WorldWideScience

Sample records for bladder smooth muscle

  1. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Bing Song

    2016-01-01

    Full Text Available Dental pulp stem cells (DPSCs are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1. After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering.

  2. Bladder Smooth Muscle Cells Differentiation from Dental Pulp Stem Cells: Future Potential for Bladder Tissue Engineering.

    Science.gov (United States)

    Song, Bing; Jiang, Wenkai; Alraies, Amr; Liu, Qian; Gudla, Vijay; Oni, Julia; Wei, Xiaoqing; Sloan, Alastair; Ni, Longxing; Agarwal, Meena

    2016-01-01

    Dental pulp stem cells (DPSCs) are multipotent cells capable of differentiating into multiple cell lines, thus providing an alternative source of cell for tissue engineering. Smooth muscle cell (SMC) regeneration is a crucial step in tissue engineering of the urinary bladder. It is known that DPSCs have the potential to differentiate into a smooth muscle phenotype in vitro with differentiation agents. However, most of these studies are focused on the vascular SMCs. The optimal approaches to induce human DPSCs to differentiate into bladder SMCs are still under investigation. We demonstrate in this study the ability of human DPSCs to differentiate into bladder SMCs in a growth environment containing bladder SMCs-conditioned medium with the addition of the transforming growth factor beta 1 (TGF-β1). After 14 days of exposure to this medium, the gene and protein expression of SMC-specific marker (α-SMA, desmin, and calponin) increased over time. In particular, myosin was present in differentiated cells after 11 days of induction, which indicated that the cells differentiated into the mature SMCs. These data suggested that human DPSCs could be used as an alternative and less invasive source of stem cells for smooth muscle regeneration, a technology that has applications for bladder tissue engineering.

  3. Cell length measurements in longitudinal smooth muscle strips of the pig urinary bladder

    NARCIS (Netherlands)

    E. van Asselt (Els); R. Schot (Rachel); R. van Mastrigt (Ron)

    1993-01-01

    textabstractIn this study the length of smooth muscle cells in muscle bundles of pig urinary bladder wall was determined after dissection in Tyrode buffers with different calcium concentrations ([Ca2+]). Previous studies have shown that the length of isolated smooth muscle cells decreases with an

  4. Ultrasound induces contraction of the bladder smooth muscle.

    Science.gov (United States)

    Ren, Yan; Zhu, Yi; Liu, Li; Yu, Tinghe; Dong, Xiaojing

    2016-08-01

    To investigate whether the treatment of overt postpartum urinary retention (PUR) with low-intensity pulsed ultrasound (LIPUS) was clinically effective and whether LIPUS could accelerate bladder smooth muscle (BSM) contraction by opening the L-type calcium channels and activating the Ca(2+) signaling pathway. Records of 136 patients undergoing PUR were retrospectively reviewed in two different groups for LIPUS and neostigmine between from 2014 to July 2015. The rats BSM strips in vitro were irradiated by LIPUS. The contraction frequency and amplitude were recorded with BL-410F biological experimental system. The BSM cells were constructed and identified by α-actin-specific antibody staining, and the intracellular Ca(2+) concentration was analyzed by flow cytometry. The clinical trial indicated that LIPUS had potential therapeutic effect on PUR (80.6 vs. 64.1 %, p ultrasound. The results suggested LIPUS had potential therapeutic effect on PUR and the Ca(2+) signaling pathway was involved in the mechanism. The ultrasound irradiation may provide a new method for PUR therapy.

  5. The force recovery following repeated quick releases applied to pig urinary bladder smooth muscle

    NARCIS (Netherlands)

    R. van Mastrigt (Ron)

    1991-01-01

    textabstractA method for measuring several quick-releases during one contraction of a pig urinary bladder smooth muscle preparation was developed. The force recovery following quick release in this muscle type was studied by fitting a multiexponential model to 926 responses measured during the first

  6. Supramaximal stimuli do not evoke a maximal contraction in urinary bladder smooth muscle fibers

    NARCIS (Netherlands)

    J. Minekus (Joanne); A.J. Visser (Anna); R. van Mastrigt (Ron)

    2001-01-01

    textabstractBACKGROUND: Smooth muscle fibers can be stimulated with an electrical field, high potassium or carbachol. We studied the effect of combined, supramaximal stimulation on the isometric force and the maximum shortening velocity of the pig urinary bladder. MATERIALS AND METHODS: After

  7. The length dependence of the series elasticity of pig bladder smooth muscle

    NARCIS (Netherlands)

    R. van Mastrigt (Ron)

    1988-01-01

    textabstractStrips of urinary bladder smooth muscle were subjected to a series of quick release measurements. Each measurement consisted of several releases and resets to the original length, made during one contraction. The complete length-force characteristic of series elasticity was quantified by

  8. Magnitude-dependent proliferation and contractility modulation of human bladder smooth muscle cells under physiological stretch.

    Science.gov (United States)

    Luo, De-Yi; Wazir, Romel; Du, Caigan; Tian, Ye; Yue, Xuan; Wei, Tang-Qiang; Wang, Kun-Jie

    2015-11-01

    The purpose of this study was to describe and test a kind of stretch pattern which is based on modified BOSE BioDynamic system to produce optimum physiological stretch during bladder cycle. Moreover, we aimed to emphasize the effects of physiological stretch's amplitude upon proliferation and contractility of human bladder smooth muscle cells (HBSMCs). HBSMCs were seeded onto silicone membrane and subjected to stretch simulating bladder cycle at the range of stretches and time according to customized software on modified BOSE BioDynamic bioreactor. Morphological changes were assessed using immunofluorescence and confocal laser scanning microscope. Cell proliferation and cell viability were determined by BrdU incorporation assay and Cell Counting Kit-8, respectively. Contractility of the cells was determined using collagen gel contraction assay. RT-PCR was used to assess phenotypic and contractility markers. HBSMCs were found to show morphologically spindle-shaped and orientation at various elongations in the modified bioreactor. Stretch-induced proliferation and viability depended on the magnitude of stretch, and stretches also regulate contractility and contraction markers in a magnitude-dependent manner. We described and tested a kind of stretch pattern which delivers physiological stretch implemented during bladder cycle. The findings also showed that mechanical stretch can promote magnitude-dependent morphological, proliferative and contractile modulation of HBSMCs in vitro.

  9. [Effects of hydrostatic pressure in physiological range on bladder smooth muscle cells in vitro].

    Science.gov (United States)

    Wei, Tangqiang; Chen, Lin; Wang, Yan; Xu, Feng; Wang, Kanjie

    2012-08-01

    To explore the effects of the physiological range of hydrostatic pressure on human bladder smooth muscle cells (HBSMCs) cultured in vitro, we used a hydrostatic compression device designed in our laboratory into the experiments, which were grouped by varied hydrostatic pressure gradients. Cellular morphology was observed with HE staining; cytoskeleton F-actin, cell cycle, both proliferating cell nuclear antigen (PCNA) and matrix metalloproteinase 7 (MMP-7) were detected respectively with immunofluorescence, flow cytometry and RT-PCR. We found that the proliferation, cytoskeleton and cycle distribution of HBSMCs were not obviously different among the groups of different hydrostatic pressure; however, the mRNA expression of MMP-7 exhibited a trend of first increasing and then declining as the pressure gradually rises. Thus the physiological range of hydrostatic pressure may not have significant influence on proliferation, morphology, skeleton, and cell cycle of HBSMCs, but it may have great effect on the expression of MMP-7.

  10. The signalling pathway which causes contraction via P2-purinoceptors in rat urinary bladder smooth muscle

    OpenAIRE

    Naramatsu, Masahiro; Yamashita, Toshikazu; Kokubun, Shinichiro

    1997-01-01

    The signalling pathway which causes contractions to adenosine 5′-O-2-thiodiphosphate (ADPβS) and α,β-methylene adenosine 5′-diphosphate (α,β-Me ADP) was investigated in rat urinary bladder smooth muscle by measuring isotonic tension.The responses to 10 μM α,β-methylene adenosine 5′-triphosphate (α,β-Me ATP) in 0 and 3.6 mM Ca2+ were 5.9±1.3 (n=10) and 122.2±6.4 (n=8) % respectively of those obtained in 1.8 mM Ca2+, whereas those to 100 μM ADPβS were 34.6±3.3 (n=8) and 96.8±7.2 (n=8) %, in 0 a...

  11. BK channel activation by NS11021 decreases excitability and contractility of urinary bladder smooth muscle

    DEFF Research Database (Denmark)

    Layne, Jeffrey J; Nausch, Bernhard; Olesen, Søren-Peter

    2009-01-01

    reduction was blocked by pretreatment with the BK channel blocker iberiotoxin. NS11021 (3 microM) had no effect on contractions evoked by nerve stimulation. These findings indicate that activating BK channels reduces the force of UBSM spontaneous phasic contractions, principally through decreasing......Large-conductance Ca(2+)-activated potassium (BK) channels play an important role in regulating the function and activity of urinary bladder smooth muscle (UBSM), and the loss of BK channel function has been shown to increase UBSM excitability and contractility. However, it is not known whether...... activation of BK channels has the converse effect of reducing UBSM excitability and contractility. Here, we have sought to investigate this possibility by using the novel BK channel opener NS11021. NS11021 (3 microM) caused an approximately threefold increase in both single BK channel open probability (P...

  12. Free fatty acid palmitate impairs the vitality and function of cultured human bladder smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available BACKGROUND: Incidence of urinary tract infections is elevated in patients with diabetes mellitus. Those patients show increased levels of the saturated free fatty acid palmitate. As recently shown metabolic alterations induced by palmitate include production and secretion of the pro-inflammatory cytokine interleukine-6 (IL-6 in cultured human bladder smooth muscle cells (hBSMC. Here we studied the influence of palmitate on vital cell properties, for example, regulation of cell proliferation, mitochondrial enzyme activity and antioxidant capacity in hBSMC, and analyzed the involvement of major cytokine signaling pathways. METHODOLOGY/PRINCIPAL FINDINGS: HBSMC cultures were set up from bladder tissue of patients undergoing cystectomy and stimulated with palmitate. We analyzed cell proliferation, mitochondrial enzyme activity, and antioxidant capacity by ELISA and confocal immunofluorescence. In signal transduction inhibition experiments we evaluated the involvement of NF-κB, JAK/STAT, MEK1, PI3K, and JNK in major cytokine signaling pathway regulation. We found: (i palmitate decreased cell proliferation, increased mitochondrial enzyme activity and antioxidant capacity; (ii direct inhibition of cytokine receptor by AG490 even more strongly suppressed cell proliferation in palmitate-stimulated cells, while counteracting palmitate-induced increase of antioxidant capacity; (iii in contrast knockdown of the STAT3 inhibitor SOCS3 increased cell proliferation and antioxidant capacity; (iv further downstream JAK/STAT3 signaling cascade the inhibition of PI3K or JNK enhanced palmitate induced suppression of cell proliferation; (v increase of mitochondrial enzyme activity by palmitate was enhanced by inhibition of PI3K but counteracted by inhibition of MEK1. CONCLUSIONS/SIGNIFICANCE: Saturated free fatty acids (e.g., palmitate cause massive alterations in vital cell functions of cultured hBSMC involving distinct major cytokine signaling pathways. Thereby

  13. Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle.

    Science.gov (United States)

    Hristov, Kiril L; Chen, Muyan; Afeli, Serge A Y; Cheng, Qiuping; Rovner, Eric S; Petkov, Georgi V

    2012-06-01

    The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.

  14. Cyclic stretch induces human bladder smooth muscle cell proliferation in vitro through muscarinic receptors.

    Science.gov (United States)

    Dai, Yi; Tian, Ye; Luo, De-Yi; Wazir, Romel; Yue, Xuan; Li, Hong; Wang, Kun-Jie

    2015-03-01

    The present study aimed to investigate whether the cyclic stretch‑induced proliferation of human bladder smooth muscle cells (HBSMCs) is mediated by muscarinic (M) receptors, together with the signal transduction mechanisms involved in this process. HBSMCs seeded onto silicone membranes were subjected to different cyclic stretches (5, 10, 15 and 20%) for 6 and 12 h. As the effect of cyclic stretch on M2 and M3 mRNA expression levels was maximal at 6 h 10% stretch, all subsequent experiments were performed at this stretch. Western blot analysis was used to quantify M2, M3, protein kinase C (PKC) and phosphorylated (p)‑PKC protein expression levels, flow cytometry was employed to examine cell cycle distribution and a 5-bromo‑2-deoxyuridine (BrdU) incorporation assay was used to assess cell proliferation at this stretch. Subsequently, HBSMCs were exposed to different acetylcholine concentrations and/or cyclic stretch, M receptor antagonists [AF-DX16, an M2 receptor antagonist; 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP), an M3 receptor antagonist and atropine, a non‑selective antagonist] and GF 109203X, a PKC antagonist, to assess the possible underlying signaling mechanisms. Cyclic stretch was found to increase the proliferation of HBSMCs and the expression levels of M2, M3, PKC and p‑PKC proteins. M receptor and PKC antagonists exerted no apparent effect on nonstretched cells, but reduced the incorporation of BrdU into stretched cells; the most pronounced effects were observed when non‑selective M receptor and PKC antagonists were applied. Notably, 4‑DAMP did not inhibit stretch‑induced PKC activation. These results indicate that the activation of the M3 receptor signaling pathway in stretch‑induced HBSMC proliferation occurs via PKC-independent mechanisms.

  15. Smooth muscle physiology and effect of bladder and urethra muscle length/tension on response to stimulation. Part I. Review.

    Science.gov (United States)

    Bissada, N K; Finkbeiner, A E

    1980-09-01

    With particular reference to the lower urinary tract, a review of basic anatomy and physiology of smooth muscle is presented. The relationship as altered by electrica and pharmacologic stimulation is discussed.

  16. Cytokine effects on gap junction communication and connexin expression in human bladder smooth muscle cells and suburothelial myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Marco Heinrich

    Full Text Available BACKGROUND: The last decade identified cytokines as one group of major local cell signaling molecules related to bladder dysfunction like interstitial cystitis (IC and overactive bladder syndrome (OAB. Gap junctional intercellular communication (GJIC is essential for the coordination of normal bladder function and has been found to be altered in bladder dysfunction. Connexin (Cx 43 and Cx45 are the most important gap junction proteins in bladder smooth muscle cells (hBSMC and suburothelial myofibroblasts (hsMF. Modulation of connexin expression by cytokines has been demonstrated in various tissues. Therefore, we investigate the effect of interleukin (IL 4, IL6, IL10, tumor necrosis factor-alpha (TNFα and transforming growth factor-beta1 (TGFβ1 on GJIC, and Cx43 and Cx45 expression in cultured human bladder smooth muscle cells (hBSMC and human suburothelial myofibroblasts (hsMF. METHODOLOGY/PRINCIPAL FINDINGS: HBSMC and hsMF cultures were set up from bladder tissue of patients undergoing cystectomy. In cytokine stimulated cultured hBSMC and hsMF GJIC was analyzed via Fluorescence Recovery after Photo-bleaching (FRAP. Cx43 and Cx45 expression was assessed by quantitative PCR and confocal immunofluorescence. Membrane protein fraction of Cx43 and Cx45 was quantified by Dot Blot. Upregulation of cell-cell-communication was found after IL6 stimulation in both cell types. In hBSMC IL4 and TGFβ1 decreased both, GJIC and Cx43 protein expression, while TNFα did not alter communication in FRAP-experiments but increased Cx43 expression. GJ plaques size correlated with coupling efficacy measured, while Cx45 expression did not correlate with modulation of GJIC. CONCLUSIONS/SIGNIFICANCE: Our finding of specific cytokine effects on GJIC support the notion that cytokines play a pivotal role for pathophysiology of OAB and IC. Interestingly, the effects were independent from the classical definition of pro- and antiinflammatory cytokines. We conclude, that

  17. Endometrial stem cell differentiation into smooth muscle cell: a novel approach for bladder tissue engineering in women.

    Science.gov (United States)

    Shoae-Hassani, Alireza; Sharif, Shiva; Seifalian, Alexander M; Mortazavi-Tabatabaei, Seyed Abdolreza; Rezaie, Sassan; Verdi, Javad

    2013-10-01

    To investigate manufacturing smooth muscle cells (SMCs) for regenerative bladder reconstruction from differentiation of endometrial stem cells (EnSCs), as the recent discovery of EnSCs from the lining of women's uteri, opens up the possibility of using these cells for tissue engineering applications, such as building up natural tissue to repair prolapsed pelvic floors as well as building urinary bladder wall. Human EnSCs that were positive for cluster of differentiation 146 (CD146), CD105 and CD90 were isolated and cultured in Dulbecco's modified Eagle/F12 medium supplemented with myogenic growth factors. The myogenic factors included: transforming growth factor β, platelet-derived growth factor, hepatocyte growth factor and vascular endothelial growth factor. Differentiated SMCs on bioabsorbable polyethylene-glycol and collagen hydrogels were checked for SMC markers by real-time reverse-transcriptase polymerase chain reaction (RT-PCR), western blot (WB) and immunocytochemistry (ICC) analyses. Histology confirmed the growth of SMCs in the hydrogel matrices. The myogenic growth factors decreased the proliferation rate of EnSCs, but they differentiated the human EnSCs into SMCs more efficiently on hydrogel matrices and expressed specific SMC markers including α-smooth muscle actin, desmin, vinculin and calponin in RT-PCR, WB and ICC experiments. The survival rate of cultures on the hydrogel-coated matrices was significantly higher than uncoated cultures. Human EnSCs were successfully differentiated into SMCs, using hydrogels as scaffold. EnSCs may be used for autologous bladder wall regeneration without any immunological complications in women. Currently work is in progress using bioabsorbable nanocomposite materials as EnSC scaffolds for developing urinary bladder wall tissue. © 2013 The Authors. BJU International © 2013 BJU International.

  18. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    International Nuclear Information System (INIS)

    Wazir, Romel; Luo, De-Yi; Dai, Yi; Yue, Xuan; Tian, Ye; Wang, Kun-Jie

    2013-01-01

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs

  19. Collagen directly stimulates bladder smooth muscle cell growth in vitro: regulation by extracellular regulated mitogen activated protein kinase.

    Science.gov (United States)

    Herz, Daniel B; Aitken, Karen; Bagli, Darius J

    2003-11-01

    Bladders clinically subjected to excessive pressure or distention demonstrate an altered extracellular matrix (ECM) composition. We determined how an altered collagen substratum might affect bladder smooth muscle cell (bSMC) growth in vitro and probed the mechanism of this response. Primary culture rat bSMCs were seeded onto culture plates pre-coated with normal type I collagen (NC) or heat denatured type I collagen (DNC) under standard culture conditions. In separate experiments bSMCs from the 2 substrates were enzymatically released and changed to growth on normal collagen (NC-->NC or DNC-->NC) or denatured collagen (DNC-->DNC or NC-->DNC). At 24 hours proliferation was assessed by 3H-thymidine incorporation. Statistical significance in triplicate wells was determined by ANOVA. The proliferation of bSMCs on DNC was 5-fold greater than on NC (p DNC-->DNC) showed 2-fold further augmentation in proliferation (p DNC-->NC) (p NC) generated a 33% decrease in the already low proliferation rate (p DNC) (p DNC. However, mitogenicity is only partially reversible by re-introducing NC. These results demonstrate striking bSMC responsiveness to ECM conformation. Signaling through the extracellular regulated kinase mitogen activated protein kinase pathway supports bSMC-ECM interaction. We speculate that remodeling the ECM in vivo may regulate bSMC growth.

  20. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wazir, Romel; Luo, De-Yi; Dai, Yi; Yue, Xuan; Tian, Ye; Wang, Kun-Jie, E-mail: kunjiewangatscu@163.com

    2013-08-30

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P < 0.05) and apoptotic cell death rate decreased from 16.4 ± 0.21% (control) to 4.5 ± 0.13% (P < 0.05) applied at 0.1 Hz. Expression of PKC was upregulated with slight increase in JNK and no change in p38MAPK after application of stretch. Inhibition had effects on proliferation (1.075 ± 0.024, P < 0.05 GF109203X); (1.418 ± 0.021, P > 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs.

  1. The purinergic component of human bladder smooth muscle cells’ proliferation and contraction under physiological stretch

    Energy Technology Data Exchange (ETDEWEB)

    Wazir, Romel; Luo, De-Yi; Tian, Ye; Yue, Xuan; Li, Hong; Wang, Kun-Jie, E-mail: kunjiewangatscu@163.com

    2013-07-26

    Highlights: •Stretch induces proliferation and contraction. •Optimum applied stretch in vitro is 5% and 10% equibiaxial stretching respectively. •Expression of P2X1 and P2X2 is upregulated after application of stretch. •P2X2 is possibly more susceptible to stretch related changes. •Purinoceptors functioning may explain conditions with atropine resistance. -- Abstract: Objective: To investigate whether cyclic stretch induces proliferation and contraction of human smooth muscle cells (HBSMCs), mediated by P2X purinoceptor 1 and 2 and the signal transduction mechanisms of this process. Methods: HBSMCs were seeded on silicone membrane and stretched under varying parameters; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (Frequency: 0.05 Hz, 0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz). 5-Bromo-2-deoxyuridine assay was employed for proliferative studies. Contractility of the cells was determined using collagen gel contraction assay. After optimal physiological stretch was established; P2X1 and P2X2 were analyzed by real time polymerase chain reaction and Western Blot. Specificity of purinoceptors was maintained by employing specific inhibitors; (NF023 for P2X1, and A317491for P2X2), in some experiments. Results: Optimum proliferation and contractility were observed at 5% and 10% equibiaxial stretching respectively, applied at a frequency of 0.1 Hz; At 5% stretch, proliferation increased from 0.837 ± 0.026 (control) to 1.462 ± 0.023%, p < 0.05. Mean contraction at 10% stretching increased from 31.7 ± 2.3%, (control) to 78.28 ±1.45%, p < 0.05. Expression of P2X1 and P2X2 was upregulated after application of stretch. Inhibition had effects on proliferation (1.232 ± 0.051, p < 0.05 NF023) and (1.302 ± 0.021, p < 0.05 A314791) while contractility was markedly reduced (68.24 ± 2.31, p < 0.05 NF023) and (73.2 ± 2.87, p < 0.05 A314791). These findings shows that mechanical stretch can promote magnitude-dependent proliferative and contractile modulation of HBSMCs in

  2. Testosterone decreases urinary bladder smooth muscle excitability via novel signaling mechanism involving direct activation of the BK channels

    Science.gov (United States)

    Hristov, Kiril L.; Parajuli, Shankar P.; Provence, Aaron

    2016-01-01

    In addition to improving sexual function, testosterone has been reported to have beneficial effects in ameliorating lower urinary tract symptoms by increasing bladder capacity and compliance, while decreasing bladder pressure. However, the cellular mechanisms by which testosterone regulates detrusor smooth muscle (DSM) excitability have not been elucidated. Here, we used amphotericin-B perforated whole cell patch-clamp and single channel recordings on inside-out excised membrane patches to investigate the regulatory role of testosterone in guinea pig DSM excitability. Testosterone (100 nM) significantly increased the depolarization-induced whole cell outward currents in DSM cells. The selective pharmacological inhibition of the large-conductance voltage- and Ca2+-activated K+ (BK) channels with paxilline (1 μM) completely abolished this stimulatory effect of testosterone, suggesting a mechanism involving BK channels. At a holding potential of −20 mV, DSM cells exhibited transient BK currents (TBKCs). Testosterone (100 nM) significantly increased TBKC activity in DSM cells. In current-clamp mode, testosterone (100 nM) significantly hyperpolarized the DSM cell resting membrane potential and increased spontaneous transient hyperpolarizations. Testosterone (100 nM) rapidly increased the single BK channel open probability in inside-out excised membrane patches from DSM cells, clearly suggesting a direct BK channel activation via a nongenomic mechanism. Live-cell Ca2+ imaging showed that testosterone (100 nM) caused a decrease in global intracellular Ca2+ concentration, consistent with testosterone-induced membrane hyperpolarization. In conclusion, the data provide compelling mechanistic evidence that under physiological conditions, testosterone at nanomolar concentrations directly activates BK channels in DSM cells, independent from genomic testosterone receptors, and thus regulates DSM excitability. PMID:27605581

  3. Isolation and individual electrical stimulation of single smooth-muscle cells from the urinary bladder of the pig

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron); J.C. Romijn (Johannes); D.J. Griffiths (Derek)

    1987-01-01

    textabstractIn contrast to striated muscle, measurements on strips of smooth muscle cannot be uniquely interpreted in terms of an array of contractile units. Therefore scaling down to the single-cell level is necessary to gain detailed understanding of the contractile process in this type of muscle.

  4. Human airway smooth muscle

    NARCIS (Netherlands)

    J.C. de Jongste (Johan)

    1987-01-01

    textabstractThe function of airway smooth muscle in normal subjects is not evident. Possible physiological roles include maintenance of optimal regional ventilation/perfusion ratios, reduction of anatomic dead space, stabilisation of cartilaginous bronchi, defense against impurities and, less

  5. Human airway smooth muscle

    OpenAIRE

    Jongste, Johan

    1987-01-01

    textabstractThe function of airway smooth muscle in normal subjects is not evident. Possible physiological roles include maintenance of optimal regional ventilation/perfusion ratios, reduction of anatomic dead space, stabilisation of cartilaginous bronchi, defense against impurities and, less likely, squeezing mucus out of mucous glands and pulling open the alveoli next to the airways1 . Any role of airway smooth muscle is necessarily limited, because an important degree of contraction will l...

  6. Effect of cyclic hydrodynamic pressure-induced proliferation of human bladder smooth muscle through Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2.

    Science.gov (United States)

    Wu, Tao; Chen, Lin; Wei, Tangqiang; Wang, Yan; Xu, Feng; Wang, Kunjie

    2012-09-01

    To examine the role of Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2 in the cyclic hydrodynamic pressure-induced proliferation of human bladder smooth muscle cells. Human bladder smooth muscle cells were exposed to cyclic hydrodynamic pressures in vitro with defined parameters (static, 100 cmH(2) O, 200 cmH(2) O and 300 cmH(2) O pressure) for 24 h. The proliferation of cells was assessed by flow cytometry. Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2 messenger ribonucleic acid, and protein expression was analyzed by real-time polymerase chain reaction and Western blot. Specificity of the Rac1 was determined with real-time polymerase chain reaction and Western blot technique with small interfering ribonucleic acid transfection and Rac1 inhibitor (NSC23766). The proliferation of human bladder smooth muscle cells was increased. Ras-related C3 botulinum toxin substrate 1, mitogen-activated protein kinase kinase 1/2 and extracellular regulated protein kinases 1/2 were activated by 200 and 300 cmH(2) O cyclic hydrodynamic pressure compared with static and 100 cmH(2) O pressure. The "knockdown" of activation of Rac1 using target small interfering ribonucleic acid transfection and Rac1 inhibitor (NSC23766) decreased proliferation of human bladder smooth muscle cells, and downregulated mitogen-activated protein kinase kinase 1/2, extracellular regulated protein kinases 1/2. The Rac1 pathway is activated in mechanotransduction and regulation of human bladder smooth muscle cell proliferation in response to cyclic hydrodynamic pressure. © 2012 The Japanese Urological Association.

  7. Molecular Expression and Pharmacological Evidence for a Functional Role of Kv7 Channel Subtypes in Guinea Pig Urinary Bladder Smooth Muscle

    Science.gov (United States)

    Afeli, Serge A. Y.; Malysz, John; Petkov, Georgi V.

    2013-01-01

    Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction. PMID:24073284

  8. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  9. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    Science.gov (United States)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain

  10. Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation.

    Science.gov (United States)

    Seifarth, Volker; Grosse, Joachim O; Gossmann, Matthias; Janke, Heinz Peter; Arndt, Patrick; Koch, Sabine; Epple, Matthias; Artmann, Gerhard M; Artmann, Aysegül Temiz

    2017-09-01

    To restore damaged organ function or to investigate organ mechanisms, it is necessary to prepare replicates that follow the biological role model as faithfully as possible. The interdisciplinary field of tissue engineering has great potential in regenerative medicine and might overcome negative side effects in the replacement of damaged organs. In particular, tubular organ structures of the genitourinary tract, such as the ureter and urethra, are challenging because of their complexity and special milieu that gives rise to incrustation, inflammation and stricture formation. Tubular biohybrids were prepared from primary porcine smooth muscle cells embedded in a fibrin gel with a stabilising poly(vinylidene fluoride) mesh. A mechanotransduction was performed automatically with a balloon kyphoplasty catheter. Diffusion of urea and creatinine, as well as the bursting pressure, were measured. Light and electron microscopy were used to visualise cellular distribution and orientation. Histological evaluation revealed a uniform cellular distribution in the fibrin gel. Mechanical stimulation with a stretch of 20% leads to a circumferential orientation of smooth muscle cells inside the matrix and a longitudinal alignment on the outer surface of the tubular structure. Urea and creatinine permeability and bursting pressure showed a non-statistically significant trend towards stimulated tissue constructs. In this proof of concept study, an innovative technique of intraluminal pressure for mechanical stimulation of tubular biohybrids prepared from autologous cells and a composite material induce bi-directional orientation of smooth muscle cells by locally and cyclically applied mechanical tension. Such geometrically driven patterns of cell growth within a scaffold may represent a key stage in the future tissue engineering of implantable ureter replacements that will allow the active transportation of urine from the renal pelvis into the bladder.

  11. Excitation of Mytilus smooth muscle.

    Science.gov (United States)

    Twarog, B M

    1967-10-01

    1. Membrane potentials and tension were recorded during nerve stimulation and direct stimulation of smooth muscle cells of the anterior byssus retractor muscle of Mytilus edulis L.2. The resting potential averaged 65 mV (range 55-72 mV).3. Junction potentials reached 25 mV and decayed to one half maximum amplitude in 500 msec. Spatial summation and facilitation of junction potentials were observed.4. Action potentials, 50 msec in duration and up to 50 mV in amplitude were fired at a membrane potential of 35-40 mV. No overshoot was observed.5. Contraction in response to neural stimulation was associated with spike discharge. Measurement of tension and depolarization in muscle bundles at high K(+) indicated that tension is only produced at membrane potentials similar to those achieved by spike discharge.6. Blocking of junction potentials, spike discharge and contraction by methantheline, an acetylcholine antagonist, supports the hypothesis that the muscle is excited by cholinergic nerves. However, evidence of a presynaptic action of methantheline complicates this argument.

  12. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    in cardiac, skeletal, and smooth muscle suggest all mitochondria are created equal, the contrasting RCR and non-phosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation...

  13. Mechanics of Vascular Smooth Muscle.

    Science.gov (United States)

    Ratz, Paul H

    2015-12-15

    Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM. Copyright © 2015 John Wiley & Sons, Inc.

  14. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  15. Non-muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Malmström, Per-Uno; Agrawal, Sachin; Bläckberg, Mats

    2017-01-01

    The management of non-muscle-invasive bladder cancer (NMIBC) has evolved from the first reports on bladder endoscopy and transurethral resection to the introduction of adjuvant intravesical treatment. However, disease recurrence and progression remain an ongoing risk, placing a heavy burden on he...

  16. Role of Smooth Muscle in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Stephen M Collins

    1996-01-01

    Full Text Available The notion that smooth muscle function is altered in inflammation is prompted by clinical observations of altered motility in patients with inflammatory bowel disease (IBD. While altered motility may reflect inflammation-induced changes in intrinsic or extrinsic nerves to the gut, changes in gut hormone release and changes in muscle function, recent studies have provided in vitro evidence of altered muscle contractility in muscle resected from patients with ulcerative colitis or Crohn’s disease. In addition, the observation that smooth muscle cells are more numerous and prominent in the strictured bowel of IBD patients compared with controls suggests that inflammation may alter the growth of intestinal smooth muscle. Thus, inflammation is associated with changes in smooth muscle growth and contractility that, in turn, contribute to important symptoms of IBD including diarrhea (from altered motility and pain (via either altered motility or stricture formation. The involvement of smooth muscle in this context may be as an innocent bystander, where cells and products of the inflammatory process induce alterations in muscle contractility and growth. However, it is likely that intestinal muscle cells play a more active role in the inflammatory process via the elaboration of mediators and trophic factors, including cytokines, and via the production of collagen. The concept of muscle cells as active participants in the intestinal inflammatory process is a new concept that is under intense study. This report summarizes current knowledge as it relates to these two aspects of altered muscle function (growth and contractility in the inflamed intestine, and will focus on mechanisms underlying these changes, based on data obtained from animal models of intestinal inflammation.

  17. Smooth muscle actin and myosin expression in cultured airway smooth muscle cells.

    Science.gov (United States)

    Wong, J Z; Woodcock-Mitchell, J; Mitchell, J; Rippetoe, P; White, S; Absher, M; Baldor, L; Evans, J; McHugh, K M; Low, R B

    1998-05-01

    In this study, the expression of smooth muscle actin and myosin was examined in cultures of rat tracheal smooth muscle cells. Protein and mRNA analyses demonstrated that these cells express alpha- and gamma-smooth muscle actin and smooth muscle myosin and nonmuscle myosin-B heavy chains. The expression of the smooth muscle specific actin and myosin isoforms was regulated in the same direction when growth conditions were changed. Thus, at confluency in 1 or 10% serum-containing medium as well as for low-density cells (50-60% confluent) deprived of serum, the expression of the smooth muscle forms of actin and myosin was relatively high. Conversely, in rapidly proliferating cultures at low density in 10% serum, smooth muscle contractile protein expression was low. The expression of nonmuscle myosin-B mRNA and protein was more stable and was upregulated only to a small degree in growing cells. Our results provide new insight into the molecular basis of differentiation and contractile function in airway smooth muscle cells.

  18. Kassina senegalensis skin tachykinins: molecular cloning of kassinin and (Thr2, Ile9)-kassinin biosynthetic precursor cDNAs and comparative bioactivity of mature tachykinins on the smooth muscle of rat urinary bladder.

    Science.gov (United States)

    Wang, Lei; Zhou, Mei; Lynch, Laura; Chen, Tianbao; Walker, Brian; Shaw, Chris

    2009-05-01

    Tachykinins are among the most widely-studied families of regulatory peptides characterized by a highly-conserved C-terminal -Phe-X-Gly-Leu-Met.amide motif, which also constitutes the essential bioactive core. The amphibian skin has proved to be a rich source of these peptides with physalaemin from the skin of Physalaemus fuscomaculatus representing the archetypal aromatic tachykinin (X=Tyr or Phe) and kassinin from the skin of Kassina senegalensis representing the archetypal aliphatic tachykinin in which X=Val or Ile. Despite the primary structures of both mature peptides having been known for at least 30 years, neither the structures nor organizations of their biosynthetic precursors have been reported. Here we report the structure and organization of the biosynthetic precursor of kassinin deduced from cDNA cloned from a skin secretion library. In addition, a second precursor cDNA encoding the novel kassinin analog (Thr(2), Ile(9))-kassinin was identified as was the predicted mature peptide in skin secretion. Both transcripts exhibited a high degree of nucleotide sequence similarity and of open-reading frame translated amino acid sequences of putative precursor proteins. The translated preprotachykinins each consisted of 80 amino acid residues encoding single copies of either kassinin or its site-substituted analog. Synthetic replicates of each kassinin were found to be active on rat urinary bladder smooth muscle at nanomolar concentrations. The structural organization of both preprotachykinins differs from that previously reported for those of Odorrana grahami skin indicating a spectrum of diversity akin to that established for amphibian skin preprobradykinins.

  19. The small GTPase Rac1 is required for smooth muscle contraction

    DEFF Research Database (Denmark)

    Rahman, Awahan; Davis, Benjamin; Lövdahl, Cecilia

    2014-01-01

    The role of the small GTP-binding protein Rac1 in smooth muscle contraction was examined using small molecule inhibitors (EHT1864, NSC23766) and a novel smooth muscle-specific, conditional, Rac1 knockout mouse strain. EHT1864, which affects nucleotide binding and inhibits Rac1 activity......, aorta) smooth muscle tissues. This contractile inhibition was associated with inhibition of the Ca2+ transient. Knockout of Rac1 (with a 50% loss of Rac1 protein) lowered active stress in the urinary bladder and the saphenous artery consistent with a role of Rac1 in facilitating smooth muscle...... at lowered intracellular [Ca2+]. These results show that Rac1 activity is required for active contraction in smooth muscle, probably via enabling an adequate Ca2+ transient. At the same time, specific agonists recruit Rac1 signalling via upstream modulators, resulting in either a potentiation of contraction...

  20. Autophagic regulation of smooth muscle cell biology

    Directory of Open Access Journals (Sweden)

    Joshua K. Salabei

    2015-04-01

    Full Text Available Autophagy regulates the metabolism, survival, and function of numerous cell types, including those comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence indicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell phenotype transitions and by influencing the cellular response to stress. In this graphical review, we summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in (pathophysiology.

  1. Analysis of intravesical recurrence after bladder-preserving therapy for muscle-invasive bladder cancer

    International Nuclear Information System (INIS)

    Onozawa, Mizuki; Miyanaga, Naoto; Hinotsu, Shiro

    2012-01-01

    The aim of the present study was to analyze the pattern of recurrences after bladder-preserving therapy for muscle-invasive bladder cancer. The subjects were 77 patients with T2-3N0M0 bladder cancer whose bladder was preserved by intra-arterial chemotherapy and radiation. The patterns of the first recurrences were retrospectively analyzed. With a median follow-up of 38.5 months, 17 patients (22.1%) experienced intravesical recurrence without metastasis, 14 (82.4%) of which were cases of non-muscle-invasive bladder cancer recurrence and 3 (17.6%) of which were muscle-invasive bladder cancer recurrences. Muscle-invasive bladder cancer recurred at the same site as the initial tumor site in all three cases, whereas non-muscle-invasive bladder cancer recurred at different sites in 64% of the patients in that group. The peak hazard of the non-muscle-invasive bladder cancer recurrence was observed at around a year after treatment. Recurrent non-muscle-invasive bladder cancer was of a significantly lower histological grade with lower Ki-67-labeling indices than the initial muscle-invasive bladder cancer. Twelve (85.7%) of 14 patients with non-muscle-invasive bladder cancer recurrence achieved disease-free status. The multivariate analysis revealed that multiplicity, grade and tumor size were significantly correlated with the recurrence (P=0.0001, 0.0442 and 0.0412, respectively). Most of the recurrences after bladder-preserving therapy were cases of non-muscle-invasive bladder cancer. The recurrence pattern and characteristics of the tumors did not differ from those of primary non-muscle-invasive bladder cancer. Patients with high-risk factors would be candidates for prophylactic intravesical therapy for non-muscle-invasive bladder cancer recurrence. (author)

  2. Mechanical properties of mammalian single smooth muscle cells. I. A low cost large range microforce transducer.

    NARCIS (Netherlands)

    J.J. Glerum (Jacobus); R. van Mastrigt (Ron)

    1990-01-01

    textabstractA transducer has been developed for measuring the minute forces generated during isometric contractions (1.0-10.0 microN) of single smooth muscle cells from the pig urinary bladder and the human uterus. In addition to its high sensitivity, resolution and stability (100 mV microN-1, and

  3. Nodular smooth muscle metaplasia in multiple peritoneal endometriosis

    OpenAIRE

    Kim, Hyun-Soo; Yoon, Gun; Ha, Sang Yun; Song, Sang Yong

    2015-01-01

    We report here an unusual presentation of peritoneal endometriosis with smooth muscle metaplasia as multiple protruding masses on the lateral pelvic wall. Smooth muscle metaplasia is a common finding in rectovaginal endometriosis, whereas in peritoneal endometriosis, smooth muscle metaplasia is uncommon and its nodular presentation on the pelvic wall is even rarer. To the best of our knowledge, this is the first case of nodular smooth muscle metaplasia occurring in peritoneal endometriosis. A...

  4. The Smooth Muscle of the Artery

    Science.gov (United States)

    1975-01-01

    experiments which we carried out showed that a]- though the overall aminoacid composition of the structural glycc- proteins isolated from-various...H., Baudouin-Legros, K1.: Cal- cium antagonism of sodium nitronrusside in vascular smooth muscle. Pflugers Arch. 339, 56, 1973. 192. Krut, L.H...Wall Glycoproteis, and Streptococcus A Cll 1M4brane. Tramplant. Proc. 4: 415-418, 1972. -- I1 286. Robert, L., Coote, P.: Aminoacid Composition of

  5. ASIC PROTEINS REGULATE SMOOTH MUSCLE CELL MIGRATION

    OpenAIRE

    Grifoni, Samira C.; Jernigan, Nikki L.; Hamilton, Gina; Drummond, Heather A.

    2007-01-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated Epithelial Na+ Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration, however the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence indi...

  6. Deletion of Dicer in smooth muscle affects voiding pattern and reduces detrusor contractility and neuroeffector transmission.

    Directory of Open Access Journals (Sweden)

    Mardjaneh Karbalaei Sadegh

    Full Text Available MicroRNAs have emerged as important regulators of smooth muscle phenotype and may play important roles in pathogenesis of various smooth muscle related disease states. The aim of this study was to investigate the role of miRNAs for urinary bladder function. We used an inducible and smooth muscle specific Dicer knockout (KO mouse which resulted in significantly reduced levels of miRNAs, including miR-145, miR-143, miR-22, miR125b-5p and miR-27a, from detrusor preparations without mucosa. Deletion of Dicer resulted in a disturbed micturition pattern in vivo and reduced depolarization-induced pressure development in the isolated detrusor. Furthermore, electrical field stimulation revealed a decreased cholinergic but maintained purinergic component of neurogenic activation in Dicer KO bladder strips. The ultrastructure of detrusor smooth muscle cells was well maintained, and the density of nerve terminals was similar. Western blotting demonstrated reduced contents of calponin and desmin. Smooth muscle α-actin, SM22α and myocardin were unchanged. Activation of strips with exogenous agonists showed that depolarization-induced contraction was preferentially reduced; ATP- and calyculin A-induced contractions were unchanged. Quantitative real time PCR and western blotting demonstrated reduced expression of Cav1.2 (Cacna1c. It is concluded that smooth muscle miRNAs play an important role for detrusor contractility and voiding pattern of unrestrained mice. This is mediated in part via effects on expression of smooth muscle differentiation markers and L-type Ca(2+ channels in the detrusor.

  7. Aspects of smooth muscle function in molluscan catch muscle.

    Science.gov (United States)

    Twarog, B M

    1976-10-01

    1) Catch in Mytilus ABRM may be a specialization of a mechanism common to all muscles that gives rise to stretch resistance in the resting state. Catch appears to be due to actin myosin interaction. Since this interaction is regulated by nerves, it provides a convenient model for studying resting stretch resistance. 2) Studies of the structure of Mytilus ABRM revela two types of intercellular connections: a) direct connections between muscle fibers [these nexal (gap) junctions interconnect the muscle cells electrically]; b) muscle fiber-collagen-muscle fiber connections [these provide mechanical connections between muscle cells via collagen fibers]. The structure of Mytilus ABRM supports speculation that smooth muscle filaments are organized into contractile units. 3) A rise in cAMP levels occurs in response to the relaxing transmitter, serotonin. It is not certain whether the cAMP system directly controls the ability of the contractile proteins to interact or whether it regulates intracellular levels of Ca2+. 4) Calcium ions in activation are derived from two sources: an internal source, probably the sarcoplasmic reticulum, and an external source, across the muscle membrane. 5) The nature of catch remains in question, although most evidence favors the linkage hypothesis.

  8. Selective bladder preservation with curative intent for muscle-invasive bladder cancer. A contemporary review

    International Nuclear Information System (INIS)

    Koga, Fumitaka; Kihara, Kazunori

    2012-01-01

    Radical cystectomy plus urinary diversion, the reference standard treatment for muscle-invasive bladder cancer, associates with high complication rates and compromises quality of life as a result of long-term effects on urinary, gastrointestinal and sexual function, and changes in body image. As a society ages, the number of elderly patients unfit for radical cystectomy as a result of comorbidity will increase, and thus the demand for bladder-sparing approaches for muscle-invasive bladder cancer will also inevitably increase. Trimodality bladder-sparing approaches consisting of transurethral resection, chemotherapy and radiotherapy (Σ55-65 Gy) yield overall survival rates comparable with those of radical cystectomy series (50-70% at 5 years), while preserving the native bladder in 40-60% of muscle-invasive bladder cancer patients, contributing to an improvement in quality of life for such patients. Limitations of the trimodality therapy include muscle-invasive bladder cancer recurrence in the preserved bladder, which most often arises in the original muscle-invasive bladder cancer site; potential lack of curative intervention for regional lymph nodes; and increased morbidity in the event of salvage radical cystectomy for remaining or recurrent disease as a result of high-dose pelvic irradiation. Consolidative partial cystectomy with pelvic lymph node dissection followed by induction chemoradiotherapy at lower dose (exempli gratia (e.g.) 40 Gy) is a rational strategy for overcoming such limitations by strengthening locoregional control and reducing radiation dosage. Molecular profiling of the tumor and functional imaging might play important roles in optimal patient selection for bladder preservation. Refinement of radiation techniques, intensified concurrent or adjuvant chemotherapy, and novel sensitizers, including molecular targeting agent, are also expected to improve outcomes and consequently provide more muscle-invasive bladder cancer patients with favorable

  9. Acetylcholine : a novel regulator of airway smooth muscle remodelling?

    NARCIS (Netherlands)

    Gosens, R; Zaagsma, J; Bromhaar, MG; Nelemans, A; Meurs, H

    2004-01-01

    Increased airway smooth muscle mass is a pathological feature that asthma and chronic obstructive pulmonary disease (COPD) have in common. This increase has gained renewed interest in view of recent developments showing that airway smooth muscle, instead of solely being a contractile partner, is

  10. Energy metabolism and transduction in smooth muscle.

    Science.gov (United States)

    Lynch, R M; Paul, R J

    1985-08-15

    Early investigations into the nature of the coupling between energy transduction and metabolism in smooth muscle, particularly from the laboratories of Bülbring and Lundholm, suggested that specific metabolic pathways could independently supply energy for ion transport and actin-myosin interactions. Subsequent work has solidified the concept that oxidative phosphorylation is specifically coupled to tension generation and maintenance, whereas, aerobic glycolysis is not only a vital characteristic of smooth muscle metabolism, but also is likely to be independently coupled to Na-K transport at the plasmalemma. The independence of oxidative and glycolytic metabolism is reflected as a compartmentation of carbohydrate metabolism in the porcine carotid artery. The coupling of these independent metabolic pathways with specific energy utilizing processes, indicates a means by which energy production and transduction can be closely and efficiently regulated. The coupling of glycogenolysis to mitochondrial respiration may have evolved as a direct response to the energetic needs of VSM. That is, the large glycogenolytic response in the initial minutes of stimulation may be necessary to maximize the cellular production of ATP during the presteady state. Likewise, the coupling between aerobic glycolysis and Na-K transport indicates a sensitive and efficient means of coordinating energy metabolism with ion transport at the membrane level. Additionally, the regulation of substrate supply, i.e. glucose transport, also may be closely coordinated with changes in ion transport. One may speculate that alterations in the microenvironment of each compartment can independently regulate intermediary metabolism and therefore allow the cell to quickly and efficiently respond to localized stimuli. Thus, stimulation of Na-K transport could effectively regulate energy production at the membrane level without mobilizing or competing with the energy transduction of other cellular processes. This

  11. ASIC proteins regulate smooth muscle cell migration.

    Science.gov (United States)

    Grifoni, Samira C; Jernigan, Nikki L; Hamilton, Gina; Drummond, Heather A

    2008-03-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated that Epithelial Na(+)Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration; however, the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence individual ASIC expression and determine the importance of ASIC proteins in wound healing and chemotaxis (PDGF-bb)-initiated migration. We found ASIC1, ASIC2, and ASIC3, but not ASIC4, expression in A10 cells. ASIC1, ASIC2, and ASIC3 siRNA molecules significantly suppressed expression of their respective proteins compared to non-targeting siRNA (RISC) transfected controls by 63%, 44%, and 55%, respectively. Wound healing was inhibited by 10, 20, and 26% compared to RISC controls following suppression of ASIC1, ASIC2, and ASIC3, respectively. Chemotactic migration was inhibited by 30% and 45%, respectively, following suppression of ASIC1 and ASIC3. ASIC2 suppression produced a small, but significant, increase in chemotactic migration (4%). Our data indicate that ASIC expression is required for normal migration and may suggest a novel role for ASIC proteins in cellular migration.

  12. Myosin light chain kinase is central to smooth muscle contraction and required for gastrointestinal motility in mice.

    Science.gov (United States)

    He, Wei-Qi; Peng, Ya-Jing; Zhang, Wen-Cheng; Lv, Ning; Tang, Jing; Chen, Chen; Zhang, Cheng-Hai; Gao, Song; Chen, Hua-Qun; Zhi, Gang; Feil, Robert; Kamm, Kristine E; Stull, James T; Gao, Xiang; Zhu, Min-Sheng

    2008-08-01

    Smooth muscle is essential for maintaining homeostasis for many body functions and provides adaptive responses to stresses imposed by pathologic disorders. Identified cell signaling networks have defined many potential mechanisms for initiating smooth muscle contraction with or without myosin regulatory light chain (RLC) phosphorylation by myosin light chain kinase (MLCK). We generated tamoxifen-inducible and smooth muscle-specific MLCK knockout (KO) mice and provide direct loss-of-function evidence that shows the primary importance of MLCK in phasic smooth muscle contractions. We used the Cre-loxP system to establish Mlck floxed mice in which exons 23, 24, and 25 were flanked by 2 loxP sites. Smooth muscle-specific MLCK KO mice were generated by crossing Mlck floxed mice with SM-CreER(T2) (ki) mice followed by tamoxifen treatment. The phenotype was assessed by histologic, biochemical, molecular, cell biological, and physiologic analyses. Targeted deletion of MLCK in adult mouse smooth muscle resulted in severe gut dysmotility characterized by weak peristalsis, dilation of the digestive tract, and reduction of feces excretion and food intake. There was also abnormal urinary bladder function and lower blood pressure. Isolated muscles showed a loss of RLC phosphorylation and force development induced by K(+)-depolarization. The kinase knockout also markedly reduced RLC phosphorylation and force development with acetylcholine which activates Ca(2+)-sensitizing signaling pathways. MLCK and its phosphorylation of RLC are required physiologically for smooth muscle contraction and are essential for normal gastrointestinal motility.

  13. Nodular smooth muscle metaplasia in multiple peritoneal endometriosis.

    Science.gov (United States)

    Kim, Hyun-Soo; Yoon, Gun; Ha, Sang Yun; Song, Sang Yong

    2015-01-01

    We report here an unusual presentation of peritoneal endometriosis with smooth muscle metaplasia as multiple protruding masses on the lateral pelvic wall. Smooth muscle metaplasia is a common finding in rectovaginal endometriosis, whereas in peritoneal endometriosis, smooth muscle metaplasia is uncommon and its nodular presentation on the pelvic wall is even rarer. To the best of our knowledge, this is the first case of nodular smooth muscle metaplasia occurring in peritoneal endometriosis. As observed in this case, when performing laparoscopic surgery in order to excise malignant tumors of intra-abdominal or pelvic organs, it can be difficult for surgeons to distinguish the metastatic tumors from benign nodular pelvic wall lesions, including endometriosis, based on the gross findings only. Therefore, an intraoperative frozen section biopsy of the pelvic wall nodules should be performed to evaluate the peritoneal involvement by malignant tumors. Moreover, this report implies that peritoneal endometriosis, as well as rectovaginal endometriosis, can clinically present as nodular lesions if obvious smooth muscle metaplasia is present. The pathological investigation of smooth muscle cells in peritoneal lesions can contribute not only to the precise diagnosis but also to the structure and function of smooth muscle cells and related cells involved in the histogenesis of peritoneal endometriosis.

  14. Modeling the dispersion effects of contractile fibers in smooth muscles

    Science.gov (United States)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  15. Tobacco constituents are mitogenic for arterial smooth-muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Becker, C.G.; Hajjar, D.P.; Hefton, J.M.

    1985-07-01

    Tobacco glycoprotein (TGP) purified from flue-cured tobacco leaves, tar-derived material (TAR), the water soluble, nondialyzable, delipidized extract of cigarette smoke condensate, rutin-bovine serum albumin conjugates, quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells, but not adventitial fibroblasts. The mitogenicity appears to depend on polyphenol epitopes on carrier molecules. Ellagic acid, another plant polyphenol, inhibited arterial smooth-muscle proliferation. These results suggest that a number of ubiquitous, plant-derived substances may influence smooth-muscle cell proliferation in the arterial wall.

  16. Calcium-sensitivity of smooth muscle contraction in the isolated ...

    African Journals Online (AJOL)

    sensitivity of smooth muscle contraction were studied in the isolated perfused rat tail artery, employing the activators noradrenaline (NA) (3ìM) sand potassium chloride (KC1) (100mM). Experiments were conduced in Ca2+ - buffered saline.

  17. calcium-sensitivity of smooth muscle contraction in the isolated ...

    African Journals Online (AJOL)

    Dr Olaleye

    sensitivity of smooth muscle contraction were studied in the isolated perfused rat tail artery, employing the activators noradrenaline (NA) (3μM) sand potassium chloride (KC1) (100mM). Experiments were conduced in Ca2+ - buffered saline.

  18. Results of radiotherapy on ureteric obstruction in muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Honnens De Lichtenberg, Mette; Miskowiak, J; Rolff, H

    1995-01-01

    To evaluate the effect of radiotherapy on ureteric obstruction due to muscle-invasive bladder cancer.......To evaluate the effect of radiotherapy on ureteric obstruction due to muscle-invasive bladder cancer....

  19. Reconstitution of experimental neurogenic bladder dysfunction using skeletal muscle-derived multipotent stem cells.

    Science.gov (United States)

    Nitta, Masahiro; Tamaki, Tetsuro; Tono, Kayoko; Okada, Yoshinori; Masuda, Maki; Akatsuka, Akira; Hoshi, Akio; Usui, Yukio; Terachi, Toshiro

    2010-05-15

    BACKGROUND.: Postoperative neurogenic bladder dysfunction is a major complication of radical hysterectomy for cervical cancer and is mainly caused by unavoidable damage to the bladder branch of the pelvic plexus (BBPP) associated with colateral blood vessels. Thus, we attempted to reconstitute disrupted BBPP and blood vessels using skeletal muscle-derived multipotent stem cells that show synchronized reconstitution capacity of vascular, muscular, and peripheral nervous systems. METHODS.: Under pentobarbital anesthesia, intravesical pressure by electrical stimulation of BBPP was measured as bladder function. The distal portion of BBPP with blood vessels was then cut unilaterally (experimental neurogenic bladder model). Measurements were performed before, immediately after, and at 4 weeks after transplantation as functional recovery. Stem cells were obtained from the right soleus and gastrocnemius muscles after enzymatic digestion and cell sorting as CD34/45 (Sk-34) and CD34/45 (Sk-DN). Suspended cells were autografted around the damaged region, whereas medium alone and CD45 cells were transplanted as control groups. To determine the morphological contribution of the transplanted cells, stem cells obtained from green fluorescent protein transgenic mouse muscles were transplanted into a nude rat model and were examined by immunohistochemistry and immunoelectron microscopy. RESULTS.: At 4 weeks after surgery, the transplantation group showed significantly higher functional recovery ( approximately 80%) than the two controls ( approximately 28% and 24%). The transplanted cells showed an incorporation into the damaged peripheral nerves and blood vessels after differentiation into Schwann cells, perineurial cells, vascular smooth muscle cells, pericytes, and fibroblasts around the bladder. CONCLUSION.: Transplantation of multipotent Sk-34 and Sk-DN cells is potentially useful for the reconstitution of damaged BBPP.

  20. Disturbance of smooth muscle regulatory function by Eisenia foetida toxin lysenin: insight into the mechanism of smooth muscle contraction.

    Science.gov (United States)

    Czuryło, Edward A; Kulikova, Natalia; Sobota, Andrzej

    2008-05-01

    Lysenin, a toxin present in the coelomic fluid of the earthworm Eisenia foetida, is known to cause a long-lasting contraction of rat aorta smooth muscle strips. We addressed the mechanisms underlying its action on smooth muscle cells and present the first report demonstrating a completely new property of lysenin unrelated to its basic sphingomyelin-binding ability. Here we report lysenin enhancement effect on smooth muscle actomyosin ATPase activity and the ability of networking the actin filaments. The maximum enhancement of the ATPase activity of actomyosin at 120 mM KCl was observed at a molar ratio of lysenin to actin of about 1:10(5), while at 70 mM KCl at the ratio of about 1:10(6). The effect of lysenin became most pronounced only when both smooth muscle regulatory proteins, tropomyosin and caldesmon, were present. Co-sedimentation experiments indicated that lysenin did not displace neither tropomyosin nor caldesmon from the thin filament. Thus, the lysenin-dependent abolishment of the inhibitory effect of caldesmon on the ATPase activity was related rather to the modification of the filament structure. The ability of the toxin to exert its stimulatory effect at extremely low concentrations (as low as one molecule of lysenin per 10(6) actin molecules) may result from the long-range cooperative transitions in the entire thin filament with an involvement of smooth muscle tropomyosin, while the role of caldesmon may be limited exclusively to the inhibition of ATPase activity.

  1. Contemporary management of muscle-invasive bladder cancer

    Science.gov (United States)

    Dall’Era, Marc A; Cheng, Liang; Pan, Chong-Xian

    2012-01-01

    The current standard treatment for muscle-invasive nonmetastatic bladder cancer is neoadjuvant platinum-based chemotherapy followed by radical cystectomy. However, neoadjuvant chemotherapy is not widely accepted even with level 1 evidence. Adjuvant chemotherapy should be discussed if patients have not received neoadjuvant chemotherapy before surgery and have high-risk pathologic features. Although not considered standard of care, bladder-sparing therapy can be considered for highly selected patients and for those medically unfit for surgery. Even though there are no level 1 data, the treatment outcomes for highly select patients given bladder-sparing therapy appear promising, with many patients retaining a functional bladder. Personalized chemotherapy is currently being actively pursued to target the underlying molecular changes and tailor to individual needs. PMID:22845409

  2. Smooth muscle adaptation after intestinal transection and resection.

    Science.gov (United States)

    Thompson, J S; Quigley, E M; Adrian, T E

    1996-09-01

    Changes in motor function occur in the intestinal remnant after intestinal resection. Smooth muscle adaptation also occurs, particularly after extensive resection. The time course of these changes and their interrelationship are unclear. Our aim was to evaluate changes in canine smooth muscle structure and function during intestinal adaptation after transection and resection. Twenty-five dogs underwent either transection (N = 10), 50% distal resection (N = 10), or 50% proximal resection (N = 5). Thickness and length of the circular (CM) and longitudinal (LM) muscle layers were measured four and 12 weeks after resection. In vitro length-tension properties and response to a cholinergic agonist were studied in mid-jejunum and mid-ileum. Transection alone caused increased CM length in the jejunum proximal to the transection but did not affect LM length or muscle thickness. A 50% resection resulted in increased length of CM throughout the intestine and thickening of CM and LM near the anastomosis. Active tension of jejunal CM increased transiently four weeks after resection. Active tension in jejunal LM was decreased 12 weeks after transection and resection. Sensitivity of CM to carbachol was similar after transection and resection. It is concluded that: (1) Structural adaptation of both circular and longitudinal muscle occurs after intestinal resection. (2) This process is influenced by the site of the intestinal remnant. (3) Only minor and transient changes occur in smooth muscle function after resection. (4) Factors other than muscle adaptation are likely involved in the changes in motor function seen following massive bowel resection.

  3. Testosterone Modifies Alterations to Detrusor Muscle after Partial Bladder Outlet Obstruction in Juvenile Mice

    Directory of Open Access Journals (Sweden)

    Andrew S. Flum

    2017-06-01

    Full Text Available Lower urinary tract symptoms secondary to posterior urethral valves (PUV arise in boys during adolescence. The reasons for this have previously been attributed to increased urine output as boys experience increased growth. Additionally, there are few choices for clinicians to effectively treat these complications. We formed the new hypothesis that increased androgen levels at this time of childhood development could play a role at the cellular level in obstructed bladders. To test this hypothesis, we investigated the role of testosterone on bladder detrusor muscle following injury from partial bladder outlet obstruction (PO in mice. A PO model was surgically created in juvenile male mice. A group of mice were castrated by bilateral orchiectomy at time of obstruction (CPO. Testosterone cypionate was administered to a group of castrated, obstructed mice (CPOT. Bladder function was assessed by voiding stain on paper (VSOP. Bladders were analyzed at 7 and 28 days by weight and histology. Detrusor collagen to smooth muscle ratio (Col/SM was calculated using Masson’s trichrome stain. All obstructed groups had lower max voided volumes (MVV than sham mice at 1 day. Hormonally intact mice (PO continued to have lower MVV at 7 and 28 days while CPO mice improved to sham levels at both time points. In accordance, PO mice had higher bladder-to-body weight ratios than CPO and sham mice demonstrating greater bladder hypertrophy. Histologically, Col/SM was lower in sham and CPO mice. When testosterone was restored in CPOT mice, MVV remained low at 7 and 28 days compared to CPO and bladder-to-body weight ratios were also greater than CPO. Histologic changes were also seen in CPOT mice with higher Col/SM than sham and CPO mice. In conclusion, our findings support a role for testosterone in the fibrotic changes that occur after obstruction in male mice. This suggests that while other changes may occur in adolescent boys that cause complication in boys

  4. Filamin isoforms in molluscan smooth muscle.

    Science.gov (United States)

    Méndez-López, Lucía; Hellman, Ulf; Ibarguren, Izaskun; Villamarín, J Antonio

    2012-12-01

    The role of filamin in molluscan catch muscles is unknown. In this work three proteins isolated from the posterior adductor muscle of the sea mussel Mytilus galloprovincialis were identified by MALDI-TOF/TOF MS as homologous to mammalian filamin. They were named FLN-270, FLN-230 and FLN-105, according to their apparent molecular weight determined by SDS-PAGE: 270kDa, 230kDa and 105kDa, respectively. Both FLN-270 and FLN-230 contain the C-terminal dimerization domain and the N-terminal actin-binding domain typical of filamins. These findings, together with the data from peptide mass fingerprints, indicate that FLN-270 and FLN-230 are different isoforms of mussel filamin, with FLN-230 being the predominant isoform in the mussel catch muscle. De novo sequencing data revealed structural differences between both filamin isoforms at the rod 2 segment, the one responsible for the interaction of filamin with the most of its binding partners. FLN270 but not FLN230 was phosphorylated in vitro by cAMP-dependent protein kinase. As for the FLN-105, it would be an N-terminal proteolytic fragment generated from the FLN-270 isoform or a C-terminally truncated variant of filamin. On the other hand, a 45-kDa protein that copurifies with mussel catch muscle filamins was identified as the mussel calponin-like protein. The fact that this protein coelutes with the FLN-270 isoform from a gel filtration chromatography suggests a specific interaction between both proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Skeletal, cardiac, and smooth muscle failure in Duchenne muscular dystrophy.

    Science.gov (United States)

    Boland, B J; Silbert, P L; Groover, R V; Wollan, P C; Silverstein, M D

    1996-01-01

    The goals of this study were to describe the clinical course of skeletal, cardiac, and gastrointestinal muscle manifestations and trends in age at diagnosis and survival of Duchenne muscular dystrophy (DMD) patients. A retrospective cohort of 33 male patients with DMD, born between 1953 and 1983 and followed at the Mayo Clinic during their second decade of life, was studied. The mean age at DMD diagnosis was 4.6 years. Skeletal muscle weakness present in all patients at diagnosis progressed to wheelchair dependency in 32 patients (97%) by the age of 13 years (median age 10 years). Cardiac muscle failure developed in 5 patients (15%) (median age 21.5 years). Smooth muscle manifestations related to the digestive and urinary tracts occurred in 7 (21%) and 2 (6%) patients (median age 15 years), respectively. The gastrointestinal dilatations were primary in 2 patients or secondary to surgery or acute respiratory illness in 5 patients. By the end of the study period, 17 deaths had occurred (median age 17 years). Over time, there was a decrease in the time to DMD diagnosis (P = .05) but no significant change in survival (P = .44). Cardiac and smooth muscle manifestations occur late in the course of DMD. Clinical gastrointestinal symptoms related to smooth muscle function most often were secondary to surgery or a respiratory illness. In recent years, the diagnosis of DMD has been made at a younger age, but survival has not changed.

  6. Membrane properties of smooth muscle cells in pulmonary hypertensive rats.

    Science.gov (United States)

    Suzuki, H; Twarog, B M

    1982-05-01

    The membrane properties of smooth muscle cells in rat main pulmonary artery (MPA) and small pulmonary artery (SPA) were investigated during chronic normobaric hypoxia and after monocrotaline injection. As chronic pulmonary hypertension developed, pronounced differences between MPA and SPA were observed. These findings may shed light on mechanisms of smooth muscle hypertrophy. 1) The resting membrane potential of smooth muscle in MPA became less negative than the normal (depolarized), whereas the resting membrane potential of smooth muscle in SPA became more negative (hyperpolarized). 2) In MPA, both the length and time constants diminished. 3) In MPA, the maximum membrane depolarization produced by a 10-fold increase in extracellular [K+] decreased. 4) In SPA, the depolarization observed in K+-free solution was more rapid and greater in amplitude, and the transient hyperpolarization following restoration of K+-containing solution increased. 5) In SPA, initial and sustained depolarization evoked by Na+-deficient solutions were increased. 6) Depolarization in MPA was due to increased membrane permeability, perhaps to Cl-, whereas hyperpolarization in SPA could be attributed to increased activity of an electrogenic Na+-K+ pump.

  7. Airway smooth muscle cells : regulators of airway inflammation

    NARCIS (Netherlands)

    Zuyderduyn, Suzanne

    2007-01-01

    Airways from asthmatic subjects are more responsive to bronchoconstrictive stimuli than airways from healthy subjects. Airway smooth muscle (ASM) cells mediate contraction of the airways by responding to the bronchoconstrictive stimuli, which was thought to be the primary role of ASM cells. In this

  8. Phenotype modulation of airway smooth muscle in asthma

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha; Ojo, Oluwaseun O.

    The biological responses of airway smooth muscle (ASM) are diverse, in part due to ASM phenotype plasticity. ASM phenotype plasticity refers to the ability of ASM cells to change the degree of a variety of functions, including contractility, proliferation, migration and secretion of inflammatory

  9. Electron histochemical and autoradiographic studies of vascular smooth muscle cell

    International Nuclear Information System (INIS)

    Kameyama, Kohji; Aida, Takeo; Asano, Goro

    1982-01-01

    The authors have studied the vascular smooth muscle cell in the aorta and the arteries of brain, heart in autopsied cases, cholesterol fed rabbits and canine through electron histochemical and autoradiographic methods, using 3 H-proline and 3 H-thymidine. The vascular changes are variable presumably due to the functional and morphological difference of vessels. Aging, pathological condition and physiological requirement induce the disturbances of vascular functions as contractility. According to various pathological conditions, the smooth muscle cell altered their shape, surface properties and arrangement of subcellular organelles including changes in number. The morphological features of arteries during aging is characterized by the thickening of endothelium and media. Decreasing cellularity and increasing collagen contents in media. The autoradiographic and histochemical observations using periodic acid methenamine silver (PAM) and ruthenium red stains demonstrated that the smooth muscle cell is a connective tissue synthetic cell. The PAM impregnation have proved that the small bundle of microfilaments become associated with small conglomerate of collagen and elastic fibers. Cytochemical examination will provide sufficient evidence to establish the contribution of subcellular structure. The acid phosphatase play an important role in vascular disease and they are directly involved in cellular lipid metabolism in cholesterol fed animals, and the activity of Na-K ATPase on the plasma membrane may contribute to the regulation of vascular blood flow and vasospasms. Direct injury and subsequent abnormal contraction of smooth muscle cell may initiate increased permeability of plasma protein and lipid in the media layer and eventually may developed and enhance arteriosclerosis. (author)

  10. Plasticity of airway smooth muscle phenotype in airway remodeling

    NARCIS (Netherlands)

    Gosens, Reinoud

    2004-01-01

    Isolated smooth muscle cells in culture do not immediately start dividing, even in a medium containing all nutrients required. Before entering the cell cycle, the cells first accomodate their phenotype to their new environment. They lose their contractile properties and modulate to a proliferative

  11. Suppression of vascular smooth muscle cells' proliferation and ...

    African Journals Online (AJOL)

    This study aimed to determine the effects of valsartan on the proliferation and migration of isolated rat vascular smooth muscle cells (VSMCs) and the expression of phospho-p42/44 mitogen-activated protein kinase (MAPK) promoted by angiotensin II (Ang II). VSMCs from the rat thoracic aorta were cultured by ...

  12. HSP20 phosphorylation and airway smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Mariam Ba

    2009-06-01

    Full Text Available Mariam Ba1, Cherie A Singer1, Manoj Tyagi2, Colleen Brophy3, Josh E Baker4, Christine Cremo4, Andrew Halayko5, William T Gerthoffer21Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, USA; 2Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA; 3Harrington Department of Biochemistry, Arizona State University, Tempe, AZ, USA; 4Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA; 5Departments of Physiology and Internal Medicine, University of Manitoba, Winnipeg, MB, CanadaAbstract: HSP20 (HSPB6 is a small heat shock protein expressed in smooth muscles that is hypothesized to inhibit contraction when phosphorylated by cAMP-dependent protein kinase. To investigate this hypothesis in airway smooth muscle (ASM we showed that HSP20 was constitutively expressed as well as being inducible in cultured hASM cells by treatment with 1 µM isoproterenol or 10 µM salmeterol. In contrast, a mixture of proinflammatory mediators (interleukin-1β, tumor necrosis factor α, and interferon γ inhibited expression of HSP20 by about 50% in 48 hours. To determine whether phosphorylation of HSP20 is sufficient to induce relaxation, canine tracheal smooth muscle was treated with a cell permeant phosphopeptide that mimics the phosphorylation of HSP20. The HSP20 phosphopeptide antagonized carbacholinduced contraction by 60% with no change in myosin light chain phosphorylation. Recombinant full length HSP20 inhibited skeletal actin binding to smooth muscle myosin subfragment 1 (S1, and recombinant cell permeant TAT-HSP20 S16D mutant reduced F-actin filaments in cultured hASM cells. Carbachol stimulation of canine tracheal smooth muscle tissue caused redistribution of HSP20 from large macromolecular complexes (200–500 kDa to smaller complexes (<60 kDa. The results are consistent with HSP20 expression and macromolecular structure being dynamically regulated in airway

  13. The pharmacology of a molluscan smooth muscle.

    Science.gov (United States)

    TWAROG, B M

    1959-09-01

    The effects of a number of pharmacologically active substances on contraction and on membrane polarization of the anterior byssal retractor muscle of Mytilus edulis, L., have been studied. Tetramethylammonium bromide, trimethyl(4-oxopentyl)ammonium chloride and nicotine, like acetylcholine, produced depolarization and sustained contraction. Nicotine, on repeated application, lost acetylcholine-like activity and effectively blocked acetylcholine. In order of decreasing potency, methanthelinium, tubocurarine, benzoquinonium, tetraethylammonium, atropine, pentamethonium, and decamethonium blocked acetylcholine action. These agents did not show initial acetylcholine-like action and did not relax sustained contractions. Adrenaline, noradrenaline, tyramine, dibenamine, phentolamine, and lysergic acid diethylamide relaxed sustained contractions without reducing initial depolarization and tension development in response to acetylcholine or electrical stimuli. Adrenaline and noradrenaline often caused depolarization and contraction when first applied, and displayed relaxing action on subsequent application.

  14. Blue-light cystoscopy in the evaluation of non-muscle-invasive bladder cancer

    NARCIS (Netherlands)

    Oude Elferink, P.; Witjes, J.A.

    2014-01-01

    Bladder carcinoma is the most common malignancy of the urinary tract. Two distinct groups can be identified: non-muscle-invasive bladder carcinoma (NMIBC) and muscle-invasive bladder carcinoma. At initial resection about 75-85% of the patients will be diagnosed with NMIBC. This subgroup has a

  15. Effects of oxymetazoline on isolated rat's tracheal smooth muscle.

    Science.gov (United States)

    Wang, Hsing-Won; Wu, Chi-Chung

    2008-06-01

    Oxymetazoline is often used as a decongestant in rhinitis patients who are suffering from nasal obstruction. It is used as a nasal drop or spray solution. The effect on nasal mucosa in vitro or in vivo is well known. However, the effect of the drug on tracheal smooth muscle has rarely been explored. During administration of the drug to the nose, it might affect the trachea via inhalation. We used our preparation to test the effectiveness of oxymetazoline on isolated rat's tracheal smooth muscle. A 5 mm long portion of rat trachea was submersed in 30 ml Kreb's solution in a muscle bath at 37 degrees C. Changes in tracheal contractility in response to the application of parasympathetic mimetic agents were measured using a transducer connected to a Pentium III computer equipped with polygraphy software. The following assessments were performed: (1) effect on tracheal smooth muscle resting tension; (2) effect on contraction caused by 10(-6)M methacholine as a parasympathetic mimetic; (3) effect of oxymetazoline on electrically induced tracheal smooth muscle contractions. Addition of parasympathetic mimetics to the incubation medium caused the trachea to contract in a dose-dependent manner. Addition of oxymetazoline induced a significant relaxation response when the preparation was up to 10(-4) M. At the same concentration, the drug also could inhibit EFS induced spike contraction. Oxymetazoline had negligible effect on the basal tension of trachea as the concentration increased. The degree of drug-induced tracheal contraction or relaxation was dose-dependent. The study indicated that high concentrations of oxymetazoline might actually antagonize cholinergic receptors of the trachea.

  16. Eye features in three Danish patients with multisystemic smooth muscle dysfunction syndrome

    DEFF Research Database (Denmark)

    Moller, Hans Ulrik; Fledelius, Hans C; Milewicz, Dianna M

    2012-01-01

    A de novo mutation of the ACTA2 gene encoding the smooth muscle cell α-actin has been established in patients with multisystemic smooth muscle dysfunction syndrome associated with patent ductus arteriosus and mydriasis present at birth....

  17. [Uterine smooth muscle tumors--determination of clinical behavior and classification].

    Science.gov (United States)

    Gincheva, D; Nikolova, M; Gorchev, G; Tomov, S

    2014-01-01

    The establishment of the clinical behavior of uterine smooth muscle tumors /USMT/ is an essential stage of modern diagnostics. There are significant differences in the criteria determining the malignant potential of smooth muscle gynecological tumors. Generally USMT generating diagnostic problems are classified into: clinically benign tumors; clinically malignant tumors with benign morphological features; smooth muscle tumors of uncertain malignant potential (SMTUMP) and lesions whose smooth muscle differentiation is not obvious. The knowledge in this area is essential for an adequate therapeutic approach.

  18. Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle

    International Nuclear Information System (INIS)

    Nawrath, H.; Raschack, M.

    1987-01-01

    (-)-Desmethoxyverapamil [also known as (-)-devapamil or (-)-D888] has been developed as a verapamil type radioligand for the study of calcium channels. In the present investigation, the effects of (-)-desmethoxyverapamil on action potential (AP) and force of contraction in heart muscle preparations and on tension and 45 Ca influx in vascular smooth muscle are described. In part, the effects were compared with the (+)-isomer of desmethoxyverapamil and the isomers of both verapamil and methoxyverapamil. In atrial and/or ventricular heart muscle preparations from guinea pigs, cats and man, (-)-desmethoxyverapamil decreased the force of contraction and shortened the AP duration. Slow response APs were depressed, whereas dV/dtmax of phase 0 of the AP remained unchanged. The rank order of potency of the (-)-isomers was as follows: desmethoxyverapamil greater than methoxyverapamil greater than verapamil. Potassium-induced contractures and 45 Ca influx were depressed by the (-)-isomers of desmethoxyverapamil, methoxyverapamil and verapamil in the same potency rank order as observed in heart muscle. The (+)-isomers exerted qualitatively similar effects at about 10 to 200 times higher concentrations. Correspondingly, the increase in potency of the racemic mixtures of the drugs was accompanied by increases in stereoselectivity. It is concluded that (-)-desmethoxyverapamil is the most potent stereoselective calcium antagonist of the verapamil type with respect to its effects on heart and vascular smooth muscle

  19. Effects of (-)-desmethoxyverapamil on heart and vascular smooth muscle

    Energy Technology Data Exchange (ETDEWEB)

    Nawrath, H.; Raschack, M.

    1987-09-01

    (-)-Desmethoxyverapamil (also known as (-)-devapamil or (-)-D888) has been developed as a verapamil type radioligand for the study of calcium channels. In the present investigation, the effects of (-)-desmethoxyverapamil on action potential (AP) and force of contraction in heart muscle preparations and on tension and /sup 45/Ca influx in vascular smooth muscle are described. In part, the effects were compared with the (+)-isomer of desmethoxyverapamil and the isomers of both verapamil and methoxyverapamil. In atrial and/or ventricular heart muscle preparations from guinea pigs, cats and man, (-)-desmethoxyverapamil decreased the force of contraction and shortened the AP duration. Slow response APs were depressed, whereas dV/dtmax of phase 0 of the AP remained unchanged. The rank order of potency of the (-)-isomers was as follows: desmethoxyverapamil greater than methoxyverapamil greater than verapamil. Potassium-induced contractures and /sup 45/Ca influx were depressed by the (-)-isomers of desmethoxyverapamil, methoxyverapamil and verapamil in the same potency rank order as observed in heart muscle. The (+)-isomers exerted qualitatively similar effects at about 10 to 200 times higher concentrations. Correspondingly, the increase in potency of the racemic mixtures of the drugs was accompanied by increases in stereoselectivity. It is concluded that (-)-desmethoxyverapamil is the most potent stereoselective calcium antagonist of the verapamil type with respect to its effects on heart and vascular smooth muscle.

  20. [Taurine induces apoptosis in pulmonary artery smooth muscle cells].

    Science.gov (United States)

    Zhang, Xiaodan; Sheng, Jiejing; Zhang, Caixiaz; Zhao, Fenghua

    2012-03-01

    To study the effect of taurine on apoptosis in PASMCs, and whether the death-receptor pathway act in the mechanism. Culture the PASMCs, and divided the cells into control, SD. Acridine orange(AO) assay and western-blot analysis on the expression of Bax, Bcl-2, Procaspase-3 and Fas were used to study the mechanism. A major finding of this study is that the Tau effects many apoptosis index, such as increasing the expression of Bax and Fas, decreasing the expression of Procaspase-3, and Bcl-2, accrescencing the mitochondrial depolarization, causing the nuclear shrinkage, all these datas demonstrated that Tau induced the apoptosis in pulmonary artery smooth muscle cells through mitochondrial-dependent pathway. Tau induces the apoptosis in pulmonary artery smooth muscle cells through death-receptor.

  1. Proteomics research on muscle-invasive bladder transitional cell carcinoma

    Directory of Open Access Journals (Sweden)

    Cao Yan

    2011-06-01

    Full Text Available Abstract Background Aimed to facilitate candidate biomarkers selection and improve network-based multi-target therapy, we perform comparative proteomics research on muscle-invasive bladder transitional cell carcinoma. Laser capture microdissection was used to harvest purified muscle-invasive bladder cancer cells and normal urothelial cells from 4 paired samples. Two-dimensional liquid chromatography tandem mass spectrometry was used to identify the proteome expression profile. The differential proteins were further analyzed using bioinformatics tools and compared with the published literature. Results A total of 885/890 proteins commonly appeared in 4 paired samples. 295/337 of the 488/493 proteins that specific expressed in tumor/normal cells own gene ontology (GO cellular component annotation. Compared with the entire list of the international protein index (IPI, there are 42/45 GO terms exhibited as enriched and 9/5 exhibited as depleted, respectively. Several pathways exhibit significantly changes between cancer and normal cells, mainly including spliceosome, endocytosis, oxidative phosphorylation, etc. Finally, descriptive statistics show that the PI Distribution of candidate biomarkers have certain regularity. Conclusions The present study identified the proteome expression profile of muscle-invasive bladder cancer cells and normal urothelial cells, providing information for subcellular pattern research of cancer and offer candidate proteins for biomarker panel and network-based multi-target therapy.

  2. [Smooth muscle hamartoma: anatomoclinical characteristics and nosological limits].

    Science.gov (United States)

    de la Espriella, J; Grossin, M; Marinho, E; Belaïch, S

    1993-01-01

    Smooth muscle hamartoma is an uncommon cutaneous dysembryoplasia usually diagnosed in infancy. Among the 61 cases published since 1923, 56 were congenital and 3 appeared in young adults. We report a case in which the lesions started at the age of 15 years as a papular plaque in the right mammary region of a young woman. A review of the literature showed that the usual clinical presentation is a frequently pigmented plaque made of often follicular papules and measuring 1 to 10 centimeters on average. Excessive hairiness is the most frequent sign, being observed in more than two-thirds of the cases, and Darier's pseudo-sign is present in about 53 p. 100 of the patients. The disease is electively located on the lumbar region, the back and the root of the limbs. In 3 cases the lesions were generalized and the patients looked like fatty "Michelin-Tire Babies". The course of the disease is always favourable, and associated pathologies remain exceptional: urticaria pigmentosa and psychomotor retardation have been reported in two cases of the generalized form. Histology is characterized by the presence of numerous smooth muscle fibres disseminated in the dermis and diversely oriented, sometimes in contact with hair follicles which retain their normal morphology. The differential clinical diagnosis is with naevocytic naevus, café-au-lait spots, mastocytosis and connective tissue hamartoma. Belatedly revealed forms of the disease must be distinguished from Becker's hamartoma, but it must be known that in certain cases the classification is so difficult that some authors have suggested that smooth muscle hamartoma and Becker's hamartoma are only two poles of a single spectrum of dysembryoplastic lesions involving to varying degrees the epidermic and hair structures. Finally, the distinction between the localized forms of late onset smooth muscle hamartoma and multiple leiomyomas "en plaques" remains difficult both anatomico-clinically and nosologically.

  3. Aortic smooth muscle cell proteoglycan synthesis in relation to atherosclerosis

    International Nuclear Information System (INIS)

    Edwards, I.J.

    1989-01-01

    Proteoglycans (PG) are implicated in atherogenesis by their effects on tissue permeability and cell proliferation and their interaction with plasma low density lipoproteins. Using the pigeon model in which an atherosclerosis-susceptible (WC) and -resistant (SR) breed can be compared, PG synthesis by cultured aortic smooth muscle cells was examined by the use of [ 35 S]-sodium sulfate and [ 3 H]-serine or [ 3 H]-glucosamine as labeling precursors. In both SR and WC cells, the majority of newly synthesized PG were secreted into the media. Chondroitin sulfate (CS) PG and dermatan sulfate (DS) PG were the major PG produced. Total PG production was consistently lower in WC compared to SR cultures due in part to reduce PG synthesis but also to degradation of newly synthesized PG. Since increased DS-PG accompanines atherosclerosis progression, experiments were designed to test the hypothesis that macrophages modulate smooth muscle cell metabolism to cause increase DS-PG production. Cultured WC aortic smooth muscle cells were exposed to the media of cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1 and the production of PG examined. Increasing concentration of conditioned media from both types of macrophages caused increased incorporation of 35 S-sulfate into secreted PG, but no change in cell-associated PG. Lipopolysaccharide activation of P388D1 cells enhanced the effect

  4. Experimental model of human corpus cavernosum smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Rommel P. Regadas

    2010-08-01

    Full Text Available PURPOSE: To describe a technique for en bloc harvesting of the corpus cavernosum, cavernous artery and urethra from transplant organ donors and contraction-relaxation experiments with corpus cavernosum smooth muscle. MATERIALS AND METHODS: The corpus cavernosum was dissected to the point of attachment with the crus penis. A 3 cm segment (corpus cavernosum and urethra was isolated and placed in ice-cold sterile transportation buffer. Under magnification, the cavernous artery was dissected. Thus, 2 cm fragments of cavernous artery and corpus cavernosum were obtained. Strips measuring 3 x 3 x 8 mm3 were then mounted vertically in an isolated organ bath device. Contractions were measured isometrically with a Narco-Biosystems force displacement transducer (model F-60, Narco-Biosystems, Houston, TX, USA and recorded on a 4-channel Narco-Biosystems desk model polygraph. RESULTS: Phenylephrine (1µM was used to induce tonic contractions in the corpus cavernosum (3 - 5 g tension and cavernous artery (0.5 - 1g tension until reaching a plateau. After precontraction, smooth muscle relaxants were used to produce relaxation-response curves (10-12M to 10-4 M. Sodium nitroprusside was used as a relaxation control. CONCLUSION: The harvesting technique and the smooth muscle contraction-relaxation model described in this study were shown to be useful instruments in the search for new drugs for the treatment of human erectile dysfunction.

  5. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    OpenAIRE

    Park, Song-Young; Gifford, Jayson R.; Andtbacka, Robert H. I.; Trinity, Joel D.; Hyngstrom, John R.; Garten, Ryan S.; Diakos, Nikolaos A.; Ives, Stephen J.; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S.

    2014-01-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index...

  6. Site-dependent pathological differences in smooth muscles and skeletal muscles of the adult mdx mouse.

    Science.gov (United States)

    Boland, B; Himpens, B; Denef, J F; Gillis, J M

    1995-06-01

    This study presents a survey of the morphometric characteristics, the regeneration rate, and the extent of muscle dystrophy in several smooth and skeletal muscles from adult mdx mice, an animal model of the Duchenne muscular dystrophy (DMD). Smooth muscles from adult mdx mice showed neither cell necrosis nor fibrosis. As compared to control C57 mice, the thickness of the mdx smooth muscle was normal in the vascular and urogenital layers but significantly reduced in the digestive layers, a finding relevant to clinical reports of gastrointestinal dilatation in DMD patients, and suggesting that gastrointestinal dysfunctions should be systemically searched for in DMD patients. Adult mdx skeletal muscles, however, presented different patterns of muscle suffering: either absent (esophagus); very mild (trunk and limb muscles); or severe (diaphragm). In these three conditions we studied the fiber diameters, the nuclei locations, and the regeneration rate. From this comparative study, it seems that severe dystrophy occurs in muscle tissues showing large fiber diameter and peripheral location of the nuclei. We showed that this combination occurs in the mouse diaphragm which is thus a realistic model for human DMD muscles.

  7. Intravesical chemotherapy in non-muscle-invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Sima P Porten

    2015-01-01

    Full Text Available Non-muscle-invasive bladder cancer (NMIBC is characterized by a tendency for recurrence and capacity for progression. Intravesical instillation therapy has been employed in various clinical settings, which are summarized within this review. Several chemotherapeutic agents have shown clinical efficacy in reducing recurrence rates in the post-transurethral resection of bladder tumor (TURBT setting, including mitomycin C (MMC, doxorubicin, and epirubicin. Mounting evidence also supports the use of intravesical MMC following nephroureterectomy to reduce later urothelial bladder recurrence. In the adjuvant setting, bacillus Calmette-Guérin (BCG immunotherapy is an established first-line agent in the management of carcinoma in situ (CIS and high-grade non muscle invasive urothelial carcinoma (UC. Among high and intermediate-risk patients (based on tumor grade, size, and focality improvements in disease-free intervals have been seen with adjunctive administration of MMC prior to scheduled BCG dosing. Following failure of first-line intravesical therapy, gemcitabine and valrubicin have demonstrated modest activity, though valrubicin remains the only agent currently Food and Drug Administration (FDA-approved for the treatment of BCG-refractory CIS. Techniques to optimize intravesical chemotherapy delivery have also been explored including pharmacokinetic methods such as urinary alkalization and voluntary dehydration. Chemohyperthermia and electromotive instillation have been associated with improved freedom from recurrence intervals but may be associated with increased urinary toxicity. Improvements in therapeutic selection may be heralded by novel opportunities for genomic profiling and refinements in clinical risk stratification.

  8. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD.

  9. Health-related quality of life after bladder preservation therapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Hashine, Katsuyoshi; Miura, Noriyoshi; Numata, Kousaku; Shirato, Akitomi; Sumiyoshi, Yoshiteru; Kataoka, Masaaki

    2008-01-01

    The objective of this study was to assess health-related quality of life (QOL) of bladder cancer patients following bladder preservation therapy (BPT). Eighty patients with muscle-invasive bladder cancer had been treated between January 1992 and July 2005 at our institutions with BPT consisting of transurethral resection, intra-arterial chemotherapy and radiotherapy. Among them, 48 were alive and free from recurrence at the time of survey and were asked to participate. A total of 168 patients who had been treated for superficial bladder cancer in the same period were used as a control group. Three questionnaires, namely the International Prostate Symptom Score (IPSS), the SF-36, and the Expanded Prostate Cancer Index Composite (EPIC) were used. Thirty-three patients in the BPT group (68.8%) and 128 patients in the control group (76.2%) answered the QOL survey. There was no significant difference in age, gender and other clinical factors among these two groups. No significant difference was found between the groups according to IPSS. The QOL score of BPT was lower than that of the control group in the SF-36, but there was no significant difference without body pain (P=0.047). There was a tendency toward a diminished physical functioning (P=0.053) and role-physical (P=0.064) in BPT. The EPIC scores for urinary function, especially storage and voiding symptoms, and bowel function were significantly lower in the BPT group. At multivariable analysis, body pain and bowel function were associated with the type of treatment. Although some of the QOL outcome parameters after BPT were found to be lower than the control group, these differences were not significant. Overall, patients retaining their bladder had an acceptable health related QOL. (author)

  10. Enhancement of S1P-induced contractile response in detrusor smooth muscle of rats having cystitis.

    Science.gov (United States)

    Anjum, Irfan; Denizalti, Merve; Kandilci, Hilmi Burak; Durlu-Kandilci, Nezahat Tugba; Sahin-Erdemli, Inci

    2017-11-05

    Interstitial cystitis is a chronic disease characterized by lower abdominal pain and some nonspecific symptoms including an increase in urinary frequency and urgency. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that controls smooth muscle tone via G-protein coupled receptors (S1P 1-3 receptors). S1P production is known to take place both in physiological states and some pathological situations, such as in overactive bladder syndrome. The intracellular mechanism of S1P-induced contractile response was investigated in β-escin permeabilized detrusor smooth muscle of rats having cyclophosphamide-induced cystitis. The bladder was isolated from rats and detrusor smooth muscle strips were permeabilized with β-escin. S1P (50µM)-induced contraction and calcium sensitization response were significantly increased in cystitis. S1P-induced augmented contractile response was inhibited by S1P 2 receptor antagonist JTE-013 and S1P 3 receptor antagonist suramin. S1P 2 receptor protein expressions were increased in cystitis, where no change was observed in S1P 3 expressions between control and cystitis groups. S1P-induced contraction was reduced by Rho kinase (ROCK) inhibitor Y-27632 and protein kinase C (PKC) inhibitor GF-109203X in both control and cystitis group. S1P-induced increased calcium sensitization response was decreased by ROCK inhibitor and PKC inhibitor in cystitis. Our findings provide the first evidence that interstitial cystitis triggers S1P-induced increase in intracellular calcium in permeabilized detrusor smooth muscle of female rats. Both S1P 2 and S1P 3 receptors are involved in S1P mediated enhanced contractile response. The augmentation in S1P-induced contraction in interstitial cystitis involves both PKC and ROCK pathways of calcium sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The inhibitory actions of prostaglandins on respiratory smooth muscle

    Science.gov (United States)

    Main, I. H. M.

    1964-01-01

    Prostaglandin E1, in concentrations as low as 1 ng/ml., relaxed isolated tracheal muscle from cat, monkey, rabbit, guinea-pig and ferret. Tracheal muscle from the cat, monkey and rabbit did not exhibit inherent tone and the effect of prostaglandin E1 on these preparations was seen only after a sustained contraction had been produced by a previous dose of acetylcholine or of another agonist. Prostaglandins E2, E3 and F1α also relaxed isolated cat tracheal muscle which had been stimulated by acetylcholine: their activities relative to that of prostaglandin E1 were, respectively, 1.0, 0.2 and 0.002. In the anaesthetized cat prostaglandin E1 increased lung “resistance to inflation” (presumably comparable to bronchial resistance) and the heart rate. In the anaesthetized rabbit and guinea-pig, prostaglandin E1 antagonized the rise in resistance to inflation of the lungs obtained after vagal stimulation or after the intravenous injection of histamine; it sometimes lowered the resistance to inflation in these species. The possibility that prostaglandin may have a local physiological role in the control of bronchial smooth muscle tone is discussed. ImagesFig. 5Fig. 7 PMID:14211681

  12. Biophysical induction of vascular smooth muscle cell podosomes.

    Directory of Open Access Journals (Sweden)

    Na Young Kim

    Full Text Available Vascular smooth muscle cell (VSMC migration and matrix degradation occurs with intimal hyperplasia associated with atherosclerosis, vascular injury, and restenosis. One proposed mechanism by which VSMCs degrade matrix is through the use of podosomes, transient actin-based structures that are thought to play a role in extracellular matrix degradation by creating localized sites of matrix metalloproteinase (MMP secretion. To date, podosomes in VSMCs have largely been studied by stimulating cells with phorbol esters, such as phorbol 12,13-dibutyrate (PDBu, however little is known about the physiological cues that drive podosome formation. We present the first evidence that physiological, physical stimuli mimicking cues present within the microenvironment of diseased arteries can induce podosome formation in VSMCs. Both microtopographical cues and imposed pressure mimicking stage II hypertension induce podosome formation in A7R5 rat aortic smooth muscle cells. Moreover, wounding using a scratch assay induces podosomes at the leading edge of VSMCs. Notably the effect of each of these biophysical stimuli on podosome stimulation can be inhibited using a Src inhibitor. Together, these data indicate that physical cues can induce podosome formation in VSMCs.

  13. Effects of palytoxin on isolated intestinal and vascular smooth muscles.

    Science.gov (United States)

    Ito, K; Karaki, H; Ishida, Y; Urakawa, N; Deguchi, T

    1976-12-01

    Palytoxin (PTX), the most potent marine toxin isolated from the Zoanthid, Palythoa tuberculosa, was studied to determine the effect on isolated smooth muscles. In guinea pig taenia coli PTX at above 3 X 10(-10) g/ml caused a contraction which slowly subsided under isotonic recording. Under isometric recording PTX at above 1 X 10(-10) g/ml caused a contraction which depended on the spontaneous activity. The PTX-induced contraction was not affected by atropine, tripelenmamine or tetrodotoxin but was inhibited by 5 mM Mg, norephinrphrine, isoprenaline or papaverine. PTX at above 1 X 10(-9) g/ml induced an increase in spike frequency and a slight depolarization accompanied with a contraction when measured using a sucrose gap method. In some cases the spike generation was almost abolished after a long exposure to higher dose of PTX and the developed tension gradually decreased. Under isometric recording PTX caused a sustained contraction in rabbit aorta, dog mesenteric and coronary arteries at above 1 X 10(-10) and 1 X 10(-11) g/ml, respectively, in a dose-dependent manner. The coronary artery was most sensitive among the preparation used. PTX-induced contraction in aorta was irreversible, was not influenced by phentolamine but diminished with 5 mM Mg and disappeared in a D-600 or Ca-free medium. PTX is thus an extremely potent and direct stimulant which acts on smooth muscles.

  14. Prognosis of muscle-invasive bladder cancer: difference between primary and progressive tumours and implications for therapy.

    NARCIS (Netherlands)

    Schrier, B.P.; Hollander, M.P.; Rhijn, B.W. van; Kiemeney, L.A.L.M.; Witjes, J.A.

    2004-01-01

    OBJECTIVE: To evaluate the difference in prognosis between progressive and primary muscle-invasive bladder cancer. MATERIALS AND METHODS: From 1986 to 2000, 74 patients with progressive muscle-invasive bladder cancer were identified. Eighty-nine patients with primary muscle-invasive bladder cancer

  15. Phosphate and ADP Differently Inhibit Coordinated Smooth Muscle Myosin Groups

    Science.gov (United States)

    Hilbert, Lennart; Balassy, Zsombor; Zitouni, Nedjma B.; Mackey, Michael C.; Lauzon, Anne-Marie

    2015-01-01

    Actin filaments propelled in vitro by groups of skeletal muscle myosin motors exhibit distinct phases of active sliding or arrest, whose occurrence depends on actin length (L) within a range of up to 1.0 μm. Smooth muscle myosin filaments are exponentially distributed with ≈150 nm average length in vivo—suggesting relevance of the L-dependence of myosin group kinetics. Here, we found L-dependent actin arrest and sliding in in vitro motility assays of smooth muscle myosin. We perturbed individual myosin kinetics with varying, physiological concentrations of phosphate (Pi, release associated with main power stroke) and adenosine diphosphate (ADP, release associated with minor mechanical step). Adenosine triphosphate was kept constant at physiological concentration. Increasing [Pi] lowered the fraction of time for which actin was actively sliding, reflected in reduced average sliding velocity (ν) and motile fraction (fmot, fraction of time that filaments are moving); increasing [ADP] increased the fraction of time actively sliding and reduced the velocity while sliding, reflected in reduced ν and increased fmot. We introduced specific Pi and ADP effects on individual myosin kinetics into our recently developed mathematical model of actin propulsion by myosin groups. Simulations matched our experimental observations and described the inhibition of myosin group kinetics. At low [Pi] and [ADP], actin arrest and sliding were reflected by two distinct chemical states of the myosin group. Upon [Pi] increase, the probability of the active state decreased; upon [ADP] increase, the probability of the active state increased, but the active state became increasingly similar to the arrested state. PMID:25650929

  16. Synthetic smooth muscle in the outer blood plexus of the rhinarium skin of Lemur catta L.

    Science.gov (United States)

    Elofsson, Rolf; Kröger, Ronald H H

    2017-01-01

    The skin of the lemur nose tip (rhinarium) has arterioles in the outer vascular plexus that are endowed with an unusual coat of smooth muscle cells. Comparison with the arterioles of the same area in a number of unrelated mammalians shows that the lemur pattern is unique. The vascular smooth muscle cells belong to the synthetic type. The function of synthetic smooth muscles around the terminal vessels in the lemur rhinarium is unclear but may have additional functions beyond regulation of vessel diameter.

  17. Regulation of human penile smooth muscle tone byprostanoid receptors

    Science.gov (United States)

    Angulo, Javier; Cuevas, Pedro; La Fuente, Jose M; Pomerol, Jose M; Ruiz-Castañé, Eduardo; Puigvert, Ana; Gabancho, Sonia; Fernández, Argentina; Ney, Peter; Sáenz de Tejada, Iñigo

    2002-01-01

    We have characterized the prostanoid receptors involved in the regulation of human penile arterial and trabecular smooth muscle tone.Arachidonic acid induced relaxation of human corpus cavernosum strips (HCCS) that was blocked by the cyclo-oxygenase inhibitor, indomethacin, and augmented by the thromboxane receptor (TP) antagonist, SQ29548, suggesting that endogenous production of prostanoids regulates penile smooth muscle tone.TP-receptors mediate contraction of HCCS and penile resistance arteries (HPRA), since the agonist of these receptors, U46619, potently contracted HCCS (EC50 8.3±2.8 nM) and HPRA (EC50 6.2±2.2 nM), and the contractions produced by prostaglandin F2α at high concentrations (EC50 6460±3220 nM in HCCS and 8900±6700 nM in HPRA) were inhibited by the selective TP-receptor antagonist, SQ29548 (0.02 μM).EP-receptors are responsible for prostanoid-induced relaxant effects in HCCS because only prostaglandin E1 (PGE1), prostaglandin E2 and the EP2/EP4-receptor agonist, butaprost, produced consistent relaxation of this tissue (EC50 93.8±31.5, 16.3±3.8 and 1820±1284 nM, respectively). In HPRA, both prostacyclin and PGE1 (EC50 60.1±18.4 and 109.0±30.9 nM, respectively) as well as the selective IP receptor agonist, cicaprost, and butaprost (EC50 25.2±15.2 and 7050±6020 nM, respectively) caused relaxation, suggesting co-existence of IP- and EP-receptors (EP2 and/or EP4).In summary, endogenous production of prostanoids may regulate penile smooth muscle contractility by way of specific receptors. TP-receptors mediate contraction in HCCS and HPRA, while the relaxant effects of prostanoids are mediated by EP2- and/or EP4-receptors in HCCS and by EP- and IP-receptors in HPRA. PMID:11976264

  18. A new tool for distinguishing muscle invasive and non-muscle invasive bladder cancer: the initial application of flexible ultrasound bronchoscope in bladder tumor staging.

    Directory of Open Access Journals (Sweden)

    Chuanliang Xu

    Full Text Available OBJECTIVES: To validate the flexible ultrasound bronchoscope (FUB as a tool in distinguishing muscle invasive and non-muscle invasive bladder tumors. MATERIALS AND METHODS: From June 2010 to April 2012, 62 patients (11 female and 51 male with 92 bladder urothelial carcinoma were treated in our study. The mean (±SD patient age was 64.0±12.5 years old (ranged from 22 to 87. Clinical T stage was assessed by FUB at first in operating room, then immediately initial diagnostic transurethral resection (TUR was performed. A second TUR would be done 2-4 weeks after initial TUR when the latter was incomplete (in large and multiple tumours, no muscle in the specimen or when an exophytic high-grade and/or T1 tumour was detected. And radical cystectomy would be performed for the patients who were diagnosed with muscle-invasive tumors. FUB staging and initial TUR staging, final pathological results were compared. RESULTS: In ultrasonic images, the normal muscle layer of bladder wall could be clearly distinguished into three layers, which were hyperechogenic mucosa, hypoechogenic muscle and hyperechogenic serosal. For non-muscle invasive tumors, the muscle layers were continuous. And distorted or discontinuous muscle layers could be seen in muscle-invasive case. The overall accuracy (95.7% and the specificity of muscle invasion detection of FUB (98.8% were comparable to TUR (overall accuracy 90.2% and specificity 100%, but sensitivity of muscle invasion detection of FUB was significantly higher than initial TUR (72.7%VS18.2%. Moreover, the tumor's diameter could not affect the FUB's accuracy of muscle invasion detection. For tumors near the bladder neck, FUB also showed the similar validity as those far from bladder neck. CONCLUSIONS: To conclude, the flexible ultrasound bronchoscope is an effective tool for muscle invasion detection of bladder tumor with ideal ultrasonic images. It is an alternative option for bladder tumor staging besides TUR. It might

  19. Membrane Currents in Airway Smooth Muscle: Mechanisms and Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Luke J Janssen

    1997-01-01

    Full Text Available Electrophysiological and pharmacological techniques were used to characterize the membrane conductance changes underlying spasmogen-evoked depolarization in airway smooth muscle (ASM. Changes included a transient activation of chloride ion channels and prolonged suppression of potassium ion channels; both changes are triggered by release of internally sequestered calcium ion and in turn cause opening of voltage-dependent calcium channels. The resultant influx of calcium ions contributes to contraction as well as to refilling of the internal calcium ion pool. Bronchodilators, on the other hand, act in part through activation of potassium channels, with consequent closure of calcium channels. The tools used to study ion channels in ASM are described, and the investigations of the roles of ion channels in ASM physiology (autacoid-evoked depolarization and hyperpolarization and pathophysiology (airway hyperresponsiveness are summarized. Finally, how the relationship between ion channels and ASM function/dysfunction may relate to the treatment of asthma and related breathing disorders is discussed.

  20. Simulated Hypergravity Alters Vascular Smooth Muscle Cell Proliferation and Motility

    Science.gov (United States)

    Hunt, Shameka; Bettis, Barika; Harris-Hooker, Sandra; Sanford, Gary L.

    1997-01-01

    The cellular effects of gravity are poorly understood due to its constancy and nonavailability of altered gravitational models. Such an understanding is crucial for prolonged space flights. In these studies, we assessed the influence of centrifugation at 6G (HGrav) on vascular smooth muscle (SMC) mobility and proliferation. Cells were: (a) plated at low density and subjected to HGrav for 24-72 hr for proliferation studies, or (b) grown to confluency, subjected to HGrav, mechanically denuded and monitored for cell movement into the denuded area. Controls were maintained under normogravity. SMC showed a 50% inhibition of growth under HGrav and 10% serum; HGrav and low serum resulted in greater growth inhibition. The rate of movement of SMC into the denuded area was 2-3-fold higher under HGrav in low serum compared to controls, but similar in 10% serum. These studies show that HGrav has significant effects on SMC growth and mobility, which are dependent on serum levels.

  1. Vascular smooth muscle function: defining the diabetic vascular phenotype.

    Science.gov (United States)

    Bruno, Rosa Maria; Ghiadoni, Lorenzo

    2013-10-01

    In this issue of Diabetologia, a meta-analysis performed by Montero and co-authors (Diabetologia doi 10.1007/s00125-013-2974-1 ) demonstrates a significant impairment of vascular smooth muscle (VSM) function in type 2 diabetic patients. Endothelial function and VSM function between type 2 diabetic and healthy individuals were associated, especially in the microcirculation, confirming the hypothesis that unresponsiveness of VSM cells to NO may amplify the consequences of reduced NO availability. This study suggests a novel interpretation for endothelial dysfunction in diabetic patients, indicating VSM cells as key players. Causative mechanisms of VSM dysfunction, which seems to be a feature of the vascular phenotype of type 2 diabetes mellitus, are largely unexplored in humans. Future studies should also address the crucial issue of the prognostic significance of VSM dysfunction in diabetic patients, and possibly in other conditions characterised by high cardiovascular risk.

  2. Human eosinophil–airway smooth muscle cell interactions

    Directory of Open Access Journals (Sweden)

    J. Margaret Hughes

    2000-01-01

    Full Text Available Eosinophils are present throughout the airway wall of asthmatics. The nature of the interaction between human airway smooth muscle cells (ASMC and eosinophils was investigated in this study. We demonstrated, using light microscopy, that freshly isolated eosinophils from healthy donors rapidly attach to ASMC in vitro. Numbers of attached eosinophils were highest at 2 h, falling to 50% of maximum by 20 h. Eosinophil attachment at 2 h was reduced to 72% of control by anti-VCAM-1, and to 74% at 20 h by anti-ICAM-1. Pre-treatment of ASMC for 24 h with TNF-α, 10 nM, significantly increased eosinophil adhesion to 149 and 157% of control after 2 and 20 h. These results provide evidence that eosinophil interactions with ASMC involve VCAM-1 and ICAM-1 and are modulated by TNF-α.

  3. Dynamics of Traction Force Reinforcement in Smooth Muscle Cells

    Science.gov (United States)

    Lin, Yi-Chia; Kramer, Corinne; Chen, Christopher; Reich, Daniel

    2010-03-01

    Mechanical forces influence cell function in various ways. For instance, the force-induced contraction or relaxation of vascular smooth muscle cells (SMCs) is critical to regulating the properties of blood vessels. Here, we study the dynamics of cellular traction forces in SMCs using micro-scale magnetic nanowires together with flexible PDMS micropost arrays. We use dual magnetic tweezers to apply a sinusoidal magnetic torque on nickel nanowires which are internalized by the SMCs. The spatial and temporal responses of the SMCs cultured on the tips of the microposts are recorded by the deflected posts. We observe a global reinforcement of the cells' traction forces upon applying a localized torque via the nanowires. Interestingly, we also find that the contractile response depends on the frequency of the applied stimulation, with a greater percentage of the SMCs showing enhanced reinforcement at lower frequencies.

  4. Aging impairs Ca2+ sensitization pathways in gallbladder smooth muscle.

    Science.gov (United States)

    Macias, Beatriz; Gomez-Pinilla, Pedro J; Camello-Almaraz, Cristina; Pascua, Patricia; Tresguerres, Jesus Af; Camello, Pedro J; Pozo, Maria J

    2012-08-01

    Calcium sensitization is an important physiological process in agonist-induced contraction of smooth muscle. In brief, calcium sensitization is a pathway that leads to smooth muscle contraction independently of changes in [Ca(2+)](i) by mean of inhibition of myosin light chain phosphatase. Aging has negative impacts on gallbladder contractile response due to partial impairment in calcium signaling and alterations in the contractile machinery. However, information regarding aging-induced alterations in calcium sensitization is scanty. We hypothesized that the calcium sensitization system is negatively affected by age. To investigate this, gallbladders were collected from adult (4 months old) and aged (22-24 months old) guinea pigs. To evaluate the contribution of calcium sensitization pathways we assayed the effect of the specific inhibitors Y-27632 and GF109203X on the "in vitro" isometric gallbladder contractions induced by agonist challenges. In addition, expression and phosphorylation (as activation index) of proteins participating in the calcium sensitization pathways were quantified by Western blotting. Aging reduced bethanechol- and cholecystokinin-evoked contractions, an effect associated with a reduction in MLC20 phosphorylation and in the effects of both Y-27632 and GF109203X. In addition, there was a drop in ROCK I, ROCK II, MYPT-1 and PKC expression and in the activation/phosphorylation of MYPT-1, PKC and CPI-17 in response to agonists. Interestingly, melatonin treatment for 4 weeks restored gallbladder contractile responses due to re-establishment of calcium sensitization pathways. These results demonstrate that age-related gallbladder hypocontractility is associated to alterations of calcium sensitization pathways and that melatonin treatment exerts beneficial effects in the recovery of gallbladder contractility.

  5. Hypoxic contraction of cultured pulmonary vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Murray, T.R.; Chen, L.; Marshall, B.E.; Macarak, E.J.

    1990-01-01

    The cellular events involved in generating the hypoxic pulmonary vasoconstriction response are not clearly understood, in part because of the multitude of factors that alter pulmonary vascular tone. The goal of the present studies was to determine if a cell culture preparation containing vascular smooth muscle (VSM) cells could be made to contract when exposed to a hypoxic atmosphere. Cultures containing only fetal bovine pulmonary artery VSM cells were assessed for contractile responses to hypoxic stimuli by two methods. In the first, tension forces generated by cells grown on a flexible growth surface (polymerized polydimethyl siloxane) were manifested as wrinkles and distortions of the surface under the cells. Wrinkling of the surface was noted to progressively increase with time as the culture medium bathing the cells was made hypoxic (PO2 approximately 25 mmHg). The changes were sometimes reversible upon return to normoxic conditions and appeared to be enhanced in cells already exhibiting evidence of some baseline tone. Repeated passage in culture did not diminish the hypoxic response. Evidence for contractile responses to hypoxia was also obtained from measurements of myosin light chain (MLC) phosphorylation. Conversion of MLC to the phosphorylated species is an early step in the activation of smooth muscle contraction. Lowering the PO2 in the culture medium to 59 mmHg caused a 45% increase in the proportion of MLC in the phosphorylated form as determined by two-dimensional gel electrophoresis. Similarly, cultures preincubated for 4 h with 32P and then exposed to normoxia or hypoxia for a 5-min experimental period showed more than twice as much of the label in MLCs of the hypoxic cells

  6. Resveratrol inhibits vascular smooth muscle cell proliferation and induces apoptosis.

    Science.gov (United States)

    Poussier, Bertrand; Cordova, Alfredo C; Becquemin, Jean-Pierre; Sumpio, Bauer E

    2005-12-01

    In France, despite a high intake of dietary cholesterol and saturated fat, the cardiovascular death rate is one of the lowest among developed countries. This "French paradox" has been postulated to be related to the high red wine intake in France. The aim of this study was to determine the effects of resveratrol, a major polyphenol component of red wine, on vascular smooth muscle cell (SMC) proliferation in vitro. SMCs were exposed to 10(-6) to 10(-4) M resveratrol and cell proliferation was assessed by cell counting. Cell cycle analysis was done by treating cells with propidium iodide followed by flow-activated cell sorting. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining. We demonstrate that resveratrol inhibited bovine aortic SMC proliferation in a dose-dependent manner. The lowest concentration of resveratrol resulting in a significant decrease in SMC proliferation compared with control was 10(-5) M. By flow cytometry, we observed a block in the G1-S phase of the SMC cycle. Resveratrol treatment also resulted in a dose-dependent apoptosis of SMCs but had no effects on SMC morphology. The results indicated that vascular SMC proliferation could be inhibited by resveratrol through a block on G1-S phase and by an increase in apoptosis. It supports the conjecture that red wine consumption may have a beneficial effect on cardiovascular mortality. Our results suggest that resveratrol inhibits, in a dose-dependent manner, smooth muscle cell proliferation, which may help to partially explain a beneficial effect of wine drinking. This inhibition is related to an early block in the cell cycle and also to a dose-dependent apoptotic effect. The present study demonstrates that resveratrol not only is an indirect marker of a healthy life style and alimentation but may also be directly responsible for the French paradox.

  7. The structure of Mytilus smooth muscle and the electrical constants of the resting muscle.

    Science.gov (United States)

    Twarog, B M; Dewey, M M; Hidaka, T

    1973-02-01

    The individual muscle fibers of the anterior byssus retractor muscle (ABRM) of Mytilus edulis L. are uninucleate, 1.2-1.8 mm in length, 5 microm in diameter, and organized into bundles 100-200 microm in diameter, surrounded by connective tissue. Some bundles run the length of the whole muscle. Adjacent muscle cell membranes are interconnected by nexuses at frequent intervals. Specialized attachments exist between muscle fibers and connective tissue. Electrical constants of the resting muscle membrane were measured with intracellular recording electrodes and both extracellular and intracellular current-passing electrodes. With an intracellular current-passing electrode, the time constant tau, was 4.3 +/- 1.5 ms. With current delivered via an extracellular electrode tau was 68.3 +/- 15 ms. The space constant, lambda, was 1.8 mm +/- 0.4. The membrane input resistance, R(eff), ranged from 23 to 51 MOmega. The observations that values of tau depend on the method of passing current, and that the value of lambda is large relative to fiber length and diameter are considered evidence that the individual muscle fibers are electrically interconnected within bundles in a three-dimensional network. Estimations are made of the membrane resistance, R(m), to compare the values to fast and slow striated muscle fibers and mammalian smooth muscles. The implications of this study in reinterpreting previous mechanical and electrical studies are discussed.

  8. Circular smooth muscle contributes to esophageal shortening during peristalsis.

    Science.gov (United States)

    Vegesna, Anil K; Chuang, Keng-Yu; Besetty, Ramashesai; Phillips, Steven J; Braverman, Alan S; Barbe, Mary F; Ruggieri, Michael R; Miller, Larry S

    2012-08-28

    To study the angle between the circular smooth muscle (CSM) and longitudinal smooth muscle (LSM) fibers in the distal esophagus. In order to identify possible mechanisms for greater shortening in the distal compared to proximal esophagus during peristalsis, the angles between the LSM and CSM layers were measured in 9 cadavers. The outer longitudinal layer of the muscularis propria was exposed after stripping the outer serosa. The inner circular layer of the muscularis propria was then revealed after dissection of the esophageal mucosa and the underlying muscularis mucosa. Photographs of each specimen were taken with half of the open esophagus folded back showing both the outer longitudinal and inner circular muscle layers. Angles were measured every one cm for 10 cm proximal to the squamocolumnar junction (SCJ) by two independent investigators. Two human esophagi were obtained from organ transplant donors and the angles between the circular and longitudinal smooth muscle layers were measured using micro-computed tomography (micro CT) and Image J software. All data are presented as mean ± SE. The CSM to LSM angle at the SCJ and 1 cm proximal to SCJ on the autopsy specimens was 69.3 ± 4.62 degrees vs 74.9 ± 3.09 degrees, P = 0.32. The CSM to LSM angle at SCJ were statistically significantly lower than at 2, 3, 4 and 5 cm proximal to the SCJ, 69.3 ± 4.62 degrees vs 82.58 ± 1.34 degrees, 84.04 ± 1.64 degrees, 84.87 ± 1.04 degrees and 83.72 ± 1.42 degrees, P = 0.013, P = 0.008, P = 0.004, P = 0.009 respectively. The CSM to LSM angle at SCJ was also statistically significantly lower than the angles at 6, 7 and 8 cm proximal to the SCJ, 69.3 ± 4.62 degrees vs 80.18 ± 2.09 degrees, 81.81 ± 1.75 degrees and 80.96 ± 2.04 degrees, P = 0.05, P = 0.02, P = 0.03 respectively. The CSM to LSM angle at 1 cm proximal to SCJ was statistically significantly lower than at 3, 4 and 5 cm proximal to the SCJ, 74.94 ± 3.09 degrees vs 84.04 ± 1.64 degrees, 84.87 ± 1

  9. Bladder preservation by concurrent chemoradiation for muscle-invasive bladder cancer: Applicability in low-income countries

    International Nuclear Information System (INIS)

    Khader, J.; Salem, A.; Farah, N.

    2011-01-01

    Background: Radical cystectomy is the standard treatment for patients with muscle-invasive urinary bladder cancer; however, is associated with major treatment - related morbidity. Furthermore, a significant proportion of patients are deemed unsuitable for surgery due to inoperability, advanced age, and/or comorbid conditions. As such, several groups have explored effectiveness of less radical therapeutic strategies that aim at bladder preservation. Nonetheless, there is scarcity of reports assessing the applicability of urinary bladder-sparing outside developed countries. Aim: Determine the achievable outcomes for patients with muscle-invasive urinary bladder cancer treated via bladder-sparing techniques in a low income country. Materials and methods: Fourteen consecutive patients with a diagnosis of muscle-invasive urinary bladder cancer (clinical stage; T2-3N0M0) were treated via a bladder-sparing approach at King Hussein Cancer Center (Amman, Jordan) between 2005 and 2009. Records were electronically retrieved and retrospectively analyzed and included 11 males and 3 females from 41 to 74 years of age (median age, 61). Initial therapy consisted of trans-urethral resection of bladder tumor (TURBT) followed by induction chemotherapy then irradiation (4500 cGy) with concurrent platinum-based chemotherapy. Urological evaluation directed additional therapy in a proportion of patients with irradiation (up to 6400 cGy) in patients who achieved CR. Results: Eleven patients were evaluable for pathological response at time of re-staging; of whom 8 (73%) achieved CR and 3 (27%) achieved partial response (PR). In all but one patient; combined-modality treatment was well tolerated. After a median follow-up of 18.5 months (range, 3 - 48 months); 5 of 8 (62.5%) patients with CR were alive. (authors)

  10. Results of chemoradiotherapyfor muscle-invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Yu. V. Gumenetskaya

    2013-01-01

    Full Text Available This study presents the results of chemoradiotherapy (CRT in 108 patients with muscle-invasive bladder cancer in whom surgery was contraindicated. The efficacies and toxicities of three variants of CRT were evaluated. Group 1 (neoadjuvant chemotherapy: 2–3 cycles of cisplatin-containing combination chemotherapy followed by a continuous course of external beam radiation therapy (EBRT. Group 2: concurrent CRT – cisplatin i.v., 70–100 mg/m 2 during the first and last weeks of continuous-course EBRT. Group 3: sequential neoadjuvant chemotherapy, 2–3 cycles and concurrent CRT. The comparative analysis of long-term outcomes following CRT indicated an improvement in survival rates in group 3 in which the 5-and 10-year cancer-specific survival rates were 42,3 ± 8,8 % and 31,3 ± 9,4 %, respectively, compared with 28,6 ± 9,7 % and 28,6 ± 9,7 % in group 1, and 29,5 ± 8,5 % and 14,8 ± 7,4 % in group 2, respectively (р=0,093. Acute toxicity (GU Grade 1 or 2 arose more often from concurrent radiation and chemotherapy: in 40,0 % and 40,5 % of cases in groups 2 and 3, respectively, whereas in group 1 it occurred in 25,9 % of cases (р<0,2. Late radiation toxicity (GU Grade 2 occurred more often in the concurrent CRT groups: 11,4 % and 11,9 % versus 3,2 % in the neoadjuvant chemotherapy group; Grade 3 was noted in 5,7 % and 2,4 % of patients in groups 2 and 3, respectively. The results indicated that chemoradiotherapy including neoadjuvant and concomitant chemotherapy improved the outcomes in patients with muscle-invasive bladder cancer in whom surgery was contraindicated. There was an acceptable rate of clinically significant complications.

  11. Caveolae facilitate muscarinic receptor-mediated intracellular Ca2+ mobilization and contraction in airway smooth muscle

    NARCIS (Netherlands)

    Gosens, Reinoud; Stelmack, Gerald L.; Dueck, Gordon; Mutawe, Mark M.; Hinton, Martha; McNeill, Karol D.; Paulson, Angela; Dakshinamurti, Shyamala; Gerthoffer, William T.; Thliveris, James A.; Unruh, Helmut; Zaagsma, Johan; Halayko, Andrew J.

    2007-01-01

    Contractile responses of airway smooth muscle ( ASM) determine airway resistance in health and disease. Caveolae microdomains in the plasma membrane are marked by caveolin proteins and are abundant in contractile smooth muscle in association with nanospaces involved in Ca2+ homeostasis. Caveolin-1

  12. Changes in neuroreceptor funtion of tracheal smooth muscle following acute ozone exposure of guinea pigs.

    NARCIS (Netherlands)

    van Hoof, H.J.M.; Voss, H.P.; Kramer, K.; Boere, A.J.F.; Dormans, J.A.M.A.; van Bree, L.; Bast, A.

    1997-01-01

    We studied the effect of in vivo ozone inhalation (3 ppm, 2 h) on neuroreceptor function in guinea pig tracheal smooth muscle in vitro and the role of the epithelial layer in this process. Changes in smooth muscle tension after stimulation of the muscarinic- and β-adrenergic receptor were recorded

  13. Regulation of GPCR-mediated smooth muscle contraction : implications for asthma and pulmonary hypertension

    NARCIS (Netherlands)

    Wright, D B; Tripathi, S; Sikarwar, A; Santosh, K T; Perez-Zoghbi, J; Ojo, O O; Irechukwu, N; Ward, J P T; Schaafsma, D

    Contractile G-protein-coupled receptors (GPCRs) have emerged as key regulators of smooth muscle contraction, both under healthy and diseased conditions. This brief review will discuss some key topics and novel insights regarding GPCR-mediated airway and vascular smooth muscle contraction as

  14. Growth factor-induced contraction of human bronchial smooth muscle is Rho-kinase-dependent

    NARCIS (Netherlands)

    Gosens, Reinout; Schaafsma, D.; Grootte Bromhaar, M.M; Vrugt, B.; Zaagsma, Hans; Meurs, Herman; Nelemans, Herman

    2004-01-01

    Growth factors have been implicated in the pathophysiology of asthma. However, the putative effects of these growth factors on human airway smooth muscle tone are still largely unknown. We performed contraction experiments using human bronchial smooth muscle ring preparations. The growth factor

  15. Interferon alfa in the treatment paradigm for non-muscle-invasive bladder cancer

    NARCIS (Netherlands)

    Lamm, D.; Brausi, M.; O'Donnell, M.A.; Witjes, J.A.

    2014-01-01

    OBJECTIVES: In this article, we review the various options for and the potential role of interferon alfa (IFN-alpha) in the treatment of non-muscle-invasive bladder cancer (NMIBC). METHODS: PubMed was searched for journal articles on IFN-alpha use in treating bladder cancer. The references listed in

  16. Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer

    NARCIS (Netherlands)

    Witjes, J.A.; Lebret, T.; Comperat, E.M.; Cowan, N.C.; Santis, M. de; Bruins, H.M.; Hernandez, V.; Espinos, E.L.; Dunn, J.; Rouanne, M.; Neuzillet, Y.; Veskimae, E.; Heijden, A.G. van der; Gakis, G.; Ribal, M.J.

    2017-01-01

    CONTEXT: Invasive bladder cancer is a frequently occurring disease with a high mortality rate despite optimal treatment. The European Association of Urology (EAU) Muscle-invasive and Metastatic Bladder Cancer (MIBC) Guidelines are updated yearly and provides information to optimise diagnosis,

  17. The persistence of active smooth muscle in the female rat cervix through pregnancy.

    Science.gov (United States)

    Ferland, David J; Darios, Emma S; Watts, Stephanie W

    2015-02-01

    A controversy exists as to whether functional smooth muscle exists in the cervix before and during pregnancy, potentially continuous with the uterus. We hypothesized that cervical smooth muscle persists through pregnancy and is functional. Uteri and cervices were taken from female virgin, 11 day, and 20 day (near labor) pregnant rats. All experiments used the uterus as a positive control. Three different smooth muscle proteins (smooth muscle α-actin, SM-22α, and calponin-1) allowed immunohistochemical detection of the continuous nature of the smooth muscle from the vagina, cervix, and uterus. Tissues were also hung in isolated tissue baths for the measurement of isometric smooth muscle contraction. Uterine and cervical homogenates were also used in Western analyses to measure protein expression. Immunohistochemistry revealed there to be smooth muscle as validated by an expression of all 3 markers in the cervix. This smooth muscle was continuous with that of the vagina and uterus. Smooth muscle α-actin was detected in virgin tissue (291.3 ± 32.2 arbitrary densitometry units/β-actin), day 11 (416.8 ± 19.5), and day 20 pregnant tissue (293.0 ± 34.4). The virgin, day 11, and day 20 cervices contracted 2.18 ± 0.24 g, 1.46 ± 0.08 g, and 3.88 ± 0.49 g (respectively) to depolarizing KCl. Cervices contracted at day 20 to the cholinergic muscarinic agonist carbamylcholine (maximum, 133% ± 18.2% KCl contraction, n = 4). These findings strongly support that smooth muscle is present in the cervix through pregnancy and continuous with the uterus. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Smooth muscle biomechanics and plasticity: relevance for vascular calibre and remodelling.

    Science.gov (United States)

    Tuna, Bilge Guvenc; Bakker, Erik N T P; VanBavel, Ed

    2012-01-01

    Blood vessel structure and calibre are not static. Rather, vessels remodel continuously in response to their biomechanical environment. Vascular calibre is dictated by the amount, composition and organization of the elastic extracellular matrix. In addition, the amount and organization of contractile smooth muscle cell (SMC) also need to be regulated. The SMCs are organized such that maximum contractile force generally occurs at diameters slightly below the diameter at full dilation and physiological pressure. Thus, in a remodelling vessel, not only the matrix but also the SMCs need to undergo structural adaptation. Surprisingly little is known on the adaptation of SMC contractile properties in the vasculature. The purpose of this review is to explore this SMC plasticity in the context of vascular remodelling. While not much work on this has been carried out on blood vessels, SMC plasticity is more extensively studied on other hollow structures such as airway and bladder. We therefore include studies on bladder and airway SMCs because of their possible relevance for vascular SMC behaviour. Here, plasticity is thought to form an adaptation allowing maintained function despite large volume changes. In blood vessels, the general match of active and passive diameter-tension relations suggests that SMC plasticity is part of normal vascular physiological adaptation. Vascular SMCs display similar processes and forms of adaptation as seen in nonvascular SMCs. This may become particularly relevant under strong vasoconstriction, when inward cytoskeletal adaptation possibly prevents immediate full dilation. This may contribute to structural inward remodelling as seen in hypertension and flow reduction. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  19. SREBP inhibits VEGF expression in human smooth muscle cells

    International Nuclear Information System (INIS)

    Motoyama, Koka; Fukumoto, Shinya; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-01-01

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs

  20. SREBP inhibits VEGF expression in human smooth muscle cells.

    Science.gov (United States)

    Motoyama, Koka; Fukumoto, Shinya; Koyama, Hidenori; Emoto, Masanori; Shimano, Hitoshi; Maemura, Koji; Nishizawa, Yoshiki

    2006-03-31

    Sterol regulatory element-binding proteins (SREBPs) are transcription factors that regulate expression of genes encoding enzymes for lipid biosynthesis. SREBPs are activated by HMG-CoA reductase inhibitors (statins). Statins have been also reported to suppress vascular endothelial growth factor (VEGF) expression in vascular smooth muscle cells (VSMCs). Therefore, we hypothesized that SREBPs are involved in statin-mediated regulation of VEGF production in VSMCs. SREBP1 was robustly expressed, and was activated by atorvastatin in VSMCs, as demonstrated by increased levels of the mature nuclear form of SREBP1, and increased promoter activities of a reporter containing sterol regulatory elements by atorvastatin. Moreover, overexpression of SREBP1a dose-dependently suppressed VEGF promoter activity. Site-specific mutation or deletion of the proximal Sp1 sites reduced the inhibitory effects of SREBP1a on VEGF promoter activity. These data demonstrated that SREBP1, activated by atorvastatin, suppressed VEGF expression through the indirect interaction with the proximal tandem Sp1 sites in VSMCs.

  1. Does atorvastatin induce aortic smooth muscle cell apoptosis in vivo?

    Science.gov (United States)

    Doyon, Marielle; Hale, Taben Mary; Huot-Marchand, Julie-Emilie; Wu, Rong; de Champlain, Jacques; DeBlois, Denis

    2011-01-01

    It has been reported that HMG-CoA reductase inhibitors such as atorvastatin induce vascular smooth muscle cell (SMC) apoptosis in vitro. However, this effect remains to be demonstrated in vivo. The present studies were designed to test the ability of atorvastatin to induce SMC apoptosis in vivo, using the spontaneously hypertensive rat (SHR) as a well-known reference model of SMC apoptosis induction in vivo by cardiovascular drugs including the calcium channel blocker amlodipine. Atorvastatin was administered to SHR for 3 or 6 weeks either alone or together with amlodipine, a drug combination clinically available to patients. Primary endpoints included aortic medial hypertrophy and aortic SMC hyperplasia, internucleosomal DNA fragmentation and expression of the apoptosis regulatory proteins Bax and Bcl-2. The SHR aorta showed no evidence of SMC apoptosis induction by atorvastatin, even at the high dose of 50 mg kg(-1) day(-1), although the statin significantly reduced oxidative stress after 3 weeks and blood pressure after 6 weeks of administration. Amlodipine-induced regression of aortic hypertophy and aortic SMC hyperplasia were dose- and time-dependent, but there was no interaction between atorvastatin and amlodipine in modulating the primary endpoints. These results do not support the notion that atorvastatin induces SMC apoptosis in the aortic media in vivo. Copyright © 2010. Published by Elsevier Inc.

  2. Mammalian tachykinins and uterine smooth muscle: the challenge escalates.

    Science.gov (United States)

    Pennefather, Jocelyn N; Patak, Eva; Pinto, Francisco M; Candenas, M Luz

    2004-10-01

    We review the actions of mammalian tachykinins on uterine smooth muscle. Derived from sensory neurones and non-neuronal cells within the female reproductive tract, tachykinins are potent uterotonic agents. Three tachykinin receptor genes, and the gene encoding neprilysin, the enzyme that inactivates tachykinins, are present in rat, mouse and human myometrium. In rat and human, the tachykinin NK(2) receptor is important in mediating the uterotonic effects of tachykinins; actions at this receptor remain relatively stable or vary only slightly in the face of changing hormonal and gestational status. In contrast, ovarian steroids and pregnancy regulate expression of the tachykinin NK(3), and to a lesser extent, the tachykinin NK(1) receptor, as well as the activity of neprilysin. In the oestrogen primed mouse uterus, the tachykinin NK(1) receptor primarily mediates tachykinin uterotonic effects, but there is a switch to the tachykinin NK(2) receptor by late pregnancy. The possible physiological and pathological roles of tachykinins, including hemokinins and endokinins, in normal and premature labour, stress-induced abortion and menstrual disorders are briefly discussed.

  3. Impaired Arterial Smooth Muscle Cell Vasodilatory Function In Methamphetamine Users

    Directory of Open Access Journals (Sweden)

    Ghaemeh Nabaei

    2017-02-01

    Full Text Available Objectives: Methamphetamine use is a strong risk factor for stroke. This study was designed to evaluate arterial function and structure in methamphetamine users ultrasonographically. Methods: In a cross-sectional study, 20 methamphetamine users and 21 controls, aged between 20 and 40years, were enrolled. Common carotid artery intima-media thickness (CCA-IMT marker of early atherogenesis, flow-mediated dilatation (FMD determinants of endothelium-dependent vasodilation, and nitroglycerine-mediated dilatation (NMD independent marker of vasodilation were measured in two groups. Results: There were no significant differences between the two groups regarding demographic and metabolic characteristics. The mean (±SD CCA-IMT in methamphetamine users was 0.58±0.09mm, versus 0.59±0.07mm in the controls (p=0.84. Likewise, FMD% was not significantly different between the two groups [7.6±6.1% in methamphetamine users vs. 8.2±5.1% in the controls; p=0.72], nor were peak flow and shear rate after hyperemia. However, NMD% was considerably decreased in the methamphetamine users [8.5±7.8% in methamphetamine users vs. 13.4±6.2% in controls; p=0.03]. Conclusion: According to our results, NMD is reduced among otherwise healthy methamphetamine users, which represents smooth muscle dysfunction in this group. This may contribute to the high risk of stroke among methamphetamine users.

  4. Effect of lovastatin on rabbit vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Luan Zhaoxia; Pei Zhuguo

    2003-01-01

    Objective: To investigate the effect of lovastatin on binding activity of nuclear factor activator protein-1 (AP-1) to NF-κB and the expression of matrix metalloproteinase-9 (MMP-9) in rabbit vascular smooth muscle cells (VSMCs). Methods: The oligonucleotide corresponding to the consensus NF-κB element or the consensus AP-1 element was labeled by [γ- 32 P]-ATP. AP-1 and NF-κB binding activity was detected by electrophoretic mobility shift assay (EMSA), expression of MMP-9 was detected by zymography. Results: Lovastatin inhibited the expression of MMP-9 in a dose-dependent manner, this effect was reversed by mevalonate and GGPP but not by squalene; lovastatin significantly decreased AP-1 and NF-κB binding activity. Conclusion: Lovastatin decreased AP-1 and NF-κB binding activity and inhibited MMP-9 expression in rabbit VSMCs by the way of inhibiting prenylation of protein but not by cholestrol-lowering, and this might be the mechanism of its arteriosclerostic plaque stabilizing effects

  5. Uremia modulates the phenotype of aortic smooth muscle cells

    DEFF Research Database (Denmark)

    Madsen, Marie; Pedersen, Annemarie Aarup; Albinsson, Sebastian

    2017-01-01

    the phenotype of aortic SMCs in vivo. METHODS: Moderate uremia was induced by 5/6 nephrectomy in apolipoprotein E knockout (ApoE(-/-)) and wildtype C57Bl/6 mice. Plasma analysis, gene expression, histology, and myography were used to determine uremia-mediated changes in the arterial wall. RESULTS: Induction...... of moderate uremia in ApoE(-/-) mice increased atherosclerosis in the aortic arch en face 1.6 fold (p = 0.04) and induced systemic inflammation. Based on histological analyses of aortic root sections, uremia increased the medial area, while there was no difference in the content of elastic fibers or collagen...... in the aortic media. In the aortic arch, mRNA and miRNA expression patterns were consistent with a uremia-mediated phenotypic modulation of SMCs; e.g. downregulation of myocardin, α-smooth muscle actin, and transgelin; and upregulation of miR146a. Notably, these expression patterns were observed after acute (2...

  6. Contraction of gut smooth muscle cells assessed by fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Yohei Tokita

    2015-03-01

    Full Text Available Here we discuss the development of a novel cell imaging system for the evaluation of smooth muscle cell (SMC contraction. SMCs were isolated from the circular and longitudinal muscular layers of mouse small intestine by enzymatic digestion. SMCs were stimulated by test agents, thereafter fixed in acrolein. Actin in fixed SMCs was stained with phalloidin and cell length was determined by measuring diameter at the large end of phalloidin-stained strings within the cells. The contractile response was taken as the decrease in the average length of a population of stimulated-SMCs. Various mediators and chemically identified compounds of daikenchuto (DKT, pharmaceutical-grade traditional Japanese prokinetics, were examined. Verification of the integrity of SMC morphology by phalloidin and DAPI staining and semi-automatic measurement of cell length using an imaging analyzer was a reliable method by which to quantify the contractile response. Serotonin, substance P, prostaglandin E2 and histamine induced SMC contraction in concentration-dependent manner. Two components of DKT, hydroxy-α-sanshool and hydroxy-β-sanshool, induced contraction of SMCs. We established a novel cell imaging technique to evaluate SMC contractility. This method may facilitate investigation into SMC activity and its role in gastrointestinal motility, and may assist in the discovery of new prokinetic agents.

  7. Hypoxia Enhances Differentiation of Adipose Tissue-Derived Stem Cells toward the Smooth Muscle Phenotype.

    Science.gov (United States)

    Wang, Fang; Zachar, Vladimir; Pennisi, Cristian Pablo; Fink, Trine; Maeda, Yasuko; Emmersen, Jeppe

    2018-02-08

    Smooth muscle differentiated adipose tissue-derived stem cells are a valuable resource for regeneration of gastrointestinal tissues, such as the gut and sphincters. Hypoxia has been shown to promote adipose tissue-derived stem cells proliferation and maintenance of pluripotency, but the influence of hypoxia on their smooth myogenic differentiation remains unexplored. This study investigated the phenotype and contractility of adipose-derived stem cells differentiated toward the smooth myogenic lineage under hypoxic conditions. Oxygen concentrations of 2%, 5%, 10%, and 20% were used during differentiation of adipose tissue-derived stem cells. Real time reverse transcription polymerase chain reaction and immunofluorescence staining were used to detect the expression of smooth muscle cells-specific markers, including early marker smooth muscle alpha actin, middle markers calponin, caldesmon, and late marker smooth muscle myosin heavy chain. The specific contractile properties of cells were verified with both a single cell contraction assay and a gel contraction assay. Five percent oxygen concentration significantly increased the expression levels of α-smooth muscle actin, calponin, and myosin heavy chain in adipose-derived stem cell cultures after 2 weeks of induction ( p Cells differentiated in 5% oxygen conditions showed greater contraction effect ( p cells from adipose stem cells and 5% oxygen was the optimal condition to generate smooth muscle cells that contract from adipose stem cells.

  8. Characterization of smooth muscle-like cells in circulating human peripheral blood.

    Science.gov (United States)

    Sugiyama, Seigo; Kugiyama, Kiyotaka; Nakamura, Shinichi; Kataoka, Keiichiro; Aikawa, Masanori; Shimizu, Koichi; Koide, Shunichi; Mitchell, Richard N; Ogawa, Hisao; Libby, Peter

    2006-08-01

    Smooth muscle cells play an important role in human vascular diseases. Several lines of evidence demonstrate that circulating smooth muscle precursor cells contribute to intimal hyperplasia in animal models. We obtained large spindle cells expressing alpha-smooth muscle actin (alpha-SMA), denoted here as "smooth muscle-like cells" (SMLC), from human peripheral blood mononuclear cells (PBMC). SMLC derived from human PBMC proliferated readily and expressed pro-inflammatory genes during early culture. After long-term culture, SMLC could contract and express characteristic smooth muscle cell markers. We found peripheral blood mononuclear cell expressing alpha-smooth muscle actin in the circulating blood that bore CD14 and CD105. Sorted CD14/CD105 double-positive PBMC could differentiate into SMLC. The number of CD14-CD105-bearing PBMC increased significantly in patients with coronary artery disease compared to patients without coronary artery disease. These results support the novel concept that smooth muscle precursor cells exist in circulating human blood and may contribute to the pathogenesis of vascular diseases.

  9. Bindarit inhibits human coronary artery smooth muscle cell proliferation, migration and phenotypic switching.

    Directory of Open Access Journals (Sweden)

    Marcella Maddaluno

    Full Text Available Bindarit, a selective inhibitor of monocyte chemotactic proteins (MCPs synthesis, reduces neointimal formation in animal models of vascular injury and recently has been shown to inhibit in-stent late loss in a placebo-controlled phase II clinical trial. However, the mechanisms underlying the efficacy of bindarit in controlling neointimal formation/restenosis have not been fully elucidated. Therefore, we investigated the effect of bindarit on human coronary smooth muscle cells activation, drawing attention to the phenotypic modulation process, focusing on contractile proteins expression as well as proliferation and migration. The expression of contractile proteins was evaluated by western blot analysis on cultured human coronary smooth muscle cells stimulated with TNF-α (30 ng/mL or fetal bovine serum (5%. Bindarit (100-300 µM reduced the embryonic form of smooth muscle myosin heavy chain while increased smooth muscle α-actin and calponin in both TNF-α- and fetal bovine serum-stimulated cells. These effects were associated with the inhibition of human coronary smooth muscle cell proliferation/migration and both MCP-1 and MCP-3 production. The effect of bindarit on smooth muscle cells phenotypic switching was confirmed in vivo in the rat balloon angioplasty model. Bindarit (200 mg/Kg/day significantly reduced the expression of the embryonic form of smooth muscle myosin heavy chain, and increased smooth muscle α-actin and calponin in the rat carodid arteries subjected to endothelial denudation. Our results demonstrate that bindarit induces the differentiated state of human coronary smooth muscle cells, suggesting a novel underlying mechanisms by which this drug inhibits neointimal formation.

  10. Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity.

    Science.gov (United States)

    Naveed, Shams-Un-Nisa; Clements, Debbie; Jackson, David J; Philp, Christopher; Billington, Charlotte K; Soomro, Irshad; Reynolds, Catherine; Harrison, Timothy W; Johnston, Sebastian L; Shaw, Dominick E; Johnson, Simon R

    2017-04-15

    Matrix metalloproteinase-1 (MMP-1) and mast cells are present in the airways of people with asthma. To investigate whether MMP-1 could be activated by mast cells and increase asthma severity. Patients with stable asthma and healthy control subjects underwent spirometry, methacholine challenge, and bronchoscopy, and their airway smooth muscle cells were grown in culture. A second asthma group and control subjects had symptom scores, spirometry, and bronchoalveolar lavage before and after rhinovirus-induced asthma exacerbations. Extracellular matrix was prepared from decellularized airway smooth muscle cultures. MMP-1 protein and activity were assessed. Airway smooth muscle cells generated pro-MMP-1, which was proteolytically activated by mast cell tryptase. Airway smooth muscle treated with activated mast cell supernatants produced extracellular matrix, which enhanced subsequent airway smooth muscle growth by 1.5-fold (P asthma, airway pro-MMP-1 was 5.4-fold higher than control subjects (P = 0.002). Mast cell numbers were associated with airway smooth muscle proliferation and MMP-1 protein associated with bronchial hyperresponsiveness. During exacerbations, MMP-1 activity increased and was associated with fall in FEV 1 and worsening asthma symptoms. MMP-1 is activated by mast cell tryptase resulting in a proproliferative extracellular matrix. In asthma, mast cells are associated with airway smooth muscle growth, MMP-1 levels are associated with bronchial hyperresponsiveness, and MMP-1 activation are associated with exacerbation severity. Our findings suggest that airway smooth muscle/mast cell interactions contribute to asthma severity by transiently increasing MMP activation, airway smooth muscle growth, and airway responsiveness.

  11. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    Science.gov (United States)

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  12. Bilateral adrenal EBV-associated smooth muscle tumors in a child with a natural killer cell deficiency

    OpenAIRE

    Shaw, Rachel K.; Issekutz, Andrew C.; Fraser, Robert; Schmit, Pierre; Morash, Barb; Monaco-Shawver, Linda; Orange, Jordan S.; Fernandez, Conrad V.

    2012-01-01

    EBV-associated smooth muscle tumors are found in immunocompromised patients, most commonly HIV/AIDS. We present a 12-year-old girl with the first documented case of EBV-related smooth muscle tumors in the presence of a rare classic NK cell deficiency. This sheds light on the role of NK cells in controlling EBV-related smooth muscle tumors.

  13. File list: His.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 Histone Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  14. File list: Pol.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 RNA polymerase Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  15. File list: His.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 Histone Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  16. File list: Unc.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 Unclassified Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  17. File list: NoD.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 No description Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  18. File list: DNS.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 DNase-seq Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  19. File list: Pol.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 RNA polymerase Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  20. File list: InP.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 Input control Cardiovascular Coronary arte...ry smooth muscle SRX699739,SRX699736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  1. File list: DNS.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 DNase-seq Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  2. File list: InP.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 Input control Cardiovascular Coronary arte...ry smooth muscle SRX699739,SRX699736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  3. File list: Unc.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 Unclassified Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  4. File list: Pol.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 RNA polymerase Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  5. File list: Pol.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 RNA polymerase Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  6. File list: Unc.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 Unclassified Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  7. File list: InP.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 Input control Cardiovascular Coronary arte...ry smooth muscle SRX699739,SRX699736 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  8. File list: NoD.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 No description Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  9. File list: NoD.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 No description Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  10. File list: NoD.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 No description Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  11. File list: DNS.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 DNase-seq Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  12. File list: Unc.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 Unclassified Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  13. File list: His.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 Histone Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  14. File list: His.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 Histone Cardiovascular Coronary arte...ry smooth muscle http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  15. Effect of histamine on contractile activity of smooth muscles in bovine mesenteric lymph nodes.

    Science.gov (United States)

    Lobov, G I; Pan'kova, M N

    2012-02-01

    The effects of histamine and mechanisms of its action on the capsular smooth muscle cells of mesenteric lymph nodes were examined on isolated capsular strips under isometric conditions. Histamine (1×10(-8)-5×10(-7) M) decreased the tone of capsular smooth muscle cells and the frequency of phasic contractions. At high concentrations (more than 5×10(-6) M), histamine increased the amplitude and frequency of phasic contractions against the background of increased tonic stress. The effects of histamine were dose-dependent and were realized via direct stimulation of H(1)- and H(2)-receptors on the membrane of smooth muscle cells.

  16. Smooth muscle antibodies and type 1 autoimmune hepatitis.

    Science.gov (United States)

    Muratori, Paolo; Muratori, Luigi; Agostinelli, Daniela; Pappas, Georgios; Veronesi, Lorenza; Granito, Alessandro; Cassani, Fabio; Terlizzi, Paolo; Lenzi, Marco; Bianchi, Francesco B

    2002-12-01

    Smooth muscle antibodies (SMA) characterize type 1 autoimmune hepatitis. Our aim was to evaluate sensitivity and specificity of different immunofluorescence substrates for the detection of SMA. Sera from 55 patients with type 1 AIH 20 with primary biliary cirrhosis, 20 with HCV-related chronic hepatitis and 25 blood donors were studied for SMA and anti-microfilaments reactivity by immunofluorescence on rat tissue sections, cultured fibroblasts and commercially available HEp-2 cells (collectively revealing the so called anti-actin pattern), and for the XR1 system by counterimmunoelectrophoresis. SMA was classified on the basis of its immunofluorescence pattern (V--vessels, G--glomerular, T--tubular). As further control group, we studied 26 patients with a diagnosis other than AIH, selected on the basis of a SMA-non-T/XR1 positivity. In patients with AIH the SMA-T pattern on rodent tissue, and anti-MF on fibroblasts and on HEp-2 cells were present in 80, 82 and 80%, respectively. Five out of 11 SMA-non T positive AIH patients were anti-MF positive. None of the pathological and healthy controls was positive for SMA-T or anti-MF reactivity. XR1 system was present in 84% of AIH patients and in 5% of pathological controls (p = 0.01). Two out of 26 SMA-non-T/XR1 positive sera were positive for anti-MF by fibroblasts and HEp-2 cells. A significant correlation was found between SMA-T pattern and anti-MF reactivity; no correlation was found between XR1 system and SMA-T pattern or anti-MF reactivity. SMA-T pattern is highly sensitive and specific first diagnostic test for type 1 AIH; anti-MF can be used as additional tool for the diagnosis, particularly when, despite the absence of the SMA-T pattern, AIH is strongly suspected.

  17. Cigarette Smoke and Estrogen Signaling in Human Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Venkatachalem Sathish

    2015-06-01

    Full Text Available Aims: Cigarette smoke (CS in active smokers and second-hand smoke exposure exacerbate respiratory disorders such as asthma and chronic bronchitis. While women are known to experience a more asthmatic response to CS than emphysema in men, there is limited information on the mechanisms of CS-induced airway dysfunction. We hypothesize that CS interferes with a normal (protective bronchodilatory role of estrogens, thus worsening airway contractility. Methods: We tested effects of cigarette smoke extract (CSE on 17β-estradiol (E2 signaling in enzymatically-dissociated bronchial airway smooth muscle (ASM obtained from lung samples of non-smoking female patients undergoing thoracic surgery. Results: In fura-2 loaded ASM cells, CSE increased intracellular calcium ([Ca2+]i responses to 10µM histamine. Acute exposure to physiological concentrations of E2 decreased [Ca2+]i responses. However, in 24h exposed CSE cells, although expression of estrogen receptors was increased, the effect of E2 on [Ca2+]i was blunted. Acute E2 exposure also decreased store-operated Ca2+ entry and inhibited stromal interaction molecule 1 (STIM1 phosphorylation: effects blunted by CSE. Acute exposure to E2 increased cAMP, but less so in 24h CSE-exposed cells. 24h CSE exposure increased S-nitrosylation of ERα. Furthermore, 24h CSE-exposed bronchial rings showed increased bronchoconstrictor agonist responses that were not reduced as effectively by E2 compared to non-CSE controls. Conclusion: These data suggest that CS induces dysregulation of estrogen signaling in ASM, which could contribute to increased airway contractility in women exposed to CS.

  18. Endoscopic gold fiducial marker placement into the bladder wall to optimize radiotherapy targeting for bladder-preserving management of muscle-invasive bladder cancer: feasibility and initial outcomes.

    Directory of Open Access Journals (Sweden)

    Maurice M Garcia

    Full Text Available Bladder radiotherapy is a management option for carefully selected patients with muscle-invasive bladder cancer. However, the inability to visualize the tumor site during treatment and normal bladder movement limits targeting accuracy and increases collateral radiation. A means to accurately and reliably target the bladder during radiotherapy is needed.Eighteen consecutive patients with muscle-invasive bladder cancer (T1-T4 elected bladder-preserving treatment with maximal transurethral resection (TUR, radiation and concurrent chemotherapy. All underwent endoscopic placement of 24-K gold fiducial markers modified with micro-tines (70 [2.9×0.9 mm.]; 19 [2.1×0.7 mm. into healthy submucosa 5-10 mm. from the resection margin, using custom-made coaxial needles. Marker migration was assessed for with intra-op bladder-filling cystogram and measurement of distance between markers. Set-up error and marker retention through completion of radiotherapy was confirmed by on-table portal imaging.Between 1/2007 and 7/2012, a total of 89 markers (3-5 per tumor site were placed into 18 patients of mean age 73.6 years. Two patients elected cystectomy before starting treatment; 16/18 completed chemo-radiotherapy. All (100% markers were visible with all on-table (portal, cone-beam CT, fluoroscopy, plain-film, and CT-scan imaging. In two patients, 1 of 4 markers placed at the tumor site fell-out (voided during the second half of radiotherapy. All other markers (80/82, 98% were present through the end of radio-therapy. No intraoperative (e.g. uncontrolled bleeding, collateral injury or post-operative complications (e.g. stone formation, urinary tract infection, post-TUR hematuria >48 hours occurred. Use of micro-tined fiducial tumor-site markers afforded a 2 to 6-fold reduction in bladder-area targeted with high-dose radiation.Placement of the micro-tined fiducial markers into the bladder was feasible and associated with excellent retention-rate and no complications

  19. Bladder Preservation for Localized Muscle-Invasive Bladder Cancer: The Survival Impact of Local Utilization Rates of Definitive Radiotherapy

    International Nuclear Information System (INIS)

    Kozak, Kevin R.; Hamidi, Maryam; Manning, Matthew; Moody, John S.

    2012-01-01

    Purpose: This study examines the management and outcomes of muscle-invasive bladder cancer in the United States. Methods and Materials: Patients with muscle-invasive bladder cancer diagnosed between 1988 and 2006 were identified in the Surveillance, Epidemiology, and End Results (SEER) database. Patients were classified according to three mutually exclusive treatment categories based on the primary initial treatment: no local management, radiotherapy, or surgery. Overall survival was assessed with Kaplan-Meier analysis and Cox models based on multiple factors including treatment utilization patterns. Results: The study population consisted of 26,851 patients. Age, sex, race, tumor grade, histology, and geographic location were associated with differences in treatment (all p < 0.01). Patients receiving definitive radiotherapy tended to be older and have less differentiated tumors than patients undergoing surgery (RT, median age 78 years old and 90.6% grade 3/4 tumors; surgery, median age 71 years old and 77.1% grade 3/4 tumors). No large shifts in treatment were seen over time, with most patients managed with surgical resection (86.3% for overall study population). Significant survival differences were observed according to initial treatment: median survival, 14 months with no definitive local treatment; 17 months with radiotherapy; and 43 months for surgery. On multivariate analysis, differences in local utilization rates of definitive radiotherapy did not demonstrate a significant effect on overall survival (hazard ratio, 1.002; 95% confidence interval, 0.999–1.005). Conclusions: Multiple factors influence the initial treatment strategy for muscle-invasive bladder cancer, but definitive radiotherapy continues to be used infrequently. Although patients who undergo surgery fare better, a multivariable model that accounted for patient and tumor characteristics found no survival detriment to the utilization of definitive radiotherapy. These results support continued

  20. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?

    Science.gov (United States)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I; Trinity, Joel D; Hyngstrom, John R; Garten, Ryan S; Diakos, Nikolaos A; Ives, Stephen J; Dela, Flemming; Larsen, Steen; Drakos, Stavros; Richardson, Russell S

    2014-08-01

    Unlike cardiac and skeletal muscle, little is known about vascular smooth muscle mitochondrial respiration. Therefore, the present study examined mitochondrial respiratory rates in smooth muscle of healthy human feed arteries and compared with that of healthy cardiac and skeletal muscles. Cardiac, skeletal, and smooth muscles were harvested from a total of 22 subjects (53 ± 6 yr), and mitochondrial respiration was assessed in permeabilized fibers. Complex I + II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac to skeletal to smooth muscles (54 ± 1, 39 ± 4, and 15 ± 1 pmol·s(-1)·mg(-1), P muscles (222 ± 13, 115 ± 2, and 48 ± 2 μmol·g(-1)·min(-1), P respiration rates were normalized by CS (respiration per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, complex I state 2 normalized for CS activity, an index of nonphosphorylating respiration per mitochondrial content, increased progressively from cardiac to skeletal to smooth muscles, such that the respiratory control ratio, state 3/state 2 respiration, fell progressively from cardiac to skeletal to smooth muscles (5.3 ± 0.7, 3.2 ± 0.4, and 1.6 ± 0.3 pmol·s(-1)·mg(-1), P muscles suggest all mitochondria are created equal, the contrasting respiratory control ratio and nonphosphorylating respiration highlight the existence of intrinsic functional differences between these muscle mitochondria. This likely influences the efficiency of oxidative phosphorylation and could potentially alter ROS production.

  1. A fibroblast-associated antigen: Characterization in fibroblasts and immunoreactivity in smooth muscle differentiated stromal cells

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Celis, Julio E.; van Deurs, Bo

    1992-01-01

    Fibroblasts with smooth muscle differentiation are frequently derived from human breast tissue. Immunofluorescence cytochemistry of a fibroblast-associated antigen recognized by a monoclonal antibody (MAb), 1B10, was analyzed with a view to discriminating smooth muscle differentiated fibroblasts...... major brands migrating at apparent Mr of 38,000, 45,000, and 80,000, in addition to many minor bands between Mr 45,000 and 97,000, including Mr 52,000. The Mr 45,000 and 38,000 were associated with the cell membrane and Mr 52,000 as well as Mr 38,000 were associated with the lysosomes. The 1B10...... immunoreactivity was specific to fibroblasts and smooth muscle differentiated fibroblasts within the context of vascular smooth muscle cells....

  2. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    NARCIS (Netherlands)

    Maarsingh, H; Leusink, J; Bos, IST; Zaagsma, J; Meurs, H

    2006-01-01

    Background: Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC) nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO) production - due to competition with neuronal

  3. Recipient origin of neointimal vascular smooth muscle cells in cardiac allografts with transplant arteriosclerosis

    NARCIS (Netherlands)

    Hillebrands, JL; van den Hurk, BMH; Klatter, FA; Popa, ER; Nieuwenhuis, P; Rozing, J

    2000-01-01

    Background: Coronary artery disease is today's most important post-heart transplantation problem after the first perioperative year. Histologically, coronary artery disease is characterized by transplant arteriosclerosis. The current view on this vasculopathy is that vascular smooth muscle (VSM)

  4. Microfibrillar-associated protein 4 modulates airway smooth muscle cell phenotype in experimental asthma

    DEFF Research Database (Denmark)

    Pilecki, Bartosz; Schlosser, Anders; Wulf-Johansson, Helle

    2015-01-01

    . In the current study we investigated the role of MFAP4 in experimental allergic asthma. METHODS: MFAP4-deficient mice were subjected to alum/ovalbumin and house dust mite induced models of allergic airway disease. In addition, human healthy and asthmatic primary bronchial smooth muscle cell cultures were used...... to evaluate MFAP4-dependent airway smooth muscle responses. RESULTS: MFAP4 deficiency attenuated classical hallmarks of asthma, such as eosinophilic inflammation, eotaxin production, airway remodelling and hyperresponsiveness. In wild-type mice, serum MFAP4 was increased after disease development...... and correlated with local eotaxin levels. MFAP4 was expressed in human bronchial smooth muscle cells and its expression was upregulated in asthmatic cells. Regarding the underlying mechanism, we showed that MFAP4 interacted with integrin αvβ5 and promoted asthmatic bronchial smooth muscle cell proliferation...

  5. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Science.gov (United States)

    Liu, Dong-Hai; Huang, Xu; Guo, Xin; Meng, Xiang-Min; Wu, Yi-Song; Lu, Hong-Li; Zhang, Chun-Mei; Kim, Young-chul; Xu, Wen-Xie

    2014-01-01

    Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV) was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV) to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  6. Voltage dependent potassium channel remodeling in murine intestinal smooth muscle hypertrophy induced by partial obstruction.

    Directory of Open Access Journals (Sweden)

    Dong-Hai Liu

    Full Text Available Partial obstruction of the small intestine causes obvious hypertrophy of smooth muscle cells and motility disorder in the bowel proximate to the obstruction. To identify electric remodeling of hypertrophic smooth muscles in partially obstructed murine small intestine, the patch-clamp and intracellular microelectrode recording methods were used to identify the possible electric remodeling and Western blot, immunofluorescence and immunoprecipitation were utilized to examine the channel protein expression and phosphorylation level changes in this research. After 14 days of obstruction, partial obstruction caused obvious smooth muscle hypertrophy in the proximally located intestine. The slow waves of intestinal smooth muscles in the dilated region were significantly suppressed, their amplitude and frequency were reduced, whilst the resting membrane potentials were depolarized compared with normal and sham animals. The current density of voltage dependent potassium channel (KV was significantly decreased in the hypertrophic smooth muscle cells and the voltage sensitivity of KV activation was altered. The sensitivity of KV currents (IKV to TEA, a nonselective potassium channel blocker, increased significantly, but the sensitivity of IKv to 4-AP, a KV blocker, stays the same. The protein levels of KV4.3 and KV2.2 were up-regulated in the hypertrophic smooth muscle cell membrane. The serine and threonine phosphorylation levels of KV4.3 and KV2.2 were significantly increased in the hypertrophic smooth muscle cells. Thus this study represents the first identification of KV channel remodeling in murine small intestinal smooth muscle hypertrophy induced by partial obstruction. The enhanced phosphorylations of KV4.3 and KV2.2 may be involved in this process.

  7. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms

    OpenAIRE

    Mokhtari-Zaer, Amin; Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein

    2015-01-01

    Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C....

  8. Mast cell numbers in airway smooth muscle and PC(20)AMP in asthma and COPD

    NARCIS (Netherlands)

    Liesker, J. J. W.; ten Hacken, N. H. T.; Rutgers, S. R.; Zeinstra-Smith, M.; Postma, D. S.; Timens, W.

    Introduction: Most patients with asthma and many patients with COPD show bronchial hyperresponsiveness to adenosine (BHRAMP). BHRAMP may be caused by release of mast cell histamine, which induces smooth muscle contraction. Aim of the study: To evaluate whether mast cell numbers in airway smooth

  9. Cyclic GMP alters Ca exchange in vascular smooth muscle

    International Nuclear Information System (INIS)

    Magliola, L.; Bailey, B.; Jones, A.W.

    1986-01-01

    Contraction and 42 K efflux from vascular smooth muscle stimulated either by norepinephrine (NE) or by K-depolarization is dependent on an increase in cytosolic Ca concentration. The purpose of this study was to determine if cyclic GMP (cGMP) inhibited these processes and if inhibition was secondary to the action of cGMP on Ca movements. Basal cGMP content of rat aorta was 1.2 fmol/mg wet wt. Sodium nitroprusside (NP) increased cGMP ∼2-fold at 1 nM and ∼750-fold at 1 μM with no effect on cAMP levels. A 5 min pretreatment with NP (1 μM) completely prevented tension development induced by 3 μM NE. The same concentration of NP also inhibited NE-stimulated 42 K and 45 Ca efflux > 90 and > 80%, respectively. Removal of NP in the continued presence of NE (3 μM) caused recovery of the 42 K efflux response to ∼75% of control with a half-time of ∼2.5 min. NP (1 μM) also caused a rapid relaxation of aorta contracted with 3 μM NE and a loss of the 42 K efflux response with half-times of 2-3 min. In contrast, 100 μM NP produced only a 50% inhibition of contraction induced by high K (55 mM). Also, NP (1 μM) inhibited K-stimulated 42 K efflux only ∼25%. These results demonstrate both a concentration- and a time-dependent relationship between increases in cGMP induced by NP and decreases in NE-stimulated contraction, 42 K and 45 Ca effluxes. They also indicate that the sensitivity of NE-induced contraction and 42 K efflux to NP is greater than that induced by high K. These studies suggest that cGMP modulates the control sites for Ca exchange in the plasma membrane and sarcoplasmic reticulum

  10. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Tong Luo

    Full Text Available The 3D geometry of individual vascular smooth muscle cells (VSMCs, which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation.A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell's initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9 μm, 4.6±0.6 μm and 6.2±1.8 μm (mean±SD. In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle was found to be 8±7.6° with median as 5.7°.A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function.

  11. Control of Vascular Smooth Muscle Cell Growth by Connexin 43

    Directory of Open Access Journals (Sweden)

    Chintamani eJoshi

    2012-06-01

    Full Text Available Connexin 43 (Cx43, the principal gap junction protein in vascular smooth muscle cells (VSMCs, regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC stimulator BAY 41-2272 (BAY, or the Cx inducer diallyl disulfide (DADS significantly reduced proliferation after 72 h compared to vehicle controls. Bromodeoxyuridine uptake revealed reduction (p<.001 in DNA synthesis after 6 h and flow cytometry showed reduced (40% S phase cell numbers after 16 h in DADS-treated cells compared to controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at the MAPK-sensitive serine (Ser255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and the PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared to controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays an important role in regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSMCs.

  12. Ca2+ sparks act as potent regulators of excitation-contraction coupling in airway smooth muscle.

    Science.gov (United States)

    Zhuge, Ronghua; Bao, Rongfeng; Fogarty, Kevin E; Lifshitz, Lawrence M

    2010-01-15

    Ca2+ sparks are short lived and localized Ca2+ transients resulting from the opening of ryanodine receptors in sarcoplasmic reticulum. These events relax certain types of smooth muscle by activating big conductance Ca2+-activated K+ channels to produce spontaneous transient outward currents (STOCs) and the resultant closure of voltage-dependent Ca2+ channels. But in many smooth muscles from a variety of organs, Ca2+ sparks can additionally activate Ca2+-activated Cl(-) channels to generate spontaneous transient inward current (STICs). To date, the physiological roles of Ca2+ sparks in this latter group of smooth muscle remain elusive. Here, we show that in airway smooth muscle, Ca2+ sparks under physiological conditions, activating STOCs and STICs, induce biphasic membrane potential transients (BiMPTs), leading to membrane potential oscillations. Paradoxically, BiMPTs stabilize the membrane potential by clamping it within a negative range and prevent the generation of action potentials. Moreover, blocking either Ca2+ sparks or hyperpolarization components of BiMPTs activates voltage-dependent Ca2+ channels, resulting in an increase in global [Ca2+](i) and cell contraction. Therefore, Ca2+ sparks in smooth muscle presenting both STICs and STOCs act as a stabilizer of membrane potential, and altering the balance can profoundly alter the status of excitability and contractility. These results reveal a novel mechanism underlying the control of excitability and contractility in smooth muscle.

  13. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Directory of Open Access Journals (Sweden)

    Amy Y Hsiao

    Full Text Available The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  14. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    Science.gov (United States)

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  15. Slug contributes to cadherin switch and malignant progression in muscle-invasive bladder cancer development.

    Science.gov (United States)

    Wu, Kaijie; Zeng, Jin; Zhou, Jiancheng; Fan, Jinhai; Chen, Yule; Wang, Zhiqiang; Zhang, TingTing; Wang, Xinyang; He, Dalin

    2013-11-01

    The Snail family of zinc finger transcription factors (i.e., Snail and Slug) predicts the tumor recurrence in superficial bladder cancers, while their roles in the development of muscle-invasion, metastasis, and chemoresistance in muscle-invasive bladder cancers with poor prognosis have not been investigated. This study evaluates the clinical significance of Slug in aggressive bladder cancer. A pair of sublines (i.e., T24-P and T24-L) from a unique orthotropic metastatic model of bladder cancer was firstly utilized to identify the potential precursors contributing to those aggressive phenotypes. The coexpression of Slug, E-cadherin, and N-cadherin in bladder cancer cell lines (i.e., 5637, RT4, 253 J, J82, and T24) and tissues was evaluated by reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and immunohistochemistry staining analysis. The function of Slug expression on E- to N-cadherin switch, cell invasion, and chemoresistance to proapoptotic treatment was validated by gain-in-function and knockdown strategy in vitro. Slug was identified as one of the novel targets contributed to the aggressive phenotypes of T24-L cells, which showed enhanced cell invasive, metastatic, and chemoresistant potentials in vitro and in vivo as previously described. Up-regulation of Slug was significantly correlated with a higher tumor stage and the E- to N-cadherin switch in bladder cancer cells and tissues, whereas ectopic expression of Slug in bladder cancer 5637 and RT-4 cell lines promoted epithelial-to-mesenchymal transition (EMT), increased cell invasiveness and chemoresistance. By contrast, knocking down Slug using siRNA in T24-L cell lines reversed these changes. Slug elevates in invasive or metastatic bladder cancer and plays a critical role in EMT via control of cadherin switch. Slug may be a potential marker or target for improving the diagnosis and treatment of muscle-invasive bladder cancers. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Repair of Vesicocutaneous and Urethrocutaneous Fistulae with Rectus Muscle Flap in a Bladder Exstrophy Patient

    Directory of Open Access Journals (Sweden)

    Daniel A. Friedlander

    2017-07-01

    Full Text Available Urinary continence can be achieved in up to 90% of patients with bladder exstrophy. However, select patients remain incontinent despite modern reconstruction. Repeat operations for continence combined with the congenital pelvic abnormalities of exstrophy put patients at risk for urinary fistula formation. We report the use of a rectus muscle flap in the repair of two concomitant vesicocutaneous and urethrocutaneous fistulae in a patient with classic bladder exstrophy.

  17. Should patients with muscle-invasive bladder cancer undergo more-extensive pelvic lymph node dissection?

    DEFF Research Database (Denmark)

    Steven, Kenneth Eric

    2008-01-01

    This Practice Point commentary discusses the paper by Dhar and colleagues, which compared outcomes between two cohorts of patients with muscle-invasive bladder cancer who received either 'limited' pelvic lymph node dissection (LND) or 'extended' pelvic LND at clinics in the US or Switzerland...... as an essential component of radical cystectomy and applied to all patients undergoing radical surgery for bladder cancer Udgivelsesdato: 2008/10...

  18. Effects of Bronchial Thermoplasty on Airway Smooth Muscle and Collagen Deposition in Asthma.

    Science.gov (United States)

    Chakir, Jamila; Haj-Salem, Ikhlass; Gras, Delphine; Joubert, Philippe; Beaudoin, Ève-Léa; Biardel, Sabrina; Lampron, Noel; Martel, Simon; Chanez, Pascal; Boulet, Louis-Philippe; Laviolette, Michel

    2015-11-01

    The aim of bronchial thermoplasty is to improve asthma symptoms by reducing central airway smooth muscle mass. Up to now, the reduction of smooth muscle mass has been documented for only 1 group of 10 patients who had 15% or more of their pretreatment total bronchial biopsy area occupied by smooth muscle. To evaluate the effects of bronchial thermoplasty on airway smooth muscle mass and airway collagen deposition in adult patients with asthma, regardless of pretreatment smooth muscle area. Seventeen patients with asthma underwent bronchial thermoplasty over the course of three visits. At Visit 1, bronchial biopsies were taken from the lower lobe that was not treated during this session. At Visit 2 (3-14 wk after the first visit), all 17 patients underwent biopsy of the lower lobe treated during the first procedure. At Visit 3 (7-22 wk after the first visit), nine patients agreed to undergo biopsy of the same lower lobe. Histological and immunohistochemical analyses were performed on the biopsy specimens. Bronchial thermoplasty decreased airway smooth muscle from 12.9 ± 1.2% of the total biopsy surface at Visit 1 to 4.6 ± 0.8% at Visit 2 (P Bronchial thermoplasty also decreased Type I collagen deposition underneath the basement membrane from 6.8 ± 0.3 μm at Visit 1 to 4.3 ± 0.2 μm at Visit 2 (P bronchial thermoplasty reduced the smooth muscle mass of treated airway segments, regardless of the baseline level of muscle mass. Treatment also altered the deposition of collagen. At follow-up, bronchial thermoplasty improved asthma control; however, the limited number of subjects did not allow us to evaluate possible correlations between these improvements and the studied histological parameters. Further studies are needed to confirm these results and evaluate their persistence.

  19. Reducing recurrence in non-muscle-invasive bladder cancer using photodynamic diagnosis and immediate post-transurethral resection of the bladder chemoprophylaxis

    DEFF Research Database (Denmark)

    Risager, Malene Bøg; Nielsen, Tommy Kjærgaard; Zieger, Karsten Egbert Arnold

    2015-01-01

    Abstract Objective. The aim of this study was to evaluate the effect of fluorescence cystoscopy and immediate post-transurethral resection of the bladder (TURB) chemoprophylaxis on the risk of recurrence of non-muscle-invasive bladder cancer (NMIBC) under routine clinical conditions. Materials...

  20. Definitions, End Points, and Clinical Trial Designs for Non-Muscle-Invasive Bladder Cancer: Recommendations From the International Bladder Cancer Group

    NARCIS (Netherlands)

    Kamat, A.M.; Sylvester, R.J.; Bohle, A.; Palou, J.; Lamm, D.L.; Brausi, M.; Soloway, M.; Persad, R.; Buckley, R.; Colombel, M.; Witjes, J.A.

    2016-01-01

    PURPOSE: To provide recommendations on appropriate clinical trial designs in non-muscle-invasive bladder cancer (NMIBC) based on current literature and expert consensus of the International Bladder Cancer Group. METHODS: We reviewed published trials, guidelines, meta-analyses, and reviews and

  1. A Simple, Inexpensive Model to Demonstrate How Contraction of GI Longitudinal Smooth Muscle Promotes Propulsion

    Science.gov (United States)

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    Peristalis is a propulsive activity that involves both circular and longitudinal muscle layers of the esophagus, distal stomach, and small and large intestines. During peristalsis, the circular smooth muscle contracts behind (on the orad side) the bolus and relaxes in front (on the aborad side) of the bolus. At the same time, the longitudinal…

  2. Shortening induced effects on force (re)development in pig urinary smooth muscle

    NARCIS (Netherlands)

    E. van Asselt (Els); J.J.M. Pel (Johan); R. van Mastrigt (Ron)

    2007-01-01

    textabstractIntroduction: When muscle is allowed to shorten during an active contraction, the maximum force that redevelops after shortening is smaller than the isometric force at the same muscle length without prior shortening. We studied the course of force redevelopment after shortening in smooth

  3. Results of radiotherapy for ureteric obstruction in muscle-invasive bladder cancer

    International Nuclear Information System (INIS)

    Holm, M.; Miskowiak, J.; Rolff, H.

    1996-01-01

    Retrospective evaluation of the records of 574 patients with muscle-invasive bladder cancer revealed 90 patients (16%) with ureteric obstruction; the obstruction was bilateral in 24%. The effect of radiotherapy was assessed in 55 patients with 68 obstructed kidneys. Six patients with eight obstructed kidneys required percutaneous nephrostomy or ureteric catheters in addition to radiotherapy. Drainage improved in only 20% of kidneys and the diverting catheter could be withdrawn permanently in only one (17%) of the diverted patients. The median survival was 11 months. Irradiation was followed by significant complications in 37 patients (67%). This raises doubts about the assumed beneficial effect of irradiation on ureteric obstruction due to muscle invasive bladder cancer. The short median survival of 11 months confirms that ureteric obstruction is a poor prognostic factor in muscle invasive bladder cancer. (au) 10 refs

  4. Nitric oxide mediates stretch-induced Ca2+ release via activation of phosphatidylinositol 3-kinase-Akt pathway in smooth muscle.

    Science.gov (United States)

    Wei, Bin; Chen, Zheng; Zhang, Xu; Feldman, Morris; Dong, Xian-zhi; Doran, Robert; Zhao, Bao-Lu; Yin, Wen-xuan; Kotlikoff, Michael I; Ji, Guangju

    2008-06-25

    Hollow smooth muscle organs such as the bladder undergo significant changes in wall tension associated with filling and distension, with attendant changes in muscle tone. Our previous study indicated that stretch induces Ca(2+) release occurs in the form of Ca(2+) sparks and Ca(2+) waves in urinary bladder myocytes. While, the mechanism underlying stretch-induced Ca2+ release in smooth muscle is unknown. We examined the transduction mechanism linking cell stretch to Ca(2+) release. The probability and frequency of Ca(2+) sparks induced by stretch were closely related to the extent of cell extension and the time that the stretch was maintained. Experiments in tissues and single myocytes indicated that mechanical stretch significantly increases the production of nitric oxide (NO) and the amplitude and duration of muscle contraction. Stretch-induced Ca(2+) sparks and contractility increases were abrogated by the NO inhibitor L-NAME and were also absent in eNOS knockout mice. Furthermore, exposure of eNOS null mice to exogenously generated NO induced Ca(2+) sparks. The soluble guanylyl cyclase inhibitor ODQ did not inhibit SICR, but this process was effectively blocked by the PI3 kinase inhibitors LY494002 and wortmannin; the phosphorylation of Akt and eNOS were up-regulated by 204+/-28.6% and 258+/-36.8% by stretch, respectively. Moreover, stretch significantly increased the eNOS protein expression level. Taking together, these results suggest that stretch-induced Ca2+ release is NO dependent, resulting from the activation of PI3K/Akt pathway in smooth muscle.

  5. Nitric oxide mediates stretch-induced Ca2+ release via activation of phosphatidylinositol 3-kinase-Akt pathway in smooth muscle.

    Directory of Open Access Journals (Sweden)

    Bin Wei

    2008-06-01

    Full Text Available Hollow smooth muscle organs such as the bladder undergo significant changes in wall tension associated with filling and distension, with attendant changes in muscle tone. Our previous study indicated that stretch induces Ca(2+ release occurs in the form of Ca(2+ sparks and Ca(2+ waves in urinary bladder myocytes. While, the mechanism underlying stretch-induced Ca2+ release in smooth muscle is unknown.We examined the transduction mechanism linking cell stretch to Ca(2+ release. The probability and frequency of Ca(2+ sparks induced by stretch were closely related to the extent of cell extension and the time that the stretch was maintained. Experiments in tissues and single myocytes indicated that mechanical stretch significantly increases the production of nitric oxide (NO and the amplitude and duration of muscle contraction. Stretch-induced Ca(2+ sparks and contractility increases were abrogated by the NO inhibitor L-NAME and were also absent in eNOS knockout mice. Furthermore, exposure of eNOS null mice to exogenously generated NO induced Ca(2+ sparks. The soluble guanylyl cyclase inhibitor ODQ did not inhibit SICR, but this process was effectively blocked by the PI3 kinase inhibitors LY494002 and wortmannin; the phosphorylation of Akt and eNOS were up-regulated by 204+/-28.6% and 258+/-36.8% by stretch, respectively. Moreover, stretch significantly increased the eNOS protein expression level.Taking together, these results suggest that stretch-induced Ca2+ release is NO dependent, resulting from the activation of PI3K/Akt pathway in smooth muscle.

  6. Beta adrenoreceptors in the rabbit bladder detrusor muscle

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, G.F.; Marks, B.H.

    1984-02-01

    This study examines the beta adrenergic receptors of the rabbit detrusor smooth muscle, employing (/sup 125/I)iodocyanopindolol (ICYP) as a ligand for the binding of beta adrenergic receptors. Saturation binding experiments on the isolated membrane fraction yielded a KD for ICYP of 14.7 pM and a maximum binding of 147.6 fmol/mg of protein. Displacement of labeled ICYP by a series of beta adrenergic agents yielded the following KD values for the combined high and low affinity binding sites: I-propranolol, 0.76 nM; ICI 118,551, 1.7 nM; zinterol, 38.0 nM; metoprolol, 3.5 microM; and practolol, 61.4 microM. When these displacement experimental results were compared to KD values from other reported binding studies with ICYP for beta adrenoreceptors, both the order of potency and the KD values indicated primarily beta-2 adrenergic receptor subtypes. Computer program Scatfit analysis of the displacement curves indicated a single slope and affinity constant for all five beta adrenergic agents. Hofstee plots for zinterol, ICI 118,551 and metoprolol, however, were not linear and indicated that minor populations of beta-1 adrenoreceptors were also present as both high and low affinity binding sites could be defined. It is concluded that the primary receptor population is beta-2 and that this tissue is heterogenous with a small population of beta-1 adrenoreceptors representing approximately 13 to 23% of the total beta adrenoreceptor population.

  7. Evidence Supports Tradition: The in Vitro Effects of Roman Chamomile on Smooth Muscles

    Directory of Open Access Journals (Sweden)

    Zsolt Sándor

    2018-04-01

    Full Text Available The dried flowers of Chamaemelum nobile (L. All. have been used in traditional medicine for different conditions related to the spasm of the gastrointestinal system. However, there have been no experimental studies to support the smooth muscle relaxant effect of this plant. The aim of our research was to assess the effects of the hydroethanolic extract of Roman chamomile, its fractions, four of its flavonoids (apigenin, luteolin, hispidulin, and eupafolin, and its essential oil on smooth muscles. The phytochemical compositions of the extract and its fractions were characterized and quantified by HPLC-DAD, the essential oil was characterized by GC and GC-MS. Neuronally mediated and smooth muscle effects were tested in isolated organ bath experiments on guinea pig, rat, and human smooth muscle preparations. The crude herbal extract induced an immediate, moderate, and transient contraction of guinea pig ileum via the activation of cholinergic neurons of the gut wall. Purinoceptor and serotonin receptor antagonists did not influence this effect. The more sustained relaxant effect of the extract, measured after pre-contraction of the preparations, was remarkable and was not affected by an adrenergic beta receptor antagonist. The smooth muscle-relaxant activity was found to be associated with the flavonoid content of the fractions. The essential oil showed only the relaxant effect, but no contracting activity. The smooth muscle-relaxant effect was also detected on rat gastrointestinal tissues, as well as on strip preparations of human small intestine. These results suggest that Roman chamomile extract has a direct and prolonged smooth muscle-relaxant effect on guinea pig ileum which is related to its flavonoid content. In some preparations, a transient stimulation of enteric cholinergic motoneurons was also detected. The essential oil also had a remarkable smooth muscle relaxant effect in this setting. Similar relaxant effects were also detected on

  8. Evidence Supports Tradition: The in Vitro Effects of Roman Chamomile on Smooth Muscles.

    Science.gov (United States)

    Sándor, Zsolt; Mottaghipisheh, Javad; Veres, Katalin; Hohmann, Judit; Bencsik, Tímea; Horváth, Attila; Kelemen, Dezső; Papp, Róbert; Barthó, Loránd; Csupor, Dezső

    2018-01-01

    The dried flowers of Chamaemelum nobile (L.) All. have been used in traditional medicine for different conditions related to the spasm of the gastrointestinal system. However, there have been no experimental studies to support the smooth muscle relaxant effect of this plant. The aim of our research was to assess the effects of the hydroethanolic extract of Roman chamomile, its fractions, four of its flavonoids (apigenin, luteolin, hispidulin, and eupafolin), and its essential oil on smooth muscles. The phytochemical compositions of the extract and its fractions were characterized and quantified by HPLC-DAD, the essential oil was characterized by GC and GC-MS. Neuronally mediated and smooth muscle effects were tested in isolated organ bath experiments on guinea pig, rat, and human smooth muscle preparations. The crude herbal extract induced an immediate, moderate, and transient contraction of guinea pig ileum via the activation of cholinergic neurons of the gut wall. Purinoceptor and serotonin receptor antagonists did not influence this effect. The more sustained relaxant effect of the extract, measured after pre-contraction of the preparations, was remarkable and was not affected by an adrenergic beta receptor antagonist. The smooth muscle-relaxant activity was found to be associated with the flavonoid content of the fractions. The essential oil showed only the relaxant effect, but no contracting activity. The smooth muscle-relaxant effect was also detected on rat gastrointestinal tissues, as well as on strip preparations of human small intestine. These results suggest that Roman chamomile extract has a direct and prolonged smooth muscle-relaxant effect on guinea pig ileum which is related to its flavonoid content. In some preparations, a transient stimulation of enteric cholinergic motoneurons was also detected. The essential oil also had a remarkable smooth muscle relaxant effect in this setting. Similar relaxant effects were also detected on other visceral

  9. The action of 5-hydroxytryptamine on Mytilus smooth muscle.

    Science.gov (United States)

    Hidaka, T; Osa, T; Twarog, B M

    1967-10-01

    1. In the nerve-muscle preparation, where catch was characteristically minimal, 5-hydroxytryptamine (5-HT) had no effect on resting membrane potential, junction potentials, spikes or contraction.2. In muscle bundles, where catch was prominent, 5-HT did not change membrane potentials, but prolonged junction potentials and lowered the threshold for spike discharge and contraction.3. In muscle bundles, exposed to high concentrations of 5-HT, depolarization evoked repetitive spikes, while in low 5-HT, spikes were seldom fired even with much greater depolarization.4. In muscle bundles, the effective membrane resistance, R(eff.), decreased from 45-60 to 23-35 MOmega as 5-HT concentration was increased.5. It is suggested that 5-HT may facilitate spike discharge by lowering the internal free Ca(2+) concentration.

  10. Factors influencing contraction and catch in Mytilus smooth muscle.

    Science.gov (United States)

    Twarog, B M

    1967-10-01

    1. Conditions are defined which determine the level of catch after acetylcholine stimulation of Mytilus muscle.2. Catch tension in dissected muscle is absent when connexions with ganglia are intact.3. Catch tension is absent at temperatures above 30 degrees C.4. Catch tension decreases when intervals between stimuli are increased.5. Increasing concentrations of 5-hydroxytryptamine (5-HT) from 10(-8)M to 10(-6)M quantitatively decreases catch tension.6. The length-tension curve of ganglion-free Mytilus muscle bundles suggests that catch tension varies in proportion to the tension developed in contraction.7. External Ca(2+) concentration has no selective influence on catch.8. All factors which reduce catch also increase muscle excitability, suggesting that catch may depend on a mechanism controlling the intracellular concentration of an activator such as Ca(2+).

  11. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma.

    Science.gov (United States)

    Alkhouri, H; Hollins, F; Moir, L M; Brightling, C E; Armour, C L; Hughes, J M

    2011-09-01

    Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma. © 2011 John Wiley & Sons A/S.

  12. Bladder cancer: utility of MRI in detection of occult muscle-invasive disease

    International Nuclear Information System (INIS)

    Rosenkrantz, Andrew B.; Mussi, Thais C.; Melamed, Jonathan; Taneja, Samir S.; Huang, William C.

    2012-01-01

    Background. The presence of muscularis propria invasion by bladder cancer is a key factor in prognosis and treatment decisions, although may be missed by biopsy due to sampling error. MRI has shown potential for detection of muscle invasion but has not specifically been evaluated for this purpose in the setting of bladder cancer patients without evidence of muscle invasion on initial biopsy. Purpose. To evaluate the role of MRI in detection of muscularis propria invasion by bladder cancer following a pathologic diagnosis of non-invasive tumor. Material and Methods. This retrospective study included 23 patients who underwent pelvic MRI following a pathologic diagnosis of bladder cancer without muscularis propria invasion and in whom additional histologic evaluation was performed following MRI. Two radiologists in consensus reviewed T2-weighted images to identify those cases suspicious for muscle invasion on MRI. The radiologists identified whether cases suspicious for invasion demonstrated disruption of the T2-hypointense muscularis layer of the bladder wall, peri-vesical fat stranding, and peri-vesical soft tissue nodularity. Findings were compared with pathologic results obtained after MRI. Results. Suspicion was raised for muscle invasion in eight of 23 cases, four of which exhibited invasion on follow-up pathology. No case without suspicion on MRI exhibited invasion on follow-up pathology. Therefore, sensitivity and specificity were 100% and 79%, respectively. Among individual findings, muscularis disruption on T2WI exhibited sensitivity of 100% and specificity of 79%, peri-vesical fat stranding exhibited sensitivity and specificity of 50% and 84%, and peri-vesical soft tissue nodularity exhibited sensitivity and specificity of 25% and 100%. Conclusion. MRI demonstrated high sensitivity for detection of muscle invasion in cases of bladder cancer without invasion on initial histologic assessment. Muscularis disruption on T2WI appeared to exhibit a better

  13. Bladder cancer: utility of MRI in detection of occult muscle-invasive disease

    Energy Technology Data Exchange (ETDEWEB)

    Rosenkrantz, Andrew B. [Dept. of Radiology, NYU Langone Medical Center, New York (United States)], E-mail: Andrew.rosenkrantz@nyumc.org; Mussi, Thais C. [Dept. of Radiology, NYU Langone Medical Center, New York (United States); Hospital Israelita Albert Einstein, Sao Paulo (Brazil); Melamed, Jonathan [Dept. of Pathology, NYU Langone Medical Center, New York (United States); Taneja, Samir S.; Huang, William C. [Dept. of Urology, Div. of Urologic Oncology, NYU Langone Medical Center, New York (United States)

    2012-07-15

    Background. The presence of muscularis propria invasion by bladder cancer is a key factor in prognosis and treatment decisions, although may be missed by biopsy due to sampling error. MRI has shown potential for detection of muscle invasion but has not specifically been evaluated for this purpose in the setting of bladder cancer patients without evidence of muscle invasion on initial biopsy. Purpose. To evaluate the role of MRI in detection of muscularis propria invasion by bladder cancer following a pathologic diagnosis of non-invasive tumor. Material and Methods. This retrospective study included 23 patients who underwent pelvic MRI following a pathologic diagnosis of bladder cancer without muscularis propria invasion and in whom additional histologic evaluation was performed following MRI. Two radiologists in consensus reviewed T2-weighted images to identify those cases suspicious for muscle invasion on MRI. The radiologists identified whether cases suspicious for invasion demonstrated disruption of the T2-hypointense muscularis layer of the bladder wall, peri-vesical fat stranding, and peri-vesical soft tissue nodularity. Findings were compared with pathologic results obtained after MRI. Results. Suspicion was raised for muscle invasion in eight of 23 cases, four of which exhibited invasion on follow-up pathology. No case without suspicion on MRI exhibited invasion on follow-up pathology. Therefore, sensitivity and specificity were 100% and 79%, respectively. Among individual findings, muscularis disruption on T2WI exhibited sensitivity of 100% and specificity of 79%, peri-vesical fat stranding exhibited sensitivity and specificity of 50% and 84%, and peri-vesical soft tissue nodularity exhibited sensitivity and specificity of 25% and 100%. Conclusion. MRI demonstrated high sensitivity for detection of muscle invasion in cases of bladder cancer without invasion on initial histologic assessment. Muscularis disruption on T2WI appeared to exhibit a better

  14. Captopril augments acetylcholine-induced bronchial smooth muscle contractions in vitro via kinin-dependent mechanisms.

    Science.gov (United States)

    Agrawal, Naman; Akella, Aparna; Deshpande, Shripad B

    2016-06-01

    Angiotensin converting enzyme (ACE) inhibitors therapy is aassociated with bothersome dry cough as an adverse effect. The mechanisms underlying this adverse effect are not clear. Therefore, influence of captopril (an ACE inhibitor) on acetylcholine (ACh)-induced bronchial smooth muscle contractions was investigated. Further, the mechanisms underlying the captopril-induced changes were also explored. In vitro contractions of rat bronchial smooth muscle to cumulative concentrations of ACh were recorded before and after exposure to captopril. Further, the involvement of kinin and inositol triphosphate (IP₃) pathways for captopril-induced alterations were explored. ACh produced concentration-dependent (5-500 µM) increase in bronchial smooth muscle contractions. Pre-treatment with captopril augmented the ACh-induced contractions at each concentration significantly. Pre-treatment with aprotinin (kinin synthesis inhibitor) or heparin (inositol triphosphate, IP₃-inhibitor), blocked the captopril-induced augmentation of bronchial smooth muscle contractions evoked by ACh. Further, captopril-induced augmentation was absent in calcium-free medium. These results suggest that captopril sensitizes bronchial smooth muscles to ACh-induced contractions. This sensitization may be responsible for dry cough associated with captopril therapy.

  15. Trabecular smooth muscle modulates the capacitor function of the penis. Studies on a rabbit model.

    Science.gov (United States)

    Saenz de Tejada, I; Moroukian, P; Tessier, J; Kim, J J; Goldstein, I; Frohrib, D

    1991-05-01

    We investigated the role of trabecular smooth muscle tone in regulation of intracavernosal pressure, venous outflow resistance, and penile capacitance. In an isolated rabbit whole penis model, corpora cavernosa were infused with either contracting (high K(+)-norepinephrine combination) or relaxing (no added Ca(2+)-papaverine combination) physiological salt solutions while intracavernosal pressure was recorded. An infusion pump regulated by an intracavernosal pressure feedback mechanism enabled the measurement of flow necessary to maintain intracavernosal pressures at 30, 60, 90, 120, and 150 mmHg under steady-state conditions (inflow = outflow). These experiments allowed resistance to outflow from corpora to be calculated when trabecular smooth muscle was either constricted or relaxed. Decay in intracavernosal pressure over time from various predetermined intracavernosal pressures (150, 120, 90, 60, and 30 mmHg) was studied under conditions of zero inflow following contraction or relaxation of trabecular smooth muscle. This permitted calculation of the time constant, which together with the outflow resistance, permitted the calculation of penile capacitance. When smooth muscle is relaxed, venous outflow resistance is high, constant, and independent of intracavernosal pressure. Furthermore, relaxation of smooth muscle allows expansion of corpora with accumulation of volume under pressure, enabling the penis to act as a capacitor. This capacitor function is limited in the presence of constant high outflow resistance by stiffness of the fibroelastic elements of penis, tunica, and fibroelastic frame, which exhibit nonlinear deflection trends. Analysis of these variables has led us to propose a model for penile erection.

  16. The relationship between bronchial hyperresponsiveness to methacholine and airway smooth muscle structure and reactivity.

    Science.gov (United States)

    Armour, C L; Black, J L; Berend, N; Woolcock, A J

    1984-11-01

    The airway responsiveness of a group of 25 patients scheduled for lung resection was studied. 10 of 25 patients had a greater than or equal to 20% fall in FEV1 in response to inhaled methacholine (responders), with PD20 FEV1 values ranging from 0.6 to 7.3 mumol. Methacholine did not induce a 20% fall in FEV1 in 15 patients (non-responders). The sensitivity to carbachol and histamine of the bronchial smooth muscle resected from these patients was similar in tissue from responders and non-responders. There was no correlation between in vivo responsiveness to methacholine and in vitro sensitivity to carbachol or histamine. The volume of smooth muscle in some of these airway preparations was quantitated. There was a significant correlation between the maximum tension change in response to histamine and the volume of smooth muscle in each airway. There was no similar correlation for carbachol. The in vivo responsiveness to methacholine and in vitro sensitivity to histamine or carbachol was not related to the degree of inflammation in the airways studied. It is concluded that in vivo responsiveness cannot be explained in terms of smooth muscle sensitivity and that there may be differences between histamine and carbachol in the mechanism of contraction of airway smooth muscle.

  17. Effect of abdominal and pelvic floor tasks on muscle activity, abdominal pressure and bladder neck.

    Science.gov (United States)

    Junginger, Baerbel; Baessler, Kaven; Sapsford, Ruth; Hodges, Paul W

    2010-01-01

    Although the bladder neck is elevated during a pelvic floor muscle (PFM) contraction, it descends during straining. This study aimed to investigate the relationship between bladder neck displacement, electromyography (EMG) activity of the pelvic floor and abdominal muscles and intra-abdominal pressure (IAP) during different pelvic floor and abdominal contractions. Nine women without PFM dysfunction performed maximal, gentle and moderate PFM contractions, maximal and gentle transversus abdominis (TrA) contractions, bracing, Valsalva and head lift. Bladder neck position was assessed with perineal ultrasound. PFM and abdominal muscle activities were recorded with a vaginal probe and fine-wire electrodes, respectively. IAP was recorded with a rectal balloon. Bladder neck elevation only occurred during PFM and TrA contractions. PFM EMG and IAP increased during all tasks from 0.5 (gentle TrA) to 45.7 cmH2O (maximal Valsalva). Bladder neck elevation was only observed when the activity of PFM EMG was high relative to the IAP increase.

  18. Cinematographic analysis of vascular smooth muscle cell interactions with extracellular matrix.

    Science.gov (United States)

    Absher, M; Baldor, L

    1991-01-01

    The interactions of vascular smooth muscle cells with growth modulators and extracellular matrix molecules may play a role in the proliferation and migration of these cells after vascular injury and during the development of atherosclerosis. Time-lapse cinematographic techniques have been used to study cell division and migration of bovine carotid artery smooth muscle cells in response to matrix molecules consisting of solubilized basement membrane (Matrigel) and type I collagen. When cells were grown adjacent to Matrigel, both migration and cell proliferation were increased and interdivision time was shortened. Cells grown in Matrigel or in type I collagen had markedly reduced migration rates but interdivision time was not altered. Further, diffusible components of the Matrigel were found to stimulate proliferation of the smooth muscle cells.

  19. Smooth muscle cells of penis in the rat: noninvasive quantification with shear wave elastography.

    Science.gov (United States)

    Zhang, Jia-Jie; Qiao, Xiao-Hui; Gao, Feng; Bai, Ming; Li, Fan; Du, Lian-Fang; Xing, Jin-Fang

    2015-01-01

    Smooth muscle cells (SMCs) of cavernosum play an important role in erection. It is of great significance to quantitatively analyze the level of SMCs in penis. In this study, we investigated the feasibility of shear wave elastography (SWE) on evaluating the level of SMCs in penis quantitatively. Twenty healthy male rats were selected. The SWE imaging of penis was carried out and then immunohistochemistry analysis of penis was performed to analyze the expression of alpha smooth muscle actin in penis. The measurement index of SWE examination was tissue stiffness (TS). The measurement index of immunohistochemistry analysis was positive area percentage of alpha smooth muscle actin (AP). Sixty sets of data of TS and AP were obtained. The results showed that TS was significantly correlated with AP and the correlation coefficient was -0.618 (p penis was successfully quantified in vivo with SWE. SWE can be used clinically for evaluating the level of SMCs in penis quantitatively.

  20. Primary intraosseous smooth muscle tumor of uncertain malignant potential: original report and molecular characterization

    Directory of Open Access Journals (Sweden)

    Lauren Kropp

    2016-11-01

    Full Text Available We report the first case of primary intraosseous smooth muscle tumor of uncertain malignant potential (STUMP which is analogous to borderline malignant uterine smooth muscle tumors so designated. The tumor presented in the femur of an otherwise healthy 30-year-old woman. Over a 3-year period, the patient underwent 11 biopsies or resections and 2 cytologic procedures. Multiple pathologists reviewed the histologic material including musculoskeletal pathologists but could not reach a definitive diagnosis. However, metastases eventually developed and were rapidly progressive and responsive to gemcitabine and docetaxel. Molecular characterization and ultrastructural analysis was consistent with smooth muscle origin, and amplification of unmutated chromosome 12p and 12q segments appears to be the major genomic driver of this tumor. Primary intraosseous STUMP is thought to be genetically related to leiomyosarcoma of bone, but likely representing an earlier stage of carcinogenesis. Wide excision and aggressive followup is warranted for this potentially life-threatening neoplasm.

  1. Primary Intraosseous Smooth Muscle Tumor of Uncertain Malignant Potential: Original Report and Molecular Characterization.

    Science.gov (United States)

    Kropp, Lauren; Siegal, Gene P; Frampton, Garrett M; Rodriguez, Michael G; McKee, Svetlana; Conry, Robert M

    2016-11-17

    We report the first case of primary intraosseous smooth muscle tumor of uncertain malignant potential (STUMP) which is analogous to borderline malignant uterine smooth muscle tumors so designated. The tumor presented in the femur of an otherwise healthy 30-year-old woman. Over a 3-year period, the patient underwent 11 biopsies or resections and 2 cytologic procedures. Multiple pathologists reviewed the histologic material including musculoskeletal pathologists but could not reach a definitive diagnosis. However, metastases eventually developed and were rapidly progressive and responsive to gemcitabine and docetaxel. Molecular characterization and ultrastructural analysis was consistent with smooth muscle origin, and amplification of unmutated chromosome 12p and 12q segments appears to be the major genomic driver of this tumor. Primary intraosseous STUMP is thought to be genetically related to leiomyosarcoma of bone, but likely representing an earlier stage of carcinogenesis. Wide excision and aggressive follow-up is warranted for this potentially life-threatening neoplasm.

  2. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms.

    Science.gov (United States)

    Mokhtari-Zaer, Amin; Khazdair, Mohammad Reza; Boskabady, Mohammad Hossein

    2015-01-01

    Saffron, Crocus sativus L. (C. sativus) is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO) are also reviewed.

  3. Smooth muscle relaxant activity of Crocus sativus (saffron and its constituents: possible mechanisms

    Directory of Open Access Journals (Sweden)

    Amin Mokhtari-Zaer

    2015-08-01

    Full Text Available Saffron, Crocus sativus L. (C. sativus is rich in carotenoids and used in traditional medicine for treatment of various conditions such as coughs, stomach disorders, amenorrhea, asthma and cardiovascular disorders. These therapeutic effects of the plant are suggested to be due to its relaxant effect on smooth muscles. The effect of C. sativus and its constituents on different smooth muscles and the underlying mechanisms have been studied. Several studies have shown the relaxant effects of C. sativus and its constituents including safranal, crocin, crocetin and kaempferol on blood vessels. In addition, it was reported that saffron stigma lowers systolic blood pressure. The present review highlights the relaxant effects of C. sativus and its constituents on various smooth muscles. The possible mechanisms of this relaxing effect including activation of ß2-adrenoceptors, inhibition of histamine H1 and muscarinic receptors and calcium channels and modulation of nitric oxide (NO are also reviewed.

  4. Low androgen induced penile maldevelopment involves altered gene expression of biomarkers of smooth muscle differentiation and a key enzyme regulating cavernous smooth muscle cell tone.

    Science.gov (United States)

    Okumu, Lilian A; Braden, Tim D; Vail, Krystal; Simon, Liz; Goyal, Hari Om

    2014-07-01

    We determined the effects of low androgens in the neonatal period on biomarkers of smooth muscle cell differentiation, Myh11 and Acta2, and on Pde5A expression in the penis. One-day-old pups were treated daily with the gonadotropin-releasing hormone antagonist antide with or without dihydrotestosterone for 1 to 6 days. Tissues were collected at age day 7 and at adulthood at age 120 days. Penes were examined by quantitative reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry. Testes were assayed for the intratesticular testosterone and steroidogenic enzymes Cyp17α1 and StAR. Gonadotropin-releasing hormone antagonist exposure suppressed the neonatal testicular testosterone surge 70% to 80%. Quantitative reverse transcriptase-polymerase chain reaction revealed 80% to 90% reductions in Cyp17α1 and StAR protein, and 40% to 60% reductions in Myh11 and ACTA2 as a result of gonadotropin-releasing hormone antagonist compared to controls. Dihydrotestosterone co-administration mitigated these decreases. Western blot confirmed the Myh11 decrease at the protein level. Immunohistochemistry of Acta2 confirmed cavernous smooth muscle cell loss at the tissue level. Also, gonadotropin-releasing hormone antagonist exposure decreased Pde5a expression and dihydrotestosterone co-administration mitigated the decrease. Comparison of data between 2 parts of the penis body (corpora cavernosa and corpus spongiosum) showed that antagonist induced decreases in Myh11, Acta2 and Pde5a expression occurred only in the corpora cavernosa, implying that the latter is the target site of low androgen action. As evidenced by gonadotropin-releasing hormone antagonist induced suppression of the neonatal testosterone surge and reduced steroidogenesis, low androgens in the neonatal period altered gene expression of biomarkers of smooth muscle cell differentiation. This led to loss of cavernous smooth muscle cells and consequently to penile maldevelopment. Copyright

  5. Evidence Supports Tradition: The in Vitro Effects of Roman Chamomile on Smooth Muscles

    OpenAIRE

    Zsolt Sándor; Javad Mottaghipisheh; Katalin Veres; Judit Hohmann; Tímea Bencsik; Attila Horváth; Dezső Kelemen; Róbert Papp; Loránd Barthó; Dezső Csupor; Dezső Csupor

    2018-01-01

    The dried flowers of Chamaemelum nobile (L.) All. have been used in traditional medicine for different conditions related to the spasm of the gastrointestinal system. However, there have been no experimental studies to support the smooth muscle relaxant effect of this plant. The aim of our research was to assess the effects of the hydroethanolic extract of Roman chamomile, its fractions, four of its flavonoids (apigenin, luteolin, hispidulin, and eupafolin), and its essential oil on smooth mu...

  6. Treatment Options Available for Bacillus Calmette-Guerin Failure in Non-muscle-invasive Bladder Cancer

    NARCIS (Netherlands)

    Yates, D.R.; Brausi, M.A.; Catto, J.W.; Dalbagni, G.; Roupret, M.; Shariat, S.F.; Sylvester, R.J.; Witjes, J.A.; Zlotta, A.R.; Palou-Redorta, J.

    2012-01-01

    CONTEXT: Intravesical bacillus Calmette-Guerin (BCG) is a standard conservative treatment for patients with high-risk non-muscle-invasive bladder cancer (NMIBC). Many patients will experience recurrence or progression following BCG and are termed BCG failures. OBJECTIVE: To summarise the current

  7. Status of Her2 over expression in muscle invasive urothelial bladder carcinoma: Report of 21 cases

    Directory of Open Access Journals (Sweden)

    Nesrine Mejri

    2014-01-01

    Four patients died from disease, one of them had Her2 3+ score. Conclusion: Her2 overexpression can be observed in muscle invasive urothelial bladder carcinoma in an important number of patients. Evaluation criteria must be standardized, especially with heterogeneous cases. Metastases tests can also readdress the expression of Her2, which gives the patient a supplementary therapeutic tool.

  8. BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG

    NARCIS (Netherlands)

    Kamat, A.M.; Colombel, M.; Sundi, D.; Lamm, D.; Boehle, A.; Brausi, M.; Buckley, R.; Persad, R.; Palou, J.; Soloway, M.; Witjes, J.A.

    2017-01-01

    Intravesical immunotherapy with live attenuated BCG remains the standard of care for patients with high-risk and intermediate-risk non-muscle-invasive bladder cancer (NMIBC). Most patients initially respond, but recurrence is frequent and progression to invasive cancer is a concern. No established

  9. Smooth Muscle Endothelin B Receptors Regulate Blood Pressure but Not Vascular Function or Neointimal Remodeling.

    Science.gov (United States)

    Miller, Eileen; Czopek, Alicja; Duthie, Karolina M; Kirkby, Nicholas S; van de Putte, Elisabeth E Fransen; Christen, Sibylle; Kimmitt, Robert A; Moorhouse, Rebecca; Castellan, Raphael F P; Kotelevtsev, Yuri V; Kuc, Rhoda E; Davenport, Anthony P; Dhaun, Neeraj; Webb, David J; Hadoke, Patrick W F

    2017-02-01

    The role of smooth muscle endothelin B (ET B ) receptors in regulating vascular function, blood pressure (BP), and neointimal remodeling has not been established. Selective knockout mice were generated to address the hypothesis that loss of smooth muscle ET B receptors would reduce BP, alter vascular contractility, and inhibit neointimal remodeling. ET B receptors were selectively deleted from smooth muscle by crossing floxed ET B mice with those expressing cre-recombinase controlled by the transgelin promoter. Functional consequences of ET B deletion were assessed using myography. BP was measured by telemetry, and neointimal lesion formation induced by femoral artery injury. Lesion size and composition (day 28) were analyzed using optical projection tomography, histology, and immunohistochemistry. Selective deletion of ET B was confirmed by genotyping, autoradiography, polymerase chain reaction, and immunohistochemistry. ET B -mediated contraction was reduced in trachea, but abolished from mesenteric veins, of knockout mice. Induction of ET B -mediated contraction in mesenteric arteries was also abolished in these mice. Femoral artery function was unaltered, and baseline BP modestly elevated in smooth muscle ET B knockout compared with controls (+4.2±0.2 mm Hg; P<0.0001), but salt-induced and ET B blockade-mediated hypertension were unaltered. Circulating endothelin-1 was not altered in knockout mice. ET B -mediated contraction was not induced in femoral arteries by incubation in culture medium or lesion formation, and lesion size was not altered in smooth muscle ET B knockout mice. In the absence of other pathology, ET B receptors in vascular smooth muscle make a small but significant contribution to ET B -dependent regulation of BP. These ET B receptors have no effect on vascular contraction or neointimal remodeling. © 2016 The Authors.

  10. A function for filamentous alpha-smooth muscle actin: Retardation of motility in human breast fibroblasts

    DEFF Research Database (Denmark)

    Rønnov-Jessen, Lone; Petersen, Ole William

    1996-01-01

    Actins are known to comprise six mammalian isoforms of which beta- and gamma-nonmuscle actins are present in all cells, whereas alpha-smooth muscle (alpha-sm) actin is normally restricted to cells of the smooth muscle lineages. alpha-Sm actin has been found also to be expressed transiently in cer...... of less prominent focal adhesions as revealed by immunofluorescence staining against vinculin, talin, and beta1-integrin. We propose that an important function of filamentous alpha-sm actin is to immobilize the cells....

  11. Microtissues Enhance Smooth Muscle Differentiation and Cell Viability of hADSCs for Three Dimensional Bioprinting

    Directory of Open Access Journals (Sweden)

    Jin Yipeng

    2017-07-01

    Full Text Available Smooth muscle differentiated human adipose derived stem cells (hADSCs provide a crucial stem cell source for urinary tissue engineering, but the induction of hADSCs for smooth muscle differentiation still has several issues to overcome, including a relatively long induction time and equipment dependence, which limits access to abundant stem cells within a short period of time for further application. Three-dimensional (3D bioprinting holds great promise in regenerative medicine due to its controllable construction of a designed 3D structure. When evenly mixed with bioink, stem cells can be spatially distributed within a bioprinted 3D structure, thus avoiding drawbacks such as, stem cell detachment in a conventional cell-scaffold strategy. Notwithstanding the advantages mentioned above, cell viability is often compromised during 3D bioprinting, which is often due to pressure during the bioprinting process. The objective of our study was to improve the efficiency of hADSC smooth muscle differentiation and cell viability of a 3D bioprinted structure. Here, we employed the hanging-drop method to generate hADSC microtissues in a smooth muscle inductive medium containing human transforming growth factor β1 and bioprinted the induced microtissues onto a 3D structure. After 3 days of smooth muscle induction, the expression of α-smooth muscle actin and smoothelin was higher in microtissues than in their counterpart monolayer cultured hADSCs, as confirmed by immunofluorescence and western blotting analysis. The semi-quantitative assay showed that the expression of α-smooth muscle actin (α-SMA was 0.218 ± 0.077 in MTs and 0.082 ± 0.007 in Controls; smoothelin expression was 0.319 ± 0.02 in MTs and 0.178 ± 0.06 in Controls. Induced MTs maintained their phenotype after the bioprinting process. Live/dead and cell count kit 8 assays showed that cell viability and cell proliferation in the 3D structure printed with microtissues were higher at all time

  12. Rac1 modulates G-protein-coupled receptor-induced bronchial smooth muscle contraction.

    Science.gov (United States)

    Sakai, Hiroyasu; Kai, Yuki; Sato, Ken; Ikebe, Mitsuo; Chiba, Yohihiko

    2018-01-05

    Increasing evidence suggests a functional role of RhoA/Rho-kinase signalling as a mechanism for smooth muscle contraction; however, little is known regarding the roles of Rac1 and other members of the Rho protein family. This study aimed to examine whether Rac1 modulates bronchial smooth muscle contraction. Ring preparations of bronchi isolated from rats were suspended in an organ bath, and isometric contraction of circular smooth muscle was measured. Immunoblotting was used to examine myosin light chain phosphorylation in bronchial smooth muscle. Our results demonstrated that muscle contractions induced by carbachol (CCh) and endothelin-1 (ET-1) were inhibited by EHT1864, a selective Rac1 inhibitor, and NSC23766, a selective inhibitor of Rac1-specific guanine nucleotide exchange factors. Similarly, myosin light chain and myosin phosphatase target subunit 1 (MYPT1) at Thr853 phosphorylation induced by contractile agonist were inhibited with Rac1 inhibition. However, contractions induced by high K + , calyculin A (a potent protein phosphatase inhibitor) and K + /PDBu were not inhibited by these Rac1 inhibitors. Interestingly, NaF (a G-protein activator)-induced contractions were inhibited by EHT1864 but not by NSC23766. We next examined the effects of a trans-acting activator of transcription protein transduction domain (PTD) fusion protein with Rac1 (PTD-Rac1) on muscle contraction. The constitutively active form of PTD-Rac1 directly induced force development and contractions were abolished by EHT1864. These results suggest that Rac1, activated by G protein-coupled receptor agonists, such as CCh and ET-1, may induce myosin light chain and MYPT phosphorylation and modulate the contraction of bronchial smooth muscle. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Arterial wall mechanics as a function of heart rate: role of vascular smooth muscle

    International Nuclear Information System (INIS)

    Salvucci, Fernando Pablo; Schiavone, Jonathan; Craiem, Damian; Barra, Juan Gabriel

    2007-01-01

    Vascular wall viscoelasticity can be evaluated using a first-order lumped model. This model consists of a spring with elastic constant E and a dashpot with viscous constant η. More importantly, this viscoelastic model can be fitted in-vivo measuring arterial pressure and diameter. The aim of this work is to analyze the influence of heart rate over E and η. In two anesthetized sheep, diameter in thoracic aorta and intravascular pressure has been registered. The right atrium was connected to a programmable stimulator through a pair of pace-maker wires to produce changes in stimulation heart rate (HR) from 80 to 160 bpm. Additionally, local activation of vascular smooth muscle was induced with phenylephrine. After converting pressure and diameter signals into stress and strain respectively, E y η were calculated in control state and during muscle activation. The elastic modulus E did not present significant changes with heart rate. The viscous modulus η decreased 49% with a two-fold acceleration in heart rate from 80 to 160 bpm. However, the product η HR remained stable. The viscous modulus η increased 39% with smooth muscle activation. No significant pressure changes were registered during the experiment. The contractile action of vascular smooth muscle could contribute to increasing arterial wall viscosity. The decrease of η when HR increased might be related to smooth muscle relaxation mediated by endothelium activity, which was stimulated by flow increase. We conclude that HR can modulate arterial wall viscoelasticity through endothelium-dependent mechanisms

  14. Inositol lipid turnover and compartmentation in canine trachealis smooth muscle

    International Nuclear Information System (INIS)

    Baron, C.B.; Pring, M.; Coburn, R.F.

    1989-01-01

    We established conditions for the study of metabolism and compartmentation of inositol phospholipids in canine trachealis muscle. Unstimulated muscle was incubated with myo-[3H]inositol for 30 min at 37 degrees C which resulted in labeling of the tissue free myo-inositol pool, whereas only a small amount of radioactivity was incorporated into inositol phospholipids or inositol phosphates. After addition of 5.5 microM carbachol, phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2), specific radioactivities increased exponentially, reaching apparent constant values in 180-240 min. Initial rates of increases in PI, PIP, and PIP2 specific radioactivities were 39, 32, and 66 times that measured in unstimulated muscle. Metabolic flux rates (nmol.100 nmol total lipid Pi-1.min-1) during development of force averaged 0.42 +/- 0.09 and during force maintenance averaged 0.14 +/- 0.01. Fractions of total PI, PIP, and PIP2 pools that were linked to muscarinic cholinergic activation were estimated to be 0.97, 0.85, and 0.65, respectively. Initial rates of increase in specific radioactivities and specific radioactivities during carbachol activation were similar in PI, PIP, and PIP2 fast active compartments, suggesting metabolic flux from PI to PIP to PIP2 was in near chemical equilibrium. Turnover times for PI, PIP, and PIP2 fast active compartments were estimated to be 21, 1.6, and 4.0 min, respectively

  15. Smooth muscles and stem cells of embryonic guts express KIT, PDGFRRA, CD34 and many other stem cell antigens: suggestion that GIST arise from smooth muscles and gut stem cells.

    Science.gov (United States)

    Terada, Tadashi

    2013-01-01

    Gastrointestinal stromal tumor (GIST) is believed to original from interstitial cells of (ICC) present in Auerbach's nerve plexus. GIST frequently shows gain-of-function mutations of KIT and PDGFRA. In practical pathology, GIST is diagnosed by positive immunostaining or KIT and/or CD34. The author herein demonstrates that human embryonic gastrointestinal tract smooth muscles (HEGITSM) and human embryonic stem gastrointestinal cells (HEGISC) consistently express KIT, CD34, NCAM, PDGFRA and other stem cell (SC) antigens NSE, synaptophysin, chromogranin, bcl-2, ErbB, and MET throughout the embryonic development of 7-40 gestational week (GW). CK14 was negative. The author examines 42 cases (7-40 GW) of embryonic GI tract (EGI). The HEGISM, HEGIST, and gall bladder smooth muscles (SM) were consistently positive for KIT, CD34, NCAM, PDGFRA, synaptophysin, chromogranin, NSE, bcl-2, ErbB2, and MET in foregut, stomach, GB, midgut, and hindgut throughout the fetal life (7-40 GW). The stem cells (SC) were seen to create the SM, nerves, ICC, and other all structures of GI tract. In adult gastrointestinal walls (n=30), KIT, CD34, PDGFRA, and S100 proteins were expressed in Auerbach's nerve plexus and ICC. The bronchial and vascular SM of embryos did not express these molecules. In GIST, frequent expressions of KIT (100%, 30/30), CD34 (90%, 27/30), and PDGFRA (83%, 25/30) were seen. In general, characteristics of tumors recapitulate their embryonic life. Therefore, it is strongly suggested that GIST may be originated from GI SM and/or GI SC in addition to ICC.

  16. Embracing change: striated-for-smooth muscle replacement in esophagus development

    OpenAIRE

    Krauss, Robert S.; Chihara, Daisuke; Romer, Anthony I.

    2016-01-01

    The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initia...

  17. Bladder instillation of Escherichia coli lipopolysaccharide alters the muscle contractions in rat urinary bladder via a protein kinase C-related pathway

    International Nuclear Information System (INIS)

    Weng, T.I.; Chen, W.J.; Liu, S.H.

    2005-01-01

    Uropathogenic Escherichia coli is a common cause of urinary tract infection. We determined the effects of intravesical instillation of E. coli lipopolysaccharide (LPS, endotoxin) on muscle contractions, protein kinase C (PKC) translocation, and inducible nitric oxide synthase (iNOS) expression in rat urinary bladder. The contractions of the isolated rat detrusor muscle evoked by electrical field stimulations were measured short-term (1 h) or long-term (24 h) after intravesical instillation of LPS. One hour after LPS intravesical instillation, bladder PKC-α translocation from cytosolic fraction to membrane fraction and endothelial (e)NOS protein was elevated, and detrusor muscle contractions were significantly increased. PKC inhibitors chelerythrine and Ro32-0432 inhibited this LPS-enhanced contractile response. Application of PKC activator β-phorbol-12,13-dibutyrate enhanced the muscle contractions. Three hours after intravesical instillation of LPS, iNOS mRNA was detected in the bladder. Immunoblotting study also demonstrated that the induction of iNOS proteins is detected in bladder in which LPS was instilled. 24 h after intravesical instillation of LPS, PKC-α translocation was impaired in the bladder; LPS did not affect PKC-δ translocation. Muscle contractions were also decreased 24 h after LPS intravesical instillation. Aminoguanidine, a selective iNOS inhibitor, blocked the decrease in PKC-α translocation and detrusor contractions induced by LPS. These results indicate that there are different mechanisms involved in the alteration of urinary bladder contractions after short-term and long-term treatment of LPS; an iNOS-regulated PKC signaling may participate in causing the inhibition of muscle contractions in urinary bladder induced by long-term LPS treatment

  18. Embracing change: striated-for-smooth muscle replacement in esophagus development.

    Science.gov (United States)

    Krauss, Robert S; Chihara, Daisuke; Romer, Anthony I

    2016-01-01

    The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initially composed only of smooth muscle, but its developmental maturation involves proximal-to-distal replacement of smooth muscle with striated muscle. This fascinating phenomenon raises two important questions: what is the developmental origin of the striated muscle precursor cells, and what are the cellular and morphogenetic mechanisms underlying the process? Studies addressing these questions have provided controversial answers. In this review, we discuss the development of ideas in this area and recent work that has shed light on these issues. A working model has emerged that should permit deeper understanding of the role of ME development and maturation in esophageal disorders and in the functional and evolutionary underpinnings of the variable degree of esophageal striated myogenesis in vertebrate species.

  19. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2 gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome.

    Directory of Open Access Journals (Sweden)

    Michael F Wangler

    2014-03-01

    Full Text Available Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease.

  20. WNT-5A and WNT-5B modulate calcium homeostasis in airway smooth muscle

    NARCIS (Netherlands)

    Koopmans, Tim; Kumawat, Kudleer; Van Den Berge, Maarten; Hoffmann, Roland; Halayko, Andrew J.; Gosens, Reinoud

    2014-01-01

    Rationale Airway hyperresponsiveness is a common feature of asthma explained in part by an excessive contractile response of the airway smooth muscle (ASM). The underlying mechanisms are complex and in need of study. WNT-5A and WNT-5B, two members of the WNT signaling pathway, may be of

  1. siRNA-mediated knockdown of endogenously expressed bestrophin in smooth muscles

    DEFF Research Database (Denmark)

    Larsen, Per; Matchkov, Vladimir; Nilsson, Holger

     We have recently characterized in smooth muscle cells a unique cGMP-dependent Ca2+-activated Cl- current (ICl(cGMP-Ca)) that co-exists with a "classical" Ca2+-activated Cl- current. We hypothesized that bestrophin-4 (a product of the VMD2-like 3 gene) could be responsible for the ICl(cGMP-Ca) ba...... We have recently characterized in smooth muscle cells a unique cGMP-dependent Ca2+-activated Cl- current (ICl(cGMP-Ca)) that co-exists with a "classical" Ca2+-activated Cl- current. We hypothesized that bestrophin-4 (a product of the VMD2-like 3 gene) could be responsible for the ICl...... was used. Cultured aortic smooth muscle cells (A7r5) were transfected with siRNA directed against bestrophin-4 and cultured for 3 days. The efficiency of transfection was demonstrated by specific perinuclear fluorescence of Cy3-labelled siRNA. The downregulation of targeted protein expression...... is responsible for the ICl(cGMP-Ca) in smooth muscle cells. This study presents a novel efficient technique for specific downregulation of gene expression in blood vessels, much needed in studies of vascular function....

  2. Intracellular Angiotensin II and cell growth of vascular smooth muscle cells

    NARCIS (Netherlands)

    Filipeanu, CM; Henning, RH; de Zeeuw, D; Nelemans, A

    1 We recently demonstrated that intracellular application of Angiotensin II (Angiotensin IIintr) induces rat aorta contraction independent of plasma membrane Angiotensin II receptors. In this study we investigated the effects of Angiotensin IIintr on cell growth in A7r5 smooth muscle cells. 2

  3. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    International Nuclear Information System (INIS)

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-01-01

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of N G -nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats

  4. Characterization of vascular smooth muscle cell phenotype in long-term culture.

    Science.gov (United States)

    Absher, M; Woodcock-Mitchell, J; Mitchell, J; Baldor, L; Low, R; Warshaw, D

    1989-02-01

    Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavior, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concomitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression.

  5. Phenotype and functional plasticity of airway smooth muscle : role of caveolae and caveolins

    NARCIS (Netherlands)

    Halayko, Andrew J; Tran, Thai; Gosens, Reinoud

    2008-01-01

    Airway smooth muscle (ASM) cells exhibit phenotype plasticity that is under control of external stimuli such as growth factors and the extracellular matrix, and is regulated by a network of intracellular signaling cascades that control transcription and protein translation of phenotype-specific

  6. Heterogeneity of smooth muscle cells in tunica media of aorta in ...

    African Journals Online (AJOL)

    ... of the tunica media of goat aorta are phenotypically heterogeneous and run in multiple directions. These characteristics probably confer mechanical strength and functional plasticity to the aortic wall. Designers of aortic substitutes should bear this in mind. Keywords: Vascular, Smooth Muscle Cells, Heterogeneity, Aorta ...

  7. The alpha-smooth muscle actin-positive cells in healing human myocardial scars

    NARCIS (Netherlands)

    Willems, I. E.; Havenith, M. G.; de Mey, J. G.; Daemen, M. J.

    1994-01-01

    Interstitial cells in the scars of human myocardial infarctions of different postinfarction times (6 hours to 17 years old) were characterized by antibodies to alpha-smooth muscle actin (ASMA), vimentin, and desmin. Basal lamina deposition was studied with antibodies to the basal lamina protein type

  8. k+-induced relaxation in vascular smooth muscle of alloxan-induced ...

    African Journals Online (AJOL)

    Dr Olaleye

    It has been known for many years that the potassium ion is a vascular dilator in vivo. Intra arterial injection ... effect on the vascular smooth muscle cell since the response still, occurred after denervation or adrenergic ... All animals had free access to food and water and were monitored daily for the development of glycosuria ...

  9. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering

    NARCIS (Netherlands)

    Björninen, M.; Gilmore, K.; Pelto, J.; Seppänen-Kaijansinkko, R.; Kellomäki, M.; Miettinen, S.; Wallace, G.; Grijpma, Dirk W.; Haimi, Suvi

    2016-01-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a

  10. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering

    NARCIS (Netherlands)

    Bjorninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppanen-Kaijansinkko, Riitta; Kellomaki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a

  11. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    Science.gov (United States)

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  12. Suppression of Eosinophil Integrins Prevents Remodeling of Airway Smooth Muscle in Asthma

    NARCIS (Netherlands)

    Januskevicius, Andrius; Gosens, Reinoud; Sakalauskas, Raimundas; Vaitkiene, Simona; Janulaityte, Ieva; Halayko, Andrew J; Hoppenot, Deimante; Malakauskas, Kestutis

    2017-01-01

    Background: Airway smooth muscle (ASM) remodeling is an important component of the structural changes to airways seen in asthma. Eosinophils are the prominent inflammatory cells in asthma, and there is some evidence that they contribute to ASM remodeling via released mediators and direct contact

  13. Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia.

    Science.gov (United States)

    Ashino, Takashi; Yamamoto, Masayuki; Yoshida, Takemi; Numazawa, Satoshi

    2013-04-01

    Reactive oxygen species are important mediators for platelet-derived growth factor (PDGF) signaling in vascular smooth muscle cells, whereas excess reactive oxygen species-induced oxidative stress contributes to the development and progression of vascular diseases, such as atherosclerosis. Activation of the redox-sensitive transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2), is pivotal in cellular defense against oxidative stress by transcriptional upregulation of antioxidant proteins. This study aimed to elucidate the role of Nrf2 in PDGF-mediated vascular smooth muscle cell migration and neointimal hyperplasia. PDGF promoted nuclear translocation of Nrf2, followed by the induction of target genes, including NAD(P)H:quinone oxidoreductase-1, heme oxygenase-1, and thioredoxin-1. Nrf2 depletion by small interfering RNA enhanced PDGF-promoted Rac1 activation and reactive oxygen species production and persistently phosphorylated downstream extracellular signal-regulated kinase-1/2. Nrf2 depletion enhanced vascular smooth muscle cell migration in response to PDGF and wound scratch. In vivo, Nrf2-deficient mice showed enhanced neointimal hyperplasia in a wire injury model. These findings suggest that the Nrf2 system is important for PDGF-stimulated vascular smooth muscle cell migration by regulating reactive oxygen species elimination, which may contribute to neointimal hyperplasia after vascular injury. Our findings provide insight into the Nrf2 system as a novel therapeutic target for vascular remodeling and atherosclerosis.

  14. Vascular smooth muscle cells in cultures on low density polyethylene modified with plasma discharge and biofunctionalization

    Czech Academy of Sciences Publication Activity Database

    Pařízek, Martin; Kasálková, N.; Bačáková, Lucie; Kolářová, K.; Lisá, Věra; Švorčík, V.

    2009-01-01

    Roč. 12, 89-91 (2009), s. 25-28 ISSN 1429-7248 R&D Projects: GA AV ČR(CZ) KAN400480701; GA AV ČR(CZ) 1QS500110564 Institutional research plan: CEZ:AV0Z50110509 Keywords : Ar plasma discharge * low density polyethylene * vascular smooth muscle cells Subject RIV: EI - Biotechnology ; Bionics

  15. MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation

    DEFF Research Database (Denmark)

    Schlosser, Anders; Pilecki, Bartosz; Hemstra, Line E

    2016-01-01

    OBJECTIVE: Arterial injury stimulates remodeling responses that, when excessive, lead to stenosis. These responses are influenced by integrin signaling in vascular smooth muscle cells (VSMCs). Microfibrillar-associated protein 4 (MFAP4) is an integrin ligand localized to extracellular matrix fibers...

  16. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana, E-mail: marciorvsantos@bol.com.br [Universidade Federal de Sergipe, Universidade de São Paulo (Brazil)

    2015-08-15

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of N{sup G}-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  17. Distinct function of estrogen receptor α in smooth muscle and fibroblast cells in prostate development.

    Science.gov (United States)

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2013-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal and epithelial cells. Smooth muscle ERαKO (smERαKO) mice showed decreased glandular infolding with the proximal area exhibiting a significant decrease. Fibroblast ERαKO mouse prostates did not exhibit this phenotype but showed a decrease in the number of ductal tips. Additionally, the amount of collagen observed in the basement membrane was reduced in smERαKO prostates. Interestingly, these phenotypes were found to be mutually exclusive among smERαKO or fibroblast ERαKO mice. Compound KO of ERα in both fibroblast and smooth muscle showed combined phenotypes from each of the single KO. Further mechanistic studies showed that IGF-I and epidermal growth factor were down-regulated in prostate smooth muscle PS-1 cells lacking ERα. Together, our results indicate the distinct functions of fibroblast vs. smERα in prostate development.

  18. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential

    International Nuclear Information System (INIS)

    Costa-Silva, Bruno; Coelho da Costa, Meline; Melo, Fernanda Rosene; Neves, Cynara Mendes; Alvarez-Silva, Marcio; Calloni, Giordano Wosgrau; Trentin, Andrea Goncalves

    2009-01-01

    The neural crest (NC) is a model system used to investigate multipotency during vertebrate development. Environmental factors control NC cell fate decisions. Despite the well-known influence of extracellular matrix molecules in NC cell migration, the issue of whether they also influence NC cell differentiation has not been addressed at the single cell level. By analyzing mass and clonal cultures of mouse cephalic and quail trunk NC cells, we show for the first time that fibronectin (FN) promotes differentiation into the smooth muscle cell phenotype without affecting differentiation into glia, neurons, and melanocytes. Time course analysis indicated that the FN-induced effect was not related to massive cell death or proliferation of smooth muscle cells. Finally, by comparing clonal cultures of quail trunk NC cells grown on FN and collagen type IV (CLIV), we found that FN strongly increased both NC cell survival and the proportion of unipotent and oligopotent NC progenitors endowed with smooth muscle potential. In contrast, melanocytic progenitors were prominent in clonogenic NC cells grown on CLIV. Taken together, these results show that FN promotes NC cell differentiation along the smooth muscle lineage, and therefore plays an important role in fate decisions of NC progenitor cells

  19. Resveratrol causes cell cycle arrest, decreased collagen synthesis, and apoptosis in rat intestinal smooth muscle cells.

    Science.gov (United States)

    Garcia, Patricia; Schmiedlin-Ren, Phyllissa; Mathias, Jason S; Tang, Huaijing; Christman, Gregory M; Zimmermann, Ellen M

    2012-02-01

    One of the most difficult and treatment-resistant complications of Crohn's disease is the development of fibrotic intestinal strictures due to mesenchymal cell hyperplasia and collagen deposition. Resveratrol, a phytoalexin found in berries, peanuts, grapes, and red wine, has been shown to inhibit fibrosis in vasculature, heart, lung, kidney, liver, and esophagus in animal models. Resveratrol has also been shown to inhibit oxidation, inflammation, and cell proliferation and to decrease collagen synthesis in several cell types or animal models. The aim of this study was to determine whether resveratrol has antifibrotic effects on intestinal smooth muscle cells. Responses to resveratrol by cultured smooth muscle cells isolated from colons of untreated Lewis rats were examined; this rat strain is used in a model of Crohn's disease with prominent intestinal fibrosis. A relative decrease in cell numbers following treatment with 50 and 100 μM resveratrol was evident at 24 h (P ≤ 0.005). This effect was largely due to cell cycle arrest, with an increase in the percent of cells in S phase from 8 to 25-35% (P intestinal smooth muscle cell numbers through its effects on cell cycle arrest and apoptosis and also decreases collagen synthesis by the cells. These effects could be useful in preventing the smooth muscle cell hyperplasia and collagen deposition that characterize stricture formation in Crohn's disease.

  20. Alpha Smooth Muscle Actin Expression in a Case of Ameloblastic Carcinoma: a Case Report

    Directory of Open Access Journals (Sweden)

    Swati Roy

    2013-02-01

    Full Text Available Background: The aim of the present article is to report a case of ameloblastic carcinoma and use a marker alpha smooth muscle actin as a tool to differentiate cases of ameloblastic carcinoma from that of ameloblastoma. Methods: Case study reporting a case of ameloblastic carcinoma (AC with expression of alpha smooth muscle actin (alpha-SMA as a marker for emergence of stromal myofibroblasts. The expression of myofibroblasts was also compared with that of ameloblastoma. Results: Difference between the two lesions in the pattern of expression of alpha smooth muscle actin was also observed. There was increase in the number of myofibroblasts in the stroma of AC while in ameloblastoma, it was comparatively less. Secondly, few areas of the carcinomatous ameloblastic island also exhibited a mild positivity towards alpha smooth muscle actin. Conclusions: Increase in number of stromal myofibroblast may be taken as a predictor for carcinomatous transformation. Further studies with greater sample size can validate the use of alpha-SMA as a marker to differentiate ameloblastic carcinoma from ameloblastoma.

  1. ADAMTS9-Regulated Pericellular Matrix Dynamics Governs Focal Adhesion-Dependent Smooth Muscle Differentiation

    Directory of Open Access Journals (Sweden)

    Timothy J. Mead

    2018-04-01

    Full Text Available Summary: Focal adhesions anchor cells to extracellular matrix (ECM and direct assembly of a pre-stressed actin cytoskeleton. They act as a cellular sensor and regulator, linking ECM to the nucleus. Here, we identify proteolytic turnover of the anti-adhesive proteoglycan versican as a requirement for maintenance of smooth muscle cell (SMC focal adhesions. Using conditional deletion in mice, we show that ADAMTS9, a secreted metalloprotease, is required for myometrial activation during late gestation and for parturition. Through knockdown of ADAMTS9 in uterine SMC, and manipulation of pericellular versican via knockdown or proteolysis, we demonstrate that regulated pericellular matrix dynamics is essential for focal adhesion maintenance. By influencing focal adhesion formation, pericellular versican acts upstream of cytoskeletal assembly and SMC differentiation. Thus, pericellular versican proteolysis by ADAMTS9 balances pro- and anti-adhesive forces to maintain an SMC phenotype, providing a concrete example of the dynamic reciprocity of cells and their ECM. : Mead et al. identify a proteolytic mechanism that actively maintains a pericellular microenvironment conducive to uterine smooth muscle activation prior to parturition. They show that pericellular matrix proteolysis by the secreted metalloprotease ADAMTS9 is crucial for maintenance of focal adhesions in uterine smooth muscle cells, and its absence impairs parturition. Keywords: metalloprotease, extracellular matrix, smooth muscle, proteoglycan, myometrium, parturition, uterus, focal adhesion, proteolysis, interference reflection microscopy

  2. Vascular smooth muscle cells remodel collagen matrices by long-distance action and anisotropic interaction

    NARCIS (Netherlands)

    van den Akker, Jeroen; Guvenc Tuna, Bilge; Pistea, Adrian; Sleutel, Arie J. J.; Bakker, Erik N. T. P.; van Bavel, Ed

    2012-01-01

    While matrix remodeling plays a key role in vascular physiology and pathology, the underlying mechanisms have remained incompletely understood. We studied the remodeling of collagen matrices by individual vascular smooth muscle cells (SMCs), clusters and monolayers. In addition, we focused on the

  3. Allergic sensitization enhances the contribution of Rho-kinase to airway smooth muscle contraction

    NARCIS (Netherlands)

    Schaafsma, D.; Gosens, Reinout; Bos, I.S.T.; Meurs, Herman; Zaagsma, Hans; Nelemans, Herman

    2004-01-01

    1 Repeated allergen challenge has been shown to increase the role of Rho-kinase in airway smooth muscle (ASM) contraction. We considered the possibility that active allergic sensitization by itself, that is, without subsequent allergen exposure, could be sufficient to enhance Rho-kinase-mediated ASM

  4. Sodium spirulan as a potent inhibitor of arterial smooth muscle cell proliferation in vitro.

    Science.gov (United States)

    Kaji, Toshiyuki; Okabe, Maiko; Shimada, Satomi; Yamamoto, Chika; Fujiwara, Yasuyuki; Lee, Jung-Bum; Hayashi, Toshimitsu

    2004-03-26

    Sodium spirulan (Na-SP) is a sulfated polysaccharide with M(r) approximately 220,000 isolated from the blue-green alga Spirulina platensis. The polysaccharide consists of two types of disaccharide repeating units, O-hexuronosyl-rhamnose (aldobiuronic acid) and O-rhamnosyl-3-O-methylrhamnose (acofriose) with sulfate groups, other minor saccharides and sodium ion. Since vascular smooth muscle cell proliferation is a crucial event in the progression of atherosclerosis, we investigated the effect of Na-SP on the proliferation of bovine arterial smooth muscle cells in culture. It was found that Na-SP markedly inhibits the proliferation without nonspecific cell damage. Either replacement of sodium ion with calcium ion or depolymerization of the Na-SP molecule to M(r) approximately 14,700 maintained the inhibitory activity, however, removal of sodium ion or desulfation markedly reduced the activity. Heparin and heparan sulfate also inhibited vascular smooth muscle cell growth but their effect was weaker than that of Na-SP; dextran sulfate, chondroitin sulfate, dermatan sulfate and hyaluronan failed to inhibit the cell growth. The present data suggest that Na-SP is a potent inhibitor of arterial smooth muscle cell proliferation, and the inhibitory effect requires a certain minimum sequence of polysaccharide structure whose molecular conformation is maintained by sodium ion bound to sulfate group.

  5. Extracellular matrix in airway smooth muscle is associated with dynamics of airway function in asthma

    NARCIS (Netherlands)

    Yick, C. Y.; Ferreira, D. S.; Annoni, R.; von der Thüsen, J. H.; Kunst, P. W.; Bel, E. H.; Lutter, R.; Mauad, T.; Sterk, P. J.

    2012-01-01

    Background: Altered deposition of extracellular matrix (ECM) in the airway smooth muscle (ASM) layer as observed in asthma may influence ASM mechanical properties. We hypothesized that ECM in ASM is associated with airway function in asthma. First, we investigated the difference in ECM expression in

  6. Bone morphogenetic proteins regulate osteoprotegerin and its ligands in human vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Knudsen, Kirsten Quyen Nguyen; Olesen, Ping; Ledet, Thomas

    2007-01-01

    in the transformation of human vascular smooth muscle cells (HVSMC) to osteoblast-like cells. In this study, we evaluated the effect of BMP-2, BMP-7 and transforming growth factor beta (TGF-beta1) on the secretion and mRNA expression of OPG and its ligands receptor activator of nuclear factor-kappabeta ligand (RANKL...

  7. Intestinal smooth muscle response to chronic obstruction : possible applications in jejunoileal atresia.

    Science.gov (United States)

    Cloutier, R

    1975-02-01

    Hyperplasia is the main change occurring in intestinal smooth muscle above a chronic obstruction and explains the functional obstruction seen in the proximal bowel of a jejunoileal atresia. With an experimental model in dogs, this hyperplasia has been shown to be reversible. However, changes are extreme in atresia, and experiments in animals with induced atresia will best evaluate various kinds of treatment.

  8. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    DEFF Research Database (Denmark)

    Maddahi, A.; Edvinsson, L.

    2008-01-01

    by quantitative Western blot. We demonstrate that there is an increase in the number of contractile smooth muscle receptors in the MCA and in micro- vessels within the ischemic region. The enhanced expression occurs in the smooth muscle cells as verified by co-localization studies. This receptor upregulation...

  9. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression.

    Science.gov (United States)

    Woodruff, Prescott G; Dolganov, Gregory M; Ferrando, Ronald E; Donnelly, Samantha; Hays, Steven R; Solberg, Owen D; Carter, Roderick; Wong, Hofer H; Cadbury, Peggy S; Fahy, John V

    2004-05-01

    Bronchial hyperresponsiveness in mild to moderate asthma may result from airway smooth muscle cell proliferation or acquisition of a hypercontractile phenotype. Because these cells have not been well characterized in mild to moderate asthma, we examined the morphometric and gene expression characteristics of smooth muscle cells in this subgroup of patients with asthma. Using bronchial biopsies from 14 subjects with mild to moderate asthma and 15 control subjects, we quantified smooth muscle cell morphology by stereology and the expression of a panel of genes related to a hypercontractile phenotype of airway smooth muscle, using laser microdissection and two-step real-time polymerase chain reaction. We found that airway smooth muscle cell size was similar in both groups, but cell number was nearly twofold higher in subjects with asthma (p = 0.03), and the amount of smooth muscle in the submucosa was increased 50-83% (p 0.1). We conclude that airway smooth muscle proliferation is a pathologic characteristic of subjects with mild to moderate asthma. However, smooth muscle cells in mild to moderate asthma do not show hypertrophy or gene expression changes of a hypercontractile phenotype observed in vitro.

  10. Gene expression programs of human smooth muscle cells: tissue-specific differentiation and prognostic significance in breast cancers

    NARCIS (Netherlands)

    Chi, Jen-Tsan; Rodriguez, Edwin H.; Wang, Zhen; Nuyten, Dimitry S. A.; Mukherjee, Sayan; van de Rijn, Matt; van de Vijver, Marc J.; Hastie, Trevor; Brown, Patrick O.

    2007-01-01

    Smooth muscle is present in a wide variety of anatomical locations, such as blood vessels, various visceral organs, and hair follicles. Contraction of smooth muscle is central to functions as diverse as peristalsis, urination, respiration, and the maintenance of vascular tone. Despite the varied

  11. File list: ALL.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 All antigens Cardiovascular Coronary arte...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  12. File list: Oth.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 TFs and others Cardiovascular Coronary arte...osciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  13. File list: Oth.CDV.50.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Coronary_artery_smooth_muscle hg19 TFs and others Cardiovascular Coronary arte...osciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.50.AllAg.Coronary_artery_smooth_muscle.bed ...

  14. File list: ALL.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 All antigens Cardiovascular Coronary arte...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  15. File list: ALL.CDV.10.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Coronary_artery_smooth_muscle hg19 All antigens Cardiovascular Coronary arte...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Coronary_artery_smooth_muscle.bed ...

  16. File list: ALL.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 All antigens Cardiovascular Coronary arte...ttp://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  17. File list: Oth.CDV.20.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Coronary_artery_smooth_muscle hg19 TFs and others Cardiovascular Coronary arte...osciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.20.AllAg.Coronary_artery_smooth_muscle.bed ...

  18. File list: Oth.CDV.05.AllAg.Coronary_artery_smooth_muscle [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Coronary_artery_smooth_muscle hg19 TFs and others Cardiovascular Coronary arte...osciencedbc.jp/kyushu-u/hg19/assembled/Oth.CDV.05.AllAg.Coronary_artery_smooth_muscle.bed ...

  19. Relaxation Responses of Trigonal Smooth Muscle from Rabbit by Alpha1-Adrenoceptor Antagonists Alfuzosin, Doxazosin and Tamsulosin

    Directory of Open Access Journals (Sweden)

    A. Karadeniz

    2008-01-01

    Full Text Available This study was performed to investigate the effects of alfuzosin, doxazosin and tamsulosin in vitro on trigone smooth muscle of rabbit. In this study, fifteen rabbits weighing 2.5 - 3 kg were used. One strip in the shape of a trigone was prepared for each of the isolated bladders. Firstly, an initial tension of 1 g was placed on each segment, and we waited for equilibration by constantly bubbling with 95% O2 and 5% CO2. Next, the determination level of electrical stimulation which created submaximal contraction and effective dosage were found for trigone and they were determined by applying different concentrations of phenylephrine (10-8 M, 10-7 M, 10-6 M, 10-5 M, respectively. Firstly 10-8 M dosage of alfuzosin (10-8 M, 10-7 M, 10-6 M, 10-5 M was added, then we waited for 20 min. Then, an effective dosage of phenylephrine (10-5 M was added into the solution and we waited for 7 min again. After this process, electrical stimulation was applied for the contraction of the tissue. After stimulation, the tissue was washed twice every two minutes and rested; we waited until the tissue reached its starting stretching value. The same processes were performed for the other dosages of alfuzosin (10-7 M, 10-6 M, 10-5 M, doxazosin (10-7 M, 10-6 M, 10-5 M and tamsulosin (10-7 M, 10-6 M, 10-5 M, respectively. In conclusion, when we compared the amplitudes of the responses of all concentrations of doxazosin, alfuzosin and tamsulosin in the trigone smooth muscle with amplitude of a response of effective concentration of phenylephrine, it was determined that the prevention level of contractions occurred after tamsulosin hydrochloride was higher than after alfuzosin hydrochloride and doxazosin mesylate. With these results, we showed that alfuzosin, doxazosin and tamsulosin inhibited noradrenalin-based contractions in the rabbit trigone smooth muscle and this result can be used both for in vitro and in vivo future studies.

  20. Smooth muscle myosin regulation by serum and cell density in cultured rat lung connective tissue cells.

    Science.gov (United States)

    Babij, P; Zhao, J; White, S; Woodcock-Mitchell, J; Mitchell, J; Absher, M; Baldor, L; Periasamy, M; Low, R B

    1993-08-01

    RNA and protein analyses were used to detect expression of SM1 and SM2 smooth muscle myosin heavy chain (MHC) in cultured adult rat lung connective tissue cells (RL-90). Smooth muscle MHC mRNA expression in confluent cells grown in 10% serum was approximately 50% of the level in adult stomach. Similar results were obtained in cells cultured at low density (25% confluency) in 1% serum. However, in low-density cultures transferred to 10% serum for 24 h, the level of MHC mRNA decreased to approximately 20% of that in adult stomach. Smooth muscle alpha-actin showed a pattern of expression similar to that for smooth muscle MHC. Expression of nonmuscle MHC-A mRNA was higher in all culture conditions compared to stomach. MHC-A mRNA expression was less in low-density cultures in low serum and increased when low-density cultures were transferred to 10% serum for 24 h. MHC-B mRNA expression was less in low- vs. high-density cultures. In contrast to MHC-A, however, MHC-B mRNA expression in low-density cultures was higher in low serum. Immunofluorescence and immunoblotting with SM1-specific antibody demonstrated the presence of the SM1 protein isoform as well as reactivity to a protein band migrating slightly faster than SM2. These results demonstrate that cultured rat lung connective tissue cells express smooth muscle MHC and that expression is modulated by culture conditions.

  1. Manipulating the Plasticity of Smooth Muscle Cells to Regulate Vascular Calcification

    Directory of Open Access Journals (Sweden)

    Kelsey M. McArthur

    2017-11-01

    Full Text Available Cardiovascular complications are one of the leading causes of death in patients with kidney disease or diabetes. Vascular calcification (VC was once considered a passive process resulting from elevated calcium-phosphate interactions, but is now considered an active cell-mediated process. VC can affect quality of life because healthy arteries harden analogously to bone development leading to hypertension and compromised structural integrity. Based on previous literature, the in vitro model was developed by culturing human primary aortic smooth muscle cells with 3-mmol inorganic phosphate (Pi and sodium to induce calcification. The in vitro model was then used to prompt VC and promote the genetic switching from healthy smooth muscle cells to osteoblast-like cells through manipulation of the cells’ plasticity. The in vitro model examined the Wnt signaling pathway in VC and Sclerostin’s ability to block activation of the pathway. Atomic absorption spectroscopy, Western blot, and Polymerase chain reaction (PCR analysis revealed that the model was capable of inducing VC, up-regulating the osteogenic differentiation markers runt-related transcription factor 2 (Runx2 and bone morphogenetic protein 2 (BMP2, and down-regulating α-smooth muscle actin activity. Under the same methods, it was revealed that Sclerostin was capable of recovering α-smooth muscle actin activity in calcification media and able to down-regulate the osteogenic differentiation marker Runx2. This study proved the effectiveness of the in vitro model to induce calcification of healthy vascular smooth muscle cells and Sclerostin’s ability to be used as a potential therapeutic target for VC.

  2. [Comparison of electrophysiological properties of vascular smooth muscle cells in different arterioles in guinea pig].

    Science.gov (United States)

    Ma, Ke-Tao; Li, Xin-Zhi; Li, Li; Zhang, Zhi-Ping; Zhao, Lei; Zhu, He; Si, Jun-Qiang

    2010-10-25

    Arterioles are major contributors to the control of systemic blood pressure and local blood flow. In this study, we compared electrophysiological properties of vascular smooth muscle cells (VSMCs) in anterior inferior cerebellar artery (AICA), mesenteric artery (MA) and spiral modiolar artery (SMA) by intracellular microelectrode recording and whole-cell patch clamp recording techniques. Results were shown as below: (1) Intracellular microelectrode recordings were made from VSMCs in AICA, MA and SMA with resting potentials of (-68±1.8) (n=65), (-71±2.4) (n=80) and (-66±2.9) mV (n=58), respectively. There was no significant difference in resting potentials among arterioles. (2) The membrane capacitance and membrane conductance in situ cells were much larger than those in dispersed smooth muscle cells by whole-cell recording techniques, and there was significant difference among arterioles, which were in the order: MA>AICA>SMA. After application of gap junction blocker 2-APB (100 μmol/L), the membrane capacitance and membrane conductance in situ cells were very close with those in single smooth muscle cells. (3) The I/V relation of whole-cell current of dissociated smooth muscle cells (AICA, MA and SMA) showed a prominent outward rectification, and the currents were substantially inhibited by 1 mmol/L 4-AP or 10 mmol/L TEA. When the command voltage was +40 mV, the current densities of VSMCs in AICA, MA and SMA were (26±2.0), (24±1.7) and (18±1.3) pA/pF respectively. SMA showed significant difference in the current density from AICA and MA respectively. These results suggest that the electrophysiological properties of coupling strength of gap junction and current density of smooth muscle cells are different among arterioles in the guinea pig.

  3. Rapid effects of phytoestrogens on human colonic smooth muscle are mediated by oestrogen receptor beta.

    LENUS (Irish Health Repository)

    Hogan, A M

    2012-02-01

    Epidemiological studies have correlated consumption of dietary phytoestrogens with beneficial effects on colon, breast and prostate cancers. Genomic and non-genomic mechanisms are responsible for anti-carcinogenic effects but, until now, the effect on human colon was assumed to be passive and remote. No direct effect on human colonic smooth muscle has previously been described. Institutional research board approval was granted. Histologically normal colon was obtained from the proximal resection margin of colorectal carcinoma specimens. Circular smooth muscle strips were microdissected and suspended under 1g of tension in organ baths containing oxygenated Krebs solution at 37 degrees C. After an equilibration period, tissues were exposed to diarylpropionitrile (DPN) (ER beta agonist) and 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) (ER alpha agonist) or to the synthetic phytoestrogen compounds genistein (n=8), daidzein (n=8), fisetin (n=8) and quercetin (n=8) in the presence or absence of fulvestrant (oestrogen receptor antagonist). Mechanism of action was investigated by inhibition of downstream pathways. The cholinergic agonist carbachol was used to induce contractile activity. Tension was recorded isometrically. Phytoestrogens inhibit carbachol-induced colonic contractility. In keeping with a non-genomic, rapid onset direct action, the effect was within minutes, reversible and similar to previously described actions of 17 beta oestradiol. No effect was seen in the presence of fulvestrant indicating receptor modulation. While the DPN exerted inhibitory effects, PPT did not. The effect appears to be reliant on a p38\\/mitogen activated protein kinase mediated induction of nitric oxide production in colonic smooth muscle. The present data set provides the first description of a direct effect of genistein, daidzein, fisetin and quercetin on human colonic smooth muscle. The presence of ER in colonic smooth muscle has been functionally proven and the beta

  4. A new paradigm for the role of smooth muscle cells in the human cervix.

    Science.gov (United States)

    Vink, Joy Y; Qin, Sisi; Brock, Clifton O; Zork, Noelia M; Feltovich, Helen M; Chen, Xiaowei; Urie, Paul; Myers, Kristin M; Hall, Timothy J; Wapner, Ronald; Kitajewski, Jan K; Shawber, Carrie J; Gallos, George

    2016-10-01

    Premature cervical remodeling resulting in spontaneous preterm birth may begin with premature failure or relaxation at the internal os (termed "funneling"). To date, we do not understand why the internal os fails or why funneling occurs in some cases of premature cervical remodeling. Although the human cervix is thought to be mostly collagen with minimal cellular content, cervical smooth muscle cells are present in the cervix and can cause cervical tissue contractility. To understand why the internal os relaxes or why funneling occurs in some cases of premature cervical remodeling, we sought to evaluate cervical smooth muscle cell content and distribution throughout human cervix and correlate if cervical smooth muscle organization influences regional cervical tissue contractility. Using institutional review board-approved protocols, nonpregnant women cervix, whole cervical slices were obtained from the internal os, midcervix, and external os and immunostained with smooth muscle actin. To correlate tissue structure with function, whole slices from the internal and external os were stimulated to contract with 1 μmol/L of oxytocin in organ baths. In separate samples, we tested if the cervix responds to a common tocolytic, nifedipine. Cervical slices from the internal os were treated with oxytocin alone or oxytocin + increasing doses of nifedipine to generate a dose response and half maximal inhibitory concentration. Student t test was used where appropriate. Cervical tissue was collected from 41 women. Immunohistochemistry showed cervical smooth muscle cells at the internal and external os expressed mature smooth muscle cell markers and contraction-associated proteins. The cervix exhibited a gradient of cervical smooth muscle cells. The area of the internal os contained 50-60% cervical smooth muscle cells that were circumferentially organized in the periphery of the stroma, which may resemble a sphincter-like pattern. The external os contained approximately 10

  5. Effect of bladder wall thickness on miniature pneumatic artificial muscle performance.

    Science.gov (United States)

    Pillsbury, Thomas E; Kothera, Curt S; Wereley, Norman M

    2015-09-28

    Pneumatic artificial muscles (PAMs) are actuators known for their high power to weight ratio, natural compliance and light weight. Due to these advantages, PAMs have been used for orthotic devices and robotic limbs. Small scale PAMs have the same advantages, as well as requiring greatly reduced volumes with potential application to prostheses and small scale robotics. The bladder of a PAM affects common actuator performance metrics, specifically: blocked force, free contraction, hysteresis, and dead-band pressure. This paper investigates the effect that bladder thickness has on static actuation performance of small scale PAMs. Miniature PAMs were fabricated with a range of bladder thicknesses to quantify the change in common actuator performance metrics specifically: blocked force, free contraction, and dead-band pressure. These PAMs were then experimentally characterized in quasi-static conditions, where results showed that increasing bladder wall thickness decreases blocked force and free contraction, while dead-band pressure increases. A nonlinear model was then applied to determine the structure of the stress-strain relationship that enables accurate modeling and the minimum number of terms. Two nonlinear models are compared and the identified parameters are analyzed to study the effect of the bladder thickness on the model.

  6. Transurethral en bloc resection with bipolar button electrode for non-muscle invasive bladder cancer.

    Science.gov (United States)

    Zhang, Junfeng; Wang, Longsheng; Mao, Shiyu; Liu, Mengnan; Zhang, Wentao; Zhang, Ziwei; Guo, Yadong; Huang, Bisheng; Yan, Yang; Huang, Yong; Yao, Xudong

    2018-04-01

    Transurethral resection of bladder tumor (TURBT) using a wire loop is considered the gold standard for staging and treating non-muscle invasive bladder cancer (NMIBC). TURBT is associated with serious disadvantages that facilitate tumor recurrence. The present study evaluated the safety and efficacy of the bipolar button electrode for en bloc resection of NMIBC. From January 2013 to July 2016, 82 consecutive patients newly diagnosed with NMIBC received transurethral en bloc resection with bipolar button electrode. Operative details, pathological result, and intraoperative and postoperative complications regarded as safety outcomes were documented. Each patient was followed up for ≥ 18 months. A total of 118 neoplasms were removed en bloc from 82 patients. The mean tumor diameter was 2.42 ± 1.34 cm. The average operation time was 35 ± 14 min. No complications such as bladder bleeding, vesicle perforation, and obturator nerve reflex occurred during the treatment. Pathological evaluations showed urothelial carcinoma with stage Ta low grade in 26 patients, T1 high grade in 51 patients, and T2 high grade in 5 patients. In addition, the bladder detrusor muscle layer was provided in all cases. The 18-month recurrence-free survival was 88.5% (23/26) and 74.5% (38/51) for Ta and T1 patients, respectively. The current results demonstrated that transurethral en bloc resection with bipolar button electrode is an effective, feasible, and safe treatment for NMIBC.

  7. A contribution to improved radiotherapy for muscle invading urinary bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Muren, Ludvig PAul

    2002-07-01

    Cystectomy has traditionally been regarded the treatment of choice for muscle invading urinary bladder cancer in most countries. Radiotherapy has been offered patients considered unfit for cystectomy. Since the contraindications of surgery are frequent among bladder cancer patients, a substantial amount of patients with muscle invading bladder cancer (typically 50%) are still managed primarily with radiation. Recently, a tri-modality, organsparing treatment (trans-urethral resection and radio-chemotherapy) has been proposed for bladder cancer, like in the management of a range of other common malignancies. This approach may provide as high control rates as cystectomy yet maintain a higher quality of life for selected patient groups. In both the radical radiotherapy and the combined modality approach, high radiation doses are needed to improve local disease control. Radiation dose escalation requires improved conformation of dose distributions. This PhD programme aimed to develop improved conformal radiotherapy procedures in the management of patients with muscle invading urinary bladder cancer. In the initial phase of this work, computer-controlled movement of the linear accelerator collimator jaws during beam delivery was applied to shape so-called partially wedged beams (PWBs), that were designed specifically to tailor the dose distribution in bladder irradiation closer to the defined bladder target. The dosimetric verification and treatment planning implementation of this beam delivery concept were addressed, and we documented that these dynamic beams were delivered as accurately as standard beams. Particular attention was given to the BMS-96 diode array system, as it was adapted to dynamic beam dosimetry. Next, the potential clinical impact of these beams was analysed. In a retrospectively study of a set of urinary bladder treatment plans, the PWBs were seen to improve the dose homogeneity inside the bladder target as well as to reduce normal tissue (small

  8. A contribution to improved radiotherapy for muscle invading urinary bladder cancer

    International Nuclear Information System (INIS)

    Muren, Ludvig PAul

    2002-01-01

    Cystectomy has traditionally been regarded the treatment of choice for muscle invading urinary bladder cancer in most countries. Radiotherapy has been offered patients considered unfit for cystectomy. Since the contraindications of surgery are frequent among bladder cancer patients, a substantial amount of patients with muscle invading bladder cancer (typically 50%) are still managed primarily with radiation. Recently, a tri-modality, organsparing treatment (trans-urethral resection and radio-chemotherapy) has been proposed for bladder cancer, like in the management of a range of other common malignancies. This approach may provide as high control rates as cystectomy yet maintain a higher quality of life for selected patient groups. In both the radical radiotherapy and the combined modality approach, high radiation doses are needed to improve local disease control. Radiation dose escalation requires improved conformation of dose distributions. This PhD programme aimed to develop improved conformal radiotherapy procedures in the management of patients with muscle invading urinary bladder cancer. In the initial phase of this work, computer-controlled movement of the linear accelerator collimator jaws during beam delivery was applied to shape so-called partially wedged beams (PWBs), that were designed specifically to tailor the dose distribution in bladder irradiation closer to the defined bladder target. The dosimetric verification and treatment planning implementation of this beam delivery concept were addressed, and we documented that these dynamic beams were delivered as accurately as standard beams. Particular attention was given to the BMS-96 diode array system, as it was adapted to dynamic beam dosimetry. Next, the potential clinical impact of these beams was analysed. In a retrospectively study of a set of urinary bladder treatment plans, the PWBs were seen to improve the dose homogeneity inside the bladder target as well as to reduce normal tissue (small

  9. Aging-induced alterations in female rat colon smooth muscle: the protective effects of hormonal therapy.

    Science.gov (United States)

    Pascua, P; Camello-Almaraz, C; Pozo, M J; Martin-Cano, F E; Vara, E; Fernández-Tresguerres, J A; Camello, P J

    2012-06-01

    Aging is associated to oxidative damage and alterations in inflammatory and apoptotic pathways. Aging impairs secretion of several hormones, including melatonin and estrogens. However, the mechanisms involved in aging of smooth muscle are poorly known. We have studied the changes induced by aging in the colonic smooth muscle layer of female rats and the protective effect of hormonal therapy. We used young, aged, and ovariectomized aged female rats. Two groups of ovariectomized rats (22 months old) were treated either with melatonin or with estrogen for 10 weeks before sacrifice. Aging induced oxidative imbalance, evidenced by H(2)O(2) accumulation, lipid peroxidation, and decreased catalase activity. The oxidative damage was enhanced by ovariectomy. In addition, aged colonic muscle showed enhanced expression of the pro-inflammatory enzyme cyclooxygenase 2. Expression of the activated forms of caspases 3 and 9 was also enhanced in aged colon. Melatonin and estrogen treatment prevented the oxidative damage and the activation of caspases. In conclusion, aging of colonic smooth muscle induces oxidative imbalance and activation of apoptotic and pro-inflammatory pathways. Hormonal therapy has beneficial effects on the oxidative and apoptotic changes associated to aging in this model.

  10. Hypotension due to Kir6.1 gain-of-function in vascular smooth muscle.

    Science.gov (United States)

    Li, Anlong; Knutsen, Russell H; Zhang, Haixia; Osei-Owusu, Patrick; Moreno-Dominguez, Alex; Harter, Theresa M; Uchida, Keita; Remedi, Maria S; Dietrich, Hans H; Bernal-Mizrachi, Carlos; Blumer, Kendall J; Mecham, Robert P; Koster, Joseph C; Nichols, Colin G

    2013-08-23

    KATP channels, assembled from pore-forming (Kir6.1 or Kir6.2) and regulatory (SUR1 or SUR2) subunits, link metabolism to excitability. Loss of Kir6.2 results in hypoglycemia and hyperinsulinemia, whereas loss of Kir6.1 causes Prinzmetal angina-like symptoms in mice. Conversely, overactivity of Kir6.2 induces neonatal diabetes in mice and humans, but consequences of Kir6.1 overactivity are unknown. We generated transgenic mice expressing wild-type (WT), ATP-insensitive Kir6.1 [Gly343Asp] (GD), and ATP-insensitive Kir6.1 [Gly343Asp,Gln53Arg] (GD-QR) subunits, under Cre-recombinase control. Expression was induced in smooth muscle cells by crossing with smooth muscle myosin heavy chain promoter-driven tamoxifen-inducible Cre-recombinase (SMMHC-Cre-ER) mice. Three weeks after tamoxifen induction, we assessed blood pressure in anesthetized and conscious animals, as well as contractility of mesenteric artery smooth muscle and KATP currents in isolated mesenteric artery myocytes. Both systolic and diastolic blood pressures were significantly reduced in GD and GD-QR mice but normal in mice expressing the WT transgene and elevated in Kir6.1 knockout mice as well as in mice expressing dominant-negative Kir6.1 [AAA] in smooth muscle. Contractile response of isolated GD-QR mesenteric arteries was blunted relative to WT controls, but nitroprusside relaxation was unaffected. Basal KATP conductance and pinacidil-activated conductance were elevated in GD but not in WT myocytes. KATP overactivity in vascular muscle can lead directly to reduced vascular contractility and lower blood pressure. We predict that gain of vascular KATP function in humans would lead to a chronic vasodilatory phenotype, as indeed has recently been demonstrated in Cantu syndrome.

  11. Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis.

    Science.gov (United States)

    Murtada, Sae-Il; Holzapfel, Gerhard A

    2014-10-07

    Physiological loading in large elastic arteries is considered to be mainly carried by the passive components of the media but it is not known how much the contraction of the smooth muscle cells is actually involved in the load carrying. Smooth muscle contraction is considered to occur in a relatively slow time domain but the contraction is able to produce significant tension. In the present work the role of smooth muscle contraction in large elastic arteries is investigated by analyzing how changes in the intracellular calcium, and thereby the active tone of smooth muscle cells, influence the deformation and stress behavior; different intracellular calcium functions and medial wall thicknesses with cycling internal pressure are studied. In particular, a recently proposed mechanochemical model (Murtada et al., 2012. J. Theor. Biol. 297, 176-186), which links intracellular calcium with mechanical contraction and an anisotropic model representing the elastin/collagen composite, was implemented into a 3D finite element framework. Details of the implementation procedure are described and a verification of the model implementation is provided by means of the isometric contraction/relaxation analysis of a medial strip at optimal muscle length. In addition, numerically obtained pressure-radius relationships of arterial rings modeled with one and two layers are analyzed with different geometries and at different calcium levels; a comparison with the Laplace equation is provided. Finally, a two-layer arterial ring is loaded with a realistic pressure wave and with various intracellular calcium functions (different amplitudes and mean values) and medial wall thicknesses; residual stresses are considered. The finite element results show that changes in the calcium amplitudes hardly have an influence on the current inner ring radius and the circumferential stress. However, an increase in the mean intracellular calcium value and the medial wall thickness leads to a clear

  12. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Matthew P.; Sikkink, Laura A. [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Penheiter, Alan R. [Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905 (United States); Burghardt, Thomas P., E-mail: burghardt@mayo.edu [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States); Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905 (United States); Ajtai, Katalin [Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905 (United States)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. Black-Right-Pointing-Pointer Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. Black-Right-Pointing-Pointer It is a widely believed that MYL2 is a poor substrate for smMLCK. Black-Right-Pointing-Pointer In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. Black-Right-Pointing-Pointer Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca{sup 2+} sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V{sub max} and K{sub M} for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant

  13. Smooth Muscle-Targeted Overexpression of Peroxisome Proliferator Activated Receptor-γ Disrupts Vascular Wall Structure and Function.

    Directory of Open Access Journals (Sweden)

    Jennifer M Kleinhenz

    Full Text Available Activation of the nuclear hormone receptor, PPARγ, with pharmacological agonists promotes a contractile vascular smooth muscle cell phenotype and reduces oxidative stress and cell proliferation, particularly under pathological conditions including vascular injury, restenosis, and atherosclerosis. However, pharmacological agonists activate both PPARγ-dependent and -independent mechanisms in multiple cell types confounding efforts to clarify the precise role of PPARγ in smooth muscle cell structure and function in vivo. We, therefore, designed and characterized a mouse model with smooth muscle cell-targeted PPARγ overexpression (smPPARγOE. Our results demonstrate that smPPARγOE attenuated contractile responses in aortic rings, increased aortic compliance, caused aortic dilatation, and reduced mean arterial pressure. Molecular characterization revealed that compared to littermate control mice, aortas from smPPARγOE mice expressed lower levels of contractile proteins and increased levels of adipocyte-specific transcripts. Morphological analysis demonstrated increased lipid deposition in the vascular media and in smooth muscle of extravascular tissues. In vitro adenoviral-mediated PPARγ overexpression in human aortic smooth muscle cells similarly increased adipocyte markers and lipid uptake. The findings demonstrate that smooth muscle PPARγ overexpression disrupts vascular wall structure and function, emphasizing that balanced PPARγ activity is essential for vascular smooth muscle homeostasis.

  14. Radiation therapy outcomes in muscle invasive urinary bladder cancer: A single institution experience.

    Science.gov (United States)

    Tiwana, M S; Ni, L H; Saini, S; Verma, S K; Doddamani, D; Jain, N; Biswas, M; Gupta, Meenu; Gupta, Madhur; Saini, M; Chauhan, N

    2016-01-01

    To audit the survival outcomes and loco-regional control in muscle invasive urinary bladder cancer patients treated with external beam radiation therapy (RT). From November 2008 through December 2011, 50 consecutively diagnosed muscle invasive urinary bladder carcinoma (T2-4a N0-2, M0) patients were included in this retrospective study. All these patients received external beam RT to a median dose of 60 Gy (range 30-66 Gy), and were not suitable for radical surgery due to patients' preference or medical comorbidities. A stepwise procedure using proportional hazard regression was used to identify prognostic factors with respect to survival. Completion trans-urethral resection of bladder tumor was done in 38 (76%) patients of the cohort and 47 (94%) had transitional cell carcinoma on histopathology. Clinical stage T2 was diagnosed in 40 (80%) patients. The median follow-up for the entire cohort was 14 ± 8.9 months (range 1-36 months). In conclusion, 24 patients (48%) were free of disease, 5 patients (10%) had residual disease, and 13 patients (26%) had died of disease. Two-year and 3 year overall survival of intact bladder for the entire cohort was 58% and 43.6%, respectively. Cox regression modeling strongly suggested clinical stage (P = 0.01) and RT dose (P = 0.001) as being predictors for overall survival. RT shows reliable outcomes and excellent compliance in this advanced disease. Prescribing a higher RT dose could potentially correlate to better intact bladder control rates while maintaining good quality of life in selected patients.

  15. Increased IGF-IEc expression and mechano-growth factor production in intestinal muscle of fibrostenotic Crohn's disease and smooth muscle hypertrophy.

    Science.gov (United States)

    Li, Chao; Vu, Kent; Hazelgrove, Krystina; Kuemmerle, John F

    2015-12-01

    The igf1 gene is alternatively spliced as IGF-IEa and IGF-IEc variants in humans. In fibrostenotic Crohn's disease, the fibrogenic cytokine TGF-β1 induces IGF-IEa expression and IGF-I production in intestinal smooth muscle and results in muscle hyperplasia and collagen I production that contribute to stricture formation. Mechano-growth factor (MGF) derived from IGF-IEc induces skeletal and cardiac muscle hypertrophy following stress. We hypothesized that increased IGF-IEc expression and MGF production mediated smooth muscle hypertrophy also characteristic of fibrostenotic Crohn's disease. IGF-IEc transcripts and MGF protein were increased in muscle cells isolated from fibrostenotic intestine under regulation by endogenous TGF-β1. Erk5 and MEF2C were phosphorylated in vivo in fibrostenotic muscle; both were phosphorylated and colocalized to nucleus in response to synthetic MGF in vitro. Smooth muscle-specific protein expression of α-smooth muscle actin, γ-smooth muscle actin, and smoothelin was increased in affected intestine. Erk5 inhibition or MEF2C siRNA blocked smooth muscle-specific gene expression and hypertrophy induced by synthetic MGF. Conditioned media of cultured fibrostenotic muscle induced muscle hypertrophy that was inhibited by immunoneutralization of endogenous MGF or pro-IGF-IEc. The results indicate that TGF-β1-dependent IGF-IEc expression and MGF production in patients with fibrostenotic Crohn's disease regulates smooth muscle cell hypertrophy a critical factor that contributes to intestinal stricture formation. Copyright © 2015 the American Physiological Society.

  16. Genetic and immunologic determinants of intravesical BCG therapy in non-muscle-invasive urothelial bladder cancer

    Directory of Open Access Journals (Sweden)

    Wojciech Krajewski

    2014-03-01

    Full Text Available Bladder cancer (BCA is one of the most common cancers. In 2010 in Poland, 6296 people developed bladder cancer and 3110 people died of it. Immunotherapy with BCG (Bacillus Calmette-Guérin is by far the most effective adjuvant therapy. Noninfiltrating muscle membrane changes, that is, stages Ta, Tis and T1 qualify for BCG immunotherapy. BCG immunotherapy comprises series of bladder instillations, containing attenuated strain of Mycobacterium bovis. The effectiveness of immunotherapy in non-invasive bladder cancer is 70% 5-year survival without recurrence of the tumor. The treatment leads to a reduction of the residual tumor mass, but also to the delay and/or prevention of relapse, disease progression and ultimately death. Cytokines, as key mediators of immune response, play an important role in the pathogenesis of bladder cancer, which occurrence is stimulated by the inflammatory process. BCG immunotherapy provokes an intensive immunological response by the increase of cytokine production. Genetic variants determine inter-individual differences in the incidence of this cancer, as well as the response to the therapy. This is evidenced by the presence of differences in genetic variants of cytokines correlated with the varied risk of bladder cancer incidence. It is believed that concentrations of particular cytokines in urine after installation of BCG may indicate response to the therapy. Increased levels of Th1 cytokines – IFN-γ, IL-2 and TNF-α are correlated with longer survival time without recurrence, whereas high levels of Th2 cytokines such as IL-10, predict unsuccessful BCG therapy.

  17. Multiple smooth muscle hamartoma: Case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Haydeh Ghaninezhadh

    2009-01-01

    Full Text Available Smooth muscle hamartoma (SMH is a proliferative disorder of cells originating from muscle cells. It is a benign tumoral mass that usually presents as a single congenital skin-colored and hypertrichotic plaque involving the trunk and extremities. Multiple SMHs have rarely been reported in the literature. We describe the case of a seven-month-old girl with multiple SMHs located over the back and arm areas. The diagnosis was confirmed by biopsy and immunohistochemical (IHC staining. She had no cerebral or skeletal abnormalities and her growth and development were normal.

  18. Smooth Muscle Tumor Originating in the Pleura: A Case Report and Updated Literature Review

    Directory of Open Access Journals (Sweden)

    Santiago Fabián Moscoso Martínez

    2016-01-01

    Full Text Available Smooth muscle tumors (SMTs of the pleura are exceptionally rare. At present and to the best of these authors’ knowledge, there are only 17 cases reported in the literature. We describe a case of a 51-year-old woman who complained of left sided pleuritic chest pain. Further, computed tomography (CT revealed a left sided localized pleural-based mass involving the 9th rib. She underwent an interventional radiology guided percutaneous core biopsy of the lesion, which disclosed a “Smooth Muscle Tumor of Undetermined Malignant Potential (SMT-UMP.” A video-assisted thoracoscopic surgery (VATS was performed for diagnosis and treatment purposes. Resections of the pleural-based mass and 9th rib were performed. SMT-UMP was the definitive diagnosis.

  19. Expression profile and protein translation of TMEM16A in murine smooth muscle

    DEFF Research Database (Denmark)

    Davis, Alison J; Forrest, Abigail S; Jepps, Thomas Andrew

    2010-01-01

    , and carotid artery. In isolated myocytes, fluorescence specific to a TMEM16A antibody was detected diffusely throughout the cytoplasm, as well as near the membrane. The same antibody used in Western blot analysis of lysates from vascular tissues also recognized an ∼147-kDa mouse TMEM16A-green fluorescent......(-) channels are a major depolarizing mechanism. Qualitatively similar Cl(-) currents were evoked by a pipette solution containing 500 nM Ca(2+) in smooth muscle cells isolated from BALB/c mouse portal vein, thoracic aorta, and carotid artery. Quantitative PCR using SYBR Green chemistry and primers specific...... for transmembrane protein (TMEM) 16A or the closely related TMEM16B showed TMEM16A expression as follows: portal vein > thoracic aorta > carotid artery > brain. In addition, several alternatively spliced variant transcripts of TMEM16A were detected. In contrast, TMEM16B expression was very low in smooth muscle...

  20. The relaxant effect of Nigella sativa on smooth muscles, its possible mechanisms and clinical applications

    Science.gov (United States)

    Keyhanmanesh, Rana; Gholamnezhad, Zahra; Boskabady, Mohammad Hossien

    2014-01-01

    Nigella sativa (N. sativa) is a spice plant which has been traditionally used for culinary and medicinal purposes. Different therapeutic properties including the beneficial effects on asthma and dyspnea, digestive and gynecology disorders have been described for the seeds of N. sativa. There is evidence of the relaxant effects of this plant and some of its constituents on different types of smooth muscle including rabbit aorta, rabbit jejunum and trachea. The relaxant effect of N. sativa could be of therapeutic importance such as bronchodilation in asthma, vasodilation in hypertension and therapeutic effect on digestive or urogenital disorders. Therefore in the present article, the relaxant effects of N. sativa and its constituents on smooth muscles and its possible mechanisms as well as clinical application of this effect were reviewed. PMID:25859297

  1. Effects of Gymnodinium breve toxin on the smooth muscle preparation of guinea-pig ileum

    Science.gov (United States)

    Grunfeld, Y.; Spiegelstein, M.Y.

    1974-01-01

    1 The effects of Gymnodinium breve neurotoxin (GT) on smooth muscles were studied using the guinea-pig isolated ileum. 2 The toxin caused strong spasmogenic effects at 1-4 μg/ml, characterized by prolonged tonic contraction with superimposed pronounced pendular movements. Tachyphylaxis was observed upon administration of successive doses. 3 Atropine blocked the contractile response elicited by GT, whereas mepyramine and hexamethonium failed to do so. These findings tentatively suggested a cholinergic involvement at a post-ganglionic site of action. 4 In the presence of tetrodotoxin the effects of GT were abolished, excluding direct action of the toxin on the smooth muscle. 5 It is concluded that GT exerts its spasmogenic effects through stimulation of the post-ganglionic cholinergic nerve fibres. PMID:4155337

  2. Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle-alpha-actin gene

    Science.gov (United States)

    Smooth muscle a actin (SMA) is a cytoskeletal protein expressed by mesenchymal and smooth muscle cell types, including mural cells(vascular smooth muscle cells and pericytes). Using Bacterial Artificial Chromosome (BAC) recombineering technology, we generated transgenic reporter mice that express a ...

  3. Rho-kinase inhibitors augment the inhibitory effect of propofol on rat bronchial smooth muscle contraction.

    Science.gov (United States)

    Hanazaki, Motohiko; Yokoyama, Masataka; Morita, Kiyoshi; Kohjitani, Atsushi; Sakai, Hiroyasu; Chiba, Yoshihiko; Misawa, Miwa

    2008-06-01

    Airway smooth muscle contraction is not caused by the increase in intracellular Ca(2+) ([Ca(2+)](i)) alone because agonist stimulation increases tension at the same [Ca(2+)](i) (increase in Ca(2+) sensitivity). The small G protein Rho A and Rho-kinase (ROCK) play important roles in the regulation of Ca(2+) sensitivity. In this study, we investigated the effects of three ROCK inhibitors (fasudil, Y-27632, and H-1152) on rat airway smooth muscle contraction and the effects of ROCK inhibitors on propofol-induced bronchodilatory effects. Ring strips from intrapulmonary bronchus of male Wistar rats were placed in 400-microL organ baths containing Krebs-Henseleit solution. After obtaining stable contraction with 30 microM acetylcholine, (1) propofol (1 microM-1 mM) was cumulatively applied; (2) cumulative doses of Y-27632 (0.01-300 microM), fasudil (0.01-100 microM), or H-1152 (0.01-100 microM) were applied; (3) propofol (1 microM-1 mM), with Y-27632, fasudil or H-1152 (0.03 microM or 0.1 microM), was cumulatively applied. (1) Propofol produced concentration-dependent relaxation of rat bronchial smooth muscle. (2) All ROCK inhibitors produced concentration-dependent relaxation. (3) 0.03 microM Y-27632 and fasudil had no significant effect on the concentration-response curve for propofol, while 0.1 microM of both agents significantly shifted concentration-response curves to the left and decreased EC(50). H-1152 (both 0.03 microM and 0.1 microM) significantly sifted the concentration-response curve for propofol to the left and decreased EC(50). ROCK inhibitors, especially H-1152, can attenuate the contraction of rat airway smooth muscle. The combined use of ROCK inhibitors and propofol causes greater relaxation.

  4. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Tharciano Luiz Teixeira Braga da Silva

    2015-01-01

    Full Text Available Abstract Background: Hypertension is a public health problem and increases the incidence of cardiovascular diseases. Objective: To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME-induced hypertensive rats. Methods: Wistar rats were divided into three groups: control (C, hypertensive (H, and exercised hypertensive (EH. Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN, potassium chloride (KCl and sodium nitroprusside (SNP. Results: Rats treated with L-NAME showed an increase (p < 0.001 in systolic blood pressure (SBP, diastolic blood pressure (DBP and mean arterial pressure (MAP compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001 the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01 smooth muscle sensitivity to NPS was observed in group EH as compared to group H. Conclusion: One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  5. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  6. Inhibition of extracellular matrix production and remodeling by doxycycline in smooth muscle cells

    OpenAIRE

    Rogelio Palomino-Morales; Carolina Torres; Sonia Perales; Ana Linares; Maria Jose Alejandre

    2016-01-01

    Alterations in the extracellular matrix (ECM) production and remodeling of smooth muscle cells (SMCs) have been implicated in processes related to the differentiation in atherosclerosis. Due to the anti-atherosclerotic properties of the tetracyclines, we aimed to investigate whether cholesterol supplementation changes the effect of doxycycline over the ECM proteins synthesis and whether isoprenylated proteins and Rho A protein activation are affected. SMC primary culture isolated from chicks ...

  7. Smooth muscle caldesmon modulates peristalsis in the wild type and non-innervated zebrafish intestine

    Science.gov (United States)

    ABRAMS, J.; DAVULURI, G.; SEILER, C.; PACK, M.

    2013-01-01

    Background The high molecular weight isoform of the actin-binding protein Caldesmon (h-CaD) regulates smooth muscle contractile function by modulating cross-bridge cycling of myosin heads. The normal inhibitory activity of h-CaD is regulated by the enteric nervous system; however, the role of h-CaD during intestinal peristalsis has never been studied. Methods We identified a zebrafish paralog of the human CALD1 gene that encodes an h-CaD isoform expressed in intestinal smooth muscle. We examined the role of h-CaD during intestinal peristalsis in zebrafish larvae by knocking down the h-CaD protein using an antisense morpholino oligonucleotide. We also developed transgenic zebrafish that express inhibitory peptides derived from the h-CaD myosin and actin-binding domains, and examined their effect on peristalsis in wild-type zebrafish larvae and sox10colourless mutant larvae that lack enteric nerves. Key Results Genomic analyses identified two zebrafish Caldesmon paralogs. The cald1a ortholog encoded a high molecular weight isoform generated by alternative splicing whose intestinal expression was restricted to smooth muscle. Propulsive intestinal peristalsis was increased in wild-type zebrafish larvae by h-CaD knockdown and by expression of transgenes encoding inhibitory myosin and actin-binding domain peptides. Peristalsis in the non-innervated intestine of sox10colourless larvae was partially restored by h-CaD knockdown and expression of the myosin-binding peptide. Conclusions & Inferences Disruption of the normal inhibitory function of h-CaD enhances intestinal peristalsis in both wild-type zebrafish larvae and mutant larvae that lack enteric nerves, thus confirming a physiologic role for regulation of smooth muscle contraction at the actin filament. PMID:22316291

  8. Distinct Function of Estrogen Receptor α in Smooth Muscle and Fibroblast Cells in Prostate Development

    OpenAIRE

    Vitkus, Spencer; Yeh, Chiuan-Ren; Lin, Hsiu-Hsia; Hsu, Iawen; Yu, Jiangzhou; Chen, Ming; Yeh, Shuyuan

    2012-01-01

    Estrogen signaling, through estrogen receptor (ER)α, has been shown to cause hypertrophy in the prostate. Our recent report has shown that epithelial ERα knockout (KO) will not affect the normal prostate development or homeostasis. However, it remains unclear whether ERα in different types of stromal cells has distinct roles in prostate development. This study proposed to elucidate how KO of ERα in the stromal smooth muscle or fibroblast cells may interrupt cross talk between prostate stromal...

  9. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells

    International Nuclear Information System (INIS)

    Edwards, I.J.; Wagner, W.D.; Owens, R.T.

    1990-01-01

    Arterial dermatan sulfate proteoglycan has been shown to increase with atherosclerosis progression, but factors responsible for this increase are unknown. To test the hypothesis that smooth muscle cell proteoglycan synthesis may be modified by macrophage products, pigeon arterial smooth muscle cells were exposed to the media of either cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1. Proteoglycans radiolabeled with [35S]sulfate and [3H]serine were isolated from culture media and smooth muscle cells and purified following precipitation with 1-hexadecylpyridinium chloride and chromatography. Increasing concentrations of macrophage-conditioned media were associated with a dose-response increase in [35S]sulfate incorporation into secreted proteoglycans, but there was no change in cell-associated proteoglycans. Incorporation of [3H]serine into total proteoglycan core proteins was not significantly different (5.2 X 10(5) dpm and 5.5 X 10(5) disintegrations per minute (dpm) in control and conditioned media-treated cultures, respectively), but selective effects were observed on individual proteoglycan types. Twofold increases in dermatan sulfate proteoglycan and limited degradation of chondroitin sulfate proteoglycan were apparent based on core proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Immunoinhibition studies indicated that interleukin-1 was involved in the modulation of proteoglycan synthesis by macrophage-conditioned media. These data provide support for the role of macrophages in alteration of the matrix proteoglycans synthesized by smooth muscle cells and provide a mechanism to account for the reported increased dermatan sulfate/chondroitin sulfate ratios in the developing atherosclerotic lesion

  10. Inhibitory mechanism of xestospongin-C on contraction and ion channels in the intestinal smooth muscle.

    Science.gov (United States)

    Ozaki, Hiroshi; Hori, Masatoshi; Kim, Yoon-Sun; Kwon, Seong-Chun; Ahn, Duck-Sun; Nakazawa, Hiroshi; Kobayashi, Motomasa; Karaki, Hideaki

    2002-12-01

    1. Xestospongin-C isolated from a marine sponge, Xestospongia sp., has recently been shown to be a membrane-permeable IP(3) receptor inhibitor. In this study we examined the effects of this compound on smooth muscle from guinea-pig ileum. 2. In guinea-pig ileum permeabilized with alpha-toxin, xestospongin-C (3 microM) inhibited contractions induced by Ca(2+) mobilized from sarcoplasmic reticulum (SR) with IP(3) or carbachol with GTP, but not with caffeine. 3. In intact smooth muscle tissue, xestospongin-C (3-10 microM) inhibited carbachol- and high-K+-induced increases in [Ca(2+)](i) and contractions at sustained phase. 4. It also inhibited voltage-dependent inward Ba(2+) currents in a concentration-dependent manner with an IC(50) of 0.63 microM. Xestospongin-C (3-10 microM) had no effect on carbachol-induced inward Ca(2+) currents via non-selective cation channels; but it did reduce voltage-dependent K+ currents in a concentration-dependent manner with an IC(50) of 0.13 microM. 5. These results suggest that xestospongin-C inhibits the IP(3) receptor but not the ryanodine receptor in smooth muscle SR membrane. In intact smooth muscle cells, however, xestospongin-C appears to inhibit voltage-dependent Ca(2+) and K+ currents at a concentration range similar to that at which it inhibits the IP(3) receptor. Xestospongin-C is a selective blocker of the IP(3) receptor in permeabilised cells but not in cells with intact plasma membrane.

  11. S100A12 and the Airway Smooth Muscle: Beyond Inflammation and Constriction

    OpenAIRE

    Camoretti-Mercado, Blanca; Karrar, Eltayeb; Nu?ez, Luis; Bowman, Marion A Hofmann

    2012-01-01

    Airway inflammation, lung remodeling, and Airway Hyperresponsiveness (AHR) are major features of asthma and Chronic Obstructive Pulmonary Disease (COPD). The inflammatory response to allergens, air pollutants, and other insults is likely to play a key role in promoting structural changes in the lung including the overabundance of Airway Smooth Muscle (ASM) seen in asthmatics. These alterations or remodeling could, in turn, impact the immunmodulatory actions of the ASM, the ASM's contractile p...

  12. Nitroblue tetrazolium blocks BK channels in cerebrovascular smooth muscle cell membranes

    OpenAIRE

    Ye, D; Pospisilik, J A; Mathers, D A

    2000-01-01

    The effects of p-nitroblue tetrazolium (NBT) on large conductance, calcium-activated potassium channels (BK channels) in enzymatically dispersed rat cerebrovascular smooth muscle cells (CVSMCs) were examined.Patch clamp methods were employed to record single BK channel currents from inside-out patches of CVMC membrane maintained at 21–23°C.When applied to the cytoplasmic face of inside-out membrane patches (internally applied NBT), micromolar concentrations of NBT reversible reduced the mean ...

  13. Human induced pluripotent stem cell-derived vascular smooth muscle cells

    DEFF Research Database (Denmark)

    Ayoubi, Sohrab; Sheikh, Søren P; Eskildsen, Tilde V

    2017-01-01

    PSCs into specialized cell types such as cardiomyocytes, endothelial cells, and vascular smooth muscle cells (VSMCs) may lead to a better understanding of developmental cardiovascular processes and potentiate progress of safe autologous regenerative therapies in pathological conditions. In this review, we summarize......Cardiovascular diseases remain the leading cause of death worldwide and current treatment strategies have limited effect of disease progression. It would be desirable to have better models to study developmental and pathological processes and model vascular diseases in laboratory settings...

  14. Non-vascular smooth muscle cells in the human choroid: distribution, development and further characterization

    Science.gov (United States)

    May, Christian Albrecht

    2005-01-01

    To characterize further non-vascular smooth muscle cells (NVSMC) in the choroid of the human eye, extensive morphological studies were performed including a three-dimensional distribution of NVSMC in the adult human eye and their appearance during development. Whole mounts and sections through the choroid and sclera of eyes of 42 human donors (between the 13th week of gestation and 89 years of age) were stained with antibodies against smooth muscle actin and other markers for smooth muscle cells. On the basis of their morphological localization, three groups of NVSMC could be distinguished in the adult eyes: (a) a semicircular arrangement of NVSMC in the suprachoroid and inner sclera, around the entry of posterior ciliary arteries and nerves; (b) NVSMC parallel to the vessels in the posterior eye segment between the point of entry of the posterior ciliary arteries and the point of exit of the vortex veins; and (c) a dense plaque-like arrangement of NVSMC in the suprachoroid, overlying the foveal region. The last of these groups showed most pronounced interindividual differences. During development, the first NVSMC to be observed at the 20th week of gestation belonged to group b. A complete NVSMC network was first observed in a 6-year-old donor eye. All three groups stained positive for smoothelin, caldesmon and calponin in all localizations. The NVSMC show a distinct distribution that might reflect different aspects of their function in the choroid and suprachoroid. All cells could be histochemically characterized as truly contractile. PMID:16191166

  15. Reflex tracheal smooth muscle contraction and bronchial vasodilation evoked by airway cooling in dogs.

    Science.gov (United States)

    Pisarri, T E; Giesbrecht, G G

    1997-05-01

    Cooling intrathoracic airways by filling the pulmonary circulation with cold blood alters pulmonary mechanoreceptor discharge. To determine whether this initiates reflex changes that could contribute to airway obstruction, we measured changes in tracheal smooth muscle tension and bronchial arterial flow evoked by cooling. In nine chloralose-anesthetized open-chest dogs, the right pulmonary artery was cannulated and perfused; the left lung, ventilated separately, provided gas exchange. With the right lung phasically ventilated, filling the right pulmonary circulation with 5 degrees C blood increased smooth muscle tension in an innervated upper tracheal segment by 23 +/- 6 (SE) g from a baseline of 75 g. Contraction began within 10 s of injection and was maximal at approximately 30s. The response was abolished by cervical vagotomy. Bronchial arterial flow increased from 8 +/- 1 to 13 +/- 2 ml/min, with little effect on arterial blood pressure. The time course was similar to that of the tracheal response. This response was greatly attenuated after cervical vagotomy. Blood at 20 degrees C also increased tracheal smooth muscle tension and bronchial flow, whereas 37 degrees C blood had little effect. The results suggested that alteration of airway mechanoreceptor discharge by cooling can initiate reflexes that contribute to airway obstruction.

  16. Smooth muscle myosin inhibition: a novel therapeutic approach for pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    David Ho

    Full Text Available Pulmonary hypertension remains a major clinical problem despite current therapies. In this study, we examine for the first time a novel pharmacological target, smooth muscle myosin, and determine if the smooth muscle myosin inhibitor, CK-2019165 (CK-165 ameliorates pulmonary hypertension.Six domestic female pigs were surgically instrumented to measure pulmonary blood flow and systemic and pulmonary vascular dynamics. Pulmonary hypertension was induced by hypoxia, or infusion of the thromboxane analog (U-46619, 0.1 µg/kg/min, i.v.. In rats, chronic pulmonary hypertension was induced by monocrotaline.CK-165 (4 mg/kg, i.v. reduced pulmonary vascular resistance by 22±3 and 28±6% from baseline in hypoxia and thromboxane pig models, respectively (p<0.01 and 0.01, while mean arterial pressure also fell and heart rate rose slightly. When CK-165 was delivered via inhalation in the hypoxia model, pulmonary vascular resistance fell by 17±6% (p<0.05 while mean arterial pressure and heart rate were unchanged. In the monocrotaline model of chronic pulmonary hypertension, inhaled CK-165 resulted in a similar (18.0±3.8% reduction in right ventricular systolic pressure as compared with sildenafil (20.3±4.5%.Inhibition of smooth muscle myosin may be a novel therapeutic target for treatment of pulmonary hypertension.

  17. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    Science.gov (United States)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (PFlow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  18. Potentiation of contraction of rabbit airway smooth muscle by some cyclooxygenase products.

    Science.gov (United States)

    Armour, C L; Johnson, P R; Black, J L

    1988-06-01

    An alteration in smooth muscle sensitivity may be one of the mechanisms of the airway hyperresponsiveness observed in asthma. Indomethacin inhibits experimentally induced airway hyperresponsiveness. We thus examined the effects of the cyclooxygenase products PGD2, PGF2 alpha and a thromboxane A2 analogue U46619 on contractile responses of rabbit airway smooth muscle to histamine, carbachol and electrical field stimulation (EFS). PGD2 did not potentiate any contractile responses. When PGF2 alpha (1 microM) was administered 30 min before cumulative concentration-response curves to histamine and carbachol, no potentiation was observed. However, PGF2 alpha (1 microM) added immediately before EFS and bolus doses of histamine potentiated the contractile responses. U46619 increased the cumulative concentration-responses to both histamine and carbachol. The fact that we could alter smooth muscle sensitivity in vitro with PGF2 alpha and a thromboxane analogue suggests that these mediators may be involved in the airway hyperresponsiveness observed in asthma.

  19. Immunohistochemical characterization of endometriosis-associated smooth muscle cells in human peritoneal endometriotic lesions.

    Science.gov (United States)

    Barcena de Arellano, Maria L; Gericke, Jessica; Reichelt, Uta; Okuducu, Ali Fuat; Ebert, Andreas D; Chiantera, Vito; Schneider, Achim; Mechsner, Sylvia

    2011-10-01

    Smooth muscle cells (SMC) are common components of endometriotic lesions. SMC have been characterized previously in peritoneal, ovarian and deep infiltrating endometriotic lesions and adenomyosis. The aim of this retrospective study was to investigate the extent of differentiation in endometriosis-associated SMC (EMaSMC) in peritoneal endometriotic lesions. We obtained biopsies from peritoneal endometriotic lesions (n = 60) and peritoneal sites distant from the endometriotic lesion (n = 60), as well as healthy peritoneum from patients without endometriosis (control tissue, n = 10). These controls were hysterectomy specimens from patients without endometriosis or adenomyosis. Histopathological examination of peritoneal specimens using antibodies against oxytocin receptor (OTR), vasopressin receptor (VPR), smooth muscle myosin heavy chain (SM-MHC), estrogen receptor (ER) or progesterone receptor (PR) was performed. To identify SMC and their level of differentiation, antibodies for smooth muscle actin desmin and caldesmon were used. SMC were detected in all endometriotic lesions. SMC were more abundant in unaffected peritoneum of women with endometriosis (38%) compared with women without endometriosis (6%; P endometriosis.

  20. Overexpression of functional TrkA receptors after internalisation in human airway smooth muscle cells.

    Science.gov (United States)

    Freund-Michel, Véronique; Frossard, Nelly

    2008-10-01

    Trafficking of the TrkA receptor after stimulation by NGF is of emerging importance in structural cells in the context of airway inflammatory diseases. We have recently reported the expression of functional TrkA receptors in human airway smooth muscle cells (HASMC). We have here studied the TrkA trafficking mechanisms in these cells. TrkA disappearance from the cell membrane was induced within 5 min of NGF (3pM) stimulation. Co-immunoprecipitation of clathrin-TrkA was revealed, and TrkA internalisation inhibited either by clathrin inhibitors or by siRNA inducing downregulation of endogenous clathrin. TrkA internalised receptors were totally degraded in lysosomes, with no recycling phenomenon. Newly synthesized TrkA receptors were thereafter re-expressed at the cell membrane within 10 h. TrkA re-synthesis was inhibited by blockade of clathrin-dependent internalisation, but not of TrkA receptors lysosomal degradation. Finally, we observed that NGF multiple stimulations progressively increased TrkA expression in HASMC, which was associated with an increase in NGF/TrkA-dependent proliferation. In conclusion, we show here the occurrence of clathrin-dependent TrkA internalisation and lysosomal degradation in the airway smooth muscle, followed by upregulated re-synthesis of functional TrkA receptors and increased proliferative effect in the human airway smooth muscle. This may have pathophysiological consequences in airway inflammatory diseases.

  1. Gastric mucosal smooth muscles may explain oscillations in glandular pressure: role of vasoactive intestinal peptide.

    Science.gov (United States)

    Synnerstad, I; Ekblad, E; Sundler, F; Holm, L

    1998-02-01

    Oscillating (3-7 cycles/min) high pressures in gastric glands during acid secretion suggest the existence of rhythmically contracting mucosal muscles. The aim of this study was to study vasoactive intestinal peptide (VIP), an inhibitory neurotransmitter in the gastrointestinal tract, in relation to mucosal muscles, glandular pressure, and blood flow. Rat, dog, and human mucosae were examined immunocytochemically for smooth muscle actin and VIP. Glandular pressure was measured using microelectrodes, red blood cell velocity (V[RBC]) was measured using a cross-correlation technique, and blood flow was measured using laser Doppler flowmetry in exposed gastric mucosa of thiobutabarbital sodium-anesthetized rats. Actin immunostaining showed muscle strands arising from muscularis mucosae, extending toward the gastric pits. VIP-immunoreactive nerve fibers were found in close relation to these muscles. VIP, administered intra-arterially close to the stomach (2 microg/kg bolus, followed by 10 microg x kg[-1] x h[-1]), significantly decreased glandular pressure from 18.2 +/- 1.6 to 8.9 +/- 1.6 mm Hg and almost eliminated the pressure oscillations. VIP infusion also abolished the oscillations in V(RBC) and significantly increased blood flow by approximately 35%. Contracting mucosal muscles may be responsible for oscillations in glandular pressure and possibly also in V(RBC). VIP probably relaxes these muscles.

  2. Bladder preservation in the treatment of muscle-invasive bladder cancer (MIBC): a review of the literature and a practical approach to therapy.

    Science.gov (United States)

    Smith, Zachary L; Christodouleas, John P; Keefe, Stephen M; Malkowicz, S Bruce; Guzzo, Thomas J

    2013-07-01

    WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Bladder preservation therapies for muscle-invasive bladder cancer (MIBC) have been developed to address the needs of two cohorts: patients with severe medical co-morbidities for whom radical cystectomy is too high risk and patients with limited disease who wish to avoid aggressive surgery. There are multiple bladder preservation options, although the trimodal approach of maximal transurethral resection with chemoradiotherapy is the most strongly supported. While outcomes are worse for patients unfit for surgery than those otherwise fit for surgery, bladder preservation approaches still offer curative potential. We present a comprehensive review of the literature and outline a practical approach to bladder preservation therapy for MIBC. This review aims to help urologists easily navigate through the decision tree of therapeutic options. Radical cystectomy (RC) is associated with considerable morbidity. Aside from the perioperative period, RC with urinary diversion poses great potential for long-term complications and morbidity. Bladder preservation therapies for muscle-invasive bladder cancer (MIBC) have been developed to address the needs of two cohorts: patients with severe medical co-morbidities for whom a radical surgery is too high risk and patients with limited disease who wish to avoid radical surgery. The goal of achieving complete response to treatment while maintaining bladder form and function has led to the development of multimodal approaches to this disease. There are multiple bladder preservation options, although the trimodal approach of maximal transurethral resection with chemoradiotherapy is the most strongly supported. In medically operable patients ('fit' for surgery), there is abundant evidence to support trimodal therapy as an acceptable treatment option for highly selected patients with MIBC with favourable pathological parameters. While outcomes are worse for medically inoperable

  3. Long-term results of radiation combined with cisplatin in localized muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Hara, Takahiro; Nishijima, Jun; Miyachika, Yoshihiro; Yamamoto, Yoshiaki; Nagao, Kazuhiro; Sakano, Shigeru; Matsuyama, Hideyasu; Naito, Katsusuke

    2011-01-01

    Although radical cystectomy is the standard treatment for localized muscle invasive-bladder cancer, bladder preservation therapies have been tried for selective patients in several institutes. However, the indication of bladder preservation therapy remains controversial. To select patients who are good candidates for bladder preservation therapy, we evaluated our long-term experience with radiation therapy (conformal radiotherapy (CRT)) combined with cisplatin. Between 1994 and 2009, 90 patients with bladder cancer (clinical stage T2-4N0M0) with no evidence of upper urinary tract cancer were treated with CRT. The response was evaluated by transurethral resection (TUR) of the tumor, urine cytology and CT scan. Thirty-seven cases (41.1%) achieved pathological complete response (CR) which was defined as no microscopic residual tumor in the bladder. After TUR, 74 cases (82.2%) achieved local control of the cancer that was considered as clinical CR. Among 16 patients for whom clinical CR was not achieved, 8 cases were treated with immediate radical cystectomy. We evaluated the long-term results of CRT in 82 cases with bladder preservation. The median follow-up was 36.6 months (range, 4.1-155.1). The five-year overall survival rate and the 5-year progression-free survival rate were 73.0% and 59.2%, respectively. Clinical T stage and type of tumor (primary or recurrent) were prognostic factors for overall survival (p=0.003 and p=0.017). Likewise, clinical T stage and type of tumor were prognostic factors for progression-free survival (p=0.022 and p=0.033). In addition, primary cT2 cases had a significantly better prognosis than those with other T stage and recurrence in overall survival and progression-free survival (p=0.007 and p=0.018). Based on these data, we concluded that primary cT2 tumors were good candidates for radiation combined with cisplatin for bladder preservation therapy. (author)

  4. THE ROLE OF GASOTRANSMITTERS IN REGULATING OF THE FUNCTIONS OF SMOOTH MUSCLES: THE POSSIBLE EFFECTOR SYSTEMS

    Directory of Open Access Journals (Sweden)

    I. V. Kovalev

    2014-01-01

    Full Text Available Influence of gasotransmitters carbon monoxide (CO and hydrogen sulfide (H2S on the electrical and contractile activities of smooth muscle cells (SMCs of the guinea pig ureter and rat aorta were studied by methods of double sucrose bridge and mechanography. It has been shown that CO causes a dose-dependent decrease of the contractile response of SMCs of the ureter and rat aorta and also reduces the amplitude and duration of the action potential plateau. Against the background of the action of biologically active substances, agonists α1-adrenergetic and H1-histaminergetic receptors (phenylephrine and histamine, respectively, these effects of CO donor (CORM II were amplified. The inhibitory effect of CO on the parameters of the contractile and electrical activities of smooth muscles is attenuated by blocking potassium channels of plasma membrane with tetraethylammonium (TEA or inhibition of soluble guanylate cyclase (ODQ [1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-l-one]. Thus, the effects of carbon monoxide on the electrical and contractile activities of SMCs are associated with an increase potassium conductivity of the membrane or the activation of soluble guanylate cyclase.In experiments with a donor of hydrogen sulfide (NaHS, it was shown, that it has an activating effect on the electrical and contractile activities of smooth muscles of the guinea pig ureter, which is caused by the action of potassium conductivity of the membrane. Activating effect of H2S on the contractile properties of SMCs of the guinea pig ureter decreased by blocking ATP-dependent channels with glibenclamide. Analysis of the effect of H2S on sodium and calcium conductance of the membrane smooth muscles of the ureter using modified sodium-free and TEA- containing Krebs solution showed that the contribution of potassium conductance is mainly sold at high concentrations (100 and 1000 μmol donor NaHS. Probably, that the impact of low concentrations of NaHS (10 μmol on the

  5. Pathway of programmed cell death and oxidative stress induced by β-hydroxybutyrate in dairy cow abomasum smooth muscle cells and in mouse gastric smooth muscle.

    Directory of Open Access Journals (Sweden)

    Wulin Tian

    Full Text Available The administration of exogenous β-hydroxybutyrate (β-HB, as well as fasting and caloric restriction, is a condition associated with β-HB abundance and decreased appetite in animals. Increased β-HB and decreased appetite exist simultaneously in some diseases, such as bovine left displaced abomasums (LDA and human chronic gastritis. However, the effects of β-HB on stomach injuries have not been explored. To elucidate the possible effects of exogenous β-HB on the stomach, mice were injected intraperitoneally with β-HB, and bovine abomasum smooth muscle cells (BSMCs were treated with different concentrations of β-HB. We found that β-HB induced BSMCs endoplasmic reticulum- and mitochondria-mediated apoptotic cell death. β-HB promoted Bax expression and caspase-12, -9, and -3 activation while blocking Bcl-2 expression. β-HB also promoted AIF, EndoG release and p53 expression. β-HB acted on key molecules in the apoptotic cell death pathway and increased p38 and c-June NH2-terminal kinase phosphorylation while inhibiting ERK phosphorylation and PCNA expression. β-HB upregulated P27 and P21 mRNA levels while downregulating cyclin and CDK mRNA levels, arresting the cell cycle. These results suggest that BSMCs treated with β-HB can induce oxidative stress, which can be prevented by intracellular calcium chelators BAPTA/AM but not antioxidant NAC. Additionally, these results suggest that β-HB causes ROS generation through a Ca2+-dependent mechanism and that intracellular Ca2+ levels play a critical role in β-HB -induced apoptotic cell death. The impact of β-HB on programmed cell death and oxidative stress in vivo was confirmed in murine experiments. For the first time, we show oxidative stress effects of β-HB on smooth muscle. We propose that β-HB is a possible cause of some stomach diseases, including bovine LDA.

  6. Pathway of programmed cell death and oxidative stress induced by β-hydroxybutyrate in dairy cow abomasum smooth muscle cells and in mouse gastric smooth muscle.

    Science.gov (United States)

    Tian, Wulin; Wei, Teng; Li, Bin; Wang, Zhe; Zhang, Naisheng; Xie, Guanghong

    2014-01-01

    The administration of exogenous β-hydroxybutyrate (β-HB), as well as fasting and caloric restriction, is a condition associated with β-HB abundance and decreased appetite in animals. Increased β-HB and decreased appetite exist simultaneously in some diseases, such as bovine left displaced abomasums (LDA) and human chronic gastritis. However, the effects of β-HB on stomach injuries have not been explored. To elucidate the possible effects of exogenous β-HB on the stomach, mice were injected intraperitoneally with β-HB, and bovine abomasum smooth muscle cells (BSMCs) were treated with different concentrations of β-HB. We found that β-HB induced BSMCs endoplasmic reticulum- and mitochondria-mediated apoptotic cell death. β-HB promoted Bax expression and caspase-12, -9, and -3 activation while blocking Bcl-2 expression. β-HB also promoted AIF, EndoG release and p53 expression. β-HB acted on key molecules in the apoptotic cell death pathway and increased p38 and c-June NH2-terminal kinase phosphorylation while inhibiting ERK phosphorylation and PCNA expression. β-HB upregulated P27 and P21 mRNA levels while downregulating cyclin and CDK mRNA levels, arresting the cell cycle. These results suggest that BSMCs treated with β-HB can induce oxidative stress, which can be prevented by intracellular calcium chelators BAPTA/AM but not antioxidant NAC. Additionally, these results suggest that β-HB causes ROS generation through a Ca2+-dependent mechanism and that intracellular Ca2+ levels play a critical role in β-HB -induced apoptotic cell death. The impact of β-HB on programmed cell death and oxidative stress in vivo was confirmed in murine experiments. For the first time, we show oxidative stress effects of β-HB on smooth muscle. We propose that β-HB is a possible cause of some stomach diseases, including bovine LDA.

  7. Distribution of Matrix Metalloproteinases in Human Atherosclerotic Carotid Plaques and Their Production by Smooth Muscle Cells and Macrophage Subsets

    NARCIS (Netherlands)

    Jager, Nynke A.; de Vries, Bastiaan M. Wallis; Hillebrands, Jan-Luuk; Harlaar, Niels J.; Tio, Rene A.; Slart, Riemer H. J. A.; van Dam, Gooitzen M.; Boersma, Hendrikus H.; Zeebregts, Clark J.; Westra, Johanna

    In this study, the potential of matrix metalloproteinase (MMP) sense for detection of atherosclerotic plaque instability was explored. Secondly, expression of MMPs by macrophage subtypes and smooth muscle cells (SMCs) was investigated. Twenty-three consecutive plaques removed during carotid

  8. The Integrin-blocking Peptide RGDS Inhibits Airway Smooth Muscle Remodeling in a Guinea Pig Model of Allergic Asthma

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Bos, I. Sophie T.; Gosens, Reinoud; Halayko, Andrew J.; Zaagsma, Johan; Meurs, Herman

    2010-01-01

    Rationale: Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyper-responsiveness in asthma. The mechanisms driving these changes are, however, incompletely understood. Recently, an important role for extracellular matrix proteins in

  9. Whole animal knockout of smooth muscle alpha-actin does not alter excisional wound healing or the fibroblast-to-myofibroblast transition.

    Science.gov (United States)

    Tomasek, James J; Haaksma, Carol J; Schwartz, Robert J; Howard, Eric W

    2013-01-01

    The contractile phenotype and function of myofibroblasts have been proposed to play a critical role in wound closure. It has been hypothesized that smooth muscle α-actin expressed in myofibroblasts is critical for its formation and function. We have used smooth muscle α-actin-null mice to test this hypothesis. Full-thickness excisional wounds closed at a similar rate in smooth muscle α-actin-null and wild-type mice. In addition, fibroblasts in smooth muscle α-actin-null granulation tissue when immunostained with a monoclonal antibody that recognizes all muscle actin isoforms exhibited a myofibroblast-like distribution and a stress fiber-like pattern, showing that these cells acquired the myofibroblast phenotype. Dermal fibroblasts from smooth muscle α-actin-null and wild-type mice formed stress fibers and supermature focal adhesions, and generated similar amounts of contractile force in response to transforming growth factor-β1. Smooth muscle γ-actin and skeletal muscle α-actin were expressed in smooth muscle α-actin-null myofibroblasts, as shown by immunostaining, real-time polymerase chain reaction, and mass spectrometry. These results show that smooth muscle α-actin is not necessary for myofibroblast formation and function and for wound closure, and that smooth muscle γ-actin and skeletal muscle α-actin may be able to functionally compensate for the lack of smooth muscle α-actin in myofibroblasts. © 2012 by the Wound Healing Society.

  10. Fluorescence cystoscopy in patients with non-muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    I. G. Rusakov

    2015-01-01

    Full Text Available The main challenge of treating non-muscle invasive bladder cancer is multifocal tumors. Current methods of diagnosis are failed to detect all superficial flat tumor lesions in bladder mucosa. The use of fluorescence imaging with 5-aminolevulinic acid (5-ALA allows to improve the sensibility of routine cystoscopy, but low specificity decreases its diagnostic accuracy. The method of fluorescence imaging combined with local fluorescence spectroscopy developed in P.A. Herzen MCRI has been shown to increase the specificity from 71% to 84%. Thus, local fluorescence spectroscopy in visible fluorescence of 5-ALA-induced protoporphyrin allows to perform guided biopsy and decrease the rate of diagnostic mistakes. 

  11. Post-transcriptional regulation of MRE11 expression in muscle-invasive bladder tumours.

    Science.gov (United States)

    Martin, Rebecca M; Kerr, Martin; Teo, Mark T W; Jevons, Sarah J; Koritzinsky, Marianne; Wouters, Bradly G; Bhattarai, Selina; Kiltie, Anne E

    2014-02-28

    Predictive assays are needed to help optimise treatment in muscle-invasive bladder cancer, where patients can be treated by either cystectomy or radical radiotherapy. Our finding that low tumour MRE11 expression is predictive of poor response to radiotherapy but not cystectomy was recently independently validated. Here we investigated further the mechanism underlying low MRE11 expression seen in poorly-responding patients. MRE11 RNA and protein levels were measured in 88 bladder tumour patient samples, by real-time PCR and immunohistochemistry respectively, and a panel of eight bladder cancer cell lines was screened for MRE11, RAD50 and NBS1 mRNA and protein expression. There was no correlation between bladder tumour MRE11 protein and RNA scores (Spearman's rho 0.064, p=0.65), suggesting MRE11 is controlled post-transcriptionally, a pattern confirmed in eight bladder cancer cell lines. In contrast, NBS1 and RAD50 mRNA and protein levels were correlated (p=0.01 and p=0.03, respectively), suggesting primary regulation at the level of transcription. MRE11 protein levels were correlated with NBS1 and RAD50 mRNA and protein levels, implicating MRN complex formation as an important determinant of MRE11 expression, driven by RAD50 and NBS1 expression. Our findings of the post-transcriptional nature of the control of MRE11 imply that any predictive assays used in patients need to be performed at the protein level rather than the mRNA level.

  12. A network of 2-4 nm filaments found in sea urchin smooth muscle. Protein constituents and in situ localization.

    Science.gov (United States)

    Pureur, R P; Coffe, G; Soyer-Gobillard, M O; de Billy, F; Pudles, J

    1986-01-01

    In this report the coisolation of two proteins from sea urchin smooth muscle of apparent molecular weights (Mr) 54 and 56 kD respectively, as determined on SDS-PAGE, is described. Like the intermediate filament proteins, these two proteins are insoluble in high ionic strength buffer solution. On two-dimensional gel electrophoresis and by immunological methods it is shown that these proteins are not related (by these criteria) to rat smooth muscle desmin (54 kD) or vimentin (56 kD). Furthermore, in conditions where both desmin and vimentin assemble in vitro into 10 nm filaments, the sea urchin smooth muscle proteins do not assemble into filaments. Ultrastructural studies on the sea urchin smooth muscle cell show that the thin and thick filaments organization resembles that described in the vertebrate smooth muscle. However, instead of 10 nm filaments, a network of filaments, 2-4 nm in diameter, is revealed, upon removal of the thin and thick filaments by 0.6 M KCl treatment. By indirect immunofluorescence microscopy, and in particular by immunocytochemical electron microscopy studies on the sea urchin smooth muscle cell, it is shown that the antibodies raised against both 54 and 56 kD proteins appear to specifically label these 2-4 nm filaments. These findings indicate that both the 54 and 56 kD proteins might be constituents of this category of filaments. The possible significance of this new cytoskeletal element, that we have named echinonematin filaments, is discussed.

  13. A combination therapy of selective intraarterial anti-cancer drug infusion and radiation therapy for muscle-invasive bladder cancer

    International Nuclear Information System (INIS)

    Okuno, Yumiko; Zaitsu, Masayoshi; Mikami, Koji; Takeuchi, Takumi; Matsuda, Izuru; Arahira, Satoko

    2017-01-01

    The gold standard for the treatment of muscle-invasive bladder cancer Without metastasis is radical cystectomy. However, there increase patients very elderly and with serious complications. They are not good candidates for invasive surgical operation. Intraarterial infusion of 70 mg/m 2 of cisplatin and 30 mg/m 2 of pirarubicin into bilateral bladder arteries was conducted for 5 patients diagnosed with muscle invasive bladder cancers without distant metastasis. Right and left distribution of anti-cancer drugs was determined based on the location of bladder tumor(s). External beam radiation therapy was commenced immediately following intraarterial infusion. The patients were followed up with clinical and radiographic investigations and bladderbiopsy was performed as needed. Patients were all males who are smoking or with smoking history ranging from 73 to 85 years of age (median 82). The duration between transurethral resection of bladder tumors (TUR-Bt) and intraarterial infusion of anti-cancer drugs was 47.4 days (range 26-68), the median follow-up period after intraarterial infusion was 21.5 months (range 87-547) without death. Total radiation dose was 59.2 ±3.0 Gy. Complete remission was accomplished in all cases. One patient showed intravesical recurrence of non muscle-invasive tumors 45.8 months following intraarterial infusion and underwent TUR-Bt. Two cases underwent bladder biopsies showing no tumors. All patients but one case with bladder recurrence were free of tumor recurrence with radiographic investigation. For adverse events, acute renal failure was in one case and leukocytopenia was in all 5 cases, Grade 2 for one and Grade 3 for 4 cases. Follow-up periods are not long enough, but early results of a combination therapy of selective intraarterial anti-cancer drug infusion and radiation therapy for muscle-invasive bladder cancer were good. (author)

  14. Muscle invasive bladder cancer treated by transurethral resection, followed by external beam radiation and interstitial iridium-192

    International Nuclear Information System (INIS)

    Wijnmaalen, Arendjan; Helle, Peter A.; Koper, Peter C.M.; Jansen, Peter P.; Hanssens, Patrick E.J.; Boeken Kruger, Cornelis G.G.; Putten, Wim L.J. van

    1996-01-01

    Purpose: In our center interstitial radiation has played an important role in the treatment of bladder cancer patients for over 40 years. Radium needles, that were initially used, were replaced by caesium needles in 1983, whereas the afterloading iridium wire technique was adopted in 1989. Patients with solitary tumors (T1, T2 and T3) with a surface diameter of < 5 cm are considered for interstitial radiation. In this study we report on the results of the afterloading iridium wire technique in patients with muscle invasive bladder cancer. Materials and Methods: From May 1989 to September 1993 interstitial radiation using iridium wires was part of the treatment in 46 patients with muscle invasive bladder cancer (37 T2, 9 T3). The mean age was 67 years. After transurethral resection of all visible tumor (if possible), in most cases 40 Gy (20 x 2.0 Gy, midplane dose) external beam radiation was delivered to the true pelvis, followed by 30 Gy interstitial radiation using iridium-192 wires covering the tumor area in the bladder. Results: After a median follow-up of 26 months, bladder relapses occurred in 7 patients. In 5 of them the tumor relapsed in the initial area, in 1 patient elsewhere in the bladder and in 1 patient tumor recurred in and outside the initial site. Recurrence was superficial (T1) in 4 patients. A relapse in the urethra was found once. Metastases developed in 13 patients, in 8 without bladder relapse. During the observation period 17 patients died, 13 due to bladder cancer. The actuarial bladder relapse-free survival at 4 years was 74% and 82% for T2 and T3 tumors, respectively. The actuarial distant metastases-free survival was 65% for both categories. No serious toxicity was recorded. Conclusion: In a selected group of patients with muscle invasive bladder cancer transurethral resection in combination with external beam and interstitial radiation provides an excellent opportunity to preserve the bladder with a high chance of success. Development of

  15. Cystocele (Prolapsed Bladder)

    Science.gov (United States)

    ... Navigation Bladder Control Problems in Women (Urinary Incontinence) Kegel Exercises Cystocele (Prolapsed Bladder) Cystocele (Prolapsed Bladder) What ... a vaginal pessary, or surgery. Pelvic floor, or Kegel, exercises involve strengthening pelvic floor muscles. Strong pelvic ...

  16. Cytotoxic actions of palytoxin on aortic smooth muscle cells in culture.

    Science.gov (United States)

    Sheridan, Robert E; Deshpande, Sharad S; Adler, Michael

    2005-01-01

    Palytoxin (PTX), isolated from a zoanthid of the genus Palythoa, is the most potent marine toxin known. Intoxication by PTX leads to vasoconstriction, hemorrhage, ataxia, muscle weakness, ventricular fibrillation, pulmonary hypertension, ischemia and death. In this study, clonal A7r5 rat aortic smooth muscle cells were used to study the mechanism of PTX-mediated cytotoxicity. A7r5 cells exposed to PTX for > or = 15 min exhibited surface granularities, vacuoles and rounding. These alterations culminated in a loss of viability as indicated by marked increases in the release of lactate dehydrogenase. Electrophysiological recording from A7r5 cells disclosed a profound membrane depolarization and an increase in conductance to Na+ and K+. PTX-mediated cytotoxicity could not be reversed by washout or by the addition of 10 microM verapamil but was antagonized by 100 microM ouabain or by removal of extracellular Na+ or Ca2+. In light of the involvement of vascular smooth muscle in PTX poisoning, A7r5 cells could serve as a useful model to test specific drugs for treatment of PTX intoxication. 2005 John Wiley & Sons, Ltd.

  17. Mechanism of soman-induced contractions in canine tracheal smooth muscle. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Adler, M.; Moore, D.H.; Filbert, M.G.

    1992-12-31

    The actions of the irreversible organophosphorus cholinesterase (ChE) inhibitor soman were investigated on canine trachea smooth muscle in vitro. Concentrations of soman > or - 1 nM increased the amplitude and decay of contractions elicited by electric field stimulation. The effect on decay showed a marked dependence on stimulation frequency, undergoing a 2.4-fold increase between 3 and 60 Hz. Soman also potentiated tensions due to bath applied acetylcholine (ACh). Little or no potentiation was observed for contractions elicited by carbamylcholine, an agonist that is not hydrolyzed by ChE. Concentration of soman > or - 3 nM led to the appearance of sustained contractures. These contractures developed with a delayed onset and were well correlated with ChE activity. Alkylation of muscarinic receptors by propylbenzilylcholine mustard antagonized the actions of soman on both spontaneous and electrically-evoked muscle contractions. The results are consistent with a mechanism in which the toxic actions of soman are mediated by accumulation of neurally-released ACh secondary to inhibition of ChE activity. An important factor in this accumulation is suggested to be the buffering effect of the muscarinic receptors on the efflux of ACh from the neuroeffector junction. Tracheal smooth muscle, Cholinesterase inhibitors, Muscarinic receptor, Soman, Organophosphate.

  18. Bladder activation: afferent mechanisms.

    Science.gov (United States)

    Andersson, Karl-Erik

    2002-05-01

    The major function of the lower urinary tract is to store and periodically evacuate urine from the bladder. This requires coordination of the smooth muscles of the bladder and urethra, and of the striated muscles of the outflow region and pelvic floor by a complex neural control system. Lumbosacral afferent fibers (pelvic afferents), but also afferents in the hypogastric and pudendal nerves, are of major importance for the regulation of the mechanisms for continence and micturition. In the bladder, afferent nerves have been identified suburothelially as well as in the detrusor muscle. Suburothelially, they form a plexus that lies immediately beneath the epithelial lining. This plexus is particularly dense in the bladder neck and the trigone. The most important afferents for the micturition process are myelinated Adelta-fibers and unmyelinated C-fibers. Immunocytochemical and tracing studies have revealed that numerous peptides, including substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, enkephalins, and cholecystokinin are localized either alone, or in combination, in afferent pathways of the bladder and urethra. The receptors on these nerves include: vanilloid receptors, purinoceptors, tachykinin, and prostanoid receptors. Extracellular adenosine triphosphate (ATP) has been found to mediate excitation of small-diameter sensory neurons via P2X3 receptors, and it has been proposed that in the bladder, distention causes release of ATP from the urothelium. ATP, in turn, can activate P2X3 receptors on suburothelial afferent nerve terminals to evoke a neural discharge. However, it is most likely that a cascade of inhibitory and stimulatory transmitters/mediators, as well as ATP, are involved in the transduction mechanisms underlying the activation of afferent fibers during bladder filling.

  19. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics.

    Science.gov (United States)

    Coccarelli, Alberto; Edwards, David Hughes; Aggarwal, Ankush; Nithiarasu, Perumal; Parthimos, Dimitris

    2018-02-01

    Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α 1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase; and ryanodine, a diterpenoid that modulates Ca 2+ release from the sarcoplasmic reticulum. These interventions were able to delineate the role of membrane versus intracellular signalling, previously identified as main factors in smooth muscle contraction and the generation of vessel tone. Each SMC was modelled by a system of nonlinear differential equations that account for intracellular ionic signalling, and in particular Ca 2+ dynamics. Cytosolic Ca 2+ concentrations formed the catalytic input to a cross-bridge kinetics model. Contractile output from these cellular components forms the input to the finite-element model of the arterial rings under isometric conditions that reproduces the experimental conditions. The model does not account for the role of the endothelium, as the nitric oxide production was suppressed by the action of L-NAME, and also due to the absence of shear stress on the arterial ring, as the experimental set-up did not involve flow. Simulations generated by the integrated model closely matched experimental

  20. Bronchial thermoplasty and the role of airway smooth muscle: are we on the right direction?

    Science.gov (United States)

    Menzella, Francesco; Lusuardi, Mirco; Galeone, Carla; Facciolongo, Nicola

    2017-01-01

    Asthma is characterized by inflammation of the airways that includes eosinophils, basal membrane thickening, epithelial sloughing, vascular changes, smooth muscle hypertrophy and hyperplasia, and mucous gland hyperplasia. Recently, there have been studies on the role of hypersensitivity and inflammation in asthma, but the role of bronchial smooth muscle remains unclear. Bronchial thermoplasty is an endoscopic procedure that is approved by the US Food and Drug Administration (FDA) for the treatment of severe refractory asthma, based on the local delivery of radio frequency at 65°C to the airways, with the aim of controlling bronchospasm through a reduction of airway smooth muscle (ASM). Several recent studies have shown significant improvement in clinical outcomes of bronchial thermoplasty for asthma, including symptom control, reduction in exacerbation and hospitalization rates, improved quality of life, and reduction in number of working days or school days lost due to asthma. Data from these recent studies have shown reduction in ASM following bronchial thermoplasty and changes in inflammation patterns. It has also been argued that bronchial thermoplasty may have modulating effects on neuroendocrine epithelial cells, bronchial nerve endings, TRPV1 nerve receptors, and type-C unmyelinated fibers in the bronchial mucosa. This may involve interrupting the central and local reflexes responsible for the activation of bronchospasm in the presence of bronchial hyperreactivity. Several questions remain regarding the use of bronchial thermoplasty, mechanism of action, selection of appropriate patients, and long-term effects. In this review, the role of ASM in the pathogenesis of asthma and the key aspects of bronchial thermoplasty are discussed, with a focus on the potential clinical effects of this promising procedure, beyond the reduction in ASM.

  1. Vascular smooth muscle cell phenotypic changes in patients with Marfan syndrome.

    Science.gov (United States)

    Crosas-Molist, Eva; Meirelles, Thayna; López-Luque, Judit; Serra-Peinado, Carla; Selva, Javier; Caja, Laia; Gorbenko Del Blanco, Darya; Uriarte, Juan José; Bertran, Esther; Mendizábal, Yolanda; Hernández, Vanessa; García-Calero, Carolina; Busnadiego, Oscar; Condom, Enric; Toral, David; Castellà, Manel; Forteza, Alberto; Navajas, Daniel; Sarri, Elisabet; Rodríguez-Pascual, Fernando; Dietz, Harry C; Fabregat, Isabel; Egea, Gustavo

    2015-04-01

    Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms. This study explores whether Marfan's syndrome entails phenotypic alterations of VSMC and possible mechanisms at the subcellular level. Immunohistochemical and Western blotting analyses of dilated aortas from Marfan patients showed overexpression of contractile protein markers (α-smooth muscle actin, smoothelin, smooth muscle protein 22 alpha, and calponin-1) and collagen I in comparison with healthy aortas. VSMC explanted from Marfan aortic aneurysms showed increased in vitro expression of these phenotypic markers and also of myocardin, a transcription factor essential for VSMC-specific differentiation. These alterations were generally reduced after pharmacological inhibition of the TGF-β pathway. Marfan VSMC in culture showed more robust actin stress fibers and enhanced RhoA-GTP levels, which was accompanied by increased focal adhesion components and higher nuclear localization of myosin-related transcription factor A. Marfan VSMC and extracellular matrix measured by atomic force microscopy were both stiffer than their respective controls. In Marfan VSMC, both in tissue and in culture, there are variable TGF-β-dependent phenotypic changes affecting contractile proteins and collagen I, leading to greater cellular and extracellular matrix stiffness. Altogether, these alterations may contribute to the known aortic rigidity that precedes or accompanies Marfan's syndrome aneurysm formation. © 2015 American Heart Association, Inc.

  2. A key role for STIM1 in store operated calcium channel activation in airway smooth muscle

    Directory of Open Access Journals (Sweden)

    Peel Samantha E

    2006-09-01

    Full Text Available Abstract Background Control of cytosolic calcium plays a key role in airway myocyte function. Changes in intracellular Ca2+ stores can modulate contractile responses, modulate proliferation and regulate synthetic activity. Influx of Ca2+ in non excitable smooth muscle is believed to be predominantly through store operated channels (SOC or receptor operated channels (ROC. Whereas agonists can activate both SOC and ROC in a range of smooth muscle types, the specific trigger for SOC activation is depletion of the sarcoplasmic reticulum Ca2+ stores. The mechanism underlying SOC activation following depletion of intracellular Ca2+ stores in smooth muscle has not been identified. Methods To investigate the roles of the STIM homologues in SOC activation in airway myocytes, specific siRNA sequences were utilised to target and selectively suppress both STIM1 and STIM2. Quantitative real time PCR was employed to assess the efficiency and the specificity of the siRNA mediated knockdown of mRNA. Activation of SOC was investigated by both whole cell patch clamp electrophysiology and a fluorescence based calcium assay. Results Transfection of 20 nM siRNA specific for STIM1 or 2 resulted in robust decreases (>70% of the relevant mRNA. siRNA targeted at STIM1 resulted in a reduction of SOC associated Ca2+ influx in response to store depletion by cyclopiazonic acid (60% or histamine but not bradykinin. siRNA to STIM2 had no effect on these responses. In addition STIM1 suppression resulted in a more or less complete abrogation of SOC associated inward currents assessed by whole cell patch clamp. Conclusion Here we show that STIM1 acts as a key signal for SOC activation following intracellular Ca2+ store depletion or following agonist stimulation with histamine in human airway myocytes. These are the first data demonstrating a role for STIM1 in a physiologically relevant, non-transformed endogenous expression cell model.

  3. Bronchial thermoplasty and the role of airway smooth muscle: are we on the right direction?

    Directory of Open Access Journals (Sweden)

    Menzella F

    2017-09-01

    Full Text Available Francesco Menzella,1 Mirco Lusuardi,2 Carla Galeone,1 Nicola Facciolongo1 1Department of Medical Specialties, Pneumology Unit, IRCCS – Arcispedale Santa Maria Nuova, Reggio Emilia, 2Unit of Respiratory Rehabilitation, AUSL Reggio Emilia, S Sebastiano Hospital, Correggio, Italy Abstract: Asthma is characterized by inflammation of the airways that includes eosinophils, basal membrane thickening, epithelial sloughing, vascular changes, smooth muscle hypertrophy and hyperplasia, and mucous gland hyperplasia. Recently, there have been studies on the role of hypersensitivity and inflammation in asthma, but the role of bronchial smooth muscle remains unclear. Bronchial thermoplasty is an endoscopic procedure that is approved by the US Food and Drug Administration (FDA for the treatment of severe refractory asthma, based on the local delivery of radio frequency at 65°C to the airways, with the aim of controlling bronchospasm through a reduction of airway smooth muscle (ASM. Several recent studies have shown significant improvement in clinical outcomes of bronchial thermoplasty for asthma, including symptom control, reduction in exacerbation and hospitalization rates, improved quality of life, and reduction in number of working days or school days lost due to asthma. Data from these recent studies have shown reduction in ASM following bronchial thermoplasty and changes in inflammation patterns. It has also been argued that bronchial thermoplasty may have modulating effects on neuroendocrine epithelial cells, bronchial nerve endings, TRPV1 nerve receptors, and type-C unmyelinated fibers in the bronchial mucosa. This may involve interrupting the central and local reflexes responsible for the activation of bronchospasm in the presence of bronchial hyperreactivity. Several questions remain regarding the use of bronchial thermoplasty, mechanism of action, selection of appropriate patients, and long-term effects. In this review, the role of ASM in the

  4. Developmental origins of colon smooth muscle dysfunction in IBS-like rats.

    Science.gov (United States)

    Li, Qingjie; Winston, John H; Sarna, Sushil K

    2013-10-01

    Epidemiological studies show that subsets of adult and pediatric patients with irritable bowel syndrome (IBS) have prior exposures to psychological or inflammatory stress. We investigated the cellular mechanisms of colonic smooth muscle dysfunction in adult rats subjected to neonatal inflammation. Ten-day-old male rat pups received 2,4,6-trinitrobenzene sulfonic acid to induce colonic inflammation. Colonic circular smooth muscle strips were obtained 6 to 8 wk later. We found that about half of the neonate pups subjected to inflammatory insult showed a significant increase in expression of the pore-forming α1C-subunit of Cav1.2b channels in adult life. These were the same rats in whom Vip mRNA increased in the colon muscularis externae. Additional experiments showed reduced interaction of histone deacetylase (HDAC) 3 with α1C1b promoter that increased the acetylation of histone H3 lysine 9 (H3K9) in the core promoter region. Vasoactive intestinal peptide (VIP) treatment of naïve muscularis externae swiftly recruited CREB-binding protein (CBP) to the α1C1b promoter and dissociated HDAC3 from this region to initiate transcription. The CBP interaction with the α1C1b promoter was transient, but the dissociation of HDAC3 persisted to sustain H3K9 hyperacetylation and increase in transcription. Intraperitoneal treatment of adult naïve rats with butyrate mimicked the effects of neonatal colon inflammation. We concluded that neonatal inflammation upregulates VIP in the colon muscularis externae, which modulates epigenetic events at the α1C1b promoter to activate α1C1b gene transcription. Inflammatory insult in early life may be one of the etiologies of smooth muscle dysfunction in adult life, which contributes to the altered motility function in patients with diarrhea-predominant IBS.

  5. Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1.

    Science.gov (United States)

    Jayewickreme, Chenura D; Shivdasani, Ramesh A

    2015-09-01

    Diverse functions of the homeodomain transcription factor BARX1 include Wnt-dependent, non-cell autonomous specification of the stomach epithelium, tracheo-bronchial septation, and Wnt-independent expansion of the spleen primordium. Tight spatio-temporal regulation of Barx1 levels in the mesentery and stomach mesenchyme suggests additional roles. To determine these functions, we forced constitutive BARX1 expression in the Bapx1 expression domain, which includes the mesentery and intestinal mesenchyme, and also examined Barx1(-/)(-) embryos in further detail. Transgenic embryos invariably showed intestinal truncation and malrotation, in part reflecting abnormal left-right patterning. Ectopic BARX1 expression did not affect intestinal epithelium, but intestinal smooth muscle developed with features typical of the stomach wall. BARX1, which is normally restricted to the developing stomach, drives robust smooth muscle expansion in this organ by promoting proliferation of myogenic progenitors at the expense of other sub-epithelial cells. Undifferentiated embryonic stomach and intestinal mesenchyme showed modest differences in mRNA expression and BARX1 was sufficient to induce much of the stomach profile in intestinal cells. However, limited binding at cis-regulatory sites implies that BARX1 may act principally through other transcription factors. Genes expressed ectopically in BARX1(+) intestinal mesenchyme and reduced in Barx1(-/-) stomach mesenchyme include Isl1, Pitx1, Six2 and Pitx2, transcription factors known to control left-right patterning and influence smooth muscle development. The sum of evidence suggests that potent BARX1 functions in intestinal rotation and stomach myogenesis occur through this small group of intermediary transcription factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Role of M1 receptor in regulation of gastric fundus smooth muscle contraction

    Directory of Open Access Journals (Sweden)

    Marta Gajdus

    2011-09-01

    Full Text Available Background:The subject of this study is determination of the influence of drugs on gastric fundus smooth muscle contraction induced by activation of muscarinic receptors M1. Experiments tested interactions between a receptor agonist, carbachol and muscarinic receptor antagonists, atropine and pirenzepine.Material/Methods:Testing was conducted on tissues isolated from rat’s stomach. Male Wistar rats with weight between 220 g and 360 g were anesthetized by intraperitoneal injection of urethane (120 mg/kg. The stomach was dissected, and later the gastric fundus was isolated. Tissue was placed in a dish for insulated organs with 20 ml in capacity, filled with Krebs fluid. Results contained in the study are average values ± SE. In order to determine statistical significance, the principles of receptor theory were used (Kenakin modification.Results:According to tests, carbachol, in concentrations ranging between 10–8 M to 10–4 M, in a dosage-dependent way induces gastric fundus smooth muscle contraction. Presented results indicate that carbachol meets the conditions posed to full agonists. On the other hand, atropine, a non-selective muscarinic receptor antagonist, causes a concentration-dependent shift of concentration-effect curve (for carbachol to the right, maintaining maximum reaction. According to analysis of the curve determined, we can deduce that atropine meets the conditions posed to competitive antagonists. The use of pirenzepine, a competitive receptor agonist M1, causes shift of concentration-effect curve (for carbachol to the right, maintaining maximum reaction.Conclusions:From the testing conducted on the preparation of the gastric fundus we can deduce that atropine causes shift of concentration-effect curves for carbachol to the right. A similar effect is released by pirenzepine, selectively blocking muscarinic receptors of M1 type. The results indicate that in the preparation of the gastric fundus smooth muscle, M1 type

  7. The expression of functional postsynaptic α2-adrenoceptors in the corpus cavernosum smooth muscle

    Science.gov (United States)

    Gupta, Sandeep; Moreland, Robert B; Yang, Stone; Gallant, Cynthia M; Goldstein, Irwin; Traish, Abdulmaged

    1998-01-01

    The purpose of this study was to determine if corpus cavernosum smooth muscle expresses functional postsynaptic α2-adrenoceptors (AR).The α2-adrenoceptor agonist UK 14,304 elicited concentration-dependent contractions in rabbit corpus cavernosum smooth muscle (CCSM). The half-maximal response occurred at 0.32±0.03 μM and the maximum contraction at 10 μM UK 14,304.Pretreatment of CCSM strips with selective α2-adrenoceptor antagonists, rauwolscine and RS-15385, produced rightward shifts in the dose-response curves to UK 14,304 (pA2 values 7.1 and 8.5, respectively). In contrast, these antagonists did not alter contraction induced by the α1-adrenoceptor agonist phenylephrine (PE) or oxymetazoline. UK 14,304-induced contractions were also inhibited by prazosin (pA2=9.08).UK 14,304-induced contractions, unlike those to PE, were highly dependent on the presence of extracellular Ca2+.[3H]-rauwolscine bound to CCSM membranes with high affinity (Kd=1.5 nM). [3H]-rauwolscine binding was displaced by unlabelled rauwolscine, RS-15385, UK 14,304 and prazosin, but not by PE.UK 14,304 inhibited forskolin and prostaglandin E1 (PGE1)-induced increases in intracellular cyclic AMP concentration in primary cultures of rabbit CCSM cells.These results demonstrate that CCSM expresses Gi-coupled postsynaptic α2-adrenoceptors, and activation of these receptors causes contraction of trabecular smooth muscle. PMID:9559910

  8. Phenotypic modulation of corpus cavernosum smooth muscle cells in a rat model of cavernous neurectomy.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    Full Text Available Patients undergoing radical prostatectomy (RP are at high risk for erectile dysfunction (ED due to potential cavernous nerve (CN damage during surgery. Penile hypoxia after RP is thought to significantly contribute to ED pathogenesis.We previously showed that corpora cavernosum smooth muscle cells (CCSMCs undergo phenotypic modulation under hypoxic conditions in vitro. Here, we studied such changes in an in vivo post-RP ED model by investigating CCSMCs in bilateral cavernous neurectomy (BCN rats.Sprague-Dawley rats underwent sham (n = 12 or BCN (n = 12 surgery. After 12 weeks, they were injected with apomorphine to determine erectile function. The penile tissues were harvested and assessed for fibrosis using Masson trichrome staining and for molecular markers of phenotypic modulation using immunohistochemistry and western blotting. CCSMC morphological structure was evaluated by hematoxylin-eosin (H&E staining and transmission electron microscopy (TEM.Erectile function was significantly lower in BCN rats than in sham rats. BCN increased hypoxia-inducible factor-1α and collagen protein expression in corpora cavernous tissue. H&E staining and TEM showed that CCSMCs in BCN rats underwent hypertrophy and showed rough endoplasmic reticulum formation. The expression of CCSMC phenotypic markers, such as smooth muscle α-actin, smooth muscle myosin heavy chain, and desmin, was markedly lower, whereas vimentin protein expression was significantly higher in BCN rats than in control rats.CCSMCs undergo phenotype modulation in rats with cavernous neurectomy. The results have unveiled physiological transformations that occur at the cellular and molecular levels and have helped characterize CN injury-induced ED.

  9. Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism.

    Science.gov (United States)

    Cheah, Esther Y; Burcham, Philip C; Mann, Tracy S; Henry, Peter J

    2014-05-01

    Airway sensory C-fibres express TRPA1 channels which have recently been identified as a key chemosensory receptor for acrolein, a toxic and highly prevalent component of smoke. TRPA1 likely plays an intermediary role in eliciting a range of effects induced by acrolein including cough and neurogenic inflammation. Currently, it is not known whether acrolein-induced activation of TRPA1 produces other airway effects including relaxation of mouse airway smooth muscle. The aims of this study were to examine the effects of acrolein on airway smooth muscle tone in mouse isolated trachea, and to characterise the cellular and molecular mechanisms underpinning the effects of acrolein. Isometric tension recording studies were conducted on mouse isolated tracheal segments to characterise acrolein-induced relaxation responses. Release of the relaxant PGE₂ was measured by EIA to examine its role in the response. Use of selective antagonists/inhibitors permitted pharmacological characterisation of the molecular and cellular mechanisms underlying this relaxation response. Acrolein induced dose-dependent relaxation responses in mouse isolated tracheal segments. Importantly, these relaxation responses were significantly inhibited by the TRPA1 antagonists AP-18 and HC-030031, an NK₁ receptor antagonist RP-67580, and the EP₂ receptor antagonist PF-04418948, whilst completely abolished by the non-selective COX inhibitor indomethacin. Acrolein also caused rapid PGE₂ release which was suppressed by HC-030031. In summary, acrolein induced a novel bronchodilator response in mouse airways. Pharmacologic studies indicate that acrolein-induced relaxation likely involves interplay between TRPA1-expressing airway sensory C-fibres, NK₁ receptor-expressing epithelial cells, and EP₂-receptor expressing airway smooth muscle cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Proliferation of smooth muscle cells at sites distant from vascular injury

    International Nuclear Information System (INIS)

    Reidy, M.A.

    1990-01-01

    This study investigated the phenomenon that injury at one specific site in blood vessels induces cell replication at distant vascular sites. A polyethylene tube was inserted via the common carotid into rat aortic arch, which caused focal endothelial cell loss and formation of platelet thrombi. In a similar fashion, a polyethylene tube was placed into the lower abdominal aorta via a femoral artery. All animals received 3H-thymidine continuously for 2 weeks, after which time segments of the aorta distant from the polyethylene tubing were processed for autoradiography. These sites showed no loss of endothelium or adherent platelets, and yet the smooth muscle and endothelial cell replications were significantly elevated as compared to control aortas. There was no significant change in blood pressure during these experiments and no increase in smooth muscle cell ploidy. When the polyethylene tubing was left in situ for 2 months, no increased replication of the smooth muscle cells was observed during the last 2 weeks of the experiment, and at this time the aorta adjacent to the tubing was completely re-endothelialized. Finally, the mitogenic activity of plasma from these animals was tested in vitro. At the time of a significant increase of in vivo cell replication (2 weeks), the mitogenic activity of the plasma from animals with the indwelling tubing was similar to that of the control animals. In summary, these data show that injury at one discrete arterial site leads to general cell proliferation in the same vessel, and the data would support the possibility that cell communication initiates this response

  11. Smooth muscle cell differentiation in the processus vaginalis of children with hernia or hydrocele.

    Science.gov (United States)

    Mouravas, V K; Koletsa, T; Sfougaris, D K; Philippopoulos, A; Petropoulos, A S; Zavitsanakis, A; Kostopoulos, I

    2010-04-01

    Incomplete obliteration of the processus vaginalis (PV) in children with inguinal hernia or hydrocele has recently been proposed to relate to smooth muscle cell (SMC) persistence. The aim of this study was to evaluate the diversity and differentiation of smooth muscle phenotypes in sacs associated with inguinal hernia and hydrocele through the expression of alpha-smooth muscle actin (SMA), h-caldesmon, desmin, and vimentin. Sacs associated with male hernia (n = 22), female hernia (n = 8), and hydrocele (n = 10) were immunohistochemically evaluated using monoclonal antibodies against SMA, h-caldesmon, desmin, and vimentin. Peritoneal samples (male, 4; female, 3) and obliterated PV (male, 3) obtained from age-matched patients served as controls. Expressions according to the groups were compared through chi-squared test, and P values less than 0.05 were considered to be statistically significant. Immunohistochemistry did not shown the presence of SMCs in control samples. The expression of SMA, desmin, and h-caldesmon did not differ among sacs obtained from patients with inguinal hernia and hydrocele. However, strong expression of vimentin in SMCs within sacs obtained from patients with hydrocele in comparison with sacs from male patients with inguinal hernia were observed. Our results indicate that sacs from patients with inguinal hernias and especially from male inguinal hernias have fully differentiated SMCs. On the other hand SMCs in sacs obtained from boys with hydrocele are in an intermediate state of differentiation-dedifferentiation. This phenotypic modulation may represent attempted apoptosis of SMCs, since sacs more sensitive to apoptosis appeared to have more dedifferentiated SMCs. It also probably depicts the differing influence of sympathetic and parasympathetic tonuses during the descent of the testis and the obliteration of PV.

  12. Lead Acetate Induces Epithelium-Dependent Contraction of Airway Smooth Muscle

    OpenAIRE

    , Ramadan B. Sopi; , Kemajl Bislimi; , Fetah Halili; , Mentor Sopjani; , Burim Neziri; , Muharrem Jakupi

    2016-01-01

    The effect of lead acetate on tracheal smooth muscle (TSM) of dog pups was investigated in this study. In addition we studied the role of epithelium and involvement of nitric oxide (NO) in counteracting the effects of lead acetate on TSM as well as the modifying effects of lead acetate on contractile responses of TSM to acetylcholine (ACh) . Tracheal rings were excised and placed in in vitro organ baths. In vitro administration of lead acetate in increasing concentrations(10-7–10-3 M) induced...

  13. Fibulin-2 is present in murine vascular lesions and is important for smooth muscle cell migration

    DEFF Research Database (Denmark)

    Ström, A.; Olin, A. I.; Aspberg, A.

    2006-01-01

    /hyaluronan complexes, an ECM network that has been suggested to be important during tissue repair. In this study we have analysed the presence of fibulin-2 in two different models of murine vascular lesions. We have also examined how the fibulin-2/versican network influences SMC migration. Methods: Presence of fibulin......Objective: The vascular extracellular matrix (ECM) can affect smooth muscle cell (SMC) adhesion, migration and proliferation-events that are important during the atherosclerotic process. Fibulin-2 is a member of the ECM protein family of fibulins and has been found to cross-link versican...... that regulates SMC migration during vessel wall repair....

  14. Vascular smooth muscle responsiveness to nitric oxide is reduced in healthy adults with increased adiposity

    OpenAIRE

    Christou, Demetra D.; Pierce, Gary L.; Walker, Ashley E.; Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Meade, Thomas H.; English, Mark; Seals, Douglas R.

    2012-01-01

    Vascular smooth muscle responsiveness to nitric oxide, as assessed by nitroglycerin-induced dilation (NID), is impaired in clinical cardiovascular disease, but its relation to adiposity is unknown. We determined the relation of NID to total and abdominal adiposity in healthy adults varying widely in adiposity. In 224 men and women [age, 18–79 years; body mass index (BMI), 16.4–42.2 kg/m2], we measured NID (brachial artery dilation to 0.4 mg sublingual nitroglycerin), total body adiposity [BMI...

  15. TREK-1 Channel Expression in Smooth Muscle as a Target for Regulating Murine Intestinal Contractility: Therapeutic Implications for Motility Disorders

    Directory of Open Access Journals (Sweden)

    Ruolin Ma

    2018-03-01

    Full Text Available Gastrointestinal (GI motility disorders such as irritable bowel syndrome (IBS can occur when coordinated smooth muscle contractility is disrupted. Potassium (K+ channels regulate GI smooth muscle tone and are key to GI tract relaxation, but their molecular and functional phenotypes are poorly described. Here we define the expression and functional roles of mechano-gated K2P channels in mouse ileum and colon. Expression and distribution of the K2P channel family were investigated using quantitative RT-PCR (qPCR, immunohistochemistry and confocal microscopy. The contribution of mechano-gated K2P channels to mouse intestinal muscle tension was studied pharmacologically using organ bath. Multiple K2P gene transcripts were detected in mouse ileum and colon whole tissue preparations. Immunohistochemistry confirmed TREK-1 expression was smooth muscle specific in both ileum and colon, whereas TREK-2 and TRAAK channels were detected in enteric neurons but not smooth muscle. In organ bath, mechano-gated K2P channel activators (Riluzole, BL-1249, flufenamic acid, and cinnamyl 1-3,4-dihydroxy-alpha-cyanocinnamate induced relaxation of KCl and CCh pre-contracted ileum and colon tissues and reduced the amplitude of spontaneous contractions. These data reveal the specific expression of mechano-gated K2P channels in mouse ileum and colon tissues and highlight TREK-1, a smooth muscle specific K2P channel in GI tract, as a potential therapeutic target for combating motility pathologies arising from hyper-contractility.

  16. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Li, Yingrui; Xu, Xun; Song, Luting

    2012-01-01

    sequencing of 66 individual tumor cells from a muscle-invasive bladder transitional cell carcinoma (TCC). Analyses of the somatic mutant allele frequency spectrum and clonal structure revealed that the tumor cells were derived from a single ancestral cell, but that subsequent evolution occurred, leading...... to two distinct tumor cell subpopulations. By analyzing recurrently mutant genes in an additional cohort of 99 TCC tumors, we identified genes that might play roles in the maintenance of the ancestral clone and in the muscle-invasive capability of subclones of this bladder cancer, respectively...

  17. Managing Patients with Non-Muscle Invasive Bladder Cancer: Old Disease, New Ideas

    Directory of Open Access Journals (Sweden)

    Per-Uno Malmström

    2016-04-01

    Full Text Available Prof Per-Uno Malmström opened this symposium on non-muscle invasive bladder cancer (NMIBC by describing the medical and economic burden caused by the increasing incidence of bladder cancer and the lack of new therapeutic options available to address the challenges of the management of NMIBC. Prof Marko Babjuk followed with a presentation that demonstrated that risk stratification using European Organisation for Research and Treatment of Cancer (EORTC and Spanish Urological Club for Oncological Treatment (CUETO risk scores remains a useful tool for determining the best individual treatment options for patients. The next presentation, given by Dr Carsten Ohlmann, described the use of mitomycin C (MMC for low and intermediate-risk patients as per the European Association of Urology (EAU guidelines. However, despite a favourable safety profile, single case reports of severe adverse events following treatment with MMC should not be dismissed. MMC should therefore be given with care, with an emphasis on performing high quality transurethral resection of the bladder (TURB. Prof Bernard Malavaud then presented details of newer diagnostic methods, such as photodynamic diagnosis (PDD and narrow band imaging (NBI, which offer better optical tumour recognition for the surgeon than the old standard of white light cystoscopy. The uptake of PDD and NBI in the future will facilitate an increase in the quality of TURB. Finally, Prof Ashish Kamat explained that recurrence of bladder cancer after bacillus Calmette–Guérin (BCG treatment (‘BCG failure’ needs to be more clearly defined and stratified. He stated that optimal recognition of timing with relation to BCG immunotherapy is critical to determine the next steps. For example, in the past, patients with late recurrence who may have benefitted from challenge with BCG may have been overlooked.

  18. Chemoradiotherapy for muscle invading bladder carcinoma. final report of a single institutional organ-sparing program

    International Nuclear Information System (INIS)

    Arias, Fernando; Dominguez, Miguel A.; Martinez, Enrique; Illarramendi, Jose J.; Miquelez, Santiago; Pascual, Ignacio; Marcos, Marta

    2000-01-01

    Purpose: Chemoradiotherapy is becoming an alternative to radical cystectomy among patients with muscle invading bladder cancer. We began a prospective study in 1988 to determine the possibilities of conservative treatment and aiming to improve the results obtained by cystectomy alone in invasive bladder cancer. A combination of methotrexate, vinblastine, adriamycin, and cisplatin (M-VAC), followed by radiotherapy and concomitant cisplatin was used. Methods: Fifty patients with good performance status and with stages T2 to T4 operable untreated invasive bladder cancer were entered in the study. Treatment protocol was as follows: (i) cytoreductive transurethral resection; (ii) two cycles of M-VAC chemotherapy; (iii) radiotherapy, 45 Gy on pelvic volume and, at the same time, 20 mg/m 2 cisplatin on days 1 to 5. Cystoscopic evaluation: if there was a complete response, radiotherapy was completed up to 65 Gy; if there was not a complete response, a cystectomy was performed. Median follow-up of the series was 73 months (18-180 m). Results: Tumor response was as follows: 34 complete responses (68%), 9 partial responses (18%), and 7 nonresponses (14%) were observed. The 5-year overall survival and local control were 48% and 47%, respectively. For the complete responder patient, 5-year survival and local control were 65% and 70%, respectively. Severe toxicity was uncommon. The most frequent were leucopenia and cystitis. No treatment-related deaths occurred with either treatment protocol. Conclusions: Conservative combination treatment may be an acceptable alternative to immediate cystectomy in selected patients with bladder cancer, although a randomized clinical trial would be required to produce definitive results

  19. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels

    Science.gov (United States)

    Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V

    2013-01-01

    Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946

  20. Comparative statistical mechanics of myosin molecular motors in rat heart, diaphragm and tracheal smooth muscle.

    Science.gov (United States)

    Lecarpentier, Yves; Claes, Victor; Lecarpentier, Edouard; Blanc, François-Xavier; Joseph, Thierry; Geraets, Bart; Krokidis, Xénophon; Hébert, Jean-Louis

    2011-10-01

    Statistical mechanics establishes a link between microscopic properties of matter and its bulk properties. A. Huxley's equations (1957) [1] provide the necessary phenomenological formalism to use statistical mechanics. We compared statistical mechanics in rat diaphragm in tetanus (tet; n=10) and twitch (tw; n=12) modes, in heart in twitch mode (n=20), and in tracheal smooth muscle in tetanus mode (TSM; n=10). This powerful tool makes it possible to determine: (i) statistical entropy (S) which is related to the dispersal of energy and represents a measure of the degree of disorder in muscular system; (ii) thermodynamic force A/T (chemical affinity A and temperature T); (iii) thermodynamic flow (υ); (iv) entropy production rate (A/T×υ), which quantifies irreversible chemical processes generated by myosin crossbridge (CB) molecular motors. All muscles studied operated near equilibrium, i.e., Atype. All studied muscles differed in terms of statistical entropy, chemical affinity, and entropy production rate. Stimulation mode (tet and tw) modulated CB kinetics and statistical mechanics. All muscle types operated near equilibrium and in a stationary linear regime. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. Microscopic changes induced by Cr-VI in smooth muscles of albino mice

    International Nuclear Information System (INIS)

    Nabeel, H.

    2007-01-01

    Chromium is believed to be an essential trace element in human nutrition. Evidence suggests that it plays an important role in normal carbohydrate metabolism. It was found that patients receiving long-term total parenteral nutrition (TPN) without chromium developed glucose intolerance, weight loss and peripheral neuropathy Chromium is present in a normal diet at trace (but essential) levels. Occupational exposure is related to the industrial uses of chrome compounds in production and use of steels, pigments, leather tanning and wood preservation solutions, plating chemicals, and cement. Toxicity is predominantly associated with industrial exposures. Hexavalent chromium compounds appear to have greatest toxicity and almost all tissues of body are affected. To evaluate the effects on smooth muscles, present study was carried out. The mice of experimental group (2wks, 4wks, 6wks ,and 8wks) were injected Potassium dichromate (K/sub 2/Cr/sub 2/O/sub 7/) intraperitoneally according to experimental design. The drug caused slight to marked inflammation of smooth muscle fibers and vaculations of nuclei was also observed indicating degenerative changes. (author)

  2. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium); Noppe, Gauthier; Horman, Sandrine [Pôle de Recherche Cardiovasculaire, IREC, Université Catholique de Louvain (Belgium); Morel, Nicole, E-mail: nicole.morel@uclouvain.be [Laboratory of Cell Physiology, IoNS, Université Catholique de Louvain (Belgium)

    2013-11-22

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca{sup 2+} signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate.

  3. Redundant control of migration and adhesion by ERM proteins in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Baeyens, Nicolas; Latrache, Iman; Yerna, Xavier; Noppe, Gauthier; Horman, Sandrine; Morel, Nicole

    2013-01-01

    Highlights: •The three ERM proteins are expressed in vascular smooth muscle cell. •ERM depletion inhibited PDGF-evoked migration redundantly. •ERM depletion increased cell adhesion redundantly. •ERM depletion did not affect PDGF-evoked Ca signal, Rac1 activation, proliferation. •ERM proteins control PDGF-induced migration by regulating adhesion. -- Abstract: Ezrin, radixin, and moesin possess a very similar structure with a C-terminal actin-binding domain and a N-terminal FERM interacting domain. They are known to be involved in cytoskeleton organization in several cell types but their function in vascular smooth muscle cells (VSMC) is still unknown. The aim of this study was to investigate the role of ERM proteins in cell migration induced by PDGF, a growth factor involved in pathophysiological processes like angiogenesis or atherosclerosis. We used primary cultured VSMC obtained from rat aorta, which express the three ERM proteins. Simultaneous depletion of the three ERM proteins with specific siRNAs abolished the effects of PDGF on cell architecture and migration and markedly increased cell adhesion and focal adhesion size, while these parameters were only slightly affected by depletion of ezrin, radixin or moesin alone. Rac1 activation, cell proliferation, and Ca 2+ signal in response to PDGF were unaffected by ERM depletion. These results indicate that ERM proteins exert a redundant control on PDGF-induced VSMC migration by regulating focal adhesion turn-over and cell adhesion to substrate

  4. Effects of nitrendipine on growth activity in cultured vascular smooth muscle cells.

    Science.gov (United States)

    Absher, M P; Baldor, L; Warshaw, D M

    1988-01-01

    Proliferation and migration of smooth muscle cells (SMCs) in the arterial wall may play a role in the development of atherosclerosis and hypertension. If cell migration and proliferation are dependent on extracellular calcium, then treatment with calcium channel blockers such as nitrendipine may alter these cellular responses. In the studies reported here, proliferation and migration activities were assessed in cultured bovine carotid artery smooth muscle cells exposed to nitrendipine. SMCs in long-term culture are characterized by periods of either stable or enhanced proliferative activity. During the stable periods, 1 microM nitrendipine has no effect on proliferation, but during periods of enhanced proliferation, 1 microM nitrendipine augments growth by approximately 20%. SMC migration rates and interdivision times were determined from analysis of time-lapse cinematography films. During stable periods of growth, cell migration rate was inversely related to interdivision time (i.e., fast migrating cells had the shortest interdivision times). Treatment with 1 microM nitrendipine abolished the relationship between migration rate and interdivision time and prolonged interdivision times. These data suggest that the ability of nitrendipine to alter SMC proliferation, interdivision time, and migration is dependent upon the overall proliferative state of the culture.

  5. Mig-6 Gene Knockout Induces Neointimal Hyperplasia in the Vascular Smooth Muscle Cell

    Directory of Open Access Journals (Sweden)

    Ju Hee Lee

    2014-01-01

    Full Text Available Although advances in vascular interventions can reduce the mortality associated with cardiovascular disease, neointimal hyperplasia remains a clinically significant obstacle limiting the success of current interventions. Identification of signaling pathways involved in migration and proliferation of vascular smooth muscle cells (SMCs is an important approach for the development of modalities to combat this disease. Herein we investigate the role of an immediate early response gene, mitogen-inducible gene-6 (Mig-6, in the development of neointimal hyperplasia using vascular smooth muscle specific Mig-6 knockout mice. We induced endoluminal injury to one side of femoral artery by balloon dilatation in both Mig-6 knockout and control mice. Four weeks following injury, the artery of Mig-6 knockout mice demonstrated a 5.3-fold increase in the neointima/media ratio compared with control mice (P=0.04. In addition, Mig-6 knockout vascular SMCs displayed an increase in both cell migration and proliferation compared with wild-type SMCs. Taken together, our data suggest that Mig-6 plays a critical role in the development of atherosclerosis. This finding provides new insight into the development of more effective ways to treat and prevent neointimal hyperplasia, particularly in-stent restenosis after percutaneous vascular intervention.

  6. Airway Smooth Muscle as a Target in Asthma and the Beneficial Effects of Bronchial Thermoplasty

    Directory of Open Access Journals (Sweden)

    Luke J. Janssen

    2012-01-01

    Full Text Available Airflow within the airways is determined directly by the lumenal area of that airway. In this paper, we consider several factors which can reduce airway lumenal area, including thickening and/or active constriction of the airway smooth muscle (ASM. The latter cell type can also contribute in part to inflammation, another feature of asthma, through its ability to take on a synthetic/secretory phenotype. The ASM therefore becomes a strategically important target in the treatment of asthma, given these key contributions to the pathophysiology of that disease. Pharmacological approaches have been developed to elicit relaxation of the ASM, but these are not always effective in all patients, nor do they address the long-term structural changes which impinge on the airway lumen. The recent discovery that thermal energy can be used to ablate smooth muscle has led to the development of a novel physical intervention—bronchial thermoplasty—in the treatment of asthma. Here, we review the evolution of this novel approach, consider some of the possible mechanisms that account for its salutary effects, and pose new questions which may lead to even better therapies for asthma.

  7. Airway Smooth Muscle as a Target in Asthma and the Beneficial Effects of Bronchial Thermoplasty

    Science.gov (United States)

    Janssen, Luke J.

    2012-01-01

    Airflow within the airways is determined directly by the lumenal area of that airway. In this paper, we consider several factors which can reduce airway lumenal area, including thickening and/or active constriction of the airway smooth muscle (ASM). The latter cell type can also contribute in part to inflammation, another feature of asthma, through its ability to take on a synthetic/secretory phenotype. The ASM therefore becomes a strategically important target in the treatment of asthma, given these key contributions to the pathophysiology of that disease. Pharmacological approaches have been developed to elicit relaxation of the ASM, but these are not always effective in all patients, nor do they address the long-term structural changes which impinge on the airway lumen. The recent discovery that thermal energy can be used to ablate smooth muscle has led to the development of a novel physical intervention—bronchial thermoplasty—in the treatment of asthma. Here, we review the evolution of this novel approach, consider some of the possible mechanisms that account for its salutary effects, and pose new questions which may lead to even better therapies for asthma. PMID:23024662

  8. TTX-sensitive voltage-gated Na+ channels are expressed in mesenteric artery smooth muscle cells.

    Science.gov (United States)

    Berra-Romani, Roberto; Blaustein, Mordecai P; Matteson, Donald R

    2005-07-01

    The presence and properties of voltage-gated Na+ channels in mesenteric artery smooth muscle cells (SMCs) were studied using whole cell patch-clamp recording. SMCs from mouse and rat mesenteric arteries were enzymatically dissociated using two dissociation protocols with different enzyme combinations. Na+ and Ca2+ channel currents were present in myocytes isolated with collagenase and elastase. In contrast, Na+ currents were not detected, but Ca2+ currents were present in cells isolated with papain and collagenase. Ca2+ currents were blocked by nifedipine. The Na+ current was insensitive to nifedipine, sensitive to changes in the extracellular Na+ concentration, and blocked by tetrodotoxin with an IC50 at 4.3 nM. The Na+ conductance was half maximally activated at -16 mV, and steady-state inactivation was half-maximal at -53 mV. These values are similar to those reported in various SMC types. In the presence of 1 microM batrachotoxin, the Na+ conductance-voltage relationship was shifted by 27 mV in the hyperpolarizing direction, inactivation was almost completely eliminated, and the deactivation rate was decreased. The present study indicates that TTX-sensitive, voltage-gated Na+ channels are present in SMCs from the rat and mouse mesenteric artery. The presence of these channels in freshly isolated SMC depends critically on the enzymatic dissociation conditions. This could resolve controversy about the presence of Na+ channels in arterial smooth muscle.

  9. Metabolomic profiling of cellular responses to carvedilol enantiomers in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Mingxuan Wang

    Full Text Available Carvedilol is a non-selective β-blocker indicated in the treatment of hypertension and heart failure. Although the differential pharmacological effects of individual Carvedilol enantiomer is supported by preceding studies, the cellular response to each enantiomer is not well understood. Here we report the use of GC-MS metabolomic profiling to study the effects of Carvedilol enantiomers on vascular smooth muscle cells (A7r5 and to shed new light on molecular events underlying Carvedilol treatment. The metabolic analysis revealed alternations in the levels of 8 intracellular metabolites and 5 secreted metabolites in A7r5 cells incubated separately with S- and R-Carvedilol. Principal component analysis of the metabolite data demonstrated the characteristic metabolic signatures in S- and R-Carvedilol-treated cells. A panel of metabolites, including L-serine, L-threonine, 5-oxoproline, myristic acid, palmitic acid and inositol are closely correlated to the vascular smooth muscle contraction. Our findings reveal the differentiating metabolites for A7r5 cells incubated with individual enantiomer of Carvedilol, which opens new perspectives to employ metabolic profiling platform to study chiral drug-cell interactions and aid their incorporation into future improvement of β-blocker therapy.

  10. Effect of hypertensive rat plasma on ion transport of cultured vascular smooth muscle

    International Nuclear Information System (INIS)

    Magargal, W.W.; Overbeck, H.W.

    1986-01-01

    We layered fresh, unprocessed plasma from healthy rats with early (less than or equal to 7 days) or benign, chronic (greater than 3 wk) one-kidney, one-clip hypertension and from paired one-kidney normotensive control rats over confluent primary-cultured rat aortic smooth muscle cells. Plasma from all rats increased cellular ouabain-sensitive 86 Rb + uptake and sodium content and decreased ouabain-insensitive 86 Rb + uptake compared with uptakes and content in the presence of balanced salt solution (P less than 0.01). Cells incubated in the presence of plasma from rats with early (P less than 0.02) or chronic hypertension (P less than 0.01) had significantly reduced ouabain-sensitive 86 Rb + uptake when compared with cells incubated in normotensive plasma, but their intracellular Na+ contents were not lower. We no longer detected this uptake difference when chronic hypertensives drank 0.9% NaCl instead of water. Plasma from hypertensive rats also altered ouabain-insensitive 86 Rb + uptake by the cultured cells. These findings of this new, reproducible, and specific assay system support the hypothesis that plasma factors inhibit the membrane sodium-potassium pump in vascular smooth muscle cells in this form of hypertension. The abnormality occurs in both early and chronic stages, but may not be related to sodium intake. The data also provide evidence for plasma factors in hypertension altering membrane K+ permeability

  11. [3H]QNB binding and contraction of rabbit colonic smooth muscle cells

    International Nuclear Information System (INIS)

    Ringer, M.J.; Hyman, P.E.; Kao, H.W.; Hsu, C.T.; Tomomasa, T.; Snape, W.J. Jr.

    1987-01-01

    The authors used radioligand binding and studies of cell contraction to characterize muscarinic receptors on dispersed smooth muscle cells from rabbit proximal and distal colon. Cells obtained after serial incubations in collagenase were used to measure binding of tritiated quinuclidinyl benzilate ([ 3 H]QNB). At 37 degree C, specific [ 3 H]QNB binding was saturable and linearly related to cell number. Nonlinear regression analysis was used to determine the affinity of [ 3 H]QNB for its receptor. The IC 50 for the muscarinic agonists bethanechol and oxotremorine were 80 and 0.57 μM, respectively. Hill coefficients were 0.67 for both, suggesting more complex interaction involving receptors of different affinities. In studies of cell contraction, bethanechol stimulated a dose-dependent decrease in cell length with half the maximal contraction occurring at 100 pM. These results suggest that (1) contraction is mediated by binding of bethanechol to M 2 -muscarinic receptors and that (2) there are a large number of spare receptors in colonic smooth muscle

  12. [Migration and proliferation of smooth muscle cells in the vessel wall].

    Science.gov (United States)

    Betz, E

    1990-03-01

    1. Intimal migration and proliferation causing artery stenoses in the course of atherogenesis can be inhibited by various drugs. 2. Secondary stenoses after ballooning of arteries are caused mainly by proliferation of smooth muscle cells. 3. Ballooning of arteries or repeated transmural electrical stimulations of artery walls with weak electrical current is followed by an increased mitotic activity of smooth muscle cells in the ballooned resp. stimulated area which reaches a maximal value about one week following the onset of the experiment. The mitotic activity returns then slowly to initial levels. 4. Adaptations to proliferation-inducing stimuli are possible. The experiments demonstrate that the proliferative phases in atherogenesis can be explained as a sequence of adaptations and deadaptations (= change of disposition) to the proliferation-inducing stimuli. 5. To select qualified drugs for an inhibition of the development of intimal proliferates in the course of atherogenesis makes it necessary to combine in vivo tests in animal experiments with tests on cell cultures of human cells from artery walls.

  13. Effect of phototherapy on gastrointestinal smooth muscle activity and oxidative stress.

    Science.gov (United States)

    Soyer, Tutku; Aliefendioğlu, Didem; Aktuna, Zuhal; Cağlayan, Osman; Aydos, Tolga Reşat; Cakmak, Murat

    2011-11-01

    To evaluate the effect of phototherapy on gastrointestinal smooth muscle activity and oxidative stress. Wistar albino rats (n = 18, in the first 7 days of life) weighing 7 ± 2 g with both sexes were included in the study. The animals were randomized into three groups. In control group (CG), median laparotomy was performed to obtain 1 cm of jejunum, terminal ileum and colonic segments. In the phototherapy group (PTG), led phototherapy with a wave density of 40 μw/cm(2)/nm were used (Bilitron 3006, Fanem, Brasil). The efficacy surface of phototherapy was 30-40 cm and the exposure distance was 30 cm. The duration of phototherapy was 24 h. Sham group (SG) received white light with the same wave density and exposure distance. The oxidative stress markers and contraction responses were investigated from intestinal segments obtained from experiments. The jejunum segments showed significantly lowered contraction response to carbachol in SG when compared to CG and PTG (p 0.05). Total sulfhydryl (T-SH) levels were found significantly increased in PTG when compared to CG and SG (p < 0.05). When NO levels were evaluated, NO levels were found decreased in PTG and SG with respect to CG (p < 0.05). PT may cause various alterations in oxidant/antioxidant system in intestinal segments. Unlike to clinical findings, decreased contractile responses were detected in rat gastrointestinal smooth muscles after PT.

  14. Effects of alkaloids of Himatanthus lancifolius (Muell. Arg.) Woodson, Apocynaceae, on smooth muscle responsiveness.

    Science.gov (United States)

    Rattmann, Yanna D; Terluk, Márcia R; Souza, Wesley M; Santos, Cid A M; Biavatti, Maique W; Torres, Luce B; Mesia-Vela, Sonia; Rieck, Lia; da Silva-Santos, José E; Marques, Maria C de A

    2005-09-14

    Himatanthus lancifolius, popularly known as "agoniada" in Brazil, is largely used in folk medicine against asthma, dysmenorrhea and as an emenagogue and abortive. This study reveals the effects of an alkaloid rich fraction (AlkF) obtained from the bark of Himatanthus lancifolius in vascular and non-vascular smooth muscle responsiveness. Incubation of AlkF (3-30 microg/ml) during 15 min generates a concentration-related and fully reversible reduction in maximal contractile responses evoked by acetylcholine and phenylephrine in rat jejune and aorta preparations, respectively. Exposition of endothelium-denuded pre-contracted rat aorta rings to AlkF results in a complete relaxation, with EC(50) of 22.2 (16.2-28.2 microg/ml). AlkF is also able to induce a concentration-related rightward shift of cumulative concentration curves for calcium in uterus and aorta rings maintained in depolarizing nutritive solution. Moreover, addition of AlkF in calcium-free solution also reduces, in a concentration-dependent manner, the ability of caffeine and phenylephrine to contract aorta rings. This study reveals that the bark of Himatanthus lancifolius possesses one or more indole alkaloids able to alter non-vascular and vascular smooth muscle responsiveness, an event that may involve the blocking of calcium entry or changes on intracellular calcium utilization or mobilization.

  15. The relaxant effect of Ferula assafoetida on smooth muscles and the possible mechanisms

    Directory of Open Access Journals (Sweden)

    Khazdair Mohammad Reza

    2015-04-01

    Full Text Available Asafoetida (Ferula asafoetida an oleo-gum-resin belongs to the Apiaceae family which obtained from the living underground rhizome or tap roots of the plant. F. assa-foetida is used in traditional medicine for the treatment of variety of disorders. Asafoetida is used as a culinary spice and in folk medicine has been used to treat several diseases, including intestinal parasites, weak digestion, gastrointestinal disorders, asthma and influenza. A wide range of chemical compounds including sugars, sesquiterpene coumarins and polysulfides have been isolated from this plant. This oleo-gum-resin is known to possess antifungal, anti-diabetic, anti-inflammatory, anti-mutagenic and antiviral activities. Several studies investigated the effects of F. asafoetida gum extract on the contractile responses induced by acetylcholine, methacholin, histamine and KCl on different smooth muscles. The present review summarizes the information regarding the relaxant effect of asafetida and its extracts on different smooth muscles and the possible mechanisms of this effect.

  16. Cigarette smoke and lipopolysaccharide induce a proliferative airway smooth muscle phenotype

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2010-04-01

    Full Text Available Abstract Background A major feature of chronic obstructive pulmonary disease (COPD is airway remodelling, which includes an increased airway smooth muscle (ASM mass. The mechanisms underlying ASM remodelling in COPD are currently unknown. We hypothesized that cigarette smoke (CS and/or lipopolysaccharide (LPS, a major constituent of CS, organic dust and gram-negative bacteria, that may be involved in recurrent airway infections and exacerbations in COPD patients, would induce phenotype changes of ASM. Methods To this aim, using cultured bovine tracheal smooth muscle (BTSM cells and tissue, we investigated the direct effects of CS extract (CSE and LPS on ASM proliferation and contractility. Results Both CSE and LPS induced a profound and concentration-dependent increase in DNA synthesis in BTSM cells. CSE and LPS also induced a significant increase in BTSM cell number, which was associated with increased cyclin D1 expression and dependent on activation of ERK 1/2 and p38 MAP kinase. Consistent with a shift to a more proliferative phenotype, prolonged treatment of BTSM strips with CSE or LPS significantly decreased maximal methacholine- and KCl-induced contraction. Conclusions Direct exposure of ASM to CSE or LPS causes the induction of a proliferative, hypocontractile ASM phenotype, which may be involved in airway remodelling in COPD.

  17. Wood creosote inhibits calcium mobilization in Guinea pig colonic smooth muscle.

    Science.gov (United States)

    Morino, Hirofumi; Ataka, Koji; Ito, Masafumi; Kuge, Tomoo

    2004-07-01

    Wood creosote, a mixture of simple phenolic compounds, has long been used as an herbal antidiarrheal medicine. Previous studies have shown that wood creosote has antimotility activity on the gastrointestinal (GI) tract, although its mechanism of action is not completely understood. The in vitro efficacy of wood creosote on calcium mobilization in guinea pig colonic smooth muscle was evaluated using a digital video camera system mounted on an inverted fluorescence microscope. The effects of wood creosote on spontaneous periodic increases in the free cytosolic calcium concentration ([Ca(2+)](i)), acetylcholine (ACh)-enhanced periodic increases in [Ca(2+)](i), and tetrodotoxin- or nifedipine-resistant spontaneous periodic increases in [Ca(2+)](i) were evaluated. Wood creosote decreased the amplitude of spontaneous (IC(50)=21 microg/ml) and ACh-enhanced (IC(50)=40 microg/ml) periodic increases in [Ca(2+)](i) in guinea pig colonic smooth muscle. Wood creosote also decreased the amplitude of both tetrodotoxin- and nifedipine-resistant spontaneous periodic increases in [Ca(2+)](i). These results suggest that antimotility activity through inhibition of Ca(2+) mobilization in the GI tract is at least partially responsible for the antidiarrheal activity of wood creosote. Wood creosote may exert its antimotility effect, at least in part, on network regions of interstitial cells of Cajal, which act as pacemaker cells and mediators of neurotransmission in the GI tract.

  18. Modeling Cerebrovascular Pathophysiology in Amyloid-β Metabolism using Neural-Crest-Derived Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Christine Cheung

    2014-10-01

    Full Text Available Summary: There is growing recognition of cerebrovascular contributions to neurodegenerative diseases. In the walls of cerebral arteries, amyloid-beta (Aβ accumulation is evident in a majority of aged people and patients with cerebral amyloid angiopathy. Here, we leverage human pluripotent stem cells to generate vascular smooth muscle cells (SMCs from neural crest progenitors, recapitulating brain-vasculature-specific attributes of Aβ metabolism. We confirm that the lipoprotein receptor, LRP1, functions in our neural-crest-derived SMCs to mediate Aβ uptake and intracellular lysosomal degradation. Hypoxia significantly compromises the contribution of SMCs to Aβ clearance by suppressing LRP1 expression. This enabled us to develop an assay of Aβ uptake by using the neural crest-derived SMCs with hypoxia as a stress paradigm. We then tested several vascular protective compounds in a high-throughput format, demonstrating the value of stem-cell-based phenotypic screening for novel therapeutics and drug repurposing, aimed at alleviating amyloid burden. : The contribution of blood vessel pathologies to neurodegenerative disorders is relatively neglected, partly due to inadequate human tissues for research. By using human stem cells, Cheung et al. establish a method of generating vascular smooth muscle cells (SMCs from neural crest progenitors, the primary precursors that give rise to brain blood vessels. These stem-cell-derived SMCs display defective amyloid processing under chronic hypoxia, a phenomenon well documented in the cerebral vasculatures of aged people and patients with Alzheimer’s disease.

  19. Adeno-associated virus vector transduction of vascular smooth muscle cells in vivo.

    Science.gov (United States)

    Richter, M; Iwata, A; Nyhuis, J; Nitta, Y; Miller, A D; Halbert, C L; Allen, M D

    2000-04-27

    Adeno-associated virus (AAV) vectors might offer solutions for restenosis and angiogenesis by transducing nondividing cells and providing long-term gene expression. We investigated the feasibility of vascular cell transduction by AAV vectors in an in vivo rabbit carotid artery model. Time course of gene expression, inflammatory reaction to the vector, and effects of varying viral titer, exposure time, and intraluminal pressures on gene expression were examined. Recombinant AAV vectors with an Rous sarcoma virus promoter and alkaline phosphatase reporter gene were injected intraluminally into transiently isolated carotid segments. Following transduction, gene expression increased significantly over 14 days and then remained stable to 28 days, the last time point examined. Medial vascular smooth muscle cells were the main cell type transduced even with an intact endothelial layer. Increasing the viral titer and intraluminal pressure both enhanced transduction efficiency to achieve a mean of 34 +/- 7% of the subintimal layer of smooth muscle cells expressing gene product. A mild inflammatory reaction, composed of T cells with only rare macrophages, with minimal intimal thickening was demonstrated in 40% of transduced vessels; inflammatory cells were not detected in sham-operated control arteries. These findings demonstrate that AAV is a promising vector for intravascular applications in coronary and peripheral vascular diseases.

  20. A novel bioreactor to simulate urinary bladder mechanical properties and compliance for bladder functional tissue engineering.

    Science.gov (United States)

    Wei, Xin; Li, Dao-bing; Xu, Feng; Wang, Yan; Zhu, Yu-chun; Li, Hong; Wang, Kun-jie

    2011-02-01

    Bioreactors are pivotal tools for generating mechanical stimulation in functional tissue engineering study. This study aimed to create a bioreactor that can simulate urinary bladder mechanical properties, and to investigate the effects of a mechanically stimulated culture on urothelial cells and bladder smooth muscle cells. We designed a bioreactor to simulate the mechanical properties of bladder. A pressure-record system was used to evaluate the mechanical properties of the bioreactor by measuring the pressure in culture chambers. To test the biocompatibility of the bioreactor, viabilities of urothelial cells and smooth muscle cells cultured in the bioreactor under static and mechanically changed conditions were measured after 7-day culture. To evaluate the effect of mechanical stimulations on the vital cells, urethral cells and smooth muscle cells were cultured in the simulated mechanical conditions. After that, the viability and the distribution pattern of the cells were observed and compared with cells cultured in non-mechanical stimulated condition. The bioreactor system successfully generated waveforms similar to the intended programmed model while maintaining a cell-seeded elastic membrane between the chambers. There were no differences between viabilities of urothelial cells ((91.90 ± 1.22)% vs. (93.14 ± 1.78)%, P > 0.05) and bladder smooth muscle cells ((93.41 ± 1.49)% vs. (92.61 ± 1.34)%, P > 0.05). The viability of cells and tissue structure observation after cultured in simulated condition showed that mechanical stimulation was the only factor affected cells in the bioreactor and improved the arrangement of cells on silastic membrane. This bioreactor can effectively simulate the physiological and mechanical properties of the bladder. Mechanical stimulation is the only factor that affected the viability of cells cultured in the bioreactor. The bioreactor can change the growth behavior of urothelial cells and bladder smooth muscle cells, resulting in

  1. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  2. Contrast-enhanced computed tomography of the primary tumor in muscle invasive carcinoma of the urinary bladder

    International Nuclear Information System (INIS)

    Sager, E.M.

    1991-01-01

    Patients with muscle invasive carcinoma of the urinary bladder were examined with contrast-enhanced CT of the primary tumor. A specially designed technique was developed to increase the diagnostic potential of CT. The most important points about the technique were controlled filling of the bladder, the use of thin slices, series of scans before and after intravenous injection of contrast medium, and long scanning times in the precontrast series. The absorbed dose to the patient resulting from the new technique was found to be within the range of the dose from urography or barium enema. This dose was considered to be acceptable given the diagnostic gain of the procedure. Features of irradiated bladder tumors were analysed to find which parameter correlated with persistent malignancy. High contrast enhancement of a tumor relative to the bladder wall was found to be the best indicator of a malignant tumour after irradiation. 127 refs

  3. Airway smooth muscle cell culture: application to studies of airway wall remodelling and phenotype plasticity in asthma.

    Science.gov (United States)

    Hirst, S J

    1996-04-01

    Chronic persistent asthma is characterized by poorly reversible airway obstruction. Histopathological studies of airways removed postmortem from patients with severe asthma reveal marked inflammatory and architectural changes associated with airway wall thickening. Increased airway smooth muscle content, occurring as a result of hyperplastic and/or hypertrophic growth, is believed to be one of the principal contributors to airway wall thickening. Intense interest is building to discover the mechanisms responsible for these long-term structural changes. In vitro cell culture offers a powerful and exacting approach to cellular and molecular studies of the long-term regulation of airway smooth muscle function. This review discusses the methodologies for establishing and maintaining cell cultures of airway smooth muscle. It also describes the characteristics of these cells in culture and addresses the potential importance of phenotype plasticity and its possible relationship to altered smooth muscle function in vivo. Drawing on parallels from vascular studies, this review focuses, in particular, on the synthetic nature of the airway smooth muscle cell, emphasizing its potential to alter the composition of the extracellular matrix environment and orchestrate key events in the process of chronic airway remodelling.

  4. The effects of cannabidiol on the antigen-induced contraction of airways smooth muscle in the guinea-pig.

    Science.gov (United States)

    Dudášová, A; Keir, S D; Parsons, M E; Molleman, A; Page, C P

    2013-06-01

    (-)-Δ(9)-Tetrahydrocannabinol has been demonstrated to have beneficial effects in the airways, but its psychoactive effects preclude its therapeutic use for the treatment of airways diseases. In the present study we have investigated the effects of (-)-cannabidiol, a non-psychoactive component of cannabis for its actions on bronchial smooth muscle in vitro and in vivo. Guinea-pig bronchial smooth muscle contractions induced by exogenously applied spasmogens were measured isometrically. In addition, contractile responses of bronchial smooth muscle from ovalbumin-sensitized guinea-pigs were investigated in the absence or presence of (-)-cannabidiol. Furthermore, the effect of (-)-cannabidiol against ovalbumin-induced airway obstruction was investigated in vivo in ovalbumin-sensitized guinea-pigs. (-)-Cannabidiol did not influence the bronchial smooth muscle contraction induced by carbachol, histamine or neurokinin A. In contrast, (-)-cannabidiol inhibited anandamide- and virodhamine-induced responses of isolated bronchi. A fatty acid amide hydrolase inhibitor, phenylmethanesulfonyl fluoride reversed the inhibitory effect of (-)-cannabidiol on anandamide-induced contractions. In addition, (-)-cannabidiol inhibited the contractile response of bronchi obtained from allergic guinea-pigs induced by ovalbumin. In vivo, (-)-cannabidiol reduced ovalbumin-induced airway obstruction. In conclusion, our results suggest that cannabidiol can influence antigen-induced airway smooth muscle tone suggesting that this molecule may have beneficial effects in the treatment of obstructive airway disorders. Copyright © 2013. Published by Elsevier Ltd.

  5. Smooth muscle enfoldment internal sphincter construction after intersphincteric resection for rectal cancer.

    Science.gov (United States)

    Jin, Heiying; Zhang, Bei; Yao, Hang; Du, Yonghong; Wang, Xiaofeng; Leng, Qiang

    2014-01-01

    To assess smooth muscle enfoldment and internal sphincter construction (SMESC) for improvement of continence after intersphincteric resection (ISR) for rectal cancer. Twenty-four Bama miniature pigs were randomly divided into a conventional ISR group and experimental SMESC group, with 12 pigs in each group. The proximal sigmoid colon was anastomosed directly to the anus in the ISR group. In the SMESC group, internal sphincter construction was performed. At 12 weeks before and after surgery, rectal resting pressure and anal canal length were assessed. Three-dimensional ultrasound was used to determine the thickness of the internal sphincter. After the animals were sacrificed, the rectum and anus were resected and pathological examinations were performed to evaluate the differences in sphincter thickness and muscle fibers. All 24 animals in the SMESC group and the ISR group survived the surgery. Twelve weeks post-surgery, the rectal resting pressure, length of the anal high-pressure zone and the postoperative internal sphincter thickness for the ISR group were significantly lower than for the SMESC group. There was a thickened area (about 2 cm) above the anastomotic stoma among animals from the SMESC group; in addition, the smooth muscles were significantly enlarged and enfolded when compared to the ISR group. This animal model study shows that the SMESC procedure achieved acceptable reconstruction of the internal anal neo-sphincter (IAN/S), without increasing surgical risk. However, the findings in this experimental animal model must be confirmed by clinical trials to determine the safety and efficacy of this procedure in clinical practice.

  6. Smooth muscle enfoldment internal sphincter construction after intersphincteric resection for rectal cancer.

    Directory of Open Access Journals (Sweden)

    Heiying Jin

    Full Text Available To assess smooth muscle enfoldment and internal sphincter construction (SMESC for improvement of continence after intersphincteric resection (ISR for rectal cancer.Twenty-four Bama miniature pigs were randomly divided into a conventional ISR group and experimental SMESC group, with 12 pigs in each group. The proximal sigmoid colon was anastomosed directly to the anus in the ISR group. In the SMESC group, internal sphincter construction was performed. At 12 weeks before and after surgery, rectal resting pressure and anal canal length were assessed. Three-dimensional ultrasound was used to determine the thickness of the internal sphincter. After the animals were sacrificed, the rectum and anus were resected and pathological examinations were performed to evaluate the differences in sphincter thickness and muscle fibers.All 24 animals in the SMESC group and the ISR group survived the surgery. Twelve weeks post-surgery, the rectal resting pressure, length of the anal high-pressure zone and the postoperative internal sphincter thickness for the ISR group were significantly lower than for the SMESC group. There was a thickened area (about 2 cm above the anastomotic stoma among animals from the SMESC group; in addition, the smooth muscles were significantly enlarged and enfolded when compared to the ISR group.This animal model study shows that the SMESC procedure achieved acceptable reconstruction of the internal anal neo-sphincter (IAN/S, without increasing surgical risk. However, the findings in this experimental animal model must be confirmed by clinical trials to determine the safety and efficacy of this procedure in clinical practice.

  7. Characterization of the effect of penehyclidine hydrochloride on muscarinic receptor subtypes mediating the contraction of guinea-pig isolated gastrointestinal smooth muscle.

    Science.gov (United States)

    Xiao, Hong-Tao; Liao, Zhi; Meng, Xian-Min; Yan, Xiao-Yan; Chen, Shu-Jie; Mo, Zheng-Ji

    2009-07-01

    The aim was to characterize the effect of penehyclidine hydrochloride, which mediates the relaxation of guinea-pig isolated gastrointestinal smooth muscle, on muscarinic receptor subtypes. Radioimmune assay was used to determine cAMP levels in isolated guinea-pig gastrointestinal smooth muscle to compare the selective effects of penehyclidine hydrochloride on muscarinic receptor subtypes. The results indicated that the relaxing effect of penehyclidine hydrochloride on isolated gastrointestinal smooth muscle contraction induced by acetylcholine was stronger than that of atropine (based on PA2 values). In the radioimmune assay, penehyclidine hydrochloride increased the cAMP content in isolated guinea-pig stomach smooth muscle and decreased the cAMP content in isolated guinea-pig intestinal smooth muscle, but the difference was not statistically significant at a dose of 10 mumol/l. The results suggest that penehyclidine hydrochloride has little or no effect on M2 receptor subtypes in guinea-pig gastrointestinal smooth muscle.

  8. Reduction of recurrence in non-muscle invasive bladder cancer using photodynamic diagnosis and immediate post-TUR-B chemoprophylaxis

    DEFF Research Database (Denmark)

    Risager, Malene Bøg

    2013-01-01

    Reduction of recurrence in non-muscle invasive bladder cancer using photodynamic diagnosis and immediate post-TUR-B chemoprophylaxis. Risager, Malene Bøg; Nielsen, Tommy Kjærsgaard; Ebbensgaard, Nanna Andersen; Zieger, Karsten. Department of Urology, Randers Regional Hospital, Randers, Denmark....... Background: Recurrences after non-muscle invasive bladder cancer (NMIBC) are common and a major burden for health care systems. Fluorescence-guided resection/ photodynamic diagnosis and immediate post-TUR-B chemoprophylaxis can improve recurrence free survival, but the further outcome and cost......-effectiveness of these interventions are a matter of current debate. This single-institution case-control study investigated these issues under routine conditions. Materials and Methods: Photodynamic diagnosis (PDD) using intravesical instillation of 85 mg hexaminolevulinate one hour before transurethral resection of bladder tumor...

  9. Receptors for substance P on isolated intestinal smooth muscle cells of the guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Souquet, J.C.; Bitar, K.N.; Grider, J.R.; Makhlouf, G.M.

    1987-11-01

    Two radioligands, /sup 125/I-labeled substance P (/sup 125/I-SP) and /sup 125/I-labeled substance K (/sup 125/I-SK), were used to characterize the kinetics and stoichiometry of binding of mammalian tachykinins (substance P (SP), substance K (SK), and neuromedin K (NK)) to smooth muscle cells isolated from the longitudinal muscle layer of guinea pig intestine. Specific binding of /sup 125/I-SP and /sup 125/I-SK was rapid, saturable, reversible, and temperature dependent. Binding attained 63-70% of steady-state binding within 1 min, coincidentally with the time of optimal contraction. The order of potency with which mammalian tachykinins and the SP antagonist, (D-Pro2, D-Trp7,9)SP, inhibited the binding of both radioligands was identical: SP greater than SK greater than NK greater than (D-Pro2, D-Trp7,9)SP, implying preferential interaction with a site that had highest affinity for SP. SK was 2-3 times, NK 3-4 times, and (D-Pro2, D-Trp7,9)SP 7-23 times less potent than SP (IC50 0.36 nM). Except for NK, the order of potency was similar to that for contraction of isolated muscle cells. The existence of binding sites with even higher affinity was suggested by the ability of muscle cells to contract in response to concentrations as low as 10(-13) M. These binding sites were not detectable at the concentration of radioligands used. It was concluded that a SP receptor is the only tachykinin receptor subtype present on intestinal muscle cells of the guinea pig.

  10. Gene expression signatures predict outcome in non-muscle invasive bladder carcinoma - a multi-center validation study

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Zieger, Karsten; Real, Francisco X.

    2007-01-01

    PURPOSE: Clinically useful molecular markers predicting the clinical course of patients diagnosed with non-muscle-invasive bladder cancer are needed to improve treatment outcome. Here, we validated four previously reported gene expression signatures for molecular diagnosis of disease stage and ca...

  11. Molecular markers increase precision of the European Association of Urology non-muscle invasive bladder cancer progression risk groups

    DEFF Research Database (Denmark)

    Van Kessel, Kim E.; van der Keur, Kirstin A.; Dyrskjøt, Lars

    2018-01-01

    PURPOSE: The European Association of Urology (EAU) guidelines for non-muscle invasive bladder cancer (NMIBC) recommend risk stratification based on clinicopathological parameters. Our aim was to investigate the added value of biomarkers to improve risk stratification of NMIBC. EXPERIMENTAL DESIGN...

  12. Enhanced expressions of microvascular smooth muscle receptors after focal cerebral ischemia occur via the MAPK MEK/ERK pathway

    DEFF Research Database (Denmark)

    Maddahi, A.; Edvinsson, L.

    2008-01-01

    BACKGROUND: MEK1/2 is a serine/threonine protein that phosphorylates extracellular signal-regulated kinase (ERK1/2). Cerebral ischemia results in enhanced expression of cerebrovascular contractile receptors in the middle cerebral artery (MCA) leading to the ischemic region. Here we explored...... by quantitative Western blot. We demonstrate that there is an increase in the number of contractile smooth muscle receptors in the MCA and in micro- vessels within the ischemic region. The enhanced expression occurs in the smooth muscle cells as verified by co-localization studies. This receptor upregulation...... is furthermore associated with enhanced expression of pERK1/2 and of transcription factor pElk-1 in the vascular smooth muscle cells. Blockade of transcription with the MEK1 inhibitor U0126, given at the onset of reperfusion or as late as 6 hours after the insult, reduced transcription (pERK1/2 and pElk-1...

  13. A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Aalkjær, Christian; Nilsson, Holger

    2004-01-01

    M) in the pipette solution. The current was found to be a calcium-activated chloride current with an absolute requirement for cyclic GMP (EC50 6.4 microM). The current could be activated by the constitutively active subunit of PKG. Current activation was blocked by the protein kinase G antagonist Rp-8-Br......We have previously demonstrated the presence of a cyclic GMP (cGMP)-dependent calcium-activated inward current in vascular smooth-muscle cells, and suggested this to be of importance in synchronizing smooth-muscle contraction. Here we demonstrate the characteristics of this current. Using...... conventional patch-clamp technique, whole-cell currents were evoked in freshly isolated smooth-muscle cells from rat mesenteric resistance arteries by elevation of intracellular calcium with either 10 mM caffeine, 1 microM BAY K8644, 0.4 microM ionomycin, or by high calcium concentration (900 n...

  14. Calcification of human vascular smooth muscle cells: associations with osteoprotegerin expression and acceleration by high-dose insulin

    DEFF Research Database (Denmark)

    Olesen, Ping; Knudsen, Kirsten Quyen Nguyen; Wogensen, Lise

    2007-01-01

    Arterial medial calcifications occur often in diabetic individuals as part of the diabetic macroangiopathy. The pathogenesis is unknown, but the presence of calcifications predicts risk of cardiovascular events. We examined the effects of insulin on calcifying smooth muscle cells in vitro...... and measured the expression of the bone-related molecule osteoprotegerin (OPG). Human vascular smooth muscle cells (VSMCs) were grown from aorta from kidney donors. Induction of calcification was performed with beta-glycerophosphate. The influence of insulin (200 microU/ml or 1,000 microU/ml) on calcification...... calcification in human smooth muscle cells from a series of donors after variable time in culture. Decreased OPG amounts were observed from the cells during the accelerated calcification phase. High dose of insulin (1,000 microU/ml) accelerated the calcification, whereas lower concentrations (200 microU/ml) did...

  15. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2006-01-01

    Full Text Available Abstract Background Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO production – due to competition with neuronal NO-synthase (nNOS for the common substrate, L-arginine. Furthermore, in a guinea pig model of allergic asthma, airway arginase activity is markedly increased after the early asthmatic reaction (EAR, leading to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity. In this study, we investigated whether increased arginase activity after the EAR affects iNANC nerve-derived NO production and airway smooth muscle relaxation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal open-ring preparations precontracted to 30% with histamine in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to EFS-induced relaxation was assessed by the nonselective NOS inhibitor Nω-nitro-L-arginine (L-NNA, 100 μM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA, 10 μM. Furthermore, the role of substrate availability to nNOS was measured in the presence of exogenous L-arginine (5.0 mM. Results At 6 h after ovalbumin-challenge (after the EAR, EFS-induced relaxation (ranging from 3.2 ± 1.1% at 0.5 Hz to 58.5 ± 2.2% at 16 Hz was significantly decreased compared to unchallenged controls (7.1 ± 0.8% to 75.8 ± 0.7%; P P P Conclusion The results clearly demonstrate that increased arginase activity after the allergen-induced EAR contributes to a deficiency of iNANC nerve-derived NO and decreased airway smooth muscle relaxation, presumably via increased substrate competition with nNOS.

  16. Quantitative genome-wide methylation analysis of high-grade non-muscle invasive bladder cancer.

    Science.gov (United States)

    Kitchen, Mark O; Bryan, Richard T; Emes, Richard D; Glossop, John R; Luscombe, Christopher; Cheng, K K; Zeegers, Maurice P; James, Nicholas D; Devall, Adam J; Mein, Charles A; Gommersall, Lyndon; Fryer, Anthony A; Farrell, William E

    2016-03-03

    High-grade non-muscle invasive bladder cancer (HG-NMIBC) is a clinically unpredictable disease with greater risks of recurrence and progression relative to their low-intermediate-grade counterparts. The molecular events, including those affecting the epigenome, that characterize this disease entity in the context of tumor development, recurrence, and progression, are incompletely understood. We therefore interrogated genome-wide DNA methylation using HumanMethylation450 BeadChip arrays in 21 primary HG-NMIBC tumors relative to normal bladder controls. Using strict inclusion-exclusion criteria we identified 1,057 hypermethylated CpGs within gene promoter-associated CpG islands, representing 256 genes. We validated the array data by bisulphite pyrosequencing and examined 25 array-identified candidate genes in an independent cohort of 30 HG-NMIBC and 18 low-intermediate-grade NMIBC. These analyses revealed significantly higher methylation frequencies in high-grade tumors relative to low-intermediate-grade tumors for the ATP5G2, IRX1 and VAX2 genes (P<0.05), and similarly significant increases in mean levels of methylation in high-grade tumors for the ATP5G2, VAX2, INSRR, PRDM14, VSX1, TFAP2b, PRRX1, and HIST1H4F genes (P<0.05). Although inappropriate promoter methylation was not invariantly associated with reduced transcript expression, a significant association was apparent for the ARHGEF4, PON3, STAT5a, and VAX2 gene transcripts (P<0.05). Herein, we present the first genome-wide DNA methylation analysis in a unique HG-NMIBC cohort, showing extensive and discrete methylation changes relative to normal bladder and low-intermediate-grade tumors. The genes we identified hold significant potential as targets for novel therapeutic intervention either alone, or in combination, with more conventional therapeutic options in the treatment of this clinically unpredictable disease.

  17. Promising results with image guided intensity modulated radiotherapy for muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Whalley, D.; Caine, H.; McCloud, P.; Guo, L.; Kneebone, A.; Eade, T.

    2015-01-01

    To describe the feasibility of image guided intensity modulated radiotherapy (IG-IMRT) using daily soft tissue matching in the treatment of bladder cancer. Twenty-eight patients with muscle-invasive carcinoma of the bladder were recruited to a protocol of definitive radiation using IMRT with accelerated hypofractionation with simultaneous integrated boost (SIB). Isotropic margins of .5 and 1 cm were used to generate the high risk and intermediate risk planning target volumes respectively. Cone beam CT (CBCT) was acquired daily and a soft tissue match was performed. Cystoscopy was scheduled 6 weeks post treatment. The median age was 83 years (range 58-92). Twenty patients had stage II or III disease, and eight were stage IV. Gross disease received 66 Gy in 30 fractions in 11 patients (ten with concurrent chemotherapy) or 55 Gy in 20 fractions for those of poorer performance status or with palliative intent. All patients completed radiation treatment as planned. Three patients ceased chemotherapy early due to toxicity. Six patients (21 %) had acute Grade ≥ 2 genitourinary (GU) toxicity and six (21 %) had acute Grade ≥ 2 gastrointestinal (GI) toxicity. Five patients (18 %) developed Grade ≥2 late GU toxicity and no ≥2 late GI toxicity was observed. Nineteen patients underwent cystoscopy following radiation, with complete response (CR) in 16 cases (86 %), including all patients treated with chemoradiotherapy. Eight patients relapsed, four of which were local relapses. Of the patients with local recurrence, one underwent salvage cystectomy. For patients treated with definitive intent, freedom from locoregional recurrence (FFLR) and overall survival (OS) was 90 %/100 % for chemoradiotherapy versus 86 %/69 % for radiotherapy alone. IG- IMRT using daily soft tissue matching is a feasible in the treatment of bladder cancer, enabling the delivery of accelerated synchronous integrated boost with good early local control outcomes and low toxicity

  18. Chemoradiotherapy in octogenarians as primary treatment for muscle-invasive bladder cancer.

    Science.gov (United States)

    McPherson, Victor A; Rodrigues, George; Bauman, Glenn; Winquist, Eric; Chin, Joseph; Izawa, Jonathan; Potvin, Kylea; Ernst, Scott; Venkatesan, Varagur; Sexton, Tracy; Ahmad, Belal; Power, Nicholas

    2017-01-01

    While radical cystectomy is the gold standard for muscle-invasive bladder cancer (MIBC), in octogenarians cystectomy results in a higher perioperative mortality rate (6.8-11.1%) than in younger patients (2.2%). Trimodality therapy is a bladder-sparing regimen composed of transurethral resection of bladder tumour (TURBT) and chemoradiotherapy, with intent for salvage cystectomy, and has a 62.5-90% initial complete response rate. In this study, we evaluate TURBT and chemoradiotherapy without salvage cystectomy in medically inoperable octogenarian patients. We identified a retrospective cohort of patients aged 80-89 years with invasive urothelial carcinoma who received combination chemoradiotherapy between 2008 and June 2014. Outcomes were evaluated by Kaplan-Meier (KM) and Cox regression. In 40 patients, the mean age was 84.5 years (interquartile range [IQR] 83-86). Seventeen patients received hypofractionated, low-dose radiotherapy (LD) (37.5-40 Gy), while 23 received conventionally fractionated radiotherapy (high-dose [HD]) (50-65 Gy). Mean overall survival (OS) was 20.7 months (IQR 12.75-23.25), while mean recurrence-free survival (RFS) was 13.75 months (IQR 3.75-16.5). Patients receiving HD radiotherapy showed improved OS and local RFS (LRFS) without significant differences in Grade 3-4 toxicities. Univariate Cox regression identified hydronephrosis as a predictor of worse OS and local recurrence and HD radiotherapy as a predictor of improved OS and local recurrence rates. Multivariate Cox regression identified hydronephrosis to be a significant predictor of LRFS. Primary chemoradiotherapy for inoperable patients with MIBC resulted in a three-year OS of 54.9% (comparable to cystectomy) and three-year RFS of 42.3%. Superior outcomes were associated with more aggressive chemoradiotherapy treatment. The results of the local control subanalyses in this study are hypothesis-generating due to the limited patient numbers in the cohort.

  19. Myosin Va Plays a Role in Nitrergic Smooth Muscle Relaxation in Gastric Fundus and Corpora Cavernosa of Penis

    Science.gov (United States)

    Carew, Josephine A.; Goyal, Raj K.; Sullivan, Maryrose P.

    2014-01-01

    The intracellular motor protein myosin Va is involved in nitrergic neurotransmission possibly by trafficking of neuronal nitric oxide synthase (nNOS) within the nerve terminals. In this study, we examined the role of myosin Va in the stomach and penis, proto-typical smooth muscle organs in which nitric oxide (NO) mediated relaxation is critical for function. We used confocal microscopy and co-immunoprecipitation of tissue from the gastric fundus (GF) and penile corpus cavernosum (CCP) to localize myosin Va with nNOS and demonstrate their molecular interaction. We utilized in vitro mechanical studies to test whether smooth muscle relaxations during nitrergic neuromuscular neurotransmission is altered in DBA (dilute, brown, non-agouti) mice which lack functional myosin Va. Myosin Va was localized in nNOS-positive nerve terminals and was co-immunoprecipitated with nNOS in both GF and CCP. In comparison to C57BL/6J wild type (WT) mice, electrical field stimulation (EFS) of precontracted smooth muscles of GF and CCP from DBA animals showed significant impairment of nitrergic relaxation. An NO donor, Sodium nitroprusside (SNP), caused comparable levels of relaxation in smooth muscles of WT and DBA mice. These normal postjunctional responses to SNP in DBA tissues suggest that impairment of smooth muscle relaxation resulted from inhibition of NO synthesis in prejunctional nerve terminals. Our results suggest that normal physiological processes of relaxation of gastric and cavernosal smooth muscles that facilitate food accommodation and penile erection, respectively, may be disrupted under conditions of myosin Va deficiency, resulting in complications like gastroparesis and erectile dysfunction. PMID:24516539

  20. Isolation and characterization of coronary endothelial and smooth muscle cells from A1 adenosine receptor-knockout mice.

    Science.gov (United States)

    Teng, Bunyen; Ansari, Habib R; Oldenburg, Peter J; Schnermann, J; Mustafa, S Jamal

    2006-04-01

    Mice have been used widely in in vivo and in vitro cardiovascular research. The availability of knockout mice provides further clues to the physiological significance of specific receptor subtypes. Adenosine A(1) receptor (A(1)AR)-knockout (A(1)KO) mice and their wild-type (A(1)WT) controls were employed in this investigation. The heart and aortic arch were carefully removed and retroinfused with enzyme solution (1 mg/ml collagenase type I, 0.5 mg/ml soybean trypsin inhibitor, 3% BSA, and 2% antibiotics) through the aortic arch. The efflux was collected at 30-, 60-, and 90-min intervals. The cells were centrifuged, and the pellets were mixed with medium [medium 199-F-12 medium with 10% FBS and 2% antibiotics (for endothelial cells) and advanced DMEM with 10% FBS, 10% mouse serum, 2% GlutaMax, and 2% antibiotics (for smooth muscle cells)] and plated. Endothelial cells were characterized by a cobblestone appearance and positive staining with acetylated LDL labeled with 1,1'-dioctadecyl-3,3,3',3-tetramethylindocarbocyanine perchlorate. Smooth muscle cells were characterized by positive staining of smooth muscle alpha-actin and smooth muscle myosin heavy chain. Homogeneity of the smooth muscle cells was approximately 91%. Western blot analysis showed expression of smoothelin in the cells from passages 3, 7, and 11 in A(1)WT and A(1)KO mice. Furthermore, the A(1)AR was characterized by Western blot analysis using an A(1)AR-specific antibody. To our knowledge, this is the first isolation and successful characterization of smooth muscle cells from the mouse coronary system.

  1. A role for focal adhesion kinase in facilitating the contractile responses of murine gastric fundus smooth muscles.

    Science.gov (United States)

    Xie, Yeming; Han, Koon Hee; Grainger, Nathan; Li, Wen; Corrigan, Robert D; Perrino, Brian A

    2018-03-12

    Smooth muscle contraction involves regulating myosin light chain phosphorylation and dephosphorylation by myosin light chain kinase and myosin light chain phosphatase. CPI-17 and MYPT1 are crucial for regulating gastrointestinal smooth muscle contraction by inhibiting myosin light chain phosphatase. Integrin signalling involves the dynamic recruitment of several proteins, including FAK, to focal adhesions. FAK tyrosine kinase activation is involved in cell adhesion to the extracellular matrix via integrin signalling. FAK participates in linking the force generated by myofilament activation to the extracellular matrix and throughout the smooth muscle tissue. Here, we show that cholinergic stimulation activates FAK in gastric fundus smooth muscles. Electrical field stimulation in the presence of L-NAME and MRS2500 contracted gastric fundus smooth muscle strips and increased FAK Y397 phosphorylation (pY397). Atropine blocked the contractions and prevented the increase in pY397. The FAK inhibitor PF-431396 inhibited the contractions and the increase in pY397. PF-431396 also inhibited the EFS-induced increase in CPI-17 T38 phosphorylation, and reduced MYPT1 T696 and T853, and myosin light chain S19 phosphorylation. Ca 2+ influx was unaffected by PF-431396. Nicardipine inhibited the contractions but had no effect on the increase in pY397. PDBu or calyculin A contracted gastric fundus smooth muscle strips Ca 2+ independently and increased pY397. Our findings suggest that FAK is activated by mechanical forces during contraction, and reveal a novel role of FAK in the regulation of CPI-17 phosphorylation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. The PI-PLC inhibitor U-73122 is a potent inhibitor of the SERCA pump in smooth muscle

    Science.gov (United States)

    Hollywood, MA; Sergeant, GP; Thornbury, KD; McHale, NG

    2010-01-01

    In this issue MacMillan and McCarron in 2010 demonstrated that the phospholipase C (PLC) inhibitor U-73122 can potently inhibit Ca2+ release from isolated smooth muscle cells independent of its effect on PLC. Their data suggest that the PLC inhibitor can block the sarcoplasmic/endoplasmic reticulum calcium ATPase pump in smooth muscle and cast doubt on the reliability of U-73122 as the main pharmacological tool to assess the role of the phosphotidyl inositol-PLC pathway in cellular signalling. PMID:20590620

  3. Differentiation of Murine Bone Marrow-Derived Smooth Muscle Progenitor Cells Is Regulated by PDGF-BB and Collagen.

    Directory of Open Access Journals (Sweden)

    Clifford Lin

    Full Text Available Smooth muscle cells (SMCs are key regulators of vascular disease and circulating smooth muscle progenitor cells may play important roles in vascular repair or remodelling. We developed enhanced protocols to derive smooth muscle progenitors from murine bone marrow and tested whether factors that are increased in atherosclerotic plaques, namely platelet-derived growth factor-BB (PDGF-BB and monomeric collagen, can influence the smooth muscle specific differentiation, proliferation, and survival of mouse bone marrow-derived progenitor cells. During a 21 day period of culture, bone marrow cells underwent a marked increase in expression of the SMC markers α-SMA (1.93 ± 0.15 vs. 0.0008 ± 0.0003 (ng/ng GAPDH at 0 d, SM22-α (1.50 ± 0.27 vs. 0.005 ± 0.001 (ng/ng GAPDH at 0 d and SM-MHC (0.017 ± 0.004 vs. 0.001 ± 0.001 (ng/ng GAPDH at 0 d. Bromodeoxyuridine (BrdU incorporation experiments showed that in early culture, the smooth muscle progenitor subpopulation could be identified by high proliferative rates prior to the expression of smooth muscle specific markers. Culture of fresh bone marrow or smooth muscle progenitor cells with PDGF-BB suppressed the expression of α-SMA and SM22-α, in a rapidly reversible manner requiring PDGF receptor kinase activity. Progenitors cultured on polymerized collagen gels demonstrated expression of SMC markers, rates of proliferation and apoptosis similar to that of cells on tissue culture plastic; in contrast, cells grown on monomeric collagen gels displayed lower SMC marker expression, lower growth rates (319 ± 36 vs. 635 ± 97 cells/mm2, and increased apoptosis (5.3 ± 1.6% vs. 1.0 ± 0.5% (Annexin 5 staining. Our data shows that the differentiation and survival of smooth muscle progenitors are critically affected by PDGF-BB and as well as the substrate collagen structure.

  4. Defining Priorities to Improve Patient Experience in Non-Muscle Invasive Bladder Cancer.

    Science.gov (United States)

    Garg, Tullika; Connors, Jill Nault; Ladd, Ilene G; Bogaczyk, Tyler L; Larson, Sharon L

    2018-01-20

    Although approximately 75% of bladder cancers are non-muscle invasive (NMIBC) at diagnosis, most research tends to focus on invasive disease (e.g., experiences related to radical cystectomy and urinary diversion). There is a lack of studies on quality of life, and especially qualitative research, in bladder cancer generally. As a result, relatively little is known about the experiences and needs of NMIBC patients. To understand patient experience, define care priorities, and identify targets for care improvement in NMIBC across the cancer continuum. Through focus groups, patients treated for NMIBC (stage influences on decision-making, and role of social support. Patients with NMIBC desired timely access to care and honest and caring provider communication. They described urinary function and emotional quality of life changes resulting from diagnosis and treatment. Avoiding cystectomy and being alive for family were the major decision influencers. In this qualitative study, we identified access to care, provider characteristics and communication, quality of life, values/influences on decision-making, and social support as priority areas to improve patient experience in NMIBC. Care redesign efforts should focus on improving access, enhancing provider communication, reducing side effects, and supporting caregiver roles.

  5. Antinociceptive and smooth muscle contracting activities of the methanolic extract of Cassia tora leaf.

    Science.gov (United States)

    Chidume, F C; Kwanashie, H O; Adekeye, J O; Wambebe, C; Gamaniel, K S

    2002-07-01

    The leaves of Cassia tora Linn. (Family: Caesalpiniaceae) were soxhlet extracted with methanol. The spasmogenic effects of the extract were evaluated on guinea pig ileum, rabbit jejunum and mice intestinal transit. Antinociceptive activity of the extract was also evaluated in the mice. The LD(50) values of the extract in mice were >2000 mg/kg i.p. and p.o. The extract contracted smooth muscles of guinea pig ileum and rabbit jejunum in a concentration-dependent manner. Atropine reversibly blocked this activity. Mepyramine also reduced the contractile amplitude due to the extract in a concentration-dependent manner. The extract increased intestinal transit in mice dose dependently. C. tora extract significantly (Ptora, traditionally, as a purgative and in the treatment of other ailments is justifiable.

  6. Inhibition of Proliferation of Vascular Smooth Muscle Cells by Cucurbitanes from Momordica charantia.

    Science.gov (United States)

    Tuan, Nguyen Quoc; Lee, Do-Hyung; Oh, Joonseok; Kim, Chung Sub; Heo, Kyung-Sun; Myung, Chang-Seon; Na, MinKyun

    2017-07-28

    The cucurbitaceous plant Momordica charantia L., named "bitter melon", inhabits Asia, Africa, and South America and has been used as a traditional medicine. The atypical proliferation of vascular smooth muscle cells (VSMCs) plays an important role in triggering the pathogenesis of cardiovascular diseases. Platelet-derived growth factor (PDGF) is regarded as the most powerful growth factor in promoting the intimal accumulation of VSMCs. The current study features the identification of six new cucurbitane-type triterpenoids (1-6) from the fruits of M.  charantia, utilizing diverse chromatographic and spectroscopic techniques. In particular, the 2D structure of 1 was confirmed utilizing the long-range HSQMBC NMR pulse, capable of measuring heteronuclear long-range correlations ( 4-6 J CH ). The cucurbitanes were also assessed for their inhibitory activity against PDGF-induced VSMC proliferation. This current study may constitute a basis for developing those chemotypes into sensible pharmacophores alleviating cardiovascular disorders.

  7. Regulation of ERK5 by insulin and angiotensin-II in vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Sharma, Girish; Goalstone, Marc Lee

    2007-01-01

    ERK5 is involved in proliferation of vascular smooth muscle cells (VSMC). The proliferative actions of insulin and angiotensin-II (A-II) in VSMC are mediated in part by ERK1/2. We hypothesized that insulin and A-II also regulate ERK5 activity in VSMC. Acute treatment ( 50 for insulin treatment effecting ERK1/2 and ERK5 phosphorylation was 1.5 and 0.1 nM, whereas the EC 50 for A-II was 2 nM, each. Insulin plus A-II induced an additive effect only on ERK5 phosphorylation. Inhibition of insulin- and A-II-stimulated phosphorylation of ERK5 and ERK1/2 by PD98059 and Wortmannin exhibited differential and time-dependent effects. Taken together, these data indicate that insulin and A-II regulate the activity of ERK5, but different from that seen for ERK1/2

  8. Taurine inhibits osteoblastic differentiation of vascular smooth muscle cells via the ERK pathway.

    Science.gov (United States)

    Liao, Xiao-bo; Zhou, Xin-min; Li, Jian-ming; Yang, Jin-fu; Tan, Zhi-ping; Hu, Zhuo-wei; Liu, Wei; Lu, Ying; Yuan, Ling-qing

    2008-05-01

    Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. Taurine is a free beta-amino acid and plays an important physiological role in mammals. We have recently demonstrated that vascular smooth muscle cells (VSMCs) express a functional taurine transporter. To evaluate the possible role of taurine in vascular calcification, we assessed its effects on osteoblastic differentiation of VSMCs in vitro. The results showed that taurine inhibited the beta-glycerophosphate-induced osteoblastic differentiation of VSMCs as evidenced by both the decreasing alkaline phosphate (ALP) activity and expression of the core binding factor alpha1 (Cbfalpha1). Taurine also activated the extracellular signal-regulated protein kinase (ERK) pathway. Inhibition of ERK pathway reversed the effect of taurine on ALP activity and Cbfalpha1 expression. These results suggested that taurine inhibited osteoblastic differentiation of vascular cells via the ERK pathway.

  9. SCA 40: studies of the relaxant effects on cryopreserved human airway and vascular smooth muscle.

    Science.gov (United States)

    Müller-Schweinitzer, E; Fozard, J R

    1997-04-01

    1. 6-Bromo-8-methylaminoimidazol[1,2-a]pyrazine-2carbonitrile (SCA 40) has been claimed to induce relaxation in guinea-pig trachea by opening high conductance, calcium-activated potassium (BKCa) channels. The mechanism of action of SCA 40 has now been further investigated in ring preparations from cryopreserved human airway and vascular smooth muscle preparations in vitro. 2. Human bronchi with spontaneous tone relaxed in response to SCA 40 in a biphasic way. A high affinity component (pD2 8.61 +/- 0.21; mean +/- s.e.mean) accounted for 30% of the response and a low affinity component (pD2 6.53 +/- 0.14) for the remaining 70%. In contrast, in bronchi contracted with carbachol, 1 microM, the concentration-response curve to SCA 40 was monophasic and yielded a pD2 of 6.31 +/- 0.29. 3. SCA 40 relaxed pulmonary and mesenteric arteries and peripheral veins which had been precontracted by 10 nM U46619 nearly completely and in a monophasic way; the pD2 values were 6.37 +/- 0.08, 6.17 +/- 0.15 and 5.45 +/- 0.25, respectively. 4. Lemakalim, an opener of ATP-dependent potassium (KATP) channels, also relaxed human bronchi under spontaneous tone and the vascular tissues. NS 1619, a recognised opener of BKca channels, was inactive up to 10 microM on bronchial and vascular tissues. 5. The SCA 40-induced relaxation of human bronchi was reduced concentration-dependently in the presence of high potassium chloride (20 and 80 mM). However, in the presence of 80 mM KCl and nifedipine, 30 nM, SCA 40 fully relaxed the remaining contractile response with pD2 values of 8.08 +/- 0.13 and 5.27 +/- 0.13 for the high and low affinity component, respectively. 6. Relaxation responses to SCA 40 in human bronchi were resistant to blockade by glibenclamide at concentrations up to 10 microM (which blocked the relaxant response to lemakalim), quinine (30 microM), apamin (100 nM), tetraethylammonium (0.1-1 mM) and charybdotoxin (10-100 nM), thus excluding the involvement of a variety of K+ channels

  10. The intracranial injection of drug in goldfish. I: Hallucinogens and their antagonism to smooth muscle activity.

    Science.gov (United States)

    Abramson, H A; Gettner, H H; Carone, P A; Rolo, A; Krinsky, L

    1979-01-01

    A simplified method of studying the surfacing reaction of goldfish to hallucinogens is described. Goldfish weighing up to three grams are injected intracranially. Employing this method, d-lysergic acid diethylamide (LSD-25), d-2-acetyl lysergic acid diethylamide (ALD-52), 1-methyl d-lysergic acid butano-lamide (UML-491), and 5-methoxy dimethyl tryptamine (5-MEO-DMT) were found to be as pharmacologically active as previously noted in fish and in man. The relationship of these drugs to their anti-serotonin activity is of particular interest to the allergist because of the way in which the congeners and derivatives of LSD block the action of serotonin on smooth muscle.

  11. Gastrointestinal peristalsis: joint action of enteric nerves, smooth muscle, and interstitial cells of Cajal.

    Science.gov (United States)

    Huizinga, J D

    1999-11-15

    Peristalsis is a propulsive motor pattern orchestrated by neuronal excitation and inhibition in cooperation with intrinsic muscular control mechanisms, including those residing in interstitial cells of Cajal (ICC). Interstitial cells of Cajal form a network of cells in which electrical slow waves originate and then propagate into the musculature initiating rhythmic contractile activity upon excitaton by enteric nerves. Interstitial cells of Cajal have now been isolated and their intrinsic properties reveal the presence of rhythmic inward currents not found in smooth muscle cells. In tissues where classical slow waves are not present, enteric cholinergic excitation will evoke slow wave-like activity that forces action potentials to occur in a rhythmic manner. Intrinsic and induced slow wave activity directs many of the peristaltic motor patterns in the gut. Copyright 1999 Wiley-Liss, Inc.

  12. Inhibition of NF-κB activity in rabbit vascular smooth muscle cells by lovastatin

    International Nuclear Information System (INIS)

    Luan Zhaoxia; Lan Xiaoli

    2003-01-01

    Nuclear factor NF-κB is believed to play an important role in regulating the production of matrix metalloproteinase (MMPs), which induce atherosclerosis, restenosis and plaque rupture. We incubated rabbit vascular smooth muscle cells (RVSMCs) with 5 μmol/L lovastatin in the presence of IL-1-α and PDGF BB (20 μg/L, respectively) to study whether lovastatin inhibited NF-κB binding activity induced by IL-1 and PDGF. The NF-κB activity was detected by electrophoretic mobility shift assay (EMSA); MMP-1 and MMP-3 were measured by western blotting; and MMP-9 was detected by zymography. The result showed that lovastatin strongly reduced NF-κB activity upregulated by IL-1 combined with PDGF, and lovastatin also dose-dependently inhibited the expression of MMP-1, -3 and -9 induced by IL-1 and PDGF. It suggested that the beneficial effects of statins may extend to mechanisms beyond cholesterol reduction

  13. Activation of the Ca2+/calcineurin/NFAT2 pathway controls smooth muscle cell differentiation

    International Nuclear Information System (INIS)

    Larrieu, Daniel; Thiebaud, Pierre; Duplaa, Cecile; Sibon, Igor; Theze, Nadine; Lamaziere, Jean-Marie Daniel

    2005-01-01

    Cellular mechanisms controlling smooth muscle cells (SMCs) phenotypic modulation are largely unknown. Intracellular Ca 2+ movements are essential to ensure SMC functions; one of the roles of Ca 2+ is to regulate calcineurin, which in turn induces nuclear localization of the nuclear factor of activated T-cell (NFAT). In order to investigate, during phenotypic differentiation of SMCs, the effect of calcineurin inhibition on NFAT 2 nuclear translocation, we used a culture model of SMC differentiation in serum-free conditions. We show that the treatment of cultured SMC with the calcineurin inhibitor cyclosporine A induced their dedifferentiation while preventing their differentiation. These findings suggest that nuclear translocation of NFAT 2 is dependent of calcineurin activity during the in vitro SMC differentiation kinetic and that the nuclear presence of NFAT 2 is critical in the acquisition and maintenance of SMC differentiation

  14. Redox signaling in cardiovascular pathophysiology: A focus on hydrogen peroxide and vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Chang Hyun Byon

    2016-10-01

    Full Text Available Oxidative stress represents excessive intracellular levels of reactive oxygen species (ROS, which plays a major role in the pathogenesis of cardiovascular disease. Besides having a critical impact on the development and progression of vascular pathologies including atherosclerosis and diabetic vasculopathy, oxidative stress also regulates physiological signaling processes. As a cell permeable ROS generated by cellular metabolism involved in intracellular signaling, hydrogen peroxide (H2O2 exerts tremendous impact on cardiovascular pathophysiology. Under pathological conditions, increased oxidase activities and/or impaired antioxidant systems results in uncontrolled production of ROS. In a pro-oxidant environment, vascular smooth muscle cells (VSMC undergo phenotypic changes which can lead to the development of vascular dysfunction such as vascular inflammation and calcification. Investigations are ongoing to elucidate the mechanisms for cardiovascular disorders induced by oxidative stress. This review mainly focuses on the role of H2O2 in regulating physiological and pathological signals in VSMC.

  15. Thrombospondin-1, -2 and -5 have differential effects on vascular smooth muscle cell physiology

    Energy Technology Data Exchange (ETDEWEB)

    Helkin, Alex; Maier, Kristopher G. [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States); Gahtan, Vivian, E-mail: gahtanv@upstate.edu [SUNY Upstate Medical University, Division of Vascular Surgery and Endovascular Services, Syracuse, NY (United States); Department of Veterans Affairs VA Healthcare Network Upstate New York at Syracuse, Syracuse, NY (United States)

    2015-09-04

    Introduction: The thrombospondins (TSPs) are matricellular proteins that exert multifunctional effects by binding cytokines, cell-surface receptors and other proteins. TSPs play important roles in vascular pathobiology and are all expressed in arterial lesions. The differential effects of TSP-1, -2, and -5 represent a gap in knowledge in vascular smooth muscle cell (VSMC) physiology. Our objective is to determine if structural differences of the TSPs imparted different effects on VSMC functions critical to the formation of neointimal hyperplasia. We hypothesize that TSP-1 and -2 induce similar patterns of migration, proliferation and gene expression, while the effects of TSP-5 are different. Methods: Human aortic VSMC chemotaxis was tested for TSP-2 and TSP-5 (1–40 μg/mL), and compared to TSP-1 and serum-free media (SFM) using a modified Boyden chamber. Next, VSMCs were exposed to TSP-1, TSP-2 or TSP-5 (0.2–40 μg/mL). Proliferation was assessed by MTS assay. Finally, VSMCs were exposed to TSP-1, TSP-2, TSP-5 or SFM for 3, 6 or 24 h. Quantitative real-time PCR was performed on 96 genes using a microfluidic card. Statistical analysis was performed by ANOVA or t-test, with p < 0.05 being significant. Results: TSP-1, TSP-2 and TSP-5 at 20 μg/mL all induce chemotaxis 3.1 fold compared to serum-free media. TSP-1 and TSP-2 induced proliferation 53% and 54% respectively, whereas TSP-5 did not. In the gene analysis, overall, cardiovascular system development and function is the canonical pathway most influenced by TSP treatment, and includes multiple growth factors, cytokines and proteases implicated in cellular migration, proliferation, vasculogenesis, apoptosis and inflammation pathways. Conclusions and relevance: The results of this study indicate TSP-1, -2, and -5 play active roles in VSMC physiology and gene expression. Similarly to TSP-1, VSMC chemotaxis to TSP-2 and -5 is dose-dependent. TSP-1 and -2 induces VSMC proliferation, but TSP-5 does not, likely

  16. Cloning and expression of a Kv1.2 class delayed rectifier K+ channel from canine colonic smooth muscle.

    Science.gov (United States)

    Hart, P J; Overturf, K E; Russell, S N; Carl, A; Hume, J R; Sanders, K M; Horowitz, B

    1993-10-15

    A cDNA (CSMK1) encoding a delayed rectifier K+ channel of the Kv1.2 class was cloned from canine colonic circular smooth muscle and expressed in Xenopus oocytes. These channels appear to be uniquely expressed in gastrointestinal muscles and may participate in the electrical slow wave activity. Functional expression of CSMK1 in Xenopus oocytes demonstrated a K+ current that activated in a voltage-dependent manner upon depolarization. This current was highly sensitive to 4-aminopyridine (IC50, 74 microM). A low-conductance K+ channel was identified in inside-out patches from oocytes injected with CSMK1. This channel displayed a linear current-voltage relation with a slope conductance of 14 pS. The channels were blocked in a concentration-dependent manner by 4-aminopyridine. Northern blot analysis demonstrated that CSMK1 is expressed in a wide variety of gastrointestinal smooth muscles. Portal vein, renal artery, and uterus do not express CSMK1, suggesting that, among smooth muscles, expression of this K+ channel may be restricted to gastrointestinal smooth muscles. CSMK1 is 91% homologous to RAK, a delayed rectifier K+ channel cloned from rat heart, but displays unique pharmacological properties and tissue distribution.

  17. Pharmacological inhibition of β-catenin/CBP interaction with the small molecule ICG-001 inhibits proliferation and extracellular matrix production in airway smooth muscle

    NARCIS (Netherlands)

    Koopmans, T.; Crutzen, S.; Halayko, A.J.; Gosens, R.

    2015-01-01

    Rationale Airway hyperresponsiveness is a principle feature of asthma, explained in part by remodeling of airway smooth muscle (ASM), including muscle thickening and increased extracellular matrix (ECM) protein production by the ASM. Current therapies are largely successful in targeting the

  18. Activation properties of chemically skinned fibres from human isolated bronchial smooth muscle.

    Science.gov (United States)

    Savineau, J P; Marthan, R

    1994-01-01

    1. The contractile activation properties of human isolated bronchial smooth muscle were investigated using chemically (beta-escin) skinned strips. 2. Concentration-dependent contractions were induced by free ion concentrations of Ca2+ (0.5-3 microM), Sr2+ (2-200 microM) and Ba2+ (50-1000 microM). The resulting -log[cation]-tension relationships were fitted by sigmoidal curves with EC50 values (cation concentration required to produce half-maximal tension) and co-operativity factors (Hill coefficient, nH) of, respectively, 0.25 microM and 3.4 for Ca2+, 12 microM and 2.64 for Sr2+ and 100 microM and 1.73 for Ba2+. Maximal responses to Sr2+ and Ba2+ were 125.5 +/- 15.4 and 96 +/- 8.1% (n = 5) respectively of the maximum tension induced by Ca2+. 3. Trifluoperazine (5-100 microM), cyclic AMP (50-300 microM) and cyclic GMP (50-100 microM) each antagonized Ca2+ in a concentration-dependent manner. On the other hand, okadaic acid (OA, 0.2-1 microM) potentiated Ca2+ and increased the maximum response to Ca2+ (+25 +/- 5.4%, n = 5, for 1 microM OA). 4. This study has demonstrated the high Ca2+ sensitivity of the activation mechanism of human isolated bronchial smooth muscle. It also suggests that control of the contractile machinery in the human bronchus involves processes of phosphorylation and dephosphorylation. The beta-escin-treated human bronchus may be a useful model for investigating the cellular basis of some pathophysiological processes such as bronchial hyper-responsiveness. PMID:8014904

  19. Estradiol-mediated ERK phosphorylation and apoptosis in vascular smooth muscle cells requires GPR 30.

    Science.gov (United States)

    Ding, Qingming; Gros, Robert; Limbird, Lee E; Chorazyczewski, Jozef; Feldman, Ross D

    2009-11-01

    Recent studies suggest that the rapid and nongenomic effects of estradiol may be mediated through the G protein-coupled receptor dubbed GPR30 receptor. The present study examines the role of GPR30 versus a classical estrogen receptor (ERalpha) in mediating the growth regulatory effects of estradiol. GPR30 is readily detectable in freshly isolated vascular tissue but barely detectable in cultured vascular smooth muscle cells (VSMC). In freshly isolated aortic tissue, estradiol stimulated extracellular signal-regulated kinases (ERK) phosphorylation. In contrast, in cultured VSMC, where GPR30 expression is significantly reduced, estradiol inhibits ERK phosphorylation. Transfer of the genes encoding GPR30 led to estradiol stimulation of ERK phosphorylation, which is opposite the effects of estradiol in the primary culture of VSMCs. Transduction of the mineralocorticoid receptor (MR) had no effect on estradiol effects on ERK. Estradiol-mediated stimulation of ERK subsequent to heterologous GPR30 expression was pertussis toxin sensitive and phosphoinositide 3-kinase (PI3 kinase) dependent; under these conditions, estradiol also inhibited protein kinase A (PKA). In contrast, in the absence of GPR30 expression in cultured VSMC, estradiol stimulated PKA activity and inhibited ERK phosphorylation. To determine the functional effect of GPR30 (vs. estrogen receptor expression), we assessed estradiol-mediated apoptosis. In the absence of GPR30 expression, estradiol inhibited apoptosis. This effect was enhanced with ERalpha expression. In contrast, with GPR30 expression, estradiol stimulated apoptosis in an ERK-dependent manner. Thus the effect of estradiol on vascular smooth muscle cell apoptosis is likely dependent on the balance between ER-mediated PKA activation and GPR30-mediated PKA inhibition and PI3 kinase activation. Taken together, we postulate that modulation of GPR30 expression or activity may be an important determinant of the effects of estradiol in the vasculature.

  20. LPS Promotes Vascular Smooth Muscle Cells Proliferation Through the TLR4/Rac1/Akt Signalling Pathway

    Directory of Open Access Journals (Sweden)

    Qianran Yin

    2017-12-01

    Full Text Available Background/Aims: Lipopolysaccharide (LPS is a potent activator of vascular smooth muscle cells (VSMCs proliferation, but the underlying mechanism remains unknown. In this study, we knocked down Toll-like receptor 4 (TLR4 and Ras-related C3 botulinum toxin substrate 1 (Rac1 expression using small interfering RNA (siRNA in order to investigate the effects and possible mechanisms of LPS-induced VSMCs proliferation. Methods: VSMCs proliferation was monitored by 5-ethynyl-2’-deoxyuridine staining, and Rac1 activity was measured via Glutathione S-transferase pull-down assay. mRNAs encoding proliferating cell nuclear antigen (PCNA, smooth muscle 22α (SM22α, myosin heavy chain (MYH and transient receptor potential channel 1 (TRPC1 were detected by qRT-PCR. The expression of total Akt, p-Akt (308, p-Akt (473, SM22α, MYH and TRPC1 protein was analysed by Western blot. Results: Treatment with TLR4 siRNA (siTLR4 or Rac1 siRNA (siRac1 significantly decreased LPS-induced VSMCs proliferation. Moreover, LPS-induced activation of Rac1 through TLR4 was observed. Western blot analysis revealed that transfection with siTLR4 or siRac1 inhibited LPS-induced Akt phosphorylation. We discovered that LPS stimulated VSMCs proliferation via phenotypic modulation and that this effect was partially inhibited by pre-treatment with siTLR4 or siRac1. Further, TLR4 and Rac1 are involved in LPS-induced activation of TRPC1. Conclusion: This study suggests that LPS exerts an effect on VSMCs proliferation and that the TLR4/Rac1/Akt signalling pathway mediates this effect.

  1. The effect of Taraxacum officinale on gastric emptying and smooth muscle motility in Rodents.

    Science.gov (United States)

    Jin, Y-R; Jin, J; Piao, X-X; Jin, N G

    2011-08-01

    Taraxacum officinale (TO) is a traditional herbal medicine that has been widely used for abdominal illnesses. However, the efficacy and the mechanism of TO on gastric emptying (GE) and smooth muscle motility are unknown. Ethyl acetate fraction (EA), n-butanol fraction (BF), and aqueous fraction (AF) were prepared in succession from 70% ethanol extract (EE) of TO using solvent polarity chromatography. Phenol red meal was adopted to estimate GE in mice. A polygraph was used to measure the smooth muscle motility in rats. The percentage of GE was 48.8 ± 6.1% (vehicle control), 75.3 ± 6.5% (cisapride positive control), 68.0±6.7% (EE), 53.3±6.0% (EA), 54.1±6.3% (AF), and 86.0±6.5% (BF). Thus, BF was determined to be most effective in accelerating GE. This stimulatory effect of BF on GE was also supported by the observation that BF increased spontaneous contraction of gastric fundus and antrum and decreased the spontaneous motility of pyloric sphincter in vitro. Atropine blocked the stimulatory effect of BF on GE, whereas phentolamine and propranolol had no effect. BF seems to be a promising prokinetic agent. BF-induced increase in the contraction of fundus and antrum contributes to an increase in the intra-gastric pressure. BF-induced decrease in the motility of pyloric sphincter contributes to a decrease in the resistance of food from the stomach to the small intestine. The acceleration of GE by BF is likely to be exerted through cholinergic stimulation. © 2011 Blackwell Publishing Ltd.

  2. Sodium pump activity and calcium relaxation in vascular smooth muscle of deoxycorticosterone acetate-salt rats

    International Nuclear Information System (INIS)

    Soltis, E.E.; Field, F.P.

    1986-01-01

    The Na + -K + pump activity was determined in femoral arterial smooth muscle from deoxycorticosterone acetate (DOCA)-salt hypertensive rats using potassium relaxation and ouabain-sensitive 86 Rb uptake as indices. The membrane-stabilizing effect of calcium and its relation to Na + -K + pump activity also were examined. Femoral arteries from DOCA-salt rats exhibited a greater relaxation in response to potassium addition after contraction with norepinephrine in a low potassium (0.6 mM) Krebs solution. The concentration of potassium required to produce a 50% relaxation was significantly less in DOCA-salt rats. Ouabain-sensitive 86 Rb uptake was significantly greater at 3, 10, and 20 minutes of 86 Rb incubation in femoral arteries from DOCA-salt rats. Linear regression analysis revealed a significant correlation between the uptake of 86 Rb and time of incubation in both control and DOCA-salt rats. A significant difference in the slopes of the regression lines showed that the rate of uptake was greater in DOCA-salt rats. No difference was observed in ouabain-insensitive 86 Rb uptake. A dose-dependent relaxation in response to increasing concentrations of calcium following contraction to norepinephrine was observed in femoral arteries from control and DOCA-salt rats. The relaxation was directly dependent on the level of extracellular potassium and was blocked by ouabain. Femoral arteries from DOCA-salt rats relaxed to a significantly greater extent in response to calcium at each level of potassium when compared with controls. These results provide further evidence for an increase in Na + -K + pump activity in vascular smooth muscle from DOCA-salt hypertensive rats

  3. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fu [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Chambon, Pierre [Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS UMR7104, INSERM U596, ULP, Collége de France) and Institut Clinique de la Souris, ILLKIRCH, Strasbourg (France); Tellides, George [Department of Surgery, Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT (United States); Kong, Wei [Department of Physiology and Pathophysiology, Basic Medical College of Peking University, Beijing (China); Zhang, Xiaoming, E-mail: rmygxgwk@163.com [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China); Li, Wei [Department of Vascular Surgery, Peking University People’s Hospital, Beijing (China)

    2014-11-07

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our study was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.

  4. Immunohistochemistry with keratin and smooth muscle actin monoclonal antibodies in canine digestive tract and extramural glands.

    Science.gov (United States)

    Vos, J H; van den Ingh, T S; de Neijs, M; van Mil, F N; Ivanyi, D; Ramaekers, F C

    1992-05-01

    The canine digestive system and its extramural glands (parotid gland, liver, pancreas) were immunohistochemically studied using a panel of twelve monoclonal antibodies (MoAbs) specific for human keratin proteins and for alpha-smooth muscle actin. Various epithelial tissues and cells were characterized by different keratin staining patterns. So, the epithelial lining of the upper alimentary tract was characterized by staining with the MoAb 6B10, specific for keratin-type (K) 4, and the absence of staining with the MoAbs directed against K 8 and 18 (CAM 5.2 and RGE 53, DE-K18 respectively), whereas the lower alimentary tract epithelium was not labeled by 6B10, but stained by the latter MoAbs. In the salivary glands the luminal and basal cells of the adenomeres as well as the different ductal structures could be immunohistochemically differentiated. The duct epithelium in liver and pancreas showed next to keratin staining characteristics in common with hepatocytes and exocrine pancreatic cells, additional staining by several keratin MoAbs. The keratin staining patterns in the canine tissues showed, in addition to similarities also distinct discrepancies when compared to the staining patterns in corresponding human tissues. Myoepithelial cells in salivary and oesophageal glands could be differentiated from other basally located epithelial cells by their exclusive immunoreactivity for alpha-smooth muscle actin. Canine pancreatic endocrine cells were not labeled by any of the keratin MoAbs. It is concluded that immunohistochemistry with polypeptide specific MoAbs specific for human keratin-types can be used to differentiate between different types of canine epithelial tissues and epithelial cells in the digestive tract. As a result such reagents may find their application in developmental biology and pathology of this species.

  5. Artemisinin attenuates platelet-derived growth factor BB-induced migration of vascular smooth muscle cells.

    Science.gov (United States)

    Lee, Kang Pa; Park, Eun-Seok; Kim, Dae-Eun; Park, In-Sik; Kim, Jin Tack; Hong, Heeok

    2014-10-01

    Artemisinin (AT), an active compound in Arternisia annua, is well known as an anti-malaria drug. It is also known to have several effects including anti-oxidant, anti-inflammation, and anti-cancer activities. To date, the effect of AT on vascular disorders has not been studied. In this study, we investigated the effects of AT on the migration and proliferation of vascular smooth muscle cells (VSMC) stimulated by platelet-derived growth factor BB (PDGF-BB). Aortic smooth muscle cells were isolated from Sprague-Dawley rats. PDGF-BB stimulated VSMC migration was measured by the scratch wound healing assay and the Boyden chamber assay. Cell viability was determined by using an EZ-Cytox Cell Viability Assay Kit. The production of reactive oxygen species (ROS) in PDGF-BB stimulated VSMC was measured through H2DCF-DA staining. We also determined the expression levels of signal proteins relevant to ROS, including measures of extracellular signal-regulated kinase (ERK) 1/2 measured by western blot analysis and matrix metalloproteinase (MMP) 9 measured by reverse transcription-polymerase chain reaction (RT-PCR). AT (10 µM and 30 µM) significantly reduced the proliferation and migration of PDGF-BB stimulated VSMC in a dose-dependent manner. The production of ROS, normally induced by PDGF-BB, is reduced by treatment with AT at both concentrations. PDGF-BB stimulated VSMC treated with AT (10 µM and 30 µM) have reduced phosphorylation of ERK1/2 and inhibited MMP9 expression compared to untreated PDGF-BB stimulated VSMC. We suggest, based on these results, that AT may exert an anti-atherosclerotic effect on PDGF-BB stimulated VSMCs by inhibiting their proliferation and migration through down-regulation of ERK1/2 and MMP9 phosphorylation.

  6. Vascular smooth muscle modulates endothelial control of vasoreactivity via reactive oxygen species production through myoendothelial communications.

    Directory of Open Access Journals (Sweden)

    Marie Billaud

    Full Text Available BACKGROUND: Endothelial control of vascular smooth muscle plays a major role in the resulting vasoreactivity implicated in physiological or pathological circulatory processes. However, a comprehensive understanding of endothelial (EC/smooth muscle cells (SMC crosstalk is far from complete. Here, we have examined the role of gap junctions and reactive oxygen species (ROS in this crosstalk and we demonstrate an active contribution of SMC to endothelial control of vasomotor tone. METHODOLOGY/PRINCIPAL FINDINGS: In small intrapulmonary arteries, quantitative RT-PCR, Western Blot analyses and immunofluorescent labeling evidenced connexin (Cx 37, 40 and 43 in EC and/or SMC. Functional experiments showed that the Cx-mimetic peptide targeted against Cx 37 and Cx 43 ((37,43Gap27 (1 reduced contractile and calcium responses to serotonin (5-HT simultaneously recorded in pulmonary arteries and (2 abolished the diffusion in SMC of carboxyfluorescein-AM loaded in EC. Similarly, contractile and calcium responses to 5-HT were decreased by superoxide dismutase and catalase which, catabolise superoxide anion and H(2O(2, respectively. Both Cx- and ROS-mediated effects on the responses to 5-HT were reversed by L-NAME, a NO synthase inhibitor or endothelium removal. Electronic paramagnetic resonance directly demonstrated that 5-HT-induced superoxide anion production originated from the SMC. Finally, whereas 5-HT increased NO production, it also decreased cyclic GMP content in isolated intact arteries. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that agonist-induced ROS production in SMC targeting EC via myoendothelial gap junctions reduces endothelial NO-dependent control of pulmonary vasoreactivity. Such SMC modulation of endothelial control may represent a signaling pathway controlling vasoreactivity under not only physiological but also pathological conditions that often implicate excessive ROS production.

  7. Update on corpus cavernosum smooth muscle contractile pathways in erectile function: a role for testosterone?

    Science.gov (United States)

    Zhang, Xin-Hua; Melman, Arnold; Disanto, Michael E

    2011-07-01

    Normal erectile function (EF) involves a coordinated relaxation of the arteries that supply the penis and the corpus cavernosum smooth muscle (CCSM), resulting in expansion of the sinusoids and increased intracavernous pressure. But the CCSM spends the majority of its time in the contracted state which is mediated by norepinephrine released from nerve endings and other vasoconstrictors like endothelins released from the endothelium. These agents cause smooth muscle myosin (SMM) phosphorylation by elevating intracellular calcium. When calcium returns to basal levels, the calcium sensitivity increases and prevents myosin dephosphorylation, which involves the RhoA/Rho-kinase (ROK) mechanism, thus maintaining force. Although mounting evidences demonstrate that androgens have a major influence on EF that is not just centrally mediated, this notion remains quite controversial. To summarize the current knowledge on CCSM contractile pathways, the role they play in modulating EF, and the influence of androgens. The article reviews the literature and contains some previously unpublished data on CCSM contraction signaling including the role that androgens are known to play in modulating these pathways. Data from peer-reviewed publications and previously unpublished observations. In addition to downregulation of many pro-erectile molecular mechanisms, decreased testosterone (T) levels upregulate CCSM contractility, including hyperresponsiveness to α-adrenergic agonists, increased SMM phosphorylation, alteration of SMM isoform composition, activation of RhoA/ROK signaling and modulation of sphingosine-1-phosphate regulation of CCSM tone. Decreased T levels upregulate CCSM contractile signaling. Meanwhile, it downregulates CCSM relaxation pathways synergizing to produce erectile dysfunction (ED). Although some urologists and researchers are still skeptical of the influence of androgens on penile erection, understanding these molecular control mechanisms as well as the influence

  8. LPS Promotes Vascular Smooth Muscle Cells Proliferation Through the TLR4/Rac1/Akt Signalling Pathway.

    Science.gov (United States)

    Yin, Qianran; Jiang, Dehua; Li, Lei; Yang, Yu; Wu, Pei; Luo, Yuanyuan; Yang, Rongli; Li, Dongye

    2017-01-01

    Lipopolysaccharide (LPS) is a potent activator of vascular smooth muscle cells (VSMCs) proliferation, but the underlying mechanism remains unknown. In this study, we knocked down Toll-like receptor 4 (TLR4) and Ras-related C3 botulinum toxin substrate 1 (Rac1) expression using small interfering RNA (siRNA) in order to investigate the effects and possible mechanisms of LPS-induced VSMCs proliferation. VSMCs proliferation was monitored by 5-ethynyl-2'-deoxyuridine staining, and Rac1 activity was measured via Glutathione S-transferase pull-down assay. mRNAs encoding proliferating cell nuclear antigen (PCNA), smooth muscle 22α (SM22α), myosin heavy chain (MYH) and transient receptor potential channel 1 (TRPC1) were detected by qRT-PCR. The expression of total Akt, p-Akt (308), p-Akt (473), SM22α, MYH and TRPC1 protein was analysed by Western blot. Treatment with TLR4 siRNA (siTLR4) or Rac1 siRNA (siRac1) significantly decreased LPS-induced VSMCs proliferation. Moreover, LPS-induced activation of Rac1 through TLR4 was observed. Western blot analysis revealed that transfection with siTLR4 or siRac1 inhibited LPS-induced Akt phosphorylation. We discovered that LPS stimulated VSMCs proliferation via phenotypic modulation and that this effect was partially inhibited by pre-treatment with siTLR4 or siRac1. Further, TLR4 and Rac1 are involved in LPS-induced activation of TRPC1. This study suggests that LPS exerts an effect on VSMCs proliferation and that the TLR4/Rac1/Akt signalling pathway mediates this effect. © 2017 The Author(s). Published by S. Karger AG, Basel.

  9. Calcium-dependent smooth muscle excitatory effect elicited by the venom of the hydrocoral Millepora complanata.

    Science.gov (United States)

    Rojas, Alejandra; Torres, Mónica; Rojas, J Isela; Feregrino, Angélica; Heimer-de la Cotera, Edgar P

    2002-06-01

    In the present paper, we describe the results obtained from a preliminary pharmacological and biochemical study of the fire coral Millepora complanata, a regular component of coral reefs in the Mexican Caribbean. The protein-containing crude extract obtained from M. complanata (tested from 0.001 to 1000 microg protein/ml) caused a concentration-dependent stimulation of spontaneous contractions of the guinea pig ileum. The extract (EC(50)=11.55+/-2.36 microg/ml) was approximately 12-fold less potent than ionomycin (EC(50)=0.876+/-0.25 microg/ml) and its maximum induced contraction (1mg protein/ml) was equivalent to 68% of the response to 60mM KCl. FPLC size exclusion chromatography of the M. complanta extract afforded 12 primary fractions, of which only FV (containing proteins with molecular weights ranging from 17 to 44 kDa) and FVIII (consisting of peptides with molecular weights lesser than 1.8k Da) elicited an excitatory effect when tested at the EC(50) of the original extract. After incubation in Ca(2+)-free medium, the ileal response to FV and FVIII was significantly reduced. Blockage of L-type Ca(2+) channels with nifedipine (1 microM) inhibited FV and FVIII-evoked contractions. Cd(2+) (10 microM), an unspecific blocker of voltage-activated calcium channels, also antagonized FV and FVIII-induced effects, whereas the Na(+) channel blocker tetrodotoxin (10nM) did not significantly affect FV and FVIII responses. These results suggest that the contractions induced by the bioactive fractions obtained from the crude extract of M. complanata are caused mainly by a direct action on smooth muscle cells, via an increase in Ca(2+) permeability that occurs, at least partly, through L-type voltage-dependent Ca(2+) channels found in the cell membrane of smooth muscle. Copright 2002 Elsevier Science Ltd.

  10. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Viitanen, Matti [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Department of Geriatrics, Turku City Hospital and University of Turku, Turku (Finland); Sundström, Erik [Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Baumann, Marc [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Poyhonen, Minna [Department of Clinical Genetics, Helsinki University Hospital, HUSLAB, Helsinki (Finland); Tikka, Saara [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Behbahani, Homira, E-mail: homira.behbahani@ki.se [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Karolinska Institutet Alzheimer' s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden)

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ{sub m}) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  11. Synergy between thrombin and serotonin in inducing vascular smooth muscle cell proliferation.

    Science.gov (United States)

    Pakala, R; Benedict, C

    1999-12-01

    Previous studies have indicated that apart from playing an important role in hemostasis and thrombosis, thrombin may also contribute to the development of postangioplasty restenosis caused by the stimulation of vascular smooth muscle cell (VSMC) proliferation. Because thrombin generation in vivo is accompanied by platelet activation and release of smooth muscle cell (SMC) growth factors such as serotonin, we examined the possible interaction between these two compounds on VSMC proliferation. Thrombin (0.01 to 100 nmol/L), thrombin receptor-activating peptide (0.1 to 1000 micromol/L), and serotonin (5HT; 0.1 to 1000 micromol/L) increased tritiated thymidine incorporation into the DNA of canine aortic VSMCs in a dose-dependent manner. When thrombin and 5HT were added together at sub-threshold concentrations, they acted synergistically in inducing tritiated thymidine incorporation. These findings were paralleled by a 90%+/-5% increase in the cell number at 48 hours, as compared with a 37%+/-2% increase with 50 micromol/L serotonin and a 13%+/-3% increase with 0.1 nmol/L thrombin. We also demonstrated that a brief exposure to thrombin (1 hour) is sufficient to show its potentiating effect on serotonin. The mitogenic effect of serotonin and its synergistic interaction with thrombin on VSMC proliferation was abolished by serotonin type 2 receptor antagonist LY281067. Similarly, gamma-hirudin--a direct thrombin inhibitor--blocked the mitogenic effect of thrombin and its synergistic interaction with serotonin. When LY281067 and gamma-hirudin were used together, they abolished the mitogenic effects of both the agonists. Because clot-bound active thrombin can escape inactivation by anti-thrombin, this thrombin may potentiate the mitogenic effect of serotonin and keep the SMCs in a proliferative state for a long period of time. These findings support the use of 5HT2 receptor antagonists in combination with thrombin inhibitors in the prevention of SMC proliferation after

  12. Impaired Integrity of DNA after Recovery from Inflammation Causes Persistent Dysfunction of Colonic Smooth Muscle

    Science.gov (United States)

    Choi, Kuicheon; Chen, Jinghong; Mitra, Sankar; Sarna, Sushil K.

    2011-01-01

    Background & Aims Patients with inflammatory bowel disease who are in remission and those that developed inflammatory bowel syndrome after enteric infection continue to have symptoms of diarrhea or constipation in the absence of overt inflammation, indicating motility dysfunction. We investigated whether oxidative stress during inflammation impairs integrity of the promoter of Cacna1c, which encodes the pore-forming α1C subunit of Cav1.2b calcium channels. Methods We used long-extension PCR (LX-PCR) to evaluate DNA integrity in tissues from distal colons of rats; trinitrobenzene sulfonic acid (TNBS) was used to induce inflammation. Results H2O2 increased in the muscularis externa 1 to 7 days after inflammation was induced with TNBS. The oxidative stress significantly impaired DNA integrity in 2 specific segments of the Cacna1c promoter: −506 to −260 and −2,193 to −1,542. The impairment peaked at day 3 and recovered partially by day 7 after induction of inflammation; expression of the products of Cacna1c followed a similar time course. Oxidative stress suppressed the expression of Nrf2, an important regulator of anti-oxidant proteins. Intra-peritoneal administration of sulforaphane significantly reversed the suppression of Nrf2, oxidative damage in the promoter of Cacna1c, and suppression of Cacna1c on day 7 of inflammation. The inflammation subsided completely by 56 days after inflammation was induced; however, impairment of DNA integrity, expression of Nrf2 and Cacna1c, and smooth muscle reactivity to acetylcholine remained suppressed at this timepoint. Conclusion Oxidative stress during inflammation impairs the integrity of the promoter of Cacna1c; impairment persists partially after inflammation has subsided. Reduced transcription of Cacna1c contributes to smooth muscle dysfunction in the absence of inflammation. PMID:21745450

  13. Montelukast prevents microparticle-induced inflammatory and functional alterations in human bronchial smooth muscle cells.

    Science.gov (United States)

    Fogli, Stefano; Stefanelli, Fabio; Neri, Tommaso; Bardelli, Claudio; Amoruso, Angela; Brunelleschi, Sandra; Celi, Alessandro; Breschi, Maria Cristina

    2013-10-01

    Microparticles (MPs) are membrane fragments that may play a role in the pathogenesis of chronic respiratory diseases. We aimed to investigate whether human monocytes/macrophage-derived MPs could induce a pro-inflammatory phenotype in human bronchial smooth muscle cells (BSMC) and the effect of montelukast in this setting. Experimental methods included isolation of human monocytes/macrophages and generation of monocyte-derived MPs, RT-PCR analysis of gene expression, immunoenzymatic determination of pro-inflammatory factor release, bioluminescent assay of intracellular cAMP levels and electromobility shift assay analysis of NF-κB nuclear translocation. Stimulation of human BSMC with monocyte-derived MPs induced a pro-inflammatory switch in human BSMC by inducing gene expression (COX-2 and IL-8), protein release in the supernatant (PGE2 and IL-8), and heterologous β2-adrenoceptor desensitization. The latter effect was most likely related to autocrine PGE2 since pre-treatment with COX inhibitors restored the ability of salbutamol to induce cAMP synthesis in desensitized cells. Challenge with MPs induced nuclear translocation of NF-κB and selective NF-κB inhibition decreased MP-induced cytokine release in the supernatant. Montelukast treatment prevented IL-8 release and heterologous β2-adrenoceptor desensitization in human BSMC exposed to monocyte-derived MPs by blocking NF-κB nuclear translocation. These findings provide evidence on the role of human monocyte-derived MPs in the airway smooth muscle phenotype switch as a novel potential mechanism in the progression of chronic respiratory diseases and on the protective effects by montelukast in this setting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Reactive oxygen species are involved in regulating α1-adrenoceptor-activated vascular smooth muscle contraction

    Directory of Open Access Journals (Sweden)

    Tsai Ming-Ho

    2010-08-01

    Full Text Available Abstract Background Reactive oxygen species (ROS were shown to mediate aberrant contractility in hypertension, yet the physiological roles of ROS in vascular smooth muscle contraction have remained elusive. This study aimed to examine whether ROS regulate α1-adrenoceptor-activated contraction by altering myosin phosphatase activities. Methods Using endothelium-denuded rat tail artery (RTA strips, effects of anti-oxidants on isometric force, ROS production, phosphorylation of the 20-kDa myosin light chain (MLC20, and myosin phosphatase stimulated by α1-adrenoceptor agonist phenylephrine were examined. Results An antioxidant, N-acetyl-L-cysteine (NAC, and two NADPH oxidase inhibitors, apocynin and VAS2870, dose-dependently inhibited contraction activated by phenylephrine. Phenylephrine stimulated superoxide anion production that was diminished by the pretreatment of apocynin, VAS2870, superoxide scavenger tiron or mitochondria inhibitor rotenone, but not by xanthine oxidase inhibitor allopurinol or cyclooxygenase inhibitor indomethacin. Concurrently, NADPH oxidase activity in RTA homogenates increased within 1 min upon phenylephrine stimulation, sustained for 10 min, and was abolished by the co-treatment with apocynin, but not allopurinol or rotenone. Phenylephrine-induced MLC20 phosphorylation was dose-dependently decreased by apocynin. Furthermore, apocynin inhibited phenylephrine-stimulated RhoA translocation to plasma membrane and phosphorylation of both myosin phosphatase regulatory subunit MYPT1Thr855 and myosin phosphatase inhibitor CPI-17Thr38. Conclusions ROS, probably derived from NADPH oxidase and mitochondria, partially regulate α1-adrenoceptor-activated smooth muscle contraction by altering myosin phosphatase-mediated MLC20 phosphorylation through both RhoA/Rho kinase- and CPI-17-dependent pathways.

  15. Mesoderm/mesenchyme homeobox gene l promotes vascular smooth muscle cell phenotypic modulation and vascular remodeling.

    Science.gov (United States)

    Wu, Bing; Zhang, Lei; Zhu, Yun-He; Zhang, You-En; Zheng, Fei; Yang, Jian-Ye; Guo, Ling-Yun; Li, Xing-Yuan; Wang, Lu; Tang, Jun-Ming; Chen, Shi-You; Wang, Jia-Ning

    2018-01-15

    To investigate the role of mesoderm/mesenchyme homeobox gene l (Meox1) in vascular smooth muscle cells (SMCs) phenotypic modulation during vascular remodeling. By using immunostaining, Western blot, and histological analyses, we found that Meox1 was up-regulated in PDGF-BB-treated SMCs in vitro and balloon injury-induced arterial SMCs in vivo. Meox1 knockdown by shRNA restored the expression of contractile SMCs phenotype markers including smooth muscle α-actin (α-SMA) and calponin. In contrast, overexpression of Moex1 inhibited α-SMA and calponin expressions while inducing the expressions of synthetic SMCs phenotype markers such as matrix gla protein, osteopontin, and proliferating cell nuclear antigen. Mechanistically, Meox1 mediated the SMCs phenotypic modulation through FAK-ERK1/2 signaling, which appears to induce autophagy in SMCs. In vivo, knockdown of Meox1 attenuated injury-induced neointima formation and promoted SMCs contractile proteins expressions. Meox1 knockdown also reduced the number of proliferating SMCs, suggesting that Meox1 was important for SMCs proliferation in vivo. Moreover, knockdown of Meox1 attenuated ERK1/2 signaling and autophagy markers expressions, suggesting that Meox1 may promote SMCs phenotypic modulation via ERK1/2 signaling-autophagy in vivo. Our data indicated that Meox1 promotes SMCs phenotypic modulation and injury-induced vascular remodeling by regulating the FAK-ERK1/2-autophagy signaling cascade. Thus, targeting Meox1 may be an attractive approach for treating proliferating vascular diseases. Copyright © 2017. Published by Elsevier B.V.

  16. Ca2+/Calmodulin-Dependent Protein Kinase II in Vascular Smooth Muscle.

    Science.gov (United States)

    Saddouk, F Z; Ginnan, R; Singer, H A

    2017-01-01

    Ca 2+ -dependent signaling pathways are central regulators of differentiated vascular smooth muscle (VSM) contractile function. In addition, Ca 2+ signals regulate VSM gene transcription, proliferation, and migration of dedifferentiated or "synthetic" phenotype VSM cells. Synthetic phenotype VSM growth and hyperplasia are hallmarks of pervasive vascular diseases including hypertension, atherosclerosis, postangioplasty/in-stent restenosis, and vein graft failure. The serine/threonine protein kinase Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous mediator of intracellular Ca 2+ signals. Its multifunctional nature, structural complexity, diversity of isoforms, and splice variants all characterize this protein kinase and make study of its activity and function challenging. The kinase has unique autoregulatory mechanisms, and emerging studies suggest that it can function to integrate Ca 2+ and reactive oxygen/nitrogen species signaling. Differentiated VSM expresses primarily CaMKIIγ and -δ isoforms. CaMKIIγ isoform expression correlates closely with the differentiated phenotype, and some studies link its function to regulation of contractile activity and Ca 2+ homeostasis. Conversely, synthetic phenotype VSM cells primarily express CaMKIIδ and substantial evidence links it to regulation of gene transcription, proliferation, and migration of VSM in vitro, and vascular hypertrophic and hyperplastic remodeling in vivo. CaMKIIδ and -γ isoforms have opposing functions at the level of cell cycle regulation, proliferation, and VSM hyperplasia in vivo. Isoform switching following vascular injury is a key step in promoting vascular remodeling. Recent availability of genetically engineered mice with smooth muscle deletion of specific isoforms and transgenics expressing an endogenous inhibitor protein (CAMK2N) has enabled a better understanding of CaMKII function in VSM and should facilitate future studies. © 2017 Elsevier Inc. All rights reserved.

  17. Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation

    Directory of Open Access Journals (Sweden)

    Mettey Yvette

    2006-08-01

    Full Text Available Abstract Background The airway functions are profoundly affected in many diseases including asthma, chronic obstructive pulmonary disease (COPD and cystic fibrosis (CF. CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR gene, which normally encodes a multifunctional and integral membrane protein, the CF transmembrane conductance regulator (CFTR expressed in airway epithelial cells. Methods To demonstrate that CFTR is also expressed in tracheal smooth muscle cells (TSMC, we used iodide efflux assay to analyse the chloride transports in organ culture of rat TSMC, immunofluorescence study to localize CFTR proteins and isometric contraction measurement on isolated tracheal rings to observe the implication of CFTR in the bronchodilation. Results We characterized three different pathways stimulated by the cAMP agonist forskolin and the isoflavone agent genistein, by the calcium ionophore A23187 and by hypo-osmotic challenge. The pharmacology of the cAMP-dependent iodide efflux was investigated in detail. We demonstrated in rat TSMC that it is remarkably similar to that of the epithelial CFTR, both for activation (using three benzo [c]quinolizinium derivatives and for inhibition (glibenclamide, DPC and CFTRinh-172. Using rat tracheal rings, we observed that the activation of CFTR by benzoquinolizinium derivatives in TSMC leads to CFTRinh-172-sensitive bronchodilation after constriction with carbachol. An immunolocalisation study confirmed expression of CFTR in tracheal myocytes. Conclusion Altogether, these observations revealed that CFTR in the airways of rat is expressed not only in the epithelial cells but also in tracheal smooth muscle cells leading to the hypothesis that this ionic channel could contribute to bronchodilation.

  18. Dual regulation of myocardin expression by tumor necrosis factor-α in vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Pavneet Singh

    Full Text Available De-differentiation of vascular smooth muscle cells (VSMCs plays a critical role in the development of atherosclerosis, a chronic inflammatory disease involving various cytokines such as tumor necrosis factor-α (TNFα. Myocardin is a co-factor of serum response factor (SRF and is considered to be the master regulator of VSMC differentiation. It binds to SRF and regulates the expression of contractile proteins in VSMCs. Myocardin is also known to inhibit VSMC proliferation by inhibiting the NF-κB pathway, whereas TNFα is known to activate the NF-κB pathway in VSMCs. NF-κB activation has also been shown to inhibit myocardin expression and smooth muscle contractile marker genes. However, it is not definitively known whether TNFα regulates the expression and activity of myocardin in VSMCs. The current study aimed to investigate the role of TNFα in regulating myocardin and VSMC function. Our studies showed that TNFα down-regulated myocardin expression and activity in cultured VSMCs by activating the NF-κB pathway, resulting in decreased VSMC contractility and increased VSMC proliferation. Surprisingly, we also found that TNFα prevented myocardin mRNA degradation, and resulted in a further significant increase in myocardin expression and activity in differentiated VSMCs. Both the NF-κB and p44/42 MAPK pathways were involved in TNFα regulation of myocardin, which further increased the contractility of VSMCs. These differential effects of TNFα on myocardin seemingly depended on whether VSMCs were in a differentiated or de-differentiated state. Taken together, our results demonstrate that TNFα differentially regulates myocardin expression and activity, which may play a key role in regulating VSMC functions.

  19. [Venom of Latrodectus mactans from Chile (Araneae, Theridiidae): effect on smooth muscle].

    Science.gov (United States)

    Romero, Fernando; Altieri, Elena; Urrutia, Mauricio; Jara, Jorge

    2003-06-01

    The venoms of Latrodectus sp. have been reported to induce contraction probably mediated by adrenergic and cholinergic transmitters. We have demonstrated that the venom of Chilean Latrodectus mactans contains neurotoxins that induce a contraction partially independent of transmitters release. Transmembrane mobility of Na+ and Ca2+ ions and more specifically, the increase of cytoplasmic calcium concentration are responsible for tonic contraction in smooth muscle. Calcium may enter the cell by several ways, such as the voltage-dependent Ca2+ L-type channels and the Na+/Ca2+ exchanger. This study aimed to examine the participation of this exchanger in the tonic contraction of smooth muscle in vas deferent of rat induced by the venom of the Chilean spider L. mactans. Blockers of Na+ channels (amiloride) and Ca2+ L-type channels (nifedipine), and a stimulator of the exchanger (modified Tyrode, Na+ 80 mM) were used. Simultaneously, variations of the cytoplasmic concentration of Ca2+ were registered by microfluorimetry (Fura-2 indicator) in the presence of nifedipine. In presence of amiloride, dose-dependent inhibition of venom-induced contraction was observed, suggesting the participation of voltage-dependent Ca2+ L-type channels. The contraction was only partially inhibited by nifedipine and the Ca2+ cytoplasmic concentration increased, as assessed by the microfluorimetric registration. Finally, the venom-induced contraction increased in the presence of modified Tyrode, probably due to the action of the Na+/Ca2+ exchanger. Taken together, our results support the idea that the Na+/Ca2+ exchanger is active and may be, at least in part, responsible for the contraction induced by the venom of Chilean L. mactans.

  20. A Subpopulation of Smooth Muscle Cells, Derived from Melanocyte-Competent Precursors, Prevents Patent Ductus Arteriosus

    Science.gov (United States)

    Puig, Isabel; Champeval, Delphine; Kumasaka, Mayuko; Belloir, Elodie; Bonaventure, Jacky; Mark, Manuel; Yamamoto, Hiroaki; Taketo, Mark M.; Choquet, Philippe; Etchevers, Heather C.; Beermann, Friedrich; Delmas, Véronique; Monassier, Laurent; Larue, Lionel

    2013-01-01

    Background Patent ductus arteriosus is a life-threatening condition frequent in premature newborns but also present in some term infants. Current mouse models of this malformation generally lead to perinatal death, not reproducing the full phenotypic spectrum in humans, in whom genetic inheritance appears complex. The ductus arteriosus (DA), a temporary fetal vessel that bypasses the lungs by shunting the aortic arch to the pulmonary artery, is constituted by smooth muscle cells of distinct origins (SMC1 and SMC2) and many fewer melanocytes. To understand novel mechanisms preventing DA closure at birth, we evaluated the importance of cell fate specification in SMC that form the DA during embryonic development. Upon specific Tyr::Cre-driven activation of Wnt/β-catenin signaling at the time of cell fate specification, melanocytes replaced the SMC2 population of the DA, suggesting that SMC2 and melanocytes have a common precursor. The number of SMC1 in the DA remained similar to that in controls, but insufficient to allow full DA closure at birth. Thus, there was no cellular compensation by SMC1 for the loss of SMC2. Mice in which only melanocytes were genetically ablated after specification from their potential common precursor with SMC2, demonstrated that differentiated melanocytes themselves do not affect DA closure. Loss of the SMC2 population, independent of the presence of melanocytes, is therefore a cause of patent ductus arteriosus and premature death in the first months of life. Our results indicate that patent ductus arteriosus can result from the insufficient differentiation, proliferation, or contractility of a specific smooth muscle subpopulation that shares a common neural crest precursor with cardiovascular melanocytes. PMID:23382837

  1. Role of dystrophin in airway smooth muscle phenotype, contraction and lung function.

    Science.gov (United States)

    Sharma, Pawan; Basu, Sujata; Mitchell, Richard W; Stelmack, Gerald L; Anderson, Judy E; Halayko, Andrew J

    2014-01-01

    Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD) and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC) and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh) when compared to genetic control BL10ScSnJ mice (wild-type). In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.

  2. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Viitanen, Matti; Sundström, Erik; Baumann, Marc; Poyhonen, Minna; Tikka, Saara; Behbahani, Homira

    2013-01-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ m ) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  3. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    International Nuclear Information System (INIS)

    Son, Dong Ju; Kim, Soo Yeon; Han, Seong Su; Kim, Chan Woo; Kumar, Sandeep; Park, Byeoung Soo; Lee, Sung Eun; Yun, Yeo Pyo; Jo, Hanjoong; Park, Young Hyun

    2012-01-01

    Highlights: ► Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. ► PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-κB activation. ► Piperlongumine reduced vascular smooth muscle cell activation through PDGF-Rβ and NF-κB-signaling. ► PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murine model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-κB) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase Cγ1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-κB—a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.

  4. Biomechanical effects of environmental and engineered particles on human airway smooth muscle cells.

    Science.gov (United States)

    Berntsen, P; Park, C Y; Rothen-Rutishauser, B; Tsuda, A; Sager, T M; Molina, R M; Donaghey, T C; Alencar, A M; Kasahara, D I; Ericsson, T; Millet, E J; Swenson, J; Tschumperlin, D J; Butler, J P; Brain, J D; Fredberg, J J; Gehr, P; Zhou, E H

    2010-06-06

    The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.

  5. The prognostic factors affecting survival in muscle invasive bladder cancer treated with radiotherapy

    International Nuclear Information System (INIS)

    Chung, Woong Ki; Oh, Bong Ryoul; Ahn, Sung Ja; Nah, Byung Sik; Kwon, Dong Deuk; Park, Kwang Sung; Ryu, Soo Bang; Park, Yang Il

    2002-01-01

    This study analyzed the prognostic factors affecting the survival rate and evaluated the role of radiation therapy in muscle-invading bladder cancer. Twenty eight patient with bladder cancer who completed planned definitive radiotherapy in the Departments of Therapeutic Radiology and Urology, Chonnam National University Hospital between Jan. 1986 to Dec. 1998 were retrospectively analyzed. The reviews were performed based on the patients' medical records. There were 21 males and 7 females in this study. The median of age was 72 years old ranging from 49 to 84 years. All patients were confirmed as having transitional cell carcinoma with histological grade 1 in one patient, grade 2 in 15, grade 3 in 9, and uniformed in 3. Radiation therapy was performed using a linear accelerator with 6 or 10 MV X-rays. Radiation was delivered daily with a 1.8 or 2.0 Gy fraction size by 4 ports (anterior-posterior, both lateral, alternatively) or 3 ports (Anterior and both lateral). The median radiation dose delivered to the isocenter of the target volume was 61.24 Gy ranging from 59 to 66.6 Gy. The survival rate was calculated by the Kaplan-Meier method. Multivariate analysis was performed on the prognostic factors affecting the survival rate. The survival rate was 76%, 46%, 33%, 33% at 1, 2, 3, 5 years, respectively, with 19 months of median survival. The potential factors of age (less than 70 years vs above 70), sex, diabetes mellitus, hypertension, hydronephrosis, T-stage (T3a vs T3b), TUR, chemotherapy, total duration of radiotherapy, radiation dose (less than 60 Gy vs above 60 Gy), and the treatment response were investigated with uni- and multivariate analysis. In univariate analysis, the T-stage (ρ 0.078) and radiation dose (ρ = 0.051) were marginally significant, and the treatment response (ρ = 0.011) was a statistically significant factor on the survival rate. Multivariate analysis showed there were no significant prognostic factors affecting the survival rate. The

  6. The mode of contractile action of palytoxin on vascular smooth muscle

    International Nuclear Information System (INIS)

    Ito, Katsuaki; Karaki, Hideaki; Urakawa, Norimoto

    1977-01-01

    Experiments were designed to assess the mode of action of palytoxin (PTX), isolated from Palythoa tuberculosa, on mechanically denervated rabbit aortic strips. PTX induced a sustained contraction in the muscle dose dependently. The contraction was irreversible. In the depolarized aorta, PTX did not induce a contraction whereas norepinephrine (NE) did. Removal of calcium from the bathing medium prevented PTX and high K + contractions, whereas phasic responses were elicited by NE. D600 also inhibited the contraction induced by PTX or high K + but had an less effect than that induced by NE. Sodium nitroprusside inhibited only the effect of NE. PTX increased dose dependently the 45 Ca uptake of a fraction not removable by La 3+ treatment and the increase was inhibited by D600. High K + concentration also increased the 45 Ca uptake but NE did not. It is suggested that PTX increased Ca 2+ influx into the smooth muscle cell to cause a contraction, which may be analogous to the action of potassium in a high concentration

  7. Membrane properties of smooth muscle cells in pulmonary arteries of the rat.

    Science.gov (United States)

    Suzuki, H; Twarog, B M

    1982-05-01

    Electrical properties of the membrane of smooth muscle cells in the rat main pulmonary artery (MPA) and a small pulmonary artery (SPA) were compared. MPA and SPA differed in several important respects, suggesting characteristic quantitative and qualitative differences in membrane properties. 1) Resting membrane potentials were similar in both (MPA 52.2 +/- 1.3 mV; SPA 51.5 +/- 1.7 mV). The cells displayed no spontaneous electrical activity. The muscle layers in both MPA and SPA showed cablelike properties; a graded local response to outward current pulses was observed, but no action potentials were evoked. 2) Tetraethylammonium chloride (TEA, 1-5 mM) depolarized, increased membrane resistance, and suppressed rectification in MPA. TEA strongly depolarized SPA and contraction ensued. 3) The maximum membrane depolarization produced by a 10-fold increase in extracellular [K+] was 48 mV in MPA and 47 mV in SPA. In K+-free solution gradual depolarization was observed in SPA, but the membrane potential in MPA was not modified. Restoration of K+-containing solution produced equivalent hyperpolarization in both tissues, indicating a similar degree of stimulation of electrogenic Na+-K+ pumping. 4) A Na+-deficient solution did not affect the membrane potential in MPA but depolarized SPA.

  8. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics.

    Directory of Open Access Journals (Sweden)

    Sonia R Rosner

    Full Text Available Bronchospasm induced in non-asthmatic human subjects can be easily reversed by a deep inspiration (DI whereas bronchospasm that occurs spontaneously in asthmatic subjects cannot. This physiological effect of a DI has been attributed to the manner in which a DI causes airway smooth muscle (ASM cells to stretch, but underlying molecular mechanisms-and their failure in asthma-remain obscure. Using cells and tissues from wild type and zyxin-/- mice we report responses to a transient stretch of physiologic magnitude and duration. At the level of the cytoskeleton, zyxin facilitated repair at sites of stress fiber fragmentation. At the level of the isolated ASM cell, zyxin facilitated recovery of contractile force. Finally, at the level of the small airway embedded with a precision cut lung slice, zyxin slowed airway dilation. Thus, at each level zyxin stabilized ASM structure and contractile properties at current muscle length. Furthermore, when we examined tissue samples from humans who died as the result of an asthma attack, we found increased accumulation of zyxin compared with non-asthmatics and asthmatics who died of other causes. Together, these data suggest a biophysical role for zyxin in fatal asthma.

  9. Cloning and characterization of a Kv1.5 delayed rectifier K+ channel from vascular and visceral smooth muscles.

    Science.gov (United States)

    Overturf, K E; Russell, S N; Carl, A; Vogalis, F; Hart, P J; Hume, J R; Sanders, K M; Horowitz, B

    1994-11-01

    We have cloned and characterized the expression of a Kv1.5 K+ channel (cKv1.5) from canine colonic smooth muscle. The amino acid sequence displayed a high level of identity to other K+ channels of the Kv1.5 class in the core region between transmembrane segments S1-S6; however, identity decreased to between 74 and 82% in the NH2 and COOH terminal segments, suggesting that cKv1.5 is a distinct isoform of the Kv1.5 class. Functional expression of cKv1.5 in oocytes demonstrated a channel highly selective for K+, which activates in a voltage-dependent manner on depolarization to membrane potentials positive to -40 mV. At room temperature the channel showed fast activation (time to half of peak current, 5.5 ms) and slow inactivation that was incomplete after 20-s depolarizations. Single channel analysis of the channel expressed in oocytes displayed a linear current-voltage curve and had a slope conductance of 9.8 +/- 1.1 pS. Northern blot analysis demonstrated differential expression of cKv1.5 in smooth muscles of the gastrointestinal tract and abundant expression in several vascular smooth muscles. We propose that cKv1.5 represents a component of the delayed rectifier current in both vascular and visceral smooth muscles.

  10. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Czech Academy of Sciences Publication Activity Database

    Pařízek, Martin; Kasálková-Slepičková, N.; Bačáková, Lucie; Švindrych, Zdeněk; Slepička, P.; Bačáková, Markéta; Lisá, Věra; Švorčík, V.

    2013-01-01

    Roč. 2013, č. 2013 (2013), s. 371430 ISSN 2314-6133 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : biotechnology * tissue replacements * vascular smooth muscle cells * adhesion * modification Subject RIV: JJ - Other Materials

  11. NF-kappaB signaling mediates vascular smooth muscle endothelin type B receptor expression in resistance arteries

    DEFF Research Database (Denmark)

    Zheng, Jian-Pu; Zhang, Yaping; Edvinsson, Lars

    2010-01-01

    Vascular smooth muscle cells (SMC) endothelin type B (ET(B)) receptor upregulation results in strong vasoconstriction and reduction of local blood flow. We hypothesizes that the underlying molecular mechanisms involve transcriptional factor nuclear factor-kappaB (NF-kappaB) pathway. ET(B) recepto...

  12. VOLTAGE-DEPENDENT SODIUM AND POTASSIUM, BUT NO CALCIUM CONDUCTANCES IN DDT1 MF-2 SMOOTH-MUSCLE CELLS

    NARCIS (Netherlands)

    MOLLEMAN, A; NELEMANS, A; VANDENAKKER, J; DUIN, M; DENHERTOG, A

    Voltage-dependent inward and outward membrane currents were investigated in the DDT1 MF-2 smooth muscle cell line using the whole-cell patch-clamp technique. Application of a pulse protocol with subsequent depolarizing voltage steps elicited an inactivating inward current and a non-inactivating

  13. An in silico study on the role of smooth muscle cell migration in neointimal formation after coronary stenting

    NARCIS (Netherlands)

    Tahir, H.; Niculescu, I.; Bona-Casas, C.; Merks, R.M.H.; Hoekstra, A.G.

    2015-01-01

    Excessive migration and proliferation of smooth muscle cells (SMCs) has been observed as a major factor contributing to the development of in-stent restenosis after coronary stenting. Building upon the results from in vivo experiments, we formulated a hypothesis that the speed of the initial tissue

  14. Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Joshua E Basford

    Full Text Available Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1 in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy.

  15. Type 2 diabetes mellitus is associated with an imbalance in circulating endothelial and smooth muscle progenitor cell numbers

    NARCIS (Netherlands)

    van Ark, J.; Moser, J.; Lexis, C. P. H.; Bekkema, F.; Pop, I.; van der Horst, I. C. C.; Zeebregts, C. J.; van Goor, H.; Wolffenbuttel, B. H. R.; Hillebrands, J. L.

    Individuals with type 2 diabetes mellitus have increased rates of macrovascular disease (MVD). Endothelial progenitor cells (EPCs), circulating angiogenic cells (CACs) and smooth muscle progenitor cells (SMPCs) are suggested to play a role in the pathogenesis of MVD. The relationship between

  16. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Yong; Tang, Chengchun, E-mail: tangchengchun@medmail.com.cn; Wang, Qingjie; Wang, Dong; Yan, Gaoliang; Zhu, Boqian

    2016-09-02

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K{sup +} channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smooth muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.

  17. β2-Agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D

    NARCIS (Netherlands)

    Trian, Thomas; Burgess, Janette K; Niimi, Kyoko; Moir, Lyn M; Ge, Qi; Berger, Patrick; Liggett, Stephen B; Black, Judith L; Oliver, Brian G

    2011-01-01

    BACKGROUND AND OBJECTIVE: Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. OBJECTIVE:

  18. Triptolide inhibits TGF-β1-induced cell proliferation in rat airway smooth muscle cells by suppressing Smad signaling

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming; Lv, Zhiqiang; Huang, Linjie [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Zhang, Wei [Department of Geratology, the Second People' s Hospital of Shenzhen, Shenzhen 518000 (China); Lin, Xiaoling; Shi, Jianting; Zhang, Wei; Liang, Ruiyun [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China); Jiang, Shanping, E-mail: shanpingjiang@126.com [Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Institute for Respiratory disease of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong Province 510120 (China)

    2015-02-15

    Background: We have reported that triptolide can inhibit airway remodeling in a murine model of asthma via TGF-β1/Smad signaling. In the present study, we aimed to investigate the effect of triptolide on airway smooth muscle cells (ASMCs) proliferation and the possible mechanism. Methods: Rat airway smooth muscle cells were cultured and made synchronized, then pretreated with different concentration of triptolide before stimulated by TGF-β1. Cell proliferation was evaluated by MTT assay. Flow cytometry was used to study the influence of triptolide on cell cycle and apoptosis. Signal proteins (Smad2, Smad3 and Smad7) were detected by western blotting analysis. Results: Triptolide significantly inhibited TGF-β1-induced ASMC proliferation (P<0.05). The cell cycle was blocked at G1/S-interphase by triptolide dose dependently. No pro-apoptotic effects were detected under the concentration of triptolide we used. Western blotting analysis showed TGF-β1 induced Smad2 and Smad3 phosphorylation was inhibited by triptolide pretreatment, and the level of Smad7 was increased by triptolide pretreatment. Conclusions: Triptolide may function as an inhibitor of asthma airway remodeling by suppressing ASMCs proliferation via negative regulation of Smad signaling pathway. - Highlights: • In this study, rat airway smooth muscle cells were cultured and made synchronized. • Triptolide inhibited TGF-β1-induced airway smooth muscle cells proliferation. • Triptolide inhibited ASMCs proliferation via negative regulation of Smad signaling pathway.

  19. The neuropeptide catestatin promotes vascular smooth muscle cell proliferation through the Ca{sup 2+}-calcineurin-NFAT signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaoxia [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China); Zhou, Chunyan, E-mail: chunyanzhou@bjmu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Sun, Ningling, E-mail: nlsun@263.net [Department of Cardiology, People' s Hospital, Peking University, No. 11 South Avenue, Xi Zhi Men Xicheng District, Beijing 100044 (China)

    2011-04-22

    Highlights: {yields} Catestatin stimulates proliferation of vascular smooth muscle cells in a dose-dependent manner. {yields} Catestatin provokes sustained increase in intracellular Ca{sup 2+}. {yields} Catestatin produces increased activation of calcineurin and promotes NFATc1 translocation into the nucleus. -- Abstract: The Chromogranin A-derived neuropeptide catestatin is an endogenous nicotinic cholinergic antagonist that acts as a pleiotropic hormone. Since catestatin shares several functions with other members derived from the chromogranin/secretogranin protein family and other neuropeptides which exert proliferative effects on vascular smooth muscle cells (VSMCs), we therefore hypothesized that catestatin would regulate VSMC proliferation. The present study demonstrates that catestatin caused a dose-dependent induction of proliferation in rat aortic smooth muscle cells and furthermore evoked a sustained increase in intracellular calcium. This subsequently leaded to enhanced activation of the Ca{sup 2+}/calmodulin-dependent phosphatase, calcineurin and resulted in an activation of the Ca{sup 2+}-dependent transcription factor, nuclear factor of activated T cells (NFAT), initiating transcription of proliferative genes. In addition, cyclosporin A (CsA), a potent inhibitor of calcineurin, abrogated catestatin-mediated effect on VSMCs, indicating that the calcineurin-NFAT signaling is strongly required for catestatin-induced growth of VSMCs. The present study establishes catestatin as a novel proliferative cytokine on vascular smooth muscle cells and this effect is mediated by the Ca{sup 2+}-calcineurin-NFAT signaling pathway.

  20. Differentiation of Human Adipose Derived Stem Cells into Smooth Muscle Cells Is Modulated by CaMKIIγ

    Directory of Open Access Journals (Sweden)

    Kaisaier Aji

    2016-01-01

    Full Text Available The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII is known to participate in maintenance and switches of smooth muscle cell (SMC phenotypes. However, which isoform of CaMKII is involved in differentiation of adult mesenchymal stem cells into contractile SMCs remains unclear. In the present study, we detected γ isoform of CaMKII in differentiation of human adipose derived stem cells (hASCs into SMCs that resulted from treatment with TGF-β1 and BMP4 in combination for 7 days. The results showed that CaMKIIγ increased gradually during differentiation of hASCs as determined by real-time PCR and western blot analysis. The siRNA-mediated knockdown of CaMKIIγ decreased the protein levels and transcriptional levels of smooth muscle contractile markers (a-SMA, SM22a, calponin, and SM-MHC, while CaMKIIγ overexpression increases the transcriptional and protein levels of smooth muscle contractile markers. These results suggested that γ isoform of CaMKII plays a significant role in smooth muscle differentiation of hASCs.

  1. Gastric Smooth Muscle Hamartomas Mimicking Polyps in a Dog: A Case Description and a Review of the Literature

    Directory of Open Access Journals (Sweden)

    Marian A. Taulescu

    2013-01-01

    Full Text Available This report presents a case of two smooth muscle hamartomas of the stomach in a 10-year-old male Boxer. The clinical history of the animal was of chronic vomiting, weight loss, and intermittent gastric distension, and it died because of chronic and congestive heart failure. Gross, histology, and immunohistochemistry (IHC exams were performed. On necropsy, in the pyloric region of the stomach, two closely related polypoid growths between 10 and 15 mm in diameter were identified. On the cut sections, both polyps presented white to gray color, with homogenous architecture and well-defined limits. The thickness of the submucosal layer was seen to be increased to 1 cm. No other gastric alterations were identified by the necropsy exam. Histologically, both masses growth consisted of hyperplastic glands lined by foveolar epithelium, arranged in a papillary or branching pattern, and supported by a core of well-vascularised and marked smooth muscle tissue interspersed between glands. No dysplastic cells and mitotic figures were observed in these lesions. Immunohistochemistry revealed a strong cytoplasm labelling for smooth muscle actin of the bundles around the mucosal glands. To our knowledge, this is the first report of smooth muscle hamartomas mimicking multiple gastric polyps in dogs.

  2. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells

    NARCIS (Netherlands)

    Baarsma, Hoeke A.; Menzen, Mark H.; Halayko, Andrew J.; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    2011-01-01

    Baarsma HA, Menzen MH, Halayko AJ, Meurs H, Kerstjens HA, Gosens R. beta-Catenin signaling is required for TGF-beta(1)-induced extracellular matrix production by airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 301: L956-L965, 2011. First published September 9, 2011; doi:

  3. Comparison of mucus flow rate, radiolabelled glycoprotein output and smooth muscle contraction in the ferret trachea in vitro

    NARCIS (Netherlands)

    Kyle, H.; Widdicombe, J.G.; Wilffert, B.

    1988-01-01

    1. The concentration-response curves for rate of mucus output, labelled-glycoprotein output and smooth muscle contraction in response to methacholine, phenylephrine and salbutamol were determined in the ferret trachea in vitro. 2. The potencies of methacholine and phenylephrine are both in order:

  4. Models to study airway smooth muscle contraction in vivo, ex vivo and in vitro : Implications in understanding asthma

    NARCIS (Netherlands)

    Wright, David; Sharma, Pawan; Ryu, Min-Hyung; Risse, Paul-Andre; Ngo, Melanie; Maarsingh, Harm; Koziol-White, Cynthia; Jha, Aruni; Halayko, Andrew J.; West, Adrian R.

    Asthma is a chronic obstructive airway disease characterised by airway hyperresponsiveness (AHR) and airway wall remodelling. The effector of airway narrowing is the contraction of airway smooth muscle (ASM), yet the question of whether an inherent or acquired dysfunction in ASM contractile function

  5. Calcium-induced contraction and contractile protein of gallbladder smooth muscle after high-cholesterol feeding of prairie dogs

    NARCIS (Netherlands)

    Li, Y. F.; Weisbrodt, N. W.; Moody, F. G.; Coelho, J. C.; Gouma, D. J.

    1987-01-01

    Feeding a high-cholesterol diet to prairie dogs causes a reduction in contractile responses of gallbladder smooth muscle from these animals. In this study, the influence of cholesterol feeding on the contractile response to calcium and on the concentration of the contractile proteins actin and

  6. Vena cava and aortic smooth muscle cells express transglutaminases 1 and 4 in addition to transglutaminase 2

    NARCIS (Netherlands)

    Johnson, Kyle B.; Petersen-Jones, Humphrey; Thompson, Janice M.; Hitomi, Kiyotaka; Itoh, Miho; Bakker, Erik N. T. P.; Johnson, Gail V. W.; Colak, Gozde; Watts, Stephanie W.

    2012-01-01

    Johnson KB, Petersen-Jones H, Thompson JM, Hitomi K, Itoh M, Bakker ENTP, Johnson GV, Colak G, Watts SW. Vena cava and aortic smooth muscle cells express transglutaminases 1 and 4 in addition to transglutaminase 2. Am J Physiol Heart Circ Physiol 302: H1355-H1366, 2012. First published February 3,

  7. Posttranslational nitrotyrosination of alpha-tubulin induces cell cycle arrest and inhibits proliferation of vascular smooth muscle cells

    Czech Academy of Sciences Publication Activity Database

    Phung, A.D.; Souček, Karel; Kubala, Lukáš; Harper, R.W.; Bulinski, J.Ch.; Eiserich, J.P.

    2006-01-01

    Roč. 85, č. 12 (2006), s. 1241-1252 ISSN 0171-9335 Institutional research plan: CEZ:AV0Z50040507 Keywords : vascular smooth muscle cells * microtubules * tubulin tyrosine ligase Subject RIV: BO - Biophysics Impact factor: 3.039, year: 2006

  8. Two-year follow-up of the phase II marker lesion study of intravesical apaziquone for patients with non-muscle invasive bladder cancer

    NARCIS (Netherlands)

    Hendricksen, Kees; van der Heijden, Antoine G.; Cornel, Erik B.; Vergunst, Henk; de Reijke, Theo M.; van Boven, Erika; Smits, Geert A. H. J.; Puri, Rajiv; Gruijs, Sigrid; Witjes, J. Alfred

    2009-01-01

    To study the time-to-recurrence and duration of response in non-muscle invasive bladder cancer (NMIBC) patients, with a complete ablative response after intravesical apaziquone instillations. Transurethral resection of bladder tumour(s) (TURBT) was performed in patients with multiple pTa-T1 G1-2

  9. Stromal proteome expression profile and muscle-invasive bladder cancer research

    Directory of Open Access Journals (Sweden)

    Niu Haitao

    2012-08-01

    Full Text Available Abstract Background To globally characterize the cancer stroma expression profile of muscle-invasive transitional cell carcinoma and to discuss the cancer biology as well as biomarker discovery from stroma. Laser capture micro dissection was used to harvest purified muscle-invasive bladder cancer stromal cells and normal urothelial stromal cells from 4 paired samples. Two-dimensional liquid chromatography tandem mass spectrometry was used to identify the proteome expression profile. The differential proteins were further analyzed using bioinformatics tools and compared with the published literature. Results We identified 868/872 commonly expressed proteins and 978 differential proteins from 4 paired cancer and normal stromal samples using laser capture micro dissection coupled with two-dimensional liquid chromatography tandem mass spectrometry. 487/491 proteins uniquely expressed in cancer/normal stroma. Differential proteins were compared with the entire list of the international protein index (IPI, and there were 42/42 gene ontology (GO terms exhibited as enriched and 8/5 exhibited as depleted in cellular Component, respectively. Significantly altered pathways between cancer/normal stroma mainly include metabolic pathways, ribosome, focal adhesion, etc. Finally, descriptive statistics show that the stromal proteins with extremes of PI and MW have the same probability to be a biomarker. Conclusions Based on our results, stromal cells are essential component of the cancer, biomarker discovery and network based multi target therapy should consider neoplastic cells itself and corresponding stroma as whole one.

  10. INITIAL EXPERIENCE WITH ADJUVANT INTRAVESICAL THERMOCHEMOTHERAPY FOR NON-MUSCLE INVASIVE BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    K. A. Pavlenko

    2011-01-01

    Full Text Available Objective: to reveal the benefits of adjuvant intravesical thermochemotherapy (TCT and to evaluate its efficiency in the treatment of moderateand high-risk non-muscle invasive bladder cancer (BC.Subjects and methods. In the period 2009 to 2010, the Urology Clinic, Federal Medical Biophysical Center, treated 21 patients with nonmuscle invasive BC, by using a Thermotron RF-8 clinical hyperthermal system. Intravesical TCT with mitomycin C 40 mg for 60–80 min was performed at 42 ± 2 °С as one session weekly for 6 weeks. Control cystoscopy was carried out every 3 months.Results. Of the 21 patients, 19 were found to tolerate the procedure well. No complications were recorded in these patients during the sessions and throughout the course of intravesical TCT. A recurrence was histologically verified in 2 patients at 6-month follow-up. There was no evidence suggesting a recurrence in 12 (57.14 % patients at one-year follow-up. The follow-up of the other patients is now less than 12 months.Conclusion. The proposed method of hyperthermia may be used as an alternative to the existing one of intracavitary hyperthermia to treat high- and moderate-risk BC and in case of inefficiency of other adjuvant therapy options for non-muscle invasive BC.

  11. Transforming growth factor-beta 3 alters intestinal smooth muscle function: implications for gastroschisis-related intestinal dysfunction.

    Science.gov (United States)

    Moore-Olufemi, S D; Olsen, A B; Hook-Dufresne, D M; Bandla, V; Cox, C S

    2015-05-01

    Gastroschisis (GS) is a congenital abdominal wall defect that results in the development of GS-related intestinal dysfunction (GRID). Transforming growth factor-β, a pro-inflammatory cytokine, has been shown to cause organ dysfunction through alterations in vascular and airway smooth muscle. The purpose of this study was to evaluate the effects of TGF-β3 on intestinal smooth muscle function and contractile gene expression. Archived human intestinal tissue was analyzed using immunohistochemistry and RT-PCR for TGF-β isoforms and markers of smooth muscle gene and micro-RNA contractile phenotype. Intestinal motility was measured in neonatal rats ± TGF-β3 (0.2 and 1 mg/kg). Human intestinal smooth muscle cells (hiSMCs) were incubated with fetal bovine serum ± 100 ng/ml of TGF-β 3 isoforms for 6, 24 and 72 h. The effects of TGF-β3 on motility, hiSMC contractility and hiSMC contractile phenotype gene and micro-RNA expression were measured using transit, collagen gel contraction assay and RT-PCR analysis. Data are expressed as mean ± SEM, ANOVA (n = 6-7/group). GS infants had increased immunostaining of TGF-β3 and elevated levels of micro-RNA 143 & 145 in the intestinal smooth muscle. Rats had significantly decreased intestinal transit when exposed to TGF-β3 in a dose-dependent manner compared with Sham animals. TGF-β3 significantly increased hiSMC gel contraction and contractile protein gene and micro-RNA expression. TGF-β3 contributed to intestinal dysfunction at the organ level, increased contraction at the cellular level and elevated contractile gene expression at the molecular level. A hyper-contractile response may play a role in the persistent intestinal dysfunction seen in GRID.

  12. trans-Caryophyllene, a Natural Sesquiterpene, Causes Tracheal Smooth Muscle Relaxation through Blockade of Voltage-Dependent Ca2+ Channels

    Directory of Open Access Journals (Sweden)

    Jader Santos Cruz

    2012-10-01

    Full Text Available trans-Caryophyllene is a major component in the essential oils of various species of medicinal plants used in popular medicine in Brazil. It belongs to the chemical class of the sesquiterpenes and has been the subject of a number of studies. Here, we evaluated the effects of this compound in airway smooth muscle. The biological activities of trans-caryophyllene were examined in isolated bath organs to investigate the effect in basal tonus. Electromechanical and pharmacomechanical couplings were evaluated through the responses to K+ depolarization and exposure to acetylcholine (ACh, respectively. Isolated cells of rat tracheal smooth muscle were used to investigate trans-caryophyllene effects on voltage-dependent Ca2+ channels by using the whole-cell voltage-clamp configuration of the patch-clamp technique. trans-Caryophyllene showed more efficiency in the blockade of electromechanical excitation-contraction coupling while it has only minor inhibitory effect on pharmacomechanical coupling. Epithelium removal does not modify tracheal smooth muscle response elicited by trans-caryophyllene in the pharmacomechanical coupling. Under Ca2+-free conditions, pre-exposure to trans-caryophyllene did not reduce the contraction induced by ACh in isolated rat tracheal smooth muscle, regardless of the presence of intact epithelium. In the whole-cell configuration, trans-caryophyllene (3 mM, inhibited the inward Ba2+ current (IBa to approximately 50% of control levels. Altogether, our results demonstrate that trans-caryophyllene has anti-spasmodic activity on rat tracheal smooth muscle which could be explained, at least in part, by the voltage-dependent Ca2+ channels blockade.

  13. 22Na+ and 86Rb+ transport in vascular smooth muscle of SHR, Wistar Kyoto, and Wistar rats

    International Nuclear Information System (INIS)

    Kuriyama, S.; Denny, T.N.; Aviv, A.

    1988-01-01

    To gain further insight into differences in cellular Na+ and K+ regulation between the spontaneously hypertensive rat (SHR), Wistar Kyoto (WKY), and American Wistar (W) rats, 22Na+ and 86Rb+ washouts were performed under steady-state conditions in cultured vascular smooth muscle cells from the three rat strains. SHR vascular smooth muscle cells showed significantly higher bumetanide sensitive 86Rb+ washout rate constant (x 10(-4)/min; mean +/- SEM) than WKY cells (-38.6 +/- 2.84 and -23.8 +/- 3.58, respectively; p less than 0.005). SHR vascular smooth muscle cells also exhibited significantly higher values than WKY cells in the total 22Na+ washout rate constant (x 10(-2)/min) (-61.0 +/- 1.57 vs. -53.8 +/- 1.24; p less than 0.005). The amiloride sensitive component of the 22Na+ washout rate constant accounted for these differences (-18.6 +/- 1.04 for SHR and -12.1 +/- 2.00 for WKY; p less than 0.05). There were no apparent differences in cellular Na+ concentrations between WKY and SHR cells. In general, the 86Rb+ and 22Na+ washout parameters of W rat cells were quite similar to those of cells from SHR. We conclude that the bumetanide-sensitive 86Rb+ washout (the Na+ K+-cotransport), the overall, and the amiloride-sensitive 22Na+ washout (the latter primarily represents the Na+/H+ antiport) are higher in SHR than WKY rat vascular smooth muscle cells. These findings indicate innate differences in cellular Na+ and K+ transport in vascular smooth muscle cells of the SHR and WKY rat. The mechanisms responsible for these differences are yet to be determined

  14. Proteomic analysis of vascular smooth muscle cells in physiological condition and in pulmonary arterial hypertension: Toward contractile versus synthetic phenotypes.

    Science.gov (United States)

    Régent, Alexis; Ly, Kim Heang; Lofek, Sébastien; Clary, Guilhem; Tamby, Mathieu; Tamas, Nicolas; Federici, Christian; Broussard, Cédric; Chafey, Philippe; Liaudet-Coopman, Emmanuelle; Humbert, Marc; Perros, Frédéric; Mouthon, Luc

    2016-10-01

    Vascular smooth muscle cells (VSMCs) are highly specialized cells that regulate vascular tone and participate in vessel remodeling in physiological and pathological conditions. It is unclear why certain vascular pathologies involve one type of vessel and spare others. Our objective was to compare the proteomes of normal human VSMC from aorta (human aortic smooth muscle cells, HAoSMC), umbilical artery (human umbilical artery smooth muscle cells, HUASMC), pulmonary artery (HPASMC), or pulmonary artery VSMC from patients with pulmonary arterial hypertension (PAH-SMC). Proteomes of VSMC were compared by 2D DIGE and MS. Only 19 proteins were differentially expressed between HAoSMC and HPASMC while 132 and 124 were differentially expressed between HUASMC and HAoSMC or HPASMC, respectively (fold change 1.5≤ or -1.5≥, p < 0.05). As much as 336 proteins were differentially expressed between HPASMC and PAH-SMC (fold change 1.5≤ or -1.5≥, p < 0.05). HUASMC expressed increased amount of α-smooth muscle actin compared to either HPASMC or HAoSMC (although not statistically significant). In addition, PAH-SMC expressed decreased amount of smooth muscle myosin heavy chain and proliferation rate was increased compared to HPASMC thus supporting that PAH-SMC have a more synthetic phenotype. Analysis with Ingenuity identified paxillin and (embryonic lethal, abnormal vision, drosophila) like 1 (ELAVL1) as molecules linked with a lot of proteins differentially expressed between HPASMC and PAH-SMC. There was a trend toward reduced proliferation of PAH-SMC with paxillin-si-RNA and increased proliferation with ELAVL1-siRNA. Thus, VSMCs have very diverse protein content depending on their origin and this is in link with phenotypic differentiation. Paxillin targeting may be a promising treatment of PAH. ELAVL1 also participate in the regulation of PAH-SMC proliferation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Perioperative chemotherapy in muscle-invasive bladder cancer: overview and the unmet clinical need for alternative adjuvant therapy as studied in the MAGNOLIA trial

    NARCIS (Netherlands)

    Colombel, M.; Heidenreich, A.; Martinez-Pineiro, L.; Babjuk, M.; Korneyev, I.; Surcel, C.; Yakovlev, P.; Colombo, R.; Radziszewski, P.; Witjes, F.; Schipper, R.; Mulders, P.F.; Witjes, W.P.J.

    2014-01-01

    The European Association of Urology Research Foundation has proposed that alternatives to perioperative chemotherapy should be evaluated. The MAGNOLIA study represents a unique opportunity to investigate the concept of immunotherapy in muscle-invasive bladder cancer.

  16. Regional differences of energetics, mechanics, and kinetics of myosin cross-bridge in human ureter smooth muscle.

    Science.gov (United States)

    Vargiu, Romina; Perinu, Anna; Tintrup, Frank; Broccia, Francesca; Lisa, Antonello De

    2015-01-01

    This study provides information about baseline mechanical properties of the entire muscle and the molecular contractile mechanism in human ureter smooth muscle and proposed to investigate if changes in mechanical motor performance in different regions of isolated human ureter are attributable to differences in myosin crossbridge interactions. Classic mechanical, contraction and energetic parameters derived from the tension-velocity relationship were studied in ureteral smooth muscle strips oriented longitudinally and circularly from abdominal and pelvic human ureter parts. By applying of Huxley's mathematical model we calculated the total working crossbridge number per mm(2) (Ψ), elementary force per single crossbridge (Π0), duration of maximum rate constant of crossbridge attachment 1/f1 and detachment 1/g2 and peak mechanical efficiency (Eff.max). Abdominal longitudinal smooth muscle strips exhibited significantly higher maximum isometric tension and faster maximum unloaded shortening velocity compared to pelvic ones. Contractile differences were associated with significantly higher crossbridge number per mm(2). Abdominal longitudinal muscle strips showed a lower duration of maximum rate constant of crossbridge attachment and detachment and higher peak mechanical efficiency than pelvic ones. Such data suggest that the abdominal human ureter showed better mechanical motor performance mainly related to a higher crossbridge number and crossbridge kinetics differences. Such results were more evident in the longitudinal rather than in the circular layer.

  17. The effects of second messenger cAMP and its relative components on the contraction of uterine smooth muscle of rat.

    Science.gov (United States)

    Shu, S-J; Lei, X-G; Liang, J-H; Song, Y-H; Xu, Q; Chen, X-D; Mao, L-G; Li, Z-G

    2017-04-01

    To investigate the effect of second messenger pathways on the uterine smooth muscle contraction and their associated mechanisms, and compare the evaluation methods. Preparation of uterine smooth muscle strips from healthy pregnant 18-21 d SD and non-pregnant rats. When the contraction of muscle strips was stable, we conducted gradient administration: PDE4 inhibitors (Z90), prostaglandin PGE2, adenylate cyclase inhibitor (SQ 22,530), cAMP analogs (dbcAMP) and AMPK agonists (AICAR), solvent dimethyl sulfoxide (DMSO) as controlled. Gradient administration of acetylcholine (Ach) and oxytocin (oxytocin) induced the contraction of muscle strips. The tension transducer and biological information collecting system were applied to record the changes, including duration, dilation tension, contraction tension, peak height, and mean tension, before and after different administration. Principal components analysis was adopted to evaluate the five changes. SQ 22,530, DMSO, cAMP alone had no significant effect on the contraction of uterine smooth muscle; Z90 can inhibit the spontaneous contraction of pregnant uterine smooth muscle strips; dbcAMP and AICAR can antagonize acetylcholine and oxytocin-induced the contraction of pregnant uterine smooth muscle strips. Z90, SQ 22,530 + Z90, dbcAMP, AICAR can inhibit the uterine contraction peak, diastolic amplitude, average muscle tone and contraction duration of the pregnant uterine smooth muscle in a concentration-dependent manners. At the same time, we compared the parameters, which reflect the contraction of uterine smooth muscle, and conduct main components analysis to determine the effect of the drugs. The second messenger cAMP and its related components ATP, 5'- AMP, AC, PDE, PKA, and AMPK can affect the uterine smooth muscle contraction via related signaling pathway in rats, and principal components analysis can be adopted to evaluate the smooth muscle relaxant.

  18. Relaxation of soman-induced contracture of airway smooth muscle in vitro. (Reannouncement with new availability information)

    Energy Technology Data Exchange (ETDEWEB)

    Filbert, M.G.; Moore, D.H.; Adler, M.

    1992-12-31

    A possible role for beta-adrenergic agonists in the management of bronchoconstriction resulting from exposure to anticholinesterase compounds was investigated in vitro in canine tracheal smooth muscle. Norepinephrine, salbutamol and isoproterenol produced partial relaxation of soman-induced contractures. However, the relaxation induced was not sustained; muscle tensions returned to pretreatment levels within minutes despite the continued presence of beta-agonists. Increasing cAMP levels with the non beta-agonist bronchodilators such as thoophylline, a phosphodiesterase inhibitor, or forskolin, a specific stimulator of adenylate cyclase, resulted in more complete and longer lasting relaxation, suggesting that beta-adrenoceptor desensitization may contribute to the failure by beta-agonists to produce sustained relaxation. Nerve agents, Soman, Toxicity, Airway smooth muscle, In vitro, Physiology, Effects.

  19. Pelvic floor muscle training for overactive bladder symptoms – A prospective study

    Directory of Open Access Journals (Sweden)

    Fátima Fitz

    Full Text Available Summary Introduction: Pelvic floor muscle training (PFMT involves the contraction of the puborectal, anal sphincter and external urethral muscles, inhibiting the detrusor contraction, what justify its use in the treatment of overactive bladder (OAB symptoms. Objective: To verify the effects of isolated PFMT on the symptoms of OAB. Method: Prospective clinical trial with 27 women with mixed urinary incontinence (MUI, with predominance of OAB symptoms and loss ≥ 2 g in the pad test. It was evaluated: pelvic floor muscles (PFMs function (digital palpation and manometry; urinary symptoms (nocturia, frequency and urinary loss; degree of discomfort of OAB symptoms; and quality of life (Incontinence Quality-of-Life Questionnaire [I-QoL]. The PFMT program consisted of 24 outpatient sessions (2x/week + home PFMT. The Mann-Whitney and Wilcoxon tests (with a significance level of 5% were used to analyse the data. Results: There was a significant improvement of the urinary symptoms to the pad test (5.8±9.7, p<0.001, urinary loss (0.7±1.1, p=0.005 and nocturia (0.8±0.9, p=0.011. Reduction in the degree of discomfort of urinary symptoms was observed according to OAB-V8 questionnaire (10.0±7.7, p=0.001. There were also significant results in PFMs function: Oxford (3.6±0.9, p=0.001, endurance (5.2±1.8, p<0.001, fast (8.9±1.5, p<0.001 and manometry (26.6±15.8, p=0.003. In addition, quality of life had a significant improvement in the three domains evaluated by I-QoL. Conclusion: The PFMT without any additional guidelines improves the symptomatology, the function of PFMs and the quality of life of women with OAB symptoms.

  20. Muscle-invasive bladder cancer in a young adult: a case report and a review of the literature.

    Science.gov (United States)

    Nabbout, Philippe; Eldefrawy, Ahmed; Engles, C Dirk; Culkin, Daniel J; Slobodov, Gennady

    2013-01-01

    The peak incidence of bladder cancer (BC) is in the sixth decade of life. Muscle-invasive bladder cancer (MIBC) in young adults is extremely rare. We report a case of MIBC in a 28-year-old smoking male patient. The patient presented with hematuria and flank pain for which he underwent a computerized tomography (CT) scan of the abdomen and pelvis with and without contrast. The CT scan showed a 6 cm mass on the left side of the trigone extending to the left urteric orifice and left hydronephrosis, but no lymphadenopathy was noted. The patient then underwent a left nephrostomy tube placement followed by trans-urethral resection of bladder tumor (TURBT). The tumor involved both ureteric orifices and extended to the prostatic urethra. Complete resection was not feasible. Pathology showed high-grade T1 urothelial carcinoma. CT scan of the chest showed no distant lung metastasis. The patient then elected to undergo radical cystectomy with ileal conduit urinary diversion. Final pathology revealed T2a N0 urothelial carcinoma of the bladder. Our aim is to present our experience and review the literature for the natural history and oncological and quality of life outcomes of urothelial carcinoma of the bladder in young patients.

  1. Verapamil stereoisomers induce antiproliferative effects in vascular smooth muscle cells via autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Salabei, Joshua K. [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202 (United States); Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202 (United States); Balakumaran, Arun [Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States); Frey, Justin C. [Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI 54702 (United States); Boor, Paul J. [Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States); Treinen-Moslen, Mary [Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555‐0609 (United States); Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States); Conklin, Daniel J., E-mail: dj.conklin@louisville.edu [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202 (United States); Division of Cardiovascular Medicine, University of Louisville, Louisville, KY 40202 (United States); Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI 54702 (United States); Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States)

    2012-08-01

    Calcium channel blockers (CCBs) are important in the management of hypertension and limit restenosis. Although CCB efficacy could derive from decreased blood pressure, other mechanisms independent of CCB activity also can contribute to antiproliferative action. To understand mechanisms of CCB-mediated antiproliferation, we studied two structurally dissimilar CCBs, diltiazem and verapamil, in cultured rat vascular smooth muscle cells (VSMC). To elucidate CCB-independent effects, pure stereoisomers of verapamil (R-verapamil, inactive VR; S-verapamil, active, VS) were used. The effects of CCB exposure on cell viability (MTT reduction), cell proliferation ({sup 3}H-thymidine incorporation), VSMC morphology by light and transmission electron microscopy (TEM) and autophagy (LC3I/II, ATG5) were measured. In general, verapamil, VR or VS treatment alone (80 μM) appreciably enhanced MTT absorbance although higher concentrations (VR or VS) slightly decreased MTT absorbance. Diltiazem (140 μM) markedly decreased MTT absorbance (40%) at 120 h. VR or VS treatment inhibited {sup 3}H-thymidine incorporation (24 h) and induced cytological alterations (i.e., karyokinesis, enhanced perinuclear MTT deposition, accumulated perinuclear “vacuoles”). TEM revealed perinuclear “vacuoles” to be aggregates of highly laminated and electron-dense vesicles resembling autophagosomes and lysosomes, respectively. Increased autophagosome activity was confirmed by a concentration-dependent increase in LC3-II formation by Western blotting and by increased perinuclear LC3-GFP{sup +} puncta in verapamil-treated VSMC. Verapamil stereoisomers appeared to decrease perinuclear mitochondrial density. These observations indicate that antiproliferative effects of verapamil stereoisomers are produced by enhanced mitochondrial damage and upregulated autophagy in VSMC. These effects are independent of CCB activity indicating a distinct mechanism of action that could be targeted for more efficacious anti

  2. Zoledronate upregulates MMP-9 and -13 in rat vascular smooth muscle cells by inducing oxidative stress

    Directory of Open Access Journals (Sweden)

    Arun MZ

    2016-04-01

    Full Text Available Mehmet Zuhuri Arun,1 Buket Reel,1 Graciela B Sala-Newby,2 Mark Bond,2 Aikaterini Tsaousi,2 Perry Maskell,2 Andrew C Newby21Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey; 2Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Bristol, UK Background: Bisphosphonates, including zoledronate, target osteoclasts and are widely used in the treatment of osteoporosis and other bone resorption diseases, despite side effects that include damaging the stomach epithelium. Beneficial and adverse effects on other organ systems, including the cardiovascular system, have also been described and could impact on the use of bisphosphonates as therapeutic agents. Vascular smooth muscle cells (VSMCs are major constituents of the normal vascular wall and have a key role in intimal thickening and atherosclerosis, in part by secreting MMPs that remodel the extracellular matrix and cleave cell surface proteins or secreted mediators. In this study, we investigated the effects of zoledronate on MMP expression.Methods: Rat VSMCs were stimulated by PDGF (50 ng/mL plus TNF-α (10 ng/mL or left unstimulated for a further 24 hours in serum-free medium. In other series of experiments, cells were pre-treated either with SC-514 (50 µM or with apocynin (20 nM for 2 hours, then zoledronate (100 µM was added into 2% fetal calf serum containing medium for 24 hours.Results and discussion: Using isolated rat VSMCs in culture, zoledronate (100 µM increased MMP-9 and -13 mRNA expressions but inhibited MMP-2 expression. MMP-9 and MMP-13 up-regulation was shown to depend on the NF-κB pathway; and this was activated by zoledronate. Furthermore, zoledronate elevated the levels of reactive oxygen species detected by either dichlorofluorescein in isolated VSMCs or lucigenin enhanced chemiluminescence in rat aortic rings in vitro. Apocynin, an inhibitor of NADPH oxidase, reversed NF-κB activation and MMP-9 and MMP-13 up-regulation by

  3. Cyclic Mechanical Stretch Induced Smooth Muscle Cell Changes in Cerebral Aneurysm Progress by Reducing Collagen Type IV and Collagen Type VI Levels

    Directory of Open Access Journals (Sweden)

    Peixi Liu

    2018-02-01

    Full Text Available Background/Aims: Cerebral aneurysm growth is characterized by continuous structural weakness of local smooth muscle cells, though the mechanism is unclear. In this study, we examine protein changes in cerebral aneurysm and human brain vascular smooth muscle cells after cyclic mechanical stretch. We further explore the relationship between the smooth muscle cell changes and reductions in the levels of collagen types IV and VI. Methods: Saccular cerebral aneurysms (n=10 were collected, and temporal artery samples were used as controls. Quantitative proteomics were analyzed and histopathological changes were examined. Smooth muscle cells were cultured in a flexible silicone chamber and subjected to 15% cyclic mechanical stretch. The effect of stretch on the cell viability, function, gene and protein expression were further studied for the understanding the molecular mechanism of aneurysm development. Results: Proteomics analysis revealed 92 proteins with increased expression and 88 proteins with decreased expression compared to the controls (p<0.05. KEGG pathway analysis showed that the change in focal adhesion and extracellular matrix-receptor interaction, suggesting the involvement of collagen type IV and VI. The aneurysm tissue exhibited fewer smooth muscle cells and lower levels of collagen type IV and VI. Human brain vascular smooth muscle cell culture showed spindle-like cells and obvious smooth muscle cell layer. Cell proteomics analysis showed that decreased expression of 118 proteins and increased expression of 32 proteins in smooth muscle cells after cyclic mechanical stretch. KEGG pathway analysis indicated that focal adhesion and ECM-receptor interaction were involved. After cyclic mechanical stretch, collagen type IV and IV expression were decreased. Moreover, the stretch induced MMP-1 and MMP-3 expression elevation. Conclusion: We demonstrated that collagen type IV and VI were decreased in cerebral aneurysms and continuous cyclic

  4. An evaluation of morphological and functional multi-parametric MRI sequences in classifying non-muscle and muscle invasive bladder cancer

    International Nuclear Information System (INIS)

    Panebianco, Valeria; Barchetti, Giovanni; Grompone, Marcello Domenico; Del Monte, Maurizio; Carano, Davide; Catalano, Carlo; De Berardinis, Ettore; Leonardo, Constantino; Simone, Giuseppe; Gallucci, Michele; National Cancer Insitute, Rome; Catto, James

    2017-01-01

    Our goal is to determine the ability of multi-parametric magnetic resonance imaging (mpMRI) to differentiate muscle invasive bladder cancer (MIBC) from non-muscle invasive bladder cancer (NMIBC). Patients underwent mpMRI before tumour resection. Four MRI sets, i.e. T2-weighted (T2W) + perfusion-weighted imaging (PWI), T2W plus diffusion-weighted imaging (DWI), T2W + DWI + PWI, and T2W + DWI + PWI + dif-fusion tensor imaging (DTI) were interpreted qualitatively by two radiologists, blinded to histology results. PWI, DWI and DTI were also analysed quantitatively. Accuracy was determined using histopathology as the reference standard. A total of 82 tumours were analysed. Ninety-six percent of T1-labeled tumours by the T2W + DWI + PWI image set were confirmed to be NMIBC at histopathology. Overall accuracy of the complete mpMRI protocol was 94% in differentiating NMIBC from MIBC. PWI, DWI and DTI quantitative parameters were shown to be significantly different in cancerous versus non-cancerous areas within the bladder wall in T2-labelled lesions. MpMRI with DWI and DTI appears a reliable staging tool for bladder cancer. If our data are validated, then mpMRI could precede cystoscopic resection to allow a faster recognition of MIBC and accelerated treatment pathways. (orig.)

  5. An evaluation of morphological and functional multi-parametric MRI sequences in classifying non-muscle and muscle invasive bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Panebianco, Valeria; Barchetti, Giovanni; Grompone, Marcello Domenico; Del Monte, Maurizio; Carano, Davide; Catalano, Carlo [Sapienza Univ. Rome (Italy). Dept. of Radiological Sciences, Oncology and Pathology; De Berardinis, Ettore; Leonardo, Constantino [Sapienza Univ. Rome (Italy). Dept. of Gynaecological-Obstetric and Urological Sciences; Simone, Giuseppe; Gallucci, Michele [' ' Regina Elena' ' National Cancer Insitute, Rome (Italy). Dept. of Urology; Catto, James [Sheffield Univ. (United Kingdom). Aademic Urology Unit

    2017-09-15

    Our goal is to determine the ability of multi-parametric magnetic resonance imaging (mpMRI) to differentiate muscle invasive bladder cancer (MIBC) from non-muscle invasive bladder cancer (NMIBC). Patients underwent mpMRI before tumour resection. Four MRI sets, i.e. T2-weighted (T2W) + perfusion-weighted imaging (PWI), T2W plus diffusion-weighted imaging (DWI), T2W + DWI + PWI, and T2W + DWI + PWI + dif-fusion tensor imaging (DTI) were interpreted qualitatively by two radiologists, blinded to histology results. PWI, DWI and DTI were also analysed quantitatively. Accuracy was determined using histopathology as the reference standard. A total of 82 tumours were analysed. Ninety-six percent of T1-labeled tumours by the T2W + DWI + PWI image set were confirmed to be NMIBC at histopathology. Overall accuracy of the complete mpMRI protocol was 94% in differentiating NMIBC from MIBC. PWI, DWI and DTI quantitative parameters were shown to be significantly different in cancerous versus non-cancerous areas within the bladder wall in T2-labelled lesions. MpMRI with DWI and DTI appears a reliable staging tool for bladder cancer. If our data are validated, then mpMRI could precede cystoscopic resection to allow a faster recognition of MIBC and accelerated treatment pathways. (orig.)

  6. Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional.

    Science.gov (United States)

    Chess-Williams, R

    2002-06-01

    1. The parasympathetic nervous system is responsible for maintaining normal bladder function, contracting the bladder smooth muscle (detrusor) and relaxing the bladder outlet during micturition. 2. Contraction of the bladder involves direct contraction via M3 receptors and an indirect 're-contraction' via M2-receptors whereby a reduction in adenylate cyclase activity reverses the relaxation induced by beta-adrenoceptor stimulation. 3. Muscarinic receptors are also located on the epithelial lining of the bladder (urothelium) where they induce the release of a diffusible factor responsible for inhibiting contraction of the underlying detrusor smooth muscle. The factor remains unidentified but is not nitric oxide, a cyclooxygenase product or adenosine triphosphate. 4. Finally, muscarinic receptors are also located prejunctionally in the bladder on cholinergic and adrenergic nerve terminals, where M1-receptors facilitate transmitter release and M2 or M4-receptors inhibit transmitter release. 5. In pathological states, changes may occur in these receptor systems resulting in bladder dysfunction. Muscarinic receptor antagonists are the main therapeutic agents available for treatment of the overactive bladder, but whether their therapeutic effect involves actions at all three locations (detrusor, prejunctional, urothelial) has yet to be established.

  7. Exogenous transforming growth factor-β1 enhances smooth muscle differentiation in embryonic mouse jejunal explants.

    Science.gov (United States)

    Coletta, Riccardo; Roberts, Neil A; Randles, Michael J; Morabito, Antonino; Woolf, Adrian S

    2017-01-13

    An ex vivo experimental strategy that replicates in vivo intestinal development would in theory provide an accessible setting with which to study normal and dysmorphic gut biology. The current authors recently described a system in which mouse embryonic jejunal segments were explanted onto semipermeable platforms and fed with chemically defined serum-free media. Over 3 days in organ culture, explants formed villi and they began to undergo spontaneous peristalsis. As defined in the current study, the wall of the explanted gut failed to form a robust longitudinal smooth muscle (SM) layer as it would do in vivo over the same time period. Given the role of transforming growth factor β1 (TGFβ1) in SM differentiation in other organs, it was hypothesized that exogenous TGFβ1 would enhance SM differentiation in these explants. In vivo, TGFβ receptors I and II were both detected in embryonic longitudinal jejunal SM cells and, in organ culture, exogenous TGFβ1 induced robust differentiation of longitudinal SM. Microarray profiling showed that TGFβ1 increased SM specific transcripts in a dose dependent manner. TGFβ1 proteins were detected in amniotic fluid at a time when the intestine was physiologically herniated. By analogy with the requirement for exogenous TGFβ1 for SM differentiation in organ culture, the TGFβ1 protein that was demonstrated to be present in the amniotic fluid may enhance intestinal development when it is physiologically herniated in early gestation. Future studies of embryonic intestinal cultures should include TGFβ1 in the defined media to produce a more faithful model of in vivo muscle differentiation. Copyright © 2017 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons, Ltd. Copyright © 2017 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons, Ltd.

  8. A functional study on small intestinal smooth muscles in jejunal atresia

    Directory of Open Access Journals (Sweden)

    Preeti Tyagi

    2016-01-01

    Full Text Available Aim: The present study was aimed to assess the contractile status of neonatal small intestinal smooth muscle of dilated pre-atretic part of intestinal atresia to resolve debatable issues related to mechanisms of persistent dysmotility after surgical repair. Materials and Methods: A total of 34 longitudinally sectioned strips were prepared from pre-atretic dilated part of freshly excised 8 jejunal atresia type III a cases. Spontaneous as well as acetylcholine- and histamine-induced contractions were recorded in vitro by using organ bath preparations. Chemically evoked contractions were further evaluated after application of atropine (muscarinic blocker, pheniramine (H1 blocker, and lignocaine (neuronal blocker to ascertain receptors and neuronal involvement. Histological examinations of strips were made by using Masson trichrome stain to assess the fibrotic changes. Results: All 34 strips, except four showed spontaneous contractions with mean frequency and amplitude of 5.49 ± 0.26/min and 24.41 ± 5.26 g/g wet tissue respectively. The response to ACh was nearly twice as compared to histamine for equimolar concentrations (100 μM. ACh (100 μM induced contractions were attenuated (by 60% by atropine. Histamine (100 μM-induced contractions was blocked by pheniramine (0.32 μM and lignocaine (4 μM by 74% and 78%, respectively. Histopathological examination showed varying degree of fibrotic changes in muscle layers. Conclusions: Pre-atretic dilated part of jejunal atresia retains functional activity but with definitive histopathologic abnormalities. It is suggested that excision of a length of pre-atretic part and early stimulation of peristalsis by locally acting cholinomimetic or H1 agonist may help in reducing postoperative motility problems in atresia patients.

  9. A functional study on small intestinal smooth muscles in jejunal atresia.

    Science.gov (United States)

    Tyagi, Preeti; Mandal, Maloy B; Gangopadhyay, Ajay N; Patne, Shashikant C U

    2016-01-01

    The present study was aimed to assess the contractile status of neonatal small intestinal smooth muscle of dilated pre-atretic part of intestinal atresia to resolve debatable issues related to mechanisms of persistent dysmotility after surgical repair. A total of 34 longitudinally sectioned strips were prepared from pre-atretic dilated part of freshly excised 8 jejunal atresia type III a cases. Spontaneous as well as acetylcholine- and histamine-induced contractions were recorded in vitro by using organ bath preparations. Chemically evoked contractions were further evaluated after application of atropine (muscarinic blocker), pheniramine (H1 blocker), and lignocaine (neuronal blocker) to ascertain receptors and neuronal involvement. Histological examinations of strips were made by using Masson trichrome stain to assess the fibrotic changes. All 34 strips, except four showed spontaneous contractions with mean frequency and amplitude of 5.49 ± 0.26/min and 24.41 ± 5.26 g/g wet tissue respectively. The response to ACh was nearly twice as compared to histamine for equimolar concentrations (100 μM). ACh (100 μM) induced contractions were attenuated (by 60%) by atropine. Histamine (100 μM)-induced contractions was blocked by pheniramine (0.32 μM) and lignocaine (4 μM) by 74% and 78%, respectively. Histopathological examination showed varying degree of fibrotic changes in muscle layers. Pre-atretic dilated part of jejunal atresia retains functional activity but with definitive histopathologic abnormalities. It is suggested that excision of a length of pre-atretic part and early stimulation of peristalsis by locally acting cholinomimetic or H1 agonist may help in reducing postoperative motility problems in atresia patients.

  10. Characterization of muscarinic and P2X receptors in the urothelium and detrusor muscle of the rat bladder

    Directory of Open Access Journals (Sweden)

    Masaki Ogoda

    2016-05-01

    Full Text Available Muscarinic and purinergic (P2X receptors play critical roles in bladder urothelium under physiological and pathological conditions. Aim of present study was to characterize these receptors in rat bladder urothelium and detrusor muscle using selective radioligands of [N-methyl-3H]scopolamine methyl chloride ([3H]NMS and αβ-methylene ATP [2,8-3H]tetrasodium salt ([3H]αβ-MeATP. Similar binding parameters for each radioligand were observed in urothelium and detrusor muscle. Pretreatment with N-(2-chloroethyl-4-piperidinyl diphenylacetate (4-DAMP mustard mustard revealed co-existence of M2 and M3 receptors, with the number of M2 receptors being larger in the urothelium and detrusor muscle. Intravesical administration of imidafenacin and Dpr-P-4 (N → O (active metabolite of propiverine displayed significant binding of muscarinic receptors in the urothelium and detrusor muscle. The treatment with cyclophosphamide (CYP or resiniferatoxin (RTX resulted in a significant decrease in maximal number of binding sites (Bmax for [3H]NMS and/or [3H]αβ-MeATP in the urothelium and detrusor muscle. These results demonstrated that 1 pharmacological characteristics of muscarinic and P2X receptors in rat bladder urothelium were similar to those in the detrusor muscle, 2 that densities of these receptors were significantly altered by pretreatments with CYP and RTX, and 3 that these receptors may be pharmacologically affected by imidafenacin and Dpr-P-4 (N → O which are excreted in the urine.

  11. Prognostic Impact of a 12-gene Progression Score in Non-muscle-invasive Bladder Cancer: A Prospective Multicentre Validation Study.

    Science.gov (United States)

    Dyrskjøt, Lars; Reinert, Thomas; Algaba, Ferran; Christensen, Emil; Nieboer, Daan; Hermann, Gregers G; Mogensen, Karin; Beukers, Willemien; Marquez, Mirari; Segersten, Ulrika; Høyer, Søren; Ulhøi, Benedicte P; Hartmann, Arndt; Stöhr, Robert; Wach, Sven; Nawroth, Roman; Schwamborn, Kristina; Tulic, Cane; Simic, Tatjana; Junker, Kerstin; Harving, Niels; Petersen, Astrid C; Jensen, Jørgen B; Keck, Bastian; Grimm, Marc-Oliver; Horstmann, Marcus; Maurer, Tobias; Steyerberg, Ewout W; Zwarthoff, Ellen C; Real, Francisco X; Malats, Núria; Malmström, Per-Uno; Ørntoft, Torben F

    2017-09-01

    Progression of non-muscle-invasive bladder cancer (NMIBC) to muscle-invasive bladder cancer (MIBC) is life-threatening and cannot be accurately predicted using clinical and pathological risk factors. Biomarkers for stratifying patients to treatment and surveillance are greatly needed. To validate a previously developed 12-gene progression score to predict progression to MIBC in a large, multicentre, prospective study. We enrolled 1224 patients in ten European centres between 2008 and 2012. A total of 750 patients (851 tumours) fulfilled the inclusion and sample quality criteria for testing. Patients were followed for an average of 28 mo (range 0-76). A 12-gene real-time qualitative polymerase chain reaction assay was performed for all tumours and progression scores were calculated using a predefined formula and cut-off values. We measured progression to MIBC using Cox regression analysis and log-rank tests for comparing survival distributions. The progression score was significantly (prisk score, and disease progression. Univariate Cox regression analysis showed that patients molecularly classified as high risk experienced more frequent disease progression (hazard ratio 5.08, 95% confidence interval 2.2-11.6; prisk factors (prisk factors, and may help in stratifying NMIBC patients to optimise treatment and follow-up regimens. Clinical use of a 12-gene molecular test for disease aggressiveness may help in stratifying patients with non-muscle-invasive bladder cancer to optimal treatment regimens. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  12. Epstein–Barr Virus+ Smooth Muscle Tumors as Manifestation of Primary Immunodeficiency Disorders

    Directory of Open Access Journals (Sweden)

    Thomas Magg

    2018-02-01

    Full Text Available Epstein–Barr virus positive (EBV+ smooth muscle tumors (SMTs constitute a very rare oncological entity. They usually develop in the context of secondary immunodeficiency caused by human immunodeficiency virus infection or immunosuppressive treatment after solid organ transplantation. However, in a small fraction of predominantly pediatric patients, EBV+ SMTs may occur in patients with primary immunodeficiency disorders (PIDs, such as GATA2 and CARMIL2 deficiency. In secondary immunodeficiencies and when the underlying condition can not be cured, the treatment of EBV+ SMTs is based on surgery in combination with antiretroviral and reduced or altered immunosuppressive pharmacotherapy, respectively. Importantly, without definitive reconstitution of cellular immunity, long-term survival is poor. This is particularly relevant for patients with EBV+ SMTs on the basis of PIDs. Recently, allogeneic hematopoietic stem cell transplantation resulted in cure of immunodeficiency and EBV+ SMTs in a GATA2-deficient patient. We propose that in the absence of secondary immunodeficiency disorders patients presenting with EBV+ SMTs should be thoroughly evaluated for PIDs. Allogeneic hematopoietic stem cell transplantation should be taken into consideration, ideally in the setting of a prospective clinical trial.

  13. Characterization of putative receptors specific for quercetin on bovine aortic smooth-muscle cells

    International Nuclear Information System (INIS)

    Yu, S.C.; Becker, C.G.

    1986-01-01

    The authors have reported that tobacco glycoprotein (TGP), rutin-bovine serum albumin conjugates (R-BSA), quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells (SMC). To investigate whether there are binding sites or receptors for these polyphenol-containing molecules on SMC, the authors have synthesized 125 I-labeled rutin-bovine serum albumin ([ 125 I]R-BSA) of high specific activity (20 Ci/mmol). SMC were isolated from a bovine thoracic aorta and maintained in Eagle's minimum essential medium with 10% calf serum in culture. These SMC at early subpassages were suspended (3-5 x 10 7 cells/ml) in phosphate-buffered saline and incubated with [ 125 I]R-BSA (10 pmol) in the presence or absence of 200-fold unlabeled R-BSA, TGP, BSA, rutin, quercetin or related polyphenols, and catecholamines. Binding of [ 125 I]R-BSA to SMC was found to be reproducible and the radioligand was displaced by R-BSA, and also by TGP, rutin, quercetin, and chlorogenic acid, but not by BSA, ellagic acid, naringin, hesperetin, dopamine, epinephrine, or isoproterenol. The binding was saturable, reversible, and pH-dependent. These results demonstrate the presence of specific binding sites for quercetinon arterial SMC

  14. Aortic Graft at Coronary Artery Bypass Surgery as a Source of Human Aortic Smooth Muscle Cells.

    Science.gov (United States)

    Kostina, Daria; Zverev, Dmitry; Grebennik, Vadim; Gordeev, Mikhail; Ignatieva, Elena; Voronkina, Irina; Kostareva, Anna; Malashicheva, Anna

    2017-10-01

    One of the serious obstacles of the aortopathies research is a considerable shortage of human aortic smooth muscle cells (SMCs), which can be used to model the disease. SMC in most cases come from the whole aorta of transplant donors, which are rather difficult to access. In the course of coronary artery bypass graft (CABG) surgery, a fragment of aortic tissue is excised to make a bypass root. In this study, we show a possibility to use CABG leftover fragments of thoracic aorta as a source of human SMC for in vitro research. We isolated SMC from the fragments of aortic tissues obtained during CABG procedure and compared these cells to the cells that were isolated from aortic tissue of transplant donors. The content of key SMC contractile markers (SMA, SM22α, and vimentin) as well as proliferation and migration rates, metalloproteases MMP-2 and MMP-9 activities were similar in CABG-derived SMC and in transplant donor-derived SMC. In conclusion, leftovers of ascending thoracic aorta obtained during CABG can be used as a source of human aortic SMCs for in vitro research.

  15. Excitation-inhibition of stomach smooth muscles by the nano-sized titanium dioxide materials

    International Nuclear Information System (INIS)

    Tsinbalyuk, O.V.; Naumenko, A.M.; Niporko, O.Yu.; Davidovs'ka, T.K.; Skrishevs'kij, V.A.

    2015-01-01

    The aim of our work consisted in the investigation of the effects of TiO 2 nanoparticles (average size of 21 ±5 nm) on the contractile activity of circular smooth muscles from rat's stomach. The cumulative increase in the concentration of TiO 2 ( 10 -6 -10 -3 mg/ml) is accompanied by a dose-dependent inhibition of spontaneous contractions. When using TiO 2 concentrations 10 -3 , 2 . 5·10 -2 , and 5·10 -2 mg/ml, the significant increase, of acetylcholine- and K + -induced contractions are observed. The activation of acetylcholine-induced contractions is essentially inhibited by D-600. Vice versa, the atropine presence didn't eliminate the TiO 2 -stimulated activation of high- K + -induced contractions. Nanoparticles didn't affect the contractions caused by the release of Ca 2+ from sarcoplasmic reticulum, but their effects are essentially eliminated via the previous inhibition of the mitochondria function by sodium azide

  16. Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells.

    Science.gov (United States)

    Oğuz, Nurgül; Kırça, Mustafa; Çetin, Arzu; Yeşilkaya, Akın

    2017-10-01

    Hyperuricemia is thought to play a role in cardiovascular diseases (CVD), including hypertension, coronary artery disease and atherosclerosis. However, exactly how uric acid contributes to these pathologies is unknown. An underlying mechanism of inflammatory diseases, such as atherosclerosis, includes enhanced production of cyclooxygenase-2 (COX-2) and superoxide anion. Here, we aimed to examine the effect of uric acid on inflammatory COX-2 and superoxide anion production and to determine the role of losartan. Primarily cultured vascular smooth muscle cells (VSMCs) were time and dose-dependently induced by uric acid and COX-2 and superoxide anion levels were measured. COX-2 levels were determined by ELISA, and superoxide anion was measured by the superoxide dismutase (SOD)-inhibitable reduction of ferricytochrome c method. Uric acid elevated COX-2 levels in a time-dependent manner. Angiotensin-II receptor blocker, losartan, diminished uric-acid-induced COX-2 elevation. Uric acid also increased superoxide anion level in VSMCs. Uric acid plays an important role in CVD pathogenesis by inducing inflammatory COX-2 and ROS pathways. This is the first study demonstrating losartan's ability to reduce uric-acid-induced COX-2 elevation.

  17. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The ACB technique: a biomagentic tool for monitoring gastrointestinal contraction directly from smooth muscle in dogs

    International Nuclear Information System (INIS)

    Américo, Madileine F; Andreis, Uilian; Miranda, José Ricardo A; Oliveira, Ricardo B; Corá, Luciana A; Marques, Rozemeire G; Romeiro, Fernando G

    2010-01-01

    The aim of this paper was to verify whether AC biosusceptometry (ACB) is suitable for monitoring gastrointestinal (GI) contraction directly from smooth muscle in dogs, comparing with electrical recording