility is achieved by changing the direction of rotation. The fan is designed for the purpose of providing alternating air circulation in wood dryers in order to reduce the consumption of electricity for the fan and increase energy efficiency of the entire dryer. To satisfy the reversibility of flow, the shape of the blade profile is symmetrical along the longitudinal and transversal axes of the profile. The fan is designed with equal specific work of all elementary stages, using the method of lift forces. The impeller blades have straight mean line profiles. The shape of the blade profile was adopted after the numerical simulations were carried out and high efficiency was achieved. Based on the calculation and conducted numerical simulations, a physical model of the fan was created and tested on a standard test rig, with air loading at the suction side of the fan. The operating characteristics are shown for different blade angles. The obtained maximum efficiency was around 0.65, which represents a rather high value for axial fans with straight profile blades.

  2. OPTIMIZING THE SHAPE OF ROTOR BLADES FOR MAXIMUM POWER EXTRACTION IN MARINE CURRENT TURBINES

    Directory of Open Access Journals (Sweden)

    J.A. Esfahani

    2012-12-01

    Full Text Available In this paper the shape of rotor blades in Marine Current Turbines (MCTs are investigated. The evaluation of hydrodynamic loads on blades is performed based on the Blade Element Momentum (BEM theory. The shape of blades is optimized according to the main parameters in the configuration and operation of these devices. The optimization is conducted based on the ability of the blades to harness the maximum energy during operating. The main parameters investigated are the tip speed ratio and angle of attack. Furthermore, the influence of these parameters on the maximum energy extraction from fluid flow over a hydrofoil is evaluated. It is shown that the effect of the angle of attack on power extraction is greater than that of the tip speed ratio, while both are found to be significant. Additionally, the proper angle of attack is the angle at which the lift to drag ratio is at its maximum value. However, if a proper angle of attack is chosen, the variations in power coefficient would not be effectively changed with small variations in the tip speed ratio.

  3. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Care for Lightweight Fan Blade Design

    Science.gov (United States)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. Traditionally, these components have been fabricated using expensive materials such as light weight titanium alloys, polymeric composite materials and carbon-carbon composites. The present study investigates the use of P sandwich foam fan blade made up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The stiffness of the sandwich structure is increased by separating the two face sheets by a foam core. The resulting structure possesses a high stiffness while being lighter than a similar solid construction. Since the face sheets carry the applied bending loads, the sandwich architecture is a viable engineering concept. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of the sandwich structure for a fan blade application. A vibration analysis for natural frequencies and P detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of skin thickness and core volume %re presented with a comparison to a solid titanium blade.

  4. Wind wheel with a single bladed or two blade rotor arranged on a tower

    Energy Technology Data Exchange (ETDEWEB)

    Laussermair, F.; Kaiba, K.

    1980-02-14

    The invention concerns a wind wheel (impeller) with a single bladed or two blade rotor arranged on a tower. The wind speed, with which the air flows over wind wheels, is normally different over the rotor circle area. This leads to the creation of cyclic torques, which will try to turn the rotor head cyclically around the tower axis and cause torsional oscillations. It is therefore the purpose of the invention to create a wind wheel, in which the tendency of the rotor head to turn around the tower axis is reduced, without incurring losses of output. The problem of the invention is solved, by having one or more auxiliary blades in addition to the main blade or blades, which lie in the rotor plane and are cyclically adjustable around their longitudinal axis, so that their aerodynamic up thrust produces a torque around the tower axis, which practically compensates for the torque resulting from the different flow over the main blade or blades. One example of the invention achieves the adjustment of the auxiliary blades around their longitudinal axis by means of one or more levers, each of which is connected at its end to one auxiliary blade, and has a roller on its other end, which can roll around a fixed curved disc, where the roller is pressed by a spring against the curved disc.

  5. Research overview on vibration damping of mistuned bladed disk assemblies

    OpenAIRE

    Zhang, Liang; Liu, Tiejian; Li, Xin; Xuyao HUO

    2016-01-01

    Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home a...

  6. Blade couple with dry friction connection

    Directory of Open Access Journals (Sweden)

    Půst L.

    2015-06-01

    Full Text Available Vibration of a blade couple damped by a dry friction contact in the shroud is investigated by means of hysteresis loops and response curves analysis. The studied system is excited by one harmonic external force in a frequency range near to the lowest eigenfrequency of real blades. Blades are connected by means of a damping element consisting of dry friction part linked in series with linear spring. This "stick-slip" damping element is supposed to be either weightless or of a very small mass which models the mass of elastically deformed parts of contacting bodies near the friction surface. Two approximate mathematical models of "stick-slip" dry friction elements are suggested and analysed. The response curves of blade couple connected by stick-slip damping element are presented for different values of slip friction forces and two values of mass of elastically deformed parts.

  7. Composite blade structural analyzer (COBSTRAN) user's manual

    Science.gov (United States)

    Aiello, Robert A.

    1989-01-01

    The installation and use of a computer code, COBSTRAN (COmposite Blade STRuctrual ANalyzer), developed for the design and analysis of composite turbofan and turboprop blades and also for composite wind turbine blades was described. This code combines composite mechanics and laminate theory with an internal data base of fiber and matrix properties. Inputs to the code are constituent fiber and matrix material properties, factors reflecting the fabrication process, composite geometry and blade geometry. COBSTRAN performs the micromechanics, macromechanics and laminate analyses of these fiber composites. COBSTRAN generates a NASTRAN model with equivalent anisotropic homogeneous material properties. Stress output from NASTRAN is used to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. Curved panel structures may be modeled providing the curvature of a cross-section is defined by a single value function. COBSTRAN is written in FORTRAN 77.

  8. Composite Blade Structural Analyzer (COBSTRAN) demonstration manual

    Science.gov (United States)

    Aiello, Robert A.

    1989-01-01

    The input deck setup is described for a computer code, composite blade structural analyzer (COBSTRAN) which was developed for the design and analysis of composite turbofan and turboprop blades and also for composite wind turbine blades. This manual is intended for use in conjunction with the COBSTRAN user's manual. Seven demonstration problems are described with pre- and postprocessing input decks. Modeling of blades which are solid thru-the-thickness and also aircraft wing airfoils with internal spars is shown. Corresponding NASTRAN and databank input decks are also shown. Detail descriptions of each line of the pre- and post-processing decks is provided with reference to the Card Groups defined in the user's manual. A dictionary of all program variables and terms used in this manual may be found in Section 6 of the user's manual.

  9. Data Management Techniques for Blade Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Przysowa Radosław

    2016-07-01

    Full Text Available Well-designed procedures are required to handle large amounts of data, generated by complex measurement systems used in engine tests. The paper presents selected methodologies and software tools for characterisation and monitoring of blade vibration. Common file formats and data structures as well as methods to process and visualise tip-timing data are discussed. Report Generation Framework (RGF developed in Python is demonstrated as a flexible tool for processing and publishing blade vibration results.

  10. FEM Analysis of Turgo Impulse Turbine Blade

    Directory of Open Access Journals (Sweden)

    Sourabh KHURANA

    2013-07-01

    Full Text Available The present research work describes the development of Turgo turbine blades on the Solidworks software. Finite element simulation (Ansys V14 has been used for analysis of stress and total deformation produced inside the Turgo impulse turbine. Finite element simulation is effective when it is used to analyze the strain and stress distribution. It has been observed during analysis that the maximum stress occurs at the root of blade suction side.

  11. High efficiency turbine blade coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600 oC and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the production of layered

  12. Recent Development in Turbine Blade Film Cooling

    Directory of Open Access Journals (Sweden)

    Je-Chin Han

    2001-01-01

    Full Text Available Gas turbines are extensively used for aircraft propulsion, land-based power generation, and industrial applications. Thermal efficiency and power output of gas turbines increase with increasing turbine rotor inlet temperature (RIT. The current RIT level in advanced gas turbines is far above the .melting point of the blade material. Therefore, along with high temperature material development, a sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. Gas turbine blades are cooled internally and externally. This paper focuses on external blade cooling or so-called film cooling. In film cooling, relatively cool air is injected from the inside of the blade to the outside surface which forms a protective layer between the blade surface and hot gas streams. Performance of film cooling primarily depends on the coolant to mainstream pressure ratio, temperature ratio, and film hole location and geometry under representative engine flow conditions. In the past number of years there has been considerable progress in turbine film cooling research and this paper is limited to review a few selected publications to reflect recent development in turbine blade film cooling.

  13. The environmental impact of wind turbine blades

    Science.gov (United States)

    Liu, P.; Barlow, C. Y.

    2016-07-01

    The first generation of wind turbine (WT) blades are now reaching their end of life, signalling the beginning of a large problem for the future. Currently most waste is sent to landfill, which is not an environmentally desirable solution. Awareness of this issue is rising, but no studies have fully assessed the eco impact of WT blades. The present study aims to provide a macroscopic quantitative assessment of the lifetime environmental impact of WT blades. The first stage has been to analyse global data to calculate the amount of WT blade materials consumed in the past. The life cycle environmental impact of a single WT blade has then been estimated using eco data for raw materials, manufacturing processes, transportation, and operation and maintenance processes. For a typical 45.2 meter 1.5 MW blade this is 795 GJ (CO2 footprint 42.1 tonnes), dominated by manufacturing processes and raw materials (96% of the total. Based on the 2014 installed capacity, the total mass of WTB is 78 kt, their energy consumption is 82 TJ and the carbon dioxide footprint is 4.35 Mt. These figures will provide a basis for suggesting possible solutions to reduce WTB environmental impact.

  14. Eddy current turbocharger blade speed detection

    Energy Technology Data Exchange (ETDEWEB)

    Rickman, J. Jr.

    1982-09-01

    A commercially available magnetic reluctance sensor is used to determine the angular velocity of turbocharger impeller blades from outside the aluminum housing. Eddy currents are induced in the aluminum blades by blade motion through the magnetic field projected by an externally mounted samarium-cobalt permanent magnet. Experiments show that secondary eddy currents and associated ac magnetic fields generated in the aluminum housing provide the prime excitation for a sensor coil located outside the housing. The coil output voltage spectrum shows a strongly peaked structure with peak locations at multiples of the blade passage frequency in the range 1-10 kHz. The sensor output signal decreases with increasing frequency above 2 kHz because of increasingly effective attenuation by the housing. Test results show that a circuit designed to track the blade signal gives an analog voltage output proportional to the frequency of blade passage over the operating range of the Cummins VT-903 and Detroit 8V-71T turbocharged diesel engines. Suggestions are made for the design of a sensor appropriate for both magnetic reluctance and eddy current sensing applications.

  15. Atmospheric icing on large wind turbine blades

    Directory of Open Access Journals (Sweden)

    Muhammad S. Virk, Matthew C. Homola, Per J. Nicklasson

    2012-01-01

    Full Text Available A numerical study of atmospheric ice accretion on a large horizontal axis ‘NREL 5 MW’ wind turbine blade has been carried out using the computational fluid dynamics based technique. Numerical analyses were carried out at five different sections along the wind turbine blade for both rime and glaze ice conditions. Based upon the flow field calculation and the droplet collision efficiency, the rate and shape of accreted ice was simulated at different atmospheric temperatures. Results indicate that the icing is less severe near the blade root sections, where the blade profiles are larger and thicker, both in terms of local ice mass and accreted ice thickness. Change in accreted ice growth with the atmospheric temperature is significant along the blade sections from centre to tip. The research work also highlighted that the ice accretion on wind turbine blades can also be controlled by optimizing its geometric design features instead of only using the energy consuming anti icing and de-icing systems.

  16. A CFD analysis of blade row interactions within a high-speed axial compressor

    Science.gov (United States)

    Richman, Michael Scott

    Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.

  17. ADVANCED COMPOSITE WIND TURBINE BLADE DESIGN BASED ON DURABILITY AND DAMAGE TOLERANCE

    Energy Technology Data Exchange (ETDEWEB)

    Galib Abumeri; Frank Abdi (PhD)

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints and closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite

  18. Flutter performance of bend-twist coupled large-scale wind turbine blades

    Science.gov (United States)

    Hayat, Khazar; de Lecea, Alvaro Gorostidi Martinez; Moriones, Carlos Donazar; Ha, Sung Kyu

    2016-05-01

    The bend-twist coupling (BTC) is proven to be effective in mitigating the fatigue loads for large-scale wind turbine blades, but at the same time it may cause the risk of flutter instability. The BTC is defined as a feature of twisting of the blade induced by the primary bending deformation. In the classical flutter, the BTC arises from the aerodynamic loads changing with the angle of attack. In this study, the effects of the structural BTC on the flutter are investigated by considering the layup unbalances (ply angle, material and thickness of the composite laminates) in the NREL 5-MW wind turbine rotor blade of glass fiber/epoxy [02/+45/-45]S laminates. It is numerically shown that the flutter speed may decrease by about 5 percent with unbalanced ply-angle only (one side angle, from 45° to 25°). It was then demonstrated that the flutter performance of the wind turbine blade can be increased by using lighter and stiffer carbon fibers which ensures the higher structural BTC at the same time.

  19. The influence on energy conversion and induction from large blade deflections

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H.; Rasmussen, F. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Flexible blades or coning means that the swept area is no longer a plane disc as assumed in the blade element momentum (BEM) theory. How is the induced flow field of the rotor influenced by such changes and what does this mean for the loading and energy conversion? This has been investigated by studying the flow through four different rotor geometries on basis of a numerical, axis-symmetric actuator disc model. Volume forces perpendicular to the local blade surface were applied and the converted power is the work performed by these forces. To simplify the comparisons, only a constant load distribution was used. The numerical results show that the shape of the rotor disc has considerable influence on the induction or axial velocity. The axial velocities vary with radial position in the case of constant loading where BEM theory gives constant velocities. There is considerable variation of the local power coefficient C{sub p,loc} even for constant loading. Locally, C{sub p,loc} can exceed the Betz limit. However, integrating C{sub p,loc} over the rotor plane, the total power coefficient for the different rotors are exactly the same. (au)

  20. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)

    1995-10-01

    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  1. Dynamic Response of Offshore Wind Turbines subjected to Joint Wave and Wind Loads

    DEFF Research Database (Denmark)

    Liu, Weiliang; Chen, Jianbing; Liu, Wenfeng;

    2013-01-01

    This paper investigates the dynamic response of offshore wind turbine systems subjected joint wind and wave loads. Relying on the finite element model, Kane’s equation is adopted to consider the rotation of blades. Besides, the generator-torque control and blade-pitch control are taken into consi...

  2. Impact of Higher Fidelity Models on Simulation of Active Aerodynamic Load Control For Fatigue Damage Reduction

    NARCIS (Netherlands)

    Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.

    2010-01-01

    Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to simul

  3. Derivation of airfoil characteristics for the LM 19.1 blade based on 3D CFD rotor calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.; Soerensen, N.N.; Madsen, H.A. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    Airfoil characteristics for the LM 19.1 blade are derived from 3D CFD computations on a full-scale 41-m rotor. Based on 3D CFD the force distributions on the blades are determined, from which airfoil characteristics are derived using the momentum theory. The final airfoil characteristics are constructed using both wind tunnel measurements and 3D CFD. Compared to 2D wind tunnel measurements they show a low lift in stall for the airfoil sections at the tip. At the airfoil sections at the inner part of the blade, they show a high lift in stall. At about 60% radius the lift agrees well to 2D wind tunnel measurements. Aero-elastic calculations using the final airfoil characteristics show good agreement to measured power and flap moments. Furthermore, a fatigue load analysis shows a reduction of up to 15% of the load compared to commonly used data. (au)

  4. Analysis of SNL/MSU/DOE fatigue database trends for wind turbine blade materials.

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, John F. (Montana State University, Bozeman, MT); Ashwill, Thomas D.; Wilson, Timothy J. (Montana State University, Bozeman, MT); Sears, Aaron T. (Montana State University, Bozeman, MT); Agastra, Pancasatya (Montana State University, Bozeman, MT); Laird, Daniel L.; Samborsky, Daniel D. (Montana State University, Bozeman, MT)

    2010-12-01

    This report presents an analysis of trends in fatigue results from the Montana State University program on the fatigue of composite materials for wind turbine blades for the period 2005-2009. Test data can be found in the SNL/MSU/DOE Fatigue of Composite Materials Database which is updated annually. This is the fifth report in this series, which summarizes progress of the overall program since its inception in 1989. The primary thrust of this program has been research and testing of a broad range of structural laminate materials of interest to blade structures. The report is focused on current types of infused and prepreg blade materials, either processed in-house or by industry partners. Trends in static and fatigue performance are analyzed for a range of materials, geometries and loading conditions. Materials include: sixteen resins of three general types, five epoxy based paste adhesives, fifteen reinforcing fabrics including three fiber types, three prepregs, many laminate lay-ups and process variations. Significant differences in static and fatigue performance and delamination resistance are quantified for particular materials and process conditions. When blades do fail, the likely cause is fatigue in the structural detail areas or at major flaws. The program is focused strongly on these issues in addition to standard laminates. Structural detail tests allow evaluation of various blade materials options in the context of more realistic representations of blade structure than do the standard test methods. Types of structural details addressed in this report include ply drops used in thickness tapering, and adhesive joints, each tested over a range of fatigue loading conditions. Ply drop studies were in two areas: (1) a combined experimental and finite element study of basic ply drop delamination parameters for glass and carbon prepreg laminates, and (2) the development of a complex structured resin-infused coupon including ply drops, for comparison studies of

  5. Method of calculating blade-to-blade plane flow in centrifugal pump

    Science.gov (United States)

    Jackson, E. D.

    1970-01-01

    Steam filament solution determines velocity distribution due to potential flow in the blade-to-blade plane of the radial impeller. This is used to determine the mass-averaged relative fluid angle, which is in turn used in an axisymmetric program to obtain steam surfaces of the assumed axisymmetric flow.

  6. Design and initial testing of a one-bladed 30-meter-diameter rotor on the NASA/DOE mod-O wind turbine

    Science.gov (United States)

    Corrigan, R. D.; Ensworth, C. B. F.

    1986-01-01

    The concept of a one-bladed horizontal-axis wind turbine has been of interest to wind turbine designers for many years. Many designs and economic analyses of one-bladed wind turbines have been undertaken by both United States and European wind energy groups. The analyses indicate significant economic advantages but at the same time, significant dynamic response concerns. In an effort to develop a broad data base on wind turbine design and operations, the NASA Wind Energy Project Office has tested a one-bladed rotor at the NASA/DOE Mod-O Wind Turbine Facility. This is the only known test on an intermediate-sized one-bladed rotor in the United States. The 15.2-meter-radius rotor consists of a tip-controlled blade and a counterweight assembly. A rigorous test series was conducted in the Fall of 1985 to collect data on rotor performance, drive train/generator dynamics, structural dynamics, and structural loads. This report includes background information on one-bladed rotor concepts, and Mod-O one-bladed rotor test configuration, supporting design analysis, the Mod-O one-blade rotor test plan, and preliminary test results.

  7. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. PMID:25583871

  8. Wide bandsaw blade under cutting conditions. Part III: Stability of a plate moving in its plane while subjected to non-conservative cutting forces

    Science.gov (United States)

    Lengoc, L.; McCallion, H.

    1995-09-01

    This study provides yet another possible mechanism for instability of bandsaw blades during sawing, namely dynamic instability of a moving plate when subjected to non-conservative tangential edge loading. In previous publications, the effect of non-conservative edge loading has been neglected; only the divergent buckling and the parametric instability have been considered as causes of unstable bandsaw blade motion. However, the non-conservative loading due to sawing can excite a flutter-type instability, similar to flutter in aeroplane wings. The extended Galerkin method is used to discretize the equation of motion, and a non-self-adjoint eigenvalue solver is employed to find the solutions.

  9. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    J.L. Rovey

    2012-09-21

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit

  10. Three dimensional inviscid compressible calculations around axial flow turbine blades

    Science.gov (United States)

    Fourmaux, Antoine; Petot, Bertrand

    1991-12-01

    The application of a three dimensional (3D) method to the prediction of steady inviscid compressible flows in highly loaded stator bladings is presented. The complete set of Euler equations is solved by a finite difference method using a time marching two step Lax-Wendorff algorithm. The treatment of the boundary conditions is based on the use of the characteristic relations. This technique offers a great versatility and allows to prescribe conditions close to the physics of flows encountered in turbomachines. The code was adapted in order to build a 3D design tool able to run in different types of turbine blade geometries. Two types of multidomain structured meshes were tested (H+0+H and H+C). The H+C type of grid was finally choosen for industrial applications. Two applications to turbine nozzles are presented. The first is a low pressure turbine vane with evolutive flow path outer diameter. The results demonstrate the ability to predict flow features that cannot be computed via the classical two dimensional approach. The second is a high pressure inlet guide vane at transonic conditions. The strong radial evolution of pressure distribution and the trailing edge flow pattern are correctly predicted.

  11. Morping blade design for vertical axis wind turbines

    Science.gov (United States)

    Macphee, David; Beyene, Asfaw

    2015-11-01

    Wind turbines operate at peak efficiency at a certain set of operational conditions. Away from these conditions, conversion efficiency drops significantly, requiring pitch and yaw control schemes to mitigate these losses. These efforts are an example of geometric variability, allowing for increased power production but with an unfortunate increase in investment cost to the energy conversion system. In Vertical-Axis Wind Turbines (VAWTs), the concept of pitch control is especially complicated due to a dependence of attack angle on armature azimuth. As a result, VAWT pitch control schemes, both active and passive, are as of yet unfeasible. This study investigates a low-cost, passive pitch control system, in which VAWT blades are constructed of a flexible material, allowing for continuous shape-morphing in response to local aerodynamic loading. This design is analyzed computationally using a finite-volume fluid-structure interaction routine and compared to a geometrically identical rigid rotor. The results indicate that the flexible blade increases conversion efficiency by reducing the severity of vortex shedding, allowing for greater average torque over a complete revolution.

  12. Successful Solutions to SSME/AT Development Turbine Blade Distress

    Science.gov (United States)

    Montgomery, Stuart K.

    1999-01-01

    As part of the High-Pressure Fuel Turbopump/Alternate Turbopump (HPFTP/AT) turbine blade development program, unique turbine blade design features were implemented to address 2nd stage turbine blade high cycle fatigue distress and improve turbine robustness. Features included the addition of platform featherseal dampers, asymmetric blade tip seal segments, gold plating of the blade attachments, and airfoil tip trailing edge modifications. Development testing shows these features have eliminated turbine blade high cycle fatigue distress and consequently these features are currently planned for incorporation to the flight configuration. Certification testing will begin in 1999. This presentation summarizes these features.

  13. Determination of HART I Blade Structural Properties by Laboratory Testing

    Science.gov (United States)

    Jung, Sung N.; Lau, Benton H.

    2012-01-01

    The structural properties of higher harmonic Aeroacoustic Rotor Test (HART I) blades were measured using the original set of blades tested in the German-dutch wind tunnel (DNW) in 1994. the measurements include bending and torsion stiffness, geometric offsets, and mass and inertia properties of the blade. the measured properties were compared to the estimated values obtained initially from the blade manufacturer. The previously estimated blade properties showed consistently higher stiffness, up to 30 percent for the flap bending in the blade inboard root section.

  14. Structural optimization study of composite wind turbine blade

    DEFF Research Database (Denmark)

    Chen, Jin; Shen, Wen Zhong; Wang, Quan;

    2013-01-01

    -way fluid-structure interaction method is introduced. A procedure combining finite element analysis and particle swarm algorithm to optimize composite structures of the wind turbine blade is developed. The procedure proposed not only allows thickness variation but also permits the spar cap location...... for the structural design and optimization of wind turbine blades. © 2012.......In this paper the initial layout of a 2. MW composite wind turbine blade is designed first. The new airfoils families are selected to design a 2. MW wind turbine blade. The finite element parametric model for the blade is established. Based on the modified Blade Element Momentum theory, a new one...

  15. Further development of the swinging-blade Savonius rotor

    Science.gov (United States)

    Aldoss, T. K.; Najjar, Y. S. H.

    Savonius rotor performance is improved by allowing both downwind and upwind rotor blades to swing back through an optimum angle. This will minimize the drag on the upwind blade and maximize the drag on the down-wind blade. A combination of 50 degrees upwind blade swing angle and 13.5 degrees downwind blade swing angle have been found experimentally to be the optimum swing angles that increased the rotor maximum power coefficient to about 23.5 percent compared with 18 percent with optimum upwind blade swing alone.

  16. Single and Twisted Blades Digital Simulation and Dynamic Analysis

    Directory of Open Access Journals (Sweden)

    A. Benretem

    2016-03-01

    Full Text Available This work represents a comparative study of a numerical simulation of frequencies and fundamental modes of flapping vibration, drag and torsion of the two blades of a small wind turbine, a single one and another with optimum blade design. The objective of this study is to understand the behavior of two types of blades subjected to various canvassing. The results reveal that the various canvassing and maximum displacements are located at the end of the two blades; in fact, the results show that a single blade has higher frequencies than twisted one but does not undergo large displacements in comparison to twisted blade.

  17. Coating pre-cracking effect on the LCF fatigue life of superalloys for gas turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Filippini, M.; Foletti, S. [Politecnico di Milano, Milan (Italy); Pasquero, G. [AVIO SpA, Rivalta di Torino (Italy)

    2009-07-01

    Low cycle fatigue (LCF) strain controlled experimental fatigue tests were conducted on the nickel superalloy MAR-M002 used in the construction of gas turbine blades. The aim of the study was to compare dwell times and high cycle fatigue (HCF) and LCF combined cycle fatigue test conditions. The study focused on investigating the potentially detrimental effect of coating cracking. A fatigue test system was equipped with an induction furnace and a high temperature extensometer. A procedure was developed to generate controlled cracking in the coating prior to fatigue testing. Loading modes used in the tests were representative of loads experienced by the superalloy turbine blades when in operation. HCF amplitudes were superimposed on major LCF cycles. It was concluded that coating cracks do not significantly impact the LCF fatigue life of aluminized investment casting nickel superalloy MAR-M002. 7 refs., 1 tab., 12 figs.

  18. Multivariate Modelling of Extreme Load Combinations for Wind Turbines

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    2015-01-01

    We demonstrate a model for estimating the joint probability distribution of two load components acting on a wind turbine blade cross section. The model addresses the problem of modelling the probability distribution of load time histories with large periodic components by dividing the signal...... into a periodic part and a perturbation term, where each part has a known probability distribution. The proposed model shows good agreement with simulated data under stationary conditions, and a design load envelope based on this model is comparable to the load envelope estimated using the standard procedure...... for determining contemporaneous loads. By defining a joint probability distribution and full return-period contours for multiple load components, the suggested procedure gives the possibility for determining the most critical loading direction in a blade cross section, or for carrying out reliability analysis...

  19. 3X-100 blade field test.

    Energy Technology Data Exchange (ETDEWEB)

    Zayas, Jose R.; Johnson, Wesley D.

    2008-03-01

    In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

  20. Modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H.; Baumgart, A.; Carlen, I.

    2002-02-01

    The modal analysis technique has been used to identify essential dynamic properties of wind turbine blades like natural frequencies, damping characteristics and mode shapes. Different experimental procedures have been considered, and the most appropriate of these has been selected. Although the comparison is based on measurements on a LM 19 m blade, the recommendations given are believed to be valid for other wind turbine blades as well. The reliability of the selected experimental analysis has been quantified by estimating the unsystematic variations in the experimental findings. Satisfactory results have been obtained for natural frequencies, damping characteristics and for the dominating deflection direction of the investigated mode shapes. For the secondary deflection directions, the observed experimental uncertainty may be considerable - especially for the torsional deflection. The experimental analysis of the LM 19 m blade has been compared with results from a state-of-the-art FE-modeling of the same blade. For some of the higher modes substantial discrepancies between the natural frequencies originating from the FE-modeling and the modal analysis, respectively, are observed. In general the qualitative features of measured and computed modes shapes are in good agreement. However, for the secondary deflection directions, substantial deviations in the absolute values may occur (when normalizing with respect to the primary deflection direction). Finally, suggestions of potential future improvements of the experimental procedure are discussed. (au)

  1. Blade containment evaluation of civil aircraft engines

    Institute of Scientific and Technical Information of China (English)

    Yang Bin

    2013-01-01

    The potential hazard resulting from uncontained turbine engine rotor blade failure has always been the long-term concern of each aero engine manufacturer,and to fully contain the failed blades under critical operating conditions is also one of the most important considerations to meet the rotor integrity requirements.Usually,there are many factors involving the engine containment capability which need to be reviewed during the engine design phases,such as case thickness,rotor support structure,blade weight and shape,etc.However,the premier method to demonstrate the engine containment capability is the fan blade-off test and margin of safety (MS) analysis.Based on a concrete engine model,this paper aims to explain the key points of aero engine containment requirements in FAR Part 33,and introduces the implementation of MS analysis and fan blade-off test in the engine airworthiness certification.Through the introduction,it would be greatly helpful to the industrial community to evaluate the engine containment capability and prepare the final test demonstration in engine certification procedure.

  2. Blade manipulators in turbulent channel flow

    Science.gov (United States)

    Vasudevan, B.; Prabhu, A.; Narasimha, R.

    1992-01-01

    We report here the results of a series of careful experiments in turbulent channel flow, using various configurations of blade manipulators suggested as optimal in earlier boundary layer studies. The mass flow in the channel could be held constant to better than 0.1%, and the uncertainties in pressure loss measurements were less than 0.1 mm of water; it was therefore possible to make accurate estimates of the global effects of blade manipulation of a kind that are difficult in boundary layer flows. The flow was fully developed at the station where the blades were mounted, and always relaxed to the same state sufficiently far downstream. It is found that, for a given mass flow, the pressure drop to any station downstream is always higher in the manipulated than in the unmanipulated flow, demonstrating that none of the blade manipulators tried reduces net duct losses. However the net increase in duct losses is less than the drag of the blade even in laminar flow, showing that there is a net reduction in the total skin friction drag experienced by the duct, but this relief is only about 20% of the manipulator drag at most.

  3. Numerical investigation of blade flutter at or near stall in axial turbomachines

    OpenAIRE

    Höhn, Wolfgang

    2000-01-01

    During the design of the compressor and turbine stages oftoday's aeroengines aerodynamically induced vibrations becomeincreasingly important since higher blade load and betterefficiency are desired. Aerodynamically induced vibrations inturbomachines can be classified into two general categories,i.e. selfexcited vibrations, usually denoted as flutter, andforced response. In the first case the aerodynamic forcesacting on the structure are dependent on the motion of thestructure. In the latter c...

  4. Numerical and experimental investigations into life assessment of blade-disc connections of gas turbines

    International Nuclear Information System (INIS)

    The positively engaged connection between blade and disc of a gas turbine s highly stressed by fatigue and creep fatigue loadings. For this purpose, a ew calculating method based on inelastic finite element analyses considering he main influences on damage was developed at MPA Stuttgart. Low cycle fatigue (LCF) tests with component-like specimens have been conducted for verification. Experimental data and life assessment results based on the Smith, Watson and Topper parameters were compared well

  5. Study of controlled diffusion stator blading. 1. Aerodynamic and mechanical design report

    Science.gov (United States)

    Canal, E.; Chisholm, B. C.; Lee, D.; Spear, D. A.

    1981-01-01

    Pratt & Whitney Aircraft is conducting a test program for NASA in order to demonstrate that a controlled-diffusion stator provides low losses at high loadings and Mach numbers. The technology has shown great promise in wind tunnel tests. Details of the design of the controlled diffusion stator vanes and the multiple-circular-arc rotor blades are presented. The stage, including stator and rotor, was designed to be suitable for the first-stage of an advanced multistage, high-pressure compressor.

  6. Complementary Aerodynamic Performance Datasets for Variable Speed Power Turbine Blade Section from Two Independent Transonic Turbine Cascades

    Science.gov (United States)

    Flegel, Ashlie B.; Welch, Gerard E.; Giel, Paul W.; Ames, Forrest E.; Long, Jonathon A.

    2015-01-01

    Two independent experimental studies were conducted in linear cascades on a scaled, two-dimensional mid-span section of a representative Variable Speed Power Turbine (VSPT) blade. The purpose of these studies was to assess the aerodynamic performance of the VSPT blade over large Reynolds number and incidence angle ranges. The influence of inlet turbulence intensity was also investigated. The tests were carried out in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility and at the University of North Dakota (UND) High Speed Compressible Flow Wind Tunnel Facility. A large database was developed by acquiring total pressure and exit angle surveys and blade loading data for ten incidence angles ranging from +15.8deg to -51.0deg. Data were acquired over six flow conditions with exit isentropic Reynolds number ranging from 0.05×106 to 2.12×106 and at exit Mach numbers of 0.72 (design) and 0.35. Flow conditions were examined within the respective facility constraints. The survey data were integrated to determine average exit total-pressure and flow angle. UND also acquired blade surface heat transfer data at two flow conditions across the entire incidence angle range aimed at quantifying transitional flow behavior on the blade. Comparisons of the aerodynamic datasets were made for three "match point" conditions. The blade loading data at the match point conditions show good agreement between the facilities. This report shows comparisons of other data and highlights the unique contributions of the two facilities. The datasets are being used to advance understanding of the aerodynamic challenges associated with maintaining efficient power turbine operation over a wide shaft-speed range.

  7. A finite element diagnostic tool for turbine blade failures

    International Nuclear Information System (INIS)

    The authors initiated the development of a diagnostic tool for evaluating the reliability of low pressure steam turbine blades. Designated BLADE (Blade Life Algorithm for Design Evaluation), the program is developed specifically for use by utility engineers to assess and correct blade failures - providing details on stresses, natural frequencies and blade life which traditionally are proprietary to the turbine blade manufacturers. Developed as a stand alone, finite element based program, BLADE requires no previous expertise in modeling or analysis of blade designs. The user is prompted to provide basic blade and root dimensions, including any applicable cover and tiewire information. The program then utilizes this information to automatically generate a complete finite element model of the blade or blade group configuration, and calculate static and dynamic stresses in the airfoil, root, tenon and cover sections of the blade. Natural frequency and mode shapes are also calculated and available to the user. To assist the utility engineer interpret this information, the static and dynamic stress components are combined with the high and low cycle material properties using the BLADE-FATIGUE program to predict the time to fatigue crack initiation, using the local strain approach

  8. Pressure Pulsation Signal Analysis for Centrifugal Compressor Blade Crack Determination

    Directory of Open Access Journals (Sweden)

    Hongkun Li

    2014-01-01

    Full Text Available Blade is a key piece of component for centrifugal compressor. But blade crack could usually occur as blade suffers from the effect of centrifugal forces, gas pressure, friction force, and so on. It could lead to blade failure and centrifugal compressor closing down. Therefore, it is important for blade crack early warning. It is difficult to determine blade crack as the information is weak. In this research, a pressure pulsation (PP sensor installed in vicinity to the crack area is used to determine blade crack according to blade vibration transfer process analysis. As it cannot show the blade crack information clearly, signal analysis and empirical mode decomposition (EMD are investigated for feature extraction and early warning. Firstly, signal filter is carried on PP signal around blade passing frequency (BPF based on working process analysis. Then, envelope analysis is carried on to filter the BPF. In the end, EMD is carried on to determine the characteristic frequency (CF for blade crack. Dynamic strain sensor is installed on the blade to determine the crack CF. Simulation and experimental investigation are carried on to verify the effectiveness of this method. The results show that this method can be helpful for blade crack classification for centrifugal compressors.

  9. Service failure of hot-stage turbine blades:

    Science.gov (United States)

    Oldfield, William; Oldfield, Freda M.

    1993-10-01

    Surface-connected porosity in current military aircraft hot-stage turbine engine blades is associated with blade failure. Oxidation ratcheting is suggested as the failure mechanism. Sta- tistical comparison of new and used blade populations showed that for blades cast with an equiaxed structure, the porosity in new blades was associated with crack formation on the con- cave surface of the used blades. The pores did not tend to develop into cracks on the compressed (convex) surface of the blade. Insufficient suitable data on directionally solidified blades pre- vented similar statistical correlations. However, metallography of the directionally solidified blades showed that the in-service cracks were related to oxidation inside surface-connected pores and that the cracks were oriented in the same direction as the (axial) casting pores. Thus, the proposed failure mechanism through ratcheting is based on the following insights: (1) the blades are thermally cycled as a normal part of service; (2) the hot blades expand and the open pores are filled with oxide; (3) when the blade is cooled, thermal contraction of the metal is greater than the oxide, causing compressive stress and yield; and (4) thermal expansion of the blades opens the pores again, since yield relaxed compressive stress at low temperature. These insights were supported by metallographic and computer-simulation studies which showed that the pores grow 20 to 50 pct in width per 100 missions (about 90 hours of operation) for a military aircraft on a typical mission profile.

  10. Experiments of Wind Turbine Blades with Rocket Triggered Lightning

    Science.gov (United States)

    Minowa, Masayuki; Sumi, Shinichi; Minami, Masayasu; Horii, Kenji

    This paper describes the results of the experiments of wind turbine blades with rocket triggered lightning. A number of wind power stations have been projected and planted. Lightning damage to wind turbines has been an increasing problem recently. So development on protection of wind power plants from lightning is necessary to be fully run for the future. In the experiments, the 1.8m long blade was struck by the lightning discharge triggered by rocket. For the blade kept dry inside, the very strong discharge of positive peak current 28kV, total charge 520 Coulombs, was triggered, but the breakdown did not occur through the blade into inside. Another blade polluted by salty wet inside was struck by the lightning discharge of negative peak current of 4kA with 0.5 Coulombs. The lightning was small, nevertheless, the blade was broken at the upper edge and the blade was disconnected by crack. For the protection of blade, the blade surface was covered with stainless steel plate. The blade itself was safe when the big positive lightning discharged, while most part of stainless steel cover was burned out. Supplement breakdown tests of wind turbine blade were carried out with lightning impulse voltage in laboratory. As a result, it became clear that the blade kept dry inside was an effective lightning protection of wind turbine blades.

  11. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  12. A New Single-blade Based Hybrid CFD Method for Hovering and Forward-flight Rotor Computation

    Institute of Scientific and Technical Information of China (English)

    SHI Yongjie; ZHAO Qijun; FAN Feng; XU Guohua

    2011-01-01

    A hybrid Euler/full potential/Lagrangian wake method, based on single-blade simulation, for predicting unsteady aerodynamic flow around helicopter rotors in hover and forward flight has been developed. In this method, an Euler solver is used to model the near wake evolution and transonic flow phenomena in the vicinity of the blade, and a full potential equation (FPE) is used to model the isentropic potential flow region far away from the rotor, while the wake effects of other blades and the far wake are incorporated into the flow solution as an induced inflow distribution using a Lagrangian based wake analysis. To further reduce the execution time, the computational fluid dynamics (CFD) solution and rotor wake analysis (including induced velocity update) are conducted parallelly, and a load balancing strategy is employed to account for the information exchange between two solvers. By the developed method, several hover and forward-flight cases on Caradonna-Tung and Helishape 7A rotors are performed. Good agreements of the loadings on blade surface with available measured data demonstrate the validation of the method. Also, the CPU time required for different computation runs is compared in the paper, and the results show that the present hybrid method is superior to conventional CFD method in time cost, and will be more efficient with the number of blades increasing.

  13. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage...... accumulation is determined from variable amplitude fatigue tests with the Wisper and Wisperx spectra. The statistical uncertainty for the assessment of the fatigue loads is also investigated. The partial safety factors have been calibrated for different variations of the stochastic models in order to determine...... the influence from each of these. In general model uncertainty on the aerodynamics has the largest influence on the partial safety factors followed by the physical uncertainty on the material properties and the model uncertainty on Miners rule. In the paper a framework is presented for determination...

  14. Numerical investigation of three wind turbine blade tips

    DEFF Research Database (Denmark)

    Johansen, J.; Sørensen, Niels N.

    2002-01-01

    The complex three-dimensional flow around three different tip shapes on a rotating wind turbine blade is investigated and analyzed using Computational Fluid Dynamics. Differences in production, flapwise bending moments and forces are discussed. A methodfor determining the local inflow angle....... The Taper tip keeps the higher loading causing the flapwise bending moment to be higher as seen inmeasurements. To determine the radial variation of lift and drag coefficients the local inflow angle of attack is determined. It is shown that the Standard tip experiences a slightly larger angle of attack...... at the tip compared to the two tapered tips. Thelift coefficients are kept at a more constant level for the two tapered tips due to the decrease in chord, while the drag coefficients actually decrease for the two tapered tips, especially for the Swept tip. For the Swept tip at 12 m/s both lift...

  15. Four-Point Bending Strength Testing of Pultruded Fiberglass Composite Wind Turbine Blade Sections

    Energy Technology Data Exchange (ETDEWEB)

    Musial, W.; Bourne, B; Hughes, S; Zuteck, M. D. (MDZ Consulting)

    2001-07-10

    The ultimate strength of the PS Enterprises pultruded blade section was experimentally determined under four-point bending at the National Renewable Energy Laboratory. Thirteen 8-foot long full-scale blade segments were individually tested to determine their maximum moment carrying capability. Three airfoil-bending configurations were tested: high- and low-pressure skin buckling, and low pressure skin buckling with foam interior reinforcement. Maximum strain was recorded for each sample on the compressive and tensile surfaces of each test blade. Test data are compared to the results of three analytical buckling prediction methods. Based on deviations from the linear strain versus load curve, data indicate a post-buckling region. High-pressure side buckling occurred sooner than low-pressure side buckling. The buckling analyses were conservative for both configurations, but high-pressure side buckling in particular was substantially under-predicted. Both high- and low-pressure buckling configurations had very similar failure loads. These results suggests that a redundant load path may be providing strength to the section in the post-buckling region, making the onset of panel buckling a poor predictor of ultimate strength for the PS Enterprises pultrusion.

  16. Design and test of box girder for a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Per H.; Tesauro, A.; Bitsche, R. [Technical Univ. of Denmark. DTU Wind Energy, DTU Risoe Campus, Roskilde (Denmark)] [and others

    2012-09-15

    This report is covering the structural design and full scale test of a box girder as a part of the project ''Demonstration of new blade design using manufacturing process simulations'' supported by the EUDP program. A box girder with a predetermined outer geometry was designed using new inventions, which create an inner structure in the box girder. With a combination of advanced FEM analysis and the inventions it was possible to reduce the material thickness of the cap by up to 40%. The new design of the box girder was manufactured at SSP Technology A/S, where it was demonstrated that the manufacturing process could include the new inventions. Subsequently the box girder was transported to the blade test facility at DTU Wind Energy. A series of test was performed with the blade to investigate the behaviour during loading, and finally the girder was loaded to ultimate failure. The report includes the description of the test setup, the test and an overview over the results from the test performed on the box girder. During the final test the box girder failed at 58 % of the expected ultimate load. Unfortunately, no definite conclusion could be made concerning the failure mechanism. (Author)

  17. An Innovative Technique for Evaluating the Integrity and Durability of Wind Turbine Blade Composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Ren, Fei [ORNL

    2010-09-01

    Wind turbine blades are subjected to complex multiaxial stress states during operation. A review of the literature suggests that mixed mode fracture toughness can be significantly less than that of the tensile opening mode (Mode I), implying that fracture failure can occur at a much lower load capacity if the structure is subject to mixed-mode loading. Thus, it will be necessary to identify the mechanisms that might lead to failure in blade materials under mixed-mode loading conditions. Meanwhile, wind turbine blades are typically fabricated from fiber reinforced polymeric materials, e.g. fiber glass composites. Due to the large degree of anisotropy in mechanical properties that is usually associated with laminates, the fracture behavior of these composite materials is likely to be strongly dependent on the loading conditions. This may further strengthen the need to study the effect of mixed-mode loading on the integrity and durability of the wind turbine blade composites. To quantify the fracture behavior of composite structures under mixed mode loading conditions, particularly under combined Mode I (flexural or normal tensile stress) and Mode III (torsional shear stress) loading, a new testing technique is proposed based on the spiral notch torsion test (SNTT). As a 2002 R&D 100 Award winner, SNTT is a novel fracture testing technology. SNTT has many advantages over conventional fracture toughness methods and has been used to determine fracture toughness values on a wide spectrum of materials. The current project is the first attempt to utilize SNTT on polymeric and polymer-based composite materials. It is expected that mixed-mode failure mechanisms of wind turbine blades induced by typical in-service loading conditions, such as delamination, matrix cracking, fiber pull-out and fracture, can be effectively and economically investigated by using this methodology. This project consists of two phases. The Phase I (FY2010) effort includes (1) preparation of testing

  18. Thermal-barrier-coated turbine blade study

    Science.gov (United States)

    Siemers, P. A.; Hillig, W. B.

    1981-01-01

    The effects of coating TBC on a CF6-50 stage 2 high-pressure turbine blade were analyzed with respect to changes in the mean bulk temperature, cooling air requirements, and high-cycle fatigue. Localized spallation was found to have a possible deleterious effect on low-cycle fatigue life. New blade design concepts were developed to take optimum advantage of TBCs. Process and material development work and rig evaluations were undertaken which identified the most promising combination as ZrO2 containing 8 w/o Y2O3 applied by air plasma spray onto a Ni22Cr-10Al-1Y bond layer. The bond layer was applied by a low-pressure, high-velocity plasma spray process onto the base alloy. During the initial startup cycles the blades experienced localized leading edge spallation caused by foreign objects.

  19. Shape Optimization of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun;

    2009-01-01

    This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero-elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero-elastic behaviour of a real wind turbine......, the code employs 11 basic degrees of freedom corresponding to I I elastic structural equations. In the BEM theory, a refined tip loss correction model is used. The objective of the optimization model is to minimize the cost of energy which is calculated from the annual energy production and the cost...... in the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 k...

  20. Worn blades may have caused turbine failure

    International Nuclear Information System (INIS)

    Detroit Edison Co.'s decision not to replace eighth-stage blades in low-pressure turbine number three may have caused the event that damaged the turbine, generator, and exciter at Fermi-2 on December 25, 1993. This finding is included in the February 7 report of the Nuclear Regulatory Commission's Augmented Inspection Teams (AIT). GEC Turbine Generations Ltd. of England, manufacturer of the turbine, had recommended replacing the blades during the plant's third refueling outage in September 1992. Detroit Edison chose not to do so, stating in its report, open-quotes This wear is of the same magnitude as that noticed in RF01 [refueling outage 1] and it is not necessary to record this wear since all blades will be changed in RF04 [refueling outage 4].close quotes

  1. Aerodynamics of Rotor Blades for Quadrotors

    CERN Document Server

    Bangura, Moses; Naldi, Roberto; Mahony, Robert

    2016-01-01

    In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...

  2. Spreading granular material with a blade

    Science.gov (United States)

    Dressaire, Emilie; Singh, Vachitar; Grimaldi, Emma; Sauret, Alban

    2015-11-01

    The spreading of a complex fluid with a blade is encountered in applications that range from the bulldozing of granular material in construction projects to the coating of substrates with fluids in industrial applications. This spreading process is also present in everyday life, when we use a knife to turn a lump of peanut butter into a thin layer over our morning toast. In this study, we rely on granular media in a model experiment to describe the three-dimensional spreading of the material. Our experimental set-up allows tracking the spreading of a sandpile on a translating flat surface as the blade remains fixed. We characterize the spreading dynamics and the shape of the spread fluid layer when varying the tilt of the blade, its spacing with the surface and its speed. Our findings suggest that it is possible to tune the spreading parameters to optimize the coating.

  3. Method to predict fatigue lifetimes of GRP wind turbine blades and comparison with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Echtermeyer, A.T. [Det Norske Veritas Research AS, Hoevik (Norway); Kensche, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany, F.R); Bach, P. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Poppen, M. [Aeronautical Research Inst. of Sweden, Bromma (Sweden); Lilholt, H.; Andersen, S.I.; Broendsted, P. [Risoe National Lab., Roskilde (Denmark)

    1996-12-01

    This paper describes a method to predict fatigue lifetimes of fiber reinforced plastics in wind turbine blades. It is based on extensive testing within the EU-Joule program. The method takes the measured fatigue properties of a material into account so that credit can be given to materials with improved fatigue properties. The large number of test results should also give confidence in the fatigue calculation method for fiber reinforced plastics. The method uses the Palmgren-Miner sum to predict lifetimes and is verified by tests using well defined load sequences. Even though this approach is generally well known in fatigue analysis, many details in the interpretation and extrapolation of the measurements need to be clearly defined, since they can influence the results considerably. The following subjects will be described: Method to measure SN curves and to obtain tolerance bounds, development of a constant lifetime diagram, evaluation of the load sequence, use of Palmgren-Miner sum, requirements for load sequence testing. The fatigue lifetime calculation method has been compared against measured data for simple loading sequences and the more complex WISPERX loading sequence for blade roots. The comparison is based on predicted mean lifetimes, using the same materials to obtain the basic SN curves and to measure laminates under complicated loading sequences. 24 refs, 7 figs, 5 tabs

  4. Computational method for the design of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)

  5. Linearization of friction effects in vibration of two rotating blades

    Directory of Open Access Journals (Sweden)

    Hajžman M.

    2013-06-01

    Full Text Available This paper is aimed at modelling of friction effects in blade shrouding which are realized by means of friction elements placed between blades. In order to develop a methodology of modelling, two blades with one friction element in between are considered only. Flexible blades fixed to a rotating disc are discretized by FEM using 1D Rayleigh beam elements derived in rotating space as well as the friction element modelled as a rigid body. The blades and the friction element are connected through two concurrent friction planes, where the friction forces arise on the basis of centrifugal force acting on the friction element. The linearization of friction is performed using the harmonic balance method to determine equivalent damping coefficients in dependence on the amplitudes of relative slip motion between the blades and the friction element. The methodology is applied to a model of two real blades and will be extended for the whole bladed disc with shrouding.

  6. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  7. Aeroelastic response and stability of tiltrotors with elastically-coupled composite rotor blades. Ph.D. Thesis

    Science.gov (United States)

    Nixon, Mark W.

    1993-01-01

    There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via

  8. Vibratory Loads Data from a Wind-Tunnel Test of Structurally Tailored Model Helicopter Rotors

    Science.gov (United States)

    Yeager, William T., Jr.; Hamouda, M-Nabil H.; Idol, Robert F.; Mirick, Paul H.; Singleton, Jeffrey D.; Wilbur, Matthew L.

    1991-01-01

    An experimental study was conducted in the Langley Transonic Dynamics Tunnel to investigate the use of a Bell Helicopter Textron (BHT) rotor structural tailoring concept, known as rotor nodalization, in conjunction with advanced blade aerodynamics as well as to evaluate rotor blade aerodynamic design methodologies. A 1/5-size, four-bladed bearingless hub, three sets of Mach-scaled model rotor blades were tested in forward flight from transition up to an advance ratio of 0.35. The data presented pertain only to the evaluation of the structural tailoring concept and consist of fixed-system and rotating system vibratory loads. These data will be useful for evaluating the effects of tailoring blade structural properties on fixed-system vibratory loads, as well as validating analyses used in the design of advanced rotor systems.

  9. Steel fiber composites for tidal turbine blades

    OpenAIRE

    Kucera, Marko

    2011-01-01

    The last decade has seen a drastic increase in focus on several types of renewable energy, including a still increasing interest in tidal power. This method of harnessing energy and the technology required to do so are relatively new, and even though a number of prototypes have been built during the last years, none have yet emerged as a standard or definite solution. As of today, all the prototypes have based their turbine blade technology on that of wind turbines, thus producing the blades ...

  10. Unsteady transonic flow over cascade blades

    Science.gov (United States)

    Surampudi, S. P.; Adamczyk, J. J.

    1986-01-01

    An attempt is made to develop an efficient staggered cascade blade unsteady aerodynamics model for the neighborhood of March 1, representing the blade row by a rectilinear two-dimensional cascade of thin, flat plate airfoils. The equations of motion are derived on the basis of linearized transonic small perturbation theory, and an analytical solution is obtained by means of the Wiener-Hopf procedure. Making use of the transonic similarity law, the results obtained are compared with those of other linearized cascade analyses. A parametric study is conducted to find the effects of reduced frequency, stagger angle, solidity, and the location of the pitching axis on cascade stability.

  11. New airfoil sections for straight bladed turbine

    International Nuclear Information System (INIS)

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine

  12. Study on Design of High Efficiency and Light Weight Composite Propeller Blade for a Regional Turboprop Aircraft

    Science.gov (United States)

    Kong, Changduk; Lee, Kyungsun

    2013-03-01

    In this study, aerodynamic and structural design of the composite propeller blade for a regional turboprop aircraft is performed. The thin and wide chord propeller blade of high speed turboprop aircraft should have proper strength and stiffness to carry various kinds of loads such as high aerodynamic bending and twisting moments and centrifugal forces. Therefore the skin-spar-foam sandwich structure using high strength and stiffness carbon/epoxy composite materials is used to improve the lightness. A specific design procedure is proposed in this work as follows; firstly the aerodynamic configuration design, which is acceptable for the design requirements, is carried out using the in-house code developed by authors, secondly the structure design loads are determined through the aerodynamic load case analysis, thirdly the spar flange and the skin are preliminarily sized by consideration of major bending moments and shear forces using both the netting rule and the rule of mixture, and finally, the stress analysis is performed to confirm the structural safety and stability using finite element analysis commercial code, MSC. NASTRAN/PATRAN. Furthermore the additional analysis is performed to confirm the structural safety due to bird strike impact on the blade during flight operation using a commercial code, ANSYS. To realize the proposed propeller design, the prototype blades are manufactured by the following procedure; the carbon/epoxy composite fabric prepregs are laid up for skin and spar on a mold using the hand lay-up method and consolidated with a proper temperature and vacuum in the oven. To finalize the structural design, the full-scale static structural test is performed under the simulated aerodynamic loads using 3 point loading method. From the experimental results, it is found that the designed blade has a good structural integrity, and the measured results agree well with the analytical results as well.

  13. On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades

    Science.gov (United States)

    Noever Castelos, Pablo; Balzani, Claudio

    2016-09-01

    For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline failure can lead to the loss of a rotor blade, and potentially of the entire turbine, and is extraordinarily relevant to be treated with strong emphasis when designing a wind turbine. Modern wind turbine rotor blades with lengths of 80 m and more offer a degree of flexibility that has never been seen in wind energy technology before. Large deflections result in high strains in the adhesive connections, especially at the trailing edge. The latest edition of the DNV GL guideline from end of 2015 demands a three-dimensional stress analysis of bondlines, whereas before an isolated shear stress proof was sufficient. In order to quantify the lack of safety from older certification guidelines this paper studies the influence of multi-axial stress states on the ultimate and fatigue load resistance of trailing edge adhesive bonds. For this purpose, detailed finite element simulations of the IWES IWT-7.5-164 reference wind turbine blades are performed. Different yield criteria are evaluated for the prediction of failure and lifetime. The results show that the multi-axial stress state is governed by span-wise normal stresses. Those are evidently not captured in isolated shear stress proofs, yielding non-conservative estimates of lifetime and ultimate load resistance. This finding highlights the importance to include a three-dimensional stress state in the failure analysis of adhesive bonds in modern wind turbine rotor blades, and the necessity to perform a three-dimensional characterization

  14. Application of circulation controlled blades for vertical axis wind turbines

    OpenAIRE

    Velissarios Kourkoulis; Andrew Shires

    2013-01-01

    The blades of a vertical axis wind turbine (VAWT) rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC) VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a hi...

  15. Premature failure of low pressure turbine blade of an aircraft

    International Nuclear Information System (INIS)

    A low pressure turbine blade failed during the ground run of an aircraft engine. The failed blade was analyzed to find out the cause of failure. The material of the blade was Udimet -500, a high strength Ni-base super alloy. Low cycle fatigue was observed during fractography. Fatigue crack was originated from an ejected grain. When the crack reached to a critical size, the blade failed under overload condition. (author)

  16. Dynamic Analysis of Wind Turbine Blades Using Radial Basis Functions

    OpenAIRE

    Ming-Hung Hsu

    2011-01-01

    Wind turbine blades play important roles in wind energy generation. The dynamic problems associated with wind turbine blades are formulated using radial basis functions. The radial basis function procedure is used to transform partial differential equations, which represent the dynamic behavior of wind turbine blades, into a discrete eigenvalue problem. Numerical results demonstrate that rotational speed significantly impacts the first frequency of a wind turbine blade. Moreover, the...

  17. Reconstruction of Vital Blade Signal from Unsteady Casing Vibration

    OpenAIRE

    Meng Hee Lim; Leong, M. S.

    2014-01-01

    Some important information pertaining to blade fault is thought to be concealed in highly unsteady casing vibration. This paper explores suitable methods to best reconstruct blade related signals from raw casing vibration, which could be used for diagnosis of blade fault. The feasibility of translation invariant wavelet transform and cycle spinning (TIWT-CS) technique in reconstruction of these signals is investigated in this paper. Subsequently, a new parameter for blade fault diagnosis, nam...

  18. New Dynamic Spin Rig Capabilities Used to Determine Rotating Blade Dynamics

    Science.gov (United States)

    Provenza, Andrew J.

    2004-01-01

    The Dynamic Spin Rig Facility at the NASA Glenn Research Center is used to determine the structural response of rotating engine components without the effects of aerodynamic loading. Recently, this rig's capabilities were enhanced through the replacement of grease-lubricated ball bearings with magnetic bearings. Magnetic bearings offer a number of advantages--the most important here being that they not only fully support the rotor system, but excite it as well. Three magnetic bearings support the rotor and provide five axes of controlled motion: an x- and y-axis translation at each of two radial bearings and a z-axis translation in the vertical or axial direction. Sinusoidal excitation (most commonly used) can be imparted on the rotor through the radial magnetic bearings in either a fixed or rotating frame of reference. This excitation is added directly to the magnetic bearing control output. Since the rotor is fully levitated, large translations and rotations of the rotor system can be achieved. Some of the capabilities of this excitation system were determined and reported. The accelerations obtained at the tip of a titanium flat plate test article versus the swept sine excitation sent to both radial bearings in phase and perpendicular to the plane containing the two blades are shown. Recent tests required the excitation of fundamental bending and torsional blade resonances at rotor speeds up to 10,000 rpm. Successful fixed synchronous rotation of the excitation signal provided the best detectable blade resonant vibrations at excitation frequencies up to 1100 Hz for the particular blades of interest. A noncontacting laser measurement system was used to collect blade-tip motions. From these data, the amplitude and frequency of the motion could be determined as well as the blade damping properties. Damping could be determined using two methods: (1) free decay and (2) curve fitting the vibration amplitude as a function of frequency in and around the resonance of

  19. The boundary layer over turbine blade models with realistic rough surfaces

    Science.gov (United States)

    McIlroy, Hugh M., Jr.

    The impact of turbine blade surface roughness on aerodynamic performance and heat loads is well known. Over time, as the turbine blades are exposed to heat loads, the external surfaces of the blades become rough. Also, for film-cooled blades, surface degradation can have a significant impact on film-cooling effectiveness. Many studies have been conducted on the effects of surface degradation/roughness on engine performance but most investigations have modeled the rough surfaces with uniform or two-dimensional roughness patterns. The objective of the present investigation is to conduct measurements that will reveal the influence of realistic surface roughness on the near-wall behavior of the boundary layer. Measurements have been conducted at the Matched-Index-of-Refraction (MIR) Facility at the Idaho National Engineering and Environmental Laboratory with a laser Doppler velocimeter. A flat plate model of a turbine blade has been developed that produces a transitional boundary layer, elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. Boundary layer measurements have been completed over a smooth plate model and over a model with a strip of realistic rough surface. The realistic rough surface was developed by scaling actual turbine blade surface data that was provided by U.S. Air Force Research Laboratory. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable throughout the entire length of the test plate; the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch; and the shape factor increased over the rough patch but then decreased downstream of the patch relative to the smooth plate case; in the rough patch case the flow experienced two transition reversals with laminar-like behavior achieved by the end of the test plate; streamwise turbulence

  20. Panel/full-span free-wake coupled method for unsteady aerodynamics of helicopter rotor blade

    Institute of Scientific and Technical Information of China (English)

    Tan Jianfeng; Wang Haowen

    2013-01-01

    A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight.The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors,and the full-span free-wake method is applied to simulating dynamics of rotor wake.These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments.A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades.Helicopter rotors including Caradonna-Tung,UH-60A,and AH-1G rotors,are simulated in hover and forward flight to validate the accuracy of this approach.The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results,and the unsteady dynamics of rotor wake is also well simulated.Compared to CFD,the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.

  1. ANALYSIS OF WIND TURBINE BLADES FROM LIGNOCELLULOSIC COMPOSITES SUBJECTED TO STATIC BENDING

    Directory of Open Access Journals (Sweden)

    Ioan CURTU

    2015-12-01

    Full Text Available This paper presents the results of numerical analysis of stress and strain states which develop in wind turbine blades, modeled from various lignocellulosic composites. A blade structure type NACA 44XX with length 1.5m, power of 2.5kW and a rotational speed of 636 rpm, based on numerical calculations and the aerodynamic theory was designed in Catia program. The model was imported in finite element analysis program - HyperMesh, which were successively awarded four types of elastic properties corresponding to solid wood - oak, lignocellulose composites based on mixture of polyurethane resin and wood particle, glass fiber composite and carbon fibers. Four types of external loads were placed successively in different areas of the longitudinal axis of the blade, simulating wind force. The variation of stress and strain states expressing the advantages and disadvantages of the proposed materials, noting that risk areas of the blade structure can be reduced through various technological ways - through the addition of material thicknesses, changes to the reinforcement of composite layers by introducing layers with higher elastic properties, the introduction of local or global reinforcing elements.

  2. Development and application of a dynamic stall model for rotating wind turbine blades

    International Nuclear Information System (INIS)

    In unsteady conditions of wind turbines, both the dynamic stall phenomenon and the three-dimensional (3D) rotational effect affect the rotor aerodynamics. The dynamic stall mechanism for rotating wind turbine blades is first investigated. Through the comparison of the aerodynamic data between the rotating blade and the two-dimensional (2D) airfoil, the normal force slope in the attached flow and the separation point expression in the separated flow are modified in the Beddoes-Leishman (B-L) dynamic stall model for rotating NREL wind turbine blades. The modified model is validated by the comparison between the calculation results and the experimental results of the lift and drag coefficients at different radial positions. Both the hysteresis loop shapes and the calculation values are closer to the experiment than the 2D dynamic stall model. The present dynamic stall model is then coupled to a free vortex wake model. The coupled model is used to calculate the unsteady blade aerodynamic loads and the low speed shaft torque of the NREL wind turbine in a yawed condition. The accuracy is greatly improved by the corrections presented in the paper

  3. Digital radiographic technology; non-destructive testing of tubine blades

    OpenAIRE

    Penumadu, P.S.

    2014-01-01

    Inspection of turbine blades has always been a big challenge. Any irregularities in the blade have a huge impact on the gas turbine, so these blades have to be manufactured and inspected in the most sophisticated way possible. The evolution of digital radiographic technology took a leap forward to solve these problems in the industry environment which also enhances production quality and reduce rework.

  4. 14 CFR 27.661 - Rotor blade clearance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 27.661 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  5. 14 CFR 29.661 - Rotor blade clearance.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor blade clearance. 29.661 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.661 Rotor blade clearance. There must be enough clearance between the rotor blades and other parts of the structure...

  6. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...

  7. Structural Testing at the NWTC Helps Improve Blade Design and Increase System Reliability; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    Since 1990, the National Renewable Energy Laboratory’s (NREL's) National Wind Technology Center (NWTC) has tested more than 150 wind turbine blades. NWTC researchers can test full-scale and subcomponent articles, conduct data analyses, and provide engineering expertise on best design practices. Structural testing of wind turbine blades enables designers, manufacturers, and owners to validate designs and assess structural performance to specific load conditions. Rigorous structural testing can reveal design and manufacturing problems at an early stage of development that can lead to overall improvements in design and increase system reliability.

  8. In si-tu weld repair of a blade tenon of steam turbine in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Albert, S.K.; Bhaduri, A.K.; Das, C.; Ramasubbu, V. [Materials Joining Section, Materials Technology Div., Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Ravi, S. [Materials Joining Section, Materials Technology Div., Indira Gandhi Centre for Atomic Research, Kalpakkam (India)]|[Madras Atomic Power Station, Nuclear Power Corp. India Ltd., Kalpakkam (India)

    2007-07-01

    The damaged tenon of a stage III turbine blade of LP turbine of MAPS 2 power plant was successfully carried out by weld build up. An alloy 800 piece was welded to the built up tenon to produce the tenon head similar to those of the undamaged tenons. The built up tenon has successfully passed the DP and ultrasonic examinations. Further, the pull out test conducted on the mock up piece prepared during repair confirmed that the tenon is capable of withstanding the design load of 3 tons. Turbine with a stage III blade repaired by weld deposition is in service for more than five months. (orig.)

  9. Numerical evaluation of tandem rotor for highly loaded transonic fan

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bin; LIU Bao-jie

    2011-01-01

    Transonic tandem rotor was designed for highly loaded fan at a corrected tip speed of 381 m/s and another conventional rotor was designed as a baseline to evaluate the loading superiority of tandem rotor with three-dimensional (3-D) numerical simulation. The aft blade solidity and its impact on total loading level were studied in depth. The result indicates that tandem rotor has potential to achieve higher loading level and attain favorable aerodynamic performance in a wide range of loading coefficient 0. 55 ~ 0.68, comparing with the conventional rotor which produced a total pressure ratio of 2.0 and loading coefficient of 0. 42.

  10. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    As Development of small vertical axis wind turbines (VAWT) for urban use is becoming an interesting topic both within industry and academia. However, there are few new designs of vertical axis turbines which are customized for building integration. These are getting importance because they operate...... at low rotational speed producing very less noise during operation, although these are less efficient than Horizontal Axis Wind Turbines (HAWT). The efficiency of a VAWT has been significantly improved by H-Darrieus VAWT design based on double airfoil technology as demonstrated by the authors...... in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  11. Effects of Blade to Blade Dissimilarities on Rotor Body Lead Lag Dynamics

    Science.gov (United States)

    McNulty, Michael J.

    1985-01-01

    Small blade-to-blade property differences are investigated to determine how they affect the behavior of a simple rotor-body system. An analytical approach is used which emphasizes the significance of these effects from the experimental point of view. It is found that the primary effect of blade-to-blade dissimilarities is the appearance of additional peaks in the frequency spectrum which are separated from the conventional response peaks by multiples of the rotor speed. These additional responses are potential experimental problems because when they occur near a mode of interest they act as contaminant frequencies which can make damping measurements difficult. Increased rotor-body coupling and a rotor shaft degree of freedom act to improve the situation by altering the frequency separation of the modes.

  12. Effects of blade-to-blade dissimilarities on rotor-body lead-lag dynamics

    Science.gov (United States)

    Mcnulty, M. J.

    1986-01-01

    Small blade-to-blade property differences are investigated to determine their effects on the behavior of a simple rotor-body system. An analytical approach is used which emphasizes the significance of these effects from the experimental point of view. It is found that the primary effect of blade-to-blade dissimilarities is the appearance of additional peaks in the frequency spectrum which are separated from the convention response modes by multiples of the rotor speed. These additional responses are potential experimental problems because when they occur near a mode of interest they act as contaminant frequencies which can make damping measurements difficult. The effects of increased rotor-body coupling and a rotor shaft degree of freedom act to improve the situation by altering the frequency separation of the modes.

  13. Lightning transient analysis in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...

  14. Fatigue Life of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The present paper analyses the possibility of reducing the expected damage accumulation during tower passage by modifying the wind turbine tower design from a traditional mono-tower to a tripod. Due to a narrow stagnation zone the stress reversals and hence the damage accumulation in the blades...

  15. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Berring, Peter; Branner, Kim; Berggreen, Christian;

    2007-01-01

    -field displacements (ux, uy and uz) of the blade surface. A least squares algorithm was developed, which fits a plane through each deformed cross section, and defines a single set of displacements and rotations (three displacements and rotations) per cross section. This least squares algorithm was also used...

  16. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian;

    2007-01-01

    two models investigated use a combination of shell and solid elements. The results from the numerical investigations are compared with measurements from testing of a section of a full-scale wind turbine blade. It is found that only the combined shell/solid models give reliable results in torsion. Both...

  17. Parametric study of composite wind turbine blades

    DEFF Research Database (Denmark)

    Kim, Taeseong; Branner, Kim; Hansen, Anders Melchior

    2011-01-01

    In this paper an anisotropic beam element for a composite wind turbine blades is developed. Eigenvalue analysis with the new beam element is conducted in order to understand its responses associated with the wind turbine performances. From the results of natural frequencies and mode shapes...

  18. DEM Simulations of Granular Secondary Flow in Cylindrical Vertical Bladed Mixer – Effect of Blade Rake.

    OpenAIRE

    Trávníčková, T. (Tereza); Havlica, J. (Jaromír); Kohout, M.

    2016-01-01

    Mixing of granular systems is one of the most used chemical engineering unit operations. However, detailed description of the dynamics of granular flows through experiments is difficult. Therefore, usage of mathematical modeling increases. In this paper we deal with DEM (Discreet Element Method) simulations of mixing glass beads in a cylindrical vertical bladed mixer. The aim of this work is to describe the influence of blade rake on the development of granular secondary flows for different s...

  19. Separated Pitch Control at Tip: Innovative Blade Design Explorations for Large MW Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Ranjeet Agarwala

    2015-01-01

    Full Text Available This paper focuses on the deployment and evaluation of a separated pitch control at blade tip (SePCaT control strategy for large megawatt (MW wind turbine blade and explorations of innovative blade designs as a result of such deployment. SePCaT configurations varied from five to thirty percent of the blade length in 5 percentage increments (SePCaT5, SePCaT10, SePCaT15, SePCaT20, SePCaT25, and SePCaT30 are evaluated by comparing them to aerodynamical responses of the traditional blade. For low, moderate, high, and extreme wind speed variations treated as 10, 20, 30, and 40 percent of reference wind speeds, rotor power abatement in region 3 of the wind speed power curve is realized by feathering full length blade by 6, 9, 12, and 14 degrees, respectively. Feathering SePCaT30, SePCaT25, SePCaT20, and SePCaT15 by 14, 16, 26, and 30 degrees, respectively, achieves the same power abatement results when compared to traditional blade at low wind speeds. Feathering SePCaT30, SePCaT25, and SePCaT20 by 18, 26, and 30 degrees on the other hand has the same effect at high wind speeds. SePCaT30 feathered to 26 and 30 degrees has the same abatement effects when compared to traditional blade at high and extreme wind speeds.

  20. Intermetallic blades for fabric cutting. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Blue, C.A.; Sklad, S. [Oak Ridge National Lab., TN (United States); Shih, H.R. [Jackson State Univ., MS (United States); Off, J.W.A. [Textile/Clothing Technology Corp., Cary, NC (United States)

    1998-08-01

    This report describes the evaluation of nickel- and iron-aluminide blades for cutting fabric as opposed to conventional steel blades. The aluminides were selected as blade material because of their extremely high work-hardening rate and the possibility of forming aluminum oxide on the surface to further enhance the wear resistance. Unlike steel blades, they do not require heat treating to become strong. A testing facility using an Eastman cutter was designed and built at the Oak Ridge National Laboratory (ORNL) for testing of blades. Denim fabric supplied by Levi Strauss was used. For lack of sufficient fabric, heavy paper was also used. Extensive testing revealed that there were several issues in getting the true comparison between various blades. The most important issue was the consistent sharpening of the blade edge. With all of the effort and precautions, identical edges could not be put on the blades of all the different materials. The second issue was the limited availability of fabric to evaluate the end-of-life limit for the blade edges. Two nickel- and three iron-aluminide compositions were evaluated. Under test conditions, the iron-aluminide alloy (PM-60), based on FeAl, was found to outperform other aluminides and the steel blade. Based on the data presented in this report, the authors recommend that additional testing be carried out on both the steel and aluminide blades to determine the number of times each blade can be sharpened prior to its replacement. However, the recommended testing needs to be conducted on blades for which the identical cutting edges and sharpening are incorporated. They further recommend that if the iron-aluminide blade is truly superior, a cost analysis be performed to determine its commercial feasibility. The best aluminide blades should be tested by commercial textile companies.