WorldWideScience

Sample records for bladder epithelial cells

  1. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells.

    Science.gov (United States)

    Bauckman, Kyle A; Mysorekar, Indira U

    2016-05-01

    Autophagy is a cellular recycling pathway, which in many cases, protects host cells from infections by degrading pathogens. However, uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections (UTIs), persist within the urinary tract epithelium (urothelium) by forming reservoirs within autophagosomes. Iron is a critical nutrient for both host and pathogen, and regulation of iron availability is a key host defense against pathogens. Iron homeostasis depends on the shuttling of iron-bound ferritin to the lysosome for recycling, a process termed ferritinophagy (a form of selective autophagy). Here, we demonstrate for the first time that UPEC shuttles with ferritin-bound iron into the autophagosomal and lysosomal compartments within the urothelium. Iron overload in urothelial cells induces ferritinophagy in an NCOA4-dependent manner causing increased iron availability for UPEC, triggering bacterial overproliferation and host cell death. Addition of even moderate levels of iron is sufficient to increase and prolong bacterial burden. Furthermore, we show that lysosomal damage due to iron overload is the specific mechanism causing host cell death. Significantly, we demonstrate that host cell death and bacterial burden can be reversed by inhibition of autophagy or inhibition of iron-regulatory proteins, or chelation of iron. Together, our findings suggest that UPEC persist in host cells by taking advantage of ferritinophagy. Thus, modulation of iron levels in the bladder may provide a therapeutic avenue to controlling UPEC persistence, epithelial cell death, and recurrent UTIs.

  2. Tissue-engineered conduit using bladder acellular matrix and bladder epithelial cells for urinary diversion in rabbits

    Institute of Scientific and Technical Information of China (English)

    LIAO Wen-biao; SONG Chao; LI Yong-wei; YANG Si-xing; MENG Lin-chao; LI Xin-hui

    2013-01-01

    Background For muscle invasive bladder cancer,radical cystectomy is the most effective treatment now and urinary diversion is often necessary.The use of intestinal tissue for urinary diversion is frequently associated with complications.In this study,we aimed to make a tissue-engineered conduit (TEC) using bladder epithelial cells and bladder acellular matrix (BAM) for urinary diversion in rabbits.Methods Bladder epithelial cells of rabbit were cultivated and expanded in vitro,then seeded on BAM,and cultured for 7 days.Then cell-seeded graft was used to make TEC.In the experimental group,most of bladder of the rabbit was removed while bladder trigone was retained.The proximal end of TEC was anastomosed with bladder trigone and the distal end was anastomosed with the abdominal stoma.In the control group,TEC was made using unseeded BAM.Haematoxylin and eosin staining was conducted,respectively,at 1,2,4,and 8 weeks postoperatively.Immunohistochemistry was performed 8 weeks postoperatively.Intravenous urography,retrograde pyelography,and cystoscopy of TEC were made at 12 weeks postoperatively.Results All animals were alive in the experimental group.Haematoxylin and eosin staining showed epithelial coverage in TEC.Immunohistochemistry showed anti-cytokeratin AE1/AE3 antibody and anti-ZO1 antibody positive,confirming there were mature and functional epithelial cells on the lumen of TEC.Retrograde pyelography and intravenous urography showed that TEC developed well and that there was no obstruction.In the control group,four rabbits were dead within 2 weeks and scar formation,atresia,and severe hydronephrosis were found.Conclusions We successfully made TEC using BAM and bladder epithelial cells for urinary diversion in rabbits.The lumen of this new TEC covered mature epithelial cells and could prevent urinary extravasation.

  3. Human milk oligosaccharides protect bladder epithelial cells against uropathogenic Escherichia coli invasion and cytotoxicity.

    Science.gov (United States)

    Lin, Ann E; Autran, Chloe A; Espanola, Sophia D; Bode, Lars; Nizet, Victor

    2014-02-01

    The invasive pathogen uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections (UTIs). Recurrent infection that can progress to life-threatening renal failure has remained as a serious global health concern in infants. UPEC adheres to and invades bladder epithelial cells to establish infection. Studies have detected the presence of human milk oligosaccharides (HMOs) in urine of breast-fed, but not formula-fed, neonates. We investigated the mechanisms HMOs deploy to elicit protection in human bladder epithelial cells infected with UPEC CFT073, a prototypic urosepsis-associated strain. We found a significant reduction in UPEC internalization into HMO-pretreated epithelial cells without observing any significant effect in UPEC binding to these cells. This event coincides with a rapid decrease in host cell cytotoxicity, recognized by LIVE/DEAD staining and cell detachment, but independent of caspase-mediated or mitochondrial-mediated programmed cell death pathways. Further investigation revealed HMOs, and particularly the sialic acid-containing fraction, reduced UPEC-mediated MAPK and NF-κB activation. Collectively, our results indicate that HMOs can protect bladder epithelial cells from deleterious cytotoxic and proinflammatory effects of UPEC infection, and may be one contributing mechanism underlying the epidemiological evidence of reduced UTI incidence in breast-fed infants.

  4. Prostate-derived ets factor represses tumorigenesis and modulates epithelial-to-mesenchymal transition in bladder carcinoma cells.

    Science.gov (United States)

    Tsui, Ke-Hung; Lin, Yu-Hsiang; Chung, Li-Chuan; Chuang, Sung-Ting; Feng, Tsui-Hsia; Chiang, Kun-Chun; Chang, Phei-Lang; Yeh, Chi-Ju; Juang, Horng-Heng

    2016-05-28

    Prostate-derived Ets (E-twenty six) factor (PDEF), an epithelium-specific member of the Ets family of transcription factors, has been shown to play a role in suppressing the development of many epithelium-derived cancers such as prostate and breast cancer. It is not clear, however, whether PDEF is involved in the development or progression of bladder cancer. In a comparison between normal urothelium and bladder tumor tissue, we identified significant decreases of PDEF in the tumor tissue. Further, the immunohistochemistry assays indicated a significantly higher immunostaining of PDEF in low-grade bladder tumors. Additionally, the highly differentiated transitional-cell bladder carcinoma RT-4 cells expressed significantly more PDEF levels than the bladder carcinoma HT1376 and the T24 cells. Ectopic overexpression of PDEF attenuated proliferation, invasion, and tumorigenesis of bladder carcinoma cells in vitro and in vivo. PDEF enhanced the expression levels of mammary serine protease inhibitor (MASPIN), N-myc downstream regulated gene 1 (NDRG1), KAI1, and B-cell translocation gene 2 (BTG2). PDEF modulated epithelial-mesenchymal-transition (EMT) by upregulating E-cadherin expression and downregulating the expression of N-cadherin, SNAIL, SLUG, and vimentin, leading to lower migration and invasion abilities of bladder carcinoma cells. Filamentous actin (F-actin) polarization and remodeling were observed in PDEF-knockdown RT-4 cells. Our results suggest that PDEF gene expression is associated with the extent of bladder neoplasia and PDEF modulated the expressions of EMT-related genes. The induction of BTG2, NDRG1, MASPIN, and KAI1 gene expressions by PDEF may explain the inhibitory functions of PDEF on the proliferation, invasion, and tumorigenesis in bladder carcinoma cells.

  5. Epithelial abnormalities of urinary bladder.

    Science.gov (United States)

    Mostofi, F K; Davis, C J

    1984-01-01

    We have called attention to certain epithelial lesions of the bladder characterized as proliferative, metaplastic, and neoplastic. In the first group are included hyperplasia, von Brunn's nests, papillary cystitis, papilloma and inverted papilloma. The second category includes squamous metaplasia, mucous metaplasia, and tubular metaplasia. These two categories, while benign, are indicative of agitated sick mucosa and may progress to neoplasia. The neoplastic changes consist of carcinoma involving the surface epithelium, von Brunn's nests, papillary cystitis, and/or cystitis cystica.

  6. Expression of suppressor of cytokine signalling 3 (SOCS3) in human bladder epithelial cells infected with uropathogenic Escherichia coli.

    Science.gov (United States)

    Demirel, Isak; Säve, Susanne; Kruse, Robert; Persson, Katarina

    2013-02-01

    Suppressor of cytokine signalling (SOCS) proteins inhibit pro-inflammatory signalling mediated by Janus-activated kinase (JAK)-signal transducer and activator of transcription (STAT) pathways. To evade the immune response some pathogens appear to modify the host SOCS proteins. Uropathogenic Escherichia coli (UPEC) are able to subvert the host response evoked by bladder epithelial cells, but the mechanisms are not fully understood. The objective of this study was to investigate whether UPEC can modify the host SOCS and STAT3 response. Real time RT-PCR studies demonstrated an increased SOCS1 and SOCS3 expression in the isolated human bladder epithelial cell lines (RT-4 and 5637) in response to cytokines. UPEC strain IA2 increased SOCS3, but not SOCS1, mRNA levels with a peak at 6 h after infection. The increase of SOCS3 was confirmed at the protein level by Western blotting. The UPEC strain IA2 caused a time-dependent decrease in the phosphorylation of STAT3. This study demonstrates that UPEC are able to affect SOCS3 and STAT3 signalling in human uroepithelial cells. The finding that UPEC are able to induce mediators involved in suppression of host cytokine signalling may help to elucidate how UPEC may circumvent the host response during urinary tract infection.

  7. Luteolin decreases the attachment, invasion and cytotoxicity of UPEC in bladder epithelial cells and inhibits UPEC biofilm formation.

    Science.gov (United States)

    Shen, Xiao-fei; Ren, Lai-bin; Teng, Yan; Zheng, Shuang; Yang, Xiao-long; Guo, Xiao-juan; Wang, Xin-yuan; Sha, Kai-hui; Li, Na; Xu, Guang-ya; Tian, Han-wen; Wang, Xiao-ying; Liu, Xiao-kang; Li, Jingyu; Huang, Ning

    2014-10-01

    Urinary tract infection (UTI), primarily caused by uropathogenic Escherichia coli (UPEC), is one of the most common infectious diseases worldwide. Emerging antibiotic resistance requires novel treatment strategies. Luteolin, a dietary polyphenolic flavonoid, has been confirmed as a potential antimicrobial agent. Here, we evaluated the sub-MICs of luteolin for potential properties to modulate the UPEC infection. We found that luteolin significantly decreased the attachment and invasion of UPEC J96 or CFT073 in human bladder epithelial cell lines T24. Meanwhile, obvious decreased expression of type 1 fimbriae adhesin fimH gene, lower bacterial surface hydrophobicity and swimming motility, were observed in luteolin-pretreated UPEC. Furthermore, luteolin could attenuate UPEC-induced cytotoxicity in T24 cells, which manifested as decreased activity of lactate dehydrogenase (LDH). Simultaneously, the inhibition of luteolin on UPEC-induced cytotoxicity was confirmed by ethidium bromide/acridine orange staining. Finally, the luteolin-pretreated UPEC showed a lower ability of biofilm formation. Collectively, these results indicated that luteolin decreased the attachment and invasion of UPEC in bladder epithelial cells, attenuated UPEC-induced cytotoxicity and biofilm formation via down-regulating the expression of adhesin fimH gene, reducing the bacterial surface hydrophobicity and motility.

  8. Alteration of N-glycans and Expression of Their Related Glycogenes in the Epithelial-Mesenchymal Transition of HCV29 Bladder Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jia Guo

    2014-12-01

    Full Text Available The epithelial-mesenchymal transition (EMT is an essential step in the proliferation and metastasis of solid tumor cells, and glycosylation plays a crucial role in the EMT process. Certain aberrant glycans have been reported as biomarkers during bladder cancer progression, but global variation of N-glycans in this type of cancer has not been previously studied. We examined the profiles of N-glycan and glycogene expression in transforming growth factor-beta (TGFβ-induced EMT using non-malignant bladder transitional epithelium HCV29 cells. These expression profiles were analyzed by mass spectrometry, lectin microarray analysis, and GlycoV4 oligonucleotide microarray analysis, and confirmed by lectin histochemistry and real-time RT-PCR. The expression of 5 N-glycan-related genes were notably altered in TGFβ-induced EMT. In particular, reduced expression of glycogene man2a1, which encodes α-mannosidase 2, contributed to the decreased proportions of bi-, tri- and tetra-antennary complex N-glycans, and increased expression of hybrid-type N-glycans. Decreased expression of fuca1 gene, which encodes Type 1 α-L-fucosidase, contributed to increased expression of fucosylated N-glycans in TGFβ-induced EMT. Taken together, these findings clearly demonstrate the involvement of aberrant N-glycan synthesis in EMT in these cells. Integrated glycomic techniques as described here will facilitate discovery of glycan markers and development of novel diagnostic and therapeutic approaches to bladder cancer.

  9. Loss of prostasin (PRSS8 in human bladder transitional cell carcinoma cell lines is associated with epithelial-mesenchymal transition (EMT

    Directory of Open Access Journals (Sweden)

    Chai Karl X

    2009-10-01

    Full Text Available Abstract Background The glycosylphosphatidylinositol (GPI-anchored epithelial extracellular membrane serine protease prostasin (PRSS8 is expressed abundantly in normal epithelia and essential for terminal epithelial differentiation, but down-regulated in human prostate, breast, and gastric cancers and invasive cancer cell lines. Prostasin is involved in the extracellular proteolytic modulation of the epidermal growth factor receptor (EGFR and is an invasion suppressor. The aim of this study was to evaluate prostasin expression states in the transitional cell carcinomas (TCC of the human bladder and in human TCC cell lines. Methods Normal human bladder tissues and TCC on a bladder cancer tissue microarray (TMA were evaluated for prostasin expression by means of immunohistochemistry. A panel of 16 urothelial and TCC cell lines were evaluated for prostasin and E-cadherin expression by western blot and quantitative PCR, and for prostasin gene promoter region CpG methylation by methylation-specific PCR (MSP. Results Prostasin is expressed in the normal human urothelium and in a normal human urothelial cell line, but is significantly down-regulated in high-grade TCC and lost in 9 (of 15 TCC cell lines. Loss of prostasin expression in the TCC cell lines correlated with loss of or reduced E-cadherin expression, loss of epithelial morphology, and promoter DNA hypermethylation. Prostasin expression could be reactivated by demethylation or inhibition of histone deacetylase. Re-expression of prostasin or a serine protease-inactive variant resulted in transcriptional up-regulation of E-cadherin. Conclusion Loss of prostasin expression in bladder transitional cell carcinomas is associated with epithelial-mesenchymal transition (EMT, and may have functional implications in tumor invasion and resistance to chemotherapy.

  10. Detection of micronuclei, cell proliferation and hyperdiploidy in bladder epithelial cells of rats treated with o-phenylphenol.

    Science.gov (United States)

    Balakrishnan, S; Uppala, P T; Rupa, D S; Hasegawa, L; Eastmond, D A

    2002-01-01

    o-Phenylphenol (OPP), a widely used fungicide and antibacterial agent, has been considered to be among the top 10 home and garden pesticides used in the USA. Earlier studies have consistently shown that the sodium salt of OPP (SOPP) causes bladder cancer in male Fischer 344 (F344) rats, whereas OPP has produced variable results. This difference has been attributed to the presence of the sodium salt. To determine cellular and genetic alterations in the rat bladder and the influence of the sodium salt, F344 rats were administered 2% OPP, 2% NaCl and 2% NaCl + 2% OPP in their diet for 14 days. Twenty-four hours before being killed the animals were administered 5-bromo-2'-deoxyuridine (BrdU) by i.p. injection. Bladder cells were isolated, stained with DAPI and scored for the presence of micronuclei and incorporation of BrdU into replicating cells. To determine changes in chromosome number, we used fluorescence in situ hybridization (FISH) with a DNA probe for rat chromosome 4. Significant increases in the frequency of micronuclei and BrdU incorporation were seen in bladder cells of rats from all treatment groups. In contrast, the frequency of hyperdiploidy/polyploidy in treated animals was not increased over that seen in controls. A high control frequency of cells with three or more hybridization signals was seen, probably due to the presence of polyploid cells in the bladder. The presence of polyploid cells combined with cytotoxicity and compensatory cell proliferation makes it difficult to determine whether OPP is capable of inducing aneuploidy in the rat urothelium. In summary, these studies show that OPP can cause cellular and chromosomal alterations in rat bladder cells in the absence of the sodium salt. These results also indicate that at high concentrations the sodium salt can enhance chromosomal damage in the rat urothelium.

  11. A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells.

    Directory of Open Access Journals (Sweden)

    Jeongmin Song

    2007-04-01

    Full Text Available The vigorous cytokine response of immune cells to Gram-negative bacteria is primarily mediated by a recognition molecule, Toll-like receptor 4 (TLR4, which recognizes lipopolysaccharide (LPS and initiates a series of intracellular NF-kappaB-associated signaling events. Recently, bladder epithelial cells (BECs were reported to express TLR4 and to evoke a vigorous cytokine response upon exposure to LPS. We examined intracellular signaling events in human BECs leading to the production of IL-6, a major urinary cytokine, following activation by Escherichia coli and isolated LPS. We observed that in addition to the classical NF-kappaB-associated pathway, TLR4 triggers a distinct and more rapid signaling response involving, sequentially, Ca(2+, adenylyl cyclase 3-generated cAMP, and a transcriptional factor, cAMP response element-binding protein. This capacity of BECs to mobilize secondary messengers and evoke a more rapid IL-6 response might be critical in their role as first responders to microbial challenge in the urinary tract.

  12. Evaluation of hyperdiploidy in the bladder epithelial cells of male F344 rats treated with ortho-phenylphenol.

    Science.gov (United States)

    Balakrishnan, S; Eastmond, D A

    2003-05-09

    Ortho-phenylphenol (OPP) is a broad-spectrum fungicide and anti-bacterial agent that has been shown to cause bladder cancer in male F344 rats. An earlier study to investigate the potential role of aneuploidy in OPP-induced bladder carcinogenicity, failed to detect increases in frequencies of hyperdiploidy/polyploidy in treated animals, presumably due to the presence of polyploid cells in the bladder. To overcome this problem, we utilized a novel approach to determine increases in numerical alterations in the slowly dividing replicating cells of the rat bladder following treatment with OPP. Collagenase digestion of the bladder was used to enrich for actively-dividing cells and FISH in conjunction with BrdU was employed to detect hyperdiploidy in the replicating interphase cells. Initial studies were performed using FISH with a chromosome 4 probe. Follow-up studies were conducted with OPP and a positive control, vinblastine sulfate using probes for chromosomes 4 and 19. No significant increases in hyperdiploidy/polyploidy were seen in the replicating bladder cells of the OPP-treated rats using FISH with either the chromosome 4 or 19 probes. As expected, no significant increases in hyperdiploidy were seen in the non-replicating cells. In contrast, highly significant increases in hyperdiploidy/polyploidy, as detected using FISH with probes for either chromosome 4 or 19, were seen in the replicating cells from rats treated with a combination of OPP and vinblastine. The inability to detect increases in hyperdiploidy/polyploidy in the bladder of OPP-treated rats indicates that chromosome gain is unlikely to play a major role in the early genotoxic effects of OPP. However, the increase in hyperdiploidy/polyploidy induced by vinblastine sulfate in OPP-treated rats, clearly demonstrates that this approach using FISH in combination with BrdU is capable of detecting changes in chromosome number even in slowly-dividing tissues, such as the urinary bladder.

  13. N-Acetylation of p-aminobenzoic acid and p-phenylenediamine in primary porcine urinary bladder epithelial cells and in the human urothelial cell line 5637.

    Science.gov (United States)

    Föllmann, Wolfram; Blaszkewicz, Meinolf; Behm, Claudia; Degen, Gisela H; Golka, Klaus

    2012-01-01

    N-Acetyltransferases (NAT) are important enzymes in the metabolism of certain carcinogenic arylamines, as N-acetylation decreases or prevents their bioactivation via N-hydroxylation. To study such processes in the bladder, cell culture models may be used, but metabolic competence needs to be characterized. This study focused on the N-acetylation capacity of two urothelial cell systems, using p-aminobenzoic acid (PABA) and the hair dye precursor p-phenylenediamine (PPD), two well-known substrates of the enzyme NAT1. The constitutive NAT1 activity was investigated using primary cultures of porcine urinary bladder epithelial cells (PUBEC) and in the human urothelial cell line 5637 to assess their suitability for further in vitro studies on PABA and PPD-induced toxicity. N-Acetylation of PABA and PPD was determined by high-performance liquid chromatography (HPLC) analysis in cytosols of the two cell systems upon incubation with various substrate levels for up to 60 min. The primary PUBEC revealed higher N-acetylation rates (2.5-fold for PABA, 5-fold for PPD) compared to the 5637 cell line, based on both PABA conversion to its acetylated metabolite and formation of mono- and diacetylated PPD. The urothelial cell systems may thus be useful as a tool for further studies on the N-acetylation of aromatic amines via NAT1.

  14. N1-guanyl-1,7-diaminoheptane sensitizes bladder cancer cells to doxorubicin by preventing epithelial-mesenchymal transition through inhibition of eukaryotic translation initiation factor 5A2 activation.

    Science.gov (United States)

    Yang, Jinsong; Yu, Haogang; Shen, Mo; Wei, Wei; Xia, Lihong; Zhao, Peng

    2014-02-01

    Drug resistance greatly reduces the efficacy of doxorubicin-based chemotherapy in bladder cancer treatment; however, the underlying mechanisms are poorly understood. We aimed to investigate whether N1-guanyl-1,7-diaminoheptane (GC7), which inhibits eukaryotic translation initiation factor 5A2 (eIF5A2) activation, exerts synergistic cytotoxicity with doxorubicin in bladder cancer, and whether eIF5A2 is involved in chemoresistance to doxorubicin-based bladder cancer treatment. BIU-87, J82, and UM-UC-3 bladder cancer cells were transfected with eIF5A2 siRNA or negative control siRNA before incubation with doxorubicin alone or doxorubicin plus GC7 for 48 h. Doxorubicin cytotoxicity was enhanced by GC7 in BIU-87, J82, and UM-UC-3 cells. It significantly inhibited activity of eIF5A2, suppressed doxorubicin-induced epithelial-mesenchymal transition in BIU-87 cells, and promoted mesenchymal-epithelial transition in J82 and UM-UC-3 cells. Knockdown of eIF5A2 sensitized bladder cancer cells to doxorubicin, prevented doxorubicin-induced EMT in BIU-87 cells, and encouraged mesenchymal-epithelial transition in J82 and UM-UC-3 cells. Combination therapy with GC7 may enhance the therapeutic efficacy of doxorubicin in bladder cancer by inhibiting eIF5A2 activation and preventing epithelial-mesenchymal transition.

  15. Sat, the secreted autotransporter toxin of uropathogenic Escherichia coli, is a vacuolating cytotoxin for bladder and kidney epithelial cells.

    Science.gov (United States)

    Guyer, Debra M; Radulovic, Suzana; Jones, Faye-Ellen; Mobley, Harry L T

    2002-08-01

    The secreted autotransporter toxin (Sat) of uropathogenic Escherichia coli exhibits cytopathic activity upon incubation with HEp-2 cells. We further investigated the effects of Sat on cell lines more relevant to the urinary tract, namely, those derived from bladder and kidney epithelium. Sat elicited elongation of cells and apparent loosening of cellular junctions upon incubation with Vero kidney cells. Additionally, incubation with Sat triggered significant vacuolation within the cytoplasm of both human bladder (CRL-1749) and kidney (CRL-1573) cell lines. This activity has been associated with only a few other known toxins. Following transurethral infection of CBA mice with a sat mutant, no reduction of CFU in urine, bladder, or kidney tissue was seen compared to that in mice infected with wild-type E. coli CFT073. However, significant histological changes were observed within the kidneys of mice infected with wild-type E. coli CFT073, including dissolution of the glomerular membrane and vacuolation of proximal tubule cells. Such damage was not observed in kidney sections of mice infected with a Sat-deficient mutant. These results indicate that Sat, a vacuolating cytotoxin expressed by uropathogenic E. coli CFT073, elicits defined damage to kidney epithelium during upper urinary tract infection and thus contributes to pathogenesis of urinary tract infection.

  16. Speciation of Arsenic in Exfoliated Urinary Bladder Epithelial Cells from Individuals Exposed to Arsenic in Drinking Water

    OpenAIRE

    Hernández-Zavala, Araceli; Valenzuela, Olga L.; Matous̆ek, Tomás̆; Drobná, Zuzana; Dĕdina, Jir̆í; García-Vargas, Gonzalo G; Thomas, David J.; Del Razo, Luz M.; Stýblo, Miroslav

    2008-01-01

    Background The concentration of arsenic in urine has been used as a marker of exposure to inorganic As (iAs). Relative proportions of urinary metabolites of iAs have been identified as potential biomarkers of susceptibility to iAs toxicity. However, the adverse effects of iAs exposure are ultimately determined by the concentrations of iAs metabolites in target tissues. Objective In this study we examined the feasibility of analyzing As species in cells that originate in the urinary bladder, a...

  17. Surfactant protein D inhibits adherence of uropathogenic Escherichia coli to the bladder epithelial cells and the bacterium-induced cytotoxicity: a possible function in urinary tract.

    Science.gov (United States)

    Kurimura, Yuichiro; Nishitani, Chiaki; Ariki, Shigeru; Saito, Atsushi; Hasegawa, Yoshihiro; Takahashi, Motoko; Hashimoto, Jiro; Takahashi, Satoshi; Tsukamoto, Taiji; Kuroki, Yoshio

    2012-11-16

    The adherence of uropathogenic Escherichia coli (UPEC) to the host urothelial surface is the first step for establishing UPEC infection. Uroplakin Ia (UPIa), a glycoprotein expressed on bladder urothelium, serves as a receptor for FimH, a lectin located at bacterial pili, and their interaction initiates UPEC infection. Surfactant protein D (SP-D) is known to be expressed on mucosal surfaces in various tissues besides the lung. However, the functions of SP-D in the non-pulmonary tissues are poorly understood. The purposes of this study were to investigate the possible function of SP-D expressed in the bladder urothelium and the mechanisms by which SP-D functions. SP-D was expressed in human bladder mucosa, and its mRNA was increased in the bladder of the UPEC infection model in mice. SP-D directly bound to UPEC and strongly agglutinated them in a Ca(2+)-dependent manner. Co-incubation of SP-D with UPEC decreased the bacterial adherence to 5637 cells, the human bladder cell line, and the UPEC-induced cytotoxicity. In addition, preincubation of SP-D with 5637 cells resulted in the decreased adherence of UPEC to the cells and in a reduced number of cells injured by UPEC. SP-D directly bound to UPIa and competed with FimH for UPIa binding. Consistent with the in vitro data, the exogenous administration of SP-D inhibited UPEC adherence to the bladder and dampened UPEC-induced inflammation in mice. These results support the conclusion that SP-D can protect the bladder urothelium against UPEC infection and suggest a possible function of SP-D in urinary tract.

  18. Transitional cell carcinoma of the bladder in children: radiologic appearance and differential diagnosis.

    Science.gov (United States)

    Quillin, S P; McAlister, W H

    1991-01-01

    Primary epithelial tumors of the bladder are rare in children. We report a case of transitional cell carcinoma (TCCa) of the bladder in a 10-year-old boy who was evaluated with intravenous urography, ultrasonography, and computed tomography (CT). The radiographic appearance and a differential diagnosis are discussed. The literature of TCCa of the bladder in children is reviewed.

  19. Human bladder cancer stem cells exist in epithelial membrane antigen-subset%人膀胱癌干细胞存在于EMA-细胞亚群

    Institute of Scientific and Technical Information of China (English)

    杨宇明; 畅继武

    2008-01-01

    BACKGROUND:Cancer stem cell (CSC) hypothesis suggests that tumorous clones are maintained by a rare fraction of cells with stem cell proprieties. Several kinds of CSCs of solid tumor have been isolated in recent years. However, there have been fewer studies on the objective existence of bladder cancer stem cells (BCSCs) and on the methods to effectively isolate and identify BCSCs. OBJECTIVE:To investigate possibilities of BCSC existence and of epithelial membrane antigen (EMA) used as a surface marker of BCSC. DESIGN:A control observation experiment. SETTING:Tianjin Institute of Urinary Surgery & Second Hospital of Tianjin Medical University. MATERIALS:This study was performed at the Room for Tumor Immunity of Tianjin Institute of Urinary Surgery (key laboratory for State "211 Project") from March 2006 to July 2007. Nine specimens of human bladder were obtained from patients who received treatment in the Second Hospital of Tianjin Medical University. These specimens corresponded to the diagnostic criteria of low malignant potential papillary urothelial neoplasm and low-grade papillary urothelial carcinoma. Additionally, 40 samples of human low malignant bladder transitional cell carcinomas (BTCC) and 10 samples of normal urothelium that were used for immunohistochemistry were obtained from the patients who received treatment in the Department of Urinary Surgery, Second Hospital of Tianjin Medical University. Written informed consent for the specimen providing was obtained from the patients, and the protocol was approved by the hospital’s Ethics Committee. METHODS:The genes that were differentially expressed between normal urothelium and BTCC were identified through a DNA array assay to preliminarily determine the existence of BTCC. Overpressed stem cell related genes, Bmi-1 and EZH2, were verified by immunohistochemistry. A total of 27 potential surface markers of BCSCs were assayed to determine the location of positive cells. EMA- subsets were obtained through

  20. Pathology of epithelial tumors & carcinoma in situ of bladder.

    Science.gov (United States)

    Mostofi, F K; Sesterhenn, I A

    1984-01-01

    We have reviewed the World Health Organization International Histological Classification of Tumors of Urinary Bladder. The classification recognizes papilloma as a distinct entity, which, although histologically benign, has a definite increased risk of progression to carcinoma. The classification further characterizes carcinomas of bladder in terms of certain features which have considerable influence on treatment, recurrence and prognosis. These are: the patterns of growth, the histology of the tumor, the grade, the pathological stage, the mode and location of spread, and the status of the remaining mucosa. We have called attention to the need for proper recognition of nonpapillary, noninvasive superficial mucosal lesions which have hitherto been dismissed as atypia and dysplasia. We have demonstrated that these lesions present a high risk for development of invasive carcinoma and recommended that the term "intraepithelial neoplasia" be employed and graded one to three to eliminate the use of terms atypia, dysplasia and CIS. We have emphasized the need for development of technics to demonstrate invasive and metastatic potential of epithelial tumors of bladder.

  1. The recovery of bladder epithelial hyperplasia caused by a melamine diet-induced bladder calculus in mice.

    Science.gov (United States)

    Sun, Ying; Jiang, Yi-Na; Xu, Chang-Fu; Du, Yun-Xia; Zhang, Jiao-Jiao; Yan, Yang; Gao, Xiao-Li

    2014-02-01

    Applying a model of bladder epithelial hyperplasia (BEH) caused by melamine-induced bladder calculus (BC), the recovery of BEH after melamine withdrawal was investigated. One experiment, comprising untreated, melamine and recovery groups, was conducted in Balb/c mice. Each group included 4 subgroups. Mice were fed normal-diet in untreated or a melamine-diet in other groups. The melamine-diet was then substituted with normal-diet in recovery group. Both of BC and BEH were observed after 14 and 56 days of melamine-diet. The BC is relatively uniform at the same melamine-diet durations. The BEH was diffuse with many mitotic figures, 4-7 rows of nuclei, and well-defined umbrella/intermediate cells. No marked differences in BEH degree were observed in the two different melamine-diet durations. On 4-42 days after melamine withdrawal, BC was not found, as the progressive regression with complete regression of BEH was observed, along with well-defined ageing/apoptotic cells in the superficial regions of BEH regression tissue. Conclusion, the melamine-induced BEH is relatively uniform, may be self-limiting in rows of nuclei, and can return to normal. Melamine withdrawal duration is critical for the BEH regression. Tissue of the BEH and its regression is ideal for exploring the renewal as well as growth biology of mammalian urothelium.

  2. Stem Cells in Functional Bladder Engineering

    Science.gov (United States)

    Smolar, Jakub; Salemi, Souzan; Horst, Maya; Sulser, Tullio; Eberli, Daniel

    2016-01-01

    Conditions impairing bladder function in children and adults, such as myelomeningocele, posterior urethral valves, bladder exstrophy or spinal cord injury, often need urinary diversion or augmentation cystoplasty as when untreated they may cause severe bladder dysfunction and kidney failure. Currently, the gold standard therapy of end-stage bladder disease refractory to conservative management is enterocystoplasty, a surgical enlargement of the bladder with intestinal tissue. Despite providing functional improvement, enterocystoplasty is associated with significant long-term complications, such as recurrent urinary tract infections, metabolic abnormalities, stone formation, and malignancies. Therefore, there is a strong clinical need for alternative therapies for these reconstructive procedures, of which stem cell-based tissue engineering (TE) is considered to be the most promising future strategy. This review is focused on the recent progress in bladder stem cell research and therapy and the challenges that remain for the development of a functional bladder wall.

  3. Stromal mesenchyme cell genes of the human prostate and bladder

    Directory of Open Access Journals (Sweden)

    Pascal Laura E

    2005-12-01

    Full Text Available Abstract Background Stromal mesenchyme cells play an important role in epithelial differentiation and likely in cancer as well. Induction of epithelial differentiation is organ-specific, and the genes responsible could be identified through a comparative genomic analysis of the stromal cells from two different organs. These genes might be aberrantly expressed in cancer since cancer could be viewed as due to a defect in stromal signaling. We propose to identify the prostate stromal genes by analysis of differentially expressed genes between prostate and bladder stromal cells, and to examine their expression in prostate cancer. Methods Immunohistochemistry using antibodies to cluster designation (CD cell surface antigens was first used to characterize the stromas of the prostate and bladder. Stromal cells were prepared from either prostate or bladder tissue for cell culture. RNA was isolated from the cultured cells and analyzed by DNA microarrays. Expression of candidate genes in normal prostate and prostate cancer was examined by RT-PCR. Results The bladder stroma was phenotypically different from that of the prostate. Most notable was the presence of a layer of CD13+ cells adjacent to the urothelium. This structural feature was also seen in the mouse bladder. The prostate stroma was uniformly CD13-. A number of differentially expressed genes between prostate and bladder stromal cells were identified. One prostate gene, proenkephalin (PENK, was of interest because it encodes a hormone. Secreted proteins such as hormones and bioactive peptides are known to mediate cell-cell signaling. Prostate stromal expression of PENK was verified by an antibody raised against a PENK peptide, by RT-PCR analysis of laser-capture microdissected stromal cells, and by database analysis. Gene expression analysis showed that PENK expression was down-regulated in prostate cancer. Conclusion Our findings show that the histologically similar stromas of the prostate and

  4. Granular cell tumors of the urinary bladder

    Directory of Open Access Journals (Sweden)

    Kayani Naila

    2007-03-01

    Full Text Available Abstract Background Granular cell tumors (GCTs are extremely rare lesions of the urinary bladder with only nine cases being reported in world literature of which one was malignant. Generally believed to be of neural origin based on histochemical, immunohistochemical, and ultrastructural studies; they mostly follow a clinically benign course but are commonly mistaken for malignant tumors since they are solid looking, ulcerated tumors with ill-defined margins. Materials and methods We herein report two cases of GCTs, one benign and one malignant, presenting with gross hematuria in a 14- and a 47-year-old female, respectively. Results Histopathology revealed characteristic GCTs with positive immunostaining for neural marker (S-100 and negative immunostaining for epithelial (cytokeratin, Cam 5.2, AE/A13, neuroendocrine (neuron specific enolase, chromogranin A, and synaptophysin and sarcoma (desmin, vimentin markers. The benign tumor was successfully managed conservatively with transurethral resection alone while for the malignant tumor, radical cystectomy, hysterectomy with bilateral salpingo-oophorectomy, anterior vaginectomy, plus lymph node dissection was done. Both cases show long-term disease free survival. Conclusion We recommend careful pathologic assessment for establishing the appropriate diagnosis and either a conservative or aggressive surgical treatment for benign or localized malignant GCT of the urinary bladder, respectively.

  5. Coronaviruses in polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Bekker, C P; Voorhout, W F; Horzinek, M C; Van der Ende, A; Strous, G J; Rottier, P J

    1995-01-01

    Coronaviruses have a marked tropism for epithelial cells. In this paper the interactions of the porcine transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV-A59) with epithelial cells are compared. Porcine (LLC-PK1) and murine (mTAL) epithelial cells were grown on permeable supp

  6. Mammary epithelial cell

    DEFF Research Database (Denmark)

    Kass, Laura; Erler, Janine Terra; Dembo, Micah

    2007-01-01

    a repertoire of transmembrane receptors, of which integrins are the best characterized. Integrins modulate cell fate by reciprocally transducing biochemical and biophysical cues between the cell and the extracellular matrix, facilitating processes such as embryonic branching morphogenesis and lactation...... in the mammary gland. During breast development and cancer progression, the extracellular matrix is dynamically altered such that its composition, turnover, processing and orientation change dramatically. These modifications influence mammary epithelial cell shape, and modulate growth factor and hormonal...... responses to regulate processes including branching morphogenesis and alveolar differentiation. Malignant transformation of the breast is also associated with significant matrix remodeling and a progressive stiffening of the stroma that can enhance mammary epithelial cell growth, perturb breast tissue...

  7. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer.

    Science.gov (United States)

    Islam, S S; Mokhtari, R B; Noman, A S; Uddin, M; Rahman, M Z; Azadi, M A; Zlotta, A; van der Kwast, T; Yeger, H; Farhat, W A

    2016-05-01

    Activation of the sonic hedgehog (Shh) signaling pathway controls tumorigenesis in a variety of cancers. Here, we show a role for Shh signaling in the promotion of epithelial-to-mesenchymal transition (EMT), tumorigenicity, and stemness in the bladder cancer. EMT induction was assessed by the decreased expression of E-cadherin and ZO-1 and increased expression of N-cadherin. The induced EMT was associated with increased cell motility, invasiveness, and clonogenicity. These progression relevant behaviors were attenuated by treatment with Hh inhibitors cyclopamine and GDC-0449, and after knockdown by Shh-siRNA, and led to reversal of the EMT phenotype. The results with HTB-9 were confirmed using a second bladder cancer cell line, BFTC905 (DM). In a xenograft mouse model TGF-β1 treated HTB-9 cells exhibited enhanced tumor growth. Although normal bladder epithelial cells could also undergo EMT and upregulate Shh with TGF-β1 they did not exhibit tumorigenicity. The TGF-β1 treated HTB-9 xenografts showed strong evidence for a switch to a more stem cell like phenotype, with functional activation of CD133, Sox2, Nanog, and Oct4. The bladder cancer specific stem cell markers CK5 and CK14 were upregulated in the TGF-β1 treated xenograft tumor samples, while CD44 remained unchanged in both treated and untreated tumors. Immunohistochemical analysis of 22 primary human bladder tumors indicated that Shh expression was positively correlated with tumor grade and stage. Elevated expression of Ki-67, Shh, Gli2, and N-cadherin were observed in the high grade and stage human bladder tumor samples, and conversely, the downregulation of these genes were observed in the low grade and stage tumor samples. Collectively, this study indicates that TGF-β1-induced Shh may regulate EMT and tumorigenicity in bladder cancer. Our studies reveal that the TGF-β1 induction of EMT and Shh is cell type context dependent. Thus, targeting the Shh pathway could be clinically beneficial in the

  8. Bladder drainage and glandular epithelial morphometry of the prostate in benign prostatic hyperplasia with severe symptoms

    Directory of Open Access Journals (Sweden)

    Carlos A. Cury

    2006-04-01

    Full Text Available OBJECTIVE: Morphometrically analyze the cells nuclei of the basal layer of the prostatic glandular epithelium in 20 patients aged between 57 and 85 years presenting benign prostatic hyperplasia with severe symptoms, catheterized or not. MATERIALS AND METHODS: Patients with score of severe prostatic symptoms (with indication for transurethral resection of the prostate were distributed according to the presence or absence of bladder drainage previous to the surgery, in the treated group (n = 10, catheter during 3 months and in the control group (n = 10, without catheter. After obtaining prostate fragments through transurethral resection and the use of morphometric techniques, 100 nuclei of prostatic glands epithelium cells were studied (as to size and form, and compared to 500 nuclei from patients submitted to catheter drainage and 500 nuclei of non-catheterized patients. RESULTS: Significantly reduced values of the major, medium and minor nuclear diameters, volume, area and perimeter, contour index and nuclear volume-nuclear area ratio were observed in the treated group in relation to the control group. As to the form, eccentricity and coefficient of nuclear form, there were significant differences between treated and control groups. CONCLUSION: Long-term catheter bladder drainage in patients presenting benign prostatic hyperplasia with severe symptoms is associated to the reduction of morphometric parameters of the nuclei of prostatic glands’ epithelial cells, suggesting a likely decompressive duct effect.

  9. Proteomic analysis of human bladder epithelial cells by 2D blue native SDS-PAGE reveals TCDD-induced alterations of calcium and iron homeostasis possibly mediated by nitric oxide.

    Science.gov (United States)

    Verma, Nisha; Pink, Mario; Petrat, Frank; Rettenmeier, Albert W; Schmitz-Spanke, Simone

    2015-01-02

    A proteomic analysis of the interaction among multiprotein complexes involved in 2,3,7,8-dibenzo-p-dioxin (TCDD)-mediated toxicity in urinary bladder epithelial RT4 cells was performed using two-dimensional blue native SDS-PAGE (2D BN/SDS-PAGE). To enrich the protein complexes, unexposed and TCDD-exposed cells were fractionated. BN/SDS-PAGE of the resulting fractions led to an effective separation of proteins and protein complexes of various origins, including cell membrane, mitochondria, and other intracellular compartments. Major differences between the proteome of control and exposed cells involved the alteration of many calcium-regulated proteins (calmodulin, protein S100-A2, annexin A5, annexin A10, gelsolin isoform b) and iron-regulated proteins (ferritin, heme-binding protein 2, transferrin). On the basis of these findings, the intracellular calcium concentration was determined, revealing a significant increase after 24 h of exposure to TCDD. Moreover, the concentration of the labile iron pool (LIP) was also significantly elevated in TCDD-exposed cells. This increase was strongly inhibited by the calmodulin (CaM) antagonist W-7, which pointed toward a possible interaction between iron and calcium signaling. Because nitric oxide (NO) production was significantly enhanced in TCDD-exposed cells and was also inhibited by W-7, we hypothesize that alterations in calcium and iron homeostasis upon exposure to TCDD may be linked through NO generated by CaM-activated nitric oxide synthase. In our model, we propose that NO produced upon TCDD exposure interacts with the iron centers of iron-regulatory proteins (IRPs) that modulate the alteration of ferritin and transferrin, resulting in an augmented cellular LIP and, hence, increased toxicity.

  10. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jiajia [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China); Zhu, Xi [Department of Urology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing (China); Zhang, Jie, E-mail: zhangjiebjmu@163.com [Department of Laboratory Medicine, Peking University Third Hospital, Beijing (China)

    2014-03-28

    Highlights: • We first demonstrated CXCL5 is highly expressed in human bladder tumor tissues and cells. • CXCL5 knockdown inhibits proliferation, migration and promotes apoptosis in T24 cells. • CXCL5 knockdown inhibits Snail, PI3K-AKT and ERK1/2 signaling pathways in T24 cells. • CXCL5 is critical for bladder tumor growth and progression. - Abstract: CXCL5 (epithelial neutrophil activating peptide-78) which acts as a potent chemoattractant and activator of neutrophil function was reported to play a multifaceted role in tumorigenesis. To investigate the role of CXCL5 in bladder cancer progression, we examined the CXCL5 expression in bladder cancer tissues by real-time PCR and Western blot, additionally, we used shRNA-mediated silencing to generate stable CXCL5 silenced bladder cancer T24 cells and defined its biological functions. Our results demonstrated that mRNA and protein of CXCL5 is increased in human bladder tumor tissues and cell lines, down-regulation of CXCL5 in T24 cells resulted in significantly decreased cell proliferation, migration and increased cell apoptosis in vitro through Snail, PI3K-AKT and ERK1/2 signaling pathways. These data suggest that CXCL5 is critical for bladder tumor growth and progression, it may represent a potential application in cancer diagnosis and therapy.

  11. Integrins and epithelial cell polarity.

    Science.gov (United States)

    Lee, Jessica L; Streuli, Charles H

    2014-08-01

    Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity.

  12. Granular cell tumour of the urinary bladder

    Directory of Open Access Journals (Sweden)

    Christoph von Klot

    2012-04-01

    Full Text Available With only 16 cases reported in the literature, the mostly benign granular cell tumour of the urinary bladder is exceptionally rare. We present the case of a 68-year old patient with one of these lesions demonstrating our histological findings including several immunohistochemical stainings used to differentiate between other more common entities.

  13. Epithelial-Mesenchymal Interactions in Urinary Bladder and Small Intestine and How to Apply Them in Tissue Engineering.

    Science.gov (United States)

    Jerman, Urška Dragin; Kreft, Mateja Erdani; Veranič, Peter

    2015-12-01

    Reciprocal interactions between the epithelium and mesenchyme are essential for the establishment of proper tissue morphology during organogenesis and tissue regeneration as well as for the maintenance of cell differentiation. With this review, we highlight the importance of epithelial-mesenchymal cross talk in healthy tissue and further discuss its significance in engineering functional tissues in vitro. We focus on the urinary bladder and small intestine, organs that are often compromised by disease and are as such in need of research that would advance effective treatment or tissue replacement. To date, the understanding of epithelial-mesenchymal reciprocal interactions has enabled the development of in vitro biomimetic tissue equivalents that have provided many possibilities in treating defective, damaged, or even cancerous tissues. Although research of the past several years has advanced the field of bladder and small intestine tissue engineering, one must be aware of its current limitations in successfully and above all safely introducing tissue-engineered constructs into clinical practice. Special attention is in particular needed when treating cancerous tissues, as initially successful tumor excision and tissue reconstruction may later on result in cancer recurrence due to oncogenic signals originating from an altered stroma. Recent rather poor outcomes in pioneering clinical trials of bladder reconstructions should serve as a reminder that recreating a functional organ to replace a dysfunctional one is an objective far more difficult to reach than initially foreseen. When considering effective tissue engineering approaches for diseased tissues in humans, it is imperative to introduce animal models with dysfunctional or, even more importantly, cancerous organs, which would greatly contribute to predicting possible complications and, hence, reducing risks when translating to the clinic.

  14. Effect of pioglitazone on the growth of normal bladder transitional epithelial cells and bladder cancer cells%吡格列酮对膀胱正常移行上皮细胞及膀胱癌细胞生长的影响

    Institute of Scientific and Technical Information of China (English)

    王吉娇; 李春艳; 袁晓岚; 周姣姣; 严静; 初蕊; 杨丰强; 曲伸; 苏本利

    2014-01-01

    以不同浓度吡格列酮处理膀胱正常移行上皮细胞及膀胱癌J82细胞24 h 、48 h 、72 h、5 d、8 d和10d,观察细胞生长状态,MTT检测细胞生长抑制率,流式细胞仪分析细胞凋亡,实时定量PCR和Western印迹法检测周期素D1 、p53、Bcl-2、Bax的mRNA和蛋白表达.结果显示,10 μmol/L吡格列酮处理膀胱正常细胞24、48、72 h后细胞生长明显受抑制(均P<0.05),细胞凋亡增加[24 h(18.8 ±2.1对9.4±1.7)% 、48 h(29.9±1.3对10.7±1.1)、72 h(49.7±2.3对11.3±1.3)%,P<0.05],J82细胞未见明显影响 . 10 μmol/L吡格列酮处理2种细胞72 h内周期素D1 、p53、Bcl-2、Bax的mRNA和蛋白表达均无明显变化,作用8d后J82细胞周期素D1 、p53蛋白表达降低,提示吡格列酮不增加膀胱正常移行上皮细胞癌变趋势.%The normal bladder transitional cells and bladder cancer J82 cells were treated with various concentrations of pioglitazone for 24 h,48 h,72 h,8 d,and 10 d.The growth of the cells was tested by MTT.Apoptosis rate was detected by flow cytometry technology.Realtime-PCR and Western blot were used to analyze the mRNA and protein expressions of p53,cvclin D1,Bcl-2,and Bax.lhe results showed that the cell viability of normal bladder cells was decreased 24,48,and 72 h after 10 μmol/L pioglitazone treatment (all P<0.05) while the cell apoptosiswasincreased [24h(18.8±2.1 vs 9.4 ± 1.7) %,48 h (29.9 ± 1.3 vs 1 0.7 ± 1.1),72 h (49.7 ±2.3 vs11.3 ± 1.3) %,P<0.05].Pioglitazone had no effect on the growth and proliferation of J82 cells.There were no significant differences in mRNA and protein expressions of p53,cvclin D1,Bcl-2,and Bax within 72 h after pioglitazone treatment in this two kinds of cells.But,the protein expressions of cvclin D1 and p53 in J82 cells were decreased after pioglitazone treatment for 8 days.These results suggest that pioglitazone does not increase the risk of bladder cancer in normal transitional cells.

  15. Tissue engineering of rat bladder using marrow-derived mesenchymal stem cells and bladder acellular matrix.

    Directory of Open Access Journals (Sweden)

    Daniel L Coutu

    Full Text Available Bladder replacement or augmentation is required in congenital malformations or following trauma or cancer. The current surgical solution involves enterocystoplasty but is associated with high complication rates. Strategies for bladder tissue engineering are thus actively sought to address this unmet clinical need. Because of the poor efficacy of synthetic polymers, the use of bladder acellular matrix (BAM has been proposed. Indeed when cellular components are removed from xenogenic or allogeneic bladders, the extracellular matrix scaffold thus obtained can be used alone or in combination with stem cells. In this study, we propose the use of BAM seeded with marrow-derived mesenchymal stem cells (MSCs for bladder tissue engineering. We optimized a protocol for decellularization of bladder tissue from different species including rat, rabbit and swine. We demonstrate the use of non-ionic detergents followed by nuclease digestion results in efficient decellularization while preserving the extracellular matrix. When MSCs were seeded on acellular matrix scaffold, they remained viable and proliferative while adopting a cellular phenotype consistent with their microenvironment. Upon transplantation in rats after partial cystectomy, MSC-seeded BAM proved superior to unseeded BAM with animals recovering nearly 100% normal bladder capacity for up to six months. Histological analyses also demonstrated increased muscle regeneration.

  16. Mineralocorticoid receptor stimulation induces urinary storage dysfunction via upregulation of epithelial sodium channel expression in the rat urinary bladder epithelium.

    Science.gov (United States)

    Yamamoto, Seiji; Hotta, Yuji; Maeda, Kotomi; Kataoka, Tomoya; Maeda, Yasuhiro; Hamakawa, Takashi; Sasaki, Shoichi; Yasui, Takahiro; Asai, Kiyofumi; Kimura, Kazunori

    2016-04-01

    We aimed to evaluate mineralocorticoid receptor (MR) expression in rat bladder and the physiological role of the MR-epithelial sodium channel (ENaC) pathway in controlling bladder function in 10-12-week-old, male Sprague-Dawley rats. First, we examined the mRNA expression of MR and localization of MR and ENaC-α proteins in the urinary bladder. MR mRNA expression was observed in untreated-rat urinary bladders, and MR and ENaC-α proteins were localized in the epithelium. Next, rats were treated with vehicle (controls) or fludrocortisone (an MR agonist) for 3 days, and ENaC-α protein expression levels and bladder function were evaluated on day 4. ENaC-α protein expression was significantly higher in fludrocortisone-treated rats than in controls. In addition, cystometry was performed during intravesical infusion of saline and amiloride (an ENaC inhibitor). While intercontraction intervals (ICIs) during saline infusion were significantly shorter in the fludrocortisone group than in the controls, infusion of amiloride normalized the ICIs in the fludrocortisone group. However, no intra- or inter-group differences in maximum intravesical pressure were observed. Taken together, MR protein is localized in the rat urinary bladder epithelium, and may regulate ENaC expression and bladder afferent input. The MR-ENaC pathway may be a therapeutic target for ameliorating storage symptoms.

  17. Quantitative Analysis of Differential Proteome Expression in Bladder Cancer vs. Normal Bladder Cells Using SILAC Method.

    Directory of Open Access Journals (Sweden)

    Ganglong Yang

    Full Text Available The best way to increase patient survival rate is to identify patients who are likely to progress to muscle-invasive or metastatic disease upfront and treat them more aggressively. The human cell lines HCV29 (normal bladder epithelia, KK47 (low grade nonmuscle invasive bladder cancer, NMIBC, and YTS1 (metastatic bladder cancer have been widely used in studies of molecular mechanisms and cell signaling during bladder cancer (BC progression. However, little attention has been paid to global quantitative proteome analysis of these three cell lines. We labeled HCV29, KK47, and YTS1 cells by the SILAC method using three stable isotopes each of arginine and lysine. Labeled proteins were analyzed by 2D ultrahigh-resolution liquid chromatography LTQ Orbitrap mass spectrometry. Among 3721 unique identified and annotated proteins in KK47 and YTS1 cells, 36 were significantly upregulated and 74 were significantly downregulated with >95% confidence. Differential expression of these proteins was confirmed by western blotting, quantitative RT-PCR, and cell staining with specific antibodies. Gene ontology (GO term and pathway analysis indicated that the differentially regulated proteins were involved in DNA replication and molecular transport, cell growth and proliferation, cellular movement, immune cell trafficking, and cell death and survival. These proteins and the advanced proteome techniques described here will be useful for further elucidation of molecular mechanisms in BC and other types of cancer.

  18. Elevated connexin 43 expression in arsenite-and cadmium-transformed human bladder cancer cells, tumor transplants and selected high grade human bladder cancers.

    Science.gov (United States)

    Zhang, Ruowen; Wang, Liping; Garrett, Scott H; Sens, Donald A; Dunlevy, Jane R; Zhou, Xu Dong; Somji, Seema

    2016-10-01

    Connexin 43 has been shown to play a role in cell migration and invasion; however, its role in bladder cancer is not well defined. Previous studies from our laboratory have shown that the environmental pollutants arsenite and cadmium can cause malignant transformation of the immortalized urothelial cell line UROtsa. These transformed cells can form tumors in immune-compromised mice. The goal of the present study was to determine if connexin 43 is expressed in the normal human bladder, the arsenite and cadmiun-transformed UROtsa cells as well as human urothelial cancer. The results obtained showed that connexin 43 is not expressed in the epithelial cells of the human bladder but is expressed in immortalized cultures of human urothelial cells and the expression is variable in the arsenite and cadmium- transformed urothelial cell lines derived from these immortalized cells. Tumor heterotransplants generated from the transformed cells expressed connexin 43 and the expression was localized to areas of squamous differentiation. Immuno-histochemical analysis of human bladder cancers also showed that the expression of connexin 43 was localized to areas of the tumor that showed early features of squamous differentiation. Treatment of UROtsa cells with various concentrations of arsenite or cadmium did not significantly alter the expression level of connexin 43. In conclusion, our results show that the expression of connexin 43 is localized to the areas of the tumor that show squamous differentiation, which may be an indicator of poor prognosis. This suggests that connexin 43 has the potential to be developed as a biomarker for bladder cancer that may have the ability to invade and metastasize.

  19. Enterovesical fistula caused by a bladder squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chun-Hsiang Ou Yang; Keng-Hao Liu; Tse-Ching Chen; Phei-Lang Chang; Ta-Sen Yeh

    2009-01-01

    Enterovesical fistulas are not uncommon in patients with inflammatory or malignant colonic disease, however,fistulas secondary to primary bladder carcinomas are extremely rare. We herein reported a patient presenting with intractable urinary tract infection due to enterovesical fistula formation caused by a squamous cell carcinoma of the urinary bladder. This patient underwent en bloc resection of the bladder dome and involved ileum, and recovered uneventfully without urinary complaint. To the best of our knowledge, this is the first case reported in the literature.

  20. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  1. Airway epithelial cell responses to ozone injury

    Energy Technology Data Exchange (ETDEWEB)

    Leikauf, G.D.; Simpson, L.G.; Zhao, Qiyu [Univ. of Cincinnati Medical Center, OH (United States)] [and others

    1995-03-01

    The airway epithelial cell is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products-hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists; of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines-macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretary leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. 51 refs., 2 figs., 3 tabs.

  2. Polarized sorting and trafficking in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Xinwang Cao; Michal A Surma; Kai Simons

    2012-01-01

    The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the formation of an apical and a basolateral domain,which are separated by tight junctions.The generation and maintenance of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo molecules.This dynamic process involves the interaction of sorting signals with sorting machineries and the formation of transport carriers.Here we review the recent advances in the field of polarized sorting in epithelial cells.We especially highlight the role of lipid rafts in apical sorting.

  3. Classification of bladder cancer cell lines using Raman spectroscopy: a comparison of excitation wavelength, sample substrate and statistical algorithms

    Science.gov (United States)

    Kerr, Laura T.; Adams, Aine; O'Dea, Shirley; Domijan, Katarina; Cullen, Ivor; Hennelly, Bryan M.

    2014-05-01

    Raman microspectroscopy can be applied to the urinary bladder for highly accurate classification and diagnosis of bladder cancer. This technique can be applied in vitro to bladder epithelial cells obtained from urine cytology or in vivo as an optical biopsy" to provide results in real-time with higher sensitivity and specificity than current clinical methods. However, there exists a high degree of variability across experimental parameters which need to be standardised before this technique can be utilized in an everyday clinical environment. In this study, we investigate different laser wavelengths (473 nm and 532 nm), sample substrates (glass, fused silica and calcium fluoride) and multivariate statistical methods in order to gain insight into how these various experimental parameters impact on the sensitivity and specificity of Raman cytology.

  4. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  5. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level....... It is concluded that the epithelial stromal cells of the thymus, by acting as veto cells, may be responsible for the negative intrathymic selection of self-reactive thymocytes leading to elimination of the vast majority of immature thymic lymphocytes....

  6. Enterovesical Fistula Secondary to Squamous Cell Carcinoma of the Bladder.

    Science.gov (United States)

    Sellers, William; Fiorelli, Robert

    2015-11-01

    Enterovesical fistulas are a well-known complication of inflammatory and malignant bowel disease. Bladder carcinoma, however, is an extremely rare etiology. We describe a case of squamous cell carcinoma of the bladder with an enterovesical fistula. This rare phenomenon has never been previously reported in western literature. We review the diagnosis, work up and treatment of enterovesical fistulas. Unfortunately, the prognosis for these highly invasive tumors is very poor and the treatment is often palliative. The high morbidity and mortality makes management of these patients exceptionally challenging.

  7. Different glycosylation of cadherins from human bladder non-malignant and cancer cell lines

    Directory of Open Access Journals (Sweden)

    Lityńska Anna

    2002-06-01

    Full Text Available Abstract Background The aim of the present study was to determine whether stage of invasiveness of bladder cancer cell lines contributes to alterations in glycan pattern of their cadherins. Results Human non-malignant epithelial cell of ureter HCV29, v-raf transfected HCV29 line (BC3726 and transitional cell cancers of urine bladder Hu456 and T24 were grown in cell culture. Equal amounts of protein from each cell extracts were separated by SDS-PAGE electrophoresis and were blotted on an Immobilon P membrane. Cadherins were immunodetected using anti-pan cadherin mAb and lectin blotting assays were performed, in parallel. N-oligosaccharides were analysed by specific reaction with Galanthus nivalis agglutinin (GNA, Sambucus nigra agglutinin (SNA, Maackia amurensis agglutinin (MAA, Datura stramonium agglutinin (DSA, Aleuria aurantia agglutinin (AAA, Phaseolus vulgaris agglutinin (PHA-L and wheat germ agglutinin (WGA. The cadherin from HCV29 cell line possessed bi- and/or 2,4-branched triantennary complex type glycans, some of which were α2,6-sialylated. The cadherin from BC3726 cell line exhibited exclusively high mannose type glycans. Cadherins from Hu456 and T24 cell lines expressed high mannose type glycans as well as β1,6-branched oligosaccharides with poly-N-acetyllactosamine structures and α2,3-linked sialic acid residues. Additionally, the presence of fucose and α2,6-sialic acid residues on the cadherin from T24 cell line was detected. Conclusions These results indicate that N-glycosylation pattern of cadherin from bladder cancer cell line undergoes modification during carcinogenesis.

  8. Quantifying mast cells in bladder pain syndrome by immunohistochemical analysis

    DEFF Research Database (Denmark)

    Larsen, M.S.; Mortensen, S.; Nordling, J.;

    2008-01-01

    OBJECTIVES To evaluate a simple method for counting mast cells, thought to have a role in the pathophysiology of bladder pain syndrome (BPS, formerly interstitial cystitis, a syndrome of pelvic pain perceived to be related to the urinary bladder and accompanied by other urinary symptoms, e. g....... frequency and nocturia), as > 28 mast cells/mm(2) is defined as mastocytosis and correlated with clinical outcome. PATIENTS AND METHODS The current enzymatic staining method (naphtolesterase) on 10 mu m sections for quantifying mast cells is complicated. In the present study, 61 patients had detrusor...... sections between, respectively. Mast cells were counted according to a well-defined procedure. RESULTS The old and the new methods, on 10 and 3 mu m sections, showed a good correlation between mast cell counts. When using tryptase staining and 3 mu m sections, the mast cell number correlated well...

  9. Epithelial cell-extracellular matrix interactions and stem cells in airway epithelial regeneration.

    Science.gov (United States)

    Coraux, Christelle; Roux, Jacqueline; Jolly, Thomas; Birembaut, Philippe

    2008-08-15

    In healthy subjects, the respiratory epithelium forms a continuous lining to the airways and to the environment, and plays a unique role as a barrier against external deleterious agents to protect the airways from the insults. In respiratory diseases such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), chronic bronchitis, or asthma, the airway epithelium is frequently remodeled and injured, leading to the impairment of its defense functions. The rapid restoration of the epithelial barrier is crucial for these patients. The complete regeneration of the airway epithelium is a complex phenomenon, including not only the epithelial wound repair but also the epithelial differentiation to reconstitute a fully well differentiated and functional epithelium. The regeneration implies two partners: the epithelial stem/progenitor cells and factors able to regulate this process. Among these factors, epithelial cells-extracellular matrix (ECM) interactions play a crucial role. The secretion of a provisional ECM, the cell-ECM relationships through epithelial receptors, and the remodeling of the ECM by proteases (mainly matrix metalloproteinases) contribute not only to airway epithelial repair by modulating epithelial cell migration and proliferation, but also to the differentiation of repairing cells leading to the complete restoration of the wounded epithelium. A better characterization of resident stem cells and of effectors of the regeneration process is an essential prerequisite to propose new regenerative therapeutics to patients suffering from infectious/inflammatory respiratory diseases.

  10. Wound healing of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Masahiro Iizuka; Shiho Konno

    2011-01-01

    The intestinal epithelial cells (IECs) form a selective permeability barrier separating luminal content from underlying tissues. Upon injury, the intestinal epithelium undergoes a wound healing process. Intestinal wound healing is dependent on the balance of three cellular events;restitution, proliferation, and differentiation of epithelial cells adjacent to the wounded area. Previous studies have shown that various regulatory peptides, including growth factors and cytokines, modulate intestinal epithelial wound healing. Recent studies have revealed that novel factors, which include toll-like receptors (TLRs), regulatory peptides, particular dietary factors, and some gastroprotective agents, also modulate intestinal epithelial wound repair. Among these factors, the activation of TLRs by commensal bacteria is suggested to play an essential role in the maintenance of gut homeostasis. Recent studies suggest that mutations and dysregulation of TLRs could be major contributing factors in the predisposition and perpetuation of inflammatory bowel disease. Additionally, studies have shown that specific signaling pathways are involved in IEC wound repair. In this review, we summarize the function of IECs, the process of intestinal epithelial wound healing, and the functions and mechanisms of the various factors that contribute to gut homeostasis and intestinal epithelial wound healing.

  11. Pure primary small cell carcinoma of urinary bladder: A rare diagnostic entity

    Directory of Open Access Journals (Sweden)

    Sonia Gon

    2013-01-01

    Full Text Available Small cell carcinoma of the bladder is a rare, aggressive, poorly differentiated neuroendocrine neoplasm accounting for only 0.3-0.7% of all bladder tumors. Since the tumor is very rare, pathogenesis is uncertain. Small cell carcinomas of the urinary bladder are mixed with classic urothelial carcinomas or adenocarcinomas of the bladder in 68% cases, making pure primary small cell carcinoma even a rarer entity. The unknown etiology and natural history of small cell carcinoma of the urinary bladder represent a challenge both to the pathologist and urologists for its diagnosis and treatment, respectively.

  12. Proteomics research on muscle-invasive bladder transitional cell carcinoma

    Directory of Open Access Journals (Sweden)

    Cao Yan

    2011-06-01

    Full Text Available Abstract Background Aimed to facilitate candidate biomarkers selection and improve network-based multi-target therapy, we perform comparative proteomics research on muscle-invasive bladder transitional cell carcinoma. Laser capture microdissection was used to harvest purified muscle-invasive bladder cancer cells and normal urothelial cells from 4 paired samples. Two-dimensional liquid chromatography tandem mass spectrometry was used to identify the proteome expression profile. The differential proteins were further analyzed using bioinformatics tools and compared with the published literature. Results A total of 885/890 proteins commonly appeared in 4 paired samples. 295/337 of the 488/493 proteins that specific expressed in tumor/normal cells own gene ontology (GO cellular component annotation. Compared with the entire list of the international protein index (IPI, there are 42/45 GO terms exhibited as enriched and 9/5 exhibited as depleted, respectively. Several pathways exhibit significantly changes between cancer and normal cells, mainly including spliceosome, endocytosis, oxidative phosphorylation, etc. Finally, descriptive statistics show that the PI Distribution of candidate biomarkers have certain regularity. Conclusions The present study identified the proteome expression profile of muscle-invasive bladder cancer cells and normal urothelial cells, providing information for subcellular pattern research of cancer and offer candidate proteins for biomarker panel and network-based multi-target therapy.

  13. Epithelial Cell Apoptosis and Lung Remodeling

    Institute of Scientific and Technical Information of China (English)

    Kazuyoshi Kuwano

    2007-01-01

    Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell apoptosis has been considered to be initial event in various lung diseases. Apoptosis signaling is classically composed of two principle pathways. One is a direct pathway from death receptor ligation to caspase cascade activation and cell death. The other pathway triggered by stresses such as drugs, radiation, infectious agents and reactive oxygen species is mediated by mitochondria. Endoplasmic reticulum has also been shown to be the organelle to mediate apoptosis.Epithelial cell death is followed by remodeling processes, which consist of epithelial and fibroblast activation,cytokine production, activation of coagulation pathway, neoangiogenesis, re-epithelialization and fibrosis.Epithelial and mesenchymal interaction plays important roles in these processes. Further understanding of apoptosis signaling and its regulation by novel strategies may lead to effective treatments against various lung diseases. We review the recent advances in the understanding of apoptosis signaling and discuss the involvement of apoptosis in lung remodeling.

  14. Stem cell applications for pathologies of the urinary bladder

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    New stem cell based therapies are undergoing intenseresearch and are widely investigated in clinical fieldsincluding the urinary system. The urinary bladderperforms critical complex functions that rely on its highlycoordinated anatomical composition and multiplex ofregulatory mechanisms. Bladder pathologies resulting insevere dysfunction are common clinical encounter andoften cause significant impairment of patient's quality oflife. Current surgical and medical interventions to correcturinary dysfunction or to replace an absent or defectivebladder are sub-optimal and are associated with notablecomplications. As a result, stem cell based therapiesfor the urinary bladder are hoped to offer new venuesthat could make up for limitations of existing therapies.In this article, we review research efforts that describethe use of different types of stem cells in bladderreconstruction, urinary incontinence and retentiondisorders. In particular, stress urinary incontinence hasbeen a popular target for stem cell based therapiesin reported clinical trials. Furthermore, we discuss therelevance of the cancer stem cell hypothesis to thedevelopment of bladder cancer. A key subject thatshould not be overlooked is the safety and quality ofstem cell based therapies introduced to human subjectseither in a research or a clinical context.

  15. NOTCH pathway inactivation promotes bladder cancer progression.

    Science.gov (United States)

    Maraver, Antonio; Fernandez-Marcos, Pablo J; Cash, Timothy P; Mendez-Pertuz, Marinela; Dueñas, Marta; Maietta, Paolo; Martinelli, Paola; Muñoz-Martin, Maribel; Martínez-Fernández, Mónica; Cañamero, Marta; Roncador, Giovanna; Martinez-Torrecuadrada, Jorge L; Grivas, Dimitrios; de la Pompa, Jose Luis; Valencia, Alfonso; Paramio, Jesús M; Real, Francisco X; Serrano, Manuel

    2015-02-01

    NOTCH signaling suppresses tumor growth and proliferation in several types of stratified epithelia. Here, we show that missense mutations in NOTCH1 and NOTCH2 found in human bladder cancers result in loss of function. In murine models, genetic ablation of the NOTCH pathway accelerated bladder tumorigenesis and promoted the formation of squamous cell carcinomas, with areas of mesenchymal features. Using bladder cancer cells, we determined that the NOTCH pathway stabilizes the epithelial phenotype through its effector HES1 and, consequently, loss of NOTCH activity favors the process of epithelial-mesenchymal transition. Evaluation of human bladder cancer samples revealed that tumors with low levels of HES1 present mesenchymal features and are more aggressive. Together, our results indicate that NOTCH serves as a tumor suppressor in the bladder and that loss of this pathway promotes mesenchymal and invasive features.

  16. Bladder extramedullary plasmacytoma and synchronous bladder urothelial transitional cell carcinoma: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Karan Wadhwa

    2011-02-01

    Full Text Available Karan Wadhwa, Raj Singh, Lemke Z SolomonDepartment of Urology, Queen Alexandra Hospital, Portsmouth, UKAbstract: A 69-year-old man presented with sudden onset of macroscopic hematuria. While an ultrasound of the bladder revealed a posterior bladder mass, subsequent flexible cystoscopy demonstrated only an area of irregular urothelium. Initial general anesthetic cytoscopy and biopsy revealed conventional G2/3 T1 TCC. Histology of a further formal resection of this irregular area revealed carcinoma-in-situ and population of atypical cells with enlarged nuclei, prominent nucleoli, and varying quantities of cytoplasm showing plasma cell features. The immunohistochemistry was consistent with a plasmacytoma. There must be a high index of suspicion when ultrasound demonstrates a mass not detected by flexible cystoscopy, and biopsies/resection are advised to exclude extramedullary plasmacytoma (EMP as the cause. EMP of the urinary bladder is a rare entity with only 21 cases reported in the literature. In this report we describe a further case of EMP of the bladder associated with synchronous transitional cell carcinoma (TCC of the urothelium. We also highlight the important histopathological findings and review the current literature to report the outcomes of existing approaches to management of this rare form of bladder cancer. We believe this to be the first case reported in which a patient presented concurrently with bladder EMP and urothelial TCC. EMPs are highly radiosensitive tumors and in the case of head/neck disease, survival at 10 years is in the order of 65% following radical radiotherapy. Given the paucity of reported cases of primary bladder EMP, the optimal treatment regime remains unclear. In keeping with other anatomical sites current treatment is based to the assumed benefit of radical radiotherapy and prognosis appears to be better in those with no evidence of systemic disease.Keywords: bladder cancer, extramedullary plasmacytoma

  17. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required...

  18. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    Directory of Open Access Journals (Sweden)

    Jasmina Makarević

    Full Text Available The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK and total and activated focal adhesion kinase (FAK were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines may depend upon the cancer cell type.

  19. Amygdalin influences bladder cancer cell adhesion and invasion in vitro.

    Science.gov (United States)

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Tsaur, Igor; Nelson, Karen; Pfitzenmaier, Jesco; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    The cyanogenic diglucoside amygdalin, derived from Rosaceae kernels, is employed by many patients as an alternative anti-cancer treatment. However, whether amygdalin indeed acts as an anti-tumor agent is not clear. Metastasis blocking properties of amygdalin on bladder cancer cell lines was, therefore, investigated. Amygdalin (10 mg/ml) was applied to UMUC-3, TCCSUP or RT112 bladder cancer cells for 24 h or for 2 weeks. Tumor cell adhesion to vascular endothelium or to immobilized collagen as well as tumor cell migration was examined. Effects of drug treatment on integrin α and β subtypes, on integrin-linked kinase (ILK) and total and activated focal adhesion kinase (FAK) were also determined. Integrin knock-down was carried out to evaluate integrin influence on migration and adhesion. A 24 h or 2 week amygdalin application distinctly reduced tumor cell adhesion and migration of UMUC-3 and RT112 cells. TCCSUP adhesion was also reduced, but migration was elevated under amygdalin. Integrin subtype expression was significantly and specifically altered by amygdalin depending on the cell line. ILK was moderately, and activated FAK strongly, lost in all tumor cell lines in the presence of amygdalin. Knock down of β1 integrin caused a significant decrease in both adhesion and migration of UMUC-3 cells, but a significant increase in TCCSUP adhesion. Knock down of β4 integrin caused a significant decrease in migration of RT112 cells. Since the different actions of amygdalin on the different cell lines was mirrored by β1 or β4 knock down, it is postulated that amygdalin influences adhesion and migratory properties of bladder cancer cells by modulating β1 or β4 integrin expression. The amygdalin induced increase in TCCSUP migratory behavior indicates that any anti-tumor benefits from amygdalin (seen with the other two cell lines) may depend upon the cancer cell type.

  20. Heat shock protein 70 expression in relation to apoptosis in primary bladder transitional cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    HE Ling-feng; GUAN Kao-peng; YE Hai-yun; REN Liang; YAN Zheng; WANG Shen-wu; HOU Shu-kun

    2005-01-01

    @@ Bladder carcinoma is the most common tumor in the urinary system. In 1996, a sample investigation showed that bladder carcinoma, in which more than 90% was mainly primary bladder transitional cell carcinoma (BTCC), was one of the ten highest mortality malignant tumors in China. Bladder carcinoma represented 2% of all malignant tumors and has the fifth most common malignancy in men in Europe and North America.1

  1. Pathology of bilharzial bladder cancer.

    Science.gov (United States)

    Godwin, J T; Hanash, K

    1984-01-01

    Retrospective review of bladder carcinoma at this institution has revealed a high incidence of squamous cell carcinoma associated with bilharzia infection as has been found in other Mideast and African countries. Associated inflammatory and epithelial metaplastic changes were commonly noted and apparently represent early changes in the development of carcinoma, particularly in view of the progression from squamous metaplasia to in situ and infiltrating carcinoma observed in both bladder and ureter. The relationship between bilharzia infection and the development of bladder carcinoma has been postulated to be related to several factors; however, as yet the specific etiologic relationship and pathogenesis have not been defined.

  2. Concurrent Autophagy Inhibition Overcomes the Resistance of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2017-02-01

    Full Text Available Despite the potential therapeutic efficacy of epithelial growth factor receptor (EGFR inhibitors in the treatment of advanced stage bladder cancer, there currently is no clear evidence to support this hypothesis. In this study, we investigate whether the concurrent treatment of autophagy-blocking agents with EGFR inhibitors exerts synergistic anti-cancer effects in T24 and J82 human bladder cancer cells. Lapatinib and gefitinib were used as EGFR inhibitors, and bafilomycin A1 (BFA1, chloroquine (CQ and 3-methyladenine (3-MA were used as the pharmacologic inhibitors of autophagy activities. To assess the proliferative and self-renewal capabilities, the Cell Counting Kit-8 (CCK-8 assay and a clonogenic assay were performed, respectively. To examine apoptotic cell death, flow cytometry using annexin-V/propidium iodide (PI was used. To measure the autophagy activities, the expression levels of LC3I and II was determined by Western blot analysis. To validate the synergistic effects of autophagy inhibition with EGFR inhibitors, we specifically blocked key autophagy regulatory gene ATG12 by transfection of small interference RNA and examined the phenotypic changes. Of note, lapatinib and gefitinib triggered autophagy activities in T24 and J82 human bladder cancer cells, as indicated by upregulation of LC3II. More importantly, inhibiting autophagy activities with pharmacologic inhibitors (BFA1, CQ or 3-MA remarkably reduced the cell viabilities and clonal proliferation of T24 and J82 cells, compared to those treated with either of the agents alone. We also obtained similar results of the enhanced anti-cancer effects of EGFR inhibitors by suppressing the expression of ATG12. Notably, the apoptotic assay showed that synergistic anti-cancer effects were induced via the increase of apoptotic cell death. In summary, concomitant inhibition of autophagy activities potentiated the anti-cancer effects of EGFR inhibitors in human bladder cancer cells, indicating

  3. Lipid polarity and sorting in epithelial cells

    NARCIS (Netherlands)

    van Meer, G.; Simons, K.

    1988-01-01

    Apical and basolateral membrane domains of epithelial cell plasma membranes possess unique lipid compositions. The tight junction, the structure separating the two domains, forms a diffusion barrier for membrane components and thereby prevents intermixing of the two sets of lipids. The barrier appar

  4. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    Science.gov (United States)

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  5. Protons sensitize epithelial cells to mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Minli Wang

    Full Text Available Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1-mediated epithelial-mesenchymal transition (EMT, a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu and hTERT- immortalized human esophageal epithelial cells (EPC were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1 kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.

  6. Stretch-regulated Exocytosis/Endocytosis in Bladder Umbrella Cells

    Science.gov (United States)

    Truschel, Steven T.; Wang, Edward; Ruiz, Wily G.; Leung, Som-Ming; Rojas, Raul; Lavelle, John; Zeidel, Mark; Stoffer, David; Apodaca, Gerard

    2002-01-01

    The epithelium of the urinary bladder must maintain a highly impermeable barrier despite large variations in urine volume during bladder filling and voiding. To study how the epithelium accommodates these volume changes, we mounted bladder tissue in modified Ussing chambers and subjected the tissue to mechanical stretch. Stretching the tissue for 5 h resulted in a 50% increase in lumenal surface area (from ∼2900 to 4300 μm2), exocytosis of a population of discoidal vesicles located in the apical cytoplasm of the superficial umbrella cells, and release of secretory proteins. Surprisingly, stretch also induced endocytosis of apical membrane and 100% of biotin-labeled membrane was internalized within 5 min after stretch. The endocytosed membrane was delivered to lysosomes and degraded by a leupeptin-sensitive pathway. Last, we show that the exocytic events were mediated, in part, by a cyclic adenosine monophosphate, protein kinase A-dependent process. Our results indicate that stretch modulates mucosal surface area by coordinating both exocytosis and endocytosis at the apical membrane of umbrella cells and provide insight into the mechanism of how mechanical forces regulate membrane traffic in nonexcitable cells. PMID:11907265

  7. 尿道致病性大肠埃希菌感染对人膀胱上皮细胞基因表达谱的影响%Gene expression profiles in human bladder epithelial cells stimulated with uropathogenic Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    葛新; 陈锦英; 姚萍; 谷超; 赵凤玲

    2010-01-01

    Objective To investigate the interaction between uropathogenic Escherichia coli (UPEC) and host uroepithelial cells, define the role uroepithelial cells play in initiating and modulating the host response to infection with UPEC strain. Methods The human bladder transitional epithelial EJ cells were evaluated for their capacities to allow the adherence and invasion by UPEC132, a clinical strain isolated from Tianjin, China, and a cDNA microarray for 22 000 human genes was used to identify the gene expression differences between EJ cells infected with UPEC132 and uninfected EJ cells. Results Microscope observation showed that UPEC132 could adhere to EJ cells with the adherence rate of (73.20 ± 5.26)%. And visualization by confocal microscope revealed that this microorganism could be seen within the cells. EJ cells infected with UPEC132 changed mRNA expression of a total of 29 genes, including 28 genes up-regulated and 1 gene down-regulated. Of these, regulators of growth and proliferation, cytokines, and modulators of apoptotic responses were the most prominent. Conclusion The gene expression profiling of EJ cells is affected by the infection of UPEC strain. The differentially expressed genes may contribute to further investigate the interaction of UPEC and uroepithelial cells.%目的 研究尿道致病性大肠埃希菌(UPEC)菌株132与人膀胱上皮EJ细胞的相互作用,分析该菌株感染对EJ细胞基因表达谱的改变.方法 UPEC132感染EJ细胞,用倒置显微镜观察细菌与细胞的黏附,计算黏附率,并通过激光共聚焦显微镜观察UPEC132对细胞的侵袭.感染UPEC132的EJ细胞与未经细菌感染的细胞提取总RNA,用人类全基因组寡核苷酸微阵列芯片分析差异表达基因,并采用RT-PCR对基因芯片数据进行验证.结果 UPEC132能够黏附于EJ细胞表面,黏附率为(73.20±5.26)%;激光共聚焦显微镜观察发现部分细菌位于细胞内部,证实该菌对EJ细胞具有侵袭性.UPEC132感染后

  8. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    Full Text Available BACKGROUND: The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. CONCLUSION/SIGNIFICANCE: The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of

  9. Parthenolide Induces Apoptosis and Cell Cycle Arrest of Human 5637 Bladder Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Guang Cheng

    2011-08-01

    Full Text Available Parthenolide, the principal component of sesquiterpene lactones present in medical plants such as feverfew (Tanacetum parthenium, has been reported to have anti-tumor activity. In this study, we evaluated the therapeutic potential of parthenolide against bladder cancer and its mechanism of action. Treatment of bladder cancer cells with parthenolide resulted in a significant decrease in cell viability. Parthenolide induced apoptosis through the modulation of Bcl-2 family proteins and poly (ADP-ribose polymerase degradation. Treatment with parthenolide led to G1 phase cell cycle arrest in 5637 cells by modulation of cyclin D1 and phosphorylated cyclin-dependent kinase 2. Parthenolide also inhibited the invasive ability of bladder cancer cells. These findings suggest that parthenolide could be a novel therapeutic agent for treatment of bladder cancer.

  10. Antiproliferative factor regulates connective tissue growth factor (CTGF/CCN2) expression in T24 bladder carcinoma cells

    Science.gov (United States)

    Matika, Christina A.; Wasilewski, Melissa; Arnott, John A.; Planey, Sonia Lobo

    2012-01-01

    Antiproliferative factor (APF) is a sialoglycopeptide elevated in the urine of patients with interstitial cystitis (IC)—a chronic, painful bladder disease of unknown etiology. APF inhibits the proliferation of normal bladder epithelial and T24 bladder carcinoma cells in vitro by binding to cytoskeleton-associated protein 4 (CKAP4) and altering the transcription of genes involved in proliferation, cellular adhesion, and tumorigenesis; however, specific molecular mechanisms and effector genes that control APF's antiproliferative effects are unknown. In this study, we found that there was a 7.5-fold up-regulation of connective tissue growth factor (CTGF/CCN2) expression in T24 bladder carcinoma cells treated with APF. Western blot revealed a dose-dependent increase in CCN2 protein levels, with secretion into the culture medium after APF treatment. CCN2 overexpression enhanced APF's antiproliferative activity, whereas CCN2 knockdown diminished APF-induced p53 expression. Using a luciferase reporter construct, we found that APF treatment resulted in fivefold activation of the CCN2 proximal promoter and, of importance, that small interfering RNA–mediated knockdown of CKAP4 inhibited CCN2 upregulation. In addition, we demonstrate that CKAP4 translocates to the nucleus and binds to the CCN2 proximal promoter in an APF-dependent manner, providing evidence that CCN2 regulation by APF involves CKAP4 nuclear translocation and binding to the CCN2 promoter. PMID:22438586

  11. Reversible transdifferentiation of alveolar epithelial cells.

    Science.gov (United States)

    Danto, S I; Shannon, J M; Borok, Z; Zabski, S M; Crandall, E D

    1995-05-01

    Alveolar epithelial type II (AT2) cells have been thought to be the progenitors of terminally differentiated type I (AT1) cells in the adult animal in vivo. In this study, we used an AT1 cell-specific monoclonal antibody (mAb VIII B2) to investigate expression of the AT1 cell phenotype accompanying reversible changes in expression of the AT2 cell phenotype. AT2 cells were isolated and cultured either on attached collagen gels or on gels detached 1 or 4 days after plating and maintained thereafter as floating gels. Monolayers on both attached and floating gels were harvested on days 4 and 8 and analyzed by electron microscopy for changes in morphology and binding of mAb VIII B2. Results indicate that: (1) alveolar epithelial cells (AEC) on attached gels develop characteristics of the AT1 cell phenotype, (2) AEC on gels detached on day 1 maintain features of the AT2 cell phenotype (and do not react with mAb VIII B2), and (3) the expression of AT1 cell phenotypic traits seen by day 4 on attached gels is reversed after detachment. We conclude that commitment to the AT1 and AT2 cell lineages requires continuous regulatory input to maintain the differentiated states, and that transdifferentiation between AT2 and AT1 cells may be reversible.

  12. Recurrence patterns of bladder transitional cell carcinoma after radical cystectomy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bohyun; Choi, Hyuck Jae; Kim, Mi-hyun; Cho, Kyung-Sik [Dept. of Radiology, Asan Medical Center, Univ. of Ulsan, Seoul (Korea, Republic of); E-mail: choihj@amc.seoul.kr

    2012-10-15

    Background Multidetector computed tomography (MDCT) is widely accepted as an effective imaging modality in monitoring for bladder cancer recurrence after radical cystectomy. Elucidating the pattern of bladder cancer recurrence on CT can increase the diagnostic accuracy. Purpose To evaluate the recurrence patterns of transitional cell carcinoma of the bladder and the factors associated with cancer recurrence. Material and Methods One hundred and forty-nine consecutive patients (mean age, 66.55 years; range, 32-86 years) who underwent preoperative contrast-enhanced CT and radical cystectomy were included in this study. The presence, site, and time of tumor recurrence were recorded retrospectively by two radiologists in a consensus fashion. The association of tumor recurrence and tumor factors (T stage, lymph node metastasis, nuclear grade, and tumor diameter) were also evaluated using multiple logistic regression analysis and Kaplan-Meier statistics. Results Tumor recurrence occurred in 60 patients (40.3%) with a mean time of 14 months (range, 1-64 months). The sites of recurrence included the operation site (n = 20), lymph node (n = 20), bone (n = 11), liver (n = 6), lung (n = 5), upper urinary tract (n = 4), colon (n = 3), adrenal gland (n = 2), peritoneum (n = 1), abdominal wall (n = 1), psoas muscle (n = 1), and penile skin (n = 1). Tumor recurrence was found to be associated with advanced T stage (P = 0.002) and lymph node metastasis (P < 0.001). Conclusion Transitional cell carcinomas of the bladder recur more frequently at the operation site and lymph node, and T-stage and lymph node metastasis are closely associated with tumor recurrence.

  13. Characterization of Uptake and Internalization of Exosomes by Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Carrie A. Franzen

    2014-01-01

    Full Text Available Bladder tumors represent a special therapeutic challenge as they have a high recurrence rate requiring repeated interventions and may progress to invasive or metastatic disease. Exosomes carry proteins implicated in bladder cancer progression and have been implicated in bladder cancer cell survival. Here, we characterized exosome uptake and internalization by human bladder cancer cells using Amnis ImageStreamX, an image cytometer. Exosomes were isolated by ultracentrifugation from bladder cancer culture conditioned supernatant, labeled with PKH-26, and analyzed on the ImageStreamX with an internal standard added to determine concentration. Exosomes were cocultured with bladder cancer cells and analyzed for internalization. Using the IDEAS software, we determined exosome uptake based on the number of PKH-26+ spots and overall PKH-26 fluorescence intensity. Using unlabeled beads of a known concentration and size, we were able to determine concentrations of exosomes isolated from bladder cancer cells. We measured exosome uptake by recipient bladder cancer cells, and we demonstrated that uptake is dose and time dependent. Finally, we found that uptake is active and specific, which can be partially blocked by heparin treatment. The characterization of cellular uptake and internalization by bladder cancer cells may shed light on the role of exosomes on bladder cancer recurrence and progression.

  14. Induction of G1 cell cycle arrest and apoptosis by berberine in bladder cancer cells.

    Science.gov (United States)

    Yan, Keqiang; Zhang, Cheng; Feng, Jinbo; Hou, Lifang; Yan, Lei; Zhou, Zunlin; Liu, Zhaoxu; Liu, Cheng; Fan, Yidon; Zheng, Baozhong; Xu, Zhonghua

    2011-07-01

    Bladder cancer is the ninth most common type of cancer, and its surgery is always followed by chemotherapy to prevent recurrence. Berberine is non-toxic to normal cells but has anti-cancer effects in many cancer cell lines. This study was aimed to determine whether berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87 and T24 bladder cancer cell line. The superficial bladder cancer cell line BIU-87 and invasive T24 bladder cancer cells were treated with different concentrations of berberine. MTT assay was used to determine the effects of berberine on the viability of these cells. The cell cycle arrest was detected through propidium iodide (PI) staining. The induction of apoptosis was determined through Annexin V-conjugated Alexa Fluor 488 (Alexa488) staining. Berberine inhibited the viability of BIU-87 and T24 cells in a dose- and time-dependent manner. It also promoted cell cycle arrest at G0/G1 in a dose-dependent manner and induced apoptosis. We observed that H-Ras and c-fos mRNA and protein expressionswere dose-dependently and time-dependently decreased by berberine treatment. Also, we investigated the cleaved caspase-3 and caspase-9 protein expressions increased in a dose-dependent manner. Berberine inhibits the cell proliferation and induces cell cycle arrest and apoptosis in BIU-87, bladder cancer cell line and T24, invasive bladder cancer cell line. Berberine can inhibit the oncogentic H-Ras and c-fos in T24 cells, and can induce the activation of the caspase-3 and caspase-9 apoptosis. Therefore, berberine has the potential to be a novel chemotherapy drug to treat the bladder cancer by suppressing tumor growth.

  15. Surgical management of bladder transitional cell carcinoma in a vesicular diverticulum: case report.

    LENUS (Irish Health Repository)

    Raheem, Omer A

    2012-02-01

    We report a case of primary transitional cell carcinoma (TCC) of a bladder diverticum along with a literature review. A 55-year-old male presented with painless gross hematuria. A histological diagnosis of TCC within a bladder diverticulum was made following cystoscopical examination. Initially transurethral resection of bladder tumour with subsequent intravesical chemotherapy followed. As a result of recurrence and in view of bladder-sparing therapy, a distal partial cystectomy was performed. This report demonstrates that conservative bladder-sparing treatment can be achieved and subsequently followed by vigilant cystoscopy.

  16. Surgical management of bladder transitional cell carcinoma in a vesicular diverticulum: case report.

    LENUS (Irish Health Repository)

    Raheem, Omer A

    2011-08-01

    We report a case of primary transitional cell carcinoma (TCC) of a bladder diverticum along with a literature review. A 55-year-old male presented with painless gross hematuria. A histological diagnosis of TCC within a bladder diverticulum was made following cystoscopical examination. Initially transurethral resection of bladder tumour with subsequent intravesical chemotherapy followed. As a result of recurrence and in view of bladder-sparing therapy, a distal partial cystectomy was performed. This report demonstrates that conservative bladder-sparing treatment can be achieved and subsequently followed by vigilant cystoscopy.

  17. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  18. Expression of Peroxisome Proferator-Activated Receptor γ (PPARγ) in Human Transitional Bladder Cancer and its Role in Inducing Cell Death

    OpenAIRE

    1999-01-01

    The present study examined the expression and role of the thiazolidinedione (TZD)-activated transcription factor, peroxisome proliferator-activated receptor γ (PPARγ), in human bladder cancers. In situ hybridization shows that PPARγ mRNA is highly expressed in all human transitional epithelial cell cancers (TCCa's) studied (n=11). PPARγ was also expressed in five TCCa cell lines as determined by RNase protection assays and immunoblot. Retinoid X receptor α (RXRα), a 9-cis-retinoic acid stimul...

  19. Expression of Peroxisome Proliferator-Activated Receptor γ (PPARγ) in Human Transitional Bladder Cancer and its Role in Inducing Cell Death1

    OpenAIRE

    1999-01-01

    The present study examined the expression and role of the thiazolidinedione (TZD)-activated transcription factor, peroxisome proliferator-activated receptor γ (PPARγ), in human bladder cancers. In situ hybridization shows that PPARγ mRNA is highly expressed in all human transitional epithelial cell cancers (TCCa's) studied (n=11). PPARγ was also expressed in five TCCa cell lines as determined by RNase protection assays and immunoblot. Retinoid X receptor α (RXRα), a 9-cis-retinoic acid stimul...

  20. Treatment of bladder dysfunction using stem cell or tissue engineering technique.

    Science.gov (United States)

    Kim, Jae Heon; Lee, Hong Jun; Song, Yun Seob

    2014-04-01

    Tissue engineering and stem cell transplantation are two important options that may help overcome limitations in the current treatment strategy for bladder dysfunction. Stem cell therapy holds great promise for treating pathophysiology, as well as for urological tissue engineering and regeneration. To date, stem cell therapy in urology has mainly focused on oncology and erectile dysfunction. The therapeutic potency of stem cells (SCs) was originally thought to derive from their ability to differentiate into various cell types including smooth muscle. The main mechanisms of SCs in reconstituting or restoring bladder function are migration, differentiation, and paracrine effects. Nowadays, paracrine effects of stem cells are thought to be more prominent because of their stimulating effects on stem cells and adjacent cells. Studies of stem cell therapy for bladder dysfunction have been limited to experimental models and have been less focused on tissue engineering for bladder regeneration. Bladder outlet obstruction is a representative model. Adipose-derived stem cells, bone marrow stem cells (BMSCs), and skeletal muscle-derived stem cells or muscle precursor cells are used for transplantation to treat bladder dysfunction. The aim of this study is to review stem cell therapy and updated tissue regeneration as treatments for bladder dysfunction and to provide the current status of stem cell therapy and tissue engineering for bladder dysfunction including its mechanisms and limitations.

  1. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    Science.gov (United States)

    Simon, R H; DeHart, P D; Todd, R F

    1986-11-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neutrophils with an antibody (anti-Mo1) that reduced neutrophil adherence to epithelial cells limited killing. Although a variety of serine protease inhibitors partially inhibited cytotoxicity, we found that neutrophil cytoplasts, neutrophil lysates, neutrophil-conditioned medium, purified azurophilic or specific granule contents, and purified human neutrophil elastase did not duplicate the injury. We conclude that stimulated neutrophils can kill alveolar epithelial cells in an oxygen metabolite-independent manner. Tight adherence of stimulated neutrophils to epithelial cell monolayers appears to promote epithelial cell killing.

  2. OPIUM USE IN TRANSITIONAL CELL CARCINOMA OF THE URINARY BLADDER

    Directory of Open Access Journals (Sweden)

    A. Nourbakhsh

    2006-08-01

    Full Text Available Opium use is one of the most common forms of substance abuse in Iran and there are some evidence indicating it is a risk factor of transitional cell carcinoma (TCC of the urinary bladder. The majority of opium users are also cigarette smokers, so consideration of the high prevalence of smoking which is the most important risk factor of TCC of the urinary bladder among opium users is essential to assess the role of opium use as a possible risk factor of TCC. This study was done to evaluate the role of opium as a risk factor of TCC. A case-control study was performed on 255 individuals diagnosed with TCC of the urinary bladder by pathologic light microscopic examination of the tumor biopsies. Control population was chosen from individuals who had no history or presenting signs or symptoms of urinary problems. Case and control groups were matched by sex and age and also by cigarette smoking habits. Forty-one (18.1% of the cases and 12 (5% of controls were recognized to be opium users. Mantel-Haenszel analysis showed an odds ratio of 3.88, with 95% confidence interval of 1.99-7.57 and P value of < 0.001. Results indicate that opium use is a risk factor for TCC. The majority of opium users are also cigarette smokers, which is another important risk factor for TCC. Routine urine cytology and early evaluation in the patients presenting with any of the symptoms of urinary bladder malignancy by means of cystoscopy and urine cytology are highly recommended.

  3. TGF-β1 inhibits connexin-43 expression in cultured smooth muscle cells of human bladder

    Institute of Scientific and Technical Information of China (English)

    Chi Qiang; Zhou Fenghai; Wang Yangmin

    2009-01-01

    Objective: In this research, we studied the TGF-β1 effects on connexin-43 expression in cultured human bladder smooth muscle cells. Methods: Human bladder smooth muscle cells primary cultures, with bladder tissue obtained from patients undergoing cystectomy, were intervened by recombinant human TGF-β1. Connexin-43 expression in human bladder smooth muscle cells was then examined by Western blotting and immunocytochemistry. Results: Stimulation with TGF-β1 led to significant reduction of cormexin-43 immunoreactivity and coupling (P<0.0001). Connexin-43 protein expression was significantly downregnlated (P<0.05). Simultaneously, low phosphorylation species of connexin-43 were particularly affected. Conclusion: Our experiments demonstrated a significant downregulation of connexin-43 by TGF-β1 in cultured human bladder smooth muscle cells. These findings support the view that TGF-β1 is involved in the pathophysiology of urinary bladder dysfunction.

  4. Intestinal epithelial cells in inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Giulia; Roda; Alessandro; Sartini; Elisabetta; Zambon; Andrea; Calafiore; Margherita; Marocchi; Alessandra; Caponi; Andrea; Belluzzi; Enrico; Roda

    2010-01-01

    The pathogenesis of inflammatory bowel diseases (IBDs) seems to involve a primary defect in one or more of the elements responsible for the maintenance of intestinal homeostasis and oral tolerance. The most important element is represented by the intestinal barrier, a complex system formed mostly by intestinal epithelial cells (IECs). IECs have an active role in producing mucus and regulating its composition; they provide a physical barrier capable of controlling antigen traff ic through the intestinal muco...

  5. Bladder Cancer Stem-Like Cells: Their Origin and Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohishi

    2015-12-01

    Full Text Available Bladder cancer (BC, the most common cancer arising from the human urinary tract, consists of two major clinicopathological phenotypes: muscle-invasive bladder cancer (MIBC and non-muscle-invasive bladder cancer (NMIBC. MIBC frequently metastasizes and is associated with an unfavorable prognosis. A certain proportion of patients with metastatic BC can achieve a remission with systemic chemotherapy; however, the disease relapses in most cases. Evidence suggests that MIBC comprises a small population of cancer stem cells (CSCs, which may be resistant to these treatments and may be able to form new tumors in the bladder or other organs. Therefore, the unambiguous identification of bladder CSCs and the development of targeted therapies are urgently needed. Nevertheless, it remains unclear where bladder CSCs originate and how they are generated. We review recent studies on bladder CSCs, specifically focusing on their proposed origin and the possible therapeutic options based on the CSC theory.

  6. A rare bladder cancer - small cell carcinoma: review and update

    Directory of Open Access Journals (Sweden)

    Ismaili Nabil

    2011-11-01

    Full Text Available Abstract Small cell carcinoma of the bladder (SCCB is rare, highly aggressive and diagnosed mainly at advanced stages. Hematuria is the main symptom of this malignancy. The origin of the disease is unknown; however the multipotent stem cell theory applies best to this case. Histology and immunohistochemistry shows a tumour which is indistinguishable from small cell lung carcinoma (SCLC. Coexistence of SCCB with other types of carcinoma is common. The staging system used is the TNM-staging of bladder transitional cell carcinoma. The treatment is extrapolated from that of SCLC. However, many patients with SCCB undergo radical resection which is rarely performed in SCLC. Patients with surgically resectable disease ( or = cT4bN+M+ should be managed with palliative chemotherapy based on neuroendocrine type regimens comprising a platinum drug (cisplatin in fit patients. The prognosis of the disease is poor mainly in the case of pure small cell carcinoma. Other research programs are needed to improve the outcome of SCCB.

  7. Re-epithelialization resulted from prostate basal cells in canine prostatic urethra may represent the ideal healing method after two-micron laser resection of the prostate

    Directory of Open Access Journals (Sweden)

    Ying Cao

    2015-01-01

    Full Text Available The purpose of this study is to characterize the re-epithelialization of wound healing in canine prostatic urethra and to evaluate the effect of this re-epithelialization way after two-micron laser resection of the prostate (TmLRP. TmLRP and partial bladder neck mucosa were performed in 15 healthy adult male crossbred canines. Wound specimens were harvested at 3 days, and 1, 2, 3, and 4 weeks after operation, respectively. The histopathologic characteristics were observed by hematoxylin and eosin staining. The expression of cytokeratin 14 (CK14, CK5, CK18, synaptophysin (Syn, chromogranin A (CgA, uroplakin, transforming growth factor-β1 (TGF-β1 , and TGF-β type II receptor in prostatic urethra wound were examined by immunohistochemistry and real-time polymerase chain reaction, respectively. Van Gieson staining was performed to determine the expression of collagen fibers in prostatic urethra and bladder neck would. The results showed that the re-epithelialization of the prostatic urethra resulted from the mobilization of proliferating epithelial cells from residual prostate tissue under the wound. The proliferating cells expressed CK14, CK5, but not CK18, Syn, and CgA and re-epithelialize expressed uroplakin since 3 weeks. There were enhanced TGF-β1 and TGF-β type II receptor expression in proliferating cells and regenerated cells, which correlated with specific phases of re-epithelialization. Compared with the re-epithelialization of the bladder neck, re-epithelialization of canine prostatic urethra was faster, and the expression of collagen fibers was relatively low. In conclusion, re-epithelialization in canine prostatic urethra resulted from prostate basal cells after TmLRP and this re-epithelialization way may represent the ideal healing method from anatomic repair to functional recovery after injury.

  8. Effect of sirolimus on urinary bladder cancer T24 cell line

    Directory of Open Access Journals (Sweden)

    Oliveira Paula A

    2009-01-01

    Full Text Available Abstract Background Sirolimus is recently reported to have antitumour effects on a large variety of cancers. The present study was performed to investigate sirolimus's ability to inhibit growth in T24 bladder cancer cells. Methods T24 bladder cancer cells were treated with various concentrations of sirolimus. MTT assay was used to evaluate the proliferation inhibitory effect on T24 cell line. The viability of T24 cell line was determined by Trypan blue exclusion analysis. Results Sirolimus inhibits the growth of bladder carcinoma cells and decreases their viability. Significant correlations were found between cell proliferation and sirolimus concentration (r = 0.830; p Conclusion Sirolimus has an anti-proliferation effect on the T24 bladder carcinoma cell line. The information from our results is useful for a better understanding sirolimus's anti-proliferative activity in the T24 bladder cancer cell line.

  9. The granulocyte macrophage–colony stimulating factor surface modified MB49 bladder cancer stem cells vaccine against metastatic bladder cancer

    Directory of Open Access Journals (Sweden)

    Yong-tong Zhu

    2014-07-01

    Full Text Available The MB49 bladder cancer cell vaccine was effective against bladder cancer in the mice model in previous studies. However, part of the tumors regrew as the vaccine could not eliminate the cancer stem cells (CSCs. MB49 bladder cancer stem cells (MCSCs were isolated by a combination of the limited dilution method and the serum free culture medium method. MCSCs possessed higher expression of CD133, CD44, OCT4, NANOG, and ABCG2, the ability of differentiation, higher proliferative abilities, lower susceptibility to chemotherapy, greater migration in vitro, and stronger tumorigenic abilities in vivo. Then streptavidin–mouse granulocyte macrophage–colony stimulating factor (SA–mGM–CSF MCSCs vaccine was prepared. SA–mGM–CSF MCSCs vaccine extended the survival of the mice and inhibited the growth of tumor in protective, therapeutic, memorial and specific immune response experiments. The level of immunoglobulin G and the ratio of dendritic cells and CD4+ and CD8+ T cells were highest in the experimental group when compared to those in other four control groups, as well as for the cytotoxicity assay. We demonstrated that SA–mGM–CSF MCSCs vaccine induces an antitumor immune response to metastatic bladder cancer.

  10. Characterization of Human Mammary Epithelial Stem Cells

    Science.gov (United States)

    2010-10-01

    breast is highly expressed by luminal epithelial cells and is less expressed by basal cells19,20. In contrast, CD49f (a6 integrin) has an inverse pattern...mouse stretched on its back. The hose and nose cone from the anesthetic vaporizer are securely attached to one side of the plate, and a heated pad is...the mouse by a nose cone. Check that the mouse has reached surgical anesthesia by loss of pedal withdrawal reflex . ! cautIon Institutional review

  11. Lactobacillus decelerates cervical epithelial cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Katarina Vielfort

    Full Text Available We investigated cell cycle progression in epithelial cervical ME-180 cells during colonization of three different Lactobacillus species utilizing live cell microscopy, bromodeoxyuridine incorporation assays, and flow cytometry. The colonization of these ME-180 cells by L. rhamnosus and L. reuteri, originating from human gastric epithelia and saliva, respectively, was shown to reduce cell cycle progression and to cause host cells to accumulate in the G1 phase of the cell cycle. The G1 phase accumulation in L. rhamnosus-colonized cells was accompanied by the up-regulation and nuclear accumulation of p21. By contrast, the vaginal isolate L. crispatus did not affect cell cycle progression. Furthermore, both the supernatants from the lactic acid-producing L. rhamnosus colonies and lactic acid added to cell culture media were able to reduce the proliferation of ME-180 cells. In this study, we reveal the diversity of the Lactobacillus species to affect host cell cycle progression and demonstrate that L. rhamnosus and L. reuteri exert anti-proliferative effects on human cervical carcinoma cells.

  12. Generation of islet-like cells from mouse gall bladder by direct ex vivo reprogramming.

    Science.gov (United States)

    Hickey, Raymond D; Galivo, Feorillo; Schug, Jonathan; Brehm, Michael A; Haft, Annelise; Wang, Yuhan; Benedetti, Eric; Gu, Guoqiang; Magnuson, Mark A; Shultz, Leonard D; Lagasse, Eric; Greiner, Dale L; Kaestner, Klaus H; Grompe, Markus

    2013-07-01

    Cell replacement is an emerging therapy for type 1 diabetes. Pluripotent stem cells have received a lot of attention as a potential source of transplantable β-cells, but their ability to form teratomas poses significant risks. Here, we evaluated the potential of primary mouse gall bladder epithelial cells (GBCs) as targets for ex vivo genetic reprogramming to the β-cell fate. Conditions for robust expansion and genetic transduction of primary GBCs by adenoviral vectors were developed. Using a GFP reporter for insulin, conditions for reprogramming were then optimized. Global expression analysis by RNA-sequencing was used to quantitatively compare reprogrammed GBCs (rGBCs) to true β-cells, revealing both similarities and differences. Adenoviral-mediated expression of NEUROG3, Pdx1, and MafA in GBCs resulted in robust induction of pancreatic endocrine genes, including Ins1, Ins2, Neurod1, Nkx2-2 and Isl1. Furthermore, expression of GBC-specific genes was repressed, including Sox17 and Hes1. Reprogramming was also enhanced by addition of retinoic acid and inhibition of Notch signaling. Importantly, rGBCs were able to engraft long term in vivo and remained insulin-positive for 15weeks. We conclude that GBCs are a viable source for autologous cell replacement in diabetes, but that complete reprogramming will require further manipulations.

  13. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  14. Animal model of naturally occurring bladder cancer: Characterization of four new canine transitional cell carcinoma cell lines

    OpenAIRE

    Rathore, Kusum; Cekanova, Maria

    2014-01-01

    Background Development and further characterization of animal models for human cancers is important for the improvement of cancer detection and therapy. Canine bladder cancer closely resembles human bladder cancer in many aspects. In this study, we isolated and characterized four primary transitional cell carcinoma (K9TCC) cell lines to be used for future in vitro validation of novel therapeutic agents for bladder cancer. Methods Four K9TCC cell lines were established from naturally-occurring...

  15. Neutrophil-induced injury of rat pulmonary alveolar epithelial cells.

    OpenAIRE

    Simon, R H; DeHart, P D; Todd, R F

    1986-01-01

    The damage to pulmonary alveolar epithelial cells that occurs in many inflammatory conditions is thought to be caused in part by phagocytic neutrophils. To investigate this process, we exposed monolayers of purified rat alveolar epithelial cells to stimulated human neutrophils and measured cytotoxicity using a 51Cr-release assay. We found that stimulated neutrophils killed epithelial cells by a process that did not require neutrophil-generated reactive oxygen metabolites. Pretreatment of neut...

  16. Cells of Origin of Epithelial Ovarian Cancers

    Science.gov (United States)

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0280 TITLE: Cells of Origin of Epithelial Ovarian Cancers PRINCIPAL INVESTIGATOR: Zhe Li, PhD CONTRACTING...Xie, Zhe Li 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: zli4@rics.bwh.harvard.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...Lined Inclusion Cysts or Teratomas. PLoS ONE 8, e65067. Sherman-Baust, C.A., Kuhn, E., Valle, B.L., Shih Ie, M., Kurman, R.J., Wang , T.L., Amano, T

  17. Characterization of protocadherin-1 expression in primary bronchial epithelial cells : association with epithelial cell differentiation

    NARCIS (Netherlands)

    Koning, Henk; Sayers, Ian; Stewart, Ceri E.; de Jong, Debora; ten Hacken, Nick H. T.; Postma, Dirkje S.; van Oosterhout, Antoon J. M.; Nawijn, Martijn C.; Koppelman, Gerard H.

    2012-01-01

    Protocadherin-1 (PCDH1) is a novel susceptibility gene for asthma that is expressed in airway epithelium. We aimed to characterize PCDH1 mRNA transcripts and protein expression in primary bronchial epithelial cells and to determine regulation of PCDH1 during mucociliary differentiation. Total RNA an

  18. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  19. Nuclear microscopy of rat colon epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, M., E-mail: phyrenmq@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rajendran, Reshmi [Lab of Molecular Imaging, Singapore Bioimaging Consotium, 11 Biopolis Way, 02-02 Helios, Singapore 138667 (Singapore); Ng, Mary [Department of Pharmacology, National University of Singapore (Singapore); Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jenner, Andrew Michael [Illawara Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522 (Australia)

    2011-10-15

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  20. Small cell carcinoma of the urinary bladder: Virtual CT cystoscopic findings

    Directory of Open Access Journals (Sweden)

    Tsili A

    2009-01-01

    Full Text Available A 74-year-old man underwent multidetector CT virtual cystoscopy due to macroscopic hematuria. A large, irregularly-surfaced, solid bladder mass was detected, infiltrating the perivesical fat, the seminal vesicles and the prostate. CT examination of the chest and abdomen showed no distant metastases. Radical cystectomy was performed and pathology reported pure small cell carcinoma of the urinary bladder.

  1. Bladder recovery by stem cell based cell therapy in the bladder dysfunction induced by spinal cord injury: systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jae Heon Kim

    Full Text Available Bladder dysfunction induced by spinal cord injury (SCI can become problematic and severely impair the quality of life. Preclinical studies of spinal cord injury have largely focused on the recovery of limb function while neglecting to investigate bladder recovery.The present study was performed to investigate and review the effect of stem cell-based cell therapy on bladder recovery in SCI.We conducted a meta-analysis of urodynamic findings of experimental trials that included studies of stem cell-based cell therapy in SCI. Relevant studies were searched using MEDLINE, EMBASE and Cochrane Library (January 1990 - December 2012. Final inclusion was determined by a urodynamic study involving detailed numerical values. Urodynamic parameters for analysis included voiding pressure, residual urine, bladder capacity and non-voiding contraction (NVC. Meta-analysis of the data, including findings from urodynamic studies, was performed using the Mantel-Haenszel method.A total of eight studies were included with a sample size of 224 subjects. The studies were divided into different subgroups by different models of SCI. After a stem cell-based cell therapy, voiding pressure (-6.35, p <0.00001, I2 = 77%, NVC (-3.58, p <0.00001, I2 = 82%, residual urine (-024, p = 0.004, I2 = 95% showed overall significant improvement. Bladder capacity showed improvement after treatment only in the transection type (-0.23, p = 0.0002, I2 = 0%.After stem cell-based cell therapy in SCI, partial bladder recovery including improvement of voiding pressure, NVC, and residual urine was demonstrated. Additional studies are needed to confirm the detailed mechanism and to obtain an ideal treatment strategy for bladder recovery.

  2. Silk film topography directs collective epithelial cell migration.

    Directory of Open Access Journals (Sweden)

    Brian D Lawrence

    Full Text Available The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography's edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization.

  3. Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells

    Science.gov (United States)

    Warth, Benedikt; Del Favero, Giorgia; Wiesenberger, Gerlinde; Puntscher, Hannes; Woelflingseder, Lydia; Fruhmann, Philipp; Sarkanj, Bojan; Krska, Rudolf; Schuhmacher, Rainer; Adam, Gerhard; Marko, Doris

    2016-09-01

    The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority.

  4. Identification of a novel human deoxynivalenol metabolite enhancing proliferation of intestinal and urinary bladder cells

    Science.gov (United States)

    Warth, Benedikt; Del Favero, Giorgia; Wiesenberger, Gerlinde; Puntscher, Hannes; Woelflingseder, Lydia; Fruhmann, Philipp; Sarkanj, Bojan; Krska, Rudolf; Schuhmacher, Rainer; Adam, Gerhard; Marko, Doris

    2016-01-01

    The mycotoxin deoxynivalenol (DON) is an abundant contaminant of cereal based food and a severe issue for global food safety. We report the discovery of DON-3-sulfate as a novel human metabolite and potential new biomarker of DON exposure. The conjugate was detectable in 70% of urine samples obtained from pregnant women in Croatia. For the measurement of urinary metabolites, a highly sensitive and selective LC-MS/MS method was developed and validated. The method was also used to investigate samples from a duplicate diet survey for studying the toxicokinetics of DON-3-sulfate. To get a preliminary insight into the biological relevance of the newly discovered DON-sulfates, in vitroexperiments were performed. In contrast to DON, sulfate conjugates lacked potency to suppress protein translation. However, surprisingly we found that DON-sulfates enhanced proliferation of human HT-29 colon carcinoma cells, primary human colon epithelial cells (HCEC-1CT) and, to some extent, also T24 bladder cancer cells. A proliferative stimulus, especially in tumorigenic cells raises concern on the potential impact of DON-sulfates on consumer health. Thus, a further characterization of their toxicological relevance should be of high priority. PMID:27659167

  5. Reduced LAK cytotoxicity of peripheral blood mononuclear cells in patients with bladder cancer

    DEFF Research Database (Denmark)

    Hermann, G G; Petersen, K R; Steven, K

    1990-01-01

    The cytotoxicity of unstimulated peripheral blood mononuclear cells (US-PBMC), phytohemagglutinin (PHA)-stimulated PBMC (PS-PBMC) and interleukin-2 (IL-2)-activated PBMC (LAK cells) was assessed in patients with noninvasive and invasive transitional-cell bladder cancer and compared with those...... determined in healthy controls. The differences in the cytotoxicities were correlated with specific changes in the subsets of peripheral blood mononuclear cells (PBMC). PBMC from 37 patients and 13 healthy controls were tested against the bladder cancer cell line T24 in 51Cr-release assays. The PBMC subsets...... that the reduced ability of bladder cancer patient PBMC to develop LAK-cell cytotoxicity is a result of a low incidence of CD56+ and CD57+ cells in the blood. These findings indicate that IL-2 therapy alone might not be a sufficient therapy of bladder cancer patients....

  6. Uranium induces apoptosis in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Periyakaruppan, Adaikkappan; Sarkar, Shubhashish; Sadanandan, Bindu; Thomas, Renard; Wilson, Bobby L. [Texas Southern University, Environmental Toxicology Program, Department of Chemistry, Houston, TX (United States); Ravichandran, Prabakaran; Sharma, Chidananda S.; Ramesh, Vani; Hall, Joseph C.; Ramesh, Govindarajan T. [Norfolk State University, Molecular Toxicology Laboratory, Department of Biology, Center for Biotechnology and Biomedical Sciences, Norfolk, VA (United States)

    2009-06-15

    Uranium is a naturally occurring radioactive material present everywhere in the environment. It is toxic because of its chemical or radioactive properties. Uranium enters environment mainly from mines and industry and cause threat to human health by accumulating in lungs as a result of inhalation. In our previous study, we have shown the effectiveness of antioxidant system response to the oxidative stress induced by uranyl acetate (UA) in rat lung epithelial (LE) cells. As part of our continuing studies; here, we investigated the mechanism underlying when LE cells are exposed to different concentration of UA. Oxidative stress may lead to apoptotic signaling pathways. LE cells treated with 0.25, 0.5 and 1 mM of UA results in dose and time-dependent increase in activity of both caspases-3 and -8. Increase in the concentration of cytochrome-c oxidase in cytosol was seen in LE cells treated with 1 mM UA as a result of mitochondria membrane permeability. The cytochrome-c leakage may trigger the apoptotic pathway. TUNEL assay performed in LE cells treated with 1 mM of UA showed significant incorporation of dNTPs in the nucleus after 24 h. In the presence of the caspase inhibitors, we observed the significant decrease in the activity of caspases-8 and -3 in 0.5 and 1 mM UA-treated LE cells. (orig.)

  7. SiRNA-mediated silencing of Snail-1 induces apoptosis and alters micro RNA expression in human urinary bladder cancer cell line.

    Science.gov (United States)

    Musavi Shenas, Seyed Mohammad Hossein; Mansoori, Behzad; Mohammadi, Ali; Salehi, Shima; Kaffash, Behzad; Talebi, Behnaz; Babaloo, Zohreh; Shanehbandi, Dariush; Baradaran, Behzad

    2016-06-20

    Snail-1 known as one of the important transcription factor is a mediator of survival and cell migration, and expression is raised in numerous cancer types. Snail-1 gene may show a role in recurrence of several cancers including bladder cancer by down-regulating E-cadherin, inducing an epithelial to mesenchymal transition (EMT) and its related microRNAs (miRNAs). The aim of this study was to investigate the effect of a specific Snail-1 siRNA on apoptosis and alter EMT related miRNAs of EJ-138 (bladder cancer) cells. The cells were transfected with siRNAs using transfection reagent. The cytotoxic effects of Snail-1 siRNA, on bladder cancer cells were determined using MTT assay. Relative Snail-1 mRNA levels were measured by QRT- PCR, respectively. Apoptosis was measured by TUNEL test based on labeling of DNA strand breaks. We also evaluated miR-29b, miR-21, and miR-203 expression by QRT-PCR to determine alteration in miRNAs expression involved in EMT. Snail-1 siRNA significantly reduced mRNA expression levels in 48 h after transfection at the concentration of 60 pmol in bladder cancer cells. We also showed that the silencing of Snail-1 led to the induction of apoptosis. miR-21 and miR-29b depression have been shown in Snail-1 suppressed group in EJ-138 cells in vitro. These results propose that Snail-1 might play an important role in the progression of bladder cancer, and be a potential therapeutic target for trigger apoptosis and suppression of EMT-related miRNAs in bladder cancer.

  8. Progressive transformation of immortalized esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Ying Shen; Li-Yan Xu; Min-Hua Chen; Jian Shen; Wei-Jia Cai; Yi Zeng

    2002-01-01

    .CONCLUSION: In continual cultivation of fetal esophageal epithelial cells with transduction of HPV18E6E7, cells from the 10th to the 85th passage were changed gradually from preimmortal, immortal, precancerous to malignantly transformed stages. All of these changes were in a dynamic progressive process. The establishment of a continuous line of esophageal epithelium may provide a in vitro model of carcinogenesis induced by HPV.

  9. Changing trends in the management of small cell carcinoma of urinary bladder

    Directory of Open Access Journals (Sweden)

    Anshuma Bansal

    2015-01-01

    Full Text Available Small cell carcinoma (SCC of the urinary bladder is a rare presentation, accounting for <1% of all bladder carcinomas. It has been considered as an aggressive variant of bladder carcinoma, with high incidence of distant relapse. Though cisplatin-based chemotherapy is considered the gold standard approach for this variety of bladder tumor, the role of radical cystectomy and radiotherapy cannot be neglected, due to its frequent association with transitional cell carcinoma. Different management strategies have been adopted by oncologists worldwide, in an effort to obtain survival benefits. Recently, neoadjuvant chemotherapy before surgery has been tried and the results are encouraging. This review article particularly focuses on the treatment evolution of SCC of bladder, various treatment options and their effects on the outcome, so that an optimal management can be planned for individual cases.

  10. Globoside accelerates the differentiation of dental epithelial cells into ameloblasts

    Institute of Scientific and Technical Information of China (English)

    Takashi Nakamura; Yuta Chiba; Masahiro Naruse; Kan Saito; Hidemitsu Harada; Satoshi Fukumoto

    2016-01-01

    Tooth crown morphogenesis is tightly regulated by the proliferation and differentiation of dental epithelial cells. Globoside (Gb4), a globo-series glycosphingolipid, is highly expressed during embryogenesis as well as organogenesis, including tooth development. We previously reported that Gb4 is dominantly expressed in the neutral lipid fraction of dental epithelial cells. However, because its functional role in tooth development remains unknown, we investigated the involvement of Gb4 in dental epithelial cell differentiation. The expression of Gb4 was detected in ameloblasts of postnatal mouse molars and incisors. A cell culture analysis using HAT-7 cells, a rat-derived dental epithelial cell line, revealed that Gb4 did not promote dental epithelial cell proliferation. Interestingly, exogenous administration of Gb4 enhanced the gene expression of enamel extracellular matrix proteins such as ameloblastin, amelogenin, and enamelin in dental epithelial cells as well as in developing tooth germs. Gb4 also induced the expression of TrkB, one of the key receptors required for ameloblast induction in dental epithelial cells. In contrast, Gb4 downregulated the expression of p75, a receptor for neurotrophins (including neurotrophin-4) and a marker of undifferentiated dental epithelial cells. In addition, we found that exogenous administration of Gb4 to dental epithelial cells stimulated the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase signalling pathways. Furthermore, Gb4 induced the expression of epiprofin and Runx2, the positive regulators for ameloblastin gene transcription. Thus, our results suggest that Gb4 contributes to promoting the differentiation of dental epithelial cells into ameloblasts.

  11. Sperm associated antigen 9 plays an important role in bladder transitional cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Deepika Kanojia

    Full Text Available BACKGROUND: Majority of bladder cancer deaths are caused due to transitional cell carcinoma (TCC which is the most prevalent and chemoresistant malignancy of urinary bladder. Therefore, we analyzed the role of Sperm associated antigen 9 (SPAG9 in bladder TCC. METHODOLOGY AND FINDINGS: We examined SPAG9 expression and humoral response in 125 bladder TCC patients. Four bladder cancer cell lines were assessed for SPAG9 expression. In addition, we investigated the effect of SPAG9 ablation on cellular proliferation, cell cycle, migration and invasion in UM-UC-3 bladder cancer cells by employing gene silencing approach. Our SPAG9 gene and protein expression analysis revealed SPAG9 expression in 81% of bladder TCC tissue specimens. High SPAG9 expression (>60% SPAG9 positive cells was found to be significantly associated with superficial non-muscle invasive stage (P = 0.042 and low grade tumors (P = 0.002 suggesting SPAG9 putative role in early spread and tumorigenesis. Humoral response against SPAG9 was observed in 95% of patients found positive for SPAG9 expression. All four bladder cancer cell lines revealed SPAG9 expression. In addition, SPAG9 gene silencing in UM-UC-3 cells resulted in induction of G0-G1 arrest characterized by up-regulation of p16 and p21 and consequent down-regulation of cyclin E, cyclin D and cyclin B, CDK4 and CDK1. Further, SPAG9 gene silencing also resulted in reduction in cellular growth, and migration and invasion ability of cancer cells in vitro. CONCLUSIONS: Collectively, our data in clinical specimens indicated that SPAG9 is potential biomarker and therapeutic target for bladder TCC.

  12. Original Research: Combined model of bladder detrusor smooth muscle and interstitial cells.

    Science.gov (United States)

    Rosenberg, Josef; Byrtus, Miroslav; Stengl, Milan

    2016-10-01

    Although patients with lower urinary tract symptoms constitute a large and still growing population, understanding of bladder detrusor muscle physiology remains limited. Understanding the interactions between the detrusor smooth muscle cells and other bladder cell types (e.g. interstitial cells, IC) that may significantly contribute to coordinating and modulating detrusor contractions represents a considerable challenge. Computer modeling could help to elucidate some properties that are difficult to address experimentally; therefore, we developed in silico models of detrusor smooth muscle cell and interstitial cells, coupled through gap junctions. The models include all of the major ion conductances and transporters described in smooth muscle cell and interstitial cells in the literature. The model of normal detrusor muscle (smooth muscle cell and interstitial cells coupled through gap junctions) completely reproduced the experimental results obtained with detrusor strips in the presence of several pharmacological interventions (ryanodine, caffeine, nimodipine), whereas the model of smooth muscle cell alone (without interstitial cells) failed to reproduce the experimental results. Next, a model of overactive bladder, a highly prevalent clinical condition in both men and women with increasing incidence at older ages, was produced by modifying several processes as reported previously: a reduction of Ca(2+)-release through ryanodine receptors and a reduction of Ca(2+)-dependent K(+)-conductance with augmented gap junctional coupling. This model was also able to reproduce the pharmacological modulation of overactive bladder. In conclusion, a model of bladder detrusor muscle was developed that reproduced experimental results obtained in both normal and overactive bladder preparations. The results indicate that the non-smooth muscle cells of the detrusor (interstitial cells) contribute significantly to the contractile behavior of bladder detrusor muscle and should not be

  13. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    Science.gov (United States)

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus.

  14. Potential uses of milk epithelial cells: a review

    OpenAIRE

    2002-01-01

    International audience; Secretions collected from the mammary gland of different species contain heterogeneous populations of cells including lymphocytes, neutrophils, macrophages and epithelial cells in different species. Several factors influence the somatic cell count in milk and the distribution of cell types, such as species, infection status, physiological status and management practices. The epithelial cells are shed into milk during the lactation process. Most of them are viable and e...

  15. Desmosome dynamics in migrating epithelial cells requires the actin cytoskeleton

    Science.gov (United States)

    Roberts, Brett J.; Pashaj, Anjeza; Johnson, Keith R.; Wahl, James K.

    2011-01-01

    Re-modeling of epithelial tissues requires that the cells in the tissue rearrange their adhesive contacts in order to allow cells to migrate relative to neighboring cells. Desmosomes are prominent adhesive structures found in a variety of epithelial tissues that are believed to inhibit cell migration and invasion. Mechanisms regulating desmosome assembly and stability in migrating cells are largely unknown. In this study we established a cell culture model to examine the fate of desmosomal components during scratch wound migration. Desmosomes are rapidly assembled between epithelial cells at the lateral edges of migrating cells and structures are transported in a retrograde fashion while the structures become larger and mature. Desmosome assembly and dynamics in this system are dependent on the actin cytoskeleton prior to being associated with the keratin intermediate filament cytoskeleton. These studies extend our understanding of desmosome assembly and provide a system to examine desmosome assembly and dynamics during epithelial cell migration. PMID:21945137

  16. Observing planar cell polarity in multiciliated mouse airway epithelial cells.

    Science.gov (United States)

    Vladar, Eszter K; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type.

  17. Transitional cell carcinoma of urinary bladder with metastasis in lumbar vertebrae and spinal cord compression in an ocelot(Leopardus pardalis

    Directory of Open Access Journals (Sweden)

    Karen Y.R. Nakagaki

    2015-01-01

    Full Text Available This paper reports a case of nonpapillary and infiltrative transitional cell carcinoma (TCC of the urinary bladder with metastasis of lumbar vertebrae and spinal cord compression in an adult female ocelot (Leopardus pardalis, from the Mato Grosso state, Brazil. The ocelot had pelvic limb paralysis and skin ulcers in the posterior region of the body and was submitted to euthanasia procedure. At necropsy was observed a multilobulated and irregular shaped, yellowish to white nodule in the urinary bladder. The nodule had a soft consistency and arised from the mucosa of the urinary bladder extending throughout the muscular layers and the serosa. Nodules of similar appearance infiltrating the vertebral column the at L6 and L7 vertebrae with corresponding spinal canal invasion were also observed. The histological evaluation showed epithelial neoplastic proliferation in the urinary bladder with characteristics of nonpapillary and infiltrative TCC, with positive immunohistochemical staining for pancytokeratin, and strong immunostaining for cytokeratin of low molecular weight, and weak or absent labeling for high molecular weight cytokeratin. This is the first report of TCC of urinary bladder in ocelot in Brazil.

  18. Effect calcusol to reduce the calcium crystal retention in kidney epithelial cells model of nephrolothiasis

    Directory of Open Access Journals (Sweden)

    Ahmad Soni

    2014-12-01

    Full Text Available Kidney stones is a disease that characterized by a disturbance in the bladder. The main constituent of kidney stones namely Calcium Oxalate Monohydrate (COM crystals. The presence of a COM crystal adhesion to renal tubular cells, will initiate the internalization which will further lead to the formation of crystals retention in the kidney. In Indonesia, there are many herbal products are considered able to cope the complaints due to the kidney stone disease. One of the herbal product is Calcusol „¢, which is the main constituent of those herbal product was the leaf extract of tempuyung. This study observed the effectiveness of Calcusol „¢ in reducing crystals retention that was formed in kidney epithelial cells model of nephrolithiasis. The result showed that Calcusol „¢ is able to reduce the average number of calcium crystals retention in the renal epithelial cells. It indicate that Calcusol „¢ has the ability to reduce crystals retention that already formed in renal epithelial cells. Furthermore, the results of this study are expected to be one of the considerations for further research on the potential of overcoming Calcusol „¢ in kidney stone disease

  19. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    Directory of Open Access Journals (Sweden)

    Goldberg José

    2008-08-01

    Full Text Available Abstract Background Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence. Methods A set of 4 genes, including CDH1 (E-cadherin, SFN (stratifin, RARB (retinoic acid receptor, beta and RASSF1A (Ras association (RalGDS/AF-6 domain family 1, had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group. A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters. Results CDH1 and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between RARB and RASSF1A methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p RASSF1A gene, respectively, in relation to the control group. Conclusion Indistinct DNA hypermethylation of CDH1 and SFN genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, RARB and RASSF1A gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a panel of

  20. The Preliminary Experimental Study of Induced Differentiation of Embryonic Stem Cells into Corneal Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Ling Yu; Jian Ge; Zhichong Wang; Bing Huang; Keming Yu; Chongde Long; Xigu Chen

    2001-01-01

    Purpose:To study preliminarily induced differentiation of embryonic stem cells intocorneal epithelial cells in vitro.Methods: Murine embryonic stem cells were co-cultured with Rabbit limbal cornealepithelial cells in Transwell system to induce differentiation. Mophological andimmunohistochemical examination were implemented.Results: The induced cells from embryonic stem cells have an epithelial appearance.The cells formed a network and were confluent into film gradually after beingco-cultured with rabbit limbal corneal epithelial cells for 24 ~ 96 hours. The cells rangedmosaic structure and localized together with clear rim. Most of the cells showedpolygonal appearance. Transmission electron microscope showed lots of microvilli on thesurface of induced cells and tight junctions between them. These epithelial-like cellsexpressed the corneal epithelial cell specific marker cytokeratin3/cytokeratinl2.Conclusion: The potential mechanism of the differentiation of murine embryonic stemcells into corneal epithelial cells induced by limbal corneal epithelial cell-derivedinducing activity is to be further verified.

  1. Inhibiting cell migration and cell invasion by silencing the transcription factor ETS-1 in human bladder cancer.

    Science.gov (United States)

    Liu, Li; Liu, Yuchen; Zhang, Xintao; Chen, Mingwei; Wu, Hanwei; Lin, Muqi; Zhan, Yonghao; Zhuang, Chengle; Lin, Junhao; Li, Jianfa; Xu, Wen; Fu, Xing; Zhang, Qiaoxia; Sun, Xiaojuan; Zhao, Guoping; Huang, Weiren

    2016-05-03

    As one of the members of the ETS gene family, the transcription factor v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS-1) plays key role in the regulation of physiological processes in normal cells and tumors. In this study, we aimed to investigate the relationship between the transcription factor ETS-1 and malignant phenotypes of bladder cancer. We demonstrated that ETS-1 was up-regulated in human bladder cancer tissue compared to paired normal bladder tissue. In order to evaluate the functional role of ETS-1 in human bladder cancer, vectors expressing ETS-1 shRNA and ETS-1 protein were constructed in vitro and transfected into the human bladder cancer T24 and 5637 cells. Our results showed that the transcription factor ETS-1 could promote cell migration and cell invasion in human bladder cancer, without affecting cell proliferation and apoptosis. In conclusion, ETS-1 plays oncogenic roles through inducing cell migration and invasion in human bladder cancer, and it can be used as a therapeutic target for treating human bladder cancer.

  2. The role of circulating tumor cells in urothelial cell carcinoma of the bladder

    NARCIS (Netherlands)

    N. Beije (Nick); S. Sleijfer (Stefan); J.L. Boormans (Joost)

    2015-01-01

    textabstractPatients with muscle-invasive urothelial cell carcinoma of the bladder have a 50 % chance to develop distant metastases despite curative local treatment. Reliable markers that predict the risk of developing metastases or that could be used to determine whether or not perioperative system

  3. Establishment of Hertwig’s Epithelial Root Sheath/Epithelial Rests of Malassez Cell Line from Human Periodontium

    OpenAIRE

    Nam, Hyun; Kim, Ji-Hye; Kim, Jae-Won; Seo, Byoung-Moo; Park, Joo-Cheol; Kim, Jung-Wook; Lee, Gene

    2014-01-01

    Human Hertwig’s epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cells are epithelial remnants of teeth residing in the periodontium. Although the functional roles of HERS/ERM cells have yet to be elucidated, they are a unique epithelial cell population in adult teeth and are reported to have stem cell characteristics. Therefore, HERS/ERM cells might play a role as an epithelial component for the repair or regeneration of dental hard tissues; however, they are very rare populati...

  4. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  5. Divergent effects of taurolidine as potential anti-neoplastic agent: inhibition of bladder carcinoma cells in vitro and promotion of bladder tumor in vivo.

    Science.gov (United States)

    Abramjuk, Claudia; Bueschges, Michael; Schnorr, Jörg; Jung, Klaus; Staack, Andrea; Lein, Michael

    2009-08-01

    We investigated taurolidine (TRD) against various human bladder cell lines and the AY-27 rat bladder carcinoma cells. In vitro we tested the effect of TRD in ascending concentrations depending on different incubation times on cell proliferation by the XTT-test. Taurolidine had an inhibitory effect on all tested cell lines. Increasing concentrations and longer incubation times decreased the proliferation depending on the primary quantities of cells. For in vivo studies, an orthotopic rat bladder carcinoma was used. The animals were treated intravenously or intravesically and the tumors were harvested and weighted after the study. In contrast to other authors we could not find any anti-proliferative effect, we actually showed that instillation into the rat urinary bladder enhanced tumor growth.

  6. Quantitative assessment of cytosolic Salmonella in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Leigh A Knodler

    Full Text Available Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV. We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1, but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol.

  7. Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Dang, Qiang; Song, Wenbin; Xu, Defeng; Ma, Yanmin; Li, Feng; Zeng, Jin; Zhu, Guodong; Wang, Xinyang; Chang, Luke S; He, Dalin; Li, Lei

    2015-09-01

    The effects of the flavonoid compound, kaempferol, which is an inhibitor of cancer cell proliferation and an inducer of cell apoptosis have been shown in various cancers, including lung, pancreatic, and ovarian, but its effect has never been studied in bladder cancer. Here, we investigated the effects of kaempferol on bladder cancer using multiple in vitro cell lines and in vivo mice studies. The MTT assay results on various bladder cancer cell lines showed that kaempferol enhanced bladder cancer cell cytotoxicity. In contrast, when analyzed by the flow cytometric analysis, DNA ladder experiment, and TUNEL assay, kaempferol significantly was shown to induce apoptosis and cell cycle arrest. These in vitro results were confirmed in in vivo mice studies using subcutaneous xenografted mouse models. Consistent with the in vitro results, we found that treating mice with kaempferol significant suppression in tumor growth compared to the control group mice. Tumor tissue staining results showed decreased expressions of the growth related markers, yet increased expressions in apoptosis markers in the kaempferol treated group mice tissues compared to the control group mice. In addition, our in vitro and in vivo data showed kaempferol can also inhibit bladder cancer invasion and metastasis. Further mechanism dissection studies showed that significant down-regulation of the c-Met/p38 signaling pathway is responsible for the kaempferol mediated cell proliferation inhibition. All these findings suggest kaempferol might be an effective and novel chemotherapeutic drug to apply for the future therapeutic agent to combat bladder cancer.

  8. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage

    NARCIS (Netherlands)

    P. Aparicio-Domingo (Patricia); M. Romera-Hernandez (Monica); J.J. Karrich (Julien J.); F.H.J. Cornelissen (Ferry); N. Papazian (Natalie); D.J. Lindenbergh-Kortleve (Dicky); J.A. Butler (James A.); L. Boon (Louis); M. Coles (Mark); J.N. Samsom (Janneke); T. Cupedo (Tom)

    2015-01-01

    textabstractDisruption of the intestinal epithelial barrier allows bacterial translocation and predisposes to destructive inflammation. To ensure proper barrier composition, crypt-residing stem cells continuously proliferate and replenish all intestinal epithelial cells within days. As a consequence

  9. [Peculiarities of urinary bladder cancer tumor cells apoptosis response on neoadjuvant chemotherapy].

    Science.gov (United States)

    Iatsyna, A I; Stakhovskiĭ, É A; Sheremet, Ia A; Spivak, S I; Stakhovskiĭ, A É; Gavriliuk, O N; Vitruk, Iu V; Emets, A I; Blium, Ia B

    2011-01-01

    Induced apoptosis in urinary bladder cancer tumor cells of patients was studied using TUNEL reaction. It was shown that increase in induced apoptosis value had a definite correlation between corresponding features of tumor reaction as a response on Gemcitabine-Cisplatin neoadjuvant chemotherapy application. It was found that evaluation of induced apoptosis in urinary bladder cancer tumor cells using TUNEL method allows forecasting the effectiveness of chemotherapy on the cellular level in patients with this type of cancer.

  10. Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium.

    Directory of Open Access Journals (Sweden)

    Zeus Saldaña

    Full Text Available Uropathogenic Escherichia coli (UPEC strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix and HTB-4 (bladder epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.

  11. Ion transport in epithelial spheroids derived from human airway cells

    DEFF Research Database (Denmark)

    Pedersen, P S; Frederiksen, O; Holstein-Rathlou, N H

    1999-01-01

    In the present study, we describe a novel three-dimensional airway epithelial explant preparation and demonstrate its use for ion transport studies by electrophysiological technique. Suspension cultures of sheets of epithelial cells released by protease treatment from cystic fibrosis (CF) and non...

  12. Peripheral primitive neuroectodermal tumor of the urinary bladder in an Arab woman with history of squamous cell carcinoma: a case report

    Directory of Open Access Journals (Sweden)

    Al Meshaan Mohd Khaled

    2009-04-01

    Full Text Available Abstract Introduction Peripheral primitive neuroectodermal tumors of the urinary bladder are rare and tend to occur in an older age group than do their counterparts in bones and soft tissue. Case presentation We report a case of peripheral primitive neuroectodermal tumor of the urinary bladder in a 67-year-old woman of Arab origin. She had undergone transurethral resection followed by chemotherapy because of pulmonary metastasized muscle-invasive squamous cell carcinoma of the bladder in 2005. One year later, she first presented with a history of repeated hematuria in our institution. Performing cystoscopy any tumor could be detected. Control cystoscopy two months later showed a tumor mass of 3 cm in diameter at another location than described for the first tumor. After perforating by transurethral resection partial bladder resection had to be done. Tissue specimen after pathological analysis revealed a peripheral primitive neuroectodermal tumor with tumor cells reactive to cluster of differentiation 99, neuron-specific enolase and S100 protein and stained negative for other markers such as cytokeratins, epithelial membrane antigen, desmin, smooth muscle actin, chromogranin and leucocyte common antigen. Staging computerized tomography was especially free from any hint on organ metastasis, but the patient died due to a cardiac problem only a few months later. Conclusions To the best of our knowledge, we report the eighth case of bladder peripheral primitive neuroectodermal tumors in literature and the first concerning an Arab patient. It is also the first presentation of a peripheral primitive neuroectodermal tumor patient with a history of squamous cell carcinoma of the bladder. As in other cases, expression of single-chain-type 1 glycoprotein and neural markers was positive and the disease was at an advanced stage at the time of diagnosis.

  13. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells

    Indian Academy of Sciences (India)

    Forum Kayastha; Kaid Johar; Devarshi Gajjar; Anshul Arora; Hardik Madhu; Darshini Ganatra; Abhay Vasavada

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers -SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  14. Acceleration of Apoptosis by Transfection of Bak Gene in Multi-drug Resistant Bladder Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    LIUYing; ZENGFuqing

    2004-01-01

    To study the killing effects of bak gene on multi-drug resistant (MDR) bladder cancer cells and the mechanisms. Methods: Bak gene was transfected into MDR bladder cancer cells by liposome. The expression of bak and Bcl-2 mRNA was detected by in situ hybridization. The expression of bak and Bcl-2 proteins was detected by SABC immunohistochemistry. The growth rate of human bladder cancer cells was studied by constructing the growth curve, cell apoptosis was measured by flow cytometry, and the morphology of cells was observed by fluorescence stain. Results: The expression of bak mRNA was positive in EJ/bak cells (P<0.05). Bak protein expression of EJ/bak cells was positive and Bcl-2 protein expression was decreased (P<0.05). The growth of MDR bladder cancer cells was significantly inhibited after bak gene was transfected (P<0.05). Apoptosis cells were increased significantly. The apoptosis rate was 35%. Apoptotic bodies can be found in these cells by fluorescence stain. Conclusion: Bak gene could inhibit the growth of MDR bladder cancer cells effectively. Inducing cell apoptosis by down-regulating the expression of Bcl-2 gene might be one of its mechanisms.

  15. Discrimination of healthy and cancer cells of the bladder by metabolic state, based on autofluorescence

    Science.gov (United States)

    Palmer, S.; Litvinova, Karina; Rafailov, E. U.; Nabi, G.

    2015-02-01

    Bladder cancer is among the most common cancers worldwide (4th in men). It is responsible for high patient morbidity and displays rapid recurrence and progression. Lack of sensitivity of gold standard techniques (white light cystoscopy, voided urine cytology) means many early treatable cases are missed. The result is a large number of advanced cases of bladder cancer which require extensive treatment and monitoring. For this reason, bladder cancer is the single most expensive cancer to treat on a per patient basis. In recent years, autofluorescence spectroscopy has begun to shed light into disease research. Of particular interest in cancer research are the fluorescent metabolic cofactors NADH and FAD. Early in tumour development, cancer cells often undergo a metabolic shift (the Warburg effect) resulting in increased NADH. The ratio of NADH to FAD ("redox ratio") can therefore be used as an indicator of the metabolic status of cells. Redox ratio measurements have been used to differentiate between healthy and cancer breast cells and to monitor cellular responses to therapies. Here, we have demonstrated, using healthy and bladder cancer cell lines, a statistically significant difference in the redox ratio of bladder cancer cells, indicative of a metabolic shift. To do this we customised a standard flow cytometer to excite and record fluorescence specifically from NADH and FAD, along with a method for automatically calculating the redox ratio of individual cells within large populations. These results could inform the design of novel probes and screening systems for the early detection of bladder cancer.

  16. A cell line derived from BBN (N-butyl-N-[4-hydroxybutyl]-nitrosamine-induced rat bladder cancer: establishment and scanning electron microscopic cell surface characteristics

    Directory of Open Access Journals (Sweden)

    Nishi,Mitsuo

    1978-07-01

    Full Text Available This research was performed to establish a cell line from experimental bladder tumor and to discuss the biological characteristics of the cell line so established. Tissue cultures of epithelial cells were derived from a rat bladder cancer induced by BBN. The cells showed loss of contact inhibition and the phenomenon of piling up after several subcultures. Colonial cloning was used. The population doubling time of the wild strain and the colonial clones was about 30 h. The chromosomal mode ranged from triploid to tetraploid to tetraploid. Plating efficiency was well below 20%. Intraperitoneal backtransplantation into newborn Wister rats resulted in tumors in all cases. These tumors, in some parts, resembled primary transitional cell carcinoma. The major tumor cell groups, however, showed marked keratinization and the picture of squamous cell carcinoma. The nucleus/cytoplasm ratio and the numbers of nuclei, free ribosomes and intracytoplasmic microfibrils were increased. Dense microvillus arrangements characterized the electron microscopic picture. During the mitotic phase, the cells became large and globular whereas the microvilli were relatively short and were gathered profusely over the whole surface. Cells in the gap 1-synthetic phase developed lamellipodia and pseudpodia-like cytoplasmic processes and were polygonal in shape. Microvilli were present in the central part containing the nucleus, but their numbers were somewhat decreased and their height increased (scanning electron microscopy.

  17. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway

    Science.gov (United States)

    Wang, Gang; Cao, Rui; Wang, Yongzhi; Qian, Guofeng; Dan, Han C.; Jiang, Wei; Ju, Lingao; Wu, Min; Xiao, Yu; Wang, Xinghuan

    2016-01-01

    Simvastatin is currently one of the most common drugs for old patients with hyperlipidemia, hypercholesterolemia and atherosclerotic diseases by reducing cholesterol level and anti-lipid properties. Importantly, simvastatin has also been reported to have anti-tumor effect, but the underlying mechanism is largely unknown. We collected several human bladder samples and performed microarray. Data analysis suggested bladder cancer (BCa) was significantly associated with fatty acid/lipid metabolism via PPAR signalling pathway. We observed simvastatin did not trigger BCa cell apoptosis, but reduced cell proliferation in a dose- and time-dependent manner, accompanied by PPARγ-activation. Moreover, flow cytometry analysis indicated that simvastatin induced cell cycle arrest at G0/G1 phase, suggested by downregulation of CDK4/6 and Cyclin D1. Furthermore, simvastatin suppressed BCa cell metastasis by inhibiting EMT and affecting AKT/GSK3β. More importantly, we found that the cell cycle arrest at G0/G1 phase and the alterations of CDK4/6 and Cyclin D1 triggered by simvastatin could be recovered by PPARγ-antagonist (GW9662), whereas the treatment of PPARα-antagonist (GW6471) shown no significant effects on the BCa cells. Taken together, our study for the first time revealed that simvastatin inhibited bladder cancer cell proliferation and induced cell cycle arrest at G1/G0 phase via PPARγ signalling pathway. PMID:27779188

  18. Endoplasmic reticulum protein 29 regulates epithelial cell integrity during the mesenchymal-epithelial transition in breast cancer cells.

    Science.gov (United States)

    Bambang, I F; Lee, Y K; Richardson, D R; Zhang, D

    2013-03-07

    The epithelial-mesenchymal transition (EMT) correlates with disruption of cell-cell adhesion, loss of cell polarity and development of epithelial cell malignancy. Identifying novel molecules that inhibit EMT has profound potential for developing mechanism-based therapeutics. We previously demonstrated that the endoplasmic reticulum protein 29 (ERp29) is a novel factor that can drive mesenchymal-epithelial transition (MET) and induce cell growth arrest in MDA-MB-231 cells. Here, we show that ERp29 is an important molecule in establishing epithelial cell integrity during the MET. We demonstrate that ERp29 regulates MET in a cell context-dependent manner. ERp29 overexpression induced a complete MET in mesenchymal MDA-MB-231 cells through downregulating the expression of transcriptional repressors (for example, Slug, Snai1, ZEB2 and Twist) of E-cadherin. In contrast, overexpression of ERp29 induces incomplete MET in basal-like BT549 cells in which the expression of EMT-related markers (for example, vimentin; cytokeratin 19 (CK19) and E-cadherin) and the transcriptional repressors of E-cadherin were not altered. However, ERp29 overexpression in both cell-types resulted in loss of filamentous stress fibers, formation of cortical actin and restoration of an epithelial phenotype. Mechanistic studies revealed that overexpression of ERp29 in both cell-types upregulated the expression of TJ proteins (zonula-occludens-1 (ZO-1) and occludin) and the core apical-basal polarity proteins (Par3 and Scribble) at the membrane to enhance cell-cell contact and cell polarization. Knockdown of ERp29 in the epithelial MCF-7 cells decreased the expression of these proteins, leading to the disruption of cell-cell adhesion. Taken together, ERp29 is a novel molecule that regulates MET and epithelial cell integrity in breast cancer cells.

  19. Intracellular Uropathogenic E. coli Exploits Host Rab35 for Iron Acquisition and Survival within Urinary Bladder Cells.

    Science.gov (United States)

    Dikshit, Neha; Bist, Pradeep; Fenlon, Shannon N; Pulloor, Niyas Kudukkil; Chua, Christelle En Lin; Scidmore, Marci A; Carlyon, Jason A; Tang, Bor Luen; Chen, Swaine L; Sukumaran, Bindu

    2015-08-01

    Recurrent urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC) are common and morbid infections with limited therapeutic options. Previous studies have demonstrated that persistent intracellular infection of bladder epithelial cells (BEC) by UPEC contributes to recurrent UTI in mouse models of infection. However, the mechanisms employed by UPEC to survive within BEC are incompletely understood. In this study we aimed to understand the role of host vesicular trafficking proteins in the intracellular survival of UPEC. Using a cell culture model of intracellular UPEC infection, we found that the small GTPase Rab35 facilitates UPEC survival in UPEC-containing vacuoles (UCV) within BEC. Rab35 plays a role in endosomal recycling of transferrin receptor (TfR), the key protein responsible for transferrin-mediated cellular iron uptake. UPEC enhance the expression of both Rab35 and TfR and recruit these proteins to the UCV, thereby supplying UPEC with the essential nutrient iron. Accordingly, Rab35 or TfR depleted cells showed significantly lower intracellular iron levels and reduced ability to support UPEC survival. In the absence of Rab35, UPEC are preferentially trafficked to degradative lysosomes and killed. Furthermore, in an in vivo murine model of persistent intracellular infection, Rab35 also colocalizes with intracellular UPEC. We propose a model in which UPEC subverts two different vesicular trafficking pathways (endosomal recycling and degradative lysosomal fusion) by modulating Rab35, thereby simultaneously enhancing iron acquisition and avoiding lysosomal degradation of the UCV within bladder epithelial cells. Our findings reveal a novel survival mechanism of intracellular UPEC and suggest a potential avenue for therapeutic intervention against recurrent UTI.

  20. Intracellular Uropathogenic E. coli Exploits Host Rab35 for Iron Acquisition and Survival within Urinary Bladder Cells.

    Directory of Open Access Journals (Sweden)

    Neha Dikshit

    2015-08-01

    Full Text Available Recurrent urinary tract infections (UTIs caused by uropathogenic E. coli (UPEC are common and morbid infections with limited therapeutic options. Previous studies have demonstrated that persistent intracellular infection of bladder epithelial cells (BEC by UPEC contributes to recurrent UTI in mouse models of infection. However, the mechanisms employed by UPEC to survive within BEC are incompletely understood. In this study we aimed to understand the role of host vesicular trafficking proteins in the intracellular survival of UPEC. Using a cell culture model of intracellular UPEC infection, we found that the small GTPase Rab35 facilitates UPEC survival in UPEC-containing vacuoles (UCV within BEC. Rab35 plays a role in endosomal recycling of transferrin receptor (TfR, the key protein responsible for transferrin-mediated cellular iron uptake. UPEC enhance the expression of both Rab35 and TfR and recruit these proteins to the UCV, thereby supplying UPEC with the essential nutrient iron. Accordingly, Rab35 or TfR depleted cells showed significantly lower intracellular iron levels and reduced ability to support UPEC survival. In the absence of Rab35, UPEC are preferentially trafficked to degradative lysosomes and killed. Furthermore, in an in vivo murine model of persistent intracellular infection, Rab35 also colocalizes with intracellular UPEC. We propose a model in which UPEC subverts two different vesicular trafficking pathways (endosomal recycling and degradative lysosomal fusion by modulating Rab35, thereby simultaneously enhancing iron acquisition and avoiding lysosomal degradation of the UCV within bladder epithelial cells. Our findings reveal a novel survival mechanism of intracellular UPEC and suggest a potential avenue for therapeutic intervention against recurrent UTI.

  1. Mitosis orientation in prostate epithelial cells changed by endocrine effect

    Institute of Scientific and Technical Information of China (English)

    Xiang-yun LIU; Dong-mei Li; Xiao-fang ZHANG; Jian-hui WU; Zu-yue SUN

    2008-01-01

    Aim: The aim of the present study was to investigate the effect of androgen and estrogen on mitosis orientation in the prostate epithelial cells of male rats. Methods: Castrated rats were treated with a single injection of testosterone propionate (TP) or benzogynestry (E2). There were 8 rats in the control group and TP-treated or E2-treated group. Prostate, liver, a specimen of skin, and a segment of the jejunum and colon were removed after the corresponding treatment. The results were observed through immunohistochemistry and iron hematoxylin-eosin staining.Results: All mitoses found in the prostate epithelial cells of castrated rats with TP were oriented parallel to the basement membrane; however, mitoses found in the prostate epithelial cells of castrated rats in E2 and the control group were oriented perpendicular to the basement membrane. TP treatment resulted in marked changes in mitosis orientation in the prostate epithelial cells. Bromodeoxyuridine-labeled positive cells could be seen throughout the stroma and prostate epithelial cells with an injection of TP; however, the positive cells could only be seen in the stroma of prostate with an injection of E2, and the positive cells could hardly be seen in the control group. Conclusion: We found a novel effect of TP in the prostate as a marked change of mitosis orientation in prostate epithelial cells.

  2. Simvastatin Attenuates TGF-β1-Induced Epithelial-Mesenchymal Transition in Human Alveolar Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Tuo Yang

    2013-06-01

    Full Text Available Background: Transforming growth factor-β1 (TGF-β1-induced epithelial-mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to idiopathic pulmonary fibrosis (IPF. TGF-β1-induced EMT in A549 cells (a human AEC cell line resulted in the adoption of mesenchymal responses that were predominantly mediated via the TGF-β1-Smad2/3 signaling pathway. Simvastatin (Sim, a 3-hydroxy-3-methylglutaryl CoA (HMG-CoA reductase inhibitor, has been previously reported to inhibit EMT in human proximal tubular epithelial cells and porcine lens epithelial cells and to suppress Smad2/3 phosphorylation in animal models. However, whether Sim can attenuate TGF-β1-induced EMT in A549 cells and its underlying mechanisms remains unknown. Methods: Cells were incubated with TGF-β1 in the presence or absence of Sim. The epithelial marker E-cadherin (E-Cad and the mesenchymal markers, α-smooth muscle actin (α-SMA, vimentin (Vi and fibronectin (FN, were detected using western blotting analyses and immunofluorescence. Phosphorylated Smad2 and Smad3 levels and connective tissue growth factor (CTGF were analyzed using western blotting. In addition, a cell migration assay was performed. Moreover, the levels of matrix metalloproteinase (MMP-2 and -9 in the culture medium were examined using ELISA. Results: Sim significantly attenuated the TGF-β1-induced decrease in E-Cad levels and elevated the levels of α-SMA, Vi and FN via the suppression of Smad2 and Smad3 phosphorylation. Furthermore, Sim inhibited the mesenchymal-like responses in A549 cells, including cell migration, CTGF expression and secretion of MMP-2 and -9. However, Sim failed to reverse the cell morphologial changes induced by TGF-β1 in A549 cells. Conclusion: Sim attenuated TGF-β1-induced EMT in A549 cells and might be a promising therapeutic agent for treating IPF.

  3. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume...... expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed....

  4. Cell cycle regulation by glucosamine in human pulmonary epithelial cells.

    Science.gov (United States)

    Chuang, Kun-Han; Lu, Chih-Shen; Kou, Yu Ru; Wu, Yuh-Lin

    2013-04-01

    Airway epithelial cells play an important role against intruding pathogens. Glucosamine, a commonly used supplemental compound, has recently begun to be regarded as a potential anti-inflammatory molecule. This study aimed to uncover how glucosamine impacts on cellular proliferation in human alveolar epithelial cells (A549) and bronchial epithelial cells (HBECs). With trypan blue-exclusion assay, we observed that glucosamine (10, 20, 50 mM) caused a decrease in cell number at 24 and 48 h; with a flow cytometric analysis, we also noted an enhanced cell accumulation within the G(0)/G(1) phase at 24 h and induction of late apoptosis at 24 and 48 h by glucosamine (10, 20, 50 mM) in A549 cells and HBECs. Examination of phosphorylation in retinoblastoma (Rb) protein, we found an inhibitory effect by glucosamine at 20 and 50 mM. Glucosamine at 50 mM was demonstrated to elevate both the mRNA and protein expression of p53 and heme oxygenase-1 (HO-1), but also caused a reduction in p21 protein expression. In addition, glucosamine attenuated p21 protein stability via the proteasomal proteolytic pathway, as well as inducing p21 nuclear accumulation. Altogether, our results suggest that a high dose of glucosamine may inhibit cell proliferation through apoptosis and disturb cell cycle progression with a halt at G(0)/G(1) phase, and that this occurs, at least in part, by a reduction in Rb phosphorylation together with modulation of p21, p53 and HO-1 expression, and nuclear p21 accumulation.

  5. Rac promotes epithelial cell rearrangement during tracheal tubulogenesis in Drosophila.

    Science.gov (United States)

    Chihara, Takahiro; Kato, Kagayaki; Taniguchi, Misako; Ng, Julian; Hayashi, Shigeo

    2003-04-01

    Cell rearrangement, accompanied by the rapid assembly and disassembly of cadherin-mediated cell adhesions, plays essential roles in epithelial morphogenesis. Various in vitro and cell culture studies on the small GTPase Rac have suggested it to be a key regulator of cell adhesion, but this notion needs to be verified in the context of embryonic development. We used the tracheal system of Drosophila to investigate the function of Rac in the epithelial cell rearrangement, with a special attention to its role in regulating epithelial cadherin activity. We found that a reduced Rac activity led to an expansion of cell junctions in the embryonic epidermis and tracheal epithelia, which was accompanied by an increase in the amount of Drosophila E-Cadherin-Catenin complexes by a post-transcriptional mechanism. Reduced Rac activity inhibited dynamic epithelial cell rearrangement. Hyperactivation of Rac, on the other hand, inhibited assembly of newly synthesized E-Cadherin into cell junctions and caused loss of tracheal cell adhesion, resulting in cell detachment from the epithelia. Thus, in the context of Drosophila tracheal development, Rac activity must be maintained at a level necessary to balance the assembly and disassembly of E-Cadherin at cell junctions. Together with its role in cell motility, Rac regulates plasticity of cell adhesion and thus ensures smooth remodeling of epithelial sheets into tubules.

  6. Types of HLA in the bladder transitional cell carcinoma (TCC).

    Science.gov (United States)

    Yılmaz, Erkan; Uğur Özalp, Ali; Cekmen, Arman; Eren, Bülent; Onal, Bülent; Akkuş, Emre; Erdoğan, Ergun

    2013-02-01

    HLA plays a complementary role in the interaction between tumor and body immunology. The aim of this study was to determine the existence of the association between the HLA system and transitional cell carcinoma (TCC). Using standard micro-lymphocytotoxic method of Terasaki, HLA-A, B, DR and DQ antigen types of 30 patients with TCC of the bladder were compared with the control group (30 healthy people). In the TCC patient group, HLA -DQ6(1) and HLA -DQ7(3) antigens were detected with a significantly higher frequency than in the control group (p=0.018 and p=0.038, respectively), whereas HLA-A10, B4, DR53 and DQ1 antigens were detected with significantly higher frequency in the control group (p less 0.05 in all). It suggests that patients who had the antigens detected were at higher risk of TCC, and the ones who had the antigens displaying protective features as were detected in the control group, were at lesser risk.

  7. Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX and Sirtuin1 (SIRT1

    Directory of Open Access Journals (Sweden)

    Ming-Hung Lin

    2016-06-01

    Full Text Available Bladder cancer is one of the most frequent cancers among males, and its poor survival rate reflects problems with aggressiveness and chemo-resistance. Recent interest has focused on the use of chemopreventatives (nontoxic natural agents that may suppress cancer progression to induce targeted apoptosis for cancer therapy. Capsaicin, which has anti-cancer properties, is one such agent. It is known to preferentially inhibit a tumor-associated NADH oxidase (tNOX that is preferentially expressed in cancer/transformed cells. Here, we set out to elucidate the correlation between tNOX expression and the inhibitory effects of capsaicin in human bladder cancer cells. We showed that capsaicin downregulates tNOX expression and decreases bladder cancer cell growth by enhancing apoptosis. Moreover, capsaicin was found to reduce the expression levels of several proteins involved in cell cycle progression, in association with increases in the cell doubling time and enhanced cell cycle arrest. Capsaicin was also shown to inhibit the activation of ERK, thereby reducing the phosphorylation of paxillin and FAK, which leads to decreased cell migration. Finally, our results indicate that RNA interference-mediated tNOX depletion enhances spontaneous apoptosis, prolongs cell cycle progression, and reduces cell migration and the epithelial-mesenchymal transition. We also observed a downregulation of sirtuin 1 (SIRT1 in these tNOX-knockdown cells, a deacetylase that is important in multiple cellular functions. Taken together, our results indicate that capsaicin inhibits the growth of bladder cancer cells by inhibiting tNOX and SIRT1 and thereby reducing proliferation, attenuating migration, and prolonging cell cycle progression.

  8. Potential uses of milk epithelial cells: a review.

    Science.gov (United States)

    Boutinaud, Marion; Jammes, Hélène

    2002-01-01

    Secretions collected from the mammary gland of different species contain heterogeneous populations of cells including lymphocytes, neutrophils, macrophages and epithelial cells in different species. Several factors influence the somatic cell count in milk and the distribution of cell types, such as species, infection status, physiological status and management practices. The epithelial cells are shed into milk during the lactation process. Most of them are viable and exhibit the characteristics of fully differentiated alveolar cells. Primary cultures of epithelial cells from colostrum and milk of humans, baboons, cows and goats together with established cell lines from human and goat milk, provide a good model for the study of lactogenesis, immunity transmission, cancer research and infection by viruses. The RNA extracted from milk cells have been shown to be representative of gene expression in the mammary gland and thus provide a source of material for molecular studies of gene expression and environmental interactions.

  9. Metabolism and growth inhibitory activity of cranberry derived flavonoids in bladder cancer cells.

    Science.gov (United States)

    Prasain, Jeevan K; Rajbhandari, Rajani; Keeton, Adam B; Piazza, Gary A; Barnes, Stephen

    2016-09-14

    In the present study, anti-proliferative activities of cranberry derived flavonoids and some of their in vivo metabolites were evaluated using a panel of human bladder tumor cell lines (RT4, SCABER, and SW-780) and non-tumorigenic immortalized human uroepithelial cells (SV-HUC). Among the compounds tested, quercetin 3-O-glucoside, isorhamnetin (3'-O-methylquercetin), myricetin and quercetin showed strong concentration-dependent cell growth inhibitory activities in bladder cancer cells with IC50 values in a range of 8-92 μM. Furthermore, isorhamnetin and myricetin had very low inhibitory activity against SV-HUC even at very high concentrations (>200 μM) compared to bladder cancer cells, indicating that their cytotoxicity is selective for cancer cells. To determine whether the differential cell growth inhibitory effects of isomeric flavonoids quercetin 3-O-glucoside (active) and hyperoside (quercetin 3-O-galactoside) (inactive) are related to their metabolism by the cancer cells, SW-780 cells were incubated with these compounds and their metabolism was examined by LC-MS/MS. Compared to quercetin 3-O-glucoside, hyperoside undergoes relatively less metabolic biotransformation (methylation, glucuronidation and quinone formation). These data suggest that isorhamnetin and quercetin 3-O-glucoside may be the active forms of quercetin in prevention of bladder cancer in vivo and emphasize the importance of metabolism for the prevention of bladder cancer by diets rich in cranberries.

  10. Squamous Cell Carcinoma of the Bladder Mimicking Interstitial Cystitis and Voiding Dysfunction

    Directory of Open Access Journals (Sweden)

    Colton Prudnick

    2013-01-01

    Full Text Available Squamous cell carcinoma (SCC of the bladder is a relatively uncommon cause of bladder cancer accounting for <5% of bladder tumors in the western countries. SCC has a slight male predominance and tends to occur in the seventh decade of life. The main presenting symptom of SCC is hematuria, and development of this tumor in the western world is associated most closely with chronic indwelling catheters and spinal cord injuries. A 39-year-old Caucasian female presented with bladder and lower abdominal pain, urinary frequency, and nocturia which was originally believed to be interstitial cystitis (IC but was later diagnosed as SCC of the bladder. Presentation of SCC without hematuria is an uncommon presentation, but the absence of this symptom should not lead a practitioner to exclude the diagnosis of SCC. This case is being reported in an attempt to explain the delay and difficulty of diagnosis. Background on the risk factors for SCC of the bladder and the typical presenting symptoms of bladder SCC and IC are also reviewed.

  11. Transitional Cell Carcinoma of the Urinary Bladder in a Beluga Whale (Delphinapterus leucas).

    Science.gov (United States)

    Martineau, D; Lagacé, A; Massé, R; Morin, M; Béland, P

    1985-10-01

    A transitional cell carcinoma of the urinary bladder was found in a beluga whale stranded in the St. Lawrence middle estuary. Various organs of this animal were submitted to high resolution gas chromatography coupled with mass spectrometry analysis. High frequency of urinary bladder cancer in the human population of the same area and the presence of carcinogenic compounds in the marine environment of this animal are discussed.Concurrent isolation of Edwardsiella tarda from various organs of this whale is also reported.

  12. Transitional Cell Carcinoma of the Urinary Bladder in a Beluga Whale (Delphinapterus leucas)

    OpenAIRE

    Martineau, D.; Lagacé, A.; Massé, R; Morin, M.; Béland, P

    1985-01-01

    A transitional cell carcinoma of the urinary bladder was found in a beluga whale stranded in the St. Lawrence middle estuary. Various organs of this animal were submitted to high resolution gas chromatography coupled with mass spectrometry analysis. High frequency of urinary bladder cancer in the human population of the same area and the presence of carcinogenic compounds in the marine environment of this animal are discussed.

  13. In Vitro transformation of LW13 Rat liver epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    SHICAN; KARLFETNANSKY; 等

    1992-01-01

    A rat liver epithelial cell line designated LW 13 was established using a sequential sedimentation method.The cell line retained many normal proerties of liver epithelial cells and showed some structural and functional features resembling those of liver parenchymal cells,LW13 cells became malignant after the intrduction of exogenous transforming EJ Ha ras gene,Tumors produced by inoculation of the transformed cells into baby rats contained areas of poorly differentialted hepatocellular carcinoma,In situ hybridization analysis confirmed the random rather than specific integration of exogenous ras gene into host chromosomes.Furthermore,an at least tenfold increase in the expression of the endogenous c mys gene was detected among transformed cell lines,suggesting the involvement of the c myc proto oncogene in the in vitro transformation of rat liver epithelial cells by EJ Ha ras oncogene.

  14. Biscoumarin derivatives: Synthesis, crystal structure, theoretical studies and induced apoptosis activity on bladder urothelial cancer cell

    Science.gov (United States)

    Xin, Jia-jia; Li, Jing; Zhang, Zi-dan; Hu, Xing-bin; Li, Ming-kai

    2015-03-01

    In this study, five new biscoumarin derivatives (1-5) were synthesized and compound 4 inhibited the proliferation of the bladder urothelial cells (J82 cell line) obviously after 48 h treatment at different concentration (1, 5 and 10 μmol/L), and J82 cells were predominantly induced to apoptotic cell death after compound 4 treatment. Morphologic changes of bladder urothelial cancer cells were also observed under transmission electron microscopy (TEM) after compound 4 treatment. In addition, compound 4 had much less toxicity to human umbilical vein endothelial cells. To explore the possible anti-cancer mechanism of compound 4, two classical intramolecular Osbnd H⋯O hydrogen bonds (HBs) in their structures and the corresponding HB energies were performed with the density functional theory (DFT) [B3LYP/6-31G∗] method. Anti-bladder cancer activity of compound 4 is possible due to the intramolecular weakest HB energies.

  15. Epimorphin Functions as a Key Morphoregulator for Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, H.; Lochter, A.; Galosy, S.; Koshida, S.; Niwa, S.; Bissell, M.J.

    1997-10-13

    Hepatocyte growth factor (HGF) and EGF have been reported to promote branching morphogenesis of mammary epithelial cells. We now show that it is epimorphin that is primarily responsible for this phenomenon. In vivo, epimorphin was detected in the stromal compartment but not in lumenal epithelial cells of the mammary gland; in culture, however, a subpopulation of mammary epithelial cells produced significant amounts of epimorphin. When epimorphin-expressing epithelial cell clones were cultured in collagen gels they displayed branching morphogenesis in the presence of HGF, EGF, keratinocyte growth factor, or fibroblast growth factor, a process that was inhibited by anti-epimorphin but not anti-HGF antibodies. The branch length, however, was roughly proportional to the ability of the factors to induce growth. Accordingly, epimorphin-negative epithelial cells simply grew in a cluster in response to the growth factors and failed to branch. When recombinant epimorphin was added to these collagen gels, epimorphin-negative cells underwent branching morphogenesis. The mode of action of epimorphin on morphogenesis of the gland, however, was dependent on how it was presented to the mammary cells. If epimorphin was overexpressed in epimorphin-negative epithelial cells under regulation of an inducible promoter or was allowed to coat the surface of each epithelial cell in a nonpolar fashion, the cells formed globular, alveoli-like structures with a large central lumen instead of branching ducts. This process was enhanced also by addition of HGF, EGF, or other growth factors and was inhibited by epimorphin antibodies. These results suggest that epimorphin is the primary morphogen in the mammary gland but that growth factors are necessary to achieve the appropriate cell numbers for the resulting morphogenesis to be visualized.

  16. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival

    Directory of Open Access Journals (Sweden)

    Hsieh Fu-Chuan

    2008-10-01

    Full Text Available Abstract Background Constitutive activation of signal transducer and activator of transcription 3 (Stat3 signaling pathway plays an important role in several human cancers. Activation of Stat3 is dependent on the phosphorylation at the tyrosine residue 705 by upstream kinases and subsequent nuclear translocation after dimerization. It remains unclear whether oncogenic Stat3 signaling pathway is involved in the oncogenesis of bladder cancer. Results We found that elevated Stat3 phosphorylation in 19 of 100 (19% bladder cancer tissues as well as bladder cancer cell lines, WH, UMUC-3 and 253J. To explore whether Stat3 activation is associated with cell growth and survival of bladder cancer, we targeted the Stat3 signaling pathway in bladder cancer cells using an adenovirus-mediated dominant-negative Stat3 (Y705F and a small molecule compound, STA-21. Both prohibited cell growth and induction of apoptosis in these bladder cancer cell lines but not in normal bladder smooth muscle cell (BdSMC. The survival inhibition might be mediated through apoptotic caspase 3, 8 and 9 pathways. Moreover, down-regulation of anti-apoptotic genes (Bcl-2, Bcl-xL and survivin and a cell cycle regulating gene (cyclin D1 was associated with the cell growth inhibition and apoptosis. Conclusion These results indicated that activation of Stat3 is crucial for bladder cancer cell growth and survival. Therefore, interference of Stat3 signaling pathway emerges as a potential therapeutic approach for bladder cancer.

  17. Connective Tissue Growth Factor Expression in Human Bronchial Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Amrita DOSANJH

    2006-01-01

    Connective tissue growth factor (CTGF) is a cysteine-rich protein that promotes extracellular matrix deposition. CTGF is selectively induced by transforming growth factor β and des-Arg kallidin in lung fibroblasts and increases steady-state mRNA levels of α type I collagen, 5α-integrin and fibronectin in fibroblasts. Bronchial epithelial cells have been proposed to functionally interact with lung fibroblasts. We therefore investigated if bronchial epithelial cells are able to synthesize CTGF. Human bronchial epithelial cells were grown to subconfluence in standard growth media. Proliferating cells grown in small airway growth media were harvested following starvation for up to 24 h. Expression of CTGF transcripts was measured by PCR. Immunocytochemistry was also completed using a commercially available antibody.The cells expressed readily detectable CTGF transcripts. Starvation of these cells resulted in a quantitative decline of CTGF transcripts. Direct sequencing of the PCR product identified human CTGF. Immunocytochemistry confirmed intracellular CTGF in the cells and none in negative control cells. We conclude that bronchial epithelial cells could be a novel source of CTGF. Bronchial epithelial cell-derived CTGF could thus directly influence the deposition of collagen in certain fibrotic lung diseases.

  18. The Differential Expression of EphB2 and EphB4 Receptor Kinases in Normal Bladder and in Transitional Cell Carcinoma of the Bladder

    OpenAIRE

    Xiuqing Li; Choi, Wesley W.; Rui Yan; Haiyang Yu; Valery Krasnoperov; S Ram Kumar; Anne Schuckman; Klumpp, David J.; Chong-Xian Pan; David Quinn; Gill,Inderbir S.; Gill, Parkash S.; Ren Liu

    2014-01-01

    Effective treatment of transitional cell carcinoma (TCC) of the bladder requires early diagnosis. Identifying novel molecular markers in TCC would guide the development of diagnostic and therapeutic targets. Ephrins mediate signals via tyrosine kinase activity that modulates diverse physiologic and developmental processes, and ephrins are increasingly implicated in carcinogenesis. The aim of our study was to examine the differential regulation of EphB4 and EphB2 in normal bladder and in TCC o...

  19. Clinical outcome of primary small cell carcinoma of the urinary bladder

    Directory of Open Access Journals (Sweden)

    Hou CP

    2013-08-01

    Full Text Available Chen-Pang Hou,1,2 Yu-Hsiang Lin,1,2 Chien-Lun Chen,1,2 Phei-Lang Chang,1,2 Ke-Hung Tsui1,2 1Department of Urology, Chang Gung Memorial Hospital-Linko, Taiwan, Republic of China; 2College of Medicine, Chang Gung University, Taiwan, Republic of China Purpose: Primary small cell carcinoma of the urinary bladder is a rare malignant disease. It accounts for less than 1% of all urinary bladder carcinomas. The purpose of this study is to review the clinical features, the treatment modalities, and the overall survival of these patients. We also compare the clinical outcomes between patients of bladder small cell carcinoma (SCC and bladder urothelial carcinoma (UC. Materials and methods: We reviewed the charts of patients with bladder tumors from January 1995 to December 2012 in the Chang Gung Memorial Hospital. A total of 2421 malignant bladder tumor patients were reviewed and there were 18 patients who were diagnosed with primary bladder SCC. The patients' characteristics, including age, gender, smoking history, presented symptoms, tumor size, locations, clinical stages, treatment modalities, pathology appearance, recurrence conditions, and survival conditions were all recorded. We also compared the clinical outcomes and the overall survival rates between patients with bladder SCC and those with UC. Results: Bladder SCC accounted for about 0.74% of all bladder malignancies in our institution. The mean age at diagnosis was 70.67 years, and the male-to-female ratio was 2.6:1. Thirteen patients had a history of cigarette smoking. All patients presented with symptoms of gross hematuria, and three of them had bladder tamponade requiring blood clot evacuation by cystoscopy. Only one patient had T1 disease, ten patients had stage III disease, and seven patients had lymph node or distant metastasis (stage IV disease. The mean tumor size was 4.29 cm in diameter. For the majority (61.11% of patients, SCC coexisted with UC components. The average survival time

  20. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    Science.gov (United States)

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  1. Trefoil peptides promote restitution of wounded corneal epithelial cells.

    Science.gov (United States)

    Göke, M N; Cook, J R; Kunert, K S; Fini, M E; Gipson, I K; Podolsky, D K

    2001-04-01

    The ocular surface shares many characteristics with mucosal surfaces. In both, healing is regulated by peptide growth factors, cytokines, and extracellular matrix proteins. However, these factors are not sufficient to ensure most rapid healing. Trefoil peptides are abundantly expressed epithelial cell products which exert protective effects and are key regulators of gastrointestinal epithelial restitution, the critical early phase of cell migration after mucosal injury. To assess the role of trefoil peptides in corneal epithelial wound healing, the effects of intestinal trefoil factor (ITF/TFF3) and spasmolytic polypeptide (SP/TFF2) on migration and proliferation of corneal epithelial cells were analyzed. Both ITF and SP enhanced restitution of primary rabbit corneal epithelial cells in vitro. While the restitution-enhancing effects of TGF-alpha and TGF-beta were both inhibited by neutralizing anti-TGF-beta-antibodies, trefoil peptide stimulation of restitution was not. Neither trefoil peptide significantly affected proliferation of primary corneal epithelial cells. ITF but not SP or pS2 mRNA was present in rabbit corneal and conjunctival tissues. In summary, the data indicate an unanticipated role of trefoil peptides in healing of ocular surface and demand rating their functional actions beyond the gastrointestinal tract.

  2. Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells.

    Directory of Open Access Journals (Sweden)

    Debra Franck

    Full Text Available Silk-based biomaterials in combination with extracellular matrix (ECM coatings were assessed as templates for cell-seeded bladder tissue engineering approaches. Two structurally diverse groups of silk scaffolds were produced by a gel spinning process and consisted of either smooth, compact multi-laminates (Group 1 or rough, porous lamellar-like sheets (Group 2. Scaffolds alone or coated with collagen types I or IV or fibronectin were assessed independently for their ability to support attachment, proliferation, and differentiation of primary cell lines including human bladder smooth muscle cells (SMC and urothelial cells as well as pluripotent cell populations, such as murine embryonic stem cells (ESC and induced pluripotent stem (iPS cells. AlamarBlue evaluations revealed that fibronectin-coated Group 2 scaffolds promoted the highest degree of primary SMC and urothelial cell attachment in comparison to uncoated Group 2 controls and all Group 1 scaffold variants. Real time RT-PCR and immunohistochemical (IHC analyses demonstrated that both fibronectin-coated silk groups were permissive for SMC contractile differentiation as determined by significant upregulation of α-actin and SM22α mRNA and protein expression levels following TGFβ1 stimulation. Prominent expression of epithelial differentiation markers, cytokeratins, was observed in urothelial cells cultured on both control and fibronectin-coated groups following IHC analysis. Evaluation of silk matrices for ESC and iPS cell attachment by alamarBlue showed that fibronectin-coated Group 2 scaffolds promoted the highest levels in comparison to all other scaffold formulations. In addition, real time RT-PCR and IHC analyses showed that fibronectin-coated Group 2 scaffolds facilitated ESC and iPS cell differentiation toward both urothelial and smooth muscle lineages in response to all trans retinoic acid as assessed by induction of uroplakin and contractile gene and protein expression. These

  3. Attachment of epithelial cells and fibroblasts to ceramic materials.

    Science.gov (United States)

    Niederauer, G G; McGee, T D; Keller, J C; Zaharias, R S

    1994-04-01

    This study examined in vitro gingival epithelial and fibroblast cell attachment to ceramic materials made of tricalcium phosphate and/or magnesium aluminate spinel. The composite made of tricalcium phosphate and spinel is called 'osteoceramic'. These ceramics had various compositions and surface structures, which were initially characterized. Cell attachment assays were performed using both cell types to compare cellular response to the ceramic materials. Specimens were also prepared for scanning electron microscopy to investigate cellular morphology. The highest levels of cell attachment for gingival epithelial cells were observed on the rough osteoceramic surface, whereas gingival fibroblasts attached least to the rough osteoceramic surface.

  4. 30. Knockdown of IGF-IR by Antisense Oligodeoxynucleotide auguments the sensitivity of bladder cancer cells to MMC

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AND AIM: Transitional cell carcinoma (TCC) of the bladder represents the fifth most prevalent malignancy in Western population, with peak incidence found in males of the 50-to 70- year-old age group. A major problem in the management of bladder cancer is the low sensitivity of a large proportion (approximately 40%) among bladder tumors to chemotherapy and the high risk for recurrence of bladder tumors after transurethral resection. So drug resistance, especially in its multiple type forms, remains a major and difficult problem to resolve in bladder cancer therapy. This phenomenon has often been ascribed to strictly pharmacolo-gic factors, such as the overexpression of multidrug transporters P-glycoprotein, multidrug resistance related protein (MRP), and other variables closely implicated DNA repair and induction/modulation of apoptosis, such as P53 and the Bcl-protein family. Furthermore, it has been recently shown that certain growth factors(IGFs etc) may be involved in the mechanism of drug resistance. Clearly, these findings suggest the design of new strategies that might improve bladder tumor response to chemotherapy. Results have previously shown that human bladder tumor cell lines may be adapted to grow in the complete absence of serum or any other growth supplement and that this can be explained on the basis of autocrine stimulation. The acquirement of autonomous growth capacity was likely to be an important element in the oncogenesis of bladder tumors. Furthermore, criss-cross experiments showed that supernatants stimulated not only proliferation of the autologous cell line of bladder cancer, but also growth of the other bladder cancer cell lines, suggesting the production of common autocrine factors in bladder tumor cells. Some factors or their receptors involved in autocrine loop mechanism of bladder tumor cells have been confirmed, such as IL-6, the epidermal growth factor receptor, IFN-beta, transferrins-like substance etc. But certain factors which may

  5. Probiotics promote endocytic allergen degradation in gut epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chun-Hua [Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou (China); Liu, Zhi-Qiang [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Huang, Shelly [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada); Zheng, Peng-Yuan, E-mail: medp7123@126.com [Department of Gastroenterology, The Second Hospital, Zhengzhou University, Zhengzhou (China); Yang, Ping-Chang, E-mail: yangp@mcmaster.ca [Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON (Canada)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barrier function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.

  6. Altered distribution of interstitial cells and innervation in the rat urinary bladder following spinal cord injury.

    Science.gov (United States)

    Johnston, Louise; Cunningham, Rebecca M J; Young, John S; Fry, Christopher H; McMurray, Gordon; Eccles, Rachel; McCloskey, Karen D

    2012-07-01

    Changes in the distribution of interstitial cells (IC) are reportedly associated with dysfunctional bladder. This study investigated whether spinal cord injury (SCI) resulted in changes to IC subpopulations (vimentin-positive with the ultrastructural profile of IC), smooth muscle and nerves within the bladder wall and correlated cellular remodelling with functional properties. Bladders from SCI (T8/9 transection) and sham-operated rats 5 weeks post-injury were used for ex vivo pressure-volume experiments or processed for morphological analysis with transmission electron microscopy (TEM) and light/confocal microscopy. Pressure-volume relationships revealed low-pressure, hypercompliance in SCI bladders indicative of decompensation. Extensive networks of vimentin-positive IC were typical in sham lamina propria and detrusor but were markedly reduced post-SCI; semi-quantitative analysis showed significant reduction. Nerves labelled with anti-neurofilament and anti-vAChT were notably decreased post-SCI. TEM revealed lamina propria IC and detrusor IC which formed close synaptic-like contacts with vesicle-containing nerve varicosities in shams. Lamina propria and detrusor IC were ultrastructurally damaged post-SCI with retracted/lost cell processes and were adjacent to areas of cellular debris and neuronal degradation. Smooth muscle hypertrophy was common to SCI tissues. In conclusion, IC populations in bladder wall were decreased 5 weeks post-SCI, accompanied with reduced innervation, smooth muscle hypertrophy and increased compliance. These novel findings indicate that bladder wall remodelling post-SCI affects the integrity of interactions between smooth muscle, nerves and IC, with compromised IC populations. Correlation between IC reduction and a hypercompliant phenotype suggests that disruption to bladder IC contribute to pathophysiological processes underpinning the dysfunctional SCI bladder.

  7. The softening of human bladder cancer cells happens at an early stage of the malignancy process

    Directory of Open Access Journals (Sweden)

    Jorge R. Ramos

    2014-04-01

    Full Text Available Various studies have demonstrated that alterations in the deformability of cancerous cells are strongly linked to the actin cytoskeleton. By using atomic force microscopy (AFM, it is possible to determine such changes in a quantitative way in order to distinguish cancerous from non-malignant cells. In the work presented here, the elastic properties of human bladder cells were determined by means of AFM. The measurements show that non-malignant bladder HCV29 cells are stiffer (higher Young’s modulus than cancerous cells (HTB-9, HT1376, and T24 cell lines. However, independently of the histological grade of the studied bladder cancer cells, all cancerous cells possess a similar level of the deformability of about a few kilopascals, significantly lower than non-malignant cells. This underlines the diagnostic character of stiffness that can be used as a biomarker of bladder cancer. Similar stiffness levels, observed for cancerous cells, cannot be fully explained by the organization of the actin cytoskeleton since it is different in all malignant cells. Our results underline that it is neither the spatial organization of the actin filaments nor the presence of stress fibers, but the overall density and their 3D-organization in a probing volume play the dominant role in controlling the elastic response of the cancerous cell to an external force.

  8. Electroporation enhances mitomycin C cytotoxicity on T24 bladder cancer cell line

    DEFF Research Database (Denmark)

    Vasquez, Juan Luis; Gehl, Julie; Hermann, Gregers G

    2012-01-01

    improves the cytotoxicity of mitomycin. In two cell lines, T24 (bladder cancer cell line) and DC3F (Chinese hamster fibroblast), exposure to different concentrations of mitomycin (0.01-2000μM) was tested with and without electroporation (6 pulses of 1kV/cm, duration: 99μs, frequency: 1Hz). Cell viability...

  9. Lingual Epithelial Stem Cells and Organoid Culture of Them

    Directory of Open Access Journals (Sweden)

    Hiroko Hisha

    2016-01-01

    Full Text Available As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP, were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  10. Lingual Epithelial Stem Cells and Organoid Culture of Them.

    Science.gov (United States)

    Hisha, Hiroko; Tanaka, Toshihiro; Ueno, Hiroo

    2016-01-28

    As tongue cancer is one of the major malignant cancers in the world, understanding the mechanism of maintenance of lingual epithelial tissue, which is known to be the origin of tongue cancer, is unquestionably important. However, the actual stem cells that are responsible for the long-term maintenance of the lingual epithelium have not been identified. Moreover, a simple and convenient culture method for lingual epithelial stem cells has not yet been established. Recently, we have shown that Bmi1-positive cells, residing at the second or third layer of the epithelial cell layer at the base of the interpapillary pit (IPP), were slow-cycling and could supply keratinized epithelial cells for over one year, indicating that Bmi1-positive cells are long-term lingual epithelial stem cells. In addition, we have developed a novel lingual epithelium organoid culture system using a three-dimensional matrix and growth factors. Here, we discuss current progress in the identification of lingual stem cells and future applications of the lingual culture system for studying the regulatory mechanisms of the lingual epithelium and for regenerative medicine.

  11. Starved epithelial cells uptake extracellular matrix for survival

    Science.gov (United States)

    Muranen, Taru; Iwanicki, Marcin P.; Curry, Natasha L.; Hwang, Julie; DuBois, Cory D.; Coloff, Jonathan L.; Hitchcock, Daniel S.; Clish, Clary B.; Brugge, Joan S.; Kalaany, Nada Y.

    2017-01-01

    Extracellular matrix adhesion is required for normal epithelial cell survival, nutrient uptake and metabolism. This requirement can be overcome by oncogene activation. Interestingly, inhibition of PI3K/mTOR leads to apoptosis of matrix-detached, but not matrix-attached cancer cells, suggesting that matrix-attached cells use alternate mechanisms to maintain nutrient supplies. Here we demonstrate that under conditions of dietary restriction or growth factor starvation, where PI3K/mTOR signalling is decreased, matrix-attached human mammary epithelial cells upregulate and internalize β4-integrin along with its matrix substrate, laminin. Endocytosed laminin localizes to lysosomes, results in increased intracellular levels of essential amino acids and enhanced mTORC1 signalling, preventing cell death. Moreover, we show that starved human fibroblasts secrete matrix proteins that maintain the growth of starved mammary epithelial cells contingent upon epithelial cell β4-integrin expression. Our study identifies a crosstalk between stromal fibroblasts and epithelial cells under starvation that could be exploited therapeutically to target tumours resistant to PI3K/mTOR inhibition. PMID:28071763

  12. Targeting MACC1 by RNA interference inhibits proliferation and invasion of bladder urothelial carcinoma in T24 cells.

    Science.gov (United States)

    Xu, Song-Tao; Ding, Xiang; Ni, Qing-Feng; Jin, Shao-Ju

    2015-01-01

    The purpose of this article is to research on whether MACC1 can serve as a potential target for gene therapy of human bladder urothelial carcinoma (BUC). In this study, the expression of MACC1 gene was knocked down by RNA interference (RNAi) in the T24 cell (human BUC cell). The transcription level of MACC1 was detected by RT-PCR. Activities of MACC1, caspase-3, caspase-8, Bax and Met (mesenchymal-epithelial transition factor) protein were measured by Western blot. The cell proliferation and apoptosis were detected by MTT and flow cytometry. The cell's invasion ability was performed on Matrigel transwell assay. We also detect MMP2 (metalloproteinase-2) proteins by ELISA. The results showed that the level of MACC1 mRNA and protein was significantly reduced after RNAi. MTT assay showed that the proliferation of T24 cell was decreased due to RNA interference. Apoptosis studies also showed that MACC1 gene interference in T24 loses its anti-apoptotic effects. The expression of apoptosis proteins (Caspase-3, Caspase-8 and Bax) increased significantly due to the MACC1 RNAi. The level of Met protein was down-regulated obviously due to RNAi. Transwell assay showed that invasion abilities of T24 cells were reduced obviously due to MACC1 RNAi. Further studies showed that the secretion of MMP-2 was reduced by RNAi. It can conclude that the ability of proliferation and invasion in T24 cells can be inhibited by RNAi-targeting MACC1. As a result, MACC1 can serve as a potential target for gene therapy of human bladder urothelial carcinoma.

  13. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  14. Specific survivin dual fluorescence resonance energy transfer molecular beacons for detection of human bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang WANG; Jun ZHAO; Jin ZENG; Kai-jie WU; Yu-le CHEN; Xin-ya ng WANG; Luke S CHANG; Da-lin HE

    2011-01-01

    Survivin molecular beacons can be used to detectbladder cancer cells in urine samples non-invasively.The aim of this study is to improve the specificity of detection of bladder cancer cells using survivin dual fluorescence resonance energy transfer molecular beacons (FRET MBs) that have fluorophores forming one donor-acceptor pair.Methods:Survivin-targeting dual fluorescence resonance energy transfer molecular beacons with unique target sequences were designed,which had no overlap with the other genes in the apoptosis inhibitor protein family.Human bladder cancer cell lines 5637,253J and T24,as well as the exfoliated cells in the urine of healthy adults and patients with bladder cancer were examined.Images of cells were taken using a laser scanning confocal fluorescence microscope.For assays using dual FRET MBs,the excitation wavelength was 488 nm,and the emission detection wavelengths were 520+20 nm and 560+20 nm,respectively.Results:The human bladder cancer cell lines and exfoliated cells in the urine of patients with bladder cancer incubated with the survivin dual FRET MBs exhibited strong fluorescence signals.In contrast,no fluorescence was detected in the survivin-negative human dermal fibroblasts-adult (HDF-a) cells or exfoliated cells in the urine of healthy adults incubated with the survivin dual FRET MBs.Conclusion:The results suggest that the survivin dual FRET MBs may be used as a specific and non-invasive method for early detection and follow-up of patients with bladder cancer.

  15. Expression of Peroxisome Proferator-Activated Receptor γ (PPARγ in Human Transitional Bladder Cancer and its Role in Inducing Cell Death

    Directory of Open Access Journals (Sweden)

    You-Fei Guan

    1999-10-01

    Full Text Available The present study examined the expression and role of the thiazolidinedione (TZD-activated transcription factor, peroxisome proliferator-activated receptor γ (PPARγ, in human bladder cancers. In situ hybridization shows that PPARγ mRNA is highly expressed in all human transitional epithelial cell cancers (TCCa's studied (n=11. PPARγ was also expressed in five TCCa cell lines as determined by RNase protection assays and immunoblot. Retinoid X receptor α (RXRα, a 9-cis-retinoic acid stimulated (9-cis-RA heterodimeric partner of PPARγ, was also co-expressed in all TCCa tissues and cell lines. Treatment of the T24 bladder cancer cells with the TZD PPARγ agonist troglitazone, dramatically inhibited 3H-thymidine incorporation and induced cell death. Addition of the RXRα ligands, 9-cis-RA or LG100268, sensitized T24 bladder cancer cells to the lethal effect of troglitazone and two other PPARγ activators, ciglitazone and 15-deoxy-Δ12,14-PGJ2 (15dPGJ2. Troglitazone treatment increased expression of two cyclin-dependent kinase inhibitors, p21wAF1/CIP1 and p16INK4, reduced cyclin D1 expression, consistent with G1 arrest. Troglitazone also induced an endogenous PPARγ target gene in T24 cells, adipocyte-type fatty acid binding protein (A-FABP, the expression of which correlates with bladder cancer differentiation. In situ hybridization shows that A-FABP expression is localized to normal uroepithelial cells as well as some TCCa's. Taken together, these results demonstrate that PPARγ is expressed in human TCCa where it may play a role in regulating TCCa differentiation and survival, thereby providing a potential target for therapy of uroepithelial cancers.

  16. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in human transitional bladder cancer and its role in inducing cell death.

    Science.gov (United States)

    Guan, Y F; Zhang, Y H; Breyer, R M; Davis, L; Breyer, M D

    1999-10-01

    The present study examined the expression and role of the thiazolidinedione (TZD)-activated transcription factor, peroxisome proliferator-activated receptor gamma (PPARgamma), in human bladder cancers. In situ hybridization shows that PPARgamma mRNA is highly expressed in all human transitional epithelial cell cancers (TCCa's) studied (n=11). PPARgamma was also expressed in five TCCa cell lines as determined by RNase protection assays and immunoblot. Retinoid X receptor alpha (RXRalpha), a 9-cis-retinoic acid stimulated (9-cis-RA) heterodimeric partner of PPARgamma, was also co-expressed in all TCCa tissues and cell lines. Treatment of the T24 bladder cancer cells with the TZD PPARgamma agonist troglitazone, dramatically inhibited 3H-thymidine incorporation and induced cell death. Addition of the RXRalpha ligands, 9-cis-RA or LG100268, sensitized T24 bladder cancer cells to the lethal effect of troglitazone and two other PPAR- activators, ciglitazone and 15-deoxy-delta(12,14)-PGJ2 (15dPGJ(2)). Troglitazone treatment increased expression of two cyclin-dependent kinase inhibitors, p21(WAF1/CIP1) and p16(INK4), and reduced cyclin D1 expression, consistent with G1 arrest. Troglitazone also induced an endogenous PPARgamma target gene in T24 cells, adipocyte-type fatty acid binding protein (A-FABP), the expression of which correlates with bladder cancer differentiation. In situ hybridization shows that A-FABP expression is localized to normal uroepithelial cells as well as some TCCa's. Taken together, these results demonstrate that PPARgamma is expressed in human TCCa where it may play a role in regulating TCCa differentiation and survival, thereby providing a potential target for therapy of uroepithelial cancers.

  17. Role of p53 in Mammary Epithelial Cell Senescence

    Science.gov (United States)

    2009-05-01

    culture of normal human breast epithelial cells. Methods Cell Biol 1980, 21B:107-135. 23. Easty GC, Easty DM, Monaghan P, Ormerod MG, Neville AM...27, 2006 Monitoring Editor: John Cleveland Polycomb group (PcG) protein Bmi-1 is an important regulator of cell proliferation. It regulates cellular

  18. Expression and significance of B7-H1 in peripheral blood dendritic cells from patients with bladder cancer

    Institute of Scientific and Technical Information of China (English)

    Chuanbiao Ji; Yonghua Wang; Qinchao Yu; Jing Liu; Yanan Liu; Jie Cui

    2013-01-01

    Objective: The aim of this study was to study the expression and the clinical significance of B7-H1 on dendritic cells (DCs) in peripheral blood from patients with bladder cancer. Methods: Peripheral blood mononuclear cell were disparted from 30 bladder cancer patients and 7 healthy controls by density gradient centrifugation and then co-cultured. The expression of B7-H1 on DCs were analyzed by flow cytometry. Results: Expression of B7-H1 on DCs in bladder cancer was higher than healthy controls (P < 0.01). And the expression were strongly associated with the pathological grade and clinical stage of bladder cancer (P < 0.05). Conclusion: The up-regulation of B7-H1 on DCs was strongly associated with neoplastic progression of bladder cancer. B7-H1/programmed death (PD)-1 signal pathway may also play an important role in immune escape of bladder cancer during initial phase of T cell immune response.

  19. Change in Cell Shape Is Required for Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition of Mammary Epithelial Cells

    Science.gov (United States)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2010-01-01

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a “cuboidal” epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-β-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents. PMID:18506791

  20. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  1. Biomaterial surface proteomic signature determines interaction with epithelial cells.

    Science.gov (United States)

    Abdallah, Mohamed-Nur; Tran, Simon D; Abughanam, Ghada; Laurenti, Marco; Zuanazzi, David; Mezour, Mohamed A; Xiao, Yizhi; Cerruti, Marta; Siqueira, Walter L; Tamimi, Faleh

    2017-03-01

    Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices.

  2. ATM participates in the regulation of viability and cell cycle via ellipticine in bladder cancer

    Science.gov (United States)

    Tao, Shuixiang; Meng, Shuai; Zheng, Xiangyi; Xie, Liping

    2017-01-01

    Ellipticine, an alkaloid isolated from Apocyanaceae plants, has been demonstrated to exhibit antitumor activity in several cancers. However, the effect and the mechanisms underlying its action have not been investigated in human bladder cancer cells. The aim of the present study was to investigate the effect and mechanism of ellipticine on the behavior of T-24 bladder cancer cells. T-24 cells were treated with varying concentrations and durations of ellipticine. Cell viability was evaluated by Cell Counting Kit-8 assay. Cell motility was analyzed by Transwell migration assay. Flow cytometry, reverse transcription-quantitative polymerase chain reaction and western blot analyses were performed to detect the cell cycle and signaling pathways involved. The results demonstrated that ellipticine suppressed proliferation and inhibited the migration ability of T-24 bladder cancer cells in a dose- and time-dependent manner, and resulted in G2/M cell cycle arrest. The mechanism of this action was demonstrated to be due to ellipticine-triggered activation of the ATM serine/threonine kinase pathway. These data therefore suggest that ellipticine may be effective towards treating human bladder cancer. PMID:28138703

  3. Blockage of IGF-1R signaling sensitizes urinary bladder cancer cells to mitomycin-mediated cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A major problem which is poorly understood in the management of bladder cancer is low sensitivity to chemotherapy and high recurrence after transurethral resection.Insulin-like growth factor 1 receptor(IGF-1R)signaling plays a very important role in progression,invasion and metastasis of bladder cancer cells.In this study,we investigated whether IGF-1R was involved in the growth stimulating activity and drug resistance of bladder cancer cells.The results showed: The mRNAs of IGF-1,IGF-2 and IGF-1R were strongly expressed in serum-free cultured T24 cell line,whereas normal urothelial cells did not express these factors/receptors or only in trace levels; T24 cell responded far better to growth stimulation by IGF-1 than did normal urothelial cells; blockage of IGF1R by antisense oligodeoxynucleotide(ODN)significantly inhibited the growth of T24 cell and enhanced sensitivity and apoptosis of T24 cells to mitomycin(MMC).These results suggested that blockage of IGF-IR signaling might potentially contribute to the treatment of bladder cancer cells which are insensitive to chemotherapy.

  4. Cisplatin resistance by induction of aldo-keto reductase family 1 member C2 in human bladder cancer cells

    OpenAIRE

    Shirato, Akitomi; KIKUGAWA, TADAHIKO; Miura, Noriyoshi; Tanji, Nozomu; Takemori, Nobuaki; Higashiyama, Shigeki; Yokoyama, Masayoshi

    2013-01-01

    Cisplatin is currently the most effective anti-tumor agent available against bladder cancer. To clarify the mechanism underlying cisplatin resistance in bladder cancer, the present study examined the role of the aldo-keto reductase family 1 member C2 (AKR1C2) protein on chemoresistance using a human bladder cancer cell line. The function of AKR1C2 in chemoresistance was studied using the human HT1376 bladder cancer cell line and the cisplatin-resistant HT1376-CisR subline. AKR1C2 was expresse...

  5. Linearized texture of three-dimensional extracellular matrix is mandatory for bladder cancer cell invasion

    Science.gov (United States)

    Alfano, Massimo; Nebuloni, Manuela; Allevi, Raffaele; Zerbi, Pietro; Longhi, Erika; Lucianò, Roberta; Locatelli, Irene; Pecoraro, Angela; Indrieri, Marco; Speziali, Chantal; Doglioni, Claudio; Milani, Paolo; Montorsi, Francesco; Salonia, Andrea

    2016-01-01

    In the fields of biomaterials and tissue engineering simulating the native microenvironment is of utmost importance. As a major component of the microenvironment, the extracellular matrix (ECM) contributes to tissue homeostasis, whereas modifications of native features are associated with pathological conditions. Furthermore, three-dimensional (3D) geometry is an important feature of synthetic scaffolds favoring cell stemness, maintenance and differentiation. We analyzed the 3D structure, geometrical measurements and anisotropy of the ECM isolated from (i) human bladder mucosa (basal lamina and lamina propria) and muscularis propria; and, (ii) bladder carcinoma (BC). Next, binding and invasion of bladder metastatic cell line was observed on synthetic scaffold recapitulating anisotropy of tumoral ECM, but not on scaffold with disorganized texture typical of non-neoplastic lamina propria. This study provided information regarding the ultrastructure and geometry of healthy human bladder and BC ECMs. Likewise, using synthetic scaffolds we identified linearization of the texture as a mandatory feature for BC cell invasion. Integrating microstructure and geometry with biochemical and mechanical factors could support the development of an innovative synthetic bladder substitute or a tumoral scaffold predictive of chemotherapy outcomes. PMID:27779205

  6. Cell length measurements in longitudinal smooth muscle strips of the pig urinary bladder

    NARCIS (Netherlands)

    E. van Asselt (Els); R. Schot; R. van Mastrigt (Ron)

    1993-01-01

    textabstractIn this study the length of smooth muscle cells in muscle bundles of pig urinary bladder wall was determined after dissection in Tyrode buffers with different calcium concentrations ([Ca2+]). Previous studies have shown that the length of isolated smooth muscle cells decreases with an in

  7. Human thymic epithelial cells express functional HLA-DP molecules

    DEFF Research Database (Denmark)

    Jørgensen, A; Röpke, C; Nielsen, M

    1996-01-01

    T lymphocytes, we examined whether human thymic epithelial cells (TEC) expressed HLA-DP molecules. We present evidence that TEC obtained from short time culture express low but significant levels of HLA-DP molecules. The expression of HLA-DP molecules was comparable to or higher than the expression...... of HLA-DP allospecific primed lymphocyte typing (PLT) CD4 T cell lines. IFN-gamma treatment strongly upregulated the HLA-DP allospecific PLT responses whereas other PLT responses remained largely unchanged. In conclusion, these data indicate that human thymus epithelial cells express significant levels...

  8. Immunolocalization of epithelial and mesenchymal matrix constituents in association with inner enamel epithelial cells.

    Science.gov (United States)

    Bosshardt, D D; Nanci, A

    1998-02-01

    After crown formation, the enamel organ reorganizes into Hertwig's epithelial root sheath (HERS). Although it is generally accepted that HERS plays an inductive role during root formation, it also has been suggested that it may contribute enamel-related proteins to cementum matrix. By analogy to the enamel-free area (EFA) in rat molars, in which epithelial cells express not only enamel proteins but also "typical" mesenchymal matrix constituents, it has been proposed that HERS cells may also have the potential to produce cementum proteins. To test this hypothesis, we examined the nature of the first matrix layer deposited along the cervical portion of root dentin and the characteristics of the associated cells. Rat molars were processed for postembedding colloidal gold immunolabeling with antibodies to amelogenin (AMEL), ameloblastin (AMBN), bone sialoprotein (BSP), and osteopontin (OPN). To minimize the possibility of false-negative results, several antibodies to AMEL were used. The labelings were compared with those obtained at the EFA. Initial cementum matrix was consistently observed at a time when epithelial cells from HERS covered most of the forming root surface. Cells with mesenchymal characteristics were rarely seen in proximity to the matrix. Both the EFA matrix and initial cementum exhibited collagen fibrils and were intensely immunoreactive for BSP and OPN. AMEL and AMBN were immunodetected at the EFA but not over the initial cementum proper. These two proteins were, however, present at the cervical-most portion of the root where enamel matrix extends for a short distance between dentin and cementum. These data suggest that epithelial cells along the root surface are likely responsible for the deposition of the initial cementum matrix and therefore, like the cells at the EFA, may be capable of producing mesenchymal proteins.

  9. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells

    Science.gov (United States)

    Chen, Qike K.; Lee, KangAe; Radisky, Derek C.; Nelson, Celeste M.

    2013-01-01

    Mouse mammary epithelial cells undergo transdifferentiation via epithelial-mesenchymal transition (EMT) upon treatment with matrix metalloproteinase-3 (MMP3). In rigid microenvironments, MMP3 upregulates expression of Rac1b, which translocates to the cell membrane to promote induction of reactive oxygen species and EMT. Here we examine the role of the extracellular matrix (ECM) in this process. Our data show that the basement membrane protein laminin suppresses the EMT response in MMP3-treated cells, whereas fibronectin promotes EMT. These ECM proteins regulate EMT via interactions with their specific integrin receptors. α6-integrin sequesters Rac1b from the membrane and is required for inhibition of EMT by laminin. In contrast, α5-integrin maintains Rac1b at the membrane and is required for the promotion of EMT by fibronectin. Understanding the regulatory role of the ECM will provide insight into mechanisms underlying normal and pathological development of the mammary gland. PMID:23660532

  10. Immunohistochemical study of the expression of cell cycle regulating proteins at different stages of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, Hanne; Maase, Hans von der; Sørensen, Flemming B.

    2002-01-01

    PURPOSE: The cell cycle is known to be deregulated in cancer. We therefore analyzed the expression of the cell cycle related proteins p21, p27, p16, Rb, and L-myc by immunohistochemical staining of bladder tumors. METHODS: The tissue material consisted of bladder tumors from three groups......(kip1) ( P=0.03), Rb ( P=0.00002), and L-myc ( P=0.00000007) in muscle invasive tumors compared to noninvasive tumors. Tumors presenting as muscle invasive at first diagnosis had significantly lower levels of p16/CDKN2A ( P=0.01) when compared to muscle invasive tumors that followed Ta or T1 precursor...

  11. Transfection of promyelocytic leukemia in retrovirus vector inhibits growth of human bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    Lei LI; Da-lin HE

    2005-01-01

    Aim: To construct a recombinant retrovirus vector carrying human promyelocytic leukemia (PML) cDNA and identify its expression and biology role in bladder cancer UM-UC-2 cells for future gene therapy. Methods: PML full-length cDNA was inserted into the EcoR I and BamHI site of pLXSN vector containing the long terminal repeat (LTR) promoter. The vector was identified by restriction enzyme digestion and then transfected into PA317 packaging cell line by calcium phosphate coprecipitation. PML cDNA was detected by polymerase chain reaction (PCR) and the protein was identified by laser confocal microscopy and Western blot in bladder cancer cells, respectively. The morphology was observed by inverted phase contrast microscope, and MTT assay determined growth curve of the bladder cancer cells. Results: Restriction enzyme digestion proved that a 2.1kb PML cDNA was inserted into the pLXSN vector. PCR assay demonstrated that 304 bp fragments were found in UM-UC-2/pLPMLSN transfects. Laser confocal microscopy showed speck dots fluorescence in the UM-UC-2/pLPMLSN nucleus.A 90 kD specific brand was found by Western blot. MTT assay demonstrated the UM-UC-2/pLPMLSN bladder cancer growth inhibition. Conclusion: The retrovirus pLPMLSN vector was successfully constructed and could generate high effective expression of human PML in bladder cancer cell UM-UC-2, suggesting that PML recombinant retrovirus have potential utility in the gene therapy for bladder cancer.

  12. AN IN VITRO MODEL FOR MURINE URETERIC EPITHELIAL CELLS

    Science.gov (United States)

    This report presents a model developed to study growth and differentiation of primary cultures of ureteric epithelial cells from embryonic C57BL/6N mouse urinary tracts. Single cells were resuspended in medium and plated onto transwells coated with collagen IV and laminin. Basa...

  13. No junctional communication between epithelial cells in hydra

    DEFF Research Database (Denmark)

    de Laat, S W; Tertoolen, L G; Grimmelikhuijzen, C J

    1980-01-01

    properties of the junctional membranes by electrophysiological methods and by intracellular-dye iontophoresis. We report here that no electrotonic coupling is detectable between epithelial cells of Hydra attenuata in: (1) intact animals, (2) head-regenerating animals, (3) cell re-aggregates, and (4) hydra...

  14. Schistosomiasis-induced squamous cell bladder carcinoma in an HIV-infected patient

    DEFF Research Database (Denmark)

    Marbjerg, Lis Høy; Øvrehus, Anne Lindebo Holm; Johansen, Isik Somuncu

    2015-01-01

    The burden of Schistosoma haematobium-associated bladder cancer is very high in Africa; nevertheless the disease can pose considerable diagnostic challenges in low prevalence countries. We present the case of a 40-year-old HIV co-infected woman, originally from Mozambique, who had persisting...... haematuria for more than a year. Investigations revealed invasive S. haematobium-associated squamous cell bladder cancer. If her origin had been taken into account, the diagnosis might have been made earlier. Awareness of the disease prevalence among HIV co-infected patients from endemic areas and timely...... screening of such patients is important for the early diagnosis of schistosomiasis and related complications, such as S. haematobium-associated squamous cell bladder cancer....

  15. Primary mucinous adenocarcinoma of the bladder with signet-ring cells: case report

    Directory of Open Access Journals (Sweden)

    Marcelo Lorenzi Marques

    Full Text Available CONTEXT: Primary adenocarcinomas of the bladder are uncommon and usually occur by contiguity with or hematogenic dissemination of other adenocarcinomas such as colorectal, prostate and gynecological tract carcinomas. Mucinous and signet-ring cell histological patterns are even rarer and it is often difficult to morphologically distinguish them from metastatic colorectal adenocarcinoma. CASE REPORT: We present and discuss a rare case of primary mucinous adenocarcinoma of the bladder with signet-ring cells in a 57-year-old male patient. Other primary sites for the tumor had been excluded and, in the absence of digestive tract tumor and for confirmation that it was a primary bladder tumor, an immunohistochemistry study was performed.

  16. In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    OpenAIRE

    Youn, Hyun-Yi; McCanna, David J.; Sivak, Jacob G.; Jones, Lyndon W.

    2011-01-01

    Purpose The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials. Methods Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated w...

  17. Oxidized alginate hydrogels as niche environments for corneal epithelial cells.

    Science.gov (United States)

    Wright, Bernice; De Bank, Paul A; Luetchford, Kim A; Acosta, Fernando R; Connon, Che J

    2014-10-01

    Chemical and biochemical modification of hydrogels is one strategy to create physiological constructs that maintain cell function. The aim of this study was to apply oxidised alginate hydrogels as a basis for development of a biomimetic niche for limbal epithelial stem cells that may be applied to treating corneal dysfunction. The stem phenotype of bovine limbal epithelial cells (LEC) and the viability of corneal epithelial cells (CEC) were examined in oxidised alginate gels containing collagen IV over a 3-day culture period. Oxidation increased cell viability (P ≤ 0.05) and this improved further with addition of collagen IV (P ≤ 0.01). Oxidised gels presented larger internal pores (diameter: 0.2-0.8 µm) than unmodified gels (pore diameter: 0.05-0.1 µm) and were significantly less stiff (P ≤ 0.001), indicating that an increase in pore size and a decrease in stiffness contributed to improved cell viability. The diffusion of collagen IV from oxidised alginate gels was similar to that of unmodified gels suggesting that oxidation may not affect the retention of extracellular matrix proteins in alginate gels. These data demonstrate that oxidised alginate gels containing corneal extracellular matrix proteins can influence corneal epithelial cell function in a manner that may impact beneficially on corneal wound healing therapy.

  18. Role of p53 Mammary Epithelial Cell Senescence

    Science.gov (United States)

    2005-05-01

    AD Award Number: DAMD17-02-1-0509 TITLE: Role of p53 Mammary Epithelial Cell Senescence PRINCIPAL INVESTIGATOR: Goberdhan P. Dimri, Ph.D. CONTRACTING ...type and However, Mucl , K-18, and ASMA were not expressed in luminal cell type groups [12,68]. Interestingly, a significant cells present in...13,17,27], the has also attracted a great interest in the field of breast cancer candidate mammary stem cells appear to be ESA+, Mucl -, research, and

  19. Collective Movement of Epithelial Cells on a Collagen Gel Substrate

    OpenAIRE

    Haga, Hisashi; Irahara, Chikako; KOBAYASHI, Ryo; Nakagaki, Toshiyuki; Kawabata, Kazushige

    2004-01-01

    Collective cell movement acts as an efficient strategy in many physiological events, including wound healing, embryonic development, and morphogenesis. We found that epithelial cells (Madin-Darby canine kidney cell) migrated collectively along one direction on a collagen gel substrate. Time-lapse images of Madin-Darby canine kidney cells cultured on type-I collagen gels and glass substrates were captured by phase contrast microscopy equipped with an incubation system. On the gel substrate, th...

  20. Construction of tissue-engineered urinary bladder using biodegradable polymer matrices as cell scaffolds

    Institute of Scientific and Technical Information of China (English)

    WANG Changyong; WANG Shen-guo; SHI Gui-xin; CAI Qing; YAN Quan-jian; HOU Wei-ping; GUO Xi-min; ZHAO Qiang; DUAN Cui-mi; SHAO Guo-xing; YE Ben-lan; BEI Jian-zhong

    2001-01-01

    @@ INTRODUCTIONApproximately 400 million persons worldwide suffer from bladder disease. Individuals with end-stage bladder disease often require bladder replacement or repair.Several bladder substitutes have been attempted with both organic materials and synthetics.

  1. Metastasis of Gastric Signet-Ring Cell Carcinoma to the Urinary Bladder: A Case Report and Review of the Literature

    Directory of Open Access Journals (Sweden)

    Kerem Okutur

    2015-01-01

    Full Text Available Although signet-ring cell (SRC adenocarcinoma is commonly seen in the stomach, it is a very rarely seen histologic entity in the bladder. It is difficult to distinguish primary SRC adenocarcinoma of the bladder from bladder metastasis of SRC carcinoma of the stomach only based on histological findings. In such cases, clinical findings and immunohistochemical studies may be helpful. We present here a 48-year-old male patient presenting with hematuria and abdominal pain. Computerised tomography of the patient revealed a gastric mass, peritoneal involvement, and thickening of the bladder wall, and histopathological analysis revealed SRC adenocarcinoma in both of the endoscopic biopsies taken from the stomach and bladder. Immunohistochemical analyses confirmed the diagnosis of SRC adenocarcinoma of the bladder secondary to gastric cancer.

  2. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume re...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed.......The physiological function of epithelia is transport of ions, nutrients, and fluid either in secretory or absorptive direction. All of these processes are closely related to cell volume changes, which are thus an integrated part of epithelial function. Transepithelial transport and cell volume...... regulation both rely on the spatially and temporally coordinated function of ion channels and transporters. In healthy epithelia, specific ion channels/transporters localize to the luminal and basolateral membranes, contributing to functional epithelial polarity. In pathophysiological processes...

  3. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    Science.gov (United States)

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland.

  4. Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells

    NARCIS (Netherlands)

    Kistemaker, Loes E. M.; Hiemstra, Pieter S.; Bos, I. Sophie T.; Bouwman, Susanne; van den Berge, Maarten; Hylkema, Machteld N.; Meurs, Herman; Kerstjens, Huib A. M.; Gosens, Reinoud

    2015-01-01

    BACKGROUND: It has been shown that acetylcholine is both a neurotransmitter and acts as a local mediator, produced by airway cells including epithelial cells. In vivo studies have demonstrated an indirect role for acetylcholine in epithelial cell differentiation. Here, we aimed to investigate direct

  5. Plasmacytoid Transitional Cell Carcinoma of Bladder: A Clinico-pathological Study and Review of Literatures

    Institute of Scientific and Technical Information of China (English)

    FENG Xiaoli; ZHANG Hongtu; SUN Yuntian; LIU Xiuyun

    2006-01-01

    Objective: To study the pathologic features of plasmacytoid transitional cell carcinoma of the bladder, and to analyze the diagnostic features, criteria for differential diagnosis and the clinical significance of the tumor. Methods: Two cases of bladder plasmacytoid transitional cell carcinoma were studied. Routine paraffin sections with HE staining, Pap smear and immunohistochemistry by S-P method were observed under a light microscope. Pathological and clinical data were analyzed by comparison with early reported cases in literatures. Results: A characteristic feature of this tumor was of deep invasion in the lamina propria and/or muscularis propria, in addition to the component of carcinoma in situ in the mucosa, when tumors were diagnosed. The histological pattern and cytological features showed similarity to a plasmacytoid tumor. The tumor cells were strongly positive for AE1/AE3, CEA and CK18. The prognosis appeared to be worse than ordinary transitional cell carcinoma. Conclusion: The plasmacytoid transitional cell carcinoma of bladder is rare but has typical pathological, immunohistological and clinical features. Pathologists should be aware of this kind of primary tumor of bladder.

  6. Overexpression of c-myc induces epithelial mesenchymal transition in mammary epithelial cells.

    Science.gov (United States)

    Cho, Kyoung Bin; Cho, Min Kyong; Lee, Won Young; Kang, Keon Wook

    2010-07-28

    The c-myc gene is frequently overexpressed in human breast cancer and its target genes are involved in tumorigenesis. Epithelial mesenchymal transitions (EMT), where cells undergo a developmental switch from a polarized epithelial phenotype to a highly motile mesenchymal phenotype, are associated with invasion and motility of cancer cells. Basal E-cadherin expression was down-regulated in c-myc overexpressing MCF10A (c-myc-MCF10A) cells compared to GFP-overexpressing MCF10A (GFP-MCF10A) cells, while N-cadherin was distinctly increased in c-myc-MCF10A cells. Given that glycogen synthase kinase-3beta (GSK-3beta) and the snail axis have key roles in E-cadherin deregulation during EMT, we investigated the role of GSK-3beta/snail signaling pathways in the induction of EMT by c-myc overexpression. In contrast to GFP-MCF10A cells, both the transcriptional activity and the ubiquitination-dependent protein stability of snail were enhanced in c-myc-MCF10A cells, and this was reversed by GSK-3beta overexpression. We also found that c-myc overexpression inhibits GSK-3beta activity through activation of extracellular signal-regulated kinase (ERK). Inhibition of ERK by dominant negative mutant transfection or chemical inhibitor significantly suppressed snail gene transcription. These results suggest that c-myc overexpression during transformation of mammary epithelial cells (MEC) is involved in EMTs via ERK-dependent GSK-3beta inactivation and subsequent snail activation.

  7. Oxidative Stress, Cell Death, and Other Damage to Alveolar Epithelial Cells Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nagai A

    2003-09-01

    Full Text Available Abstract Cigarette smoking is a major risk factor in the development of various lung diseases, including pulmonary emphysema, pulmonary fibrosis, and lung cancer. The mechanisms of these diseases include alterations in alveolar epithelial cells, which are essential in the maintenance of normal alveolar architecture and function. Following cigarette smoking, alterations in alveolar epithelial cells induce an increase in epithelial permeability, a decrease in surfactant production, the inappropriate production of inflammatory cytokines and growth factors, and an increased risk of lung cancer. However, the most deleterious effect of cigarette smoke on alveolar epithelial cells is cell death, i.e., either apoptosis or necrosis depending on the magnitude of cigarette smoke exposure. Cell death induced by cigarette smoke exposure can largely be accounted for by an enhancement in oxidative stress. In fact, cigarette smoke contains and generates many reactive oxygen species that damage alveolar epithelial cells. Whether apoptosis and/or necrosis in alveolar epithelial cells is enhanced in healthy cigarette smokers is presently unclear. However, recent evidence indicates that the apoptosis of alveolar epithelial cells and alveolar endothelial cells is involved in the pathogenesis of pulmonary emphysema, an important cigarette smoke-induced lung disease characterized by the loss of alveolar structures. This review will discuss oxidative stress, cell death, and other damage to alveolar epithelial cells induced by cigarette smoke.

  8. Epithelial neoplasia in Drosophila entails switch to primitive cell states.

    Science.gov (United States)

    Khan, Sumbul J; Bajpai, Anjali; Alam, Mohammad Atif; Gupta, Ram P; Harsh, Sneh; Pandey, Ravi K; Goel-Bhattacharya, Surbhi; Nigam, Aditi; Mishra, Arati; Sinha, Pradip

    2013-06-11

    Only select cell types in an organ display neoplasia when targeted oncogenically. How developmental lineage hierarchies of these cells prefigure their neoplastic propensities is not yet well-understood. Here we show that neoplastic Drosophila epithelial cells reverse their developmental commitments and switch to primitive cell states. In a context of alleviated tissue surveillance, for example, loss of Lethal giant larvae (Lgl) tumor suppressor in the wing primordium induced epithelial neoplasia in its Homothorax (Hth)-expressing proximal domain. Transcriptional profile of proximally transformed mosaic wing epithelium and functional tests revealed tumor cooperation by multiple signaling pathways. In contrast, lgl(-) clones in the Vestigial (Vg)-expressing distal wing epithelium were eliminated by cell death. Distal lgl(-) clones, however, could transform when both tissue surveillance and cell death were compromised genetically and, alternatively, when the transcription cofactor of Hippo signaling pathway, Yorkie (Yki), was activated, or when Ras/EGFR signaling was up-regulated. Furthermore, transforming distal lgl(-) clones displayed loss of Vg, suggesting reversal of their terminal cell fate commitment. In contrast, reinforcing a distal (wing) cell fate commitment in lgl(-) clones by gaining Vg arrested their neoplasia and induced cell death. We also show that neoplasia in both distal and proximal lgl(-) clones could progress in the absence of Hth, revealing Hth-independent wing epithelial neoplasia. Likewise, neoplasia in the eye primordium resulted in loss of Elav, a retinal cell marker; these, however, switched to an Hth-dependent primitive cell state. These results suggest a general characteristic of "cells-of-origin" in epithelial cancers, namely their propensity for switch to primitive cell states.

  9. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Li, Yingrui; Xu, Xun; Song, Luting

    2012-01-01

    Background Cancers arise through an evolutionary process in which cell populations are subjected to selection; however, to date, the process of bladder cancer, which is one of the most common cancers in the world, remains unknown at a single-cell level. Results We carried out single-cell exome se...

  10. Schistosomiasis-induced squamous cell bladder carcinoma in an HIV-infected patient

    DEFF Research Database (Denmark)

    Marbjerg, Lis Høy; Øvrehus, Anne Lindebo Holm; Johansen, Isik Somuncu

    2015-01-01

    The burden of Schistosoma haematobium-associated bladder cancer is very high in Africa; nevertheless the disease can pose considerable diagnostic challenges in low prevalence countries. We present the case of a 40-year-old HIV co-infected woman, originally from Mozambique, who had persisting...... haematuria for more than a year. Investigations revealed invasive S. haematobium-associated squamous cell bladder cancer. If her origin had been taken into account, the diagnosis might have been made earlier. Awareness of the disease prevalence among HIV co-infected patients from endemic areas and timely...

  11. CXCL12 expression by healthy and malignant ovarian epithelial cells

    Directory of Open Access Journals (Sweden)

    Emilie Dominique

    2011-03-01

    Full Text Available Abstract Background CXCL12 has been widely reported to play a biologically relevant role in tumor growth and spread. In epithelial ovarian cancer (EOC, CXCL12 enhances tumor angiogenesis and contributes to the immunosuppressive network. However, its prognostic significance remains unclear. We thus compared CXCL12 status in healthy and malignant ovaries, to assess its prognostic value. Methods Immunohistochemistry was used to analyze CXCL12 expression in the reproductive tracts, including the ovaries and fallopian tubes, of healthy women, in benign and borderline epithelial tumors, and in a series of 183 tumor specimens from patients with advanced primary EOC enrolled in a multicenter prospective clinical trial of paclitaxel/carboplatin/gemcitabine-based chemotherapy (GINECO study. Univariate COX model analysis was performed to assess the prognostic value of clinical and biological variables. Kaplan-Meier methods were used to generate progression-free and overall survival curves. Results Epithelial cells from the surface of the ovary and the fallopian tubes stained positive for CXCL12, whereas the follicles within the ovary did not. Epithelial cells in benign, borderline and malignant tumors also expressed CXCL12. In EOC specimens, CXCL12 immunoreactivity was observed mostly in epithelial tumor cells. The intensity of the signal obtained ranged from strong in 86 cases (47% to absent in 18 cases ( Conclusion Our findings highlight the previously unappreciated constitutive expression of CXCL12 on healthy epithelia of the ovary surface and fallopian tubes, indicating that EOC may originate from either of these epithelia. We reveal that CXCL12 production by malignant epithelial cells precedes tumorigenesis and we confirm in a large cohort of patients with advanced EOC that CXCL12 expression level in EOC is not a valuable prognostic factor in itself. Trial Registration ClinicalTrials.gov: NCT00052468

  12. Apicobasal Polarity Controls Lymphocyte Adhesion to Hepatic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Natalia Reglero-Real

    2014-09-01

    Full Text Available Loss of apicobasal polarity is a hallmark of epithelial pathologies. Leukocyte infiltration and crosstalk with dysfunctional epithelial barriers are crucial for the inflammatory response. Here, we show that apicobasal architecture regulates the adhesion between hepatic epithelial cells and lymphocytes. Polarized hepatocytes and epithelium from bile ducts segregate the intercellular adhesion molecule 1 (ICAM-1 adhesion receptor onto their apical, microvilli-rich membranes, which are less accessible by circulating immune cells. Upon cell depolarization, hepatic ICAM-1 becomes exposed and increases lymphocyte binding. Polarized hepatic cells prevent ICAM-1 exposure to lymphocytes by redirecting basolateral ICAM-1 to apical domains. Loss of ICAM-1 polarity occurs in human inflammatory liver diseases and can be induced by the inflammatory cytokine tumor necrosis factor alpha (TNF-α. We propose that adhesion receptor polarization is a parenchymal immune checkpoint that allows functional epithelium to hamper leukocyte binding. This contributes to the haptotactic guidance of leukocytes toward neighboring damaged or chronically inflamed epithelial cells that expose their adhesion machinery.

  13. Mannheimia haemolytica biofilm formation on bovine respiratory epithelial cells.

    Science.gov (United States)

    Boukahil, Ismail; Czuprynski, Charles J

    2016-12-25

    Mannheimia haemolytica is the most important bacterial agent associated with the bovine respiratory disease complex (BRDC), which causes worldwide economic losses to the cattle industry. M. haemolytica cells initially colonize the tonsillar crypts in the upper respiratory tract of cattle, from where they can subsequently descend into the lungs to cause disease. Many bacteria exist as biofilms inside their hosts. We hypothesize that M. haemolytica colonization of cattle during its commensal state may include biofilm formation. To begin to assess this possibility, we developed an in vitro system to study biofilm formation directly on bovine respiratory epithelial cells. Using fixed primary bovine bronchial epithelial cells, we observed M. haemolytica biofilm formation after a 48h incubation period at 37°C. Addition of mucin, the main component of mucus present in the upper respiratory tract, decreased M. haemolytica biofilm formation on bovine epithelial cells. We investigated the effects of prior viral infection of the epithelial cells on subsequent biofilm formation by M. haemolytica and found negligible effects. Utilization of this model system will provide new insights into the potential role of biofilm formation by M. haemolytica in the pathogenesis of BRDC.

  14. Structure and function in urinary bladder of foetal sheep.

    Science.gov (United States)

    France, V M; Stanier, M W; Wooding, F B

    1974-06-01

    1. The structure and function of the epithelial lining of the urinary bladder of sheep foetuses was investigated by electron microscopic studies made in conjunction with a series of experiments in which the permeability of the bladder to sodium and water was measured in vitro. Measurements were made at gestational ages ranging from 50 to 141 days (term = 147 days) Osmolarity and electrolyte concentrations of urine found in the foetal bladder were also measured.2. The development of tight junctions between the bladder epithelial cells was investigated by incubating the tissue with solutions containing 1 mM-LaCl(3) on the mucosal surface. No penetration of the junctions by lanthanum was observed in foetuses of 90 days or older. In younger bladders, the epithelial layer was stripped by treatment with lanthanum, but tight junctions appeared to be fully developed in early bladders incubated without lanthanum.3. The surface structure of the luminal (mucosal) plasmalemma was fully developed at 50 days.4. Unidirectional fluxes of labelled sodium and water were measured with identical solutions bathing the two surfaces of the bladder wall. No net water movement occurred; the mean ratio of efflux to influx in nine bladders was 1.002 +/- 0.039 (S.E. of mean). Under these conditions, the flux ratio for sodium was 1.735 +/- 0.143 (S.E. of mean) in twelve bladders.5. Antidiuretic hormone (ADH) had no effect on net water movement but reduced the net efflux of sodium so that the flux ratio became 1.285 +/- 0.255 (S.E. of mean) n = 8. ADH also had a striking effect on the structure of the epithelium, causing marked swelling of the intercellular spaces. The tight junctions remained an effective barrier to lanthanum penetration under these conditions; lanthanum was not observed in the enlarged spaces.

  15. Allelic deletions of cell growth regulators during progression of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, H; von der Maase, H; Christensen, M

    2000-01-01

    Cell growth regulators include proteins of the p53 pathway encoded by the genes CDKN2A (p16, p14arf), MDM2, TP53, and CDKN1A (p21) as well as proteins encoded by genes like RB1, E2F, and MYCL. In the present study we investigated allelic deletions of all these genes in each recurrent bladder tumor...

  16. Quantitative histopathology in the prognostic evaluation of patients with transitional cell carcinoma of the urinary bladder

    DEFF Research Database (Denmark)

    Sasaki, M; Sørensen, Flemming Brandt; Fukuzawa, S

    1993-01-01

    BACKGROUND: Morphologic grading of malignancy is considered to be of prognostic value in patients with transitional cell carcinomas of the urinary bladder (TCC). This qualitative approach is, however, associated with low reproducibility. Grading of malignancy can be carried out on a reproducible...

  17. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells

    Science.gov (United States)

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis. PMID:27936102

  18. AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells.

    Science.gov (United States)

    Yoshinaga, Tomoyo; Uwabe, Kenichiro; Naito, Shoichi; Higashino, Kenichi; Nakano, Toru; Numata, Yoshito; Kihara, Akio

    2016-01-01

    Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tubule epithelial cell line. The most promising compounds were further tested in RPTEC primary renal tubule epithelial cells. We found that the synthetic lipid AM251 suppressed two hallmark events associated with EMT, the upregulation of collagen 1A1 (COL1A1) and downregulation of E-cadherin. Though AM251 is known to act as an antagonist for the cannabinoid receptor type 1 (CB1) and an agonist for the G protein-coupled receptor 55 (GRP55), the suppression of EMT by AM251 was not mediated through either receptor. Microarray analyses revealed that AM251 inhibited induction of several EMT transcription factors such as SNAIL1, which is the key inducer of EMT, and the AP-1 transcription factors FOSB and JUNB. Activation of SMAD2/3 and p38 mitogen-activated protein kinase (MAPK) was inhibited by AM251, with greater inhibition of the latter, indicating that AM251 acted upstream of SMAD/p38 MAPK in the TGF-β signaling pathway. Our findings regarding the effects of AM251 on the TGF-β signaling pathway may inform development of a novel therapeutic agent suppressing EMT, thus preventing kidney fibrosis.

  19. Pathogenic and Diagnostic Potential of BLCA-1 and BLCA-4 Nuclear Proteins in Urothelial Cell Carcinoma of Human Bladder

    Directory of Open Access Journals (Sweden)

    Matteo Santoni

    2012-01-01

    Full Text Available Transitional cell carcinoma (TCC of the bladder is one of the most common malignancies of genitourinary tract. Patients with bladder cancer need a life-long surveillance, directly due to the relatively high recurrence rate of this tumor. The use of cystoscopy represents the gold standard for the followup of previously treated patients. Nevertheless, several factors, including cost and invasiveness, render cystoscopy not ideal for routine controls. Advances in the identification of specific alterations in the nuclear structure of bladder cancer cells have opened novel diagnostic landscapes. The members of nuclear matrix protein family BLCA-1 and BLCA-4, are currently under evaluation as bladder cancer urinary markers. They are involved in tumour cell proliferation, survival, and angiogenesis. In this paper, we illustrate the role of BLCA-1 and BLCA-4 in bladder carcinogenesis and their potential exploitation as biomarkers in this cancer.

  20. NS-398, a selective cyclooxygenase-2 inhibitor, reduces experimental bladder carcinoma outgrowth by inhibiting tumor cell proliferation.

    NARCIS (Netherlands)

    Smakman, N.; Schaap, N.P.M.; Snijckers, C.M.; Rinkes, M.J.; Kranenburg, O.

    2005-01-01

    OBJECTIVES: To evaluate the efficacy of the selective cyclooxygenase-2 (COX-2) inhibitor NS-398 in treating experimental T24 bladder carcinoma, and to assess its effect on tumor cell proliferation and survival and tumor vascularization. COX-2 overexpression is frequently observed in bladder carcinom

  1. Intestinal epithelial cells and their role in innate mucosal immunity

    OpenAIRE

    Maldonado-Contreras, A. L.; McCormick, Beth A

    2010-01-01

    The mucosal surfaces of the respiratory, gastrointestinal and urogenital tracts are covered by a layer of epithelial cells that are responsible for sensing and promoting a host immune response in order to establish the limits not only for commensal microorganisms but also for foreign organisms or particles. This is a remarkable task as the human body represents a composite of about 10 trillion human-self cells plus non-self cells from autochthonous or indigenous microbes that outnumber human ...

  2. Integrin Signaling in Mammary Epithelial Cells and Breast Cancer

    OpenAIRE

    Lambert, Arthur W.; Sait Ozturk; Sam Thiagalingam

    2012-01-01

    Cells sense and respond to the extracellular matrix (ECM) by way of integrin receptors, which facilitate cell adhesion and intracellular signaling. Advances in understanding the mammary epithelial cell hierarchy are converging with new developments that reveal how integrins regulate the normal mammary gland. But in breast cancer, integrin signaling contributes to the development and progression of tumors. This paper highlights recent studies which examine the role of integrin signaling in mam...

  3. Epithelial cell adhesion and gastrointestinal colonization of Lactobacillus in poultry.

    Science.gov (United States)

    Spivey, Megan A; Dunn-Horrocks, Sadie L; Duong, Tri

    2014-11-01

    Administration of probiotic Lactobacillus cultures is an important alternative to the use of antibiotic growth promoters and has been demonstrated to improve animal health, growth performance, and preharvest food safety in poultry production. Whereas gastrointestinal colonization is thought to be critical to their probiotic functionality, factors important to Lactobacillus colonization in chickens are not well understood. In this study we investigate epithelial cell adhesion in vitro and colonization of Lactobacillusin vivo in broiler chickens. Adhesion of Lactobacillus cultures to epithelial cells was evaluated using the chicken LMH cell line. Lactobacillus cultures were able adhere effectively to LMH cells relative to Bacillus subtilis and Salmonella Typhimurium. Epithelial cell adhesion was similar for Lactobacillus crispatus TDCC 75, L. cristpatus TDCC 76, and Lactobacillus gallinarum TDCC 77, and all 3 were more adherent than L. gallinarum TDCC 78. However, when colonization was evaluated in the ileum and cecum of broiler chicks, L. crispatus TDCC 75 and L. gallinarum TDCC 77 were more persistent than L. crispatus TDCC 76 and L. gallinarum TDCC 78. The reduction of growth in medium supplemented with oxgal was greater for L. gallinarum TDCC 78 than L. gallinarum TDCC 77, suggesting that whereas adhesion was similar for the 2 strains, the difference in colonization between L. gallinarum strains may be due in part to their bile sensitivity. This study demonstrates that whereas adhesion to epithelial cells may be important in predicting gastrointestinal colonization, other factors including bile tolerance may also contribute to the colonization of Lactobacillus in poultry. Additionally, the chicken LMH cell line is expected to provide a platform for investigating mechanisms of Lactobacillus adhesion to epithelial tissue and evaluating the probiotic potential Lactobacillus in poultry.

  4. Overexpression of the promyelocytic leukemia gene suppresses growth of human bladder cancer cells by inducing G1 cell cycle arrest and apoptosis

    Institute of Scientific and Technical Information of China (English)

    HE Dalin 贺大林; NAN Xunyi 南勋义; Chang Kun-Song; WANG Yafeng 王亚峰; Chung Leland W.K.

    2003-01-01

    Objectives To examine the anti-oncogenic effects of promyelocytic leukemia (PML) on bladder cancer and to explore its molecular mechanisms of growth suppression.Methods Wild-type PML was transfected into bladder cancer cells (5637 cell) and expressed in a replication-deficient adenovirus-mediated gene delivery system and introduced into human bladder cancer cells (5637 cell) in vitro and in vivo. The effect and mechanisms of the PML gene in cell growth, clonogenicity, and tumorigenicity of bladder cancer cells were studied using in vitro and in vivo growth assays, soft agar colony-forming assay, cell cycle analysis, apoptosis assay and in vivo tumorigenicity assay.Results Overexpression of PML in 5637 cells significantly reduced their growth rate and clonogenicity on soft agar. PML suppressed bladder cancer cell growth by inducing G1 cell cycle arrest and apoptosis. Adenovirus-mediated PML (Ad-PML) significantly suppressed the tumorigenicity and growth of bladder cancer cells. Intratumoral injection of Ad-PML into tumors induced by 5637 cells dramatically suppressed their growth. Conclusions The results indicated that overexpression of PML protein may promote efficient growth inhibition of human bladder cancer cells by inducing G1 cell cycle arrest and apoptosis, and adenovirus-mediated PML (Ad-PML) expression efficiently suppresses human bladder cancer growth.

  5. Lactobacillus rhamnosus GR-1 enhances NF-kappaB activation in Escherichia coli-stimulated urinary bladder cells through TLR4

    Directory of Open Access Journals (Sweden)

    Karlsson Mattias

    2012-01-01

    Full Text Available Abstract Background Epithelial cells of the urinary tract recognize pathogenic bacteria through pattern recognition receptors on their surface, such as toll-like receptors (TLRs, and mount an immune response through the activation of the NF-kappaB pathway. Some uropathogenic bacteria can subvert these cellular responses, creating problems with how the host eliminates pathogens. Lactobacillus is a genus of lactic acid bacteria that are part of the microbiota and consist of many probiotic strains, some specifically for urogenital infections. Immunomodulation has emerged as an important mode of action of probiotic and commensal lactobacilli and given the importance of epithelial cells, we evaluated the effect of the urogenital probiotic Lactobacillus rhamnosus GR-1 on epithelial immune activation. Results Immune activation through the NF-kappaB pathway was initiated by stimulation of T24 urothelial cells with heat-killed Escherichia coli and this was further potentiated when cells were co-cultured with live L. rhamnosus GR-1. Heat-killed lactobacilli were poor activators of NF-kappaB. Concomitant stimulation of bladder cells with E. coli and L. rhamnosus GR-1 increased the levels of the pro-inflammatory cytokine TNF, whereas IL-6 and CXCL8 levels were reduced. Another probiotic, L. rhamnosus GG, was also able to potentiate NF-kappaB in these cells although at a significantly reduced level compared to the GR-1 strain. The transcript numbers and protein levels of the lipopolysaccharide receptor TLR4 were significantly increased after co-stimulation with E. coli and lactobacilli compared to controls. Furthermore, inhibition of TLR4 activation by polymixin B completely blocked the lactobacilli potentiation of NF-kappaB. Conclusions The immunological outcome of E. coli challenge of bladder cells was influenced by probiotic L. rhamnosus GR-1, by enhancing the activation of NF-kappaB and TNF release. Thus the urogenital probiotic L. rhamnosus GR-1

  6. Immunohistochemical demonstration of airway epithelial cell markers of guinea pig.

    Science.gov (United States)

    Li, Yong; Wang, Jing; He, Hai Yan; Ma, Ling Jie; Zeng, Jin; Deng, Guang Cun; Liu, Xiaoming; Engelhardt, John F; Wang, Yujiong

    2011-10-01

    The guinea pig (Cavea porcellus) is a mammalian non-rodent species in the Caviidae family. The sensitivity of the respiratory system and the susceptibility to infectious diseases allows the guinea pig to be a useful model for both infectious and non-infectious lung diseases such as asthma and tuberculosis. In this report, we demonstrated for the first time, the major cell types and composition in the guinea pig airway epithelium, using cell type-specific markers by immunohistochemical staining using the commercial available immunological reagents that cross-react with guinea pig. Our results revealed the availability of antibodies cross-reacting with airway epithelial cell types of basal, non-ciliated columnar, ciliated, Clara, goblet and alveolar type II cells, as well as those cells expressing Mucin 5AC, Mucin 2, Aquaporin 4 and Calcitonin Gene Related Peptide. The distribution of these various cell types were quantified in the guinea pig airway by immunohistochemical staining and were comparable with morphometric studies using an electron microscopy assay. Moreover, this study also demonstrated that goblet cells are the main secretory cell type in the guinea pig's airway, distinguishing this species from rats and mice. These results provide useful information for the understanding of airway epithelial cell biology and mechanisms of epithelial-immune integration in guinea pig models.

  7. Hunner-Type (Classic Interstitial Cystitis: A Distinct Inflammatory Disorder Characterized by Pancystitis, with Frequent Expansion of Clonal B-Cells and Epithelial Denudation.

    Directory of Open Access Journals (Sweden)

    Daichi Maeda

    Full Text Available Interstitial cystitis (IC is a chronic bladder disease with urinary frequency, bladder discomfort or bladder pain of unknown etiology. Based on cystoscopic findings, patients with IC are classified as either Hunner-type/classic IC (HIC, presenting with a specific Hunner lesion, or non-Hunner-type IC (NHIC, presenting with no Hunner lesion, but post-hydrodistension mucosal bleeding. Inflammatory cell infiltration, composed predominantly of lymphocytes, plasma cells and epithelial denudation, has in the past been documented as a major pathological IC finding. However, the significance of the pathological evaluation of IC, especially with regard to the difference between HIC and NHIC, has been downplayed in recent years. In this study, we performed immunohistochemical quantification of infiltrating T-lymphocytes, B-lymphocytes and plasma cells, and measured the amount of residual epithelium in urinary bladder biopsy specimens taken from patients with HIC and NHIC, and those with no IC, using image analysis software. In addition, in situ hybridization of the light chains was performed to examine clonal B-cell expansion. Lymphoplasmacytic infiltration was significantly more severe in HIC specimens than in NHIC specimens (P <0.0001. Substantial lymphoplasmacytic inflammation (≥200 cells/mm2 was observed in 93% of HIC specimens, whereas only 8% of NHIC specimens were inflamed. Plasmacytic infiltration was more prominent in HIC specimens compared with NHIC and non-IC cystitis specimens (P <0.005. Furthermore, expansion of light-chain-restricted B-cells was observed in 31% of cases of HIC. The amount of residual epithelium was decreased in HIC specimens compared with NHIC specimens and non-IC cystitis specimens (P <0.0001. These results suggest that NHIC and HIC are distinct pathological entities, with the latter characterized by pancystitis, frequent clonal B-cell expansion and epithelial denudation. An abnormality in the B-cell population may be

  8. Correlation of urine cytology with ABO(H) antigenicity in transitional cell carcinoma of the bladder.

    OpenAIRE

    1988-01-01

    Cell surface ABO(H) antigenicity of superficial bladder tumours was assessed by the indirect immunoperoxidase test in 49 patients. Good correlation was obtained between surface antigenicity of tumours and the results of urine cytology. Malignant cells were detected cytologically in 22(56%) of cases with ABO(H) antigen negative tumours which are known to behave more aggressively than ABO(H) antigen positive ones. In contrast, malignant cells were found in the urine cytology of only one (10%) o...

  9. Sodium selectivity of semicircular canal duct epithelial cells

    Directory of Open Access Journals (Sweden)

    Harbidge Donald G

    2011-09-01

    Full Text Available Abstract Background Sodium absorption by semicircular canal duct (SCCD epithelial cells is thought to contribute to the homeostasis of the volume of vestibular endolymph. It was previously shown that the epithelial cells could absorb Na+ under control of a glucocorticoid hormone (dexamethasone and the absorptive transepithelial current was blocked by amiloride. The most commonly-observed target of amiloride is the epithelial sodium channel (ENaC, comprised of the three subunits α-, β- and γ-ENaC. However, other cation channels have also been observed to be sensitive in a similar concentration range. The aim of this study was to determine whether SCCD epithelial cells absorb only Na+ or also K+ through an amiloride-sensitive pathway. Parasensory K+ absorption could contribute to regulation of the transduction current through hair cells, as found to occur via vestibular transitional cells [S. H. Kim and D. C. Marcus. Regulation of sodium transport in the inner ear. Hear.Res. doi:10.1016/j.heares.2011.05.003, 2011]. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6197, whole-cell patch clamp and transepithelial recordings in primary cultures of rat SCCD. α-, β- and γ-ENaC were all previously reported as present. The selectivity of the amiloride-sensitive transepithelial and cell membrane currents was observed in Ussing chamber and whole-cell patch clamp recordings. The cell membrane currents were carried by Na+ but not K+, but the Na+ selectivity disappeared when the cells were cultured on impermeable supports. Transepithelial currents across SCCD were also carried exclusively by Na+. Conclusions These results are consistent with the amiloride-sensitive absorptive flux of SCCD mediated by a highly Na+-selective channel, likely αβγ-ENaC. These epithelial cells therefore absorb only Na+ via the amiloride-sensitive pathway and do not provide a parasensory K+ efflux from the

  10. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

    Institute of Scientific and Technical Information of China (English)

    Li-Wei Zheng; Logan Linthicum; Pamela K DenBesten; Yan Zhang

    2013-01-01

    This study aimed to compare epithelial cells derived from human embryonic stem cells (hESCs) to human ameloblast-lineage cells (ALCs), as a way to determine their potential use as a cell source for ameloblast regeneration. Induced by various concentrations of bone morphogenetic protein 4 (BMP4), retinoic acid (RA) and lithium chloride (LiCI) for 7 days, hESCs adopted cobble-stone epithelial phenotype (hESC-derived epithelial cells (ES-ECs)) and expressed cytokeratin 14. Compared with ALCs and oral epithelial cells (OE), ES-ECs expressed amelogenesis-associated genes similar to ALCs. ES-ECs were compared with human fetal skin epithelium, human fetal oral buccal mucosal epithelial cells and human ALCs for their expression pattern of cytokeratins as well. ALCs had relatively high expression levels of cytokeratin 76, which ,vas also found to be upregulated in ES-ECs. Based on the present study, with the similarity of gene expression with ALCs, ES-ECs are a promising potential cell source for regeneration, which are not available in erupted human teeth for regeneration of enamel.

  11. File list: ALL.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.20.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  12. File list: ALL.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.50.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  13. File list: ALL.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.05.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  14. File list: ALL.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lng.10.AllAg.Tracheal_epithelial_cells hg19 All antigens Lung Tracheal epitheli...barchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  15. Computational investigation of epithelial cell dynamic phenotype in vitro

    Directory of Open Access Journals (Sweden)

    Debnath Jayanta

    2009-05-01

    Full Text Available Abstract Background When grown in three-dimensional (3D cultures, epithelial cells typically form cystic organoids that recapitulate cardinal features of in vivo epithelial structures. Characterizing essential cell actions and their roles, which constitute the system's dynamic phenotype, is critical to gaining deeper insight into the cystogenesis phenomena. Methods Starting with an earlier in silico epithelial analogue (ISEA1 that validated for several Madin-Darby canine kidney (MDCK epithelial cell culture attributes, we built a revised analogue (ISEA2 to increase overlap between analogue and cell culture traits. Both analogues used agent-based, discrete event methods. A set of axioms determined ISEA behaviors; together, they specified the analogue's operating principles. A new experimentation framework enabled tracking relative axiom use and roles during simulated cystogenesis along with establishment of the consequences of their disruption. Results ISEA2 consistently produced convex cystic structures in a simulated embedded culture. Axiom use measures provided detailed descriptions of the analogue's dynamic phenotype. Dysregulating key cell death and division axioms led to disorganized structures. Adhering to either axiom less than 80% of the time caused ISEA1 to form easily identified morphological changes. ISEA2 was more robust to identical dysregulation. Both dysregulated analogues exhibited characteristics that resembled those associated with an in vitro model of early glandular epithelial cancer. Conclusion We documented the causal chains of events, and their relative roles, responsible for simulated cystogenesis. The results stand as an early hypothesis–a theory–of how individual MDCK cell actions give rise to consistently roundish, cystic organoids.

  16. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    Science.gov (United States)

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets.

  17. Ginkgolide B Inhibits Human Bladder Cancer Cell Migration and Invasion Through MicroRNA-223-3p

    Directory of Open Access Journals (Sweden)

    Yi Zhi

    2016-10-01

    Full Text Available Background/Aims: Ginkgolide B (GB is currently used as an anticancer drug for treatment of some malignant cancers. However, whether it may have therapeutic effects on bladder cancer remains unknown. Here, we studied the effects of GB on bladder cancer cells. Methods: Bladder cells were treated with different doses of GB, and the effects on ZEB1 and microRNA-223-3p (miR-223-3p were analyzed by RT-qPCR and/or Western blot. Prediction of a regulatory relationship between miR-93 and 3'-UTR of Beclin-1 mRNA was performed by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. Results: We found that GB dose-dependently decreased ZEB1 protein, but not mRNA, in bladder cancer cells, resulting in suppression of cell invasion. Moreover, in bladder cancer cells, GB dose-dependently decreased the levels of miR-223-3p, which suppressed the protein translation of ZEB1 through binding to 3'-UTR of ZEB1 mRNA. Overexpression of miR-223-3p decreased ZEB1 protein, while depletion of miR-223-3p increased ZEB1 protein in bladder cancer cells. Conclusion: GB inhibits bladder cancer cell invasiveness through suppressing ZEB1 protein translation via upregulating miR-223-3p.

  18. Growth Inhibition and Apoptosis Induced by Retinoic Acid Combined with Interferon Alpha-2a on Transitional Cell Carcinoma of Bladder

    Institute of Scientific and Technical Information of China (English)

    QIANLi-xin; LIUXun-liang; ZHOUJian-wei; MonicaLiebert; ZOUChang-chun; ZOUChang-ping

    2004-01-01

    To identify new favorable agents and develop novel approaches for the chemoprevention and treatment of superficial bladder cancer and invesligate the effects of combination of relinoids and interferon α-2a on growth inhibition and apoptosis induction in bladder cancer cell lines. Methods: Four bladder cancer cell lines, grade 1 to 3,and two retinoids, all-trans-retinoic acid(ATRA) ,9.cis retinoic acid(9cRA) ,combined with inteferon α-2a(INF),were used in the study.We compared the competence of these agents to inhibit growth, induce apoptosis, affect the exptession of nuclear retinoid receptors, and modulate STAT1 protein. Resu/ts: Most of the bladder cancer cell lines were resistant to the effect of ATRA and 9cRA on growth inhibition and apoptosis induction, even at higher concentration (10-5M).The effects of ATRA and 9c RA on cell growth and apoptosis were enhanced by INF α-2a.Combination of ATRA and IFNa-2a induced ~ and Slat 1 expression in three bladder cancer cell lines, ~: The results demonstrated that INFw2a synergize with the inhibitory effect of ATRA and 9c RA on the growth intn'bition and apoptosis of bladder cancer cells in vitro, which suggested that it has a potenlJal intexest for the trealment of transitimml cell carcinmna of bladder.

  19. Small cell cancer of the bladder: The Leon-Berard cancer centre experience

    Directory of Open Access Journals (Sweden)

    Nabil Ismaili

    2008-01-01

    Full Text Available Background: Small cell bladder carcinoma is an uncommon tumor. In this retrospective study we report our experience dealing with this disease at the Leon-Berard Cancer Centre. Materials and Methods: We retrospectively analyzed various characteristics of small cell bladder carcinoma: patient demographics, histological diagnosis, disease stage, treatment effects and outcome, in 14 non-metastatic small cell bladder carcinoma patients treated at our institution between 1995 and 2006. Results: The mean age at diagnosis was 60 years (range, 45-77. All patients were male. Seventy-five per cent were smokers. All had locally advanced disease. Ten patients (71.4% were treated by cystoprostatectomy and bilateral pelvic lymph node resection, one by cystoprostatectomy alone. Two patients received neoadjuvant chemotherapy and four received adjuvant chemotherapy. One patient was treated by radiotherapy with concomitant cisplatin after transurethral resection of bladder tumor (TURBT. One patient refused surgery and was treated by chemotherapy alone. One patient was lost to follow-up after TURBT. After 49-month median follow-up, 12 patients had relapsed. Disease-free survival was 5.7 months. The most frequent sites of relapse were the retroperitoneal lymph node (seven patients and the liver (three patients. Nine patients died of metastasis. Median overall survival was 29.5 months. Survival probability at two years was 58%. Median overall survival was 34 months in the mixed small carcinoma group, as compared with 9.5 months in the pure small cell carcinoma group (P=0.01. Mean overall survival was 27.2 months for all patients and 38.6 months for patients treated with cystectomy and adjuvant chemotherapy. Conclusion: To date, the optimal treatment for locally advanced small cell bladder carcinoma is not clear. Cystectomy with neoadjuvant or adjuvant chemotherapy appears as a viable option.

  20. Cytotoxic and toxicogenomic effects of silibinin in bladder cancer cells with different TP53 status.

    Science.gov (United States)

    DE Oliveira, Daiane Teixeira; Savio, Andre Luiz Ventura; Marcondes, Joao Paulo DE Castro; Barros, Tatiane Martins; Barbosa, Ludmila Correia; Salvadori, Daisy Maria Favero; DA Silva, Glenda Nicioli

    2017-03-01

    Silibinin is a natural phenol found in the seeds of the milk thistle plant. Recent data have shown its effectiveness for preventing/treating bladder tumours. Therefore, in this study we investigated the cytotoxic and toxicogenetic activity of silibinin in bladder cancer cells with different TP53 statuses. Two bladder urothelial carcinoma cell lines were used: RT4 (wild-type TP53 gene) and T24 (mutated TP53 gene). Cell proliferation, clonogenic survival, apoptosis rates, genotoxicity and relative expression profile of FRAP/mTOR, FGFR3, AKT2 and DNMT1 genes and of miR100 and miR203 were evaluated. Silibinin promoted decreased proliferation and increased late apoptosis in TP53 mutated cells. Increased early apoptosis rates, primary DNA damage, and decrease of cell colonies in the clonogenic survival assay were detected in both RT4 and T24 cell lines. Down-regulation of FRAP/mTOR, AKT2, FGFR3, DNMT1 and miR100 expression occurred in RT4 cells. Modulation of miR203 was observed in both cell lines. In conclusion, despite the reduction of clone formation in both cell lines, the toxicogenomic effect of silibinin on FRAP/mTOR, AKT2, FGFR3, DNMT1 and miR100 was dependent on the TP53 status. Taken together, the data confirmed the role of silibinin as an antiproliferative compound, whose mechanism of action was related to the TP53 status.

  1. Maintenance of Epithelial Stem Cells by Cbl Proteins

    Science.gov (United States)

    2012-09-01

    150 mM NaCl, 0.5% Nonidet P - 40 , 0.1 mM Na4VO3, 1 mM NaF, and protease inhibitor mixture), and cyclin-dependent kinase (Cdk) complex was recovered by...17060907] 40 . Jenndahl LE, Isakson P , Baeckstrom D. c-erbB2-induced epithelial-mesenchymal transition in mammary epithelial cells is suppressed by...overexpressing breast cancer. Ann Oncol. 2010;21(Suppl 7):vii36– 40 . [PubMed: 20943641] 33. Ludwig DL, Pereira DS, Zhu Z, Hicklin DJ, Bohlen P . Monoclonal

  2. Etk/Bmx activation modulates barrier function in epithelial cells.

    Science.gov (United States)

    Hamm-Alvarez, S F; Chang, A; Wang, Y; Jerdeva, G; Lin, H H; Kim, K J; Ann, D K

    2001-06-01

    Etk/Bmx is a member of the Tec family of cytoplasmic non-receptor tyrosine kinases known to express in epithelial cells. We demonstrate herein that Etk activation in stably Etk-transfected epithelial Pa-4 cells resulted in a consistently increased transepithelial resistance (TER). After 24 h of hypoxic (1% O(2)) exposure, the TER and equivalent active ion transport rate (I(eq)) were reduced to <5% of the normoxia control in Pa-4 cells, whereas both TER and I(eq) were maintained at comparable and 60% levels, respectively, relative to their normoxic controls in cells with Etk activation. Moreover, Pa-4 cells exhibited an abundant actin stress fiber network with a diffuse distribution of beta-catenin at the cell periphery. By contrast, Etk-activated cells displayed a redistribution of actin to an exclusively peripheral network, with a discrete band of beta-catenin also concentrated at the cell periphery, and an altered occludin distribution profile. On the basis of these findings, we propose that Etk may be a novel regulator of epithelial junctions during physiological and pathophysiological conditions.

  3. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer.

    Science.gov (United States)

    Jiang, Fujin; Ma, Song; Xue, Yubao; Hou, Jianquan; Zhang, Yongjie

    2016-01-22

    Lactate dehydrogenase-A(LDH-A) is an important rate-limiting enzyme in the Warburg effect. Survival analysis indicated poor clinical outcomes in MIBC with high LDH-A expression. The results of in vitro experiment indicated that LDH-A promotes MIBC cells proliferation, invasion and migration. The positive relationship between LDH-A expression and CSC/EMT markers was confirmed both in invasive bladder cell line and in 136 MIBC specimens. Thus, we conclude that LDH-A may be a promising target for MIBC.

  4. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    Science.gov (United States)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  5. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  6. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  7. Cytotoxic and toxicogenomic effects of silibinin in bladder cancer cells with different TP53 status

    Indian Academy of Sciences (India)

    DAIANE TEIXEIRA DE OLIVEIRA; ANDRÉ LUIZ VENTURA SÁVIO; JOÃO PAULO DE CASTRO MARCONDES; TATIANE MARTINS BARROS; LUDMILA CORREIA BARBOSA; DAISY MARIA FAVERO SALVADORI; GLENDA NICIOLI DA SILVA

    2017-03-01

    Silibinin is a natural phenol found in the seeds of the milk thistle plant. Recent data have shown its effectiveness forpreventing/treating bladder tumours. Therefore, in this study we investigated the cytotoxic and toxicogenetic activityof silibinin in bladder cancer cells with different TP53 statuses. Two bladder urothelial carcinoma cell lines were used:RT4 (wild-type TP53 gene) and T24 (mutated TP53 gene). Cell proliferation, clonogenic survival, apoptosis rates,genotoxicity and relative expression profile of FRAP/mTOR, FGFR3, AKT2 and DNMT1 genes and of miR100 andmiR203 were evaluated. Silibinin promoted decreased proliferation and increased late apoptosis in TP53 mutatedcells. Increased early apoptosis rates, primary DNA damage, and decrease of cell colonies in the clonogenic survivalassay were detected in both RT4 and T24 cell lines. Down-regulation of FRAP/mTOR, AKT2, FGFR3, DNMT1 andmiR100 expression occurred in RT4 cells. Modulation of miR203 was observed in both cell lines. In conclusion,despite the reduction of clone formation in both cell lines, the toxicogenomic effect of silibinin on FRAP/mTOR,AKT2, FGFR3, DNMT1 and miR100 was dependent on the TP53 status. Taken together, the data confirmed the role ofsilibinin as an antiproliferative compound, whose mechanism of action was related to the TP53 status.

  8. A modified method by differential adhesion for enrichment of bladder cancer stem cells

    Directory of Open Access Journals (Sweden)

    Yong-tong Zhu

    Full Text Available ABSTRACT Purpose: In a previous study the vaccine was effective against bladder cancer in a mouse model. However, a small portion of tumors regrew because the vaccine could not eliminate bladder cancer stem cells (CSCs. In this study, we showed a modified method for the isolation of bladder CSCs using a combination of differential adhesion method and serum-free culture medium (SFM method. Materials and Methods: Trypsin-resistant cells and trypsin-sensitive cells were isolated from MB49, EJ and 5637 cells by a combination of differential adhesion method and SFM method. The CSCs characterizations of trypsin-resistant cells were verified by the flow cytometry, the western blotting, the quantitative polymerase chain reaction, the resistance to chemotherapy assay, the transwell assay, and the tumor xenograft formation assay. Results: Trypsin-resistant cells were isolated and identified in CSCs characters, with high expression of CSCs markers, higher resistance to chemotherapy, greater migration in vitro, and stronger tumorigenicity in vivo. Conclusion: Trypsin-resistant cells displayed specific CSCs properties. Our study showed trypsin-resistant cells were isolated successfully with a modified method using a combination of differential adhesion method and SFM method.

  9. Chlorophyllin e4 is a novel photosensitizer against human bladder cancer cells.

    Science.gov (United States)

    Li, Bin; Wu, Zhiming; Li, Wenzhi; Jia, Guojin; Lu, Jiancheng; Fang, Jie; Chen, Gang

    2012-05-01

    The aim of the study was to investigate the photodynamic effect of the novel photosensitizer chlorophyllin e4 against human bladder cancer cells. T24 and 5637 bladder cancer cell lines were incubated with chlorophyllin e4 and irradiated with a 650-nm laser light. The controls included cells treated with chlorophyllin e4 but without light as well as cells exposed to laser light without chlorophyllin e4. Photocytotoxicity was monitored with MTT assay and apoptosis was measured by flow cytometry. In addition, confocal laser scanning microscopy was used to assess the subcellular localization of chlorophyllin e4. Chlorophyllin e4 exhibited significant photocytotoxicity in both T24 and 5637 cells, which resulted in a maximum of 82.43 and 85.06% cell death, respectively. Treatment with chlorophyllin e4 or laser light alone did not induce cytotoxicity. In addition, chlorophyllin e4-mediated PDT induced a significantly higher percentage of apoptosis in T24 and 5637 cells compared to the control groups (pchlorophyllin e4 co-localized with mitochondria in both cell lines. In conclusion, the remarkable photocytotoxicity, natural abundance and inexpensive composition of chlorophyllin e4 suggest that this compound may be a novel, effective photosensitizer for the treatment of human superficial bladder cancer.

  10. Biomechanics of epithelial cell islands analyzed by modeling and experimentation

    CERN Document Server

    Coburn, Luke; Noppe, Adrian; Caldwell, Benjamin J; Moussa, Elliott; Yap, Chloe; Priya, Rashmi; Lobaskin, Vladimir; Roberts, Anthony P; Yap, Alpha S; Neufeld, Zoltan; Gomez, Guillermo A

    2016-01-01

    We generated a new computational approach to analyze the biomechanics of epithelial cell islands that combines both vertex and contact-inhibition-of-locomotion models to include both cell-cell and cell-substrate adhesion. Examination of the distribution of cell protrusions (adhesion to the substrate) in the model predicted high order profiles of cell organization that agree with those previously seen experimentally. Cells acquired an asymmetric distribution of protrusions (and traction forces) that decreased when moving from the edge to the island center. Our in silico analysis also showed that tension on cell-cell junctions (and monolayer stress) is not homogeneous across the island. Instead it is higher at the island center and scales up with island size, which we confirmed experimentally using laser ablation assays and immunofluorescence. Moreover, our approach has the minimal elements necessary to reproduce mechanical crosstalk between both cell-cell and cell substrate adhesion systems. We found that an i...

  11. Prima-1 induces apoptosis in bladder cancer cell lines by activating p53

    Directory of Open Access Journals (Sweden)

    Camila B. Piantino

    2013-01-01

    Full Text Available OBJECTIVES: Bladder cancer represents 3% of all carcinomas in the Brazilian population and ranks second in incidence among urological tumors, after prostate cancer. The loss of p53 function is the main genetic alteration related to the development of high-grade muscle-invasive disease. Prima-1 is a small molecule that restores tumor suppressor function to mutant p53 and induces cancer cell death in various cancer types. Our aim was to investigate the ability of Prima-1 to induce apoptosis after DNA damage in bladder cancer cell lines. METHOD: The therapeutic effect of Prima-1 was studied in two bladder cancer cell lines: T24, which is characterized by a p53 mutation, and RT4, which is the wild-type for the p53 gene. Morphological features of apoptosis induced by p53, including mitochondrial membrane potential changes and the expression of thirteen genes involved in apoptosis, were assessed by microscopic observation and quantitative real-time PCR (qRT-PCR. RESULTS: Prima-1 was able to reactivate p53 function in the T24 (p53 mt bladder cancer cell line and promote apoptosis via the induction of Bax and Puma expression, activation of the caspase cascade and disruption of the mitochondrial membrane in a BAK-independent manner. CONCLUSION: Prima-1 is able to restore the transcriptional activity of p53. Experimental studies in vivo may be conducted to test this molecule as a new therapeutic agent for urothelial carcinomas of the bladder, which characteristically harbor p53 mutations.

  12. Uranium induces oxidative stress in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.; Ramesh, Govindarajan T. [Texas Southern University, Molecular Neurotoxicology Laboratory/Proteomics Core, Department of Biology, Houston, TX (United States)

    2007-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system's response to the oxidative stress induced by uranium in the cells. (orig.)

  13. An in vitro model of intra-epithelial expansion of transformed urothelial cells

    NARCIS (Netherlands)

    Rebel, J.M.J.; Boer, de W.I.; Thijssen, C.D.; Vermey, M.; Zwarthoff, E.C.; Kwast, van der T.H.

    1993-01-01

    Replacement of normal urothelium by pre-cancerous epithelium may explain the high recurrence rate of human bladder cancer. An in vitro model was designed in order to study the mechanisms of expansion of transformed urothelial cells at the expense of normal urothelium. For this purpose, mouse bladder

  14. File list: DNS.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.20.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  15. File list: DNS.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.10.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  16. File list: Oth.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.20.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  17. File list: His.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.50.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  18. File list: Unc.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.05.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epitheli...al cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  19. File list: Oth.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.05.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithe...lial cells SRX268452,SRX268450,SRX268451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  20. File list: His.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.20.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  1. File list: DNS.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.20.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  2. File list: Unc.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.05.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  3. File list: DNS.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.05.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  4. File list: Unc.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.20.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epitheli...al cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  5. File list: Pol.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.05.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithe...lial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  6. File list: Oth.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.10.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithe...lial cells SRX268452,SRX268450,SRX268451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  7. File list: Pol.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.50.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithe...lial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  8. File list: Oth.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.50.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  9. File list: Pol.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.20.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithe...lial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  10. File list: Unc.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.50.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epitheli...al cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  11. File list: His.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.10.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  12. File list: Unc.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.10.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  13. File list: Pol.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.05.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  14. File list: His.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.20.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  15. File list: DNS.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.05.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  16. File list: His.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.50.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX403485,SRX396749,SRX403486,SRX031075,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  17. File list: Unc.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.50.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  18. File list: DNS.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Brs.50.AllAg.Mammary_epithelial_cells mm9 DNase-seq Breast Mammary epithelial c...ells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  19. File list: His.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Brs.05.AllAg.Mammary_epithelial_cells mm9 Histone Breast Mammary epithelial cel...ls SRX031075,SRX403485,SRX396749,SRX403486,SRX031213 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  20. File list: Pol.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.50.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  1. File list: DNS.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.50.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  2. File list: Unc.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Brs.20.AllAg.Mammary_epithelial_cells mm9 Unclassified Breast Mammary epithelia...l cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  3. File list: Pol.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.10.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  4. File list: Oth.Brs.10.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.10.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330636,SRX330635 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.10.AllAg.Mammary_epithelial_cells.bed ...

  5. File list: Oth.Lng.20.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.20.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithe...lial cells SRX268452,SRX268451,SRX268450 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.20.AllAg.Tracheal_epithelial_cells.bed ...

  6. File list: His.Lng.05.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.05.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.05.AllAg.Tracheal_epithelial_cells.bed ...

  7. File list: Unc.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Lng.10.AllAg.Tracheal_epithelial_cells hg19 Unclassified Lung Tracheal epitheli...al cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  8. File list: Oth.Lng.50.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Lng.50.AllAg.Tracheal_epithelial_cells hg19 TFs and others Lung Tracheal epithe...lial cells SRX268450,SRX268452,SRX268451 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Lng.50.AllAg.Tracheal_epithelial_cells.bed ...

  9. File list: DNS.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Lng.10.AllAg.Tracheal_epithelial_cells hg19 DNase-seq Lung Tracheal epithelial ...cells SRX1420085,SRX374730,SRX374729 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  10. File list: Pol.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Lng.10.AllAg.Tracheal_epithelial_cells hg19 RNA polymerase Lung Tracheal epithe...lial cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  11. File list: His.Lng.10.AllAg.Tracheal_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lng.10.AllAg.Tracheal_epithelial_cells hg19 Histone Lung Tracheal epithelial ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Lng.10.AllAg.Tracheal_epithelial_cells.bed ...

  12. File list: Oth.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Brs.05.AllAg.Mammary_epithelial_cells mm9 TFs and others Breast Mammary epithel...ial cells SRX424872,SRX330635,SRX330636 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  13. File list: Pol.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Brs.20.AllAg.Mammary_epithelial_cells mm9 RNA polymerase Breast Mammary epithel...ial cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  14. Directed differentiation of airway epithelial cells of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Li, Jian-Dong

    2016-11-01

    The ability to generate lung and airway epithelial cells from human bone marrow mesenchymal stem cells (hBMSCs) would have applications in regenerative medicine, modeling of lung disease, drug screening, and studies of human lung development. In this research, hBMSCs were cultured in specialized airway epithelial cell growth media for differentiation of airway epithelial cells, including keratinocyte growth factor transferrin, bovine pituitary extract, epinephrine, triiodothyronine and retinoic acid. The surfactant protein C, a specific marker of type II pneumocytes, and its corresponding protein were demonstrated by immunofluorescence and western blotting after differentiation of airway epithelial cells, respectively. These cells were then transferred into an induced acute lung injury model. The results showed that the hBMSCs could induce differentiation in airway epithelial cells under the special conditions of the medium, the result for surfactant protein C was positive in differentiated airway epithelial cells using immunofluorescence and western blotting, and these cells were successfully colonized in the injured lung airway. In conclusion, our research shows that a population of airway epithelial cells can be specifically generated from hBMSCs and that induced cells may be allowed to participate in tissue repair.

  15. The PCP pathway regulates Baz planar distribution in epithelial cells

    OpenAIRE

    2016-01-01

    The localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood while their distribution in the plane of the epithelium is poorly characterised. Here we provide a systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well as the baso-lateral complexes, are bilateral, i.e. present on both sides of cell interfaces. ...

  16. A Case Report of Primary B–Cell Lymphoma of the Urinary Bladder

    Directory of Open Access Journals (Sweden)

    M. Abbasi

    2004-07-01

    Full Text Available Primary malignant lymphoma of the urinary bladder is very rare. Less than 100 cases have been reported. The best treatment approach for this disease remained unknown.In this article we reported a 41-year-old-female who was admitted to Sina hospital with the chief complaint of macrohematuria that was followed by dysuria , frequency , noturia and urgency. Other examinations were normal and there was no organomegaly and lymphadenopathy.In ultrasonography the thickening of trigone zone of the urinary bladder was reported. The patient underwent a transurethral biopsy of the bladder that revealed malignant lymphoma , intermediate grade , diffuse mixed small and large cell type ( B-cell lymphoma. The reports of computed tomography scan of the thorax , abdomen and pelvis and bonemarrow biopsy were normal and results of metastatic work up were negative.Primary lymphoma of the urinary bladder was diagnosed and a combination of systemic chemotherapy and relatively low dose irradiation were done for the patient. The patient is in complete remission with this kind of treatment now.

  17. Limbal Stromal Tissue Specific Stem Cells and Their Differentiation Potential to Corneal Epithelial Cells.

    Science.gov (United States)

    Katikireddy, Kishore Reddy; Jurkunas, Ula V

    2016-01-01

    From the derivation of the first human embryonic stem (hES) cell line to the development of induced pluripotent stem (iPS) cells; it has become evident that tissue specific stem cells are able to differentiate into a specific somatic cell types. The understanding of key processes such as the signaling pathways and the role of the microenvironment in epidermal/epithelial development has provided important clues for the derivation of specific epithelial cell types.Various differentiation protocols/methods were used to attain specific epithelial cell types. Here, we describe in detail the procedure to follow for isolation of tissue specific stem cells, mimicking their microenvironment to attain stem cell characteristics, and their potential differentiation to corneal epithelial cells.

  18. Acrolein stimulates eicosanoid release from bovine airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Doupnik, C.A.; Leikauf, G.D. (Univ. of Cincinnati College of Medicine, OH (USA))

    1990-10-01

    Injury to the airway mucosa after exposure to environmental irritants is associated with pulmonary inflammation and bronchial hyperresponsiveness. To better understand the relationships between mediator release and airway epithelial cell injury during irritant exposures, we studied the effects of acrolein, a low-molecular-weight aldehyde found in cigarette smoke, on arachidonic acid metabolism in cultured bovine tracheal epithelial cells. Confluent airway epithelial cell monolayers, prelabeled with (3H)arachidonic acid, released significant levels of 3H activity when exposed (20 min) to 100 microM acrolein. (3H)arachidonic acid products were resolved using reverse-phase high-performance liquid chromatography. Under control conditions the released 3H activity coeluted predominantly with the cyclooxygenase product, prostaglandin (PG) E2. After exposure to acrolein, significant peaks in 3H activity coeluted with the lipoxygenase products 12-hydroxyeicosatetraenoic acid (HETE) and 15-HETE, as well as with PGE2, PGF2 alpha, and 6-keto-PGF1 alpha. Dose-response relationships for acrolein-induced release of immunoreactive PGF2 alpha and PGE2 from unlabeled epithelial monolayers demonstrated 30 microM acrolein as the threshold dose, with 100 microM acrolein inducing nearly a fivefold increase in both PGF2 alpha and PGE2. Cellular viability after exposure to 100 microM acrolein, determined by released lactate dehydrogenase activity, was not affected until exposure periods were greater than or equal to 2 h. These results implicate the airway epithelial cell as a possible source of eicosanoids after exposure to acrolein.

  19. Kaempferol Promotes Apoptosis in Human Bladder Cancer Cells by Inducing the Tumor Suppressor, PTEN

    Directory of Open Access Journals (Sweden)

    Liqun Zhou

    2013-10-01

    Full Text Available Kaempferol (Kae, a natural flavonoid, is widely distributed in fruits and vegetables. Previous studies have identified Kae as a possible cancer preventive and therapeutic agent. We found Kae to exhibit potent antiproliferation and anti-migration effects in human bladder cancer EJ cells. Kaempferol robustly induced apoptosis in EJ cells in a dose-dependent manner, as evidenced by increased cleavage of caspase-3. Furthermore, we found Kae-induced apoptosis in EJ cells to be associated with phosphatase and the tensin homolog deleted on the chromosome 10 (PTEN/PI3K/Akt pathway. Kae significantly increased PTEN and decreased Akt phosphorylation. Kae-induced apoptosis was partially attenuated in PTEN-knockdown cells. Our findings indicate that Kae could be an alternative medicine for bladder cancer, based on a PTEN activation mechanism.

  20. In vitro methods to culture primary human breast epithelial cells.

    Science.gov (United States)

    Raouf, Afshin; Sun, Yu Jia

    2013-01-01

    Current evidence suggests that much like leukemia, breast tumors are maintained by a small subpopulation of tumor cells that have stem cell properties. These cancer stem cells are envisaged to be responsible for tumor formation and relapse. Therefore, knowledge about their nature will provide a platform to develop therapies to eliminate these breast cancer stem cells. This concept highlights the need to understand the mechanisms that regulate the normal functions of the breast stem cells and their immediate progeny as alterations to these same mechanisms can cause these primitive cells to act as cancer stem cells. The study of the primitive cell functions relies on the ability to isolate them from primary sources of breast tissue. This chapter describes processing of discarded tissue from reduction mammoplasty samples as sources of normal primary human breast epithelial cells and describes cell culture systems to grow single-cell suspensions prepared from these reduction samples in vitro.

  1. Estradiol increases mucus synthesis in bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Anthony Tam

    Full Text Available Airway epithelial mucus hypersecretion and mucus plugging are prominent pathologic features of chronic inflammatory conditions of the airway (e.g. asthma and cystic fibrosis and in most of these conditions, women have worse prognosis compared with male patients. We thus investigated the effects of estradiol on mucus expression in primary normal human bronchial epithelial cells from female donors grown at an air liquid interface (ALI. Treatment with estradiol in physiological ranges for 2 weeks caused a concentration-dependent increase in the number of PAS-positive cells (confirmed to be goblet cells by MUC5AC immunostaining in ALI cultures, and this action was attenuated by estrogen receptor beta (ER-β antagonist. Protein microarray data showed that nuclear factor of activated T-cell (NFAT in the nuclear fraction of NHBE cells was increased with estradiol treatment. Estradiol increased NFATc1 mRNA and protein in ALI cultures. In a human airway epithelial (1HAE0 cell line, NFATc1 was required for the regulation of MUC5AC mRNA and protein. Estradiol also induced post-translational modification of mucins by increasing total fucose residues and fucosyltransferase (FUT-4, -5, -6 mRNA expression. Together, these data indicate a novel mechanism by which estradiol increases mucus synthesis in the human bronchial epithelium.

  2. Telomerase activity in solid transitional cell carcinoma, bladder washings, and voided urine.

    Science.gov (United States)

    Lance, R S; Aldous, W K; Blaser, J; Thrasher, J B

    1998-03-04

    Telomerase activity has been detected in a wide variety of human malignancies. It appears to be one of the fundamental ingredients necessary for cellular immortality. We sought to determine the incidence of telomerase activity in solid transitional cell carcinoma (TCC) specimens, benign urothelium, bladder washings, and voided urine from patients with TCC identified cystoscopically compared with controls. Telomerase activity was measured in 26 solid bladder cancers and 13 benign urothelial specimens using the telomere repeat amplification protocol (TRAP), a polymerase chain reaction (PCR) based assay. Telomerase activity was further measured in the centrifuged cellular material obtained from the bladder washings of 26 patients with TCC and 40 with benign urologic disease found to have a normal cystoscopy. All patients with hematuria were additionally evaluated with an upper tract radiographic examination and found to be free of malignancy. Voided urine was likewise evaluated in 11 patients with TCC, 12 with benign urologic diseases, and 56 asymptomatic control subjects. Telomerase activity was detected in 25 of 26 (96%) solid specimens, 21 of 26 (81%) bladder washings, and 6 of 11 (54%) voided urine specimens from patients with histologically confirmed TCC. In the control group, 2 of 13 (15%) benign urothelial specimens and 2 of 56 (4%) voided urine specimens from the asymptomatic volunteer group demonstrated telomerase activity. Of those with benign urologic disease, 16 of 40 (40%) bladder barbotage specimens and 6 of 12 (50%) voided urine specimens demonstrated telomerase activity. Sensitivity and specificity of telomerase as a marker for TCC were 81% and 60%, respectively, in the bladder washings group and 54% and 50%, respectively, in voided urine. These data indicate that activation of telomerase is frequent in solid TCC and appears to be a sensitive marker in bladder washings of patients with TCC. We noted an unexpectedly high false positive detection rate in

  3. The activity of etoposide (VP16) in combination chemotherapy against human bladder cancer cells in vitro

    OpenAIRE

    1991-01-01

    The activity of Etoposide (VP16) in combination chemotherapy against four human transitional cell carcinoma cell lines of bladder (TCCaB) was determined by in vitro colony formation assay. Four anti-tumor agents (methotrexate: MTX, vinblastine: VBL, adriamycin: ADM, cisplatin: DDP) were used for combination chemotherapy with VP16. The ADM + VP16 combination exhibited a strong synergistic antitumor effect against the human TCCaBs compared with other combinations in this study. The combination ...

  4. Single cell-type comparative metabolomics of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum.

    Directory of Open Access Journals (Sweden)

    Bronwyn Jane Barkla

    2015-06-01

    Full Text Available One of the remarkable adaptive features of the halophyte and facultative CAM plant Mesembryathemum crystallinum are the specialized modified trichomes called epidermal bladder cells (EBC which cover the leaves, stems, and peduncle of the plant. They are present from an early developmental stage but upon salt stress rapidly expand due to the accumulation of water and sodium. This particular plant feature makes it an attractive system for single cell type studies, with recent proteomics and transcriptomics studies of the EBC establishing that these cells are metabolically active and have roles other than sodium sequestration. To continue our investigation into the function of these unusual cells we carried out a comprehensive global analysis of the metabolites present in the EBC extract by gas chromatography Time-of-Flight mass spectrometry (GC-TOF and identified 194 known and 722 total molecular features. Statistical analysis of the metabolic changes between control and salt-treated samples was used to identify 352 significantly differing metabolites (268 after correction for FDR. Principal components analysis provided an unbiased evaluation of the data variance structure. Biochemical pathway enrichment analysis suggested significant perturbations in 13 biochemical pathways as defined in KEGG. More than 50% of the metabolites that show significant changes in the EBC, can be classified as compatible solutes and include sugars, sugar alcohols, protein and non-protein amino acids, and organic acids, highlighting the need to maintain osmotic homeostasis to balance the accumulation of Na and Cl ions. Overall, the comparison of metabolic changes in salt treated relative to control samples suggest large alterations in Mesembryanthemum crystallinum epidermal bladder cells.

  5. Electroporation enhances mitomycin C cytotoxicity on T24 bladder cancer cell line: a potential improvement of intravesical chemotherapy in bladder cancer.

    Science.gov (United States)

    Vásquez, Juan L; Gehl, Julie; Hermann, Gregers G

    2012-12-01

    Intravesical mitomycin instillation combined with electric pulses is being used experimentally for the treatment of T1 bladder tumors, in patients unfit for surgery. Electroporation may enhance the uptake of chemotherapeutics by permeabilization of cell membranes. We investigated if electroporation improves the cytotoxicity of mitomycin. In two cell lines, T24 (bladder cancer cell line) and DC3F (Chinese hamster fibroblast), exposure to different concentrations of mitomycin (0.01-2000μM) was tested with and without electroporation (6 pulses of 1kV/cm, duration: 99μs, frequency: 1Hz). Cell viability was assessed by colorimetric assay (MTT). For both cell lines, mitomycin's IC_50 was approximately 1000μM in both pulsed and unpulsed cells. On T24 cells, electroporation and mitomycin caused (relative reduction) RR of survival of: 25%, 31% and 29%, by concentrations 0μM, 500μM and 1000μM respectively. For DC3F cells, the RRs of survival were: 28%, 29%, and 33%, by concentrations 0μM, 500μM and 1000μM respectively. In conclusion, electroporation and mitomycin together are about 30% more effective than mitomycin alone. The results help to elucidate the additive effect of mitomycin and electric pulses and support the use of this combination in the treatment of bladder cancer.

  6. Host epithelial geometry regulates breast cancer cell invasiveness

    Science.gov (United States)

    Boghaert, Eline; Gleghorn, Jason P.; Lee, KangAe; Gjorevski, Nikolce; Radisky, Derek C.; Nelson, Celeste M.

    2012-01-01

    Breast tumor development is regulated in part by cues from the local microenvironment, including interactions with neighboring nontumor cells as well as the ECM. Studies using homogeneous populations of breast cancer cell lines cultured in 3D ECM have shown that increased ECM stiffness stimulates tumor cell invasion. However, at early stages of breast cancer development, malignant cells are surrounded by normal epithelial cells, which have been shown to exert a tumor-suppressive effect on cocultured cancer cells. Here we explored how the biophysical characteristics of the host microenvironment affect the proliferative and invasive tumor phenotype of the earliest stages of tumor development, by using a 3D microfabrication-based approach to engineer ducts composed of normal mammary epithelial cells that contained a single tumor cell. We found that the phenotype of the tumor cell was dictated by its position in the duct: proliferation and invasion were enhanced at the ends and blocked when the tumor cell was located elsewhere within the tissue. Regions of invasion correlated with high endogenous mechanical stress, as shown by finite element modeling and bead displacement experiments, and modulating the contractility of the host epithelium controlled the subsequent invasion of tumor cells. Combining microcomputed tomographic analysis with finite element modeling suggested that predicted regions of high mechanical stress correspond to regions of tumor formation in vivo. This work suggests that the mechanical tone of nontumorigenic host epithelium directs the phenotype of tumor cells and provides additional insight into the instructive role of the mechanical tumor microenvironment. PMID:23150585

  7. Alveolar epithelial type II cell: defender of the alveolus revisited

    Directory of Open Access Journals (Sweden)

    Fehrenbach Heinz

    2001-01-01

    Full Text Available Abstract In 1977, Mason and Williams developed the concept of the alveolar epithelial type II (AE2 cell as a defender of the alveolus. It is well known that AE2 cells synthesise, secrete, and recycle all components of the surfactant that regulates alveolar surface tension in mammalian lungs. AE2 cells influence extracellular surfactant transformation by regulating, for example, pH and [Ca2+] of the hypophase. AE2 cells play various roles in alveolar fluid balance, coagulation/fibrinolysis, and host defence. AE2 cells proliferate, differentiate into AE1 cells, and remove apoptotic AE2 cells by phagocytosis, thus contributing to epithelial repair. AE2 cells may act as immunoregulatory cells. AE2 cells interact with resident and mobile cells, either directly by membrane contact or indirectly via cytokines/growth factors and their receptors, thus representing an integrative unit within the alveolus. Although most data support the concept, the controversy about the character of hyperplastic AE2 cells, reported to synthesise profibrotic factors, proscribes drawing a definite conclusion today.

  8. The Antidiabetic Drug Metformin Inhibits the Proliferation of Bladder Cancer Cells in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-12-01

    Full Text Available Recent studies suggest that metformin, a widely used antidiabetic agent, may reduce cancer risk and improve prognosis of certain malignancies. However, the mechanisms for the anti-cancer effects of metformin remain uncertain. In this study, we investigated the effects of metformin on human bladder cancer cells and the underlying mechanisms. Metformin significantly inhibited the proliferation and colony formation of 5637 and T24 cells in vitro; specifically, metformin induced an apparent cell cycle arrest in G0/G1 phases, accompanied by a strong decrease of cyclin D1, cyclin-dependent kinase 4 (CDK4, E2F1 and an increase of p21waf-1. Further experiments revealed that metformin activated AMP-activated protein kinase (AMPK and suppressed mammalian target of rapamycin (mTOR, the central regulator of protein synthesis and cell growth. Moreover, daily treatment of metformin led to a substantial inhibition of tumor growth in a xenograft model with concomitant decrease in the expression of proliferating cell nuclear antigen (PCNA, cyclin D1 and p-mTOR. The in vitro and in vivo results demonstrate that metformin efficiently suppresses the proliferation of bladder cancer cells and suggest that metformin may be a potential therapeutic agent for the treatment of bladder cancer.

  9. Curcumin Promotes KLF5 Proteasome Degradation through Downregulating YAP/TAZ in Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2014-08-01

    Full Text Available KLF5 (Krüppel-like factor 5 plays critical roles in normal and cancer cell proliferation through modulating cell cycle progression. In this study, we demonstrated that curcumin targeted KLF5 by promoting its proteasome degradation, but not by inhibiting its transcription in bladder cancer cells. We also demonstrated that lentivirus-based knockdown of KLF5 inhibited cancer cell growth, while over-expression of a Flag-tagged KLF5 could partially reverse the effects of curcumin on cell growth and cyclin D1 expression. Furthermore, we found that curcumin could down-regulate the expression of Hippo pathway effectors, YAP and TAZ, which have been reported to protect KLF5 protein from degradation. Indeed, knockdown of YAP by small interfering RNA caused the attenuation of KLF5 protein, but not KLF5 mRNA, which was reversed by co-incubation with proteasome inhibitor. A xenograft assay in nude mice finally proved the potent inhibitory effects of curcumin on tumor growth and the pro-proliferative YAP/TAZ/KLF5/cyclin D1 axis. Thus, our data indicates that curcumin promotes KLF5 proteasome-dependent degradation through targeting YAP/TAZ in bladder cancer cells and also suggests the therapeutic potential of curcumin in the treatment of bladder cancer.

  10. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  11. Trichomonas vaginalis perturbs the junctional complex in epithelial cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Trichomonas vaginalis, a protist parasite of the urogenital tract in humans, is the causative agent of trichomonosis,which in recent years have been associated with the cervical cancer development. In the present study we analyzed the modifications at the junctional complex level of Caco-2 cells after interaction with two isolates of T. vaginalis and the influence of the iron concentration present in the parasite's culture medium on the interaction effects. Our results show that T. vaginalis adheres to the epithelial cell causing alterations in the junctional complex, such as: (a) a decrease in transepithelial electrical resistance; (b) alteration in the pattern of junctional complex proteins distribution as obseryed for E-cadherin, occludin and ZO-1; and (c) enlargement of the spaces between epithelial cells. These effects were dependent on (a) the degree of the parasite virulence isolate, (b) the iron concentration in the culture medium, and (c) the expression of adhesin proteins on the parasite surface.

  12. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  13. Asbestos exposure increases human bronchial epithelial cell fibrinolytic activity.

    Science.gov (United States)

    Gross, T J; Cobb, S M; Gruenert, D C; Peterson, M W

    1993-03-01

    Chronic exposure to asbestos fibers results in fibrotic lung disease. The distal pulmonary epithelium is an early target of asbestos-mediated injury. Local plasmin activity may be important in modulating endoluminal inflammatory responses in the lung. We studied the effects of asbestos exposure on cell-mediated plasma clot lysis as a marker of pericellular plasminogen activation. Exposing human bronchial epithelial (HBE) cells to 100 micrograms/ml of asbestos fibers for 24 h resulted in increased plasma clot lysis. Fibrinolytic activity was augmented in a dose-dependent fashion, was not due to secreted protease, and occurred only when there was direct contact between the plasma clot and the epithelial monolayer. Further analysis showed that asbestos exposure increased HBE cell-associated urokinase-type plasminogen activator (uPA) activity in a time-dependent manner. The increased cell-associated PA activity could be removed by acid washing. The increase in PA activity following asbestos exposure required new protein synthesis because it was abrogated by treatment with either cycloheximide or actinomycin D. Therefore, asbestos exposure increases epithelial-mediated fibrinolysis by augmenting expression of uPA activity at the cell surface by mechanisms that require new RNA and protein synthesis. These observations suggest a novel mechanism whereby exposure of the distal epithelium to inhaled particulates may result in a chronic inflammatory response that culminates in the development of fibrotic lung disease.

  14. Expression of inducible nitric oxide in human lung epithelial cells.

    Science.gov (United States)

    Robbins, R A; Barnes, P J; Springall, D R; Warren, J B; Kwon, O J; Buttery, L D; Wilson, A J; Geller, D A; Polak, J M

    1994-08-30

    Nitric oxide (NO) is increased in the exhaled air of subjects with several airway disorders. To determine if cytokines could stimulate epithelial cells accounting for the increased NO, the capacity of the proinflammatory cytokines (cytomix: tumor necrosis factor-alpha, interleukin-1 beta, and interferon-gamma) to increase inducible nitric oxide synthase (iNOS) was investigated in A549 and primary cultures of human bronchial epithelial cells. Cytomix induced a time-dependent increase in nitrite levels in culture supernatant fluids (p < 0.05). Increased numbers of cells stained for iNOS and increased iNOS mRNA was detected in the cytokine-stimulated cells compared to control (p < 0.05). Dexamethasone diminished the cytokine-induced increase in nitrite, iNOS by immunocytochemistry, and iNOS mRNA. These data demonstrate that cytokines, such as those released by mononuclear cells, can induce lung epithelial iNOS expression and NO release, and that this is attenuated by dexamethasone.

  15. Expression of Connexin43 in Rat Epithelial Cells and Fibroblasts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To explore the role of connexin43 (Cx43) in gap junctional intercellular communication (GJIC) and propagated sensation along meridians, the expression of Cx43 in the rat epithelial cells and fibroblasts was studied both in vitro and in vivo. With the in vitro study, the rat epithelial cells and fibroblasts were cultured together, and the localization of Cx43 was detected by immunohistochemistry and indirect immunofluorescent cytochemistry and under confocal microscopy . And the expression of Cx43 on the surface of the cells was examined by flow cytometry. With the in vivo examination, 20 SD rats were randomized into control group (n = 10) and electrical acupuncture group (EAgroup, n=10). EA ( 0.5-1.5 V, 4-16 Hz , 30 min) was applied to"Zusanli"acupoint for 30 min at rat's hind paw, the localization of Cx43 was immunohistochemically detected.The immunohistochemical staining and indirect immunfluorescent cytochemistry showed that Cx43was localized on the surface of the cells and in the cytoplasm. The relative expression level of Cx43on the cellular membrane surfaces of the rat epithelial cells and fibroblasts, as determined by FACS, were 13.91 % and 29.53 % respectively. Our studied suggested that Cx43 might be involved in GJIC and propagated sensation along meridians.

  16. Radiogenic transformation of human mammary epithelial cells in vitro

    Science.gov (United States)

    Yang, T. C.; Georgy, K. A.; Tavakoli, A.; Craise, L. M.; Durante, M.

    1996-01-01

    Cancer induction by space radiations is a major concern for manned space exploration. Accurate assessment of radiation risk at low doses requires basic understanding of mechanism(s) of radiation carcinogenesis. For determining the oncogenic effects of ionizing radiation in human epithelial cells, we transformed a mammary epithelial cell line (185B5), which was immortalized by benzo(a)pyrene, with energetic heavy ions and obtained several transformed clones. These transformed cells showed growth properties on Matrigel similar to human mammary tumor cells. To better understand the mechanisms of radiogenic transformation of human cells, we systematically examined the alterations in chromosomes and cancer genes. Among 16 autosomes examined for translocations, by using fluorescence in situ hybridization (FISH) technique, chromosomes 3, 12, 13, 15, 16, and 18 appeared to be normal in transformed cells. Chromosomes 1, 4, 6, 8, and 17 in transformed cells, however, showed patterns different from those in nontransformed cells. Southern blot analyses indicated no detectable alterations in myc, ras, Rb, or p53 genes. Further studies of chromosome 17 by using in situ hybridization with unique sequence p53 gene probe and a centromere probe showed no loss of p53 gene in transformed cells. Experimental results from cell fusion studies indicated that the transforming gene(s) is recessive. The role of genomic instability and tumor suppressor gene(s) in radiogenic transformation of human breast cells remains to be identified.

  17. Generation of Spheres from Dental Epithelial Stem Cells

    Science.gov (United States)

    Natsiou, Despoina; Granchi, Zoraide; Mitsiadis, Thimios A.; Jimenez-Rojo, Lucia

    2017-01-01

    The in vitro three-dimensional sphere model has already been established as an important tool in fundamental sciences. This model facilitates the study of a variety of biological processes including stem cell/niche functions and tissue responses to injury and drugs. Here we describe the complete protocol for the in vitro formation of spheres originated from the epithelium of rodent incisors. In addition, we show that in these spheres cell proliferation is maintained, as well as the expression of several key molecules characterizing stem cells such as Sox2 and p63. These epithelial dentospheres could be used as an in vitro model system for stem cell research purposes. PMID:28154538

  18. An Efficient Light-Inducible P53 Expression System for Inhibiting Proliferation of Bladder Cancer Cell

    Science.gov (United States)

    Lin, Fan; Dong, Liang; Wang, Weiming; Liu, Yuchen; Huang, Weiren; Cai, Zhiming

    2016-01-01

    Optogenetic gene expression systems enable spatial-temporal modulation of gene transcription and cell behavior. Although applications in biomedicine are emerging, the utility of optogenetic gene switches remains elusive in cancer research due to the relative low gene activation efficiency. Here, we present an optimized CRISPR-Cas9-based light-inducible gene expression device that controls gene transcription in a dose-dependent manner. To prove the potential utility of this device, P53 was tested as a functional target in the bladder cancer cell models. It was illustrated that the light-induced P53 inhibited proliferation of 5637 and UMUC-3 cell effectively. The “light-on” gene expression system may demonstrate a novel therapeutic strategy for bladder cancer intervention. PMID:27766041

  19. Mycobacterium bovis Bacillus Calmette-Guérin-Induced Macrophage Cytotoxicity against Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2010-01-01

    Full Text Available Many details of the molecular and cellular mechanisms involved in Mycobacterium bovis bacillus Calmette-Guérin (BCG immunotherapy of bladder cancer have been discovered in the past decades. However, information on a potential role for macrophage cytotoxicity as an effector mechanism is limited. Macrophages play pivotal roles in the host innate immunity and serve as a first line of defense in mycobacterial infection. In addition to their function as professional antigen-presenting cells, the tumoricidal activity of macrophages has also been studied with considerable interest. Studies have shown that activated macrophages are potent in killing malignant cells of various tissue origins. This review summarizes the current understanding of the BCG-induced macrophage cytotoxicity toward bladder cancer cells with an intention to inspire investigation on this important but underdeveloped research field.

  20. miRNAs associated with chemo-sensitivity in cell lines and in advanced bladder cancer

    DEFF Research Database (Denmark)

    Nordentoft, Iver; Birkenkamp-Demtroder, Karin; Agerbæk, Mads;

    2012-01-01

    Background MicroRNA is a naturally occurring class of non-coding RNA molecules that mediate posttranscriptional gene regulation and are strongly implicated in cellular processes such as cell proliferation, carcinogenesis, cell survival and apoptosis. Consequently there is increasing focus on mi......RNA expression as prognostic factors for outcome and chemotherapy response. Only approximately 50% of patients with bladder cancer respond to chemotherapy. Therefore, predictive markers, such as miRNAs, that can identify subgroups of patients who will benefit from chemotherapy will have great value for treatment...... with progressive disease and in tumors form patients with short and long overall survival time. Furthermore, we studied the effect of up- and down regulation of key miRNAs on the cisplatin sensitivity in eight bladder cancer cell lines with different sensitivities to cisplatin. Results miRNA expression profiling...

  1. Differential expression of microRNA clusters in bladder transitional cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Feng Xu; Zhifeng Wei; Zhengyu Zhang; Jingping Ge; Peng Xie; Hongqing Ma; Jianping Gao; Wen Cheng

    2013-01-01

    Objective: The aim of the study was to investigate the differential expression of microRNAs (miRNAs) in bladder transitional cell carcinoma (BTC). Methods: Fresh tissues were obtained from patients with BTC (9 cases; 3 cases with grade I, 3 cases with grade II, 3 cases with grade III) and those with normal bladder mucosa (3 cases) and stored in liquid nitrogen. Total RNA was extracted using TRizol reagent and RNA was quantified and quality control was performed. miRNA probes were labeled with Hy3TM fluorescence, then hybridized with a miRCURYTM array labeling kit. miRNA arrays were scanned and analyzed and the scanned result was validated using reverse transcription-polymerase chain reaction (RT-PCR). Results: In four groups of differentially expressed genes obtained from grade I, grade II, grade III, and grade I + grade II + grade III BTC tissues compared with normal bladder mucosa, hsa-miR-29b-1* was upregulated, and hsa-miR-923 and hsa-miR-300 were downregulated. The hsa-miR-29b-1*, hsa-miR-300, and hsa-miR-923 findings were confirmed by real-time RT-PCR. Conclusion: Genes that were differentially expressed between BTC and normal bladder mucosa may be involved in the pathogenesis and development of BTC, and may be useful for further studies of BTC-related genes.

  2. Afatinib inhibits proliferation and invasion and promotes apoptosis of the T24 bladder cancer cell line.

    Science.gov (United States)

    Tang, Yunhua; Zhang, Xiangyang; Qi, Fan; Chen, Mingfeng; Li, Yuan; Liu, Longfei; He, Wei; Li, Zhuo; Zu, Xiongbing

    2015-05-01

    Afatinib is a highly selective, irreversible inhibitor of the epidermal growth factor receptor (EGFR) and human EGFR 2 (HER-2). Although preclinical and clinical studies have indicated that afatinib has antitumor activity and clinical efficacy in non-small cell lung carcinoma, head and neck squamous cell carcinoma and breast cancer, there are few studies investigating its inhibitory effect on human bladder carcinoma cells. In this study, the antitumor effect of afatinib was investigated on the T24 bladder cancer cell line. The T24 bladder cancer cell line was treated with afatinib at various concentrations (0, 1, 5, 10 and 20 µmol/l). MTT assay was used to estimate the proliferation of the T24 cells; flow cytometric analysis was used to estimate the effect of afatinib on T24 cell apoptosis; cell invasion ability was assessed by a Transwell invasion assay; and western blot analysis was used to detect the expression of Bcl-2, Bax, Akt, extracellular-signal-regulated kinase (ERK)1/2, matrix metalloproteinase (MMP)-2 and MMP-9. The MTT assay demonstrated that afatinib inhibited the proliferation of T24 cells in a dose- and time-dependent manner. Flow cytometric analysis revealed that the cell apoptosis rate increased as the concentration of afatinib increased. The cell invasion assay indicated that afatinib treatment significantly inhibited the invasive behavior of T24 cells in a dose-dependent manner. Western blot analysis showed that with increasing afatinib concentrations, Bcl-2, phosphorylated (p)-ERK1/2, p-Akt, MMP-2 and MMP-9 expression levels were significantly decreased, whereas total (t)-ERK1/2 and t-Akt expression levels remained basically unchanged, and Bax expression levels were greatly increased. The results indicate that afatinib inhibits the proliferation and invasion of T24 cells in vitro and induces the apoptosis of these cells by inhibiting the EGFR signaling network.

  3. Small cell carcinoma of the urinary bladder: KIT and PDGFRA gene mutations

    Directory of Open Access Journals (Sweden)

    Nuket Eliyakin

    2015-12-01

    Full Text Available Primary small cell carcinoma of the urinary bladder is very rare. A 72-year-old was admitted to our hospital because of hematuria and dysuria. Cystoscopy revealed a bladder full of multiple, solid and papillary tumors. Biopsies from the deep and papillary tumors were taken. Histologically, tumor was pure small cell carcinoma. Immunohistochemically, the tumor cells were positive for cytokeratin, chromogranin, synaptophysin, neuron-specific enolase, CD56, CD117 and Ki67 (labeling 70%. The tumor cells were negative for CK7, CK20, CD3, CD20, LCA, CDX2, uroplakin, thyroid transcription factor 1, PSA and p63. Metastatic workup was performed an no primary or metastatic lung lesions were noted. Due to the clinical, radiologic and immunohistochemical findings, the patient was diagnosed as primary small cell carcinoma of bladder. A molecular genetic analysis for KIT (exons 9, 11, 13 and 17 and PDGFRA (exons 12 and 18 genes was performed, in paraffin micro dissection specimens, by the PCR-direct sequencing method. According to the sequencing analyses, two mutations were found at positions 558 (p.K558N and 562 (p.E562D in KIT gene exon 11 in our case. The another hand the same case presented two mutations in PDGFRA gene exon 14 at position 631 (p.P631A and 638 (p.638Q_639AinsC. The disease process was fulminant and the patient was lost due to several complications prior to any chemotherapy.

  4. Smac/DIABLO Promotes Mitomycin C-induced Apoptosis of Bladder Cancer T24 Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; ZENG Fuqing; ZHENG Liduan; TONG Qiangsong

    2006-01-01

    The enhancing effects of Smac gene on the mitomycin C-induced apoptosis of the bladder cancer cell line T24 were investigated. The Smac gene was transfected into bladder cancer cell line T24 under the induction of liposome. The intrinsic Smac level was detected by using immunohistochemistry and RT-PCR. The in vitro cellular growth activities were assayed by MTT colorimetry.Apoptosis was assayed by the flow cytometry. The results showed that as compared with the control cells, the apoptosis rate of T24 cells induced by mitomycin C was enhanced by transfected Smac gene. Flow cytometry revealed that, the apoptosis rate was 18.84% and 33.52%, and 10.72% and 26.24% respectively in blank and transfected cells treated with 0.05 or 0.005 mg/mL mitomycin C (P<0.05). It was concluded that Smac could enhance the apoptosis of T24 by mitomycin C,which could provide a useful experimental evidence for bladder cancer therapy.

  5. A Case of p63 Positive Diffuse Large B Cell Lymphoma of the Bladder

    Science.gov (United States)

    Jones, Carol

    2016-01-01

    Diffuse large B cell lymphoma (DLBCL), currently the most common type of non-Hodgkin lymphoma (NHL), is an aggressive B cell neoplasm that typically presents in older adults as a rapidly enlarging mass. The enlarging mass typically represents a lymph node, although extranodal disease can occur in a significant percentage (40%) of cases. The most common extranodal sites of involvement include the gastrointestinal tract and skin; primary bladder lymphoma represents only 0.2% of extranodal non-Hodgkin lymphomas. We report a case of diffuse large B cell lymphoma occurring in the bladder of an 83-year-old gentleman with an initial presentation of hematuria. This neoplasm displayed large, atypical cells with vesicular chromatin and prominent nucleoli that involved the bladder mucosa with invasion into muscularis propria, prostate, and urethra. Positive staining for p63 initially raised suspicion for poorly differentiated urothelial carcinoma; however, lack of staining for pancytokeratin and positive staining for LCA, CD20, CD79a, and PAX-5 confirmed the diagnosis of diffuse large B cell lymphoma. Though it does not occur in all cases, p63 can be positive in a significant percentage of cases of DLBCL; therefore, a diagnosis of lymphoma remains an important entity on the differential diagnosis of aggressive and particularly poorly differentiated neoplasms. PMID:27648316

  6. Free fatty acid palmitate impairs the vitality and function of cultured human bladder smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available BACKGROUND: Incidence of urinary tract infections is elevated in patients with diabetes mellitus. Those patients show increased levels of the saturated free fatty acid palmitate. As recently shown metabolic alterations induced by palmitate include production and secretion of the pro-inflammatory cytokine interleukine-6 (IL-6 in cultured human bladder smooth muscle cells (hBSMC. Here we studied the influence of palmitate on vital cell properties, for example, regulation of cell proliferation, mitochondrial enzyme activity and antioxidant capacity in hBSMC, and analyzed the involvement of major cytokine signaling pathways. METHODOLOGY/PRINCIPAL FINDINGS: HBSMC cultures were set up from bladder tissue of patients undergoing cystectomy and stimulated with palmitate. We analyzed cell proliferation, mitochondrial enzyme activity, and antioxidant capacity by ELISA and confocal immunofluorescence. In signal transduction inhibition experiments we evaluated the involvement of NF-κB, JAK/STAT, MEK1, PI3K, and JNK in major cytokine signaling pathway regulation. We found: (i palmitate decreased cell proliferation, increased mitochondrial enzyme activity and antioxidant capacity; (ii direct inhibition of cytokine receptor by AG490 even more strongly suppressed cell proliferation in palmitate-stimulated cells, while counteracting palmitate-induced increase of antioxidant capacity; (iii in contrast knockdown of the STAT3 inhibitor SOCS3 increased cell proliferation and antioxidant capacity; (iv further downstream JAK/STAT3 signaling cascade the inhibition of PI3K or JNK enhanced palmitate induced suppression of cell proliferation; (v increase of mitochondrial enzyme activity by palmitate was enhanced by inhibition of PI3K but counteracted by inhibition of MEK1. CONCLUSIONS/SIGNIFICANCE: Saturated free fatty acids (e.g., palmitate cause massive alterations in vital cell functions of cultured hBSMC involving distinct major cytokine signaling pathways. Thereby

  7. [The effect of prostatic peptides on the contractile activity of smooth-muscle cells from the bladder].

    Science.gov (United States)

    Barabanova, V V; Gorbachev, A G; Parastaeva, M M; Khavinson, V Kh

    1993-02-01

    Prostatilene (PST) enhanced the functional activity of the bladder smooth-muscle cells (SMC). The possibility of activation of the SMC contractility by the PST through pharmacomechanical associations, is discussed.

  8. Selective arterial embolization for control of haematuria secondary to advanced or recurrent transitional cell carcinoma of the bladder.

    LENUS (Irish Health Repository)

    Halpenny, D

    2014-05-02

    Haematuria is a common symptom in patients with advanced transitional cell carcinoma of the bladder. We report our experience of selective pelvic embolization using gelfoam as an embolic agent to treat intractable haematuria in these patients.

  9. Serratia marcescens is injurious to intestinal epithelial cells.

    Science.gov (United States)

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens.

  10. Molecular cloning, sequence analysis, and function of the intestinal epithelial stem cell marker Bmi1 in pig intestinal epithelial cells.

    Science.gov (United States)

    Li, C-M; Yan, H-C; Fu, H-L; Xu, G-F; Wang, X-Q

    2014-01-01

    In the present work, we cloned the full-length cDNA of the pig Bmi1 gene (BMI1 polycomb ring finger oncogene), which has been indicated as an intestinal epithelial stem cell (IESC) marker in other mammals. This paper provides the first report of the function of Bmi1 in pig intestinal epithelial cells and a brief description of its underlying mechanism. Rapid amplification of cDNA ends technology was used to clone the complete pig Bmi1 sequence, and a Bmi1-pcDNA3.1 vector was constructed for transfection into an intestinal porcine epithelial cell line (IPEC-1). The proliferation ability of the cells was estimated using the MTT assay and the EdU incorporation method at different time points after seeding. Cell cycle information was detected by flow cytometry. The mRNA abundances of cell cycle-related genes were also measured. The results indicated that the pig Bmi1 cDNA is 3,193 bp in length and consists of a 981 bp open reading frame, a 256 bp 5´ untranslated region (UTR), and a 1,956 bp 3' UTR. The transcript contains no signal peptides, and there are no transmembrane regions in the pig Bmi1 coded protein, which has a total of 326 AA. The overexpression of the pig Bmi1 in the IPEC-1 cells led to increased cell proliferation and a lower percentage of cells in the G1 and S phases (P cells in the G2 phase (P 0.05). Our data suggested that pig Bmi1 can increase the proliferation of IPEC-1 cells by promoting the G1/S transition and the overall cell cycle process.

  11. Engineered bone marrow-derived cell sheets restore structure and function of radiation-injured rat urinary bladders.

    Science.gov (United States)

    Imamura, Tetsuya; Ogawa, Teruyuki; Minagawa, Tomonori; Yokoyama, Hitoshi; Nakazawa, Masaki; Nishizawa, Osamu; Ishizuka, Osamu

    2015-05-01

    Previously, we reported that implantation of isolated single bone marrow-derived cells into radiation-injured urinary bladders could restore structure and function. However, injections of isolated single cells had some limitations. Thus, in this study, we produced bone marrow-derived cell sheets in temperature-responsive culture dishes that release the monolayer sheets intact. We then determined whether the produced cell sheets could restore function to irradiated urinary bladders. Twenty female 10-week-old Sprague-Dawley (SD) rats were irradiated with 2 gray once a week for 5 weeks. Bone marrow cells harvested from two male 17-week-old green fluorescence protein-transfected SD rats were placed in primary culture for 7 days. Bone marrow cell-derived outgrowths were harvested by enzymatic digestion and transferred into the atelocollagen-coated temperature-responsive culture dishes for 2 days. To harvest the secondarily cultured cells as monolayer sheets, a support membrane was put in each culture dish, and then the temperature was reduced to 20°C. Each released cell sheet was then patched onto the irradiated anterior bladder wall (n=10). As controls, cell-free sheets were similarly patched (n=10). After 4 weeks, transplanted cells were detected on the bladder walls. The cell sheet-transplanted bladders had smooth muscle layers and acetylcholinesterase-positive nerve fibers in proportions that were significantly larger than those of the control bladders. In addition, the cell sheet-transplanted bladders had reduced prolyl 4-hydroxylase beta (P4HB)-positive regions of collagen synthesis and apoptosis within the smooth muscle layers. In cystometric investigations, threshold pressures, voiding interval, micturition volume, and bladder capacity in the cell sheet-transplantation group were significantly higher than those in the control group. Residual volume of the cell sheet-transplantation group was significantly lower compared with the control. There were 24 growth

  12. Mechanisms of Cell Polarity-Controlled Epithelial Homeostasis and Immunity in the Intestine

    NARCIS (Netherlands)

    Klunder, Leon J; Faber, Klaas Nico; Dijkstra, Gerard; van IJzendoorn, Sven C D

    2017-01-01

    Intestinal epithelial cell polarity is instrumental to maintain epithelial homeostasis and balance communications between the gut lumen and bodily tissue, thereby controlling the defense against gastrointestinal pathogens and maintenance of immune tolerance to commensal bacteria. In this review, we

  13. Protective Effects of Trehalose on the Corneal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Pasquale Aragona

    2014-01-01

    Full Text Available Purpose. Aim of the present work was to evaluate the effects of the trehalose on the corneal epithelium undergoing alcohol delamination. Methods. Twelve patients undergoing laser subepithelial keratomileusis (LASEK were consecutively included in the study. The right eyes were pretreated with 3% trehalose eye drops, whilst left eyes were used as control. Epithelial specimens were processed for cells vitality assessment, apoptosis, and light and transmission electron microscopy; a morphometric analysis was performed in both groups. Results. In both trehalose-untreated eyes (TUE and trehalose-treated eyes (TTE, the percentage of vital cells was similar and no apoptotic cells were observed. In TUE, the corneal epithelium showed superficial cells with reduced microfolds, wing cells with vesicles and dilated intercellular spaces, and dark basal cells with vesicles and wide clefts. In TTE, superficial and wing cells were better preserved, and basal cells were generally clear with intracytoplasmatic vesicles. The morphometric analysis showed statistically significant differences between the two groups: the TTE epithelial height was higher, the basal cells showed larger area and clearer cytoplasm. The distribution of desmosomes and hemidesmosomes was significantly different between the groups. Conclusions. Trehalose administration better preserved morphological and morphometric features of alcohol-treated corneal epithelium, when compared to controls.

  14. Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells

    DEFF Research Database (Denmark)

    Thit, Amalie; Selck, Henriette; Bjerregaard, Henning F.

    2015-01-01

    CuO NPs have previously been reported as toxic to a range of cell cultures including kidney epithelial cells from the frog, Xenopus laevis (A6). Here we examine the molecular mechanisms affecting toxicity of Cu in different forms and particle sizes. A6 cells were exposed to ionic Cu (Cu2+) or CuO...... of the sequence of events explaining Poly toxicity. Briefly, the events include: cellular uptake, most likely via endocytosis, production of ROS, which cause DNA damage that activates a signaling pathway which eventually leads to cell death, mainly via apoptosis......CuO NPs have previously been reported as toxic to a range of cell cultures including kidney epithelial cells from the frog, Xenopus laevis (A6). Here we examine the molecular mechanisms affecting toxicity of Cu in different forms and particle sizes. A6 cells were exposed to ionic Cu (Cu2+) or Cu......O particles of three different sizes: CuO NPs of 6 nm (NP6), larger Poly-dispersed CuO NPs of toxic than NP6, Micro and Cu2+ to A6 cells, causing DNA damage, decreased cell viability...

  15. Oral epithelial cell responses to multispecies microbial biofilms.

    Science.gov (United States)

    Peyyala, R; Kirakodu, S S; Novak, K F; Ebersole, J L

    2013-03-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. Only the Sg/Actinomyces naeslundii (An)/Fn multispecies biofilms elicited IL-6 levels above those of control. IL-8 was a primary response to the Sg/An/Fn biofilms, albeit the level was not enhanced compared with a predicted composite level from the monospecies challenges. These results represent some of the first data documenting alterations in profiles of oral epithelial cell responses to multispecies biofilms.

  16. Evaluating alternative stem cell hypotheses for adultcorneal epithelial maintenance

    Institute of Scientific and Technical Information of China (English)

    John D West; Natalie J Dorà; Natalie J Dorà,

    2015-01-01

    In this review we evaluate evidence for three differenthypotheses that explain how the corneal epitheliumis maintained. The limbal epithelial stem cell (LESC)hypothesis is most widely accepted. This proposes thatstem cells in the basal layer of the limbal epithelium,at the periphery of the cornea, maintain themselvesand also produce transient (or transit) amplifying cells(TACs). TACs then move centripetally to the centre ofthe cornea in the basal layer of the corneal epitheliumand also replenish cells in the overlying suprabasallayers. The LESCs maintain the corneal epitheliumduring normal homeostasis and become more active torepair significant wounds. Second, the corneal epithelialstem cell (CESC) hypothesis postulates that, duringnormal homeostasis, stem cells distributed throughoutthe basal corneal epithelium, maintain the tissue.According to this hypothesis, LESCs are present in thelimbus but are only active during wound healing. We alsoconsider a third possibility, that the corneal epithelium ismaintained during normal homeostasis by proliferationof basal corneal epithelial cells without any input fromstem cells. After reviewing the published evidence,we conclude that the LESC and CESC hypotheses areconsistent with more of the evidence than the thirdhypothesis, so we do not consider this further. The LESCand CESC hypotheses each have difficulty accountingfor one main type of evidence so we evaluate the twokey lines of evidence that discriminate between them.Finally, we discuss how lineage-tracing experimentshave begun to resolve the debate in favour of theLESC hypothesis. Nevertheless, it also seems likely thatsome basal corneal epithelial cells can act as long-termprogenitors if limbal stem cell function is compromised.Thus, this aspect of the CESC hypothesis may have alasting impact on our understanding of corneal epithelialmaintenance, even if it is eventually shown that stemcells are restricted to the limbus as proposed by the

  17. THE INHIBITORY EFFECT OF MELATONIN ON THE GROWTH OF HUMAN BLADDER CARCINOMA T24 CELL LINE

    Institute of Scientific and Technical Information of China (English)

    白艳红; 慕慧; 赵晏; 蔡晓宏; 王中秋; 郭瑗

    2004-01-01

    Objective To study the inhibitory effects of melatonin and its inhibitory mechanism on the growth of human bladder carcinoma T24. Methods The inhibitory effects of melatonin with various concentrations on the human bladder carcinoma T24 lines in vitro were determined by MTT assay. The mechanism of the inhibition was observed by flow cytometry (FCM) and transmission electron microscopy (TEM). Results The 30% inhibition concentration (IC30) value was 0.71mmol·L-1 and the 50% inhibition concentration (IC50) value was 1.20mmol·L-1. The population doubling time of T24 cells treated with melatonin at 0.71mmol·L-1 was 43.2 hours, which was significant different from that of 34.6 hours of the control group. Using FCM, we found that the cell percentage increased during the G1 phase, but decreased during the S stage. The degenerated ultra-structure of the cell treated with melatonin was also observed by TEM. Conclusion The results suggest that melatonin can inhibit the growth of human bladder carcinoma T24. The inhibitory effects of melatonin might be the prolonging of the staging from G1 to S in the cell cycle.

  18. [Immunomorphological study of the distribution of prekeratin with a molecular weight of 49 kilodaltons in various epithelial cells in rats].

    Science.gov (United States)

    Gel'shteĭn, V I; Chipysheva, T A; Troianovskiĭ, S M; Bannikov, G A

    1985-07-01

    Cryostat sections of various tissues of rat were stained using an indirect immunofluorescent method with monoclonal antibody against individual prekeratin with the molecular mass of 49 kilodalton (PK-49). Connective tissue endothelial cells, neurons, glia, haematopoetic tissue and smooth muscles were completely negative in this test. 46 morphological variants of epithelial structures were investigated. PK-49 was absent from all the stratified epithelia (epidermis, hair folliculi, oesophagus) but was expressed in virtually all simple epithelia of endodermal origin (exceptions: squamous lung alveolar epithelium and germinative epithelium of testis). There were negative (kidney tubules) as well as positive (bladder, mammary, glands) cell elements among mesodermal and ectodermal simple epithelia. High specificity of individual PK in respect to morphological variants of epithelia points out to the important role played by prekeratin-type intermediate filaments in morphogenesis.

  19. Continuous cytokine exposure of colonic epithelial cells induces DNA damage

    DEFF Research Database (Denmark)

    Seidelin, Jakob B; Nielsen, Ole Haagen

    2005-01-01

    Chronic inflammatory diseases of the intestinal tract are associated with an increased risk of colorectal cancer. As an example ulcerative colitis (UC) is associated with a production of reactive oxygen species (ROS), including nitrogen monoxide (NO), which is produced in high amounts by inducibl...... nitrogen oxide synthase (iNOS). NO as well as other ROS are potential DNA damaging agents. The aim was to determine the effect of long-term cytokine exposure on NO formation and DNA damage in epithelial cells....

  20. [Transitional cell carcinoma of the bladder in adolescents: a diagnosis to bear in mind].

    Science.gov (United States)

    Ruiz, Eduardo; Alarcón Caba, Martín; Toselli, Luzia; Moldes, Juan; Ormaechea, María; de Badiola, Francisco; Christiansen, Silvia

    2009-02-01

    Transitional cell carcinoma of the bladder has a high incidence in adults, but it is uncommon in children and adolescents. Hematuria is the most common symptom of presentation and vesical ecography the preferred diagnostic method. The diagnosis and treatment is performed with cystoscopy and endoscopic resection. We describe two patients: an 18 years old male, who presented with a pediculated tumor on the posterior bladder wall and a 15 years old female with a 1 cm long tumor on the posterior wall too; both were removed under endoscopic control. In both patients superficial transitional cell carcinoma was the final diagnosis and are disease free 3 and 5 years later. A review of the available literature was performed to clarify if this type of tumors must be considered malignant and try to define how long and by which way these patients must be controlled.

  1. Inhibition of Autophagy Potentiates Atorvastatin-Induced Apoptotic Cell Death in Human Bladder Cancer Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2014-05-01

    Full Text Available Statins are cholesterol reduction agents that exhibit anti-cancer activity in several human cancers. Because autophagy is a crucial survival mechanism for cancer cells under stress conditions, cooperative inhibition of autophagy acts synergistically with other anti-cancer drugs. Thus, this study investigates whether combined treatment of atorvastatin and autophagy inhibitors results in enhancing the cytotoxic effects of atorvastatin, upon human bladder cancer cells, T24 and J82, in vitro. To measure cell viability, we performed the EZ-Cytox cell viability assay. We examined apoptosis by flow cytometry using annexin-V/propidium iodide (PI and western blot using procaspase-3 and poly (ADP-ribose polymerase (PARP antibodies. To examine autophagy activation, we evaluated the co-localization of LC3 and LysoTracker by immunocytochemistry, as well as the expression of LC3 and p62/sequestosome-1 (SQSTM1 by western blot. In addition, we assessed the survival and proliferation of T24 and J82 cells by a clonogenic assay. We found that atorvastatin reduced the cell viability of T24 and J82 cells via apoptotic cell death and induced autophagy activation, shown by the co-localization of LC3 and LysoTracker. Moreover, pharmacologic inhibition of autophagy significantly enhanced atorvastatin-induced apoptosis in T24 and J82 cells. In sum, inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro, providing a potential therapeutic approach to treat bladder cancer.

  2. Serum-Free Cryopreservation of Human Amniotic Epithelial Cells

    Directory of Open Access Journals (Sweden)

    H. Niknejad

    2013-04-01

    Full Text Available Introduction & Objective: One of the important issues in long term storage of cells is removal of animal serum from cell culture environments. The aim of this study was to evaluate amni-otic fluid (AF, which is full of growth factors, as substitute for fetal bovine serum (FBS in the cryopreservation protocol. Materials & Methods: In this experimental study human amniotic epithelial cells were isolated from placentas which were seronegative for microbial infections. The cells were preserved in 24 different patterns for 12 months in -196 ?C (liquid nitrogen and viability of cells were determined before and after cryopreservation by trypan blue and MTT assay. Moreover, Oct-4 expression was studied to determine pluripotency before and after cryopreservation with immunocytochemistry. Results were compared between groups with ANOVA (Tukey Post-Test. P.value under 0.01 and 0.05 was considered statistically significant. Results: The presence of DMEM, FBS or AF is necessary for amniotic cell cryopreservation. Trypan-blue, MTT and immunocytochemistry showed that there isn’t significant difference between using AF and FBS in viability and pluripotency of cells. Moreover, results showed that DMSO is a better cryoprotectant compared to glycerol. Conclusion : Results showed that amniotic fluid can be a proper substitute for FBS in amniotic epithelial cells cryopreservation. (Sci J Hamadan Univ Med Sci 2013; 20 (1:15-24

  3. Vaginal epithelial dendritic cells renew from bone marrow precursors.

    Science.gov (United States)

    Iijima, Norifumi; Linehan, Melissa M; Saeland, Sem; Iwasaki, Akiko

    2007-11-27

    Dendritic cells (DCs) represent key professional antigen-presenting cells capable of initiating primary immune responses. A specialized subset of DCs, the Langerhans cells (LCs), are located in the stratified squamous epithelial layer of the skin and within the mucosal epithelial lining of the vaginal and oral cavities. The vaginal mucosa undergoes cyclic changes under the control of sex hormones, and the renewal characteristics of the vaginal epithelial DCs (VEDCs) remain unknown. Here, we examined the origin of VEDCs. In contrast to the skin epidermal LCs, the DCs in the epithelium of the vagina were found to be repopulated mainly by nonmonocyte bone-marrow-derived precursors, with a half-life of 13 days under steady-state conditions. Upon infection with HSV-2, the Gr-1(hi) monocytes were found to give rise to VEDCs. Furthermore, flow cytometric analysis of the VEDCs revealed the presence of at least three distinct populations, namely, CD11b(+)F4/80(hi), CD11b(+)F4/80(int), and CD11b(-)F4/80(-). Importantly, these VEDC populations expressed CD207 at low levels and had a constitutively more activated phenotype compared with the skin LCs. Collectively, our results revealed mucosa-specific features of the VEDCs with respect to their phenotype, activation status, and homeostatic renewal potential.

  4. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, Victor Paul

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means of labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.

  5. Study of wavy laminar growth of human urinary bladder cancer cell line in vitro

    Institute of Scientific and Technical Information of China (English)

    DENG Guo-hong; CONG Yan-guang; LIU Jun-kang; XU Qi-wang; YUAN Ze-tao

    2001-01-01

    To observe the ordered growth behavior of human urinary bladder cancer cell line (BIU) under culture in vitro. Methods: The suspension of BIU cells was spread locally in a culture container. When the cells grew along the wall to form a cellular colony, macroscopic and microscopic observations complemented with measurements of the parameters including expanding diameter, expanding rate, cell shape, average cell density, average cell size, dehydrogenase activity and sensitivity to pH were conducted dynamically. Results: During cell culture, obvious laminar characteristics appeared in localized growing BIU cell colonies and there was difference between the cells of different zones in shape, size, density, dehydrogenase activity and sensitivity to pH. Conclusion: Space closing and bio-dissipation result in self-organization of BIU cells with ordered growth behavior. The present experiment offers a simple, controllable model for the study of wavy growth of human cells.

  6. Detection of bladder transitional cell carcinoma: urinary hTERT assay versus urine cytology

    OpenAIRE

    2009-01-01

    "nBackground: Transitional Cell Carcinoma (TCC) of bladder is the second most common urogenital malignancy and because of its high rate of recurrence (two third of tumors recur) vigilant surveillance is necessary. There have been a lot of efforts to find a proper biomarker for detecting urothelial cancers because available methods are expensive and invasive (like cystoscopy) or have a low degree of sensitivity (like urine cytology). Urothelial malignancies, like other cancers tend to exp...

  7. Epithelial stem cell islands in the regenerated epidermis

    Institute of Scientific and Technical Information of China (English)

    Fu Xiaobing; Sun Xiaoqing; Li Xiaokun; Sheng Zhiyong

    2001-01-01

    Objective: The effects of growth factors on wound healing have been studied extensively, however,their molecular and genetic mechanisms that regulate epidermal regeneration are not fully understood. In this study,we explore the cell reversion characteristics and epithelial stem cell distribution in human regenerated epidermis treated with recombinant human epidermal growth factor (rhEGF). Methods:Tissue biospies from 8 regenerated skins treated with rhEGF were used to evaluate the cell reversion and stem cell distribution in epidermis . The expression of β1 integrin, keratin 19 (K19), keratin 14 (K14) and keratin 10 (K10) in skins was detected with SP immunohistochemical methods. Another 8 biopsies from the regenerated epidermis treated without rhEGF, fetus, children and adults were used as the controls. Results:Immunohistochemical stain for β1 integrin and keratin 19 showed that there were some new stem cell islands in the epidermis treated with rhEGF. These cells were small, containing low RNA content and exhibiting positive expression with β1 integrin and K19 stain. They were isolated, bearing no anatomic relation with the epithelial stem cells in the basal layer. The serial identification experiments indicated that there treated without rhEGF. All of these results supported that these β1 integrin and K19 positive stain cells were the stem cells. Conclusions: The results indicated that these stem cell islands were the specific and individual cell structures in rhEGF treated wounds and rhEGF is the main factor in inducing the stem cell island formation. These results offer a direct evidence for epidermal cell reversion from the differentiated cells to undifferentiated stem cells in vivo and may be useful in the rational use of this growth factor to promote wound healing in clinic.

  8. Targeting tumour Cell Plasticity

    Institute of Scientific and Technical Information of China (English)

    Elizabeth D. WILLIAMS

    2009-01-01

    @@ Her research is focused on understanding the mechanisms of tumour progression and metastasis, particularly in uro-logical carcinomas (bladder and prostate). Tumour cell plasticity, including epithelial-mesenchymal transition, is a cen-tral theme in Dr Williams' work.

  9. Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia

    DEFF Research Database (Denmark)

    Petersen, Ole William; Gudjonsson, Thorarinn; Villadsen, René;

    2003-01-01

    epithelial or the myoepithelial cell phenotype in primary cultures. Having succeeded in continuous propagation presumably without loss of markers, we could show that a subset of the luminal epithelial cells could convert to myoepithelial cells, signifying the possible existence of a progenitor cell...... cell lines. This suprabasal-derived epithelial cell line is able to generate both itself and differentiated luminal epithelial and myoepithelial cells, and in addition, is able to form elaborate terminal duct lobular unit (TDLU)-like structures within a reconstituted basement membrane. As more than 90...

  10. Effects of N-acetylcysteine on matrix metalloproteinase-9 secretion and cell migration of human corneal epithelial cells

    OpenAIRE

    Ramaesh, T; Ramaesh, K; Riley, S C; West, J.D.; Dhillon, B

    2012-01-01

    Matrix metalloproteinase-9 (MMP-9) secreted by corneal epithelial cells has a role in the remodelling of extracellular matrix and migration of epithelial cells. Elevated levels of MMP-9 activity in the ocular surface may be involved in the pathogenesis of corneal diseases. N-acetylcysteine (NAC) has been used to treat corneal diseases, including recurrent epithelial erosions. In this study, its effects on the MMP-9 secretion and human corneal epithelial (HCE) cell migration were evaluated in ...

  11. Stimulation of mucin secretion from human bronchial epithelial cells by mast cell chymase

    Institute of Scientific and Technical Information of China (English)

    Shao-heng HE; Jian ZHENG

    2004-01-01

    AIM: To investigate the effect ofchymase on the mucin secretion from human bronchial epithelial cells. METHODS:Primarily-cultured human bronchial epithelial (PCHBE) cells and normal human bronchial epithelial (NHBE) cells were cultured with chymase or other stimulus in a mixture of bronchial epithelial growth medium (BEGM) and Dulbecco's modified Eagle's medium (DMEM), and the quantities of stimulatory mucin release were recorded.MUC5AC mucin was measured with an ELISA and dolichos biflorus agglutinin (DBA) mucin was determined with an enzyme linked DBA assay. RESULTS: A dose-dependent secretion of DBA mucin from PCHBE cells was observed with chymase with a maximum secretion of 98 % above baseline being achieved following 3 h incubation.The action of chymase started from 1 h, peaked at 3 h and dramatically decreased at 20 h following incubation.Chymase was able to also stimulate approximately 38 % increase in MUC5AC mucin release from PCHBE cells, and about 121% increase in DBA mucin release from NHBE cells. A chymase inhibitor soybean trypsin inhibitor (SBTI)was able to inhibit up to 85 % chymase induced mucin release, indicating that the enzymatic activity was essential for the actions of chymase on bronchial epithelial cells. CONCLUSION: Chymase is a potent stimulus of mucin secretion from human bronchial epithelial cells. It can contribute to mucus hypersecretion process in the patients with chronic obstructive pulmonary disease or asthma.

  12. Proliferation of normal and malignant human epithelial cells post irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mothersill, C.; Seymour, C.B.; O' Brien, A.; Hennessy, T. (Saint James Hospital, Dublin (Ireland). Radiobiological Research Group Dublin Inst. of Tech. (Ireland). Physics Dept.)

    1991-01-01

    Fragments of human oesophageal mucosa, urothelium, squamous and adenocarcinoma of the oesophagus and carcinoma of the bladder have been plated in culture and irradiated. The cells growing from the explanted tissues have then been studied for four weeks post irradiation to assess the overall rate of growth from the irradiated explants and the fraction of profilerating cells. Th results show that when using cell number as an endpoint it is possible to derive growth curves from this type of data which permit a doubling time to be obtained for the cell population surviving different doses. In an attempt to determine the proliferating fraction of the cell population, cultures were labelled at appropriate intervals with tritiated thymidine and were also stained with Ki-67 antiproliferating antigen. The results show an interesting relationship between the dose response obtained for cell labelling with tritiated thymidine and area of cellular outgrowth. Ki-67 staining when used carefully and analysed as described was a useful indicator of proliferating cells. The results provid a means of determining the post irradiation growth potential of fragments of tissue from human organs and may be important for determined overall response of the tumour bulk to proposed treatment. (orig.).

  13. EOTAXIN AND EOTAXIN-2 EXPRESSION IN HUMAN BRONCHIAL EPITHELIAL CELL

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; DENG Wei-wu; Albert CHAN; Stanley CHIK; Adrain WU

    2005-01-01

    Objective To study the role of eotaxin and eotaxin-2 expression by Th2 cytokine and analyze their relationship in normal human bronchial epithelial cell line-BEAS-2B cell. Methods Levels of eotaxin mRNA and protein expression in the bronchial epithelial cell line BEAS-2B cell were determined with RT-PCR and ELISA. We also used RT-PCR to evaluate eotaxin-2 expression under the regulation of Th2 cytokine IL-4 and IL-13 as well as proinflammatory agent-TNFα. Results Eotaxin mRNA expression was the highest at the time point of 12h under the stimulation of TNF-α. While Th2 cytokine IL-4 and IL-13 had the amplification effect on the expression. Eotaxin protein was also elevated with the combination stimulation of proinflammatory agent TNF-α and IL-4 in dose and time dependent manner(P<0.01). These results were also seen when the cells were stimulated by TNF-α and IL-13. Eotaxin-2 mRNA expression was the highest at the time point of 8h. The expression evaluated by semi-quantitative RT-PCR also elevated under the co-stimulation of TNF-α and IL-4 or TNF-α and IL-13 and it should significantly correlate with Eotaxin(P<0.05). Conclusion This study demonstrated that Th2 cytokine like IL-4 and IL-13 enhances eotaxin and eotaxin-2 expression when co-stimulated with proinflammatory agent TNF-α. These results showed that Th2 cytokines existence is the strong evidence for bronchial epithelial cells taking part in the allergic inflammation especially in eosinophils recruitment.

  14. Evidence for toxicity differences between inorganic arsenite and thioarsenicals in human bladder cancer cells.

    Science.gov (United States)

    Naranmandura, Hua; Ogra, Yasumitsu; Iwata, Katsuya; Lee, Jane; Suzuki, Kazuo T; Weinfeld, Michael; Le, X Chris

    2009-07-15

    Arsenic toxicity is dependent on its chemical species. In humans, the bladder is one of the primary target organs for arsenic-induced carcinogenicity. However, little is known about the mechanisms underlying arsenic-induced carcinogenicity, and what arsenic species are responsible for this carcinogenicity. The present study aimed at comparing the toxic effect of DMMTA(V) with that of inorganic arsenite (iAs(III)) on cell viability, uptake efficiency and production of reactive oxygen species (ROS) toward human bladder cancer EJ-1 cells. The results were compared with those of a previous study using human epidermoid carcinoma A431 cells. Although iAs(III) was known to be toxic to most cells, here we show that iAs(III) (LC(50)=112 microM) was much less cytotoxic than DMMTA(V) (LC(50)=16.7 microM) in human bladder EJ-1 cells. Interestingly, pentavalent sulfur-containing DMMTA(V) generated a high level of intracellular ROS in EJ-1 cells. However, this was not observed in the cells exposed to trivalent inorganic iAs(III) at their respective LC(50) dose. Furthermore, the presence of N-acetyl-cysteine completely inhibited the cytotoxicity of DMMTA(V) but not iAs(III), suggesting that production of ROS was the main cause of cell death from exposure to DMMTA(V), but not iAs(III). Because the cellular uptake of iAs(III) is mediated by aquaporin proteins, and because the resistance of cells to arsenite can be influenced by lower arsenic uptake due to lower expression of aquaporin proteins (AQP 3, 7 and 9), the expression of several members of the aquaporin family was also examined. In human bladder EJ-1 cells, mRNA/proteins of AQP3, 7 and 9 were not detected by reverse transcription polymerase chain reaction (RT-PCR)/western blotting. In A431 cells, only mRNA and protein of AQP3 were detected. The large difference in toxicity between the two cell lines could be related to their differences in uptake of arsenic species.

  15. Bladder squamous cell carcinomas express psoriasin and externalize it to the urine

    DEFF Research Database (Denmark)

    Celis, J E; Rasmussen, H H; Vorum, H;

    1996-01-01

    PURPOSE: To report a single biomarker, psoriasin (Mr 11.0 kd, pI 6.2), a calcium binding protein which is expressed largely by stratified squamous epithelia and is externalized to the urine of bladder squamous cell carcinoma (SCC) bearing patients. MATERIALS AND METHODS: Protein expression profiles...... identified from 100 samples of patients with suspected transitional cell carcinoma (TCC). The protein profiles of the 4 SCCs (56-1, grade III, T4; 181-1, grade I, T3; 219-1, grade III, T3 and 239-1, grade not determined, T2-4) resembled that of keratinocytes, suggesting that these cells express an early...

  16. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    Science.gov (United States)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  17. Synthetic Smac Peptide Enhances Chemo-sensitivity of Bladder Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Jing WANG; Fuqing ZENG; Liang WANG; Zhaohui ZHU; Guosong JIANG

    2008-01-01

    The effects of synthetic Smac peptide (SmacN7) on chemotherapeutic sensitivity of bladder cancer cells were investigated. SmacN7 penetratin peptide was synthesized and delivered into T24 cells. MTT assay was used to evaluate the viability of T24 cells induced by low-dosage of MMC. Flow cytometry was used to analyze the proportions of apoptosis. Western blot was used to detect the expression of XIAP and Caspase-3. The activity of Caspase-3 was measured and the effect of SmacN7 combined with MMC on T24 cell lines was also determined. The results showed that SmacN7 penetratin peptide could successfully interact with endogenous XIAP, increase the proportions of apoptosis of T24 cell lines induced by low-dosage of MMC in a dose-and time-dependent manner. An obvious down-regulation of XIAP expression and up-regulation of Caspase-3 was identified by Western blot. The activity of Caspase-3 in experimental group was significantly increased as compared with that in the control group. As compared with MMC group, the viability of T24 cells in SmacN7 penetratin peptide + MMC group was markedly decreased to 2.22 and 3.61 folds at 24h and 48h respectively. It was concluded that SmacN7 penetratin peptide could act as a cell-permeable IAP inhibitor, inhibit the proliferation, induce apoptosis and enhance the chemo-sensitivity of bladder cancer cells to MMC. These findings indicate that SmacN7 penetratin peptide may be a very promising ageut for bladder cancer treatment when used in combination with chemotherapy.

  18. Basal Tumor Cell Isolation and Patient-Derived Xenograft Engraftment Identify High-Risk Clinical Bladder Cancers

    Science.gov (United States)

    Skowron, K. B.; Pitroda, S. P.; Namm, J. P.; Balogun, O.; Beckett, M. A.; Zenner, M. L.; Fayanju, O.; Huang, X.; Fernandez, C.; Zheng, W.; Qiao, G.; Chin, R.; Kron, S. J.; Khodarev, N. N.; Posner, M. C.; Steinberg, G. D.; Weichselbaum, R. R.

    2016-01-01

    Strategies to identify tumors at highest risk for treatment failure are currently under investigation for patients with bladder cancer. We demonstrate that flow cytometric detection of poorly differentiated basal tumor cells (BTCs), as defined by the co-expression of CD90, CD44 and CD49f, directly from patients with early stage tumors (T1-T2 and N0) and patient-derived xenograft (PDX) engraftment in locally advanced tumors (T3-T4 or N+) predict poor prognosis in patients with bladder cancer. Comparative transcriptomic analysis of bladder tumor cells isolated from PDXs indicates unique patterns of gene expression during bladder tumor cell differentiation. We found cell division cycle 25C (CDC25C) overexpression in poorly differentiated BTCs and determined that CDC25C expression predicts adverse survival independent of standard clinical and pathologic features in bladder cancer patients. Taken together, our findings support the utility of BTCs and bladder cancer PDX models in the discovery of novel molecular targets and predictive biomarkers for personalizing oncology care for patients. PMID:27775025

  19. Epithelial cells from smokers modify dendritic cell responses in the context of influenza infection

    Science.gov (United States)

    Epidemiologic evidence suggests that cigarette smoking is a risk factor for infection with influenza, but the mechanisms underlying this susceptibility remain unknown. To ascertain if airway epithelial cells from smokers demonstrate a decreased ability to orchestrate an influenza...

  20. Circulating tumor cells in early bladder cancer: insight into micrometastatic disease.

    Science.gov (United States)

    Raimondi, Cristina; Gradilone, Angela; Gazzaniga, Paola

    2014-05-01

    Although several studies have demonstrated the prognostic and predictive potential of circulating tumor cells (CTCs), to date their evaluation still has not impacted the treatment strategy. There is wide consensus that CTC assessment would be more beneficial in early stage cancer, especially in those tumor types characterized by early progression and a lack of prognostic markers. Non-muscle-invasive bladder cancer represents an optimal model to this purpose. In fact, the rate of metastatic spread ranges between 20 and 40%, which is unacceptable for a 'superficial' tumor and unexpected in an early stage cancer. This may be due to the presence of non-clinically detectable micrometastases. CTCs may be used as a noninvasive, real-time tool for the stratification of early stage bladder cancer patients according to individual risk of progression.

  1. Epstein-Barr virus infection and persistence in nasopharyngeal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Chi Man Tsang; Wen Deng; Yim Ling Yip; Mu-Sheng Zeng; Kwok Wai Lo; Sai Wah Tsao

    2014-01-01

    Epstein-Barr virus (EBV) infection is closely associated with undifferentiated nasopharyngeal carcinoma (NPC), strongly implicating a role for EBV in NPC pathogenesis; conversely, EBV infection is rarely detected in normal nasopharyngeal epithelial tissues. In general, EBV does not show a strong tropism for infecting human epithelial cels, and EBV infection in oropharyngeal epithelial cels is believed to be lytic in nature. To establish life-long infection in humans, EBV has evolved efficient strategies to infect B cels and hijack their celular machinery for latent infection. Lytic EBV infection in oropharyngeal epithelial cels, though an infrequent event, is believed to be a major source of infectious EBV particles for salivary transmission. The biological events associated with nasopharyngeal epithelial cells are only beginning to be understood with the advancement of EBV infection methods and the availability of nasopharyngeal epithelial cel models for EBV infection studies. EBV infection in human epithelial cels is a highly inefficient process compared to that in B cels, which express the complement receptor type 2 (CR2) to mediate EBV infection. Although receptor(s) on the epithelial cell surface for EBV infection remain(s) to be identified, EBV infection in epithelial cels could be achieved via the interaction of glycoproteins on the viral envelope with surface integrins on epithelial cels, which might trigger membrane fusion to internalize EBV in cels. Normal nasopharyngeal epithelial cells are not permissive for latent EBV infection, and EBV infection in normal nasopharyngeal epithelial cells usually results in growth arrest. However, genetic alterations in premalignant nasopharyngeal epithelial cells, including p16 deletion and cyclin D1 overexpression, could override the growth inhibitory effect of EBV infection to support stable and latent EBV infection in nasopharyngeal epithelial cells. The EBV episome in NPC is clonal in nature, suggesting that NPC

  2. Oral microbial biofilm stimulation of epithelial cell responses.

    Science.gov (United States)

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Novak, Karen F; Ebersole, Jeffrey L

    2012-04-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria.

  3. Immunohistochemical Expression of Cyclooxygenase-2 in Urinary Bladder Transitional Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    F Niki

    2012-07-01

    Full Text Available Background: Transitional Cell Carcinoma (TCC is the most common type of urinary bladder cancer. Cyclooxygenase-2 (COX-2, a key enzyme in prostaglandins biosynthesis, has been introduced as a new candidate for targeted therapy in this cancer. In this study, we investigated the expression of COX-2 in urinary bladder TCCs and its relationship with clinicopathological parameters such as tumor grade and stage. Methods: This cross-sectional study was performed in the Pathology department of Sina Hospital in Tehran, Iran during 2006-2011. Pathology reports of patients with definite diagnosis of urinary bladder TCCs who had undergone Transurethral Resection (TUR were reviewed and 40 cases were selected. Subsequently, COX-2 expression was assessed immunohistochemically by the examination of paraffin embedded tissue blocks. Staining in more than 5% of tumor cells was considered as positive expression. Results: COX-2 was expressed in 52.5% of the patients. High-grade tumors revealed a higher (87.5% COX-2 expression versus other grades of the lesions and there was a statistically significant difference in COX-2 expression between them (P<0.001. Patients age was also related to the expression of this marker (P=0.03. In contrast, this marker did not correlate with other characteristics including gender, lymphatic invasion or tumor stage. In addition, perineurial or vascular invasions were not detected in any of the patients. Conclusion: COX-2 expression was seen in more than half of our patients and it had a marked relation to tumor differentiation. Accordingly, this molecule may be a useful tumor marker in the assessment of urinary bladder cancers.

  4. High glucose stimulates the expression of erythropoietin in rat glomerular epithelial cells

    OpenAIRE

    Lim, Seul Ki; Park, Soo Hyun

    2011-01-01

    It has been reported that the levels of erythropoietin are associated with diabetes mellitus. Glomerular epithelial cells, located in the renal cortex, play an important role in the regulation of kidney function and hyperglycemia-induced cell loss of glomerular epithelial cells is implicated in the onset of diabetic nephropathy. This study investigated the effect of high glucose on erythropoietin and erythropoietin receptor expression in rat glomerular epithelial cells. We found that 25 mM D-...

  5. The differential expression of EphB2 and EphB4 receptor kinases in normal bladder and in transitional cell carcinoma of the bladder.

    Directory of Open Access Journals (Sweden)

    Xiuqing Li

    Full Text Available Effective treatment of transitional cell carcinoma (TCC of the bladder requires early diagnosis. Identifying novel molecular markers in TCC would guide the development of diagnostic and therapeutic targets. Ephrins mediate signals via tyrosine kinase activity that modulates diverse physiologic and developmental processes, and ephrins are increasingly implicated in carcinogenesis. The aim of our study was to examine the differential regulation of EphB4 and EphB2 in normal bladder and in TCC of the bladder in 40 patients undergoing radical cystectomy for curative intent. Immunostaining and Western blotting revealed that normal urothelium expresses EphB2 (20 of 24 cases, 83% of the time not EphB4 (0 of 24 cases, 0%. In sharp contrast, TCC specimens show loss of EphB2 expression (0 of 34 cases, 0% and gain of EphB4 expression (32 of 34, 94%. Furthermore, EphB4 signal strength statistically correlated with higher tumor stage, and trended toward the presence of carcinoma in situ (CIS. These results are confirmed by analysis of normal urothelial and tumor cell lines. EphB2 is not a survival factor in normal urothelium, while EphB4 is a survival factor in TCC. Treatment of bladder tumor xenograft with an EphB4 inhibitor sEphB4-HSA leads to 62% tumor regression and complete remission when combined with Bevacizumab. Furthermore, tissue analysis revealed that sEphB4-HSA led to increased apoptosis, decreased proliferation, and reduced vessel density, implicating direct tumor cell targeting as well as anti-angiogenesis effect. In summary loss of EphB2 and gain of EphB4 expression represents an inflection point in the development, growth and possibly progression of TCC. Therapeutic compounds targeting EphB4 have potential for diagnosing and treating TCC.

  6. Multicystic urothelial carcinoma of the bladder with gland-like lumina and with signet-ring cells. A case report

    Directory of Open Access Journals (Sweden)

    Hes Ondrej

    2008-09-01

    Full Text Available Abstract We present the case of 80-year-old male with superficial papillary urothelial carcinoma of the urinary bladder with striking multicystic architecture with a combination of features of urothelial carcinoma with gland-like lumina, with signet-ring cell differentiation and microcystic pattern. However, the tumor shared the morphologic features of several variants of urothelial carcinoma, the most important differential diagnosis covered so-called florid Brunneriosis, cystitis cystica, and primary adenocarcinomas of the urinary bladder.

  7. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M;

    1998-01-01

    PURPOSE: The immune privilege of the eye has been thought to be dependent on physical barriers and absence of lymphatic vessels. However, the immune privilege may also involve active immunologic processes, as recent studies have indicated. The purpose of the present study was to investigate whether...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  8. Prostatic Adenocarcinoma Coexist with Transitional Cell Carcinoma of the Bladder and Prostate-A Case Report and Review of the Literature

    Institute of Scientific and Technical Information of China (English)

    TongZhang; YongXu; ShuminZhang

    2004-01-01

    Prostatic adenocarcinoma(PAC) with transitional cell carcinoma(TCC) of the bladder and prostate is a rare clinicopathological entity, presentation is usually late. We report a case with obstructive voiding symptoms and lumbago. Prostatic and cystic biopsy revealed PAC and TCC of bladder. Bone scan showed multiple bone metastases. He underwent transurethral resection of the prostate and bladder tumor and was found to have PAC with TCC of the bladder and prostate. We discuss the cases of PAC with TCC of the bladder and prostate.

  9. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  10. Bladder Management

    Science.gov (United States)

    ... Catheterization • Urinary Tract Infections: Indwelling (Foley) Catheter Bladder Management [ Download this pamphlet: "Bladder Management" - (PDF, 499KB) ] The ... and medication or surgery may be helpful. Bladder Management Foley or Suprapubic Catheter A tube is inserted ...

  11. Bladder biopsy

    Science.gov (United States)

    Biopsy - bladder ... A bladder biopsy can be done as part of a cystoscopy . Cystoscopy is a telescopic examination of the inside of the ... informed consent form before you have a bladder biopsy. In most cases, you are asked to urinate ...

  12. Bordetella pertussis entry into respiratory epithelial cells and intracellular survival.

    Science.gov (United States)

    Lamberti, Yanina; Gorgojo, Juan; Massillo, Cintia; Rodriguez, Maria E

    2013-12-01

    Bordetella pertussis is the causative agent of pertussis, aka whooping cough. Although generally considered an extracellular pathogen, this bacterium has been found inside respiratory epithelial cells, which might represent a survival strategy inside the host. Relatively little is known, however, about the mechanism of internalization and the fate of B. pertussis inside the epithelia. We show here that B. pertussis is able to enter those cells by a mechanism dependent on microtubule assembly, lipid raft integrity, and the activation of a tyrosine-kinase-mediated signaling. Once inside the cell, a significant proportion of the intracellular bacteria evade phagolysosomal fusion and remain viable in nonacidic lysosome-associated membrane-protein-1-negative compartments. In addition, intracellular B. pertussis was found able to repopulate the extracellular environment after complete elimination of the extracellular bacteria with polymyxin B. Taken together, these data suggest that B. pertussis is able to survive within respiratory epithelial cells and by this means potentially contribute to host immune system evasion.

  13. Autophagy inhibition enhances RAD001-induced cytotoxicity in human bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Lin JF

    2016-04-01

    Full Text Available Ji-Fan Lin,1 Yi-Chia Lin,2,3 Shan-Che Yang,1 Te-Fu Tsai,2,3 Hung-En Chen,2 Kuang-Yu Chou,2,3 Thomas I-Sheng Hwang2–4 1Central Laboratory, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; 2Division of Urology, Department of Surgery, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; 3Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan; 4Department of Urology, Taipei Medical University, Taipei, Taiwan Background: Mammalian target of rapamycin (mTOR, involved in PI3K/AKT/mTOR pathway, is known to play a central role in regulating the growth of cancer cells. The PI3K/AKT/mTOR pathway enhances tumor survival and proliferation through suppressing autophagy, which sustains energy homeostasis by collecting and recycling cellular components under stress conditions. Conversely, inhibitors of the mTOR pathway such as RAD001 induce autophagy, leading to promotion of tumor survival and limited antitumor efficacy. We thus hypothesized that the use of autophagy inhibitor in combination with mTOR inhibition improves the cytotoxicity of mTOR inhibitors in bladder cancer.Materials and methods: The cytotoxicity of RT4, 5637, HT1376, and T24 human bladder cancer cells treated with RAD001 alone or combined with autophagy inhibitors (3-methyladenine (3-MA, bafilomycin A1 (Baf A1, chloroquine, or hydroxychloroquine was assessed using the WST-8 cell viability kit. The autophagy status in cells was analyzed by the detection of microtubule-associated light chain 3 form II (LC3-II, using immunofluorescent staining and Western blot. Acidic vesicular organelle (AVO formation in treated cells was determined by acridine orange vital staining. Inhibition of mTOR pathway by RAD001 was monitored by using a homemade quantitative polymerase chain reaction gene array, while phospho-mTOR was detected using Western blot. Induced apoptosis was determined by measurement of caspase 3/7 activity and DNA fragmentation in cells after

  14. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    Science.gov (United States)

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  15. Massive Upper Gastrointestinal Bleeding Secondary to Duodenal Metastasis of Transitional Cell Carcinoma of the Urinary Bladder

    Directory of Open Access Journals (Sweden)

    Carlos H.F. Chan

    2011-04-01

    Full Text Available Acute upper gastrointestinal (UGI bleeding is a common problem in our clinical practice and is often due to peptic ulcer diseases. Occasionally, malignancy may be implicated in these situations. Here we report a rare case of UGI bleeding secondary to metastatic transitional cell carcinoma (TCC of the urinary bladder. A 62-year-old man with a history of stage IIIb TCC of the urinary bladder presented with hematemesis. Endoscopy showed a large tumor in the second stage of the duodenum that occupied 40% of the duodenal circumference, over 7 cm in length. Biopsies revealed a poorly differentiated malignant neoplasm consistent with metastasis from urothelial carcinoma that was identical to the previous surgical specimen of the urinary bladder. He was treated with supportive therapy and intravenous proton pump inhibitor and was discharged home 2 weeks later. Two weeks after discharge, the patient returned to the hospital with a painful swelling of the floor of his mouth. Biopsy again showed the same cancer type. He had unremitting bleeding from his mouth requiring multiple transfusions and a course of palliative radiation therapy. He progressively deteriorated in his cardiopulmonary and neurological functions and expired with cardiopulmonary arrest one month later.

  16. Management of transitional cell carcinoma of the urinary bladder in dogs: a review.

    Science.gov (United States)

    Fulkerson, Christopher M; Knapp, Deborah W

    2015-08-01

    Transitional cell carcinoma (TCC), also referred to as urothelial carcinoma, is the most common form of urinary bladder cancer in dogs, affecting tens of thousands of dogs worldwide each year. Canine TCC is usually a high grade invasive cancer. Problems associated with TCC include urinary tract obstruction, distant metastases in >50% of affected dogs, and clinical signs that are troubling both to the dogs and to their owners. Risk factors for TCC include exposure to older types of flea control products and lawn chemicals, obesity, female sex, and a very strong breed-associated risk. This knowledge is allowing pet owners to take steps to reduce the risk of TCC in their dog. The diagnosis of TCC is made by histopathology of tissue biopsies obtained by cystoscopy, surgery, or catheter. Percutaneous aspirates and biopsies should be avoided due to the risk of tumor seeding. TCC is most commonly located in the trigone region of the bladder precluding complete surgical resection. Medical treatment is the mainstay for TCC therapy in dogs. Although TCC is not usually curable in dogs, multiple drugs have activity against it. Approximately 75% of dogs respond favorably to TCC treatment and can enjoy several months to a year or more of good quality life. Many promising new therapies for TCC are emerging and with the close similarity between TCC in dogs and high grade invasive bladder cancer in humans, new treatment strategies found to be successful in canine studies are expected to help dogs and to be subsequently translated to humans.

  17. Expression of ICAM-1 in colon epithelial cells

    DEFF Research Database (Denmark)

    Vainer, Ben; Sørensen, Susanne; Seidelin, Jakob;

    2003-01-01

    on monolayers of cancer cells. Conflicting results exist on epithelial ICAM-1 expression, and the aim of this study was to compare the expression in various models of colonic epithelium. MATERIALS AND METHODS: Colonic biopsies from four UC patients and four controls were examined by cryoimmuno......-electron microscopy using ICAM-1-antibodies. In four other controls, the epithelium was isolated from colonic biopsies, embedded in collagen, and evaluated similarly. Isolated crypts and cultured cancer cells were stimulated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF-alpha). RESULTS: ICAM-1......, both colonocytes and HT29 cells were capable of expressing ICAM-1 on their apical membranes in response to supraphysiologic cytokine concentrations. These observations question the justification of extrapolating observations from colon cancer cell lines to in vivo inflammatory conditions....

  18. Mouse bladder wall injection.

    Science.gov (United States)

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  19. Biomatrices for bladder reconstruction.

    Science.gov (United States)

    Lin, Hsueh-Kung; Madihally, Sundar V; Palmer, Blake; Frimberger, Dominic; Fung, Kar-Ming; Kropp, Bradley P

    2015-03-01

    There is a demand for tissue engineering of the bladder needed by patients who experience a neurogenic bladder or idiopathic detrusor overactivity. To avoid complications from augmentation cystoplasty, the field of tissue engineering seeks optimal scaffolds for bladder reconstruction. Naturally derived biomaterials as well as synthetic and natural polymers have been explored as bladder substitutes. To improve regenerative properties, these biomaterials have been conjugated with functional molecules, combined with nanotechology, or seeded with exogenous cells. Although most studies reported complete and functional bladder regeneration in small-animal models, results from large-animal models and human clinical trials varied. For functional bladder regeneration, procedures for biomaterial fabrication, incorporation of biologically active agents, introduction of nanotechnology, and application of stem-cell technology need to be standardized. Advanced molecular and medical technologies such as next generation sequencing and magnetic resonance imaging can be introduced for mechanistic understanding and non-invasive monitoring of regeneration processes, respectively.

  20. Human respiratory epithelial cells from nasal turbinate expressed stem cell genes even after serial passaging.

    Science.gov (United States)

    Ruszymah, B H I; Izham, B A Azrul; Heikal, M Y Mohd; Khor, S F; Fauzi, M B; Aminuddin, B S

    2011-12-01

    Current development in the field of tissue engineering led to the idea of repairing and regenerating the respiratory airway through in vitro reconstruction using autologous respiratory epithelial (RE). To ensure the capability of proliferation, the stem cell property of RE cells from the nasal turbinate should be evaluated. Respiratory epithelial cells from six human nasal turbinates were harvested and cultured in vitro. The gene expression of FZD-9 and BST-1 were expressed in passage 2 (P2) and passage 4 (P4). The levels of expression were not significant between both passages. The RE cells exhibit the stem cell properties, which remains even after serial passaging.

  1. Cell-mediated infection of cervix derived epithelial cells with primary isolates of human immunodeficiency virus.

    Science.gov (United States)

    Tan, X; Phillips, D M

    1996-01-01

    We have previously demonstrated that HIV-infected transformed T-cells or monocytes adhere to monolayers of CD4-negative epithelial cells. Adhesion is soon followed by budding of HIV from infected mononuclear cells onto the surface of epithelial cells. Epithelial cells subsequently take up virus and become productively infected. Based on these findings, we proposed that sexual transmission of HIV may involve cell-mediated infection of intact mucosal epithelia of the urogenital tract. However, it has become increasingly clear that primary cells and HIV strains isolated from patients are more appropriate models for HIV infection than established cell lines and lab strains of virus. In the studies described here, we infected cervix-derived epithelial monolayers with primary monocytes infected with patient isolates of non-syncytial inducing (NSI) macrophage-tropic strains of HIV. Under the culture conditions employed, HIV-infected primary monocytes do not remain adherent to the apical surface of the epithelium, as did HIV-infected transformed cells. Instead, following adherence, the primary cells migrate between epithelial cells. Virus is secreted from a pseudopod as HIV-infected primary monocytes pass between cells of the epithelium. Productive infection of the epithelium was detected by p24 ELISA and PCR Southern blot analysis. Infection can be blocked by sera from HIV-seropositive individuals or by certain sulfated polysaccharides. These findings support the supposition that transmission of HIV may occur via cell-mediated infection of intact epithelia. The observations also hint at the possibility that-HIV-infected monocyte/macrophages in semen or cervical-vaginal secretions could cross intact epithelia by passing between epithelial cells. Blocking studies suggest that it may be possible to inhibit sexual transmission of HIV either by antibodies in genital tract secretions or by a topical formulation containing certain sulfated polysaccharides.

  2. Effects of different Helicobacter pylori culture filtrates on growth of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Guo Yan; Gang Zhao; Jin-Ping Ma; Shi-Rong Cai; Wen-Hua Zhan

    2008-01-01

    AIM: To study the effects of different Helicobacter pylori (H py/orl) culture filtrates on growth of gastric epithelial cells.METHODS: Broth culture filtrates of H pylori were prepared. Gastric epithelial cells were treated with the filtrates, and cell growth was determined by growth curve and flow cytometry. DNA damage of gastric epithelial cells was measured by single-cell microgel electrophoresis.RESULTS: Gastric epithelial cells proliferated actively when treated by CagA-gene-positive broth culture filtrates, and colony formation reached 40%. The number of cells in S phase increased compared to controls. Comet assay showed 41.2% comet cells in GES-1 cells treated with CagA-positive filtrates (P<0.05).CONCLUSION: CagA-positive filtrates enhance the changes in morphology and growth characteristics of human gastric epithelial tumor cells. DNA damage maybe one of the mechanisms involved in the growth changes.

  3. Limbal stem cells: Central concepts of corneal epithelial homeostasis

    Institute of Scientific and Technical Information of China (English)

    Jinny; J; Yoon; Salim; Ismail; Trevor; Sherwin

    2014-01-01

    A strong cohort of evidence exists that supports the localisation of corneal stem cells at the limbus. The distinguishing characteristics of limbal cells as stem cells include slow cycling properties, high proliferative potential when required, clonogenicity, absence of differentiation marker expression coupled with positive expression of progenitor markers, multipotency, centripetal migration, requirement for a distinct niche environment and the ability of transplanted limbal cells to regenerate the entire corneal epithelium. The existence of limbal stem cells supports the prevailing theory of corneal homeostasis, known as the XYZ hypothesis where X represents proliferation and stratification of limbal basal cells, Y centripetal migration of basal cells and Z desquamation of superficial cells. To maintain the mass of cornea, the sum of X and Y must equal Z and very elegant cell tracking experiments provide strong evidence in support of this theory. However, several recent stud-ies have suggested the existence of oligopotent stem cells capable of corneal maintenance outside of the limbus. This review presents a summary of data which led to the current concepts of corneal epithelial homeostasis and discusses areas of controversy surrounding the existence of a secondary stem cell reservoir on the corneal surface

  4. Apoptosis Induced by Ginsenoside Rg3 in a Human Bladder Carcinoma Cell Line

    Institute of Scientific and Technical Information of China (English)

    Junxia Chen; Huimin Peng; Shuping Pu; Yuping Guo

    2006-01-01

    OBJECTIVE This study was conducted to explore the effect of Rg3 on inhibition of proliferation and induction of apoptosis in bladder cancer cells.METHODS The EJ bladder cancer cell line was treated with Rg3 at various concentrations. Cell proliferation was measured by the MTT assay. Morphological changes in the cells were observed by fluorescent staining using Hoechst 33258. The cell cycle and apoptotic rate were analyzed by flow cytometry (FCM) and the expression of caspase-3 in cells was detected by immunocytochemistry. DNA ladder analysis was conducted by agarose gel electrophoresis.RESULTS Rg3 inhibited proliferation of EJ cells in a concentration-dependent manner, resulting in an IC50 for Rg3 at 48 h of 125.5 μg/ml. When treated with 150 μg/ml of Rg3 for 24 h and 48 h, the cells showed apoptotic morphological characteristics including condensed chromatin, nuclear fragmentation, apoptotic bodies and bright fluorescent granules as well as a higher caspase-3 expression. The FCM assay indicated that Rg3 altered the cell cycle and induced apoptosis of the EJ cells, when treated for 24 h and 48 h with 75 μg/ml of Rg3 as well as for 48 h with 150 μg/ml. The percentages of cells in the S phase and the G2/M transition were increased, whereas the percentages of cells in the G0-G1 transition were decreased. The apoptotic rates were increased from (1.05±0.17)% in the control group cells to (8.41 ±0.98)%, (18.57±2.20)% and (33.98±1.64)% respectively. Significant changes in the DNA ladders, showed that the effects of Rg3 were displayed in a dose and time dependent manner.CONCLUSION The results suggest that Ginsenoside Rg3 exerts an inhibitory effect on proliferation of EJ cells by inducing apoptosis.

  5. Interaction between submicron COD crystals and renal epithelial cells

    Directory of Open Access Journals (Sweden)

    Peng H

    2012-08-01

    Full Text Available Hua Peng1,2 Jian-Ming Ouyang1,2 Xiu-Qiong Yao1, Ru-E Yang11Department of Chemistry, Jinan University, 2Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou, ChinaObjectives: This study aims to investigate the adhesion characteristics between submicron calcium oxalate dihydrate (COD with a size of 150 ± 50 nm and African green monkey kidney epithelial cells (Vero cells before and after damage, and to discuss the mechanism of kidney stone formation.Methods: Vero cells were oxidatively injured by hydrogen peroxide to establish a model of injured cells. Scanning electron microscopy was used to observe Vero–COD adhesion. Inductively coupled plasma emission spectrometry was used to quantitatively measure the amount of adhered COD microcrystals. Nanoparticle size analyzer and laser scanning confocal microscopy were performed to measure the change in the zeta potential on the Vero cell surface and the change in osteopontin expression during the adhesion process, respectively. The level of cell injury was evaluated by measuring the changes in malonaldehyde content, and cell viability during the adhesion process.Results: The adhesion capacity of Vero cells in the injury group to COD microcrystals was obviously stronger than that of Vero cells in the control group. After adhesion to COD, cell viability dropped, both malonaldehyde content and cell surface zeta potential increased, and the fluorescence intensity of osteopontin decreased because the osteopontin molecules were successfully covered by COD. Submicron COD further damaged the cells during the adhesion process, especially for Vero cells in the control group, leading to an elevated amount of attached microcrystals.Conclusion: Submicron COD can further damage injured Vero cells during the adhesion process. The amount of attached microcrystals is proportional to the degree of cell damage. The increased amount of microcrystals that adhered to the injured epithelial

  6. Bladder Diseases

    Science.gov (United States)

    ... frequent, urgent urination Bladder cancer Doctors diagnose bladder diseases using different tests. These include urine tests, x- ... National Institute of Diabetes and Digestive and Kidney Diseases

  7. Neurogenic bladder

    Science.gov (United States)

    Neurogenic detrusor overactivity; NDO; Neurogenic bladder sphincter dysfunction; NBSD ... Disorders of the central nervous system commonly cause neurogenic bladder. These can include: Alzheimer disease Birth defects of ...

  8. Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol

    OpenAIRE

    Ali Reza Khosravi; David J Erle

    2016-01-01

    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote ...

  9. Efficient immortalization of primary nasopharyngeal epithelial cells for EBV infection study.

    Directory of Open Access Journals (Sweden)

    Yim Ling Yip

    Full Text Available Nasopharyngeal carcinoma (NPC is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection

  10. Matrix proteoglycans as effector molecules for epithelial cell function

    Directory of Open Access Journals (Sweden)

    C. W. Frevert

    2005-12-01

    Full Text Available Matrix proteoglycans are complex molecules composed of a core protein and glycosaminoglycan side chains. Once thought to be the molecular glue providing structural support and imparting biomechanical properties to lung tissue, it is now apparent that proteoglycans are important biological modifiers which regulate processes such as lung development, homeostasis, inflammation and wound healing. The diverse roles of proteoglycans in the extracellular matrix suggest that these molecules play a critical role in normal and diseased lungs. This short article will discuss the role extracellular matrix proteoglycans play in regulating epithelial cell function in the lungs.

  11. Granular cell tumor of the urinary bladder:A case report%膀胱颈部颗粒细胞瘤一例报告

    Institute of Scientific and Technical Information of China (English)

    Anxi Wang; Yufeng Xu; Ting Huang

    2011-01-01

    We reported a case of a GCT of the urinary bladder and review the literature. A 23-year-old female presented with dysuria that had lasted for the previous 6 months. MRI revealed a 3 × 2.5 cm global mass in the anterior wall of urinary bladder. Cystoscopy showed a semispherical tumor approximately 3 cm in diameter that was covered with normal bladder mucosa and extended from the bladder neck to the anterior wall of the bladder. The patient underwent transurethral resection of the tumor. Histological examination and immunohistochemical staining showed a granular cell tumor (GCT). There were no features suggesting a malignant phenotype. On 6 months follow-up, the patient has remained free of bladder recurrence. We recommend careful pathologic assessment for establishing the appropriate diagnosis and either a conservative or aggressivesurgical treatment for benign or localized malignant GCT of the urinary bladder, respectively.

  12. Klebsiella pneumoniae triggers a cytotoxic effect on airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Llobet-Brossa Enrique

    2009-08-01

    Full Text Available Abstract Background Klebsiella pneumoniae is a capsulated Gram negative bacterial pathogen and a frequent cause of nosocomial infections. Despite its clinical relevance, little is known about the features of the interaction between K. pneumoniae and lung epithelial cells on a cellular level, neither about the role of capsule polysaccharide, one of its best characterised virulence factors, in this interaction. Results The interaction between Klebsiella pneumoniae and cultured airway epithelial cells was analysed. K. pneumoniae infection triggered cytotoxicity, evident by cell rounding and detachment from the substrate. This effect required the presence of live bacteria and of capsule polysaccharide, since it was observed with isolates expressing different amounts of capsule and/or different serotypes but not with non-capsulated bacteria. Cytotoxicity was analysed by lactate dehydrogenase and formazan measurements, ethidium bromide uptake and analysis of DNA integrity, obtaining consistent and complementary results. Moreover, cytotoxicity of non-capsulated strains was restored by addition of purified capsule during infection. While a non-capsulated strain was avirulent in a mouse infection model, capsulated K. pneumoniae isolates displayed different degrees of virulence. Conclusion Our observations allocate a novel role to K. pneumoniae capsule in promotion of cytotoxicity. Although this effect is likely to be associated with virulence, strains expressing different capsule levels were not equally virulent. This fact suggests the existence of other bacterial requirements for virulence, together with capsule polysaccharide.

  13. Phase I/II Study of IMMU-132 in Patients With Epithelial Cancers

    Science.gov (United States)

    2016-09-20

    Colorectal Cancer; Gastric Adenocarcinoma; Esophageal Cancer; Hepatocellular Carcinoma; Non-small Cell Lung Cancer; Small Cell Lung Cancer; Ovarian Epithelial Cancer; Carcinoma Breast Stage IV; Hormone-refractory Prostate Cancer; Pancreatic Ductal Adenocarcinoma; Head and Neck Cancers- Squamous Cell; Renal Cell Cancer; Urinary Bladder Neoplasms; Cervical Cancer; Endometrial Cancer; Follicular Thyroid Cancer; Glioblastoma Multiforme

  14. Cholesteatoma fibroblasts promote epithelial cell proliferation through overexpression of epiregulin.

    Directory of Open Access Journals (Sweden)

    Mamoru Yoshikawa

    Full Text Available To investigate whether keratinocytes proliferate in response to epiregulin produced by subepithelial fibroblasts derived from middle ear cholesteatoma. Tissue samples were obtained from patients undergoing tympanoplasty. The quantitative polymerase chain reaction and immunohistochemistry were performed to examine epiregulin expression and localization in cholesteatoma tissues and retroauricular skin tissues. Fibroblasts were cultured from cholesteatoma tissues and from normal retroauricular skin. These fibroblasts were used as feeder cells for culture with a human keratinocyte cell line (PHK16-0b. To investigate the role of epiregulin in colony formation by PHK16-0b cells, epiregulin mRNA expression was knocked down in fibroblasts by using short interfering RNA and epiregulin protein was blocked with a neutralizing antibody. Epiregulin mRNA expression was significantly elevated in cholesteatoma tissues compared with that in normal retroauricular skin. Staining for epiregulin was more intense in the epithelial cells and subepithelial fibroblasts of cholesteatoma tissues than in retroauricular skin. When PHK16-0b cells were cultured with cholesteatoma fibroblasts, their colony-forming efficiency was 50% higher than when these cells were cultured with normal skin fibroblasts. Also, knockdown of epiregulin mRNA in cholesteatoma fibroblasts led to greater suppression of colony formation than knockdown in skin fibroblasts. Furthermore, the colony-forming efficiency of PHK16-0b cells was significantly reduced after treatment with an epiregulin neutralizing antibody in co-culture with cholesteatoma fibroblasts, but not in co-culture with skin fibroblasts. These results suggest that keratinocyte hyperproliferation in cholesteatoma is promoted through overexpression of epiregulin by subepithelial fibroblasts via epithelial-mesenchymal interactions, which may play a crucial role in the pathogenesis of middle ear cholesteatoma.

  15. Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells.

    Science.gov (United States)

    Kassmer, Susannah H; Bruscia, Emanuela M; Zhang, Ping-Xia; Krause, Diane S

    2012-03-01

    Previous studies have demonstrated that bone marrow (BM)-derived cells differentiate into nonhematopoietic cells of multiple tissues. To date, it remains unknown which population(s) of BM cells are primarily responsible for this engraftment. To test the hypothesis that nonhematopoietic stem cells in the BM are the primary source of marrow-derived lung epithelial cells, either wild-type hematopoietic or nonhematopoietic BM cells were transplanted into irradiated surfactant-protein-C (SPC)-null mice. Donor-derived, SPC-positive type 2 pneumocytes were predominantly detected in the lungs of mice receiving purified nonhematopoietic cells and were absent from mice receiving purified hematopoietic stem and progenitor cells. We conclude that cells contained in the nonhematopoietic fraction of the BM are the primary source of marrow-derived lung epithelial cells. These nonhematopoietic cells may represent a primitive stem cell population residing in adult BM.

  16. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    Science.gov (United States)

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Reiter, Michael; Tsaur, Igor; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A

    2014-01-01

    Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.

  17. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    Directory of Open Access Journals (Sweden)

    Jasmina Makarević

    Full Text Available Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP. Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.

  18. Modification of Alternative Splicing of Bcl-x Pre-mRNA in Bladder Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhaohui; XING Shi'an; CHENG Ping; ZENG Fuqing; LU Gongcheng

    2006-01-01

    To modify the splicing pattern of Bcl-x and compare the effect of this approach with that of the antisense gene therapy in BIU-87 cell line of bladder cancer, by using 5'-Bcl-x AS to target downstream alternative 5'-Bcl-x splice site to shift splicing from Bcl-xL to Bcl-xS and 3'-Bcl-x AS antisense to the 3'-splice site of exon Ⅲ in Bcl-x pre- mRNA to down regulation of Bcl-xL expression,the inhibitory effects on cancer cells by modification of alternative splicing and antisense gene therapy were observed and compared by microscopy, MTT Assay, RT-PCR, FACS, Westhern bloting and clone formation. The growth of cells BIU-87 was inhibited in a dose- and time-dependent manner. Its inhibitory effect began 12 h after the exposure, reaching a maximum value after 72h. The number of cells decreased in S phase and the number increased in G1 phase. The ability to form foci was reduced and the antisense gene therapy was approximately half as efficient as modification of alternative splicing in inducing apoptosis. It is concluded that modification of splicing pattern of Bcl-x pre-mRNA in bladder cancer cell BIU-87 is better than antisense gene therapy in terms of tumor inhibition.

  19. Characterization of Genes Associated with Different Phenotypes of Human Bladder Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Yu-Cong YANG; Xu LI; Wei CHEN

    2006-01-01

    To identify genes associated with morphological phenotypes of human bladder transitional cell carcinoma, we used suppression subtractive hybridization (SSH) to create a subtractive cDNA library of two established cell lines, BLZ-211 and BLS-211, derived from a patient with transitional cell carcinoma of the bladder, then to screen for differentially expressed genes. Real-time reverse transcription-polymerase chain reaction was used to further confirm the selected differentially expressed genes. Forward and reverse subtractive cDNA libraries yielded 168 and 305 putative clones, and among them more than 90% contained the inserts.After differential screening, 36 different transcripts were obtained from 64 cDNA clones of a forward and reverse subtraction library. Among them, 17 were identified as known genes by homology, for example,Vimentin, Keratin7, DDH and UCH-L1. The remaining 19 were unknown expressed genes, and were collected as new expressed sequence tags by the GenBank dbEST database with the accession numbers DR008207,DR010178, DR159652-DR159660, DY230447-DY230448, and DY505708-DY505713. Their function will be studied further. Thus, SSH appears to be a useful technique for identifying differentially expressed genes between cell lines or clones. Our results, as revealed by SSH, also suggest that differences in gene expression of cytoskeletal proteins might contribute to the different morphologies in BLZ-211 and BLS-211 cells.

  20. Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637.

    Science.gov (United States)

    Szabados, Florian; Kleine, Britta; Anders, Agnes; Kaase, Martin; Sakinç, Türkân; Schmitz, Inge; Gatermann, Sören

    2008-08-01

    Invasion of bacteria into nonphagocytic host cells is an important pathogenicity factor for escaping the host defence system. Gram-positive organisms, for example Staphylococcus aureus and Listeria monocytogenes, are invasive in nonphagocytic cells, and this mechanism is discussed as an important part of the infection process. Uropathogenic Escherichia coli and Staphylococcus saprophyticus can cause acute and recurrent urinary tract infections as well as bloodstream infections. Staphylococcus saprophyticus shows strong adhesion to human urinary bladder carcinoma and Hep2 cells and expresses the 'Microbial Surface Components Recognizing Adhesive Matrix molecule' (MSCRAMM)-protein SdrI with collagen-binding activity. MSCRAMMs are responsible for adhesion and collagen binding in S. aureus and are discussed as an important pathogenicity factor for invasion. To investigate internalization in S. aureus, several fluorescence activated cell sorting (FACS) assays have been described recently. We used a previously described FACS assay, with slight modifications, in addition to an antibiotic protection assay and transmission electron microscopy to show that S. saprophyticus ATCC 15305 and the wild-type strain 7108 were internalized into the human urinary bladder carcinoma cell line 5637. The discovery of the internalization of S. saprophyticus may be an important step for understanding the pathogenicity of recurrent infections caused by this organism.

  1. Effect of Lithium on Cell Cycle Progression of Pig Airway Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    陈文书; 吴人亮; 王曦; 李媛; 郝天玲

    2004-01-01

    To investigate the effect of lithium on cell cycle progression of airway epithelial cells,primary pig tracheobronchial epithelial cells were incubated with lithium chloride (LiCl) at different concentrations (0, 5 mmol/L, and 10 mmol/L) and time (12 h, 16 h and 24 h). After the treatment, cells were counted, cell cycle profile was measured by BrdU labeling and flow cytometry, and expression of cyclin D1 and cyclin B1 were detected by Western blotting. The results showed that after 24h of 10mmol/L but not 5mmol/L LiCl treatment, proliferation of cells was slowed down as manifested by delayed confluence and cell number accumulation (P<0.05). Lithium did not change the percentage of cells in S phase (P>0.05), but 24 h incubation with 10 mmol/L LiCl induced a G2/M cell cycle arrest. Furthermore, 10mmol/L LiCl elevated cyclin D1 expression after 12h treatment, while expression of cyclin B1 increased more significantly after 24h incubation. These data demonstrate that lithium inhibits proliferation of pig airway epithelial cells by inhibiting cell cycle progression, and suggest that lithium-sensitive molecule(s) such as glycogen synthase kinase 3 may have a role in the regulation of growth of airway epithelial cells.

  2. Lens Epithelial Cell Proliferation and Cell Density in Human Age-related Cataract

    Institute of Scientific and Technical Information of China (English)

    Xialin Liu; Yizhi Liu; Jianliang Zheng; Qiang Huang; Huling Zheng

    2000-01-01

    Purpose: To discuss the potential effect of the lens epithelial cell proliferation in age-related cataract.Methods: In vitro cell proliferation was assayed by MTT method to evaluate the lens epithelial cell density, index, and proliferation capacity in normal lens and all kinds of age-related cataract. Capsulotomy specimens from all kinds of patients who underwent cataract phacoemulsification extraction surgery were compared with the lens epithelial specimens from non-cataract lenses of Eye Bank eyes.Results: Lens epithelial cell density of central anterior capsule (LECD) in female normal lens was higher than that in male, LECD in nuclear cataract( > NⅢ ) was higher than that in normal lens, but in the mature cortical cataract, LF CD was lower. Mitotic index of three kinds of age-related cataracts in vivo had no statistical difference, neither did cell proliferation capacity of cultivated cells in vitro.Conclusion: The individual difference of lens epithelial cell density and proliferation capacity in vivo may be an important underlying cause for senile cataract in the cellular level, especially for nuclear cataract.

  3. Molecular basis of potassium channels in pancreatic duct epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Novak, Ivana

    2013-01-01

    Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K channels...... in pancreatic duct cells, including KCNN4 (K 3.1), KCNMA1 (K1.1), KCNQ1 (K7.1), KCNH2 (K11.1), KCNH5 (K10.2), KCNT1 (K4.1), KCNT2 (K4.2), and KCNK5 (K5.1). We will give an overview of K channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from...... other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K channel research with respect to the physiology of secretion...

  4. Invasion of epithelial cells by Trichinella spiralis: in vitro observations

    Directory of Open Access Journals (Sweden)

    Romarís F.

    2001-06-01

    Full Text Available It has been known for many years that Trichinella spiralis initiates infection by penetrating the columnar epithelium of the small intestine, however, the mechanisms used by the parasite in the establishment of its intramulticellular niche in the intestine are unknown. The recent demonstration that invasion also occurs in vitro when infective larvae of T. spiralis are inoculated onto cultures of epithelial cells provides a model that allows the direct observation of the process by which the parasite recognizes, invades and migrates within the epithelium. The finding that penetration of the cell membrane or Induction of plasma membrane wounds by larvae do not always result in invasion argue in favor of some kind of host-parasite communication in successful invasion. In this sense, the in vitro model of invasion provides a readily manipulated and controlled system to investigate both parasite, and host cell requirements for invasion.

  5. [A case of small cell carcinoma in the urinary bladder responding to gemcitabine/cisplatin combination therapy as neoadjuvant chemotherapy].

    Science.gov (United States)

    Shirato, Akitomi; Shimamoto, Kenji; Ozawa, Akira; Tanji, Nozomu; Yokoyama, Masayoshi

    2006-12-01

    We report a case of primary small cell carcinoma of the urinary bladder. A 79-year-old man with the chief complaints of macrohematuria and pollakisuria was admitted to our hospital. Cystoscopy and computed tomography (CT) revealed a non-papillary broad-based bladder tumor. Histological diagnosis was small cell carcinoma of the urinary bladder, and he underwent 3 courses of neoadjuvant chemotherapy including gemcitabine and cisplatin with a preoperative diagnosis of cT3bN0M0. After the chemotherapy, cystoscopy and CT showed complete remission. Total cystectomy with ileal conduit was performed following 3 courses of chemotherapy. Microscopic examination revealed that the small cell carcinoma had disappeared and the converted squamous cell carcinoma remained only in a small part of the specimens. The patient was carefully followed for 10 months after operation, with no tumor recurrence.

  6. Epithelial Cell Coculture Models for Studying Infectious Diseases: Benefits and Limitations

    Directory of Open Access Journals (Sweden)

    Benjamin L. Duell

    2011-01-01

    Full Text Available Countless in vitro cell culture models based on the use of epithelial cell types of single lineages have been characterized and have provided insight into the mechanisms of infection for various microbial pathogens. Diverse culture models based on disease-relevant mucosal epithelial cell types derived from gastrointestinal, genitourinary, and pulmonary organ systems have delineated many key host-pathogen interactions that underlie viral, parasitic, and bacterial disease pathogenesis. An alternative to single lineage epithelial cell monoculture, which offers more flexibility and can overcome some of the limitations of epithelial cell culture models based on only single cell types, is coculture of epithelial cells with other host cell types. Various coculture models have been described, which incorporate epithelial cell types in culture combination with a wide range of other cell types including neutrophils, eosinophils, monocytes, and lymphocytes. This paper will summarize current models of epithelial cell coculture and will discuss the benefits and limitations of epithelial cell coculture for studying host-pathogen dynamics in infectious diseases.

  7. Parietal Epithelial Cell Activation Marker in Early Recurrence of FSGS in the Transplant

    NARCIS (Netherlands)

    Fatima, H.; Moeller, M.J.; Smeets, B.; Yang, H.C.; D'Agati, V.D.; Alpers, C.E.; Fogo, A.B.

    2012-01-01

    BACKGROUND AND OBJECTIVES: Podocyte loss is key in glomerulosclerosis. Activated parietal epithelial cells are proposed to contribute to pathogenesis of glomerulosclerosis and may serve as stem cells that can transition to podocytes. CD44 is a marker for activated parietal epithelial cells. This stu

  8. The dual effects of polar methanolic extract of Hypericum perforatum L. in bladder cancer cells

    Science.gov (United States)

    Nseyo, U. O.; Nseyo, O. U.; Shiverick, K. T.; Medrano, T.; Mejia, M.; Stavropoulos, N.; Tsimaris, I.; Skalkos, D.

    2007-02-01

    Introduction and background: We have reported on the polar methanolic fraction (PMF) of Hypericum Perforatum L as a novel photosensitizing agent for photodynamic therapy (PDT) and photodynamic diagnosis (PDD). PMF has been tested in human leukemic cells, HL-60 cells, cord blood hemopoietic progenitor cells, bladder cancers derived from metastatic lymph node (T-24) and primary papillary bladder lesion (RT-4). However, the mechanisms of the effects of PMF on these human cell lines have not been elucidated. We have investigated mechanisms of PMF + light versus PMF-alone (dark experiment) in T-24 human bladder cancer cells. Methods: PMF was prepared from an aerial herb of HPL which was brewed in methanol and extracted with ether and methanol. Stock solutions of PMF were made in DSMO and stored in dark conditions. PMF contains 0.57% hypericin and 2.52% hyperforin. The T24 cell line was obtained from American Type Culture Collection (ATCC). In PDT treatment, PMF (60μg/ml) was incubated with cells, which were excited with laser light (630nm) 24 hours later. Apoptosis was determined by DNA fragmentation/laddering assay. DNA isolation was performed according to the manufacture's instructions with the Kit (Oncogene Kit#AM41). Isolated DNA samples were separated by electrophoresis in 1.5% in agarose gels and bands were visualized by ethidium bromide labeling. The initial cell cycle analysis and phase distribution was by flow cytometry. DNA synthesis was measured by [3H] thymidine incorporation, and cell cycle regulatory proteins were assayed by Western immunoblot. Results: The results of the flow cytometry showed PMF +light induced significant (40%) apoptosis in T24 cells, whereas Light or PMF alone produced little apoptosis. The percentage of cells in G 0/G I phase was decreased by 25% and in G2/M phase by 38%. The main impact was observed on the S phase which was blocked by 78% from the specific photocytotoxic process. DNA laddering analysis showed that PMF (60

  9. Equine tracheal epithelial membrane strips - An alternate method for examining epithelial cell arachidonic acid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P.R.; Derksen, F.J.; Robinson, N.E.; Peter-Golden, M.L. (Michigan State Univ., East Lansing (United States) Univ. of Michigan, Ann Arbor (United States))

    1990-02-26

    Arachidonic acid metabolism by tracheal epithelium can be studied using enzymatically dispersed cell suspensions or cell cultures. Both techniques require considerable tissue disruption and manipulation and may not accurately represent in vivo activity. The authors have developed an alternate method for obtaining strips of equine tracheal epithelium without enzymatic digestion. In the horse, a prominent elastic lamina supports the tracheal epithelium. By physical splitting this lamina, they obtained strips ({le}12 x 1.5 cm) of pseudostratified columnar epithelium attached to a layer of elastic tissue 30-100 {mu}m thick. Epithelial strips (1.2 x 0.5 cm) were attached to plexiglass rods and incubated with ({sup 3}H)arachidonic acid in M199 medium (0.5 {mu}Ci/ml) for 24 hours at 37C. The strips incorporated 36{+-}4% (mean {+-} SEM) of the total radioactivity and released 8.0{+-}1.2% of incorporated radioactivity when stimulated by 5.0 {mu}M calcium ionophore A23187. The extracted supernatant was processed using HPLC, resulting in peaks of radioactivity that co-eluted with authentic PGE{sub 2}, PGF{sub 2}{alpha}, and 12-HETE standards. The greatest activity corresponded to the PGE{sub 2} and PGF{sub 2}{alpha} standards, which is a similar pattern to that reported for cultured human tracheal epithelium.

  10. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    Science.gov (United States)

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells.

  11. Hypoxia-increased expression of genes involved in inflammation, dedifferentiation, pro-fibrosis, and extracellular matrix remodeling of human bladder smooth muscle cells.

    Science.gov (United States)

    Wiafe, Bridget; Adesida, Adetola; Churchill, Thomas; Adewuyi, Esther Ekpe; Li, Zack; Metcalfe, Peter

    2017-01-01

    Partial bladder outlet obstruction (pBOO) is characterized by exaggerated stretch, hydrodynamic pressure, and inflammation which cause significant damage and fibrosis to the bladder wall. Several studies have implicated hypoxia in its pathophysiology. However, the isolated progressive effects of hypoxia on bladder cells are not yet defined. Sub-confluent normal human bladder smooth muscle cells (hbSMC) were cultured in 3% O2 tension for 2, 24, 48, and 72 h. RNA, cellular proteins, and secreted proteins were used for gene expression analysis, immunoblotting, and ELISA, respectively. Transcription of hypoxia-inducible factor (HIF)1α and HIF2α were transiently induced after 2 h of hypoxia (p inflammation, de-differentiation, pro-fibrotic changes, and increased extracellular matrix expression. This elucidates mechanisms of hypoxia-driven bladder deterioration in bladder cells, which is important in tailoring in vivo experiments and may ultimately translate into improved clinical outcomes.

  12. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells.

    Science.gov (United States)

    Brzeszczynska, J; Samuel, K; Greenhough, S; Ramaesh, K; Dhillon, B; Hay, D C; Ross, J A

    2014-06-01

    It has been suggested that the isolation of scalable populations of limbal stem cells may lead to radical changes in ocular therapy. In particular, the derivation and transplantation of corneal stem cells from these populations may result in therapies providing clinical normality of the diseased or damaged cornea. Although feasible in theory, the lack of donor material in sufficient quantity and quality currently limits such a strategy. A potential scalable source of corneal cells could be derived from pluripotent stem cells (PSCs). We developed an in vitro and serum-free corneal differentiation model which displays significant promise. Our stepwise differentiation model was designed with reference to development and gave rise to cells which displayed similarities to epithelial progenitor cells which can be specified to cells displaying a corneal epithelial phenotype. We believe our approach is novel, provides a robust model of human development and in the future, may facilitate the generation of corneal epithelial cells that are suitable for clinical use. Additionally, we demonstrate that following continued cell culture, stem cell-derived corneal epithelial cells undergo transdifferentiation and exhibit squamous metaplasia and therefore, also offer an in vitro model of disease.

  13. Infectious salmon anaemia virus infection of Atlantic salmon gill epithelial cells

    Directory of Open Access Journals (Sweden)

    Weli Simon

    2013-01-01

    Full Text Available Abstract Infectious salmon anaemia virus (ISAV, a member of the Orthomyxoviridae family, infects and causes disease in farmed Atlantic salmon (Salmo salar L.. Previous studies have shown Atlantic salmon endothelial cells to be the primary targets of ISAV infection. However, it is not known if cells other than endothelial cells play a role in ISAV tropism. To further assess cell tropism, we examined ISAV infection of Atlantic salmon gill epithelial cells in vivo and in vitro. We demonstrated the susceptibility of epithelial cells to ISAV infection. On comparison of primary gill epithelial cell cultures with ISAV permissive fish cell cultures, we found the virus yield in primary gill epithelial cells to be comparable with that of salmon head kidney (SHK-1 cells, but lower than TO or Atlantic salmon kidney (ASK-II cells. Light and transmission electron microscopy (TEM revealed that the primary gill cells possessed characteristics consistent with epithelial cells. Virus histochemistry showed that gill epithelial cells expressed 4-O-acetylated sialic acid which is recognized as the ISAV receptor. To the best of our knowledge, this is the first demonstration of ISAV infection in Atlantic salmon primary gill epithelial cells. This study thus broadens our understanding of cell tropism and transmission of ISAV in Atlantic salmon.

  14. Feasibility of organ preservation in muscle-invasive transitional cell carcinoma bladder: A single institutional approach

    Directory of Open Access Journals (Sweden)

    Chhaya Roy

    2015-01-01

    Full Text Available Background: Trimodality treatment initial transurethral resection of the bladder tumor [TURBT] followed by concurrent chemotherapy and radiation and organ preservation have been gradually replacing the radical cystectomy in muscle-invasive transitional cell carcinoma (TCC of bladder. Aims: The aims of this study is to determine the clinical effectiveness, safety and protocol completion rate of trimodality treatment in muscle-invasive TCC of the bladder. Settings and Design: Prospective randomized and open-labeled study. Subjects and Methods: Patients with TCC of bladder, American Joint Committee on Cancer tumor node metastasis (TNM Bladder Cancer Staging (2002 T2-3, N0, M0. Were underwent TURBT followed by three cycles of neoadjuvant chemotherapy with methotrexate, vinblastine, adriamycin, and cisplatin regimen. The patients were then randomized to receive either concurrent cisplatin 75 mg/m 2 in week 1 and 4 (arm-A or no cisplatin (arm-B along with external beam radiation therapy (EBRT 45 Gy, in 25 fractions over 5 weeks. 4 weeks after completion of the initial phase of treatment, all patients were re-evaluated with TURBT. Those with complete remission (CR received additional 15 Gy of EBRT in 8 fractions, while patients with residual disease were recommended for immediate radical cystectomy. All the patients of arm-B received boost dose of 15 Gy of EBRT. Statistical Analysis Used: The major statistical endpoints of this study were the CR rate at 8 weeks post-concurrent chemoradiotherapy (CCRT and only radiotherapy. Statistical significance was accepted at the P < 0.05 (two-sided level. Statistical analysis was performed entirely using the Statistical Package for the Social Sciences for Windows, version 17 (SPSS Inc., Chicago, IL, U.S.A.. Results: 8 weeks after completion of treatment 13/16 (81% patients were in CR in CCRT arm (arm-A compare to 6/15 (40% patients receiving radiation only (arm-B. Conclusions: Patients, after TURBT receiving CCRT

  15. NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury

    Science.gov (United States)

    Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD1...

  16. The PCP pathway regulates Baz planar distribution in epithelial cells

    Science.gov (United States)

    Aigouy, Benoit; Le Bivic, André

    2016-01-01

    The localisation of apico-basal polarity proteins along the Z-axis of epithelial cells is well understood while their distribution in the plane of the epithelium is poorly characterised. Here we provide a systematic description of the planar localisation of apico-basal polarity proteins in the Drosophila ommatidial epithelium. We show that the adherens junction proteins Shotgun and Armadillo, as well as the baso-lateral complexes, are bilateral, i.e. present on both sides of cell interfaces. In contrast, we report that other key adherens junction proteins, Bazooka and the myosin regulatory light chain (Spaghetti squash) are unilateral, i.e. present on one side of cell interfaces. Furthermore, we demonstrate that planar cell polarity (PCP) and not the apical determinants Crumbs and Par-6 control Bazooka unilaterality in cone cells. Altogether, our work unravels an unexpected organisation and combination of apico-basal, cytoskeletal and planar polarity proteins that is different on either side of cell-cell interfaces and unique for the different contacts of the same cell. PMID:27624969

  17. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  18. Licochalcone A induces T24 bladder cancer cell apoptosis by increasing intracellular calcium levels.

    Science.gov (United States)

    Yang, Xinhui; Jiang, Jiangtao; Yang, Xinyan; Han, Jichun; Zheng, Qiusheng

    2016-07-01

    Licochalcone A (LCA) has been reported to significantly inhibit cell proliferation, increase reactive oxygen species (ROS) levels, and induce apoptosis of T24 human bladder cancer cells via mitochondria and endoplasmic reticulum (ER) stress-triggered signaling pathways. Based on these findings, the present study aimed to investigate the mechanisms by which LCA induces apoptosis of T24 cells. Cultured T24 cells were treated with LCA, and cell viability was measured using the sulforhodamine B assay. Apoptosis was detected by flow cytometry with Annexin V/propidium iodide staining, and by fluorescent microscopy with Hoechst 33258 staining. The levels of intracellular free calcium ions were determined using Fluo-3 AM dye marker. Intracellular ROS levels were assessed using the 2',7'-dichlorodihydrofluorescein diacetate probe assay. The mitochondrial membrane potential was measured using 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazole carbocyanine iodide. Furthermore, the mRNA expression levels of B‑cell lymphoma (Bcl)‑extra large, Bcl‑2‑associated X protein, Bcl‑2‑interacting mediator of cell death, apoptotic protease activating factor‑1 (Apaf‑1), calpain 2, cysteinyl aspartate specific proteinase (caspase)‑3, caspase‑4 and caspase‑9 were determined using reverse transcription semiquantitative and quantitative polymerase chain reaction analyses. Treatment with LCA inhibited proliferation and induced apoptosis of T24 cells, and increased intracellular Ca2+ levels and ROS production. Furthermore, LCA induced mitochondrial dysfunction, decreased mitochondrial membrane potential, and increased the mRNA expression levels of Apaf‑1, caspase‑9 and caspase‑3. Exposure of T24 cells to LCA also triggered calpain 2 and caspase‑4 activation, resulting in apoptosis. These findings indicated that LCA increased intracellular Ca2+ levels, which may be associated with mitochondrial dysfunction. In addition, the ER stress pathway may be

  19. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells.

    Science.gov (United States)

    Bhattacharya, Sujoy; Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco-2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco-2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF-α/CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner.

  20. Cytokeratin 18 is necessary for initiation of TGF-β1-induced epithelial-mesenchymal transition in breast epithelial cells.

    Science.gov (United States)

    Jung, Hyejung; Kim, Bomin; Moon, Byung In; Oh, Eok-Soo

    2016-12-01

    During epithelial-mesenchymal transition (EMT), epithelial cells lose key phenotypic markers (e.g., E-cadherin and cytokeratin 18) and acquire mesenchymal markers (e.g., N-cadherin and vimentin). Although the loss of cytokeratin 18 is a hallmark of EMT, the regulatory role of cytokeratin 18 in EMT is not yet fully understood. Here, we report that cytokeratin 18 is involved in the regulation of transforming growth factor-beta1 (TGF-β1)-induced EMT in breast epithelial cells. When MCF10A cells were treated with TGF-β1 for 24 h, considerable morphological changes, indicative of the early stages of EMT (e.g., loss of cell-cell contact), were observed and cytokeratin 18 was downregulated. However, E-cadherin levels were not altered until a later time point. This suggests that cytokeratin 18 may play an active role during the earlier stages of EMT. Consistent with this notion, siRNA-mediated knockdown of cytokeratin 18 delayed TGF-β1-mediated EMT, and the associated downregulation of E-cadherin reduced the phosphorylation/nuclear localization of smad 2/3 and decreased the expression levels of snail and slug (which inhibit E-cadherin expression in epithelial cells as an early response to TGF-β1). Taken together, these results suggest that cytokeratin 18 critically contributes to initiating TGF-β1-induced EMT via the smad 2/3-mediated regulation of snail and slug expression in breast epithelial cells.

  1. EXPRESSION OF A MUTANT hTERT IN HUMAN BLADDER CARCINOMA CELL LINE T24 AND ITS CLINICAL SIGNIFICANCE

    Institute of Scientific and Technical Information of China (English)

    符伟军; 洪宝发; 黄君健; 徐兵; 高江平; 王晓雄; 黄翠芬

    2004-01-01

    Objective: To construct a mutant pEGFP- hTERT expression vector, to observe its steady expression in transfected human bladder carcinoma cell line T24 and its role in molecular regulatory mechanisms of telomerase, and to provide a new target gene for bladder cancer. Methods: PCR amplification was performed by using primers based on the known gene sequence of hTERT. PCR production was cloned into plasmid pGEMT-T easy and the sequence of mutant hTERT gene was analyzed. A recombinant mutant hTERT vector (pEGFP-hTERT) was constructed at the EcoR I and Sal I sites of the pEGFP-C1 vector. After transfecting the fusion gene into bladder carcinoma cell line T24 by calcium phosphate-DNA coprecipitation, the steady expression of GFP-hTERT fusion protein was tested by fluorescent light microscopy. The proliferation changes of bladder carcinoma cell line T24 were detected by light microscopy and senescence correlated β-galactosidase staining. Results: Identification of pEGFP-hTERT by enzyme digestion showed that mutant hTERT fragment had been cloned into EcoR I and Sal I sites of the pEGFP-C1 vector. The steady expression of GFP-hTERT fusion protein was localized in the nucleus of transfected cells. Expression of senescence-associated β-galactosidase in transfected cells gradually increased with extended cultured time and cell growth was suppressed. Conclusion: The mutant-type hTERT gene suppresses the proliferation of bladder carcinoma cell line T24 by competitive effect on telomerase activity. This suggests that hTERT gene might be a suitable gene target for bladder cancer therapy.

  2. Human Epithelial Cells Discriminate between Commensal and Pathogenic Interactions with Candida albicans.

    Science.gov (United States)

    Rast, Timothy J; Kullas, Amy L; Southern, Peter J; Davis, Dana A

    2016-01-01

    The commensal fungus, Candida albicans, can cause life-threatening infections in at risk individuals. C. albicans colonizes mucosal surfaces of most people, adhering to and interacting with epithelial cells. At low concentrations, C. albicans is not pathogenic nor does it cause epithelial cell damage in vitro; at high concentrations, C. albicans causes mucosal infections and kills epithelial cells in vitro. Here we show that while there are quantitative dose-dependent differences in exposed epithelial cell populations, these reflect a fundamental qualitative difference in host cell response to C. albicans. Using transcriptional profiling experiments and real time PCR, we found that wild-type C. albicans induce dose-dependent responses from a FaDu epithelial cell line. However, real time PCR and Western blot analysis using a high dose of various C. albicans strains demonstrated that these dose-dependent responses are associated with ability to promote host cell damage. Our studies support the idea that epithelial cells play a key role in the immune system by monitoring the microbial community at mucosal surfaces and initiating defensive responses when this community is dysfunctional. This places epithelial cells at a pivotal position in the interaction with C. albicans as epithelial cells themselves promote C. albicans stimulated damage.

  3. Oxidant-induced corticosteroid unresponsiveness in human bronchial epithelial cells

    NARCIS (Netherlands)

    Heijink, Irene; van Oosterhout, Antoon; Kliphuis, Nathalie; Jonker, Marnix; Hoffmann, Roland; Telenga, Eef; Klooster, Karin; Slebos, Dirk-Jan; ten Hacken, Nick; Postma, Dirkje; van den Berge, Maarten

    2014-01-01

    Background We hypothesised that increased oxidative stress, as present in the airways of asthma and chronic obstructive pulmonary disease (COPD) patients, induces epithelial damage and reduces epithelial responsiveness to suppressive effects of corticosteroids on proinflammatory cytokine production

  4. Cigarette smoke impairs airway epithelial barrier function and cell-cell contact recovery.

    Science.gov (United States)

    Heijink, I H; Brandenburg, S M; Postma, D S; van Oosterhout, A J M

    2012-02-01

    Cigarette smoking, the major cause of chronic obstructive pulmonary disease (COPD), induces aberrant airway epithelial structure and function. The underlying mechanisms are unresolved so far. We studied effects of cigarette smoke extract (CSE) on epithelial barrier function and wound regeneration in human bronchial epithelial 16HBE cells and primary bronchial epithelial cells (PBECs) from COPD patients, nonsmokers and healthy smokers. We demonstrate that CSE rapidly and transiently impairs 16HBE barrier function, largely due to disruption of cell-cell contacts. CSE induced a similar, but stronger and more sustained, defect in PBECs. Application of the specific epidermal growth factor receptor (EGFR) inhibitor AG1478 showed that EGFR activation contributes to the CSE-induced defects in both 16HBE cells and PBECs. Furthermore, our data indicate that the endogenous protease calpain mediates these defects through tight junction protein degradation. CSE also delayed the reconstitution of 16HBE intercellular contacts during wound healing and attenuated PBEC barrier function upon wound regeneration. These findings were comparable between PBECs from smokers, healthy smokers and COPD patients. In conclusion, we demonstrate for the first time that CSE reduces epithelial integrity, probably by EGFR and calpain-dependent disruption of intercellular contacts. This may increase susceptibility to environmental insults, e.g. inhaled pathogens. Thus, EGFR may be a promising target for therapeutic strategies to improve mucosal barrier function in cigarette smoking-related disease.

  5. [In vitro development of rifampicin resistance in the epithelial cells].

    Science.gov (United States)

    Erokhina, M V; Aleksandrova, E A

    2006-01-01

    It has been first in vitro demonstrated on a model of epithelial cells that rifampicin may develop not only at the level of Mycobacterium tuberculosis, but also at the level of somatic cells. The mechanism of this phenomenon, its specificity (whether cross resistance to other antituberculous agents will occur), the way it puts into effect under the conditions of a microorganism, and how promptly it may be gone after discontinuation of the drug remain unknown. The effect of rifampicin on the functional activity of Pgp is an important factor that influences as a result not only the absorbability of drugs, but also normal transport processes in the body. These aspects seem to be topical and are the subject for further studies. The authors have obtained an epithelial cell line that resides in the presence of 100 microg/ml of rifampicin and that is 2-2.5 times more resistant to the drug as compared with the parental line. The cells of this line are 2-2.5 times more active in discharging the substrate rhodamine-123 for P-glycoprotein than those of the parental line, which suggests the enhanced functional activity of P-glycoprotein. The presence of P-glycoprotein in this line is confirmed by the action of this protein-specific blocker verapamil. At the same time rifampicin is not a substract for P-glycoprotein. Therefore, the mechanism of rifampicin resistance is unassociated with the functional activity of P-glycoprotein. The mechanism of the resistance remains open. At the same concentration (100 microg/ml), rifampicin can block the functional activity of P-glycoprotein. These results suggest the double mechanism of rifampicin in its long presence in the culture medium: as an inductor and a blocker of P-glycoprotein functional activity. The findings point to the fact that the pharmacokinetics of rifampicin and co-administered dtugs may change during their long use.

  6. Substrate stiffness regulates extracellular matrix deposition by alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Jessica L Eisenberg

    2011-01-01

    Full Text Available Jessica L Eisenberg1,2, Asmahan Safi3, Xiaoding Wei3, Horacio D Espinosa3, GR Scott Budinger2, Desire Takawira1, Susan B Hopkinson1, Jonathan CR Jones1,21Department of Cell and Molecular Biology, 2Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; 3Department of Mechanical Engineering, Northwestern University, Evanston, IL, USAAim: The aim of the study was to address whether a stiff substrate, a model for pulmonary fibrosis, is responsible for inducing changes in the phenotype of alveolar epithelial cells (AEC in the lung, including their deposition and organization of extracellular matrix (ECM proteins.Methods: Freshly isolated lung AEC from male Sprague Dawley rats were seeded onto polyacrylamide gel substrates of varying stiffness and analyzed for expression and organization of adhesion, cytoskeletal, differentiation, and ECM components by Western immunoblotting and confocal immunofluorescence microscopy.Results: We observed that substrate stiffness influences cell morphology and the organization of focal adhesions and the actin cytoskeleton. Surprisingly, however, we found that substrate stiffness has no influence on the differentiation of type II into type I AEC, nor does increased substrate stiffness lead to an epithelial–mesenchymal transition. In contrast, our data indicate that substrate stiffness regulates the expression of the α3 laminin subunit by AEC and the organization of both fibronectin and laminin in their ECM.Conclusions: An increase in substrate stiffness leads to enhanced laminin and fibronectin assembly into fibrils, which likely contributes to the disease phenotype in the fibrotic lung.Keywords: alveolar epithelial cells, fibrosis, extracellular matrix, substrate stiffness

  7. Different Sensitivities to Apoptotic Induction by Camptothecin between Normal and Senescent Lens Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    Haike Guo; Haiying Jin; Liya Wang; Hongyang Zhang; Xin Yang

    2002-01-01

    Purpose: To investigate whether normal and senescent lens epithelial cells have different defense abilities to apoptotic induction factor in vitro.Methods: Rabbit lens epithelial cells were cultured, passed. When reaching confluence, cells from the first and seventh passage were stained by x-gal staining to detect cell senescence. Cell apoptosis was detected by TUNEL(Roche).10μmol/L camptothecin was used to induce cell apoptosis from the lens epithelial cells of the first and seventh passage to distinguish different sensitivities to apoptotic induction factor between normal and senescent cells.Results: The senescent cells (41.17% ± 5.24% ) were detected in the lens epithelial cell culture of the seventh passage, which are higher than those of the first passage (0.98% ±0. 39% ). There was no apoptotic cell detected in the cell cultures undisturbed. Exposure of the first passage cells to camptothecin resulted in death of approximately 23.87% ± 3.45% of the cells during a 36 hour exposure period. In contrast, significantly more lens epithelial cells died through the apoptosis (38.29% ±4. 01% ) from the seventh passage.Conclusion: Senescent cells increased with cell passage. Senescence lens epithelial cells do not undergo apoptosis if they were not disturbed. But the vulnerabilities to apoptotic induction between health and senescence cells were different.

  8. Rhinovirus infection induces cytotoxicity and delays wound healing in bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Constantopoulos Andreas G

    2005-10-01

    Full Text Available Abstract Background Human rhinoviruses (RV, the most common triggers of acute asthma exacerbations, are considered not cytotoxic to the bronchial epithelium. Recent observations, however, have questioned this knowledge. The aim of this study was to evaluate the ability of RV to induce epithelial cytotoxicity and affect epithelial repair in-vitro. Methods Monolayers of BEAS-2B bronchial epithelial cells, seeded at different densities were exposed to RV serotypes 1b, 5, 7, 9, 14, 16. Cytotoxicity was assessed chromatometrically. Epithelial monolayers were mechanically wounded, exposed or not to RV and the repopulation of the damaged area was assessed by image analysis. Finally epithelial cell proliferation was assessed by quantitation of proliferating cell nuclear antigen (PCNA by flow cytometry. Results RV1b, RV5, RV7, RV14 and RV16 were able to induce considerable epithelial cytotoxicity, more pronounced in less dense cultures, in a cell-density and dose-dependent manner. RV9 was not cytotoxic. Furthermore, RV infection diminished the self-repair capacity of bronchial epithelial cells and reduced cell proliferation. Conclusion RV-induced epithelial cytotoxicity may become considerable in already compromised epithelium, such as in the case of asthma. The RV-induced impairment on epithelial proliferation and self-repair capacity may contribute to the development of airway remodeling.

  9. Interactions between airway epithelial cells and dendritic cells during viral infections using an in vitro co-culture model

    Science.gov (United States)

    Rationale: Historically, single cell culture models have been limited in pathological and physiological relevance. A co-culture model of dendritic cells (DCs) and differentiated human airway epithelial cells was developed to examine potential interactions between these two cell t...

  10. Long-term homeostasis and wound healing in an in vitro epithelial stem cell niche model

    Science.gov (United States)

    Miyashita, Hideyuki; Niwano, Hiroko; Yoshida, Satoru; Hatou, Shin; Inagaki, Emi; Tsubota, Kazuo; Shimmura, Shigeto

    2017-01-01

    Cultures of epithelial cells are limited by the proliferative capacity of primary cells and cell senescence. Herein we show that primary human epithelial cell sheets cultured without dermal equivalents maintained homeostasis in vitro for at least 1 year. Transparency of these sheets enabled live observation of pigmented melanocytes and Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) labeled epithelial cells during wound healing. Cell turn over and KRT15 expression pattern stabilized within 3 months, when KRT15 bright clusters often associated with niche-like melanocytes became apparent. EdU labels were retained in a subset of epithelial cells and melanocytes after 6 months chasing, suggesting their slow cell cycling property. FUCCI-labeling demonstrated robust cell migration and proliferation following wounding. Transparency and long-term (1 year) homeostasis of this model will be a powerful tool for the study of wound healing and cell linage tracing. PMID:28233843

  11. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    Science.gov (United States)

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia.

  12. Activated alveolar epithelial cells initiate fibrosis through autocrine and paracrine secretion of connective tissue growth factor.

    Science.gov (United States)

    Yang, Jibing; Velikoff, Miranda; Canalis, Ernesto; Horowitz, Jeffrey C; Kim, Kevin K

    2014-04-15

    Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-β, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-β-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.

  13. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuiqing; Chen, Xu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Liu, Cheng [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Gu, Peng; Li, Zhuohang; Wu, Shaoxu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Xu, Kewei [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Lin, Tianxin, E-mail: tianxinl@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Huang, Jian, E-mail: urolhj@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China)

    2015-05-01

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway.

  14. Leaf Extracts of Calocedrus formosana (Florin Induce G2/M Cell Cycle Arrest and Apoptosis in Human Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Sheau-Yun Yuan

    2011-01-01

    Full Text Available Calocedrus formosana (Florin bark acetone/ethylacetate extracts are known to exert an antitumor effect on some human cancer cell lines, but the mechanism is yet to be defined. The aim of this study was to determine the effects of Florin leaf methanol extracts on the growth and apoptosis of human bladder cancer cell lines. MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay showed that the growth of these bladder cancer cells was potently inhibited by the Florin leaf extracts. The cell cycle of these extract-treated cells (TCCSUP cells was arrested at the G2/M phase as determined by flow cytometry. Western blot analysis revealed the increases of cyclin B1 and Cdc2 kinase levels, alone with the decrease of phosphorylated Cdc2 kinase, after treating these cells with the extracts. An immunofluorescence assessment of β-tubulin showed decreased levels of polymerized tubulin in treated cells. However, the proteolytic cleavage of poly ADP-ribose polymerase and the activation of caspase-3/-8/-9 were all increased upon treatments of extracts. The concurrent increase of Bax and decrease of Bcl-2 levels indicated that the extracts could induce apoptosis in these treated cells. Taken together, these results suggest that the Florin leaf extracts may be an effective antibladder cancer agent.

  15. Ionizing radiation induces heritable disruption of epithelial cell interactions

    Science.gov (United States)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  16. Myosin Id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells.

    Science.gov (United States)

    Hegan, Peter S; Ostertag, Eric; Geurts, Aron M; Mooseker, Mark S

    2015-10-01

    In wild type (WT) tracheal epithelial cells, ciliary basal bodies are oriented such that all cilia on the cell surface beat in the same upward direction. This precise alignment of basal bodies and, as a result, the ciliary axoneme, is termed rotational planar cell polarity (PCP). Rotational PCP in the multi-ciliated epithelial cells of the trachea is perturbed in rats lacking myosin Id (Myo1d). Myo1d is localized in the F-actin and basal body rich subapical cortex of the ciliated tracheal epithelial cell. Scanning and transmission electron microscopy of Myo1d knock out (KO) trachea revealed that the unidirectional bending pattern is disrupted. Instead, cilia splay out in a disordered, often radial pattern. Measurement of the alignment axis of the central pair axonemal microtubules was much more variable in the KO, another indicator that rotational PCP is perturbed. The asymmetric localization of the PCP core protein Vangl1 is lost. Both the velocity and linearity of cilia-driven movement of beads above the tracheal mucosal surface was impaired in the Myo1d KO. Multi-ciliated brain ependymal epithelial cells exhibit a second form of PCP termed translational PCP in which basal bodies and attached cilia are clustered at the anterior side of the cell. The precise asymmetric clustering of cilia is disrupted in the ependymal cells of the Myo1d KO rat. While basal body clustering is maintained, left-right positioning of the clusters is lost.

  17. Molecular Dissection of Induced Platinum Resistance through Functional and Gene Expression Analysis in a Cell Culture Model of Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Sisi Wang

    Full Text Available We report herein the development, functional and molecular characterization of an isogenic, paired bladder cancer cell culture model system for studying platinum drug resistance. The 5637 human bladder cancer cell line was cultured over ten months with stepwise increases in oxaliplatin concentration to generate a drug resistant 5637R sub cell line. The MTT assay was used to measure the cytotoxicity of several bladder cancer drugs. Liquid scintillation counting allowed quantification of cellular drug uptake and efflux of radiolabeled oxaliplatin and carboplatin. The impact of intracellular drug inactivation was assessed by chemical modulation of glutathione levels. Oxaliplatin- and carboplatin-DNA adduct formation and repair was measured using accelerator mass spectrometry. Resistance factors including apoptosis, growth factor signaling and others were assessed with RNAseq of both cell lines and included confirmation of selected transcripts by RT-PCR. Oxaliplatin, carboplatin, cisplatin and gemcitabine were significantly less cytotoxic to 5637R cells compared to the 5637 cells. In contrast, doxorubicin, methotrexate and vinblastine had no cell line dependent difference in cytotoxicity. Upon exposure to therapeutically relevant doses of oxaliplatin, 5637R cells had lower drug-DNA adduct levels than 5637 cells. This difference was partially accounted for by pre-DNA damage mechanisms such as drug uptake and intracellular inactivation by glutathione, as well as faster oxaliplatin-DNA adduct repair. In contrast, both cell lines had no significant differences in carboplatin cell uptake, efflux and drug-DNA adduct formation and repair, suggesting distinct resistance mechanisms for these two closely related drugs. The functional studies were augmented by RNAseq analysis, which demonstrated a significant change in expression of 83 transcripts, including 50 known genes and 22 novel transcripts. Most of the transcripts were not previously associated with

  18. Phenotypic impact of deregulated expression of class I histone deacetylases in urothelial cell carcinoma of the bladder.

    Science.gov (United States)

    Junqueira-Neto, Susana; Vieira, Filipa Q; Montezuma, Diana; Costa, Natália R; Antunes, Luís; Baptista, Tiago; Oliveira, Ana Isabel; Graça, Inês; Rodrigues, Ângelo; Magalhães, José S; Oliveira, Jorge; Henrique, Rui; Jerónimo, Carmen

    2015-07-01

    Deregulated expression of histone deacetylases (HDACs) has been implicated in tumorigenesis. Herein, we investigated class I HDACs expression in bladder urothelial cell carcinoma (BUCC), its prognostic value and biological significance. Significantly increased transcript levels of all HDACs were found in BUCC compared to 20 normal mucosas, and these were higher in lower grade and stage tumors. Increased HDAC3 levels were associated with improved patient survival. SiRNA experiments showed decrease cell viability and motility, and increased apoptosis. We concluded that class I HDACs play an important role in bladder carcinogenesis through deregulation of proliferation, migration and apoptosis, constituting putative therapeutic targets.

  19. Qualitative and quantitative histopathology in transitional cell carcinomas of the urinary bladder. An international investigation of intra- and interobserver reproducibility

    DEFF Research Database (Denmark)

    Sørensen, Flemming Brandt; Sasaki, M; Fukuzawa, S

    1994-01-01

    BACKGROUND: Histopathologic, prognosis-related grading of malignancy by means of morphologic examination in transitional cell carcinomas of the urinary bladder (TCC) may be subject to observer variation, resulting in a reduced level of reproducibility. This may confound comparisons of treatment...... results. Using objective, unbiased stereologic techniques and ordinary histomorphometry, such problems may be solved. EXPERIMENTAL DESIGN: A study of 110 patients with papillary or solid transitional cell carcinomas of the urinary bladder in stage Ta through T4 was carried out, addressing reproducibility...

  20. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil)

    Energy Technology Data Exchange (ETDEWEB)

    Sávio, André Luiz Ventura, E-mail: savio.alv@gmail.com [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil); Nicioli da Silva, Glenda [UFOP – Universidade Federal de Ouro Preto, Escola de Farmácia, Departamento de Análises Clínicas, Ouro Preto, MG (Brazil); Salvadori, Daisy Maria Fávero [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil)

    2015-01-15

    Highlights: • AITC inhibits mutant and wild-type TP53 cell proliferation. • Morphological changes and cells debris were observed after AITC treatment in both cells. • BAX and BCL2 expression modulation was observed in wild-type TP53 cells. • BCL2, BAX and ANLN increased and S100P decreased expression was detected in mutated TP53 cells. • AITC effects in gene modulation are dependent TP53 gene status. - Abstract: Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5 μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm

  1. Isolation, growth, and characterization of human renal epithelial cells using traditional and 3D methods.

    Science.gov (United States)

    Gildea, John J; McGrath, Helen E; Van Sciver, Robert E; Wang, Dora Bigler; Felder, Robin A

    2013-01-01

    The kidney is a highly heterogeneous organ that is responsible for fluid and electrolyte balance. Much interest is focused on determining the function of specific renal epithelial cells in humans, which can only be accomplished through the isolation and growth of nephron segment-specific epithelial cells. However, human renal epithelial cells are notoriously difficult to maintain in culture. This chapter describes the isolation, growth, immortalization, and characterization of the human renal proximal tubule cell. In addition, we describe new paradigms in 3D cell culture which allow the cells to maintain more in vivo-like morphology and function.

  2. MicroRNA-106a suppresses proliferation, migration, and invasion of bladder cancer cells by modulating MAPK signaling, cell cycle regulators, and Ets-1-mediated MMP-2 expression.

    Science.gov (United States)

    Shin, Seung-Shick; Park, Sung-Soo; Hwang, Byungdoo; Kim, Won Tae; Choi, Yung Hyun; Kim, Wun-Jae; Moon, Sung-Kwon

    2016-10-01

    Despite the clinical significance of tumorigenesis, little is known about the cellular signaling networks of microRNAs (miRs). Here we report a new finding that mir‑106a regulates the proliferation, migration, and invasion of bladder cancer cells. Basal expression levels of mir‑106a were significantly lower in bladder cancer cells than in normal urothelial cells. Overexpression of mir‑106a suppressed the proliferation of bladder cancer cell line EJ. Transient transfection of mir‑106a into EJ cells led to downregulation of ERK phosphorylation and upregulation of p38 and JNK phosphorylation over their levels in the control. Flow cytometry analysis revealed that mir‑106a-transfected cells accumulated in the G1-phase of the cell cycle, and cyclin D1 and CDK6 were significantly downregulated. This G1-phase cell cycle arrest was due in part to the upregulation of p21CIP1/WAF1. In addition, mir‑106a overexpression blocked the wound-healing migration and invasion of EJ cells. Furthermore, mir‑106a transfection resulted in decreased expression of MMP-2 and diminished binding activity of transcription factor Ets-1 in EJ cells. Collectively, we report the novel mir‑106a-mediated molecular signaling networks that regulate the proliferation, migration, and invasion of bladder cancer cells, suggesting that mir‑106a may be a therapeutic target for treating advanced bladder tumors.

  3. Bladder Metastasis of non-Small Cell Lung Cancer : an Unusual Cause of Hematuria

    NARCIS (Netherlands)

    Karatas, O. Faruk; Bayrak, Reyhan; Yildirim, M. Erol; Bayrak, Omer; Cimentepe, Ersin; Unal, Dogan

    2009-01-01

    Approximately 2% of bladder malignancies are metastatic. The lung cancer makes metastasis sporadically to the bladder. A-69-year-old female patient presented with a history of pain in kidneys, vomiting and hematuria. Cystoscopic examination of the patient revealed small bladder capacity and solitary

  4. Theracurmin® efficiently inhibits the growth of human prostate and bladder cancer cells via induction of apoptotic cell death and cell cycle arrest.

    Science.gov (United States)

    Kang, Minyong; Ho, Jin-Nyoung; Kook, Ha Rim; Lee, Sangchul; Oh, Jong Jin; Hong, Sung Kyu; Lee, Sang Eun; Byun, Seok-Soo

    2016-03-01

    In the present study, we aimed to investigate the anticancer properties of Theracurmin®, a novel form of the yellow curry pigment curcumin, as well as explore the molecular mechanisms of the potential anticancer effects of Theracurmin® on human prostate cancer and bladder cancer cells in vitro. The proliferation of cancer cells was examined by using the Cell Counting Kit-8. The clonogenic growth potential was determined by clonogenic assay. Cell cycle distribution was evaluated by flow cytometry using propidium iodide staining. Western blot analysis was applied to explore the expression patterns of molecules associated with apoptotic cell death and cell cycle checkpoint. We noted that Theracurmin® and curcumin exhibited similar anticancer effects in both androgen-dependent and -independent human prostate cancer cells in a dose- and time-dependent manner. These agents reduced cell viability and clonogenic growth potential by inducing apoptosis and cell cycle disturbance in human prostate cancer cells. Theracurmin® and curcumin also exerted marked anticancer effects on human bladder cancer cells, even in cisplatin-resistant T24R2 cells, in a dose- and time-dependent manner. Moreover, Theracurmin® and curcumin treatment decreased cell viability and clonogenicity via induction of apoptotic cell death and cell cycle dysregulation in human bladder cancer cells. In conclusion, our study suggests that Theracurmin® has potential as an anticancer agent in complementary and alternative medicine for these urological cancers.

  5. Carcinosarcoma of the renal pelvis and urinary bladder: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Erkan; Birlik Bilge; Arican, Zumre; Guney, Soner [Dokuz Eylul University School of Medicine, Izmir (Turkmenistan)

    2003-12-15

    Carcinosarcomas are rare biphasic malignant neoplasms with epithelial and a spindle cell component. We present a 62-year-old man with a history of noticeably abdominal distension, proved by surgery to be caused by carcinosarcoma of the renal pelvis and urinary bladder, occupying the entire left abdominal flank. We also illustrate the appearance of this rare entity on sonography and computed tomography.

  6. Small cell carcinoma of the urinary bladder--a new case report.

    Science.gov (United States)

    Petrescu, Amelia; Berdan, Gabriela; Hulea, Ionela; Gaitanidis, Raluca; Ambert, V; Jinga, V; Damian, D; Codreanu, O; Andrei, F; Niculescu, L

    2007-01-01

    Primary pure small cell carcinoma of the urinary bladder is an extremely rare and highly aggressive tumor with an average five-year survival rate of less than 10% as cited by multiple case reports. It accounts for about 0.5-1% of all bladder tumors. We present the case of a 44-years-old man, smoker (10 cigarettes/day) hospitalized in the Department of Urology, from the "Prof. dr. Th. Burghele" Hospital, Bucharest, for one month intermittent hematuria. Ultrasonography showed a sessile tumoral mass, sized 37/30mm. Transurethral resection of the tumor mass was performed and tissue fragments were sent to the pathologic lab to establish the histologic type, the degree of differentiation and invasion. Fragments of the tumor were fixed in 10% formaldehyde, paraffin embedded and processed as standard technique; the sections were stained with HE, VG and immunohistochemically with: CROMO, EMA, NSE, CD56, NK1, p53 and betaHCG. The microscopic examination reveled a tumor proliferation composed of two distinct components: extensive small cells areas and foci of typical low grade (G2) papillary urothelial carcinoma. The small cell are uniformly, round, with increased nucleo-cytoplasmic ratio, eosinophyl cytoplasm, hyperchromatic nuclei, finely granular chromatin and inconspicuous nucleoli. Immunohistochemical stains showed diffuse positive staining of the small cell component for CROMO, EMA, NSE, CD56, NK1 and urothelial carcinoma component stained focally for betaHCG. The rate of cell proliferation was increased (p53 - 80% positive reaction). Conclusions. A diagnosis of small cell carcinoma coexisting with low-grade urothelial carcinoma was established. Because of aggressive behavior and distinct treatment, the pathologist should watch out for the presence of small cell carcinoma component.

  7. Oxidative stress induces hypomethylation of LINE-1 and hypermethylation of the RUNX3 promoter in a bladder cancer cell line.

    Science.gov (United States)

    Wongpaiboonwattana, Wikrom; Tosukhowong, Piyaratana; Dissayabutra, Thasinas; Mutirangura, Apiwat; Boonla, Chanchai

    2013-01-01

    Increased oxidative stress and changes in DNA methylation are frequently detected in bladder cancer patients. We previously demonstrated a relationship between increased oxidative stress and hypomethylation of the transposable long-interspersed nuclear element-1 (LINE-1). Promoter hypermethylation of a tumor suppressor gene, runt-related transcription factor 3 (RUNX3), may also be associated with bladder cancer genesis. In this study, we investigated changes of DNA methylation in LINE-1 and RUNX3 promoter in a bladder cancer cell (UM-UC-3) under oxidative stress conditions, stimulated by challenge with H2O2 for 72 h. Cells were pretreated with an antioxidant, tocopheryl acetate for 1 h to attenuate oxidative stress. Methylation levels of LINE-1 and RUNX3 promoter were measured by combined bisulfite restriction analysis PCR and methylation-specific PCR, respectively. Levels of LINE-1 methylation were significantly decreased in H2O2-treated cells, and reestablished after pretreated with tocopheryl acetate. Methylation of RUNX3 promoter was significantly increased in cells exposed to H2O2. In tocopheryl acetate pretreated cells, it was markedly decreased. In conclusion, hypomethylation of LINE-1 and hypermethylation of RUNX3 promoter in bladder cancer cell line was experimentally induced by reactive oxygen species (ROS). The present findings support the hypothesis that oxidative stress promotes urothelial cell carcinogenesis through modulation of DNA methylation. Our data also imply that mechanistic pathways of ROS-induced alteration of DNA methylation in a repetitive DNA element and a gene promoter might differ.

  8. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  9. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency.

    Science.gov (United States)

    Utheim, Tor Paaske; Utheim, Øygunn Aass; Khan, Qalb-E-Saleem; Sehic, Amer

    2016-03-01

    The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC), which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

  10. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal Stem Cell Deficiency

    Directory of Open Access Journals (Sweden)

    Tor Paaske Utheim

    2016-03-01

    Full Text Available The cornea is critical for normal vision as it allows allowing light transmission to the retina. The corneal epithelium is renewed by limbal epithelial cells (LEC, which are located in the periphery of the cornea, the limbus. Damage or disease involving LEC may lead to various clinical presentations of limbal stem cell deficiency (LSCD. Both severe pain and blindness may result. Transplantation of cultured autologous oral mucosal epithelial cell sheet (CAOMECS represents the first use of a cultured non-limbal autologous cell type to treat this disease. Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the only laboratory cultured cell sources that have been explored in humans. Thus far, the expression of p63 is the only predictor of clinical outcome following transplantation to correct LSCD. The optimal culture method and substrate for CAOMECS is not established. The present review focuses on cell culture methods, with particular emphasis on substrates. Most culture protocols for CAOMECS used amniotic membrane as a substrate and included the xenogeneic components fetal bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that tissue-engineered epithelial cell sheet grafts can be successfully fabricated using temperature-responsive culture surfaces and autologous serum. In the studies using different substrates for culture of CAOMECS, the quantitative expression of p63 was generally poorly reported; thus, more research is warranted with quantification of phenotypic data. Further research is required to develop a culture system for CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial cells without the need for undefined foreign materials such as serum and feeder cells.

  11. Pim1 kinase protects airway epithelial cells from cigarette smoke-induced damage and airway inflammation

    NARCIS (Netherlands)

    de Vries, M.; Heijink, Hilde; Gras, R.; den Boef, L. E.; Reinders-Luinge, M.; Pouwels, S. D.; Hylkema, Machteld; van der Toorn, Marco; Brouwer, U.; van Oosterhout, A. J. M.; Nawijn, M. C.

    2014-01-01

    Exposure to cigarette smoke (CS) is the main risk factor for developing chronic obstructive pulmonary disease and can induce airway epithelial cell damage, innate immune responses, and airway inflammation. We hypothesized that cell survival factors might decrease the sensitivity of airway epithelial

  12. Cytotoxicity and induction of inflammation by pepsin in Acid in bronchial epithelial cells

    NARCIS (Netherlands)

    Bathoorn, Erik; Daly, Paul; Gaiser, Birgit; Sternad, Karl; Poland, Craig; Macnee, William; Drost, Ellen M

    2011-01-01

    Introduction. Gastroesophageal reflux has been associated with chronic inflammatory diseases and may be a cause of airway remodelling. Aspiration of gastric fluids may cause damage to airway epithelial cells, not only because acidity is toxic to bronchial epithelial cells, but also since it contains

  13. File list: ALL.Brs.05.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.05.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX031066,SRX031214,SRX396750 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.05.AllAg.Mammary_epithelial_cells.bed ...

  14. File list: ALL.Brs.50.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.50.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX396750,SRX031066,SRX031214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.50.AllAg.Mammary_epithelial_cells.bed ...

  15. File list: ALL.Brs.20.AllAg.Mammary_epithelial_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Brs.20.AllAg.Mammary_epithelial_cells mm9 All antigens Breast Mammary epithelia...SRX396750,SRX031066,SRX031214 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Brs.20.AllAg.Mammary_epithelial_cells.bed ...

  16. Roles of Wnt/{beta}-catenin signaling in epithelial differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Li, Yan [Jiangsu Centers for Diseases Prevention and Control, Nanjing 210009 (China); Qin, Jizheng [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China); Han, Xiaodong, E-mail: hanxd@nju.edu.cn [Immunology and Reproductive Biology Laboratory, Medical College of Nanjing University, Nanjing 210093 (China); Jiangsu Key Laboratory of Molecular Medicine, Nanjing 210093 (China)

    2009-12-25

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/{beta}-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/{beta}-catenin signaling were determined, suggested down-regulation of Wnt/{beta}-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3{alpha} can inhibit the epithelial differentiation of MSCs. A loss of {beta}-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated {beta}-catenin expression and subsequently decreased {beta}-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/{beta}-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  17. Human immunodeficiency virus type 1 infection of human uterine epithelial cells: viral shedding and cell contact-mediated infectivity.

    Science.gov (United States)

    Asin, Susana N; Wildt-Perinic, Dunja; Mason, Sarah I; Howell, Alexandra L; Wira, Charles R; Fanger, Michael W

    2003-05-15

    We examined the mechanism of human immunodeficiency virus (HIV) type 1 infection of human uterine epithelial cells to gain a clearer understanding of the events by which HIV-1 infects cells within the female reproductive tract. We demonstrated that these cells can be productively infected by HIV-1 and that infection is associated with viral RNA reverse transcription, DNA transcription, and secretion of infectious virus. Levels of viral DNA and secreted virus decreased gradually after infection. Moreover, virus released by the uterine epithelial cells shortly after infection was able to infect human T cell lines, but virus released later did not. In contrast, human CD4(+) T cell lines were infected after cocultivation with epithelial cells at both early and late stages of infection. These data demonstrated that HIV-1 infects human epithelial cells of upper reproductive tract origin and that productive viral infection of epithelial cells may be an important mechanism of transmission of HIV-1 infection in women.

  18. Synergistic Effect between Cisplatin and Sunitinib Malate on Human Urinary Bladder-Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Regina Arantes-Rodrigues

    2013-01-01

    Full Text Available The aim of this paper is to analyse sunitinib malate in vitro ability to enhance cisplatin cytotoxicity in T24, 5637, and HT1376 human urinary bladder-cancer cell lines. Cells were treated with cisplatin (3, 6, 13, and 18 μM and sunitinib malate (1, 2, 4, 6, and 20 μM, either in isolation or combined, over the course of 72 hours. 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay, acridine orange, and monodansylcadaverine staining and flow cytometry were performed. The combination index (CI was calculated based on the Chou and Talalay method. In isolation, cisplatin and sunitinib malate statistically (. Autophagy and apoptosis studies showed a greater incidence when the combined treatment was put into use. This hints at the possibility of a new combined therapeutic approach. If confirmed in vivo, this conjugation may provide a means of new perspectives in muscle-invasive urinary bladder cancer treatment.

  19. Rare Association of Anti-Hu Antibody Positive Paraneoplastic Neurological Syndrome and Transitional Cell Bladder Carcinoma

    Directory of Open Access Journals (Sweden)

    S. Lukacs

    2012-01-01

    Full Text Available Introduction. Paraneoplastic encephalomyelitis (PEM and subacute sensory neuronopathy (SSN are remote effects of cancer, usually associated with small-cell lung carcinoma and positive anti-Hu antibody. We describe the rare association of bladder transitional cell carcinoma (TCC with anti-Hu antibody positivity resulting in this paraneoplastic neurological syndrome. Patient. A 76-year-old female presented with bilateral muscle weakness and paraesthesia of the upper and lower limbs in a length-dependent “glove and stocking” distribution. Central nervous system symptoms included cognitive problems, personality change, and truncal ataxia. Case notes and the literature were reviewed. Result. Autoantibody screening was positive for anti-Hu antibody (recently renamed antineuronal nuclear antibody 1, ANNA-1. The diagnosis of PEM and SSN was supported by MRI and lumbar puncture results. A superficial bladder TCC was demonstrated on CT and subsequently confirmed on histology. No other primary neoplasm was found on full-body imaging. The neurological symptoms were considered to be an antibody-mediated paraneoplastic neurological syndrome and improved after resection of the tumour. Discussion. The association of anti-Hu positive paraneoplastic neurological syndrome and TCC has not been described in the literature previously. We emphasize the need for detailed clinical examination and the importance of a multidisciplinary thought process and encourage further awareness of this rare association.

  20. TOX3 (TNRC9) Over Expression in Bladder Cancer Cells Decreases Cellular Proliferation and Triggers an Interferon-Like Response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtroder, Karin; Mansilla Castaño, Francisco; Dyrskjøt, Lars

    2013-01-01

    urothelium. Microarray expression profiling of human bladder cancer cells over expressing TOX3 followed by Pathway analysis showed that TOX3 Overexpression mainly affected the Interferon Signaling Pathway. TOX3 up regulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 over......Background: Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+ dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...

  1. TOX3 (TNRC9) overexpression in bladder cancer cells decreases cellular proliferation and triggers an interferon-like response

    DEFF Research Database (Denmark)

    Birkenkamp-Demtröder, Karin; Mansilla, Francisco; Andersen, Lars Dyrskjøt

    2013-01-01

    urothelium. Microarray expression profiling of human bladder cancer cells overexpressing TOX3 followed by Pathway analysis showed that TOX3 overexpression mainly affected the Interferon Signaling Pathway. TOX3 upregulation induced the expression of several genes with a gamma interferon activation site (GAS......), e.g. STAT1. In vitro functional studies showed that TOX3 was able to bind to the GAS-sequence located at the STAT1 promoter. siRNA mediated knockdown of TOX3 in RT4 bladder cancer cells decreased STAT1 expression suggesting a direct impact of TOX3 on STAT1. Immunoprecipitation of TOX3 overexpressing......Background Human TOX3 (TOX high mobility group box family member 3) regulates Ca2+-dependent transcription in neurons and has been associated with breast cancer susceptibility. Aim of the study was to investigate the expression of TOX3 in bladder cancer tissue samples and to identify genes...

  2. Epithelial cell identity in hyperplastic precursors of breast cancer

    Institute of Scientific and Technical Information of China (English)

    Danila Coradini; Patrizia Boracchi; Saro Oriana; Elia Biganzoli; Federico Ambrogi

    2015-01-01

    Introduction:In the adult human breast, hyperplastic enlarged lobular unit (HELU) and atypical ductal hyperplasia (ADH) are two common abnormalities that frequently coexist with ductal carcinoma in situ (DCIS). For this reason, they have been proposed as the early steps in a biological continuum toward breast cancer. Methods:We investigated in silico the expression of 369 genes experimentally recognized as involved in establishing and maintaining epithelial cell identity and mammary gland remodeling, in HELUs or ADHs with respect to the corresponding patient-matched normal tissue. Results:Despite the common luminal origin, HELUs and ADHs proved to be characterized by distinct gene profiles that overlap for 5 genes only. While HELUs were associated with the overexpression of progesterone receptor (PGR), ADHs were characterized by the overexpression of estrogen receptor 1 (ESR1) coupled with the overexpression of some proliferation-associated genes. Conclusions:This unexpected finding contradicts the notion that in differentiated luminal cells the expression of estrogen receptor (ER) is dissociated from cell proliferation and suggests that the establishing of an ER-dependent signaling is able to sustain cell proliferation in an autocrine manner as an early event in tumor initiation. Although clinical evidence indicates that only a fraction of HELUs and ADHs evolve to invasive cancer, present findings warn that exposure to synthetic progestins, frequently administered as hormone-replacement therapy, and estrogens, when abnormally produced by adipose cells and persistently present in the stroma surrounding the mammary gland, may cause these hyperplastic lesions.

  3. The Neisseria meningitidis ADP-Ribosyltransferase NarE Enters Human Epithelial Cells and Disrupts Epithelial Monolayer Integrity.

    Directory of Open Access Journals (Sweden)

    Maria Valeri

    Full Text Available Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and impair essential functions of eukaryotic cells. It has been previously reported that Neisseria meningitidis possesses an ADP-ribosyltransferase enzyme, NarE, retaining the capacity to hydrolyse NAD and to transfer ADP-ribose moiety to arginine residues in target acceptor proteins. Here we show that upon internalization into human epithelial cells, NarE gains access to the cytoplasm and, through its ADP-ribosylating activity, targets host cell proteins. Notably, we observed that these events trigger the disruption of the epithelial monolayer integrity and the activation of the apoptotic pathway. Overall, our findings provide, for the first time, evidence for a biological activity of NarE on host cells, suggesting its possible involvement in Neisseria pathogenesis.

  4. PKC activation induces inflammatory response and cell death in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Hyunhee Kim

    Full Text Available A variety of airborne pathogens can induce inflammatory responses in airway epithelial cells, which is a crucial component of host defence. However, excessive inflammatory responses and chronic inflammation also contribute to different diseases of the respiratory system. We hypothesized that the activation of protein kinase C (PKC is one of the essential mechanisms of inflammatory response in airway epithelial cells. In the present study, we stimulated human bronchial lung epithelial (BEAS-2B cells with the phorbol ester Phorbol 12, 13-dibutyrate (PDBu, and examined gene expression profile using microarrays. Microarray analysis suggests that PKC activation induced dramatic changes in gene expression related to multiple cellular functions. The top two interaction networks generated from these changes were centered on NFκB and TNF-α, which are two commonly known pathways for cell death and inflammation. Subsequent tests confirmed the decrease in cell viability and an increase in the production of various cytokines. Interestingly, each of the increased cytokines was differentially regulated at mRNA and/or protein levels by different sub-classes of PKC isozymes. We conclude that pathological cell death and cytokine production in airway epithelial cells in various situations may be mediated through PKC related signaling pathways. These findings suggest that PKCs can be new targets for treatment of lung diseases.

  5. Detection of bladder transitional cell carcinoma: urinary hTERT assay versus urine cytology

    Directory of Open Access Journals (Sweden)

    Yahyazadeh SR

    2009-04-01

    Full Text Available "nBackground: Transitional Cell Carcinoma (TCC of bladder is the second most common urogenital malignancy and because of its high rate of recurrence (two third of tumors recur vigilant surveillance is necessary. There have been a lot of efforts to find a proper biomarker for detecting urothelial cancers because available methods are expensive and invasive (like cystoscopy or have a low degree of sensitivity (like urine cytology. Urothelial malignancies, like other cancers tend to express a large amount of telomerase. The aim of this study was to evaluate the possible application of voided urine human telomerase reverse transcriptase (hTERT mRNA assay in detecting low-grade bladder carcinoma in comparison with urine cytology. "nMethods: Voided urine samples were collected from 49 patients who were supposed to go under operation. Samples were examined by both Quantitative Real-time RT-PCR (for measuring hTERT mRNA level and cytology; the results were then compared to the final pathologic studies. "nResults: Regardless of clinical stage and or pathological grade of tumor, sensitivity of telomerase test and urine cytology was 74% and 16% respectively. There was a strong correlation between results of urine cytology and stage and/or grade of tumor; however, sensitivity of telomerase test was acceptable regardless of stage and or grade of tumor. There was a statistically significant difference between sensitivity of urine cytology and telomerase test (p<0.001. "nConclusion: Detection of hTERT-mRNA can potentially be used as a non-invasive method for diagnosis and follow up of bladder carcinoma instead of urine cytology.

  6. Effect of curcumin on aging retinal pigment epithelial cells

    Directory of Open Access Journals (Sweden)

    Zhu W

    2015-09-01

    Full Text Available Wei Zhu,1,* Yan Wu,2,* Yi-Fang Meng,1 Jin-Yu Wang,1 Ming Xu,1 Jian-Jun Tao,1 Jiong Lu1 1Department of Ophthalmology, Changshu No 2 People’s Hospital, Changshu, 2Department of Ophthalmology, The First People’s Hospital of Kunshan Affiliated with Jiangsu University, Suzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Age-related macular degeneration (AMD is now one of the leading causes of blindness in the elderly population. The antioxidative effects of curcumin on aging retinal pigment epithelial (RPE cells are still unclear. We conducted an in vitro study to investigate the effects of curcumin on aging RPE cells. A pulsed H2O2 exposure aging model was adopted. Aging RPE cells were treated with curcumin 20 µM, 40 µM, and 80 µM. Apoptosis of RPE cells was analyzed by flow cytometry. The intracellular reactive oxygen species concentration was detected using a specific probe and apoptosis-associated proteins were detected by Western blot. Expression of oxidative biomarkers, including superoxide dismutase, maleic dialdehyde, and glutathione, was detected commercially available assay kits. Compared with normal cells, lower cell viability, higher apoptosis rates, and more severe oxidation status were identified in the aging RPE cell model. Curcumin improved cell viability and decreased apoptosis and oxidative stress. Further, curcumin had a significant influence on expression of apoptosis-associated proteins and oxidative stress biomarkers. In conclusion, treatment with curcumin was able to regulate proliferation, oxidative stress, and apoptosis in aging RPE cells. Accordingly, application of curcumin may be a novel strategy to protect against age-related change in AMD. Keywords: curcumin, retinal pigment epithelium, apoptosis, age-related macular degeneration

  7. MiR-200c promotes bladder cancer cell migration and invasion by directly targeting RECK

    Directory of Open Access Journals (Sweden)

    Cheng Y

    2016-08-01

    Full Text Available Yidong Cheng,* Xiaolei Zhang,* Peng Li,* Chengdi Yang, Jinyuan Tang, Xiaheng Deng, Xiao Yang, Jun Tao, Qiang Lu, Pengchao Li Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China *These authors contributed equally to this work Background: Increasing evidence suggests that the dysregulation of certain microRNAs plays an important role in tumorigenesis and metastasis. MiR-200c exhibits a disordered expression in many tumors and presents dual roles in bladder cancer (BC. Therefore, the definite role of miR-200c in BC needs to be investigated further.Materials and methods: Quantitative reverse transcription polymerase chain reaction was used to assess miR-200c expression. Cell invasion and migration were evaluated using wound healing and transwell assays. The luciferase reporter assay was used to identify the direct target of miR-200c. The expression of reversion-inducing cysteine-rich protein with kazal motifs (RECK in BC tissues and adjacent nontumor tissues, as well as in BC cell lines, was detected through quantitative reverse transcription polymerase chain reaction, Western blot assay, and immunohistochemistry.Results: The miR-200c expression was significantly upregulated in the BC tissues compared with the adjacent nontumor tissues. The downregulation of miR-200c significantly inhibited cell migration and invasion in the BC cell lines. The luciferase reporter assay showed that RECK was a direct target of miR-200c. The knockdown of RECK in the BC cell lines treated with anti-miR-200c elevated the previously attenuated cell migration and invasion.Conclusion: Our findings indicated that miR-200c functions as oncogenes in BC and may provide a novel therapeutic strategy for the treatment of BC. Keywords: miR-200c, bladder cancer, migration, invasion, RECK

  8. Extra-virgin olive oil phenols block cell cycle progression and modulate chemotherapeutic toxicity in bladder cancer cells.

    Science.gov (United States)

    Coccia, Andrea; Mosca, Luciana; Puca, Rosa; Mangino, Giorgio; Rossi, Alessandro; Lendaro, Eugenio

    2016-12-01

    Epidemiological data indicate that the daily consumption of extra‑virgin olive oil (EVOO), a common dietary habit of the Mediterranean area, lowers the incidence of certain types of cancer, in particular bladder neoplasm. The aim of the present study was to evaluate the antiproliferative activity of polyphenols extracted from EVOO on bladder cancer (BCa), and to clarify the biological mechanisms that trigger cell death. Furthermore, we also evaluated the ability of low doses of extra‑virgin olive oil extract (EVOOE) to modulate the in vitro activity of paclitaxel or mitomycin, two antineoplastic drugs used in the management of different types of cancer. Our results showed that EVOOE significantly inhibited the proliferation and clonogenic ability of T24 and 5637 BCa cells in a dose‑dependent manner. Furthermore, cell cycle analysis after EVOOE treatment showed a marked growth arrest prior to mitosis in the G2/M phase for both cell lines, with the subsequent induction of apoptosis only in the T24 cells. Notably, simultaneous treatment of mitomycin C and EVOOE reduced the drug cytotoxicity due to inhibition of ROS production. Conversely, the co‑treatment of T24 cells with paclitaxel and the polyphenol extract strongly increased the apoptotic cell death at each tested concentration compared to paclitaxel alone. Our results support the epidemiological evidence indicating that olive oil consumption exerts health benefits and may represent a starting point for the development of new anticancer strategies.

  9. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB

  10. In Vitro Evaluation of Spider Silk Meshes as a Potential Biomaterial for Bladder Reconstruction.

    Science.gov (United States)

    Steins, Anne; Dik, Pieter; Müller, Wally H; Vervoort, Stephin J; Reimers, Kerstin; Kuhbier, Jörn W; Vogt, Peter M; van Apeldoorn, Aart A; Coffer, Paul J; Schepers, Koen

    2015-01-01

    Reconstruction of the bladder by means of both natural and synthetic materials remains a challenge due to severe adverse effects such as mechanical failure. Here we investigate the application of spider major ampullate gland-derived dragline silk from the Nephila edulis spider, a natural biomaterial with outstanding mechanical properties and a slow degradation rate, as a potential scaffold for bladder reconstruction by studying the cellular response of primary bladder cells to this biomaterial. We demonstrate that spider silk without any additional biological coating supports adhesion and growth of primary human urothelial cells (HUCs), which are multipotent bladder cells able to differentiate into the various epithelial layers of the bladder. HUCs cultured on spider silk did not show significant changes in the expression of various epithelial-to-mesenchymal transition and fibrosis associated genes, and demonstrated only slight reduction in the expression of adhesion and cellular differentiation genes. Furthermore, flow cytometric analysis showed that most of the silk-exposed HUCs maintain an undifferentiated immunophenotype. These results demonstrate that spider silk from the Nephila edulis spider supports adhesion, survival and growth of HUCs without significantly altering their cellular properties making this type of material a suitable candidate for being tested in pre-clinical models for bladder reconstruction.

  11. In Vitro Evaluation of Spider Silk Meshes as a Potential Biomaterial for Bladder Reconstruction.

    Directory of Open Access Journals (Sweden)

    Anne Steins

    Full Text Available Reconstruction of the bladder by means of both natural and synthetic materials remains a challenge due to severe adverse effects such as mechanical failure. Here we investigate the application of spider major ampullate gland-derived dragline silk from the Nephila edulis spider, a natural biomaterial with outstanding mechanical properties and a slow degradation rate, as a potential scaffold for bladder reconstruction by studying the cellular response of primary bladder cells to this biomaterial. We demonstrate that spider silk without any additional biological coating supports adhesion and growth of primary human urothelial cells (HUCs, which are multipotent bladder cells able to differentiate into the various epithelial layers of the bladder. HUCs cultured on spider silk did not show significant changes in the expression of various epithelial-to-mesenchymal transition and fibrosis associated genes, and demonstrated only slight reduction in the expression of adhesion and cellular differentiation genes. Furthermore, flow cytometric analysis showed that most of the silk-exposed HUCs maintain an undifferentiated immunophenotype. These results demonstrate that spider silk from the Nephila edulis spider supports adhesion, survival and growth of HUCs without significantly altering their cellular properties making this type of material a suitable candidate for being tested in pre-clinical models for bladder reconstruction.

  12. Expression of ICAM-1 in colon epithelial cells

    DEFF Research Database (Denmark)

    Vainer, Ben; Sørensen, Susanne; Seidelin, Jakob;

    2003-01-01

    Studies have suggested that in ulcerative colitis (UC), intercellular adhesion molecule-1 (ICAM-1) is involved in migration of leukocytes toward the colonic epithelium. A suitable in vitro model of chronic colonic inflammation does not exist, and the role of the epithelium is based on monolayers ...... of cancer cells. Conflicting results exist on epithelial ICAM-1 expression, and the aim of this study was to compare the expression in various models of colonic epithelium.......Studies have suggested that in ulcerative colitis (UC), intercellular adhesion molecule-1 (ICAM-1) is involved in migration of leukocytes toward the colonic epithelium. A suitable in vitro model of chronic colonic inflammation does not exist, and the role of the epithelium is based on monolayers...

  13. Gene expression in epithelial cells in response to pneumovirus infection

    Directory of Open Access Journals (Sweden)

    Rosenberg Helene F

    2001-05-01

    Full Text Available Abstract Respiratory syncytial virus (RSV and pneumonia virus of mice (PVM are viruses of the family Paramyxoviridae, subfamily pneumovirus, which cause clinically important respiratory infections in humans and rodents, respectively. The respiratory epithelial target cells respond to viral infection with specific alterations in gene expression, including production of chemoattractant cytokines, adhesion molecules, elements that are related to the apoptosis response, and others that remain incompletely understood. Here we review our current understanding of these mucosal responses and discuss several genomic approaches, including differential display reverse transcription-polymerase chain reaction (PCR and gene array strategies, that will permit us to unravel the nature of these responses in a more complete and systematic manner.

  14. Human amniotic epithelial cells express specific markers of nerve cells and migrate along the nerve fibers in the corpus callosum

    Institute of Scientific and Technical Information of China (English)

    Zhiyuan Wu; Guozhen Hui; Yi Lu; Tianjin Liu; Qin Huang; Lihe Guo

    2012-01-01

    Human amniotic epithelial cells were isolated from a piece of fresh amnion. Using immunocytochemical methods, we investigated the expression of neuronal phenotypes (microtubule-associated protein-2, glial fibrillary acidic protein and nestin) in human amniotic epithelial cells. The conditioned medium of human amniotic epithelial cells promoted the growth and proliferation of rat glial cells cultured in vitro, and this effect was dose-dependent. Human amniotic epithelial cells were further transplanted into the corpus striatum of healthy adult rats and the grafted cells could integrate with the host and migrate 1-2 mm along the nerve fibers in corpus callosum. Our experimental findings indicate that human amniotic epithelial cells may be a new kind of seed cells for use in neurograft.

  15. Mast cells infiltration and decreased E-cadherin expression in ketamine-induced cystitis

    Directory of Open Access Journals (Sweden)

    Mengqiang Li

    2015-01-01

    Conclusions: Increased mast cells in bladder wall and downregulated expression of E-cadherin junction protein in epithelial cells were probably associated with interstitial inflammation and fissures in mucosa. It implied that ketamine induced an interstitial cystitis.

  16. File list: ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube secret...hg19/assembled/ALL.Utr.50.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  17. File list: ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube secret...hg19/assembled/ALL.Utr.05.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  18. File list: ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell hg19 All antigens Uterus Fallopian tube...hg19/assembled/ALL.Utr.20.AllAg.Fallopian_tube_secretory_epithelial_cell.bed ...

  19. In vitro isolation and cultivation of rabbit tracheal epithelial cells using tissue explant technique.

    Science.gov (United States)

    Shi, Hong-Can; Lu, Dan; Li, Hai-Jia; Han, Shi; Zeng, Yan-Jun

    2013-04-01

    Epithelial cells from tracheal mucosa offer significant potential as a cell source in development of tissue-engineered trachea. The purpose of this study was to investigate and optimize a suitable culture system for tracheal epithelial cells, including the methods of primary culture, passage, identification, and cryopreservation. Epithelial cells were isolated from rabbit tracheal mucosa using tissue explant technique and were subjected to immunohistochemistry, immunofluorescence, and cryopreservation after purification. Epithelial cells reached confluency at 14-15 d. Immunohistochemical staining for cytokeratin showed brown yellow-positive cytoplasm and blue-counterstained nuclei, while immunofluorescence staining for cytokeratin showed green-positive cytoplasm and clear cell outline, indicating that the cultured cells had properties of epithelial cells. After recovery, epithelial cells exhibited high survival and viability. The results demonstrated that in vitro isolation and cultivation model was successfully established to provide high proliferative capacity, typical morphology and characteristics of tracheal epithelial cells from trachea mucosa by the use of the tissue explant technique.

  20. Epithelial cells as active player in fibrosis: findings from an in vitro model.

    Directory of Open Access Journals (Sweden)

    Solange Moll

    Full Text Available Kidney fibrosis, a scarring of the tubulo-interstitial space, is due to activation of interstitial myofibroblasts recruited locally or systemically with consecutive extracellular matrix deposition. Newly published clinical studies correlating acute kidney injury (AKI to chronic kidney disease (CKD challenge this pathological concept putting tubular epithelial cells into the spotlight. In this work we investigated the role of epithelial cells in fibrosis using a simple controlled in vitro system. An epithelial/mesenchymal 3D cell culture model composed of human proximal renal tubular cells and fibroblasts was challenged with toxic doses of Cisplatin, thus injuring epithelial cells. RT-PCR for classical fibrotic markers was performed on fibroblasts to assess their modulation toward an activated myofibroblast phenotype in presence or absence of that stimulus. Epithelial cell lesion triggered a phenotypical modulation of fibroblasts toward activated myofibroblasts as assessed by main fibrotic marker analysis. Uninjured 3D cell culture as well as fibroblasts alone treated with toxic stimulus in the absence of epithelial cells were used as control. Our results, with the caveats due to the limited, but highly controllable and reproducible in vitro approach, suggest that epithelial cells can control and regulate fibroblast phenotype. Therefore they emerge as relevant target cells for the development of new preventive anti-fibrotic therapeutic approaches.

  1. Early Trypanosoma cruzi Infection Reprograms Human Epithelial Cells

    Directory of Open Access Journals (Sweden)

    María Laura Chiribao

    2014-01-01

    Full Text Available Trypanosoma cruzi, the causative agent of Chagas disease, has the peculiarity, when compared with other intracellular parasites, that it is able to invade almost any type of cell. This property makes Chagas a complex parasitic disease in terms of prophylaxis and therapeutics. The identification of key host cellular factors that play a role in the T. cruzi invasion is important for the understanding of disease pathogenesis. In Chagas disease, most of the focus is on the response of macrophages and cardiomyocytes, since they are responsible for host defenses and cardiac lesions, respectively. In the present work, we studied the early response to infection of T. cruzi in human epithelial cells, which constitute the first barrier for establishment of infection. These studies identified up to 1700 significantly altered genes regulated by the immediate infection. The global analysis indicates that cells are literally reprogrammed by T. cruzi, which affects cellular stress responses (neutrophil chemotaxis, DNA damage response, a great number of transcription factors (including the majority of NFκB family members, and host metabolism (cholesterol, fatty acids, and phospholipids. These results raise the possibility that early host cell reprogramming is exploited by the parasite to establish the initial infection and posterior systemic dissemination.

  2. Interaction of oral bacteria with gingival epithelial cell multilayers.

    Science.gov (United States)

    Dickinson, B C; Moffatt, C E; Hagerty, D; Whitmore, S E; Brown, T A; Graves, D T; Lamont, R J

    2011-06-01

    Primary gingival epithelial cells were cultured in multilayers as a model for the study of interactions with oral bacteria associated with health and periodontal disease. Multilayers maintained at an air-liquid interface in low-calcium medium displayed differentiation and cytokeratin properties characteristic of junctional epithelium. Multilayers were infected with fluorescently labeled Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum or Streptococcus gordonii, and bacterial association was determined by confocal microscopy and quantitative image analysis. Porphyromonas gingivalis invaded intracellularly and spread from cell to cell; A. actinomycetemcomitans and F. nucleatum remained extracellular and showed intercellular movement through the multilayer; whereas S. gordonii remained extracellular and predominantly associated with the superficial cell layer. None of the bacterial species disrupted barrier function as measured by transepithelial electrical resistance. P. gingivalis did not elicit secretion of proinflammatory cytokines. However, A. actinomycetemcomitans and S. gordonii induced interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6 and IL-8 secretion; and F. nucleatum stimulated production of IL-1β and TNF-α. Aggregatibacter actinomycetemcomitans, F. nucleatum and S. gordonii, but not P. gingivalis, increased levels of apoptosis after 24 h infection. The results indicate that the organisms with pathogenic potential were able to traverse the epithelium, whereas the commensal bacteria did not. In addition, distinct host responses characterized the interaction between the junctional epithelium and oral bacteria.

  3. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells

    Directory of Open Access Journals (Sweden)

    Fabian eSalazar